code
stringlengths
1
13.8M
knitr::opts_chunk$set( collapse = TRUE, comment = " ) N <- 1e7 piR <- function(n, rng = runif) { x <- rng(n) y <- rng(n) 4 * sum(sqrt(x^2 + y^2) < 1.0) / n } set.seed(42) system.time(cat("pi ~= ", piR(N), "\n")) library(dqrng) dqRNGkind("Xoroshiro128+") dqset.seed(42) system.time(cat("pi ~= ", piR(N, rng = dqrunif), "\n")) system.time(runif(N)) system.time(dqrunif(N)) system.time(rexp(N)) system.time(dqrexp(N)) system.time(rnorm(N)) system.time(dqrnorm(N)) system.time(for (i in 1:100) sample.int(N, N/100, replace = TRUE)) system.time(for (i in 1:100) dqsample.int(N, N/100, replace = TRUE)) system.time(for (i in 1:100) sample.int(N, N/100)) system.time(for (i in 1:100) dqsample.int(N, N/100))
"reyes"
.get_raw_data_path <- function(file_name) { message("Using package raw data path, not resource directory.") dr <- system.file("data-raw", package = "icd") if (missing(file_name)) { dr } else { file.path(dr, file_name) } } .get_versioned_raw_file_name <- function(base_name, ver) { paste0("ver", ver, "_", base_name) } .save_in_data_dir <- function(var_name, x = NULL, compress = "xz", envir = parent.frame()) { if (!is.character(var_name)) { var_name <- as.character(substitute(var_name)) } message("Asked to save ", var_name, " to PACKAGE data dir") stopifnot(is.character(var_name)) if (is.null(x)) { stopifnot(exists(var_name, envir = envir)) x <- get(var_name, envir = envir) } package_dir <- getwd() data_path <- "data" assign(x = var_name, value = x) .assign(var_name = var_name, value = x) out_file <- file.path( package_dir, data_path, paste0(var_name, ".rda") ) oldx <- NULL if (file.exists(out_file)) { load(file = out_file, envir = (tenv <- new.env(emptyenv()))) oldx <- tenv[[var_name]] } if (!identical(x, oldx)) { warning("Data for ", sQuote(var_name), " is being updated.") old_file <- tempfile(paste0(var_name, ".old"), fileext = "rds") new_file <- tempfile(paste0(var_name, ".new"), fileext = "rds") message( "Saving old to: ", old_file, " and new to: ", new_file ) saveRDS(oldx, old_file, version = 2) saveRDS(x, new_file, version = 2) if (!askYesNo("Proceed?", default = FALSE)) { message( "Examine differences. Consider:", "testthat::compare(x, oldx), ", "daff::diff_data, ", "compareDF (slow), compare::compare (may need lapply), ", "arsenal::comparedf may have details but summary superficial, ", "base::setdiff not so helpful" ) if (!askYesNo("Continue saving?", default = FALSE)) { stop("Not saved in package data.") } } save( list = var_name, envir = envir, file = out_file, compress = compress, version = 2 ) message("Now reload package to enable updated/new data: ", var_name) } else { message("No change in data, so not re-saving.") } invisible(x) } .save_in_cache <- function(var_name, x = NULL, envir = parent.frame()) { if (!is.character(var_name)) { var_name <- as.character(substitute(var_name)) } stopifnot(is.character(var_name)) if (is.null(x)) { stopifnot(exists(var_name, envir = envir)) x <- get(var_name, envir = envir) } .assign(var_name, x) saveRDS(x, .rds_path(var_name), compress = "gzip" ) invisible(.get(var_name)) } .unzip_single <- function(url, file_name, save_path, insecure = TRUE, dl_msg = NULL, ...) { stopifnot(is.character(url)) stopifnot(is.character(file_name)) stopifnot(is.character(save_path)) if (file.exists(save_path)) { return(TRUE) } if (!.confirm_download()) { return(FALSE) } zipfile <- tempfile(fileext = ".zip") on.exit(unlink(zipfile), add = TRUE) extra <- ifelse(insecure, "--insecure --silent", NULL) if (.verbose() && !is.null(dl_msg)) message(dl_msg) dl_code <- utils::download.file( url = url, destfile = zipfile, quiet = !.verbose(), method = "curl", extra = extra, ... ) stopifnot(dl_code == 0) zipdir <- tempfile() on.exit(unlink(zipdir), add = TRUE) dir.create(zipdir) optwarn <- options(warn = 10) on.exit(options(optwarn), add = FALSE) file_paths <- utils::unzip(zipfile, exdir = zipdir) options(optwarn) if (length(file_paths) == 0) { stop("No files found in zip: ", zipfile) } files <- list.files(zipdir) if (length(files) == 0) stop("No files in unzipped directory") if (missing(file_name)) { if (length(files) == 1) { file_name <- files } else { stop( "multiple files in zip, but no file name specified: ", paste(files, collapse = ", ") ) } } else { if (!file_name %in% files) { message("files") print(files) message("file_name") print(file_name) stop(paste(file_name, " not found in ", paste(files, collapse = ", "))) } } ret <- file.copy(file.path(zipdir, file_name), save_path, overwrite = TRUE) unlink(zipdir, recursive = TRUE) ret } .dir_writable <- function(path) { dir.exists(path) && file.access(path, 2) == 0 }
require(geometa, quietly = TRUE) require(testthat) context("ISOFormat") test_that("encoding",{ testthat::skip_on_cran() md <- ISOFormat$new() md$setName("name") md$setVersion("1.0") md$setAmendmentNumber("2") md$setSpecification("specification") xml <- md$encode() expect_is(xml, "XMLInternalNode") md2 <- ISOFormat$new(xml = xml) xml2 <- md2$encode() expect_true(ISOAbstractObject$compare(md, md2)) }) test_that("encoding -i18n",{ testthat::skip_on_cran() md <- ISOFormat$new() md$setName( "someone", locales = list( EN = "name in english", FR = "nom en français", ES = "Nombre en español", AR = "الاسم باللغة العربية", RU = "имя на русском", ZH = "中文名" )) md$setVersion("1.0") md$setAmendmentNumber("2") md$setSpecification( "specification title", locales = list( EN="specification title", FR="Titre de la spécification", ES="Título de la especificación", AR="عنوان المواصفات", RU="название спецификации", ZH="规范的标题" )) xml <- md$encode() expect_is(xml, "XMLInternalNode") md2 <- ISOFormat$new(xml = xml) xml2 <- md2$encode() expect_true(ISOAbstractObject$compare(md, md2)) })
test_that("srt_to_df", { t <- srt_to_df(system.file("extdata", "test.srt", package = "phonfieldwork")) expect_true(nrow(t) == 4) })
upsilon_cumuls <- function(df,t,order.max=3) { kappa <- norm_cumuls(0,1,order.max) + sumchisqpow_cumuls(wts=t/sqrt(df),df=df,ncp=0,pow=0.5,order.max=order.max) return(kappa) } dupsilon <- function(x, df, t, log = FALSE, order.max=6) { kappa <- upsilon_cumuls(df,t,order.max=order.max) retval <- PDQutils::dapx_edgeworth(x,kappa,log=log) return(retval) } pupsilon <- function(q, df, t, lower.tail = TRUE, log.p = FALSE, order.max=6) { kappa <- upsilon_cumuls(df,t,order.max=order.max) retval <- PDQutils::papx_edgeworth(q,kappa,lower.tail=lower.tail,log.p=log.p) return(retval) } qupsilon <- function(p, df, t, lower.tail = TRUE, log.p = FALSE, order.max=6) { kappa <- upsilon_cumuls(df,t,order.max=order.max) retval <- PDQutils::qapx_cf(p,kappa,lower.tail=lower.tail,log.p=log.p) return(retval) } rupsilon <- function(n, df, t) { X <- rnorm(n) + rsumchisqpow(n, wts=t/sqrt(df), df=df, ncp=0, pow=0.5) return(X) }
estimate<-EstMLECorrBin(Chromosome_data$No.of.Asso,Chromosome_data$fre,0.1,0.0001) context("Checking outputs") test_that("estimate method",{ expect_identical(estimate@method, "BFGS") }) test_that("estimate method",{ expect_identical(estimate@optimizer, "optim") }) test_that("minimized negative ll value",{ expect_identical(round(estimate@min,4), 436.743) }) test_that("Checking class of output",{ expect_that(estimate, is_a("mle2")) })
basic_config <- function( file = NULL, fmt = "%L [%t] %m", timestamp_fmt = "%Y-%m-%d %H:%M:%OS3", threshold = "info", appenders = NULL, console = if (is.null(appenders)) "all" else FALSE, console_fmt = "%L [%t] %m %f", console_timestamp_fmt = "%H:%M:%OS3", memory = FALSE ){ default_fmt = "%L [%t] %m" stopifnot( is.null(file) || is_scalar_character(file), is.null(fmt) || is_scalar_character(fmt), is_scalar_character(console_fmt), is_scalar_character(timestamp_fmt), is_threshold(threshold), is_scalar_bool(console) || is_threshold(console), is_scalar_bool(memory) || is_threshold(console), is.null(appenders) || is.list(appenders) || inherits(appenders, "Appender") ) l <- get_logger()$ config(NULL)$ set_threshold(threshold) if (length(appenders)){ assert( is.null(file) || !"file" %in% names(appenders), "If `appenders` contains an appender named `file`, the `file` argument to basic_config() must be `NULL`" ) assert( isFALSE(console) || !"console" %in% names(appenders), "If `appenders` contains an appender named `console`, the `console` argument to basic_config() must be `FALSE`" ) assert( isFALSE(memory) || !"memory" %in% names(appenders), "If `appenders` contains an appender named `memory`, the `memory` argument to basic_config() must be `FALSE`" ) l$set_appenders(appenders) } if (!is.null(file)){ ext <- tools::file_ext(file) if (identical(tolower(ext), "json")){ stop( "Please use `.jsonl` and not `.json` as file extension for JSON log", "files. The reason is that that JSON files created", "by lgr are not true JSON files but JSONlines files.", "See https://jsonlines.org/ for more infos." ) } else if (identical(tolower(ext), "jsonl")){ if (!is.null(fmt) && !identical(fmt, default_fmt)) warning("`fmt` is ignored if `file` is a '.jsonl' file") l$add_appender( name = "file", AppenderJson$new(file = file, threshold = NA) ) } else { l$add_appender( name = "file", AppenderFile$new( file = file, threshold = NA, layout = LayoutFormat$new( fmt = fmt, timestamp_fmt = timestamp_fmt ) ) ) } } if (!isFALSE(console)){ if (isTRUE(console)) console <- 400 l$add_appender( name = "console", AppenderConsole$new( threshold = console, layout = LayoutFormat$new( colors = getOption("lgr.colors"), fmt = console_fmt, timestamp_fmt = console_timestamp_fmt ) ) ) } if (!isFALSE(memory)){ if (isTRUE(memory)) memory <- NA l$add_appender(name = "memory", AppenderBuffer$new( threshold = memory, should_flush = NULL )) } lgr }
library("reticulate") library("igraph") library("leiden") library("bipartite") set.seed(9000) context("running Leiden on a bipartite igraph object") suppressWarnings(suppressMessages({ bipartite_graph <- structure(list(32, FALSE, c(18, 19, 20, 21, 22, 23, 25, 26, 18, 19, 20, 22, 23, 24, 25, 19, 20, 21, 22, 23, 24, 25, 26, 18, 20, 21, 22, 23, 24, 25, 20, 21, 22, 24, 20, 22, 23, 25, 22, 23, 24, 25, 23, 25, 26, 22, 24, 25, 26, 24, 25, 26, 29, 25, 26, 27, 29, 25, 26, 27, 29, 30, 31, 24, 25, 26, 27, 29, 30, 31, 23, 24, 26, 27, 28, 29, 30, 31, 24, 25, 27, 28, 29, 30, 31, 25, 26, 27, 29, 26, 28, 26, 28), c(0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 17, 17), c(0, 8, 23, 1, 9, 15, 2, 10, 16, 24, 30, 34, 3, 17, 25, 31, 4, 11, 18, 26, 32, 35, 38, 45, 5, 12, 19, 27, 36, 39, 42, 70, 13, 20, 28, 33, 40, 46, 49, 63, 71, 78, 6, 14, 21, 29, 37, 41, 43, 47, 50, 53, 57, 64, 79, 85, 7, 22, 44, 48, 51, 54, 58, 65, 72, 86, 89, 91, 55, 59, 66, 73, 80, 87, 74, 81, 90, 92, 52, 56, 60, 67, 75, 82, 88, 61, 68, 76, 83, 62, 69, 77, 84), c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92), c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 12, 16, 24, 32, 42, 56, 68, 74, 78, 85, 89, 93), c(0, 8, 15, 23, 30, 34, 38, 42, 45, 49, 53, 57, 63, 70, 78, 85, 89, 91, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93, 93), list(c(1, 0, 1), structure(list(), .Names = character(0)), list(type = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE), name = c("EVELYN", "LAURA", "THERESA", "BRENDA", "CHARLOTTE", "FRANCES", "ELEANOR", "PEARL", "RUTH", "VERNE", "MYRA", "KATHERINE", "SYLVIA", "NORA", "HELEN", "DOROTHY", "OLIVIA", "FLORA", "E1", "E2", "E3", "E4", "E5", "E6", "E7", "E8", "E9", "E10", "E11", "E12", "E13", "E14")), list())), class = "igraph") bipartite_graph <- upgrade_graph(bipartite_graph) })) bipartite_adj_mat <- igraph::as_adjacency_matrix(bipartite_graph) modules <- reticulate::py_module_available("leidenalg") && reticulate::py_module_available("igraph") skip_if_no_python <- function() { if (!modules) testthat::skip("leidenalg not available for testing") } test_that("run with CPMVertexPartition.Bipartite", { skip_if_no_python() partition <- leiden(bipartite_graph, partition_type = "CPMVertexPartition.Bipartite", resolution_parameter = 0.1, seed = 9001) expect_length(partition, length(V(bipartite_graph))) expect_equal(sort(unique(partition)), c(1, 2)) expect_equal(partition, c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1)) bipartite_graph }) test_that("run with CPMVertexPartition.Bipartite and degree as node size", { skip_if_no_python() partition <- leiden(bipartite_graph, partition_type = "CPMVertexPartition.Bipartite", resolution_parameter = 0.01, degree_as_node_size = TRUE, seed = 9001) expect_length(partition, length(V(bipartite_graph))) expect_equal(sort(unique(partition)), c(1, 2)) expect_equal(partition, c(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2)) }) test_that("run with ModularityVertexPartition.Bipartite", { skip_if_no_python() partition <- leiden(bipartite_graph, partition_type = "ModularityVertexPartition.Bipartite", resolution_parameter = 0.01, seed = 9001) expect_length(partition, length(V(bipartite_graph))) expect_equal(sort(unique(partition)), c(1, 2)) expect_equal(partition, c(1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2)) })
kalseries <- function(response=NULL, times=NULL, intensity="exponential", depend="independence", mu=NULL, shape=NULL, density=FALSE, ccov=NULL, tvcov=NULL, torder=0, interaction=NULL, preg=NULL, ptvc=NULL, pintercept=NULL, pshape=NULL, pinitial=1, pdepend=NULL, pfamily=NULL, delta=NULL, transform="identity", link="identity", envir=parent.frame(), print.level=0, ndigit=10, gradtol=0.00001, steptol=0.00001, fscale=1, iterlim=100, typsize=abs(p), stepmax=10*sqrt(p%*%p)){ series <- function(p){ if(rf)b <- mu1(p) if(sf)v <- sh1(p[nps1:np]) z <- .C("kserie_c", p=as.double(p), y=as.double(y), t=as.double(times), x=as.double(resp$ccov$ccov), nind=as.integer(nind), nobs=as.integer(nobs), nbs=as.integer(n), nccov=as.integer(nccov), npv=as.integer(npv), model=as.integer(mdl), link=as.integer(lnk), density=as.integer(density), pfamily=as.integer(!is.null(pfamily)), dep=as.integer(dep), torder=as.integer(torder), inter=as.integer(interaction), tvc=as.integer(tvc), tvcov=as.double(resp$tvcov$tvcov), fit=as.integer(0), pred=double(n), rpred=double(n), rf=as.integer(rf), bbb=as.double(b), sf=as.integer(sf), vv=as.double(v), like=double(1), PACKAGE="repeated") z$like} serief <- function(p){ if(rf)b <- mu1(p) if(sf)v <- sh1(p[nps1:np]) z <- .C("krand_c", p=as.double(p), y=as.double(y), t=as.double(times), x=as.double(resp$ccov$ccov), nind=as.integer(nind), nobs=as.integer(nobs), nbs=as.integer(n), nccov=as.integer(nccov), npv=as.integer(npv), model=as.integer(mdl), link=as.integer(lnk), density=as.integer(density), torder=as.integer(torder), inter=as.integer(interaction), tvc=as.integer(tvc), tvcov=as.double(resp$tvcov$tvcov), fit=as.integer(0), pred=double(n), rpred=double(n), rf=as.integer(rf), bbb=as.double(b), sf=as.integer(sf), vv=as.double(v), frser=as.integer(frser), like=double(1), PACKAGE="repeated") z$like} call <- sys.call() tmp <- c("exponential","Weibull","gamma","gen logistic","normal", "logistic","Cauchy","Laplace","log normal","log logistic", "log Cauchy","log Laplace","inverse Gauss") mdl <- match(intensity <- match.arg(intensity,tmp),tmp) tmp <- c("independence","Markov","serial","frailty") dep <- match(depend <- match.arg(depend,tmp),tmp)-1 transform <- match.arg(transform,c("identity","exp","square","sqrt","log")) tmp <- c("identity","exp","square","sqrt","log") lnk <- match(link <- match.arg(link,tmp),tmp) rf <- !is.null(mu) sf <- !is.null(shape) type <- "unknown" respenv <- exists(deparse(substitute(response)),envir=parent.frame())&& inherits(response,"repeated")&&!inherits(envir,"repeated") if(respenv){ if(dim(response$response$y)[2]>1) stop("kalseries only handles univariate responses") if(!is.null(response$NAs)&&any(response$NAs)) stop("kalseries does not handle data with NAs") type <- response$response$type} envname <- if(respenv)deparse(substitute(response)) else if(!is.null(class(envir)))deparse(substitute(envir)) else NULL if(!respenv&&inherits(envir,"repeated")){ if(!is.null(envir$NAs)&&any(envir$NAs)) stop("kalseries does not handle data with NAs") cn <- deparse(substitute(response)) if(length(grep("\"",cn))>0)cn <- response if(length(cn)>1)stop("only one response variable allowed") response <- envir col <- match(cn,colnames(response$response$y)) if(is.na(col))stop(paste("response variable",cn,"not found")) type <- response$response$type[col] if(dim(response$response$y)[2]>1){ response$response$y <- response$response$y[,col,drop=FALSE] if(!is.null(response$response$delta)){ response$response$delta <- response$response$delta[,col,drop=FALSE] if(all(response$response$delta==1)||all(is.na(response$response$delta)))response$response$delta <- NULL}}} if(respenv||inherits(envir,"repeated")){ if(rf)resp <- rmna(response$response) else { resp <- response if(is.null(ccov))resp$ccov <- NULL else if(inherits(ccov,"formula")){ if(any(is.na(match(rownames(attr(terms(ccov,data=response),"factors")),colnames(response$ccov$ccov))))) stop("ccov covariate(s) not found") tmp <- wr(ccov,data=response,expand=FALSE)$design resp$ccov$ccov <- tmp[,-1,drop=FALSE] rm(tmp)} else stop("ccov must be a W&R formula") if(is.null(tvcov))resp$tvcov <- NULL else if(inherits(tvcov,"formula")){ if(any(is.na(match(rownames(attr(terms(tvcov,data=response),"factors")),colnames(response$tvcov$tvcov))))) stop("tvcov covariate(s) not found") tmp <- wr(tvcov,data=response)$design resp$tvcov$tvcov <- tmp[,-1,drop=FALSE] rm(tmp)} else stop("tvcov must be a W&R formula")} nccov <- if(rf||is.null(resp$ccov$ccov)) 0 else dim(resp$ccov$ccov)[2] ttvc <- if(rf||is.null(resp$tvcov$tvcov)) 0 else dim(resp$tvcov$tvcov)[2]} else { if(inherits(response,"response")){ resp <- response type <- response$type} else resp <- restovec(response,times,delta=delta) if(is.null(ccov))nccov <- 0 else { if(!inherits(ccov,"tccov")){ ccname <- deparse(substitute(ccov)) if((is.matrix(ccov)&&is.null(colnames(ccov)))){ ccname <- deparse(substitute(ccov)) if(dim(ccov)[2]>1){ tmp <- NULL for(i in 1:dim(ccov)[2]) tmp <- c(tmp,paste(ccname,i,sep="")) ccname <- tmp}} ccov <- tcctomat(ccov,names=ccname)} nccov <- if(rf) 0 else dim(ccov$ccov)[2]} if(is.null(tvcov))ttvc <- 0 else { if(!inherits(tvcov,"tvcov")){ tvcname <- deparse(substitute(tvcov)) if(is.list(tvcov)&&dim(tvcov[[1]])[2]>1){ if(is.null(colnames(tvcov[[1]]))){ tvcname <- deparse(substitute(tvcov)) tmp <- NULL for(i in 1:dim(tvcov[[1]])[2]) tmp <- c(tmp,paste(tvcname,i,sep="")) tvcname <- tmp} else tvcname <- colnames(tvcov[[1]])} tvcov <- tvctomat(tvcov,names=tvcname)} ttvc <- if(rf) 0 else dim(tvcov$tvcov)[2]} resp <- rmna(response=resp, tvcov=tvcov, ccov=ccov) if(!is.null(ccov))rm(ccov) if(!is.null(tvcov))rm(tvcov)} n <- dim(resp$response$y)[1] nobs <- nobs(resp) nind <- length(nobs) if((inherits(envir,"repeated")&&(length(nobs)!=length(nobs(envir))|| any(nobs!=nobs(envir))))||(inherits(envir,"tvcov")&& (length(nobs)!=length(envir$tvcov$nobs)||any(nobs!=envir$tvcov$nobs)))) stop("response and envir objects are incompatible") if((intensity=="exponential"||intensity=="Weibull"||intensity=="gamma" ||intensity=="log normal"||intensity=="log logistic" ||intensity=="log Cauchy"||intensity=="log Laplace" ||intensity=="inverse Gauss")&&type!="unknown"&&type!="duration" &&type!="continuous")stop("duration data required") if((intensity=="gen logistic"||intensity=="normal"||intensity=="logistic" ||intensity=="Cauchy"||intensity=="Laplace")&&type!="unknown" &&type!="continuous"&&type!="duration")stop("continuous data required") if(!is.null(resp$response$censor))stop("kalseries does not handle censoring") mu3 <- sh3 <- NULL if(respenv||inherits(envir,"repeated")||inherits(envir,"tccov")||inherits(envir,"tvcov")){ if(is.null(envname))envname <- deparse(substitute(envir)) if(inherits(mu,"formula")){ mu3 <- if(respenv)finterp(mu,.envir=response,.name=envname) else finterp(mu,.envir=envir,.name=envname)} else if(is.function(mu)){ if(is.null(attr(mu,"model"))){ tmp <- parse(text=deparse(mu)[-1]) mu <- if(respenv)fnenvir(mu,.envir=response,.name=envname) else fnenvir(mu,.envir=envir,.name=envname) mu3 <- mu attr(mu3,"model") <- tmp} else mu3 <- mu} if(inherits(shape,"formula")){ sh3 <- if(respenv)finterp(shape,.envir=response,.name=envname) else finterp(shape,.envir=envir,.name=envname)} else if(is.function(shape)){ if(is.null(attr(shape,"model"))){ tmp <- parse(text=deparse(shape)[-1]) shape <- if(respenv)fnenvir(shape,.envir=response,.name=envname) else fnenvir(shape,.envir=envir,.name=envname) sh3 <- shape attr(sh3,"model") <- tmp} else sh3 <- shape}} npreg <- length(preg) mu1 <- sh1 <- v <- b <- NULL if(inherits(mu,"formula")){ pr <- if(npreg>0)preg else ptvc npr <- length(pr) mu2 <- if(respenv) finterp(mu,.envir=response,.name=envname,.expand=is.null(preg)) else finterp(mu,.envir=envir,.name=envname,.expand=is.null(preg)) npt1 <- length(attr(mu2,"parameters")) if(is.character(attr(mu2,"model"))){ if(length(attr(mu2,"model"))==1){ mu1 <- function(p) p[1]*rep(1,n) attributes(mu1) <- attributes(mu2) mu2 <- NULL}} else { if(npr!=npt1){ cat("\nParameters are ") cat(attr(mu2,"parameters"),"\n") stop(paste("preg or ptvc should have",npt1,"estimates"))} if(is.list(pr)){ if(!is.null(names(pr))){ o <- match(attr(mu2,"parameters"),names(pr)) pr <- unlist(pr)[o] if(sum(!is.na(o))!=length(pr)) stop("invalid estimates for mu - probably wrong names")} else pr <- unlist(pr) if(npreg>0)preg <- pr else ptvc <- pr}} if(!is.null(mu2)){ if(inherits(envir,"tccov")){ cv <- covind(response) mu1 <- function(p) mu2(p)[cv] attributes(mu1) <- attributes(mu2)} else { mu1 <- mu2 rm(mu2)}}} else if(is.function(mu))mu1 <- mu if(!is.null(mu1)&&is.null(attr(mu1,"parameters"))){ attributes(mu1) <- if(is.function(mu)){ if(!inherits(mu,"formulafn")){ if(respenv)attributes(fnenvir(mu,.envir=response)) else attributes(fnenvir(mu,.envir=envir))} else attributes(mu)} else { if(respenv)attributes(fnenvir(mu1,.envir=response)) else attributes(fnenvir(mu1,.envir=envir))}} nlp <- if(is.function(mu1))length(attr(mu1,"parameters")) else if(is.null(mu1))NULL else npt1 if(!is.null(nlp)){ if(is.null(ptvc)&&nlp!=npreg) stop(paste("preg should have",nlp,"initial estimates")) else if(!is.null(ptvc)&&length(ptvc)!=nlp) stop(paste("ptvc should have",nlp,"initial estimates"))} nps <- length(pshape) if(inherits(shape,"formula")){ sh2 <- if(respenv)finterp(shape,.envir=response,.name=envname) else finterp(shape,.envir=envir,.name=envname) npt2 <- length(attr(sh2,"parameters")) common <- FALSE npl1 <- if(common&&!inherits(shape,"formula")) 1 else nlp+1 if(is.character(attr(sh2,"model"))){ if(length(attr(sh2,"model"))==1){ sh1 <- function(p) p[npl1]*rep(1,n) attributes(sh1) <- attributes(sh2) sh2 <- NULL}} else { if(nps!=npt2){ cat("\nParameters are ") cat(attr(sh2,"parameters"),"\n") stop(paste("pshape should have",npt2,"estimates"))} if(is.list(pshape)){ if(!is.null(names(pshape))){ o <- match(attr(sh2,"parameters"),names(pshape)) pshape <- unlist(pshape)[o] if(sum(!is.na(o))!=length(pshape)) stop("invalid estimates for shape - probably wrong names")} else pshape <- unlist(pshape)}} if(!is.null(sh2)){ if(inherits(envir,"tccov")){ cv <- covind(response) sh1 <- function(p) sh2(p)[cv] attributes(sh1) <- attributes(sh2)} else { sh1 <- sh2 rm(sh2)}}} else if(is.function(shape))sh1 <- shape if(!is.null(sh1)&&is.null(attr(sh1,"parameters"))) attributes(sh1) <- if(is.function(shape)){ if(!inherits(shape,"formulafn")){ if(respenv)attributes(fnenvir(shape,.envir=response)) else attributes(fnenvir(shape,.envir=envir))} else attributes(shape)} else { if(respenv)attributes(fnenvir(sh1,.envir=response)) attributes(fnenvir(sh1,.envir=envir))} nlp <- if(is.function(shape))length(attr(sh1,"parameters")) else if(is.null(shape))NULL else npt2 if(!is.null(nlp)&&nlp!=nps) stop(paste("pshape should have",nlp,"initial estimates")) if(rf&&!is.function(mu1))stop("mu must be a formula or function") if(sf&&!is.function(sh1))stop("shape must be a formula or function") tvc <- length(ptvc) if(!rf&&(ttvc>0&&tvc!=ttvc||ttvc==0&&tvc>0)) stop(paste(ttvc,"initial estimates of coefficients for time-varying covariates must be supplied")) if(intensity=="exponential"){ sf <- FALSE pshape <- NULL} else { if(is.null(pshape)) stop("Initial value of the shape parameter must be supplied") if(!sf){ if(pshape<=0)stop("Shape must be positive") else pshape <- log(pshape)}} if(intensity=="gen logistic"){ if(is.null(pintercept)) stop("Initial value of the intercept parameter must be supplied")} else pintercept <- NULL if(pinitial<=0)stop("Estimate of initial parameter must greater than 0") else pinitial <- log(pinitial) frser <- FALSE if(depend=="independence")pdepend <- NULL else if(depend=="frailty"){ frser <- !is.null(pdepend) if(frser){ if(pdepend<=0)stop("Dependence parameter must be positive") pdepend <- log(pdepend)}} else { if(is.null(pdepend)) stop("An estimate of the dependence parameter must be supplied") else if(pdepend<=0||pdepend>=1) stop("Dependence parameter must be between 0 and 1") else pdepend <- log(pdepend/(1-pdepend))} if(is.null(resp$response$times)){ if(depend=="serial"||depend=="Markov") stop("No times. Serial and Markov dependence cannot be fitted.") ave <- times <- 0} else { if(torder>length(unique(resp$response$times))) stop("torder is too large for the number of distinct times") ave <- mean(resp$response$times) times <- resp$response$times-ave} if(!is.null(interaction)){ if(length(interaction)!=nccov) stop(paste(nccov,"interactions with time must be specified")) else if(any(interaction>torder)) stop(paste("Interactions can be at most of order ",torder))} else interaction <- rep(0,nccov) if(!is.null(pfamily)&&depend=="frailty") stop("pfamily cannot be used with frailty dependence") npv <- torder+sum(interaction) if(rf&&npreg>0)nccov <- npreg-1 if(!rf&&1+nccov+npv!=npreg) stop(paste(1+nccov+npv,"regression estimates must be supplied")) y <- resp$response$y if(!is.null(resp$response$delta))jacob <- if(length(resp$response$delta)==1) -n*log(resp$response$delta) else -sum(log(resp$response$delta)) else jacob <- 0 if((mdl<=3||mdl>=8)&&any(y<=0))stop("All responses must be positive") if(transform=="exp"){ jacob <- jacob-sum(y) y <- exp(y)} else if(transform!="identity"){ if(any(y==0))stop("Zero response values: invalid transformation") if(transform=="square"){ jacob <- jacob-sum(log(abs(y)))-n*log(2) y <- y^2} if(any(y<0))stop("Nonpositive response values: invalid transformation") if(transform=="sqrt"){ jacob <- jacob+sum(log(y))/2+n*log(2) y <- sqrt(y)} else if(transform=="log"){ jacob <- jacob+sum(log(y)) y <- log(y)}} if(rf){ if(tvc>0&&nccov>0) stop("With a mean function or formula, initial estimates must be supplied either in preg or in ptvc") if(tvc>0){ if(length(mu1(ptvc))!=n) stop("The mu function or formula must provide an estimate for each observation") tvc <- tvc-1} else { lp <- length(mu1(preg)) if(lp==1){ if(nccov==0)mu1 <- function(p) rep(p[1],nind) else stop("Number of estimates does not correspond to mu function")} else if(lp!=nind) stop("The mu function or formula must provide an estimate for each individual")}} if(sf&&length(sh1(pshape))!=n) stop("The shape function must provide an estimate for each observation") np <- 1+nccov+npv+tvc+1+(depend=="serial"||depend=="Markov")+ nps+(!is.null(pintercept))+frser+(!is.null(pfamily)) nps1 <- np-nps+1 p <- c(preg,ptvc,pinitial,pdepend,pfamily,pintercept,pshape) if(dep==3)serie <- serief else serie <- series if(fscale==1)fscale <- serie(p) if(is.na(serie(p))) stop("Likelihood returns NAs: probably invalid initial values") z0 <- nlm(serie, p=p, hessian=TRUE, print.level=print.level, typsize=typsize, ndigit=ndigit, gradtol=gradtol, stepmax=stepmax, steptol=steptol, iterlim=iterlim, fscale=fscale) p <- z0$estimate like <- z0$minimum+jacob a <- if(any(is.na(z0$hessian))||any(abs(z0$hessian)==Inf))0 else qr(z0$hessian)$rank if(a==np)cov <- solve(z0$hessian) else cov <- matrix(NA,ncol=np,nrow=np) se <- sqrt(diag(cov)) corr <- cov/(se%o%se) dimnames(corr) <- list(1:np,1:np) if(mdl==4)z <- list() else { z <- if(depend=="frailty"){ if(rf)b <- mu1(p) if(sf)v <- sh1(p[nps1:np]) .C("krand_c", p=as.double(p), y=as.double(y), t=as.double(times), x=as.double(resp$ccov$ccov), nind=as.integer(nind), nobs=as.integer(nobs), nbs=as.integer(n), nccov=as.integer(nccov), npv=as.integer(npv), model=as.integer(mdl), link=as.integer(lnk), density=as.integer(density), torder=as.integer(torder), inter=as.integer(interaction), tvc=as.integer(tvc), tvcov=as.double(resp$tvcov$tvcov), fit=as.integer(1), pred=double(n), rpred=double(n), rf=as.integer(rf), bbb=as.double(b), sf=as.integer(sf), vv=as.double(v), frser=as.integer(frser), like=double(1), PACKAGE="repeated")} else { if(rf)b <- mu1(p) if(sf)v <- sh1(p[nps1:np]) z <- .C("kserie_c", p=as.double(p), y=as.double(y), t=as.double(times), x=as.double(resp$ccov$ccov), nind=as.integer(nind), nobs=as.integer(nobs), nbs=as.integer(n), nccov=as.integer(nccov), npv=as.integer(npv), model=as.integer(mdl), link=as.integer(lnk), density=as.integer(density), pfamily=as.integer(!is.null(pfamily)), dep=as.integer(dep), torder=as.integer(torder), inter=as.integer(interaction), tvc=as.integer(tvc), tvcov=as.double(resp$tvcov$tvcov), fit=as.integer(1), pred=double(n), rpred=double(n), rf=as.integer(rf), bbb=as.double(b), sf=as.integer(sf), vv=as.double(v), like=double(1), PACKAGE="repeated")}} if(rf&&tvc>0){ nccov <- tvc tvc <- 0} if(!is.null(mu3))mu1 <- mu3 if(!is.null(sh3))sh1 <- sh3 z <- list( call=call, intensity=intensity, pfamily=!is.null(pfamily), mdl=mdl, frser=frser, mu=mu1, npr=1+nccov+tvc+torder+sum(interaction), shape=sh1, nps=nps, density=density, depend=depend, torder=torder, interaction=interaction, response=resp$response, pred=z$pred, rpred=z$rpred, transform=transform, ccov=resp$ccov, tvcov=resp$tvcov, link=link, maxlike=like, aic=like+np, df=n-np, npt=np, npv=npv, coefficients=p, se=se, cov=cov, corr=corr, grad=z0$gradient, iterations=z0$iterations, code=z0$code) class(z) <- if(mdl==4)"kalseries" else c("kalseries","recursive") return(z)} deviance.kalseries <- function(object, ...) 2*object$maxlike fitted.kalseries <- function(object, recursive=TRUE, ...) if(recursive) object$rpred else object$pred residuals.kalseries <- function(object, recursive=TRUE, ...){ if(object$transform=="exp")object$response$y <- exp(object$response$y) else if(object$transform=="square")object$response$y <- object$response$y^2 else if(object$transform=="sqrt")object$response$y <- sqrt(object$response$y) else if(object$transform=="log")object$response$y <- log(object$response$y) res <- if(recursive)object$response$y-object$rpred else object$response$y-object$pred class(res) <- "residuals" res} print.kalseries <- function(x,digits=max(3,.Options$digits-3),correlation=TRUE, ...){ z<-x if(!is.null(z$ccov))nccov <- dim(z$ccov$ccov)[2] else nccov <- 0 expm <- z$intensity!="exponential"&&!is.function(z$shape) glm <- z$intensity=="gen logistic" npt <- if(is.function(z$shape)) z$npt-z$nps else z$npt deppar <- (z$depend=="serial"||z$depend=="Markov") cat("\nCall:",deparse(z$call),sep="\n") cat("\n") if(z$code>2)cat("Warning: no convergence - error",z$code,"\n\n") cat("Number of subjects ",length(nobs(z)),"\n") cat("Number of observations",length(z$response$y),"\n") if(!is.null(z$response$time)) cat("Times centred at ",mean(z$response$time),"\n") cat("Transformation ",z$trans,"\n") cat("Link function ",z$link,"\n\n") if(z$density)cat(z$intensity," density",sep="") else cat(z$intensity," intensity",sep="") if(z$depend=="independence")cat(" with independence\n") else cat(" with",z$depend,"dependence",if(z$frser)"and AR","\n") cat("\n-Log likelihood ",z$maxlike,"\n") cat("Degrees of freedom",z$df,"\n") cat("AIC ",z$aic,"\n") cat("Iterations ",z$iterations,"\n\n") cat("Location parameters\n") if(!is.null(attr(z$mu,"formula"))) cat(deparse(attr(z$mu,"formula")),sep="\n") else if(!is.null(attr(z$mu,"model"))){ t <- deparse(attr(z$mu,"model")) t[1] <- sub("expression\\(","",t[1]) t[length(t)] <- sub("\\)$","",t[length(t)]) cat(t,sep="\n")} coef.table <- cbind(z$coef[1:z$npr],z$se[1:z$npr]) if(inherits(z$mu,"formulafn")) cname <- if(is.character(attr(z$mu,"model")))attr(z$mu,"model") else attr(z$mu,"parameters") else { cname <- "(Intercept)" if(nccov)cname <- c(cname,colnames(z$ccov$ccov)) if(z$torder){ cname <- c(cname,paste("t^",1:z$torder,sep="")) if(length(z$interaction)>0){ for(i in 1:nccov)if(z$interaction[i]>0){ cname <- c(cname,paste(colnames(z$ccov$ccov)[i],".t^",1:z$interaction[i],sep=""))}}} if(!is.null(z$tvcov))cname <- c(cname,colnames(z$tvcov$tvcov))} dimnames(coef.table) <- list(cname, c("estimate","se")) print.default(coef.table, digits=digits, print.gap=2) if(is.function(z$shape))cat("\nDependence parameters\n") else cat("\nNonlinear parameters\n") coef <- exp(z$coef[(npt-deppar-z$frser-z$pfamily-glm-expm):npt]) cname <- "initial" if(deppar){ cname <- c(cname,"depend") coef[2] <- coef[2]/(1+coef[2])} if(z$frser)cname <- c(cname,"AR") if(z$pfamily){ cname <- c(cname,"family") coef[length(coef)-glm-expm] <- z$coef[npt-glm-expm]} if(glm){ cname <- c(cname,"intercept") coef[length(coef)-expm] <- z$coef[npt-expm] if(expm){ cname <- c(cname,"asymptote") coef[length(coef)] <- 1/coef[length(coef)]}} else if(expm)cname <- c(cname,"shape") coef.table <- cbind(z$coef[(npt-deppar-z$frser-z$pfamily-glm-expm):npt], z$se[(npt-deppar-z$frser-z$pfamily-glm-expm):npt],coef) dimnames(coef.table) <- list(cname, c("estimate","se","parameter")) print.default(coef.table, digits=digits, print.gap=2) if(z$depend=="frailty"){ tmp <- trigamma(exp(-z$coef[npt-deppar-expm-z$frser])) cat("Correlation =",tmp/(tmp+trigamma(1)),"\n")} if(inherits(z$shape,"formulafn")){ cat("\nShape parameters\n") if(!is.null(attr(z$shape,"formula"))) cat(deparse(attr(z$shape,"formula")),sep="\n") else if(!is.null(attr(z$shape,"model"))){ t <- deparse(attr(z$shape,"model")) t[1] <- sub("expression\\(","",t[1]) t[length(t)] <- sub("\\)$","",t[length(t)]) cat(t,sep="\n")} cname <- if(is.character(attr(z$shape,"model"))) attr(z$shape,"model") else attr(z$shape,"parameters") coef.table <- cbind(z$coef[(z$npt-z$nps+1):z$npt], z$se[(z$npt-z$nps+1):z$npt]) dimnames(coef.table) <- list(cname, c("estimate","se")) print.default(coef.table, digits=digits, print.gap=2)} if(correlation){ cat("\nCorrelation matrix\n") print.default(z$corr, digits=digits)}}
pred.jplm.cumhaz <- function(object, at=NULL, CI=FALSE){ digits = max(4, getOption("digits") - 1) testpt=ifelse(matrix(object$wt,length(at),length(object$wt),byrow=TRUE) <= matrix(at,length(at),length(object$wt)), 1, 0) coef = c(testpt %*% object$lambdas) coefTab = cbind(At=at, Value=coef) out <- as.data.frame(round(coefTab, digits)) if (CI==TRUE) { where= length(object$coef.fixed.surv)+length(object$coef.frailty.surv) + (1:length(object$wt)) cov.lambdas = object$covt[where, where] se=sqrt(diag((as.matrix(testpt%*%cov.lambdas%*%t(testpt))))) lower = coef - 1.96*se upper = coef + 1.96*se coefTab = cbind(coefTab, Std.Err=se, Lower=lower,Upper=upper, deparse.level = 0) out <- as.data.frame(coefTab) ind <- out$Lower < 0 if(sum(ind)>0) out$Lower[ind] <- sprintf("<0") ind <- out$Upper < 0 if(sum(ind)>0) out$Upper[ind] <- sprintf("<0") } cat("\n<< Event Process >>\n") transf.par=object$K if (transf.par==0) cat("Transformation function: H(x) = x\n") else if (transf.par>0) cat(sprintf("\nTransformation function: H(x) = log(1+%s)/%s\n",transf.par,transf.par)) cat("\nBaseline Cumulative Hazard:\n") print(out) }
null.model <- function(predictors, xy = NULL, type = c(1, 2), algorithm = c("brt", "maxent"), nb,unique.data = T, same = T, background.nb = nb, nb.rep = 10, tc = 2, lr = 0.001, bf = 0.75, n.trees = 50, step.size = n.trees) { if (unique.data == T) { xy <- unique(xy) } eval <- data.frame(AUC.value = NA, MaxSSS = NA, preferential.area = NA, omission.rate = NA, nb.omission = NA, SD.value = NA) stack.pred <- raster::subset(predictors, 1) raster::values(stack.pred) <- NA p.vect0 <- raster::reclassify(raster::subset(predictors, 1), base::cbind(NA, -99999)) tableau.cor <- data.frame(raster::rasterToPoints(p.vect0)[, 3]) tableau.cor <- base::replace(tableau.cor, values = NA) colnames(tableau.cor) <- "initial" if (algorithm == "maxent") { if (type == 1) { for (i in 1:nb.rep) { samples <- xy[sample(nrow(xy), nb), ] SDMtab.object <- SDMtab(xydata = samples, predictors = predictors, unique.data = unique.data, same = same,background.nb=background.nb) model <- compute.maxent(x = SDMtab.object, proj.predictors = predictors) eval <- base::rbind(eval, SDMeval(model)) stack.pred <- raster::stack(stack.pred, model$raster.prediction) prediction.wNA <- raster::reclassify(model$raster.prediction, base::cbind(NA, -99999)) p.vect <- data.frame(raster::rasterToPoints(prediction.wNA)[, 3]) p.vect <- replace(p.vect, p.vect == -99999, NA) tableau.cor <- base::cbind(tableau.cor, p.vect) } } if (type == 2) { for (boot in 1:nb.rep) { vect.r <- raster::reclassify(raster::subset(predictors, 1), base::cbind(NA, -99999)) vect <- data.frame(raster::rasterToPoints(vect.r)[, c(1, 2)]) vect <- base::replace(vect, vect[, 1] == -99999, NA) vect <- base::replace(vect, vect[, 2] == -99999, NA) samples <- vect[sample(nrow(vect), nb), ] SDMtab.object <- SDMtab(xydata = samples, predictors = predictors, unique.data = unique.data, same = same, background.nb = background.nb) model <- compute.maxent(x = SDMtab.object, proj.predictors = predictors) eval <- base::rbind(eval, SDMeval(model)) stack.pred <- raster::stack(stack.pred, model$raster.prediction) prediction.wNA <- raster::reclassify(model$raster.prediction, base::cbind(NA, -99999)) p.vect <- data.frame(raster::rasterToPoints(prediction.wNA)[, 3]) p.vect <- replace(p.vect, p.vect == -99999, NA) tableau.cor <- base::cbind(tableau.cor, p.vect) } } } if (algorithm == "brt") { if (type == 1) { for (i in 1:nb.rep) { samples <- xy[sample(nrow(xy), nb), ] SDMtab.object <- SDMtab(xydata = samples, predictors = predictors, unique.data = unique.data, same = same, background.nb = background.nb) model <- compute.brt(x = SDMtab.object, proj.predictors = predictors, tc=tc,lr=lr,bf=bf,n.trees=n.trees,step.size=step.size) eval <- base::rbind(eval, SDMeval(model)) stack.pred <- raster::stack(stack.pred, model$raster.prediction) prediction.wNA <- raster::reclassify(model$raster.prediction, base::cbind(NA, -99999)) p.vect <- data.frame(raster::rasterToPoints(prediction.wNA)[, 3]) p.vect <- replace(p.vect, p.vect == -99999, NA) tableau.cor <- base::cbind(tableau.cor, p.vect) } } if (type == 2) { for (boot in 1:nb.rep) { vect.r <- raster::reclassify(raster::subset(predictors, 1), base::cbind(NA, -99999)) vect <- data.frame(raster::rasterToPoints(vect.r)[, c(1, 2)]) vect <- base::replace(vect, vect[, 1] == -99999, NA) vect <- base::replace(vect, vect[, 2] == -99999, NA) samples <- vect[sample(nrow(vect), nb), ] SDMtab.object <- SDMtab(xydata = samples, predictors = predictors, unique.data = unique.data, same = same, background.nb = background.nb) model <- compute.brt(x = SDMtab.object, proj.predictors = predictors, tc=tc,lr=lr,bf=bf,n.trees=n.trees,step.size=step.size) eval <- base::rbind(eval, SDMeval(model)) stack.pred <- raster::stack(stack.pred, model$raster.prediction) prediction.wNA <- raster::reclassify(model$raster.prediction, base::cbind(NA, -99999)) p.vect <- data.frame(raster::rasterToPoints(prediction.wNA)[, 3]) p.vect <- replace(p.vect, p.vect == -99999, NA) tableau.cor <- base::cbind(tableau.cor, p.vect) } } } arguments <- list(xy = xy, predictors = predictors, type = type, algorithm = algorithm, nb = nb, same = same, background.nb = background.nb, nb.rep = nb.rep) eval <- eval[-1, ] rownames(eval) <- seq(from = 1, to = nb.rep, by = 1) eval.mean <- apply(eval, FUN = mean, MARGIN = 2, na.rm = T) pred.stack <- raster::dropLayer(stack.pred, i = 1) pred.mean <- raster::calc(pred.stack, fun = mean, na.rm = T) tableau.cor <- tableau.cor[, -1] colnames(tableau.cor) <- seq(from = 1, to = nb.rep, by = 1) matrice.cor <- stats::cor(tableau.cor, metho = "spearman", use = "pairwise.complete.obs") lt <- lower.tri(matrice.cor) data.cor <- matrice.cor[lt] return(list(input = arguments, eval = eval, eval.null = eval.mean, pred.stack = pred.stack, pred.mean = pred.mean, correlation = data.cor)) }
q.mle.norm.estimate <- function(complete.lifespans, censored.lifespans) { mle(function(mean, sd, Q) { qsurvival.nllik("norm", complete.lifespans, censored.lifespans, Q, mean, sd) }, method='L-BFGS-B', lower=list(mean=min(complete.lifespans), sd=0.01, Q=0.000001), upper=list(mean=max(complete.lifespans), sd=(max(complete.lifespans) - min(complete.lifespans)), Q=0.999999), start=list(mean=mean(complete.lifespans), sd=sd(complete.lifespans), Q = 0.5)) }
leapYear <- function( year ) { return ( year %% 400 == 0 | ( year %% 4 == 0 & year %% 100 != 0 ) ) }
s_hs <- function(..., char = NULL, fields = c("alias", "concept", "title"), apropos, keyword, whatis, ignore.case = TRUE, package = NULL, agrep = NULL, use_UTF8 = FALSE) { pattern <- if (is.null(char)) cnscinfun() else char if (is.list(pattern)) stop("... (or char) cannot be a list.") utils::help.search(pattern, fields, apropos, keyword, whatis, ignore.case = ignore.case, package = package, agrep = agrep, use_UTF8 = use_UTF8) }
CDORemap <- function(data_array = NULL, lons, lats, grid, method, avoid_writes = TRUE, crop = TRUE, force_remap = FALSE, write_dir = tempdir()) { .isRegularVector <- function(x, tol = 0.1) { if (length(x) < 2) { TRUE } else { spaces <- x[2:length(x)] - x[1:(length(x) - 1)] (sum(abs(spaces - mean(spaces)) > mean(spaces) / (1 / tol)) < 2) } } known_lon_names <- .KnownLonNames() known_lat_names <- .KnownLatNames() if (!is.numeric(lons) || !is.numeric(lats)) { stop("Expected numeric 'lons' and 'lats'.") } if (any(is.na(lons > 0))) { stop("Found invalid values in 'lons'.") } if (any(is.na(lats > 0))) { stop("Found invalid values in 'lats'.") } if (is.null(dim(lons))) { dim(lons) <- length(lons) } if (is.null(dim(lats))) { dim(lats) <- length(lats) } if (length(dim(lons)) > 2 || length(dim(lats)) > 2) { stop("'lons' and 'lats' can only have up to 2 dimensions.") } if (length(dim(lons)) != length(dim(lats))) { stop("'lons' and 'lats' must have the same number of dimensions.") } if (length(dim(lons)) == 2 && !all(dim(lons) == dim(lats))) { stop("'lons' and 'lats' must have the same dimension sizes.") } return_array <- TRUE if (is.null(data_array)) { return_array <- FALSE if (length(dim(lons)) == 1) { array_dims <- c(length(lats), length(lons)) new_lon_dim_name <- 'lon' new_lat_dim_name <- 'lat' } else { array_dims <- dim(lons) new_lon_dim_name <- 'i' new_lat_dim_name <- 'j' } if (!is.null(names(dim(lons)))) { if (any(known_lon_names %in% names(dim(lons)))) { new_lon_dim_name <- known_lon_names[which(known_lon_names %in% names(dim(lons)))[1]] } } if (!is.null(names(dim(lats)))) { if (any(known_lat_names %in% names(dim(lats)))) { new_lat_dim_name <- known_lat_names[which(known_lat_names %in% names(dim(lats)))[1]] } } names(array_dims) <- c(new_lat_dim_name, new_lon_dim_name) data_array <- array(as.numeric(NA), array_dims) } if (!(is.logical(data_array) || is.numeric(data_array)) || !is.array(data_array)) { stop("Parameter 'data_array' must be a numeric array.") } if (is.null(names(dim(data_array)))) { stop("Parameter 'data_array' must have named dimensions.") } lon_dim <- which(known_lon_names %in% names(dim(data_array))) if (length(lon_dim) < 1) { stop("Could not find a known longitude dimension name in the provided 'data_array'.") } if (length(lon_dim) > 1) { stop("Found more than one known longitude dimension names in the provided 'data_array'.") } lon_dim <- known_lon_names[lon_dim] lat_dim <- which(known_lat_names %in% names(dim(data_array))) if (length(lat_dim) < 1) { stop("Could not find a known latitude dimension name in the provided 'data_array'.") } if (length(lat_dim) > 1) { stop("Found more than one known latitude dimension name in the provided 'data_array'.") } lat_dim <- known_lat_names[lat_dim] if (is.null(names(dim(lons)))) { if (length(dim(lons)) == 1) { names(dim(lons)) <- lon_dim } else { stop("Parameter 'lons' must be provided with dimension names.") } } else { if (!(lon_dim %in% names(dim(lons)))) { stop("Parameter 'lon' must have the same longitude dimension name as the 'data_array'.") } if (length(dim(lons)) > 1 && !(lat_dim %in% names(dim(lons)))) { stop("Parameter 'lon' must have the same latitude dimension name as the 'data_array'.") } } if (is.null(names(dim(lats)))) { if (length(dim(lats)) == 1) { names(dim(lats)) <- lat_dim } else { stop("Parameter 'lats' must be provided with dimension names.") } } else { if (!(lat_dim %in% names(dim(lats)))) { stop("Parameter 'lat' must have the same latitude dimension name as the 'data_array'.") } if (length(dim(lats)) > 1 && !(lon_dim %in% names(dim(lats)))) { stop("Parameter 'lat' must have the same longitude dimension name as the 'data_array'.") } } lons_attr_bk <- attributes(lons) if (is.null(lons_attr_bk)) { lons_attr_bk <- list() } lats_attr_bk <- attributes(lats) if (is.null(lats_attr_bk)) { lats_attr_bk <- list() } if (length(attr(lons, 'variables')) == 0) { new_metadata <- list(list()) if (length(dim(lons)) == 1) { names(new_metadata) <- lon_dim } else { names(new_metadata) <- paste0(lon_dim, '_var') } attr(lons, 'variables') <- new_metadata } if (!('units' %in% names(attr(lons, 'variables')[[1]]))) { new_metadata <- attr(lons, 'variables') new_metadata[[1]][['units']] <- 'degrees_east' attr(lons, 'variables') <- new_metadata } if (length(attr(lats, 'variables')) == 0) { new_metadata <- list(list()) if (length(dim(lats)) == 1) { names(new_metadata) <- lat_dim } else { names(new_metadata) <- paste0(lat_dim, '_var') } attr(lats, 'variables') <- new_metadata } if (!('units' %in% names(attr(lats, 'variables')[[1]]))) { new_metadata <- attr(lats, 'variables') new_metadata[[1]][['units']] <- 'degrees_north' attr(lats, 'variables') <- new_metadata } if (!is.character(grid)) { stop("Parameter 'grid' must be a character string specifying a ", "target CDO grid, 'rXxY' or 'tRESgrid', or a path to another ", "NetCDF file.") } if (grepl('^r[0-9]{1,}x[0-9]{1,}$', grid)) { grid_type <- 'regular' grid_lons <- as.numeric(strsplit(strsplit(grid, 'x')[[1]][1], 'r')[[1]][2]) grid_lats <- as.numeric(strsplit(grid, 'x')[[1]][2]) } else if (grepl('^t[0-9]{1,}grid$', grid)) { grid_type <- 'gaussian' grid_t <- as.numeric(strsplit(strsplit(grid, 'grid')[[1]][1], 't')[[1]][2]) grid_size <- .t2nlatlon(grid_t) grid_lons <- grid_size[2] grid_lats <- grid_size[1] } else { grid_type <- 'custom' } if (method %in% c('bil', 'bilinear')) { method <- 'bil' } else if (method %in% c('bic', 'bicubic')) { method <- 'bic' } else if (method %in% c('con', 'conservative')) { method <- 'con' } else if (method %in% c('dis', 'distance-weighted')) { method <- 'dis' } else { stop("Unsupported CDO remap method. 'bilinear', 'bicubic', 'conservative' or 'distance-weighted' supported only.") } if (!is.logical(avoid_writes)) { stop("Parameter 'avoid_writes' must be a logical value.") } crop_tight <- FALSE if (is.character(crop)) { if (crop == 'tight') { crop_tight <- TRUE } else if (crop != 'preserve') { stop("Parameter 'crop' can only take the values 'tight' or 'preserve' if specified as a character string.") } crop <- TRUE } if (is.logical(crop)) { if (crop) { warning("Parameter 'crop' = 'TRUE'. The output grid range will follow the input lons and lats.") if (length(lons) == 1 || length(lats) == 1) { stop("CDORemap cannot remap if crop = TRUE and values for only one ", "longitude or one latitude are provided. Either a) provide ", "values for more than one longitude/latitude, b) explicitly ", "specify the crop limits in the parameter crop, or c) set ", "crop = FALSE.") } if (crop_tight) { lon_extremes <- c(min(lons), max(lons)) lat_extremes <- c(min(lats), max(lats)) } else { if (length(dim(lons)) == 1) { tmp_lon <- lons } else { min_pos <- which(lons == min(lons), arr.ind = TRUE)[1, ] tmp_lon <- Subset(lons, lat_dim, min_pos[which(names(dim(lons)) == lat_dim)], drop = 'selected') } i <- 1:length(tmp_lon) degree <- min(3, length(i) - 1) lon_model <- lm(tmp_lon ~ poly(i, degree)) lon_extremes <- c(NA, NA) left_is_min <- FALSE right_is_max <- FALSE if (which.min(tmp_lon) == 1) { left_is_min <- TRUE prev_lon <- predict(lon_model, data.frame(i = 0)) first_lon_cell_width <- (tmp_lon[1] - prev_lon) lon_extremes[1] <- tmp_lon[1] - first_lon_cell_width / 2 } else { lon_extremes[1] <- min(tmp_lon) } if (which.max(tmp_lon) == length(tmp_lon)) { right_is_max <- TRUE next_lon <- predict(lon_model, data.frame(i = length(tmp_lon) + 1)) last_lon_cell_width <- (next_lon - tmp_lon[length(tmp_lon)]) lon_extremes[2] <- tmp_lon[length(tmp_lon)] + last_lon_cell_width / 2 } else { lon_extremes[2] <- max(tmp_lon) } if (right_is_max) { if (lon_extremes[1] < -180) { if (!((lon_extremes[2] < 180) && !((180 - lon_extremes[2]) <= last_lon_cell_width / 2))) { lon_extremes[1] <- -180 lon_extremes[2] <- 180 } } else if (lon_extremes[1] < 0) { if (!((lon_extremes[2] < 360) && !((360 - lon_extremes[2]) <= last_lon_cell_width / 2))) { lon_extremes[1] <- 0 lon_extremes[2] <- 360 } } } if (left_is_min) { if (lon_extremes[2] > 360) { if (!((lon_extremes[1] > 0) && !(lon_extremes[1] <= first_lon_cell_width / 2))) { lon_extremes[1] <- 0 lon_extremes[2] <- 360 } } else if (lon_extremes[2] > 180) { if (!((lon_extremes[1] > -180) && !((180 + lon_extremes[1]) <= first_lon_cell_width / 2))) { lon_extremes[1] <- -180 lon_extremes[2] <- 180 } } } if (length(dim(lats)) == 1) { tmp_lat <- lats } else { min_pos <- which(lats == min(lats), arr.ind = TRUE)[1, ] tmp_lat <- Subset(lats, lon_dim, min_pos[which(names(dim(lats)) == lon_dim)], drop = 'selected') } i <- 1:length(tmp_lat) degree <- min(3, length(i) - 1) lat_model <- lm(tmp_lat ~ poly(i, degree)) lat_extremes <- c(NA, NA) if (which.min(tmp_lat) == 1) { prev_lat <- predict(lat_model, data.frame(i = 0)) lat_extremes[1] <- tmp_lat[1] - (tmp_lat[1] - prev_lat) / 2 } else { lat_extremes[1] <- min(tmp_lat) } if (which.max(tmp_lat) == length(tmp_lat)) { next_lat <- predict(lat_model, data.frame(i = length(tmp_lat) + 1)) lat_extremes[2] <- tmp_lat[length(tmp_lat)] + (next_lat - tmp_lat[length(tmp_lat)]) / 2 } else { lat_extremes[2] <- max(tmp_lat) } if (lat_extremes[1] < -90) { lat_extremes[1] <- -90 } else if (lat_extremes[1] > 90) { lat_extremes[1] <- 90 } if (lat_extremes[2] < -90) { lat_extremes[2] <- -90 } else if (lat_extremes[2] > 90) { lat_extremes[2] <- 90 } } } else if (crop == FALSE) { warning("Parameter 'crop' = 'FALSE'. The output grid range will follow parameter 'grid'.") } } else if (is.numeric(crop)) { if (length(crop) != 4) { stop("Paramrter 'crop' must be a logical value or a numeric vector of length 4: c(western border, eastern border, southern border, northern border.") } else { lon_extremes <- crop[1:2] lat_extremes <- crop[3:4] crop <- TRUE } } else { stop("Parameter 'crop' must be a logical value or a numeric vector.") } if (!is.logical(force_remap)) { stop("Parameter 'force_remap' must be a logical value.") } if (!is.character(write_dir)) { stop("Parameter 'write_dir' must be a character string.") } if (!dir.exists(write_dir)) { stop("Parameter 'write_dir' must point to an existing directory.") } interpolation_needed <- TRUE if (!force_remap) { if (!(grid_type == 'custom')) { if (length(lons) == grid_lons && length(lats) == grid_lats) { if (grid_type == 'regular') { if (.isRegularVector(lons) && .isRegularVector(lats)) { interpolation_needed <- FALSE } } else if (grid_type == 'gaussian') { if (.isRegularVector(lons) && !.isRegularVector(lats)) { interpolation_needed <- FALSE } } } } } found_lons <- lons found_lats <- lats if (interpolation_needed) { if (nchar(Sys.which('cdo')[1]) < 1) { stop("CDO must be installed in order to use the .CDORemap.") } cdo_version <- as.numeric_version( strsplit(suppressWarnings(system2("cdo", args = '-V', stderr = TRUE))[[1]], ' ')[[1]][5] ) warning("CDORemap: Using CDO version ", cdo_version, ".") if ((cdo_version >= as.numeric_version('1.7.0')) && (method == 'con')) { method <- 'ycon' } is_irregular <- FALSE if (length(dim(lats)) > 1 && length(dim(lons)) > 1) { is_irregular <- TRUE } attribute_backup <- attributes(data_array) other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim))) permutation <- NULL unlimited_dim <- NULL dims_to_iterate <- NULL total_slices <- 1 other_dims_per_chunk <- ifelse(is_irregular, 1, 2) if (length(other_dims) > 1 || (length(other_dims) > 0 && (is_irregular))) { if (!(length(dim(data_array)) %in% other_dims)) { if (avoid_writes || is_irregular) { dims_mod <- dim(data_array) dims_mod[which(names(dim(data_array)) %in% c(lon_dim, lat_dim))] <- 0 dim_to_move <- which.max(dims_mod) permutation <- (1:length(dim(data_array)))[-dim_to_move] permutation <- c(permutation, dim_to_move) permutation_back <- sort(permutation, index.return = TRUE)$ix dim_backup <- dim(data_array) data_array <- aperm(data_array, permutation) dim(data_array) <- dim_backup[permutation] other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim))) } else { other_dims_per_chunk <- 1 } } other_dims_ordered_by_size <- other_dims[sort(dim(data_array)[other_dims], index.return = TRUE)$ix] dims_to_iterate <- sort(head(other_dims_ordered_by_size, length(other_dims) - other_dims_per_chunk)) if (length(dims_to_iterate) == 0) { dims_to_iterate <- NULL } else { slices_to_iterate <- array(1:prod(dim(data_array)[dims_to_iterate]), dim(data_array)[dims_to_iterate]) total_slices <- prod(dim(slices_to_iterate)) } if ((other_dims_per_chunk > 1) || (other_dims_per_chunk > 0 && is_irregular)) { unlimited_dim <- tail(sort(tail(other_dims_ordered_by_size, other_dims_per_chunk)), 1) } } result_array <- NULL lon_pos <- which(names(dim(data_array)) == lon_dim) lat_pos <- which(names(dim(data_array)) == lat_dim) dim_backup <- dim(data_array) attributes(data_array) <- NULL dim(data_array) <- dim_backup names(dim(data_array)) <- paste0('dim', 1:length(dim(data_array))) names(dim(data_array))[c(lon_pos, lat_pos)] <- c(lon_dim, lat_dim) if (!is.null(unlimited_dim)) { names(dim(data_array))[unlimited_dim] <- 'time' } if (length(dim(lons)) == 1) { names(dim(lons)) <- lon_dim } if (length(dim(lats)) == 1) { names(dim(lats)) <- lat_dim } if (length(dim(lons)) > 1) { lon_var_name <- paste0(lon_dim, '_var') } else { lon_var_name <- lon_dim } if (length(dim(lats)) > 1) { lat_var_name <- paste0(lat_dim, '_var') } else { lat_var_name <- lat_dim } if (is_irregular) { metadata <- list(list(coordinates = paste(lon_var_name, lat_var_name))) names(metadata) <- 'var' attr(data_array, 'variables') <- metadata } names(attr(lons, 'variables')) <- lon_var_name names(attr(lats, 'variables')) <- lat_var_name if (!is.null(attr(lons, 'variables')[[1]][['dim']])) { attr(lons, 'variables')[[1]][['dim']] <- NULL } if (!is.null(attr(lats, 'variables')[[1]][['dim']])) { attr(lats, 'variables')[[1]][['dim']] <- NULL } lons_lats_taken <- FALSE for (i in 1:total_slices) { tmp_file <- tempfile('R_CDORemap_', write_dir, fileext = '.nc') tmp_file2 <- tempfile('R_CDORemap_', write_dir, fileext = '.nc') if (!is.null(dims_to_iterate)) { slice_indices <- which(slices_to_iterate == i, arr.ind = TRUE) subset <- Subset(data_array, dims_to_iterate, as.list(slice_indices), drop = 'selected') if (is_irregular) { pos_lon <- which(names(dim(subset)) == lon_dim) pos_lat <- which(names(dim(subset)) == lat_dim) pos_lon_dim_in_lons <- which(names(dim(lons)) == lon_dim) pos_lat_dim_in_lons <- which(names(dim(lons)) == lat_dim) if ((pos_lon > pos_lat && pos_lon_dim_in_lons < pos_lat_dim_in_lons) || (pos_lon < pos_lat && pos_lon_dim_in_lons > pos_lat_dim_in_lons)) { new_pos <- 1:length(dim(subset)) new_pos[pos_lon] <- pos_lat new_pos[pos_lat] <- pos_lon subset <- .aperm2(subset, new_pos) } if ('time' %in% names(dim(subset)) && which(names(dim(subset)) == 'time') != length(dim(subset))) { new_pos <- 2:length(dim(subset)) new_pos[length(dim(subset))] <- 1 subset <- .aperm2(subset, new_pos) } } ArrayToNetCDF(setNames(list(subset, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file) } else { if (is_irregular) { pos_lon <- which(names(dim(data_array)) == lon_dim) pos_lat <- which(names(dim(data_array)) == lat_dim) pos_lon_dim_in_lons <- which(names(dim(lons)) == lon_dim) pos_lat_dim_in_lons <- which(names(dim(lons)) == lat_dim) if ((pos_lon > pos_lat && pos_lon_dim_in_lons < pos_lat_dim_in_lons) || (pos_lon < pos_lat && pos_lon_dim_in_lons > pos_lat_dim_in_lons)) { new_pos <- 1:length(dim(data_array)) new_pos[pos_lon] <- pos_lat new_pos[pos_lat] <- pos_lon data_array <- .aperm2(data_array, new_pos) } } ArrayToNetCDF(setNames(list(data_array, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file) } sellonlatbox <- '' if (crop) { sellonlatbox <- paste0('sellonlatbox,', format(lon_extremes[1], scientific = FALSE), ',', format(lon_extremes[2], scientific = FALSE), ',', format(lat_extremes[1], scientific = FALSE), ',', format(lat_extremes[2], scientific = FALSE), ' -') } err <- try({ system(paste0("cdo -s ", sellonlatbox, "remap", method, ",", grid, " ", tmp_file, " ", tmp_file2)) }) file.remove(tmp_file) if (('try-error' %in% class(err)) || err > 0) { stop("CDO remap failed.") } ncdf_remapped <- nc_open(tmp_file2) if (!lons_lats_taken) { found_dim_names <- sapply(ncdf_remapped$var$var$dim, '[[', 'name') found_lon_dim <- found_dim_names[which(found_dim_names %in% .KnownLonNames())[1]] found_lat_dim <- found_dim_names[which(found_dim_names %in% .KnownLatNames())[1]] found_lon_dim_size <- length(ncdf_remapped$dim[[found_lon_dim]]$vals) found_lat_dim_size <- length(ncdf_remapped$dim[[found_lat_dim]]$vals) found_var_names <- names(ncdf_remapped$var) found_lon_var_name <- which(found_var_names %in% .KnownLonNames()) found_lat_var_name <- which(found_var_names %in% .KnownLatNames()) if (length(found_lon_var_name) > 0) { found_lon_var_name <- found_var_names[found_lon_var_name[1]] } else { found_lon_var_name <- NULL } if (length(found_lat_var_name) > 0) { found_lat_var_name <- found_var_names[found_lat_var_name[1]] } else { found_lat_var_name <- NULL } if (length(found_lon_var_name) > 0) { found_lons <- ncvar_get(ncdf_remapped, found_lon_var_name, collapse_degen = FALSE) } else { found_lons <- ncdf_remapped$dim[[found_lon_dim]]$vals dim(found_lons) <- found_lon_dim_size } if (length(found_lat_var_name) > 0) { found_lats <- ncvar_get(ncdf_remapped, found_lat_var_name, collapse_degen = FALSE) } else { found_lats <- ncdf_remapped$dim[[found_lat_dim]]$vals dim(found_lats) <- found_lat_dim_size } if (length(dim(lons)) == length(dim(found_lons))) { new_lon_name <- lon_dim } else { new_lon_name <- found_lon_dim } if (length(dim(lats)) == length(dim(found_lats))) { new_lat_name <- lat_dim } else { new_lat_name <- found_lat_dim } if (length(dim(found_lons)) > 1) { if (which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lon_dim) < which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lat_dim)) { names(dim(found_lons)) <- c(new_lon_name, new_lat_name) } else { names(dim(found_lons)) <- c(new_lat_name, new_lon_name) } } else { names(dim(found_lons)) <- new_lon_name } if (length(dim(found_lats)) > 1) { if (which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lon_dim) < which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lat_dim)) { names(dim(found_lats)) <- c(new_lon_name, new_lat_name) } else { names(dim(found_lats)) <- c(new_lat_name, new_lon_name) } } else { names(dim(found_lats)) <- new_lat_name } lons_lats_taken <- TRUE } if (!is.null(dims_to_iterate)) { if (is.null(result_array)) { if (return_array) { new_dims <- dim(data_array) new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size) lon_pos <- which(names(new_dims) == lon_dim) lat_pos <- which(names(new_dims) == lat_dim) if (is_irregular) { if (lon_pos > lat_pos) { new_pos <- 1:length(new_dims) new_pos[lon_pos] <- lat_pos new_pos[lat_pos] <- lon_pos new_dims <- new_dims[new_pos] } } result_array <- array(dim = new_dims) store_indices <- as.list(rep(TRUE, length(dim(result_array)))) } } if (return_array) { store_indices[dims_to_iterate] <- as.list(slice_indices) if (is_irregular) { test_dims <- dim(ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE)) test_dims <- test_dims[which(test_dims > 1)] pos_test_dims <- match(dim(result_array), test_dims) if (is.unsorted(pos_test_dims, na.rm = TRUE)) { pos_new_dims <- 1:length(dim(result_array)) pos_new_dims[which(!is.na(pos_test_dims))] <- match(test_dims, dim(result_array)) backup_result_array_dims <- dim(result_array) dim(result_array) <- dim(result_array)[pos_new_dims] } } result_array <- do.call('[<-', c(list(x = result_array), store_indices, list(value = ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE)))) } } else { new_dims <- dim(data_array) new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size) result_array <- ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE) dim(result_array) <- new_dims } nc_close(ncdf_remapped) file.remove(tmp_file2) } if (is_irregular & (!is.null(dims_to_iterate))) { if (exists('pos_new_dims')) { pos_new_dims <- 1:length(dim(result_array)) dims_to_change <- match(backup_result_array_dims, dim(result_array)) pos_new_dims[which(dims_to_change != 1)] <- dims_to_change[which(dims_to_change != 1)] result_array <- .aperm2(result_array, pos_new_dims) } } if (!is.null(permutation)) { dim_backup <- dim(result_array) result_array <- aperm(result_array, permutation_back) dim(result_array) <- dim_backup[permutation_back] } result_is_irregular <- FALSE if (length(dim(found_lats)) > 1 && length(dim(found_lons)) > 1) { result_is_irregular <- TRUE } attribute_backup[['dim']][which(names(dim(result_array)) == lon_dim)] <- dim(result_array)[lon_dim] attribute_backup[['dim']][which(names(dim(result_array)) == lat_dim)] <- dim(result_array)[lat_dim] names(attribute_backup[['dim']])[which(names(dim(result_array)) == lon_dim)] <- new_lon_name names(attribute_backup[['dim']])[which(names(dim(result_array)) == lat_dim)] <- new_lat_name if (!is.null(attribute_backup[['variables']]) && (length(attribute_backup[['variables']]) > 0)) { for (var in 1:length(attribute_backup[['variables']])) { if (length(attribute_backup[['variables']][[var]][['dim']]) > 0) { for (dim in 1:length(attribute_backup[['variables']][[var]][['dim']])) { dim_name <- NULL if ('name' %in% names(attribute_backup[['variables']][[var]][['dim']][[dim]])) { dim_name <- attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name } else { attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name } } } else if (!is.null(names(attribute_backup[['variables']][[var]][['dim']]))) { dim_name <- names(attribute_backup[['variables']][[var]][['dim']])[dim] if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name } else { names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name } } } if (!is.null(dim_name)) { if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { new_vals <- found_lons[TRUE] } else if (dim_name == lat_dim) { new_vals <- found_lats[TRUE] } if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['len']])) { attribute_backup[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals) } if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']])) { if (!result_is_irregular) { attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals } else { attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals) } } } } } } if (!is_irregular && result_is_irregular) { attribute_backup[['coordinates']] <- paste(lon_var_name, lat_var_name) } else if (is_irregular && !result_is_irregular) { attribute_backup[['coordinates']] <- NULL } } } attributes(result_array) <- attribute_backup lons_attr_bk[['dim']] <- dim(found_lons) if (!is.null(lons_attr_bk[['variables']]) && (length(lons_attr_bk[['variables']]) > 0)) { for (var in 1:length(lons_attr_bk[['variables']])) { if (length(lons_attr_bk[['variables']][[var]][['dim']]) > 0) { dims_to_remove <- NULL for (dim in 1:length(lons_attr_bk[['variables']][[var]][['dim']])) { dim_name <- NULL if ('name' %in% names(lons_attr_bk[['variables']][[var]][['dim']][[dim]])) { dim_name <- lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name } else { lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name } } } else if (!is.null(names(lons_attr_bk[['variables']][[var]][['dim']]))) { dim_name <- names(lons_attr_bk[['variables']][[var]][['dim']])[dim] if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name } else { names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name } } } if (!is.null(dim_name)) { if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { new_vals <- found_lons[TRUE] } else if (dim_name == lat_dim) { new_vals <- found_lats[TRUE] if (!result_is_irregular) { dims_to_remove <- c(dims_to_remove, dim) } } if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) { lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals) } if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) { if (!result_is_irregular) { lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals } else { lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals) } } } } } if (length(dims_to_remove) > 1) { lons_attr_bk[['variables']][[var]][['dim']] <- lons_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]] } } } names(lons_attr_bk[['variables']])[1] <- lon_var_name lons_attr_bk[['variables']][[1]][['units']] <- 'degrees_east' } attributes(found_lons) <- lons_attr_bk lats_attr_bk[['dim']] <- dim(found_lats) if (!is.null(lats_attr_bk[['variables']]) && (length(lats_attr_bk[['variables']]) > 0)) { for (var in 1:length(lats_attr_bk[['variables']])) { if (length(lats_attr_bk[['variables']][[var]][['dim']]) > 0) { dims_to_remove <- NULL for (dim in 1:length(lats_attr_bk[['variables']][[var]][['dim']])) { dim_name <- NULL if ('name' %in% names(lats_attr_bk[['variables']][[var]][['dim']][[dim]])) { dim_name <- lats_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name } else { lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name } } } else if (!is.null(names(lats_attr_bk[['variables']][[var]][['dim']]))) { dim_name <- names(lats_attr_bk[['variables']][[var]][['dim']])[dim] if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name } else { names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name } } } if (!is.null(dim_name)) { if (dim_name %in% c(lon_dim, lat_dim)) { if (dim_name == lon_dim) { new_vals <- found_lons[TRUE] if (!result_is_irregular) { dims_to_remove <- c(dims_to_remove, dim) } } else if (dim_name == lat_dim) { new_vals <- found_lats[TRUE] } if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) { lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals) } if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) { if (!result_is_irregular) { lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals } else { lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals) } } } } } if (length(dims_to_remove) > 1) { lats_attr_bk[['variables']][[var]][['dim']] <- lats_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]] } } } names(lats_attr_bk[['variables']])[1] <- lat_var_name lats_attr_bk[['variables']][[1]][['units']] <- 'degrees_north' } attributes(found_lats) <- lats_attr_bk } list(data_array = if (return_array) { if (interpolation_needed) { result_array } else { data_array } } else { NULL }, lons = found_lons, lats = found_lats) }
micro_rocky_mtn <- function(modsum, ..., main = NULL, ylab = NULL, subtitle = NULL, pval_lines = TRUE, pval_text = TRUE, sig_text = TRUE, facet_labels = NULL, alpha = 0.05, lwd = 2, lty = 1){ if('Model_Type' %nin% names(modsum)){ stop("'modsum' must be output from either nb_mods or bb_mods") } if(modsum$Model_Type %nin% c('nb_mod', 'bb_mod') ){ stop("'modsum' must be output from either nb_mods or bb_mods") } if(missing(...)) stop("NB_RockMtn requires a model coefficient") if(is.null(ylab)) ylab <- expression("log"[10]*" p-value") CC <- modsum$Convergent_Summary %>% dplyr::filter(.data$Coef != "(Intercept)", stringr::str_detect(.data$Coef, cov_str(...))) %>% dplyr::mutate(FDR_Pval = ifelse(.data$FDR_Pval == 0.0000, 0.0005, .data$FDR_Pval), phyl = sapply(.data$Taxa, phy_fun)) %>% phyl_ord() CC %<>% dplyr::mutate(Coef = factor(.data$Coef, levels = unique(.data$Coef)), rnum = seq(1,nrow(CC)), ys = rep(0,nrow(CC)), ye = ifelse(.data$Beta < 0, log(.data$FDR_Pval, base = 10), -log(.data$FDR_Pval, base = 10))) pline <- c(-1,1)*sapply(rep(c(0.01, 0.05, 0.1), 2), log, base = 10) gg <- ggplot2::ggplot(CC, ggplot2::aes(x = .data$rnum, y = .data$ye)) if(pval_lines){ gg <- gg + ggplot2::geom_hline(yintercept = pline, linetype = "dotdash") } if(pval_text){ gg <- gg + ggplot2::scale_y_continuous(breaks = pline, labels = c("0.01","0.05","0.10", "0.01","0.05","0.10")) } else{ gg <- gg + ggplot2::theme(axis.text.y = ggplot2::element_blank(), axis.ticks.y = ggplot2::element_blank()) } gg <- gg + ggplot2::geom_segment(ggplot2::aes(x = .data$rnum, xend = .data$rnum, y = .data$ys, yend = .data$ye, colour = .data$phyl), size = lwd) + ggplot2::theme_bw() + ggplot2::labs(colour = "Phylum", y = ylab, title = main, subtitle = subtitle, x = NULL) + ggplot2::theme(axis.text.x=ggplot2::element_blank(), axis.ticks.x=ggplot2::element_blank()) if(length(unique(CC$Coef)) > 1L){ if(!is.null(facet_labels) & is.null(names(facet_labels))){ names(facet_labels) <- unique(CC$Coef) } gg <- gg + ggplot2::facet_wrap( ~ Coef, labeller = ggplot2::labeller(Coef = facet_labels)) } if(sig_text){ gg <- gg + ggrepel::geom_label_repel(data = CC %>% dplyr::filter(.data$FDR_Pval < alpha), ggplot2::aes(label = .data$Taxa), show.legend = F) } gg + ggplot2::geom_hline(yintercept = 0) }
"absval.dipred.vs.cov.model.comp" <- function(object, object.ref = NULL, type = NULL, ylb=expression(paste("|", Delta, "IPRED|")), main="Default", ...) { if (is.null(object.ref)) { ref.list <- get.refrunno() if(exists(".ref.db")){ object.ref <- eval(parse(text=".ref.db")) } else { return() } if(any(is.null(ref.list))) return() } if(dim(object@Data)[1] != dim(object.ref@Data)[1]) { cat("The current database and the reference database do not have\n") cat("the same number of lines!\n") return() } if ((is.null(xvardef("idlab",object))) || (is.null(xvardef("ipred",object)))) { cat("The required variables (ID label, IPRED) are not set in the database!\n") return() } if(any(is.null(xvardef("covariates",object)))) { return(cat("No covariates found in the current database!\n")) } object@Data$dIPRED <- abs(object@Data[,xvardef("ipred", object)] - object.ref@Data[,xvardef("ipred", object.ref)]) number.of.plots <- 0 for (i in xvardef("covariates", object)) { number.of.plots <- number.of.plots + 1 } plotList <- vector("list",number.of.plots) plot.num <- 0 for (i in xvardef("covariates", object)) { if (is.null(type)) { if (!is.factor(object@Data[,i])) { type <- "p" } else { type = object@[email protected]$type } } xplot <- xpose.plot.default(i, "dIPRED", object, ylb = ylb, type = type, pass.plot.list=TRUE,, main=NULL, ...) plot.num <- plot.num+1 plotList[[plot.num]] <- xplot } default.plot.title <- paste("|IPRED_(Run", object@Runno, ") - IPRED_(Run",object.ref@Runno, ")| vs. Covariates",sep="") plotTitle <- xpose.multiple.plot.title(object=object, plot.text = default.plot.title, no.runno=TRUE, main=main, ...) obj <- xpose.multiple.plot(plotList,plotTitle,...) return(obj) }
finiterange <- function (x) { x <- x[! is.na(x)] x <- x[is.finite(x)] if (length(x)==0) { return(c(NA, NA)) } range(x) }
simulate.gp <- function(object, nsim = 1L, seed = NULL, newdata = NULL, cond = TRUE, trendKnown = FALSE, newVarNoise = NULL, nuggetSim = 1e-8, checkNames = TRUE, output = c("list", "matrix"), label = "y", unit = "", ...) { mc <- match.call() output <- match.arg(output) noise <- object$noise if (noise && object$varNoise == 0.0) noise <- FALSE newNoise <- FALSE if (is.null(newVarNoise)) { if (noise) { newVarNoise <- object$varNoise newNoise <- TRUE } } else { if (newVarNoise < 0.0) stop("'varNoise' must be >= 0.0") newNoise <- (newVarNoise > 0.0) } N <- nsim n <- nrow(object$F) p <- ncol(object$F) d <- ncol(object$X) nms <- object$inputNames if (missing(newdata)) { XNew <- object$X FNew <- object$F } else { XNew <- newdata[ , nms, drop = FALSE] nms <- object$inputNames New <- newdata[ , nms, drop = FALSE] tt <- delete.response(terms(object)) mf <- model.frame(tt, data = data.frame(newdata)) FNew <- model.matrix(tt, data = mf) } nNew <- nrow(XNew) if (!cond) { if (!trendKnown) { Znorm <- array(rnorm(p * N), dim = c(p, N)) dBetaSim <- backsolve(object$RStar, Znorm) trendNewSim <- FNew %*% sweep(x = dBetaSim, MARGIN = 1, STATS = object$betaHat, FUN = "+") } else { trend <- FNew %*% object$betaHat trendNewSim <- array(trend, dim = c(nNew, N)) } zetaNewSim <- simulate(object = object$covariance, nsim = nsim, seed = seed, X = XNew, checkNames = checkNames, ...) yNewSim <- trendNewSim + zetaNewSim } else { smallNoise <- (object$varNoise < 1e-10) kNew <- covMat(object$covariance, X = object$X, Xnew = XNew, compGrad = FALSE) KNew <- covMat(object$covariance, X = XNew, Xnew = XNew, compGrad = FALSE) kNewStar <- forwardsolve(object$L, kNew) KNewCond <- KNew - crossprod(kNewStar) diag(KNewCond) <- diag(KNewCond) + nuggetSim LNewCond <- t(chol(KNewCond)) if (noise) { smallNoise <- (object$varNoise < 1e-8) K <- covMat(object$covariance, X = object$X, checkNames = checkNames, compGrad = FALSE) KStar <- forwardsolve(object$L, K) if (!smallNoise) { KCond <- K - crossprod(KStar) diag(KCond) <- diag(KCond) + nuggetSim LCond <- t(chol(KCond)) } if (!trendKnown) { Znorm <- array(rnorm(p * N), dim = c(p, N)) dBetaSim <- backsolve(object$RStar, Znorm) trendNewSim <- FNew %*% sweep(x = dBetaSim, MARGIN = 1, STATS = object$betaHat, FUN = "+") E <- -object$FStar %*% dBetaSim E <- sweep(x = E, MARGIN = 1, STATS = object$eStar, FUN = "+") E <- t(KStar) %*% E ZSim <- array(rnorm(n * N), dim = c(n, N)) if (smallNoise) { ZSim <- E + sqrt(object$varNoise) * ZSim } else { ZSim <- E + LCond %*% ZSim } } else { trend <- FNew %*% object$betaHat trendNewSim <- array(trend, dim = c(nNew, N)) ZSim <- array(rnorm(n * N), dim = c(n, N)) if (smallNoise) { ZSim <- sqrt(object$varNoise) * ZSim } else { ZSim <- LCond %*% ZSim } eStarMod <- t(KStar) %*% object$eStar ZSim <- sweep(x = ZSim, MARGIN = 1, STATS = eStarMod, FUN = "+") } ZNewSim <- array(rnorm(nNew * N), dim = c(nNew, N)) ZNewSim <- LNewCond %*% ZNewSim ZNewSim <- ZNewSim + t(kNewStar) %*% forwardsolve(object$L, ZSim) yNewSim <- trendNewSim + ZNewSim } else { if (!trendKnown) { Znorm <- array(rnorm(p * N), dim = c(p, N)) BetaSim <- backsolve(object$RStar, Znorm) BetaSim <- sweep(x = BetaSim, MARGIN = 1, STATS = object$betaHat, FUN = "+") trendSim <- object$F %*% BetaSim ZSim <- sweep(x = -trendSim, MARGIN = 1, STATS = object$y, FUN = "+") trendNewSim <- FNew %*% BetaSim ZNewSim <- array(rnorm(nNew * N), dim = c(nNew, N)) ZNewSim <- LNewCond %*% ZNewSim ZNewSim <- ZNewSim + t(kNewStar) %*% forwardsolve(object$L, ZSim) yNewSim <- trendNewSim + ZNewSim } else { trendNew <- FNew %*% object$betaHat trendNewSim <- array(trendNew, dim = c(nNew, N)) shift <- trendNew + t(kNewStar) %*% object$eStar ZNewSim <- array(rnorm(nNew * N), dim = c(nNew, N)) ZNewSim <- LNewCond %*% ZNewSim yNewSim <- sweep(ZNewSim, MARGIN = 1, STATS = shift, FUN = "+") } } } if (newNoise) { yNewSim <- yNewSim + sqrt(newVarNoise) * array(rnorm(nNew * N), dim = c(nNew, N)) } if (output == "list") { yNewSim <- list(X = object$X, F = object$F, y = object$y, XNew = XNew, FNew = FNew, sim = yNewSim, trend = trendNewSim, trendKnown = trendKnown, noise = noise, newVarNoise = newVarNoise, label = label, unit = unit, Call = mc) class(yNewSim) <- "simulate.gp" return(yNewSim) } else { attr(yNewSim, "trendKnown") <- trendKnown return(yNewSim) } } plot.simulate.gp <- function(x, y, col = list("sim" = "SpringGreen3", "trend" = "orangered"), show = c("sim" = TRUE, "trend" = TRUE, "y" = TRUE), ...) { if (ncol(x$X) > 1L) { stop("For now, this function only for the one-dimensional case") } X <- drop(as.matrix(x$X)) XNew <- drop(as.matrix(x$XNew)) ylab <- x$label if (nchar(x$unit)) ylab <- sprintf("%s (%s)", ylab, x$unit) plot(X, x$y, type = "n", xlim = range(X, XNew), ylim = range(x$sim, x$trend, x$y), ylab = ylab, ...) nSim <- ncol(x$sim) alpha <- exp(-sqrt(((nSim - 1)/ 200))) if (show["trend"]) { matlines(XNew, x$trend, pch = 16, col = translude(col[["trend"]], alpha = alpha)) } if (show["sim"]) { matlines(XNew, x$sim, pch = 16, col = translude(col[["sim"]], alpha = alpha)) } if (show["y"]) { points(X, x$y, pch = 21, bg = "white", lwd = 2) } }
edge_bundle_hammer <- function(object,xy,bw=0.05,decay=0.7){ if (!requireNamespace('reticulate', quietly = TRUE)) { stop('The `reticulate` package is required for this functionality') } if(any(class(object)=="igraph")){ if (!requireNamespace('igraph', quietly = TRUE)) { stop('The `igraph` package is required for this functionality') } nodes <- data.frame(name=paste0("node",0:(igraph::vcount(object)-1)),x=xy[,1],y=xy[,2]) el <- igraph::get.edgelist(object,names = FALSE) el1 <- data.frame(source=el[,1]-1,target=el[,2]-1) } else if(any(class(object)=="tbl_graph")){ if (!requireNamespace('tidygraph', quietly = TRUE)) { stop('The `tidygraph` package is required for this functionality') } object <- tidygraph::as.igraph(object) nodes <- data.frame(name=paste0("node",0:(igraph::vcount(object)-1)),x=xy[,1],y=xy[,2]) el <- igraph::get.edgelist(object,names = FALSE) el1 <- data.frame(source=el[,1]-1,target=el[,2]-1) } else if(any(class(object)=="network")){ nodes <- data.frame(name=paste0("node",0:(network::get.network.attribute(object,"n")-1)),x=xy[,1],y=xy[,2]) el <- network::as.edgelist(object) el1 <- data.frame(source=el[,1]-1,target=el[,2]-1) } else{ stop("only `igraph`, `network` or `tbl_graph` objects supported.") } data_bundle <- shader_env$datashader_bundling$hammer_bundle(nodes,el1,initial_bandwidth = bw,decay = decay) data_bundle$group <- is.na(data_bundle$y)+0 data_bundle$group <- cumsum(data_bundle$group)+1 data_bundle <- data_bundle[!is.na(data_bundle$y),] data_bundle$index <- unlist(sapply(table(data_bundle$group),function(x) seq(0,1,length.out=x))) data_bundle[,c("x","y","index","group")] } install_bundle_py <- function(method = "auto", conda = "auto") { if (!requireNamespace('reticulate', quietly = TRUE)) { stop('The `reticulate` package is required for this functionality') } reticulate::py_install("datashader", method = method, conda = conda, pip = TRUE) reticulate::py_install("scikit-image", method = method, conda = conda, pip = TRUE) } shader_env <- new.env(parent = emptyenv()) .onLoad <- function(libname, pkgname) { reticulate::configure_environment(pkgname) assign("datashader_bundling", reticulate::import("datashader.bundling", delay_load = TRUE), shader_env) }
pmml.nnet <- function(model, model_name = "NeuralNet_model", app_name = "SoftwareAG PMML Generator", description = "Neural Network Model", copyright = NULL, model_version = NULL, transforms = NULL, missing_value_replacement = NULL, ...) { if (!inherits(model, "nnet")) stop("Not a legitimate nnet object") number.of.neural.layers <- length(model$n) - 1 field <- NULL numerical <- NULL if (model$call[[1]] != "nnet.formula") { if (is.null(attributes(model$fitted.values)$dimnames[[2]][1])) { numerical <- TRUE } else { numerical <- FALSE tmp <- c() for (i in 1:length(attributes(model$fitted.values)$dimnames[[2]])) { tmp <- c(tmp, attributes(model$fitted.values)$dimnames[[2]][i]) } levels <- list(tmp) names(levels) <- "lev" model <- c(model, levels) trms <- list("terms", name = "Variable Information") names(trms) <- "terms" number.of.inputs <- model$n[1] allnames <- c("y") input.names <- c() if (numerical) { classes <- c("numeric") } else { classes <- c("factor") } for (i in 1:number.of.inputs) { tmp <- paste("x", i, sep = "") allnames <- c(allnames, tmp) input.names <- c(input.names, tmp) classes <- c(classes, "numeric") } trms <- list(name = "variable information") names(trms) <- "terms" attr(trms$terms, "term.labels") <- input.names attr(trms$terms, "dataClasses") <- classes names(attributes(trms$terms)$dataClasses) <- allnames model$call[[1]] <- "nnet.formula" model <- c(model, trms) attr(model, "class") <- c("nnet.formula", "nnet") } } if (model$call[[1]] == "nnet.formula") { terms <- attributes(model$terms) field$name <- names(terms$dataClasses) field$class <- terms$dataClasses target <- field$name[1] number.of.fields <- length(terms$term.labels) + 1 number.of.inputs <- length(terms$term.labels) } else { number.of.fields <- model$n[1] + 1 number.of.inputs <- model$n[1] target <- "y" field$name[1] <- target field$class[[field$name[1]]] <- "numeric" for (i in 1:number.of.inputs) { tmp <- paste("x", i, sep = "") field$name[i + 1] <- tmp field$class[[field$name[i + 1]]] <- "numeric" } } if (length(grep("^as.factor\\(", field$name[1]))) { field$name[1] <- sub("^as.factor\\((.*)\\)", "\\1", field$name[1]) names(field$class)[1] <- sub("^as.factor\\((.*)\\)", "\\1", names(field$class)[1]) names(field$levels)[1] <- sub("^as.factor\\((.*)\\)", "\\1", names(field$levels)[1]) } target <- field$name[1] number.of.fields <- length(field$name) normalization.method <- "none" skipLayers <- FALSE linearOutputUnits <- FALSE if (length(model$call$skip) && model$call$skip) { skipLayers <- TRUE } if (model$nunits > model$nsunits) { linearOutputUnits <- TRUE } if (model$softmax) { normalization.method <- "softmax" } if (model$censored) { stop("PMML does not support the censored variant of softmax!") } if (field$class[[field$name[1]]] == "factor") { field$levels[[field$name[1]]] <- model$lev } for (i in seq_len(number.of.inputs)) { if (field$class[[field$name[i + 1]]] == "factor") { field$levels[[field$name[i + 1]]] <- model$xlevels[[field$name[i + 1]]] } } pmml <- .pmmlRootNode() pmml <- append.XMLNode(pmml, .pmmlHeader( description, copyright, model_version, app_name )) pmml <- append.XMLNode(pmml, .pmmlDataDictionary(field, transformed = transforms)) if (model$n[length(model$n)] == 1 && field$class[[field$name[1]]] == "factor") { temp <- number.of.neural.layers + 1 } else { temp <- number.of.neural.layers } if (field$class[[field$name[1]]] == "factor") { the.model <- xmlNode("NeuralNetwork", attrs = c( modelName = model_name, functionName = "classification", numberOfLayers = temp, activationFunction = "logistic" ) ) } else { the.model <- xmlNode("NeuralNetwork", attrs = c( modelName = model_name, functionName = "regression", numberOfLayers = temp, activationFunction = "logistic" ) ) } the.model <- append.XMLNode(the.model, .pmmlMiningSchema(field, target, transformed = transforms, missing_value_replacement = missing_value_replacement)) the.model <- append.XMLNode(the.model, .pmmlOutput(field, target)) if (!is.null(transforms)) { the.model <- append.XMLNode(the.model, .pmmlLocalTransformations(field, transforms, NULL)) } neuralInputs <- xmlNode("NeuralInputs", attrs = c(numberOfInputs = as.numeric(model$n[1])) ) input_count <- 1 factor_count <- 1 for (i in seq_len(number.of.inputs)) { if (terms$dataClasses[[terms$term.labels[i]]] == "factor") { number.of.values <- length(model$xlevels[[factor_count]]) usedValues <- model$xlevels[[factor_count]] factor_count <- factor_count + 1 for (j in 1:number.of.values) { if (j > 1) { neuralInputNode <- xmlNode("NeuralInput", attrs = c(id = as.numeric(input_count)) ) input_count <- input_count + 1 fieldName <- paste("derivedNI_", terms$term.labels[i], sep = "") fieldName <- paste(fieldName, usedValues[j], sep = "") derivedFieldNode <- xmlNode("DerivedField", attrs = c( name = fieldName, optype = "continuous", dataType = "double" ) ) normDiscreteNode <- xmlNode("NormDiscrete", attrs = c( field = terms$term.labels[i], value = usedValues[j] ) ) derivedFieldNode <- append.XMLNode(derivedFieldNode, normDiscreteNode) neuralInputNode <- append.XMLNode(neuralInputNode, derivedFieldNode) neuralInputs <- append.XMLNode(neuralInputs, neuralInputNode) } } } else { neuralInputNode <- xmlNode("NeuralInput", attrs = c(id = as.numeric(input_count)) ) input_count <- input_count + 1 name <- terms$term.labels[i] fieldName <- paste("derivedNI_", name, sep = "") derivedFieldNode <- xmlNode("DerivedField", attrs = c( name = fieldName, optype = "continuous", dataType = "double" ) ) fieldRefNode <- xmlNode("FieldRef", attrs = c(field = terms$term.labels[i]) ) derivedFieldNode <- append.XMLNode(derivedFieldNode, fieldRefNode) neuralInputNode <- append.XMLNode(neuralInputNode, derivedFieldNode) neuralInputs <- append.XMLNode(neuralInputs, neuralInputNode) } } the.model <- append.XMLNode(the.model, neuralInputs) number.of.inputs <- model$n[1] wtsID <- 1 neuronID <- number.of.inputs previous.number.of.neurons <- number.of.inputs for (i in 1:number.of.neural.layers) { number.of.neurons <- model$n[i + 1] if (i == number.of.neural.layers) { if (number.of.neurons == 1 && field$class[[field$name[1]]] == "factor") { neuralLayerNode <- xmlNode("NeuralLayer", attrs = c(numberOfNeurons = as.numeric(number.of.neurons)) ) } else if (model$softmax) { neuralLayerNode <- xmlNode("NeuralLayer", attrs = c( numberOfNeurons = as.numeric(number.of.neurons), activationFunction = "identity", normalizationMethod = "softmax" ) ) } else if (linearOutputUnits) { neuralLayerNode <- xmlNode("NeuralLayer", attrs = c( numberOfNeurons = as.numeric(number.of.neurons), activationFunction = "identity" ) ) } else { neuralLayerNode <- xmlNode("NeuralLayer", attrs = c(numberOfNeurons = as.numeric(number.of.neurons)) ) } } else { neuralLayerNode <- xmlNode("NeuralLayer", attrs = c(numberOfNeurons = as.numeric(number.of.neurons)) ) } for (j in 1:number.of.neurons) { neuronID <- neuronID + 1 neuronNode <- xmlNode("Neuron", attrs = c( id = as.numeric(neuronID), bias = model$wts[wtsID] ) ) wtsID <- wtsID + 1 if (i == number.of.neural.layers && j == 1) { first.outputNeuronID <- neuronID } if (i == number.of.neural.layers && skipLayers) { previous.number.of.neurons <- previous.number.of.neurons + number.of.inputs } for (k in 1:previous.number.of.neurons) { number.of.connections <- model$n[i + 1] connectionNode <- xmlNode("Con", attrs = c( from = model$conn[wtsID], weight = model$wts[wtsID] ) ) wtsID <- wtsID + 1 neuronNode <- append.XMLNode(neuronNode, connectionNode) } neuralLayerNode <- append.XMLNode(neuralLayerNode, neuronNode) } previous.number.of.neurons <- number.of.neurons the.model <- append.XMLNode(the.model, neuralLayerNode) } if (number.of.neurons == 1 && field$class[[field$name[1]]] == "factor") { neuralLayerNode <- xmlNode("NeuralLayer", attrs = c( numberOfNeurons = "2", activationFunction = "threshold", threshold = "0.5" ) ) neuronID <- neuronID + 1 first.outputNeuronID <- neuronID neuronNode <- xmlNode("Neuron", attrs = c( id = as.numeric(neuronID), bias = "1.0" ) ) connectionNode <- xmlNode("Con", attrs = c( from = neuronID - 1, weight = "-1.0" ) ) neuronNode <- append.XMLNode(neuronNode, connectionNode) neuralLayerNode <- append.XMLNode(neuralLayerNode, neuronNode) neuronID <- neuronID + 1 neuronNode <- xmlNode("Neuron", attrs = c( id = as.numeric(neuronID), bias = "0.0" ) ) connectionNode <- xmlNode("Con", attrs = c( from = neuronID - 2, weight = "1.0" ) ) neuronNode <- append.XMLNode(neuronNode, connectionNode) neuralLayerNode <- append.XMLNode(neuralLayerNode, neuronNode) the.model <- append.XMLNode(the.model, neuralLayerNode) number.of.neurons <- number.of.neurons + 1 previous.number.of.neurons <- number.of.neurons } neuralOutputs <- xmlNode("NeuralOutputs", attrs = c(numberOfOutputs = previous.number.of.neurons) ) for (i in 1:number.of.neurons) { neuralOutputNode <- xmlNode("NeuralOutput", attrs = c(outputNeuron = first.outputNeuronID) ) first.outputNeuronID <- first.outputNeuronID + 1 if (field$class[[field$name[1]]] == "factor") { targetName <- target temp <- grep("as.factor", field$name[1], value = TRUE, fixed = TRUE) if (length(temp) > 0) { target <- field$name[1] tempName <- strsplit(field$name[1], "") endPos <- (length(tempName[[1]]) - 1) targetName <- substring(target, 11, endPos) } fieldName <- paste("derivedNO_", targetName, sep = "") derivedFieldNode <- xmlNode("DerivedField", attrs = c( name = fieldName, optype = "continuous", dataType = "double" ) ) normDiscreteNode <- xmlNode("NormDiscrete", attrs = c( field = targetName, value = model$lev[i] ) ) derivedFieldNode <- append.XMLNode(derivedFieldNode, normDiscreteNode) } else { name <- field$name[1] fieldName <- paste("derivedNO_", name, sep = "") derivedFieldNode <- xmlNode("DerivedField", attrs = c( name = fieldName, optype = "continuous", dataType = "double" ) ) fieldRefNode <- xmlNode("FieldRef", attrs = c(field = field$name[1]) ) derivedFieldNode <- append.XMLNode(derivedFieldNode, fieldRefNode) } neuralOutputNode <- append.XMLNode(neuralOutputNode, derivedFieldNode) neuralOutputs <- append.XMLNode(neuralOutputs, neuralOutputNode) } the.model <- append.XMLNode(the.model, neuralOutputs) pmml <- append.XMLNode(pmml, the.model) return(pmml) }
enlarge_plot <- function(plot, large_plot = plot, plot_name = NULL, width_small = 2, height_small = 2, width_large = 7, height_large = 7, ...) { if (is.null(plot_name)) { plot_name <- digest::digest(stats::runif(1)) } partial(require_file("_enlarge_plot.Rmd"), name = plot_name, ..., !!!list( plot = plot, large_plot = large_plot, width_small = width_small, height_small = height_small, width_large = width_large, height_large = height_large)) }
source("ESEUR_config.r") plot_layout(2, 1, max_height=12) par(mar=MAR_default-c(0.8, -2, 0.5, 0)) cpu2006=read.csv(paste0(ESEUR_dir, "benchmark/cpu2006-results-20140206.csv.xz"), as.is=TRUE) start_date=as.Date("01-Jan-2006", format="%d-%B-%Y") cpu2006$Test.Date=as.Date(paste0("01-", cpu2006$Test.Date), format="%d-%B-%Y") cpu2006=subset(cpu2006, Test.Date >= start_date) cint=subset(cpu2006, Benchmark == "CINT2006") cint$Benchmark=NULL cint=subset(cint, Result > 0) hist(cint$Result, main="", col=point_col, cex.axis=1.4, cex.lab=1.4, xlab="SPECint result", ylab="Number of computers\n") plot(density(cint$Result), col=point_col, main="", cex.axis=1.4, cex.lab=1.4, xaxs="i", yaxs="i", xlab="SPECint result", ylab="Density (of number of computers)\n\n")
library("mboost") data("bodyfat", package = "mboost") bffm <- DEXfat ~ age + waistcirc + hipcirc + elbowbreadth + kneebreadth + anthro3a + anthro3b + anthro3c + anthro4 - 1 indep <- names(bodyfat)[names(bodyfat) != "DEXfat"] bodyfat[indep] <- lapply(bodyfat[indep], function(x) x - mean(x)) n <- nrow(bodyfat) set.seed(290875) bs <- rmultinom(100, n, rep(1, n)/n) mod1 <- glmboost(bffm, data = bodyfat) grid <- seq(from = 2, to = 100, by = 2) boob <- cvrisk(mod1, folds = bs, grid = grid) mod2 <- glmboost(bffm, data = bodyfat, control = boost_control(nu = 0.2)) boobfull <- cvrisk(mod1, folds = bs, grid = 5000) bffm <- DEXfat ~ hipcirc + kneebreadth + anthro3a mod3 <- glmboost(bffm, data = bodyfat, control = boost_control(nu = 0.2)) boobrest <- cvrisk(mod3, folds = bs, grid = 5000) save(boob, boobfull, boobrest, grid, file = "bodyfat_benchmarks.rda") dgp <- function(n = 100) { x <- sort(runif(n) - 0.5) ytrue <- 0.8 * x + sin(6 * x) data.frame(x = x, y = ytrue + rnorm(n, sd = sqrt(2)), ytrue = ytrue) } nsim <- 100 dfree <- seq(from = 2, to = 40, by = 2) mstops <- seq(from = 5, to = 1005, by = 10) mseSS <- matrix(0, nrow = nsim, ncol = length(dfree)) mseB <- matrix(0, nrow = nsim, ncol = length(mstops)) se <- GaussReg()@risk for (i in 1:nsim) { print(i) learn <- dgp() mseSS[i,] <- sapply(dfree, function(d) { se(learn$ytrue, predict(smooth.spline(x = learn$x, y = learn$y, df = d), x = learn$x)$y)/nrow(learn) }) mod <- mboost(y ~ bbs(x, df = 2.5), data = learn, control = boost_control(mstop = max(mstops))) fm <- predict(mod, agg = "cumsum")[,mstops] mseB[i,] <- apply(fm, 2, function(f) se(learn$ytrue, f)) / nrow(learn) } save(dfree, mstops, mseSS, mseB, file = "curve_estimation.rda") data("wpbc") wpbc <- wpbc[complete.cases(wpbc),] indep <- names(wpbc)[!(names(wpbc) %in% c("time", "status"))] wpbc[indep] <- lapply(wpbc[indep], function(x) x - mean(x)) n <- nrow(wpbc) set.seed(290875) bs <- rmultinom(100, n, rep(1, n)/n) mod <- glmboost(status ~ ., data = wpbc[,-2], family = Binomial()) boob <- c() grid <- seq(from = 5, to = 500, by = 5) boob <- cvrisk(mod, folds = bs, grid = grid) goob <- c() flink <- function(x) pmin(abs(x), 18) * sign(x) for (j in 1:ncol(bs)) { b <- bs[,j] print(j) y <- c(-1, 1)[as.integer(wpbc$status)] foo <- function(f) Binomial()@risk(y, f, as.numeric(b == 0)) / sum(b == 0) object <- glm(status ~ ., data = wpbc[,-2], subset = b > 0, family = binomial(), weights = b) p <- predict(object, newdata = wpbc[,-2], type = "link") goob <- c(goob, foo(flink(p))) } soob <- c() flink <- function(x) pmin(abs(x), 18) * sign(x) for (j in 1:ncol(bs)) { b <- bs[,j] print(j) foo <- function(f) Binomial()@risk(y, f, as.numeric(b == 0)) / sum(b == 0) object <- step(glm(status ~ ., data = wpbc[,-2], subset = b > 0, family = binomial(), weights = b), trace = 0) p <- predict(object, newdata = wpbc[,-2], type = "link") soob <- c(soob, foo(flink(p))) } save(bs, goob, soob, boob, file = "wpbc_benchmarks.rda") data("wpbc") wpbc <- wpbc[complete.cases(wpbc),] iw <- IPCweights(Surv(wpbc$time, wpbc$status == "R")) wpbc3 <- wpbc[,colnames(wpbc) != "status"] wpbc3 <- wpbc3[iw > 0,] iw <- iw[iw > 0] n <- nrow(wpbc3) set.seed(290875) bs <- rmultinom(10, n, rep(1, n)/n) mod <- glmboost(log(time) ~ ., data = wpbc3) grid <- seq(from = 5, to = 1000, by = 10) boob <- cvrisk(mod, folds = bs, grid = grid) save(boob, grid, file = "wpbc_survivalbenchmarks.rda")
mra.wt <- function(x.wt) { wf<-attr(x.wt,"wavelet") J<-length(x.wt)-1 method<-attr(x.wt,"class") boundary<-attr(x.wt,"boundary") if(method=="modwt") n<-length(x.wt[[1]]) else n<-2*length(x.wt[[1]]) x.mra <- vector("list", J + 1) zero <- vector("list", J + 1) names(zero) <- c(paste("d", 1:J, sep = ""), paste("s", J, sep = "")) class(zero) <- method attr(zero, "wavelet") <- wf attr(zero, "boundary") <- boundary zero[[J + 1]] <- x.wt[[J + 1]] if (method == "modwt") { for (k in 1:J) zero[[k]] <- numeric(n) x.mra[[J + 1]] <- imodwt(zero) } else { for (k in 1:J) zero[[k]] <- numeric(n/2^k) x.mra[[J + 1]] <- idwt(zero) } for (j in J:1) { zero <- vector("list", j + 1) names(zero) <- c(paste("d", 1:j, sep = ""), paste("s", j, sep = "")) class(zero) <- method attr(zero, "wavelet") <- wf attr(zero, "boundary") <- boundary zero[[j]] <- x.wt[[j]] if (method == "modwt") { if (j != 1) { for (k in c(j + 1, (j - 1):1)) zero[[k]] <- numeric(n) } else { zero[[j + 1]] <- numeric(n) } x.mra[[j]] <- imodwt(zero) } else { zero[[j + 1]] <- numeric(n/2^j) if (j != 1) { for (k in (j - 1):1) zero[[k]] <- numeric(n/2^k) } x.mra[[j]] <- idwt(zero) } } names(x.mra) <- c(paste("D", 1:J, sep = ""), paste("S", J, sep = "")) if (boundary == "reflection") { for (j in (J + 1):1) x.mra[[j]] <- x.mra[[j]][1:(n/2)] return(x.mra) } else { return(x.mra) } }
knitr::opts_chunk$set(echo=TRUE, collapse=TRUE, error=TRUE, comment = " library("TITAN2") data(glades.taxa) str(glades.taxa, list.len = 5) data(glades.env) str(glades.env) data(glades.titan) str(glades.titan, 1) message("100% occurrence detected 1 times (0.8% of taxa), use of TITAN less than ideal for this data type") message("Taxa frequency screen complete") message("Determining partitions along gradient") message("Calculating observed IndVal maxima and class values") message("Calculating IndVals using mean relative abundance") message("Permuting IndVal scores") message("IndVal $z$ score calculation complete") message("Summarizing Observed Results") message("Estimating taxa change points using z-score maxima") message("Bootstrap resampling in sequence...") message(1*1) message(2*1) message(3*1) message("Bootstrap resampling in parallel using 2 CPUs...no index will be printed to screen") glades.titan$sumz.cp head(glades.titan$sppmax) str(glades.titan, max.level = 1, give.attr = FALSE) plot_sumz_density(glades.titan) plot_sumz_density(glades.titan, ribbon = FALSE, points = TRUE) plot_sumz_density(glades.titan, ribbon = TRUE, points = FALSE, sumz1 = FALSE, change_points = FALSE, xlabel = expression(paste("Surface Water Total Phosphorus ("*mu*"g/l)")) ) plot_sumz(glades.titan, filter = TRUE) plot_taxa_ridges(glades.titan, axis.text.y = 8) plot_taxa_ridges(glades.titan, xlabel = expression(paste("Surface water total phosphorus ("*mu*"g/l)")), n_ytaxa = 50 ) plot_taxa_ridges(glades.titan, xlabel = expression(paste("Surface water total phosphorus ("*mu*"g/l)")), z2 = FALSE ) plot_taxa_ridges(glades.titan, xlabel = expression(paste("Surface water total phosphorus ("*mu*"g/l)")), z2 = FALSE, grid = FALSE ) plot_taxa(glades.titan, xlabel = "Surface Water TP (ug/l)") plot_taxa(glades.titan, xlabel = "Surface Water TP (ug/l)", z.med = TRUE) plot_taxa(glades.titan, xlabel = "Surface Water TP (ug/l)", z.med = FALSE, prob95 = TRUE) plot_cps(glades.titan) plot_cps(glades.titan, taxaID = "ENALCIVI", xlabel = "Surface Water TP (ug/l)") plot_cps(glades.titan, taxaID = "ENALCIVI", cp.trace = TRUE, xlabel = "Surface Water TP (ug/l)") plot_cps(glades.titan, taxaID = "OSTRASP5", cp.trace = TRUE, xlabel = "Surface Water TP (ug/l)") plot_cps(glades.titan, taxa.dist = FALSE, xlabel = "Surface Water TP (ug/l)") plot_cps(glades.titan, taxa.dist = FALSE, xlabel = "Surface Water TP (ug/l)", stacked = TRUE)
addLine=function(x,...){ if(x=="") x<-paste0(...) else x<-paste0(x,"\n",...) x } addPlus=function(x,...){ if(x=="") x<-paste0(...) else x<-paste0(x,"+",...) x } makeEquation1=function(X,M,stage=1,start=0,add2ndMediation=TRUE){ countX=length(X) countM=length(M) equation="" for(i in 1:countM){ sub="" for(j in 1:countX){ sub=addPlus(sub,letters[stage],start+(i-1)*countX+j,"*",X[j]) } if(add2ndMediation &(countM>1)&(i>1)){ sub=addPlus(sub,"d",i-1,"*",M[i-1]) } temp=paste0(M[i],"~",sub) equation=addLine(equation,temp) } equation } makeEquation2=function(X,M,Y){ countX=length(X) countM=length(M) countY=length(Y) equation="" for(i in 1:countY){ temp=makeEquation1(M,Y[i],stage=2,start=(i-1)*countM) temp sub="" for(j in 1:countX){ sub=addPlus(sub,letters[3],(i-1)*countX+j,"*",X[j]) } temp=addPlus(temp,sub) equation=addLine(equation,temp) } equation } makeEquation3=function(X,M,Y,add2ndMediation=TRUE){ (countX=length(X)) (countM=length(M)) (countY=length(Y)) equation="" ind=c() for(k in 1:countY){ for(i in 1:countX) { for(j in 1:countM) { noA=(i-1)*countM+j no=noA+(k-1)*countX*countM b=((noA-1)%/%countX)+1+(k-1)*countM ind=c(ind,paste0("a",noA,"*b",b)) temp=paste0("ind",length(ind),":=",ind[length(ind)]) equation=addLine(equation,temp) } } } equation secondInd=c() if(add2ndMediation &(countM>1)){ for(k in 1:countY){ for(j in 2:countM){ equationa="" for(i in 1:countX){ start=(j-2)*countX tempa=paste0("a",start+i,"*d",j-1,"*b",j+(k-1)*countM) equationa=addPlus(equationa,tempa) } secondInd=c(secondInd,equationa) temp=paste0("secondInd",length(secondInd),":=",secondInd[length(secondInd)]) equation=addLine(equation,temp) } } } equation thirdInd=c() if(add2ndMediation &(countM>2)){ for(k in 1:countY){ for(j in 3:countM){ equationa="" for(i in 1:countX){ start=(j-3)*countX tempa=paste0("a",start+i,"*d",j-2,"*d",j-1,"*b",j+(k-1)*countM) equationa=addPlus(equationa,tempa) } thirdInd=c(thirdInd,equationa) temp=paste0("thirdInd",length(thirdInd),":=",thirdInd[length(thirdInd)]) equation=addLine(equation,temp) } } } equation total=c() for(k in 1:countY){ direct=paste0("c",seq(1:countX)+(k-1)*countX) Effect=Reduce(addPlus,direct) if(countM>=1){ start=1+(k-1)*length(ind)/countY end=start+length(ind)/countY-1 indirectEffect=Reduce(addPlus,ind[start:end]) Effect=addPlus(Effect,indirectEffect) } if(countM>=2){ start=1+(k-1)*length(secondInd)/countY end=start+length(secondInd)/countY-1 secondIndEffect=Reduce(addPlus,secondInd[start:end]) if(add2ndMediation) Effect=addPlus(Effect,secondIndEffect) } if(countM>=3){ start=1+(k-1)*length(thirdInd)/countY end=start+length(thirdInd)/countY-1 thirdIndEffect=Reduce(addPlus,thirdInd[start:end]) if(add2ndMediation) Effect=addPlus(Effect,thirdIndEffect) } temp=paste0("total",k,":=",Effect) equation=addLine(equation,temp) } equation } makeEquation=function(X,M,Y,add2ndMediation=TRUE,covar=list()){ (countX=length(X)) (countM=length(M)) (countY=length(Y)) if(countX*countM*countY==0) { equation=" } else{ temp=makeEquation2(X,M,Y) temp temp=addCovarEquation(temp,covar,prefix="g") equation=paste0(" temp=makeEquation1(X,M,add2ndMediation=add2ndMediation) temp=addCovarEquation(temp,covar,prefix="h") equation=addLine(equation,temp) equation=addLine(equation,makeEquation3(X,M,Y,add2ndMediation=add2ndMediation)) } equation } addCovarEquation=function(equation,covar=list(),prefix="f",grouplabels=NULL,multipleMediator=FALSE){ temp1=unlist(strsplit(equation,"\n")) temp1 temp2=strsplit(temp1,"~") temp2 result=list() start=1 i=1 for(i in 1:length(temp2)){ var=temp2[[i]][1] var=str_trim(var,side="both") var covar if(multipleMediator){ suffix=i } else{ suffix<-NULL } temp3=seekVar(covar=covar,var=var,prefix=prefix,start=start,grouplabels=grouplabels,suffix=suffix) temp3 if(is.null(temp3)){ result[[i]]=paste(var,"~",temp2[[i]][2]) } else { temp4=paste(temp2[[i]][2],"+",paste(temp3,collapse=" + ")) result[[i]]=paste(var,"~",temp4) start=start+length(temp3) } } paste(unlist(result),collapse="\n") } seekVar=function(covar=list(),var,prefix="h",start=1,grouplabels=NULL,suffix=NULL){ temp=c() if(length(covar$name)>0){ j=start for(i in 1:length(covar$name)){ if(var %in% covar$site[[i]]) temp=c(temp,covar$name[i]) } res=c() for(i in seq_along(temp)){ if(temp[i] %in% names(grouplabels)){ count=attr(grouplabels[[temp[i]]],"length") temp1=paste0(grouplabels[[temp[i]]],1:count) res=c(res,temp1) } else{ res=c(res,temp[i]) } } temp=c() j=1 for(i in seq_along(res)){ if(!is.null(prefix)) { temp=c(temp,paste0(prefix,j,suffix,"*",res[i])) } else{ temp=c(temp,res[i]) } j=j+1 } } temp }
`deshrink` <- function(env, wa.env, type = c("inverse", "classical", "expanded", "none","monotonic")) { `inverse` <- function(env, wa.env) { X <- cbind(rep(1, length(wa.env)), wa.env) QR <- qr(X) coef <- qr.coef(QR, env) pred <- qr.fitted(QR, env) return(list(coefficients = coef, env = pred)) } `classical` <- function(env, wa.env) { X <- cbind(rep(1, length(env)), env) QR <- qr(X) coef <- drop(qr.coef(QR, wa.env)) pred <- (wa.env - coef[1]) / coef[2] return(list(coefficients = coef, env = pred)) } `expanded` <- function(env, wa.env) { b1 <- sd(env)/sd(wa.env) b0 <- mean(env) - b1 * mean(wa.env) pred <- b0 + b1 * wa.env return(list(coefficients = c(b0, b1), env = pred)) } `none` <- function(env, wa.env) { return(list(coefficients = c(0, 1), env = wa.env)) } `monotonic` <- function(env, wa.env) { df <- data.frame(env = env, wa.env = drop(wa.env)) mod <- gam(env ~ s(wa.env, k = 10, bs = "cr"), data = df) sm <- smoothCon(s(wa.env, k = 10, bs = "cr"), data = df, knots = NULL)[[1]] Fm <- mono.con(sm$xp) G <- list(X = sm$X, C = matrix(0,0,0), sp = mod$sp, p = sm$xp, y = env, w = env*0+1, Ain = Fm$A, bin = Fm$b, S = sm$S, off = 0) p <- pcls(G) pred <- Predict.matrix(sm, data = data.frame(wa.env = wa.env)) %*% p pred <- drop(pred) list(coefficients = list(sm = sm, p = p), env = pred) } if(missing(type)) type <- "inverse" type <- match.arg(type) res <- switch(type, inverse = inverse(env, wa.env), classical = classical(env, wa.env), expanded = expanded(env, wa.env), none = none(env, wa.env), monotonic = monotonic(env, wa.env)) class(res) <- c("deshrink","list") attr(res, "type") <- type return(res) }
positive.negative <- function(x,method = "min"){ .Call(Rfast_positive_negative,x,method) }
required <- c("tidyverse") if (!all(sapply(required, function(pkg) requireNamespace(pkg, quietly = TRUE)))) { message(paste("This vignette needs the followig packages:\n\t", paste(required, collapse = " "), "\nSince not all are installed, code will not be executed: ")) knitr::opts_chunk$set(eval = FALSE) } knitr::opts_chunk$set(collapse = TRUE, comment = " options(tidyverse.quiet = TRUE) library("MortalityTables") mortalityTables.list() mortalityTables.list("Austria_*") mortalityTables.load("Germany_Annuities_DAV2004R") mortalityTables.load("Austria_Annuities*") mortalityTables.load("Austria_Census") plot(mort.AT.census.1951.male, mort.AT.census.1991.male, mort.AT.census.2001.male, mort.AT.census.2011.male, legend.position = c(1,0)) plot(mort.AT.census.1951.male, mort.AT.census.1991.male, mort.AT.census.2001.male, reference = mort.AT.census.2011.male, legend.position = c(1,0.75), ylim = c(0,4)) plot(AVOe1996R.male, AVOe2005R.male, YOB = 1977, title = "Comparison for YOB=1977") plot(AVOe1996R.male, AVOe2005R.male, Period = 2020, title = "Comparison for observation year 2020") mortalityTables.load("Austria_Annuities") qx.coh1977 = deathProbabilities(AVOe2005R.male, YOB = 1977) qx.per2020 = periodDeathProbabilities(AVOe2005R.male, Period = 2020) table.coh1977 = getCohortTable(AVOe2005R.male, YOB = 1977) table.per2020 = getPeriodTable(AVOe2005R.male, Period = 2020) plot(table.coh1977, table.per2020, title = "Comparison of cohort 1977 with Period 2020", legend.position = c(1,0)) plotMortalityTables( mort.AT.census[c("m", "w"), c("1951", "1991", "2001", "2011")]) + aes(color = as.factor(year), linetype = sex) + labs(color = "Period", linetype = "Sex") mort.AT.census.2011.male@data$dim lt = mortalityTable.period(name = "Sample period lifetable", ages = 1:99, deathProbs = exp(-(99:1)/10)) plot(lt, title = "Simple log-linear period mortality table") deathProbabilities(lt) atPlus2 = mortalityTable.trendProjection( name = "Austrian Census Males 2011, 2% yearly trend", baseYear = 2011, deathProbs = deathProbabilities(mort.AT.census.2011.male), ages = ages(mort.AT.census.2011.male), trend = rep(0.02, length(ages(mort.AT.census.2011.male))) ) atPlus2.damp = mortalityTable.trendProjection( name = "Austrian M '11, 2% yearly, damping until 2111", baseYear = 2011, deathProbs = deathProbabilities(mort.AT.census.2011.male), ages = ages(mort.AT.census.2011.male), trend = rep(0.02, length(ages(mort.AT.census.2011.male))), dampingFunction = function(n) { n - n * (n + 1) / 2 / 100 } ) plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, YOB = 2011, legend.position = c(0.8,0.75)) atPlus2.damp2 = mortalityTable.trendProjection( name = "Austrian M '11, 2% yearly, 1% long-term", baseYear = 2011, deathProbs = deathProbabilities(mort.AT.census.2011.male), ages = ages(mort.AT.census.2011.male), trend = rep(0.02, length(ages(mort.AT.census.2011.male))), trend2 = rep(0.01, length(ages(mort.AT.census.2011.male))), dampingFunction = function(year) { if (year <= 2021) 1 else if (year > 2031) 14.5/(year - 2011) else 1 - (year - 2021)*(year - 2021 + 1) / 20 / (year - 2011) } ) plot(mort.AT.census.2011.male, atPlus2, atPlus2.damp, atPlus2.damp2, YOB = 2011, legend.position = c(0.02, 0.98), legend.justification = c(0, 1)) baseTableShift = getCohortTable(atPlus2, YOB = 2011); baseTableShift@name = "Base table of the shift (YOB 2011)" atShifted = mortalityTable.ageShift( name = "Approximation with age shift", baseYear = 2011, deathProbs = deathProbabilities(baseTableShift), ages = ages(baseTableShift), ageShifts = data.frame( shifts = c( rep( 0, 3), rep(-1, 3), rep(-2, 3), rep(-3, 3), rep(-4, 3), rep(-5, 3), rep(-6, 3) ), row.names = 2011:2031 ) ) ageShift(atShifted, YOB = 2021) plot(baseTableShift, atPlus2, atShifted, YOB = 2021, legend.position = c(0.8,0.75)) b = AVOe2005R.female b@name = "Modified Copy" b@modification = function(qx) pmax(qx, 0.01) plot(AVOe2005R.female, b, YOB = 2000) AVOe2005R.female.sec = setLoading(AVOe2005R.female, loading = 0.1); AVOe2005R.female.sec@name = "Table with 10% loading" plot(AVOe2005R.female, AVOe2005R.female.sec, title = "Original and modified table") AVOe2005R.female.mod = setModification(AVOe2005R.female, modification = function(qx) pmax(0.03, qx)); AVOe2005R.female.mod@name = "Modified table (lower bound of 3%)" plot(AVOe2005R.female, AVOe2005R.female.mod, title = "Original and modified table") library(tidyverse) data("PopulationData.AT2017", package = "MortalityTables") PopulationData.AT2017.raw = PopulationData.AT2017 %>% select(age, exposure.total, deaths.total) %>% mutate(qraw = deaths.total / (exposure.total + deaths.total/2)) PopulationTable.AT2017 = mortalityTable.period( name = "Austrian Population Mortality 2017 (raw)", baseYear = 2017, deathProbs = PopulationData.AT2017.raw$qraw, ages = PopulationData.AT2017.raw$age, exposures = PopulationData.AT2017.raw$exposure.total, data = list( deaths = PopulationData.AT2017.raw$deaths.total, dim = list(sex = "u", collar = "Population", type = "raw", year = "2017") ) ) plotMortalityTables(PopulationTable.AT2017, title = "Austrian population mortality (raw), 2017") PopulationTable.AT2017.smooth = PopulationTable.AT2017 %>% whittaker.mortalityTable(lambda = 1/10, d = 2, name.postfix = ", Whittaker") %>% mT.setDimInfo(type = "smoothed") plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, title = "Austrian population mortality (raw and smoothed), 2017") + aes(colour = type) PopulationData.AT2017.raw %>% filter(age > 90) PopulationTable.AT2017.cut = PopulationTable.AT2017.smooth %>% mT.fillAges(0:99) %>% mT.setName("Austrian Population Mortality 2017, Whittaker-smoothed and cut at age 99") PopulationTable.AT2017.ex = PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>% mT.setDimInfo(type = "smoothed and extrapolated") plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, title = "Austrian population mortality (raw and smoothed), 2017") + aes(colour = type) plotMortalityTables( PopulationTable.AT2017, PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>% mT.setDimInfo(type = "Extrapolation: HP2, Fit 75--99"), PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "HP2", fit = 75:85, extrapolate = 80:120, fadeIn = 80:95) %>% mT.setDimInfo(type = "Extrapolation: HP, Fit 75--85"), PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "HP2", fit = 90:110, extrapolate = 80:120, fadeIn = 90:100) %>% mT.setDimInfo(type = "Extrapolation: HP2, Fit 90--110"), title = "Examples of different fitting ranges for extrapolation") + aes(colour = type) plotMortalityTables( PopulationTable.AT2017, PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "HP2", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>% mT.setDimInfo(type = "HP2"), PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "thiele", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>% mT.setDimInfo(type = "thiele"), PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "ggompertz", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>% mT.setDimInfo(type = "ggompertz"), PopulationTable.AT2017.smooth %>% mT.fitExtrapolationLaw(law = "carriere1", fit = 75:99, extrapolate = 80:120, fadeIn = 80:95) %>% mT.setDimInfo(type = "carriere1"), title = "Examples of different fitting functions for extrapolation (fit 75--99)", ages = 75:120, legend.position = "bottom", legend.key.width = unit(15, "mm")) + aes(colour = type) + labs(colour = "Mortality Law") mortalityTables.load("Austria_PopulationForecast") plotMortalityTrend(mort.AT.forecast, title = "Forecast trend (medium scenario) by Statistik Austria") PopulationTable.AT2017.trend = PopulationTable.AT2017.ex %>% mT.addTrend(mort.AT.forecast$m@trend, trendages = ages(mort.AT.forecast$m)) %>% mT.setDimInfo(type = "smoothed, extrapolated, trend") PopulationTable.AT2017.trend.ex = PopulationTable.AT2017.trend %>% mT.extrapolateTrendExp(95) %>% mT.setDimInfo(type = "smoothed, extrapolated, trend extrapolated") plotMortalityTrend(PopulationTable.AT2017.trend, PopulationTable.AT2017.trend.ex, title = "Extrapolating the trend via Exponential function") + aes(color = type) plotMortalityTables(PopulationTable.AT2017, PopulationTable.AT2017.smooth, PopulationTable.AT2017.ex, PopulationTable.AT2017.trend.ex, YOB = 1980, title = "Austrian population mortality (Period 2017 vs. Generation 1980)", legend.position = c(0.01, 0.99), legend.justification = c(0,1)) + aes(colour = type) PopulationTable.AT2017.trend.ex@data$whittaker PopulationTable.AT2017.Cohort.FINAL = PopulationTable.AT2017.trend.ex %>% mT.cleanup() %>% mT.round(digits = 6) %>% mT.setName("Austrian Population Mortality, Period 2017 with trend projection") TableForProduct = PopulationTable.AT2017.Cohort.FINAL %>% mT.scaleProbs(factor = 1.25, name.postfix = "10% security added") plotMortalityTables(TableForProduct, PopulationTable.AT2017.Cohort.FINAL, title = "Adding a security loading of 25%", Period = 2017, legend.position = "bottom")
summary.est_multi_poly_clust <-function(object, ...){ out = object cat("\nCall:\n") print(out$call) cat("\nLog-likelihood:\n") print(round(out$lk,2)) cat("\nAIC:\n") print(round(out$aic,2)) cat("\nBIC:\n") print(round(out$bic,2)) cat("\nRegression parameters at cluster level:\n") print(round(out$DeU,4)) cat("\nRegression parameters at individual level:\n") print(round(out$DeV,4)) cat("\nConditional response probabilities:\n") print(round(out$Phi,4)) cat("\n") }
plot.lmrob <- function (x, which = 1:5, caption = c("Standardized residuals vs. Robust Distances", "Normal Q-Q vs. Residuals", "Response vs. Fitted Values", "Residuals vs. Fitted Values" , "Sqrt of abs(Residuals) vs. Fitted Values"), panel = if(add.smooth) panel.smooth else points, sub.caption = deparse(x$call), main = "", compute.MD = TRUE, ask = prod(par("mfcol")) < length(which) && dev.interactive(), id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75, label.pos = c(4,2), qqline = TRUE, add.smooth = getOption("add.smooth"), ..., p = 0.025) { if (!inherits(x, "lmrob")) stop("Use only with 'lmrob' objects") if (!is.numeric(which) || any(which < 1) || any(which > 5)) stop("'which' must be in 1:5") show <- rep(FALSE, 5) show[which] <- TRUE r <- residuals(x) n <- length(r) sr <- r/x$scale yh <- fitted(x) if (is.null(id.n)) id.n <- 0 else { id.n <- as.integer(id.n) if(id.n < 0L || id.n > n) stop(gettextf("'id.n' must be in {1,..,%d}", n), domain = NA) } if(id.n > 0L) { if(is.null(labels.id)) labels.id <- paste(1L:n) iid <- 1L:id.n show.r <- sort.list(abs(r), decreasing = TRUE)[iid] text.id <- function(x, y, ind, adj.x = TRUE) { labpos <- if(adj.x) label.pos[1+as.numeric(x > mean(range(x)))] else 3 text(x, y, labels.id[ind], cex = cex.id, xpd = TRUE, pos = labpos, offset = 0.25) } } one.fig <- prod(par("mfcol")) == 1 if (ask) { op <- par(ask = TRUE) on.exit(par(op)) } if (show[1]) { if(is.null(x[['MD']]) && compute.MD) { message("recomputing robust Mahalanobis distances") x$MD <- robMD(x = if(!is.null(x[['x']])) x$x else if(!is.null(x[['model']])) model.matrix(x, x$model) else stop("need 'model' or 'x' component for robust Mahalanobis distances"), intercept = attr(x$terms,"intercept"), wqr = x$qr) .ge <- .GlobalEnv if(identical(parent.frame(), .ge) && exists((cnx <- as.character(match.call()[["x"]])), .ge)) { assign(cnx, x, envir = .ge) message("saving the robust distances 'MD' as part of ", sQuote(cnx)) } } if(!is.null(xD <- x[['MD']])) { if (p < 0 || p > 1) stop ("Tolerance range must be between 0% to 100%") else chi <- sqrt( qchisq(p = 1-p, df = x$rank) ) ylim <- range(sr, na.rm=TRUE) if(id.n > 0) ylim <- extendrange(r = ylim, f = 0.08) plot(xD, xlab = "Robust Distances", sr, ylab = "Robust Standardized residuals", ylim=ylim, main = main, type = "n", ...) panel(xD, sr, ...) mtext(caption[1], 3, 0.25) if (one.fig) title(sub = sub.caption, ...) if(id.n > 0) { y.id <- sr[show.r] y.id[y.id < 0] <- y.id[y.id < 0] - strheight(" ")/3 text.id(xD[show.r], y.id, show.r) } abline(h = c(2.5,-2.5), lty = 3) abline(v = chi, lty = 3) } } if (show[2L]) { qq <- qqnorm(r, ylab = "Residuals", main = main,...) if(qqline) qqline(r, lty = 3, col = "gray50") mtext(caption[2], 3, 0.25) if (one.fig) title(sub = sub.caption, ...) if(id.n > 0) text.id(qq$x[show.r], qq$y[show.r], show.r) } if (show[3]) { y <- if(!is.null(x[['model']])) model.response(x$model) else yh + r m1 <- min(yh,y) m2 <- max(yh,y) plot(yh, y, xlab = "Fitted Values", ylab = "Response", xlim = c(m1,m2), ylim = c(m1,m2), main = main, type = "n", ...) panel(yh, y, ...) mtext(caption[3], 3, 0.25) if (one.fig) title(sub = sub.caption, ...) if(id.n > 0) text.id(yh[show.r], y[show.r], show.r) abline(a = 0,b = 1) } if (show[4]) { plot(yh, r, xlab = "Fitted Values", ylab = "Residuals", main = main, type = "n", ...) panel(yh, r, ...) mtext(caption[4], 3, 0.25) if (one.fig) title(sub = sub.caption, ...) if(id.n > 0) { y.id <- r[show.r] y.id[y.id < 0] <- y.id[y.id < 0] - strheight(" ")/3 text.id(yh[show.r], y.id, show.r) } abline(h = c(2.5*x$scale,0,-2.5*x$scale), lty = 3) } if (show[5]) { sqrtabsr <- sqrt(abs(r)) plot(yh, sqrtabsr, xlab = "Fitted Values", ylab = "Sqrt of abs(Residuals)", main = main, type = "n", ...) panel(yh, sqrtabsr, ...) mtext(caption[5], 3, 0.25) if (one.fig) title(sub = sub.caption, ...) if(id.n > 0) text.id(yh[show.r], sqrtabsr[show.r], show.r) } invisible() }
rename_wrap_var <- function(wrap_object, xform_info = NA, ...) { i <- NULL j <- NULL colnm <- NULL boxData <- .init_wrap_params(wrap_object) if (is.na(xform_info)) { warning("No field name to rename found") return(wrap_object) } else { coln <- as.character(xform_info) if (grepl("[^-]->", coln)) { st <- strsplit(coln, "->") } else { st <- strsplit(coln, "-->") } if (!is.na(st[[1]][2])) { derivedFieldName <- st[[1]][2] } colnm <- st[[1]][1] if (grepl("column", colnm, ignore.case = TRUE)) { colnm <- gsub("column", "", colnm, ignore.case = TRUE) } if (grepl("^[-,_]", colnm)) { colnm <- gsub("^[-,_]*", "", colnm) } if (is.na(st[[1]][2])) { derivedFieldName <- paste("derived_", row.names(boxData$field_data)[coln2], sep = "") } if (suppressWarnings(!is.na(as.numeric(colnm)))) { coln2 <- as.numeric(colnm) dataType <- boxData$field_data[names(boxData$data)[coln2], "dataType"] if (dataType == "numeric") { row.names(boxData$field_data)[coln2] <- derivedFieldName names(boxData$data)[coln2] <- derivedFieldName if (!is.null(boxData$matrixData)) { names(boxData$matrixData)[coln2] <- derivedFieldName } } } else { i <- which(names(boxData$data) == colnm) if (is.null(i)) { j <- which(names(boxData$data) == colnm) } if (is.null(i) && is.null(j)) { stop("field name not found.") } if (is.null(j)) { row.names(boxData$field_data)[i] <- derivedFieldName names(boxData$data)[i] <- derivedFieldName if (!is.null(boxData$matrixData)) { names(boxData$matrixData)[i] <- derivedFieldName } } else { row.names(boxData$field_data)[j] <- derivedFieldName names(boxData$data)[j] <- derivedFieldName if (!is.null(boxData$matrixData)) { names(boxData$matrixData)[j] <- derivedFieldName } } } } return(boxData) }
GetProteinGOInfo <- function(ProteinAccList , directorypath = NULL) { if(!has_internet()) { message("Please connect to the internet as the package requires internect connection.") return() } ProteinInfoParsed_total = data.frame() baseUrl <- "http://www.uniprot.org/uniprot/" message("Please wait we are processing your accessions ...") pb <- progress::progress_bar$new(total = length(ProteinAccList)) Colnames = "go-id,go,go(biological process),go(molecular function),go(cellular component)" for (ProteinAcc in ProteinAccList) { Request <- tryCatch( { GET(paste0(baseUrl , ProteinAcc,".xml")) },error = function(cond) { message("Internet connection problem occurs and the function will return the original error") message(cond) } ) ProteinName_url <- paste0("?query=accession:",ProteinAcc,"&format=tab&columns=",Colnames) RequestUrl <- paste0(baseUrl , ProteinName_url) RequestUrl <- URLencode(RequestUrl) if (length(Request) == 0) { message("nternet connection problem occurs") return() } if (Request$status_code == 200){ ProteinDataTable <- tryCatch(read.csv(RequestUrl, header = TRUE, sep = '\t'), error=function(e) NULL) if (!is.null(ProteinDataTable)) { ProteinDataTable <- ProteinDataTable[1,] ProteinInfoParsed <- as.data.frame(ProteinDataTable,row.names = ProteinAcc) ProteinInfoParsed_total <- rbind(ProteinInfoParsed_total, ProteinInfoParsed) } }else { HandleBadRequests(Request$status_code) } pb$tick() } if(!is.null(directorypath)) { write.csv(ProteinInfoParsed_total , paste0(directorypath , "/","Protein GO Info.csv")) } return(ProteinInfoParsed_total) }
rm(list = ls()) if(FALSE){ library(testthat) library(lavaSearch2) } lava.options(symbols = c("~","~~")) context("lavaSearch2") n <- 100 m.sim <- lvm(Y~E+0*X1) m <- lvm(Y~E) addvar(m) <- ~X1 set.seed(12) df.sim <- lava::sim(m.sim, n=100, latent = FALSE) e.base <- estimate(m, data = df.sim) test_that("Score 1 link",{ GS.score <- modelsearch(e.base, silent = TRUE) index.coef <- which(GS.score$res[,"Index"]=="Y~X1") search.holm <- modelsearch2(e.base, method.p.adjust = "holm", trace = 0) expect_equal(as.double(GS.score$test[index.coef,"Test Statistic"]), as.double(search.holm$sequenceTest[[1]][1,"statistic"]), tol = 1e-9) expect_equal(as.double(GS.score$test[index.coef,"P-value"]), as.double(search.holm$sequenceTest[[1]][1,"p.value"]), tol = 1e-9) search.approx <- modelsearch2(e.base, method.p.adjust = "fastmax", trace = 0, method.maxdist = "approximate") search.resampling <- modelsearch2(e.base, method.p.adjust = "fastmax", trace = 0, method.maxdist = "resampling") search.bootstrap <- modelsearch2(e.base, method.p.adjust = "fastmax", trace = 0, method.maxdist = "bootstrap") expect_equal(search.approx$sequenceTest[[1]][1,"statistic"], search.holm$sequenceTest[[1]][1,"statistic"]) expect_equal(search.approx$sequenceTest[[1]][1,"statistic"], search.resampling$sequenceTest[[1]][1,"statistic"], tol = 1e-3) expect_equal(search.approx$sequenceTest[[1]][1,"statistic"], search.bootstrap$sequenceTest[[1]][1,"statistic"], tol = 1e-3) expect_equal(round(search.resampling$sequenceTest[[1]][1,"p.value"],2), 0.24) expect_equal(round(search.bootstrap$sequenceTest[[1]][1,"p.value"],2), 0.24) })
my_mtcars <- mtcars my_mtcars$am <- factor(my_mtcars$am, labels = c("automatic", "manual")) my_mtcars$vs <- factor(my_mtcars$vs, labels = c("v", "s")) my_mtcars$cyl <- factor(my_mtcars$cyl) my_mtcars$gear <- factor(my_mtcars$gear) my_mtcars$carb <- factor(my_mtcars$carb) model_nofactors <- lm(mpg ~ cyl*wt*hp, data = mtcars) model_onefactor <- lm(mpg ~ cyl*wt*hp, data = my_mtcars) model_twofactors <- lm(mpg ~ cyl*wt*hp + vs, data = my_mtcars) model_allfactors <- lm(mpg ~ cyl*vs, data = my_mtcars)
orthog.complete <- function(x, normalize=TRUE, abs2.rows=1:nrow(x), Int=TRUE, drop.Int=Int) { if (length(dimnames(x)[[2]])==0) dimnames(x)[[2]] <- paste("Col",1:ncol(x), sep=".") if (Int) x <- cbind("(I)"=1, x) qr.x <- qr(x) Q <- qr.Q(qr.x, complete=TRUE) dimnames(Q) <- list(paste("Row",1:nrow(Q), sep="."), paste("Col",1:ncol(Q), sep=".")) if (length(dimnames(x)[[1]])) dimnames(Q)[[1]] <- dimnames(x)[[1]] mincolx <- min(ncol(x), ncol(Q)) if (length(dimnames(x)[[2]])) dimnames(Q)[[2]][1:mincolx] <- dimnames(x)[[2]][1:mincolx] if (drop.Int) Q <- Q[,-1, drop=FALSE] if (normalize=="abs2") sweep(Q, 2, apply(abs(Q[abs2.rows,,drop=FALSE]), 2, sum)/2, "/") else Q } orthog.construct <- function(y, x, x.rows, normalize=FALSE) { y.x.lm <- lm(y ~ x[x.rows,, drop=FALSE] - 1, singular.ok=TRUE, qr=TRUE) assign <- y.x.lm$qr$pivot[seq(y.x.lm$qr$rank)] beta.tmp <- coef(y.x.lm) beta <- if.R(s={ array(beta.tmp, dim(beta.tmp), dimnames(beta.tmp)) },r={ beta.tmp[assign,, drop=FALSE] }) result <- x[,assign, drop=FALSE] %*% beta if (normalize=="abs2") sweep(result, 2, apply(abs(result[x.rows,,drop=FALSE]), 2, sum)/2, "/") else result }
CreateGeoObject_BioGeoBEARS<-function(full.phylo,trimmed.phylo=NULL,ana.events,clado.events,stratified=FALSE){ if(stratified){ if(is.null(trimmed.phylo)){ clado_events_tables<-list() clado_events_tables[[1]]<-clado.events smap<-.stratified_BGB_to_tables(full.phylo,clado_events_tables,1) x<-.CreateBioGeoB_Object_subclade(anc.phylo=full.phylo,subclade.phylo=full.phylo,ana.events=smap$ana.int,clado.events=smap$clado.int,nat.only=FALSE) return(x) }else{ clado_events_tables<-list() clado_events_tables[[1]]<-clado.events smap<-.stratified_BGB_to_tables(full.phylo,clado_events_tables,1) x<-.CreateBioGeoB_Object_subclade(anc.phylo=full.phylo,subclade.phylo=trimmed.phylo,ana.events=smap$ana.int,clado.events=smap$clado.int,nat.only=FALSE) return(x) } } else{ if(is.null(trimmed.phylo)){ x<-.CreateBioGeoB_Object_subclade(anc.phylo=full.phylo,subclade.phylo=full.phylo,ana.events=ana.events,clado.events=clado.events,nat.only=FALSE) return(x) } else{ x<-.CreateBioGeoB_Object_subclade(anc.phylo=full.phylo,subclade.phylo=trimmed.phylo,ana.events=ana.events,clado.events=clado.events,nat.only=FALSE) return(x) } } }
utils::globalVariables(c("x", "y", "text", "fill", "lab", "ticks", "zero"))
library(otvPlots) library(proto) context("Plot Quantiles over Time") load("../testthat/testData.rda") setDT(testData) testData[, weeks := round(date, "weeks")] testDT = testData[, { tmp1 = quantile(balance, p = c(.01, .5, .99)); list("p1" = tmp1[1] , "p50" = tmp1[2] , "p99" = tmp1[3] )}, by = "weeks"] testMT = melt(testDT, id.vars = "weeks", measure.vars = c("p99", "p50","p1")) globalPct = testData[ , quantile(balance, p = c(.01, .5, .99) ) ] globalDT = data.table("weeks" = rep(testMT[variable == "p99", "weeks", with = FALSE][[1]], 3)) globalDT[, c("variable", "value") := list(rep(c("p1_g", "p50_g", "p99_g"), each = .N/3), rep(globalPct, each = .N/3))] testMT = rbindlist(list( testMT, globalDT)) test_that("Plot layers match expectations",{ p <- PlotQuantiles(testMT, myVar = "balance", dateGp = "weeks") expect_is(p$layers[[1]], "ggproto") expect_is(p$layers[[1]]$geom, "GeomLine") expect_is(p$layers[[1]]$stat, "StatIdentity") }) test_that("Mapping layer contains expected elements", { p <- PlotQuantiles(testMT, myVar = "balance", dateGp = "weeks") expect_true( "colour" %in% names(p$mapping)) expect_true( "linetype" %in% names(p$mapping)) expect_true( "group" %in% names(p$mapping)) expect_true( "x" %in% names(p$mapping)) expect_true( "y" %in% names(p$mapping)) expect_length(setdiff(c("colour", "linetype", "group", "x", "y"), names(p$mapping)), 0) })
plugin.density <- function(x, nout = 201, xout = NULL, na.rm = FALSE) { if (!is.numeric(x)) stop("argument must be numeric") name <- deparse(substitute(x)) x <- as.vector(x) if (any(x.na <- is.na(x))) { if (na.rm) x <- x[!x.na] else stop("x contains missing values") } n <- length(x <- sort(x)) if(is.null(xout)) { dx <- diff(rx <- range(x)) if(dx < sqrt(.Machine$double.eps)) dx <- mean(abs(rx))/1000 m <- as.integer(nout) xout <- seq(from=rx[1] - dx/10, to=rx[2] + dx/10, length= m) } else { m <- length(xout) if(is.unsorted(xout)) xout <- sort(xout) } r <- .C(plugin, x = as.double(x), n=n, z = xout, m=m, f = double(m), h = double(1)) structure(list(x= r$z, y= r$f, bw = r$h, n=n, call = match.call(), data.name = name), class=c("densityEHpi", "density")) } print.densityEHpi <- function(x, digits = getOption("digits"), ...) { cat("EvaHerrmann plugin density estimate\n call :", deparse(x$call),"\n n = ", x$n, " ; estimated (Gaussian) bandwidth h = ", format(x$bw, digits = digits),"\n") str(x[1:2], digits = digits, ...) invisible(x) }
expected <- eval(parse(text="c(13L, 6L, 1L)")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(-3.14159265358979e-05, 3.14159265358979e-05, -0.000314159265358979, 0.000314159265358979, -0.00314159265358979, 0.00314159265358979, -0.0314159265358979, 0.0314159265358979, -0.314159265358979, 0.314159265358979, -3.14159265358979, 3.14159265358979, -31.4159265358979, 31.4159265358979, -314.159265358979, 314.159265358979, -3141.59265358979, 3141.59265358979, -31415.9265358979, 31415.9265358979, -314159.265358979, 314159.265358979, -1e-05, 1e-05, -1e-04, 1e-04, -0.001, 0.001, -0.01, 0.01, -0.1, 0.1), .Dim = c(2L, 16L)), NULL, 0L)")); .Internal(format.info(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
library(miRetrieve) library(testthat) df_merged <- rbind(df_crc, df_panc) compare_terms <- compare_mir_terms(df_merged, "miR-21", title = "Test_title") compare_terms_top <- compare_mir_terms(df_merged, "miR-21", top = 3) compare_terms_n <- compare_mir_terms(df_merged, "miR-21", token = "ngrams", n = 2) compare_terms_normalize <- compare_mir_terms(df_merged, "miR-21", normalize = FALSE) test_that("Tests that terms are compared between dataframes", { expect_s3_class(compare_terms, "ggplot") expect_equal(compare_terms$labels$title, "Test_title") expect_lte(length(compare_terms_top$data$word), length(compare_terms$data$word)) expect_gte(lengths(strsplit(as.character(compare_terms_n$data$word[1]), " ")), lengths(strsplit(as.character(compare_terms$data$word[1]), " "))) expect_type(compare_terms$data$no_of_abstract, "double") expect_type(compare_terms_normalize$data$no_of_abstract, "integer") }) compare_terms_log2 <- compare_mir_terms_log2(df_merged, "miR-21", title = "Test_title") compare_terms_top_log2 <- compare_mir_terms_log2(df_merged, "miR-21", top = 3) compare_terms_n_log2 <- compare_mir_terms_log2(df_merged, "miR-21", token = "ngrams", n = 2) test_that("Tests that terms are compared between dataframes on a log2-scale", { expect_s3_class(compare_terms_log2$plot, "ggplot") expect_equal(compare_terms_log2$plot$labels$title, "Test_title") expect_lte(length(compare_terms_top_log2$plot$data$word), length(compare_terms_log2$plot$data$word)) expect_gte(lengths(strsplit(as.character(compare_terms_n_log2$plot$data$word[1]), " ")), lengths(strsplit(as.character(compare_terms_log2$plot$data$word[1]), " "))) }) compare_terms_scatter <- compare_mir_terms_scatter(df_merged, "miR-21", title = "Test_title") compare_terms_top_scatter <- compare_mir_terms_scatter(df_merged, "miR-21", top = 3) test_that("Tests that terms are compared between dataframes in a scatter plot", { expect_s3_class(compare_terms_scatter, "plotly") expect_equal(compare_terms_scatter$x$layout$title$text, "Test_title") }) compare_terms_unique <- compare_mir_terms_unique(df_merged, "miR-21", title = "Test_title") compare_terms_top_unique <- compare_mir_terms_unique(df_merged, "miR-21", top = 3) compare_terms_n_unique <- compare_mir_terms_unique(df_merged, "miR-21", token = "ngrams", n = 2) compare_terms_normalize_unique <- compare_mir_terms_unique(df_merged, "miR-21", normalize = FALSE) test_that("Tests that unique terms are compared between dataframes", { expect_s3_class(compare_terms_unique, "ggplot") expect_equal(compare_terms_unique$labels$title, "Test_title") expect_lte(length(compare_terms_top_unique$data$word), length(compare_terms_unique$data$word)) expect_gte(lengths(strsplit(as.character(compare_terms_n_unique$data$word[1]), " ")), lengths(strsplit(as.character(compare_terms_unique$data$word[1]), " "))) expect_type(compare_terms_unique$data$no_per_topic, "double") expect_type(compare_terms_normalize_unique$data$no_per_topic, "integer") })
library(testthat) library(recipes) n <- 20 set.seed(752) as_fact <- data.frame( numbers = rnorm(n), fact = factor(sample(letters[1:3], n, replace = TRUE)), ord = factor(sample(LETTERS[22:26], n, replace = TRUE), ordered = TRUE) ) as_str <- as_fact as_str$fact <- as.character(as_str$fact) as_str$ord <- as.character(as_str$ord) test_that('strings_as_factors = FALSE', { rec1 <- recipe(~ ., data = as_fact) %>% step_center(numbers) rec1 <- prep(rec1, training = as_fact, strings_as_factors = FALSE, verbose = FALSE) rec1_as_fact <- bake(rec1, new_data = as_fact) expect_warning(rec1_as_str <- bake(rec1, new_data = as_str)) expect_equal(as_fact$fact, rec1_as_fact$fact) expect_equal(as_fact$ord, rec1_as_fact$ord) expect_equal(as_str$fact, rec1_as_str$fact) expect_equal(as_str$ord, rec1_as_str$ord) }) test_that('strings_as_factors = TRUE', { rec2 <- recipe(~ ., data = as_fact) %>% step_center(numbers) rec2 <- prep(rec2, training = as_fact, strings_as_factors = TRUE, verbose = FALSE) rec2_as_fact <- bake(rec2, new_data = as_fact) expect_warning(rec2_as_str <- bake(rec2, new_data = as_str)) expect_equal(as_fact$fact, rec2_as_fact$fact) expect_equal(as_fact$ord, rec2_as_fact$ord) expect_equal(as_fact$fact, rec2_as_str$fact) expect_equal(as_fact$ord, rec2_as_str$ord) })
spline.arrow<-function(x,y=0,kdiv=20, arrow=1, length=.2, col="black", thick = 0.01, headlength = 0.2, headthick = 0.1, code=2, ...) { if(arrow>1) { } if(is.list(x)) { y = x$y x = x$x } G = GEOmap::getspline(x, y, kdiv=kdiv) lines(G, col = col, ...) n = length(G$x) if(arrow==1) { arrows(G$x[n-1], G$y[n-1], G$x[n], G$y[n], length=length, col = col) if(code==3) { arrows(G$x[2], G$y[2], G$x[1], G$y[1], length=length, col = col) } } if(arrow==2) { fancyarrows(G$x[n-1], G$y[n-1], G$x[n], G$y[n], thick =thick , headlength = headlength, headthick =headthick, col = col , border = col ) } invisible(G) }
parlitools_tidy <- function(df, tidy_style) { names(df) <- gsub("\\.", "_", names(df)) names(df) <- gsub("([[:lower:]])([[:upper:]])", "\\1_\\2", names(df)) names(df) <- gsub("__", "_", names(df)) names(df) <- gsub("^_", "", names(df)) names(df) <- tolower(names(df)) names(df)[names(df) == "df_about"] <- "about" names(df)[names(df) == "df_value"] <- "value" names(df) <- gsub("@", "", names(df)) names(df) <- gsub(" names(df) <- gsub("\\.\\.", "\\.", names(df)) names(df) <- gsub("^Members\\.Member\\.", "", names(df)) names(df) <- gsub("^BasicDetails\\.", "", names(df)) names(df) <- gsub("^BiographyEntries\\.", "", names(df)) names(df) <- gsub("^Committees\\.", "", names(df)) names(df) <- gsub("^Addresses\\.", "", names(df)) names(df) <- gsub("^Constituencies\\.", "", names(df)) names(df) <- gsub("^ElectionsContested\\.", "", names(df)) names(df) <- gsub("^Edfperiences\\.", "", names(df)) names(df) <- gsub("^GovernmentPosts\\.", "", names(df)) names(df) <- gsub("^Honours\\.", "", names(df)) names(df) <- gsub("^HouseMemberships\\.", "", names(df)) names(df) <- gsub("^Statuses\\.", "", names(df)) names(df) <- gsub("^Staff\\.", "", names(df)) names(df) <- gsub( "^Interests\\.Category\\.Interest\\.", "Interest\\.", names(df) ) names(df) <- gsub("^Interests\\.Category\\.", "Interest\\.", names(df)) names(df) <- gsub("^MaidenSpeeches\\.", "", names(df)) names(df) <- gsub("^OppositionPosts\\.", "", names(df)) names(df) <- gsub("^Parties\\.", "", names(df)) names(df) <- gsub("^PreferredNames\\.", "", names(df)) names(df) <- gsub("^ParliamentaryPosts\\.", "", names(df)) names(df) <- gsub("^OtherParliaments\\.", "", names(df)) names(df) <- gsub("^ParliamentaryPosts\\.", "", names(df)) names(df) <- gsub( "^Post.PostHolders.PostHolder.Member", "PostHolder", names(df) ) names(df) <- gsub("^Post\\.PostHolders\\.", "", names(df)) names(df) <- gsub("xsi:nil", "nil", names(df)) names(df) <- gsub("xmlns:xsi", "label", names(df)) names(df) <- gsub("\\.", "_", names(df)) names(df) <- gsub("([[:lower:]])([[:upper:]])", "\\1_\\2", names(df)) names(df) <- gsub("__", "_", names(df)) names(df) <- gsub(" ", "_", names(df)) names(df) <- tolower(names(df)) names(df)[names(df) == "df_house"] <- "house" if (tidy_style == "camelCase") { names(df) <- gsub("(^|[^[:alnum:]])([[:alnum:]])", "\\U\\2", names(df), perl = TRUE ) substr(names(df), 1, 1) <- tolower(substr(names(df), 1, 1)) } else if (tidy_style == "period.case") { names(df) <- gsub("_", ".", names(df)) } df }
eseq <- function(n){ if (n %% 2 != 0){ e <- 1 for (i in seq(3,to=n,by=2)){ alt <-rep((i-1):i,length.out=i-2) new <- as.vector(rbind(1:(i-2),alt)) new <- c(new,i,1) e <- c(e,new[-1]) }} else { e <- 1:2 if (n >= 4) for (i in seq(4,to=n,by=2)){ alt <-rep((i-1):i,length.out=i-2) new <- as.vector(rbind(alt,1:(i-2))) new <- c(new,i-1,i) e <- c(e,new) }} return(e) } eseqa <- function(n){ if (n %% 2 != 0) { m <- (n-1)/2 f <- m*(m+1)/2 e <- cumsum(0:(m-1)) + rep(seq(0, by=f, length.out=n),each=m) e <- c(e%% n +1 ,1) } else { e <- eseqa(n+1) e <- e[e!=(n+1)] e <- e[-length(e)] } return(e) } kntour_drop <- function(e){ n <- max(e) if (n %% 2 != 0){ m <- length(e) if (n==e[1]) x <- e[e!=n] else if (n==e[m-1]) { x <- e[-m] x <- x[x!=n]} else if (n==e[2]) { x <- e[-1] x <- x[x!=n] } else { x<- e[-m] m <- length(x) i <- match(n,x) x <- x[c(i:m,1:(i-1))] x <- x[x!=n]} return(x)} else { stop("Argument must be an euler tour on 1..n for odd n")} } kntour_add <- function(e){ n <- max(e) if (n %% 2 != 0){ new <- 1:n new <- new[new!=e[1]] enew <- n+1 for (j in seq(2,n-1,2)) enew <- c(enew,new[(j-1):j],n+1) return(c(e,enew))} else { stop("Argument must be an euler tour on 1..n for odd n")} }
.p_hat_fun <- function(delta.n) { n <- length(delta.n) K <- 1:(n-1) p.hat <- cumsum(delta.n[n-K+1])/K return(p.hat) } .ES <- function(s, Z.n) { n <- length(Z.n) output <- numeric(n-1) for (k in 1:(n-1)) { v <- (Z.n[n-(1:k)+1]/Z.n[n-k])^(s[k]) output[k] <- mean(v) } return(output) } .cEs <- function(s, Z.n, delta.n) { n <- length(Z.n) output <- numeric(n-1) for (k in 1:(n-1)) { v <- delta.n[n-(1:k)+1] * (Z.n[n-(1:k)+1]/Z.n[n-k])^(s[k]) output[k] <- mean(v) } return(output) } cEPD <- function(data, censored, rho = -1, beta = NULL, logk = FALSE, plot = FALSE, add = FALSE, main = "EPD estimates of the EVI", ...) { .checkInput(data) censored <- .checkCensored(censored, length(data)) n <- length(data) k <- n-1 s <- sort(data, index.return = TRUE) Z.n <- s$x delta.n <- !(censored[s$ix]) HillZ <- Hill(Z.n)$gamma phat <- .p_hat_fun(delta.n) nrho <- length(rho) if (is.null(beta)) { beta <- matrix(0, n-1, nrho) if (all(rho > 0) & nrho == 1) { rho <- .rhoEst(data, alpha=1, tau=rho)$rho beta[,1] <- -rho/HillZ for (j in 1:length(rho)) { beta[,j] <- -rho[j]/HillZ } } else if (all(rho < 0)) { for (j in 1:nrho) { beta[,j] <- -rho[j]/HillZ } } else { stop("rho should be a single positive number or a vector (of length >=1) of negative numbers.") } } else { nrho <- length(beta) if (length(beta) == 1) { beta <- matrix(beta, n-1, nrho) } else { beta <- matrix(rep(beta, n-1), ncol=length(beta), byrow=TRUE) } } gamma1 <- matrix(0, n-1, nrho) kappa1 <- matrix(0, n-1, nrho) Delta <- matrix(0, n-1, nrho) for (j in 1:nrho) { K <- 1:k D <- - (beta[K,j]^4 * HillZ[K]^3) / ( (1+HillZ[K]*beta[K,j])^2 * (1+2*HillZ[K]*beta[K,j]) ) Es <- .ES(-beta[,j], Z.n) cEs <- .cEs(-beta[,j], Z.n, delta.n) kappa1[,j] <- (1 - Es[K] - beta[K,j] * (HillZ[K] / phat[K]) * cEs[K]) / D[K] kappa1[,j] <- pmax(kappa1[,j], pmax(-1, -1/beta[,j])+0.001) Delta[,j] <- (kappa1[,j]*(1-Es))/phat Delta[,j] <- pmin(0, Delta[,j]) gamma1[,j] <- (HillZ/phat) + Delta[,j] gamma1[gamma1[,j] <= 0, j] <- 0.001 } if (logk) { .plotfun(log(K), gamma1[,1], type="l", xlab="log(k)", ylab="gamma", main=main, plot=plot, add=add, ...) } else { .plotfun(K, gamma1[,1], type="l", xlab="k", ylab="gamma", main=main, plot=plot, add=add, ...) } if (nrho == 1) { gamma1 <- as.vector(gamma1) kappa1 <- as.vector(kappa1) beta <- as.vector(beta) Delta <- as.vector(Delta) } else if (plot | add) { for (j in 2:nrho) { lines(K, gamma1[,j], lty=j) } } .output(list(k=K, gamma1=gamma1, kappa1=kappa1, beta=beta, Delta=Delta), plot=plot, add=add) } cProbEPD <- function(data, censored, gamma1, kappa1, beta, q, plot = FALSE, add=FALSE, main = "Estimates of small exceedance probability", ...) { .checkInput(data) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- as.numeric(s$x) sortix <- s$ix n <- length(X) prob <- rep(NA, n) K <- 1:(n-1) K2 <- K[!is.na(gamma1[K])] km <- KaplanMeier(X[n-K2], data=X, censored = censored[sortix])$surv prob[K2] <- km * (1-pepd(q/X[n-K2], gamma=gamma1[K2], kappa=kappa1[K2], tau=-beta[K2])) prob[prob < 0 | prob > 1] <- NA .plotfun(K, prob[K], type="l", xlab="k", ylab="1-F(x)", main=main, plot=plot, add=add, ...) .output(list(k=K, P=prob[K], q=q), plot=plot, add=add) } cReturnEPD <- function(data, censored, gamma1, kappa1, beta, q, plot = FALSE, add = FALSE, main = "Estimates of large return period", ...) { .checkInput(data) censored <- .checkCensored(censored, length(data)) if (length(q) > 1) { stop("q should be a numeric of length 1.") } s <- sort(data, index.return = TRUE) X <- as.numeric(s$x) sortix <- s$ix n <- length(X) R <- rep(NA, n) K <- 1:(n-1) K2 <- K[!is.na(gamma1[K])] km <- KaplanMeier(X[n-K2], data=X, censored = censored[sortix])$surv R[K2] <- 1 / (km * (1-pepd(q/X[n-K2], gamma=gamma1[K2], kappa=kappa1[K2], tau=-beta[K2]))) R[R < 1] <- NA .plotfun(K, R[K], type="l", xlab="k", ylab="1/(1-F(x))", main=main, plot=plot, add=add, ...) .output(list(k=K, R=R[K], q=q), plot=plot, add=add) }
fitCRM <- function(data,ipar,est.thetas,max.item,group=20) { n=ncol(data) N=nrow(data) if(is.data.frame(data)==FALSE) stop("The input response data is not a data frame. Please use as.data.frame() and convert your response data to a data frame object before the analysis") if(dim(data)[2]!=length(max.item)) stop("The number of columns in the data is not equal to the length of max.item vector") if(dim(data)[2]!=nrow(ipar)) stop("The number of columns in the data is not equal to the number of rows in the item parameter matrix") for(i in 1:n) { if(max(na.omit(data[,i]))> max.item[i]) stop("The column ",i," has values higher than the maximum available score in the user specified max.item vector. Please check and clean your data.") } if(class(est.thetas)!="CRMtheta") stop("The estimated thetas is not an object created by EstCRMperson()") data$theta <- est.thetas$thetas[,2] data <- data[order(data$theta),] data$groups <- cut2(data$theta,g=group) labels <- unique(data$groups) expected <- function(t,item) { prob <- function(t,x) { v1=ipar[item,1]*(t-ipar[item,2]-((1/ipar[item,3])*log((x-.5)/(max.item[item]-x+.5)))) v2=ipar[item,1]*(t-ipar[item,2]-((1/ipar[item,3])*log((x+.5)/(max.item[item]-x-.5)))) integrate(dnorm,v2,v1)$value } all.scores <- 1:(max.item[item]-1) all.probs <- c() for(i in 1:length(all.scores)) { all.probs[i]=prob(t,all.scores[i]) } sum(all.scores*all.probs) } fitindex <- vector("list",n) median.thetas.list <- vector("list",n) mean.obs.score.list <- vector("list",n) sd.obs.score.list <- vector("list",n) exp.score.list <- vector("list",n) for(item in 1:n) { median.thetas <- c() exp.score <- c() mean.obs.score <- c() sd.obs.score <- c() for(i in 1:length(labels)) { median.thetas[i]= median(data[which(data$groups==labels[i]),]$theta,na.rm=TRUE) exp.score[i]= expected(median.thetas[i],item) mean.obs.score[i]= mean(data[which(data$groups==labels[i]),item],na.rm=TRUE) sd.obs.score[i]= sqrt(var(data[which(data$groups==labels[i]),item],na.rm=TRUE)/50) } median.thetas.list[[item]] <- median.thetas mean.obs.score.list[[item]] <- mean.obs.score sd.obs.score.list[[item]] <- sd.obs.score exp.score.list[[item]] <- exp.score fitindex[[item]]<-(mean.obs.score - exp.score)/sd.obs.score } fits <- as.data.frame(matrix(nrow=length(labels),ncol=n+1)) colnames(fits) <- c("Interval",colnames(data)[1:n]) fits[,1]=labels for(i in 2:(n+1)) { fits[,i]=fitindex[[i-1]] } emp.plots <- vector("list",nrow(ipar)) for(u in 1:nrow(ipar)) { emp.prop <- cbind(expand.grid(median.thetas.list[[u]],1:max.item[u]),labels) emp.prop$prob <- NA for(i in 1:dim(emp.prop)[1]) { emp.prop[i,4]=length(which(round(data[which(data$groups==emp.prop[i,3]),u],0)==emp.prop[i,2]))/length(which(data$groups==emp.prop[i,3])) } emp.plots [[u]] <- wireframe(emp.prop[,4]~emp.prop[,1]*emp.prop[,2],xlab="Ability Scale",ylab="Response Scale", zlab="Prob",zlim=c(0,max(emp.prop[,4])+.05),screen=list(z =-50, x = -70), scales =list(arrows = FALSE,tck=.5),main=paste("Category Response Curves - Item ",u,sep="")) } CRM.fit <- list(fit.stat=fits,emp.irf=emp.plots) return(CRM.fit) }
fix_date_continuity = function(dat, index, form=ymd, granularity='days'){ granularity = match.arg(granularity, c('secs', 'mins', 'hours', 'days', 'weeks', 'years')) ordered_dates = sort(form(dat[,index])) l = length(ordered_dates) if(granularity != 'years'){ diffs = difftime(ordered_dates[-1], ordered_dates[-l], units=granularity) }else{ diffs = year(ordered_dates[-1]) - year(ordered_dates[-l]) } addfunc = switch(granularity, secs=seconds, mins=minutes, hours=hours, days=days, weeks=weeks) add_after = which(diffs > 1) how_many = as.numeric(diffs[add_after])-1 new_dates = mapply(function(x,y){ seq(ordered_dates[x] + addfunc(1), by=granularity, length.out=y) }, add_after, how_many) return_dat = dat[order(form(dat[,index])),] return_dat[,1] = ordered_dates insert = matrix(NA, nrow=sum(how_many), ncol=ncol(dat)) insert = as.data.frame(insert) insert[,index] = do.call(c, new_dates) names(insert) = names(dat) return_dat = rbind(return_dat, insert) return_dat = return_dat[order(return_dat[,index]),] rownames(return_dat) = NULL return_dat }
expected <- eval(parse(text="structure(c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), .Dim = c(12L, 2L), .Dimnames = list(c(\"1\", \"3\", \"5\", \"7\", \"9\", \"11\", \"13\", \"15\", \"17\", \"19\", \"21\", \"23\"), c(\"X\", \"M\")))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(12L, 2L), .Dimnames = list(c(\"1\", \"3\", \"5\", \"7\", \"9\", \"11\", \"13\", \"15\", \"17\", \"19\", \"21\", \"23\"), c(\"X\", \"M\"))), 0.001)")); do.call(`>`, argv); }, o=expected);
library("arules") library("testthat") set.seed(20070611) context("itemMatrix") m <- matrix(runif(50)>0.8, ncol=5) dn <- list(paste("trans", seq(nrow(m)), sep=""), paste("item", seq(ncol(m)), sep="")) dimnames(m) <- dn i <- as(m, "itemMatrix") expect_identical(length(i), nrow(m)) expect_identical(dim(i), dim(m)) expect_identical(as(i[1:5], "matrix"), m[1:5,]) expect_identical(as(i[1:5,1:2], "matrix"), m[1:5, 1:2]) expect_identical(as(i[-1,-1], "matrix"), m[-1,-1]) expect_identical(as(i[rep(c(T,F), nrow(m)/2), c(T,F,F,F,T)], "matrix"), m[rep(c(T,F), nrow(m)/2), c(T,F,F,F,T)]) expect_identical(dimnames(i), dn) expect_identical(dimnames(i[c("trans1", "trans10"), c("item5", "item4")]), dimnames(m[c("trans1", "trans10"), c("item5", "item4")])) j <- i dn2 <- list(paste("trans", LETTERS[1:nrow(j)], sep = ""), paste("items", LETTERS[1:ncol(j)], sep = "")) dimnames(j) <- dn2 expect_identical(dimnames(j), dn2) expect_error(i[,c(1,1)]) i2 <- i3 <- i itemsetInfo(i2) <- data.frame(matrix(nrow = length(i2), ncol = 0)) expect_equal(itemsetInfo(c(i, i2)), data.frame(itemsetID = c( itemsetInfo(i)$itemsetID, rep(NA, times = length(i2)) ), stringsAsFactors = FALSE)) expect_equal(itemsetInfo(c(i2, i)), data.frame(itemsetID = c( rep(NA, times = length(i2)), itemsetInfo(i)$itemsetID ), stringsAsFactors = FALSE)) itemsetInfo(i3)$moreInfo <- sample(1:2, length(i3), replace = TRUE) expect_equal(itemsetInfo(c(i, i3)), data.frame( itemsetID = c(itemsetInfo(i)$itemsetID, itemsetInfo(i3)$itemsetID), moreInfo = c(rep(NA, times = length(i)), itemsetInfo(i3)$moreInfo), stringsAsFactors = FALSE)) expect_equal(itemsetInfo(c(i3, i)), data.frame( itemsetID = c(itemsetInfo(i3)$itemsetID, itemsetInfo(i)$itemsetID), moreInfo = c(itemsetInfo(i3)$moreInfo, rep(NA, times = length(i))), stringsAsFactors = FALSE)) expect_equal(itemsetInfo(c(i, i[0])), itemsetInfo(i)) expect_equal(itemsetInfo(c(i[0], i3)), itemsetInfo(i3)) ngc <- as(i, "ngCMatrix") expect_true(all(t(m)==ngc)) expect_identical(dimnames(ngc),dimnames(t(m))) expect_identical(i, as(ngc, "itemMatrix")) expect_equivalent(crossTable(i), crossprod(as(i, "matrix")))
mapdeckPathDependency <- function() { list( createHtmlDependency( name = "path", version = "1.0.0", src = system.file("htmlwidgets/lib/path", package = "mapdeck"), script = c("path.js"), all_files = FALSE ) ) } add_path <- function( map, data = get_map_data(map), polyline = NULL, stroke_colour = NULL, stroke_width = NULL, stroke_opacity = NULL, dash_size = NULL, dash_gap = NULL, offset = NULL, width_units = c("meters", "common","pixels"), width_min_pixels = NULL, width_max_pixels = NULL, width_scale = 1, tooltip = NULL, billboard = FALSE, layer_id = NULL, id = NULL, auto_highlight = FALSE, highlight_colour = " palette = "viridis", na_colour = " legend = FALSE, legend_options = NULL, legend_format = NULL, update_view = TRUE, focus_layer = FALSE, digits = 6, transitions = NULL, brush_radius = NULL ) { l <- list() width_units <- match.arg(width_units) use_dashes <- !is.null( dash_size ) | !is.null( dash_gap ) l[["polyline"]] <- force( polyline ) l[["stroke_colour"]] <- force( stroke_colour) l[["stroke_width"]] <- force( stroke_width ) l[["stroke_opacity"]] <- resolve_opacity( stroke_opacity ) l[["dash_size"]] <- force(dash_size) l[["dash_gap"]] <- force(dash_gap) l[["offset"]] <- force(offset) l[["tooltip"]] <- force(tooltip) l[["id"]] <- force(id) l[["na_colour"]] <- force(na_colour) l <- resolve_palette( l, palette ) l <- resolve_legend( l, legend ) l <- resolve_legend_options( l, legend_options ) bbox <- init_bbox() layer_id <- layerId(layer_id, "path") checkHexAlpha( highlight_colour ) update_view <- force( update_view ) focus_layer <- force( focus_layer ) use_offset <- !is.null( offset ) use_dash <- !is.null( dash_size ) && !is.null( dash_gap ) map <- addDependency(map, mapdeckPathDependency()) l <- resolve_binary_data( data, l ) if( !is.null(l[["bbox"]] ) ) { bbox <- l[["bbox"]] l[["bbox"]] <- NULL } if ( !is.null(l[["data"]]) ) { data <- l[["data"]] l[["data"]] <- NULL } tp <- l[["data_type"]] l[["data_type"]] <- NULL jsfunc <- "add_path_geo" if ( tp == "sf" ) { geometry_column <- c( "geometry" ) list_cols <- list_columns( data, geometry_column ) shape <- rcpp_path_interleaved( data, l, list_cols, digits, "path" ) } else if ( tp == "sfencoded" ) { jsfunc <- "add_path_polyline" geometry_column <- "polyline" shape <- rcpp_path_polyline( data, l, geometry_column, "path" ) } else if ( tp == "interleaved" ) { shape <- list( data = jsonify::to_json( data , unbox = FALSE , digits = digits , factors_as_string = TRUE , numeric_dates = FALSE , by = "column" ) ) } legend_type <- "rgb" js_transitions <- resolve_transitions( transitions, "path" ) if( inherits( legend, "json" ) ) { shape[["legend"]] <- legend legend_type <- "hex" } else { shape[["legend"]] <- resolve_legend_format( shape[["legend"]], legend_format ) } invoke_method( map, jsfunc, map_type( map ), shape, layer_id, auto_highlight, highlight_colour, bbox, update_view, focus_layer, js_transitions, billboard, brush_radius, width_units, width_scale, width_min_pixels, width_max_pixels, use_offset, use_dash, legend_type ) } resolve_binary_data <- function( data, l ) UseMethod("resolve_binary_data") resolve_binary_data.interleaved <- function( data, l ) { l[["bbox"]] <- get_box( data, l ) l[["data_type"]] <- "interleaved" return( l ) } resolve_binary_data.sf <- function( data, l ) { sfc_col <- attr( data, "sf_column" ) l[["geometry"]] <- sfc_col cls <- attr( data[[ sfc_col ]], "class" ) if( is.null( cls ) ) { stop("mapdeck - invalid sf object; have you loaded library(sf)?") } l[["bbox"]] <- get_box( data, l ) l[["data_type"]] <- "sf" return(l) } resolve_binary_data.default <- function( data, l ) { return( resolve_data( data, l, "LINESTRING" ) ) } clear_path <- function( map, layer_id = NULL, update_view = TRUE ) { layer_id <- layerId(layer_id, "path") invoke_method(map, "md_layer_clear", map_type( map ), layer_id, "path", update_view ) }
geojson_write <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { UseMethod("geojson_write") } geojson_write.SpatialPolygons <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialPolygonsDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialPolygons")) } geojson_write.SpatialPolygonsDataFrame <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(input, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialPolygonsDataFrame")) } geojson_write.SpatialPoints <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialPointsDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialPoints")) } geojson_write.SpatialPointsDataFrame <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(input, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialPointsDataFrame")) } geojson_write.SpatialLines <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialLinesDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialLines")) } geojson_write.SpatialLinesDataFrame <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(input, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialLinesDataFrame")) } geojson_write.SpatialGrid <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { size <- prod(input@[email protected]) input <- SpatialGridDataFrame(input, data.frame(val = rep(1, size))) write_geojson(input, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialGrid")) } geojson_write.SpatialGridDataFrame <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialPointsDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialGridDataFrame")) } geojson_write.SpatialPixels <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialPointsDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialPixels")) } geojson_write.SpatialPixelsDataFrame <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialPointsDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialPixelsDataFrame")) } geojson_write.SpatialRings <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialPolygonsDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialRings")) } geojson_write.SpatialRingsDataFrame <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { write_geojson(as(input, "SpatialPolygonsDataFrame"), file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(geo_file(file, "SpatialRingsDataFrame")) } geojson_write.SpatialCollections <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { ptfile <- iter_spatialcoll(input@pointobj, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) lfile <- iter_spatialcoll(input@lineobj, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) rfile <- iter_spatialcoll(input@ringobj, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) pyfile <- iter_spatialcoll(input@polyobj, file, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) return(structure(list(ptfile, lfile, rfile, pyfile), class = "spatialcoll")) } iter_spatialcoll <- function(z, file, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { wfile <- sprintf("%s/%s_%s", dirname(file), class(z)[1], basename(file)) if (!is.null(z)) { geojson_write(z, file = wfile, precision = precision, convert_wgs84 = convert_wgs84, crs = crs, ...) } } geojson_write.sf <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { geojson_write(geojson_list(input, convert_wgs84 = convert_wgs84, crs = crs), file = file, overwrite = overwrite, ...) } geojson_write.sfc <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { geojson_write(geojson_list(input, convert_wgs84 = convert_wgs84, crs = crs), file = file, overwrite = overwrite, ...) } geojson_write.sfg <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, convert_wgs84 = FALSE, crs = NULL, ...) { geojson_write(geojson_list(input, convert_wgs84 = convert_wgs84, crs = crs), file = file, overwrite = overwrite, ...) } geojson_write.numeric <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, ...) { if (geometry == "point") { res <- df_to_SpatialPointsDataFrame(num2df(input, lat, lon), lon = lon, lat = lat) } else { res <- df_to_SpatialPolygonsDataFrame(input) } write_geojson(res, file, precision = precision, ...) return(geo_file(file, "numeric")) } num2df <- function(x, lat, lon) { if (is.null(lat)) lat <- "lat" if (is.null(lon)) lon <- "lon" stats::setNames(data.frame(rbind(x), stringsAsFactors = FALSE, row.names = NULL), c(lat, lon)) } geojson_write.data.frame <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, ...) { tmp <- guess_latlon(names(input), lat, lon) if (geometry == "point") { res <- df_to_SpatialPointsDataFrame(input, tmp$lon, tmp$lat) } else { res <- df_to_SpatialPolygonsDataFrame2(input, tmp$lat, tmp$lon, group) } write_geojson(res, file, precision = precision, overwrite = overwrite, ...) return(geo_file(file, "data.frame")) } geojson_write.list <- function(input, lat = NULL, lon = NULL, geometry="point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, ...) { if (geometry == "polygon") lint_polygon_list(input) if (is.named(input)) { tmp <- guess_latlon(names(input[[1]]), lat, lon) res <- list_to_geo_list(input, tmp$lat, tmp$lon, geometry) list_to_geojson(res, lat = tmp$lat, lon = tmp$lon, geometry = geometry, ...) } else { if (geometry == "point") { res <- list_to_SpatialPointsDataFrame(input, lon = lon, lat = lat) } else { res <- list_to_SpatialPolygonsDataFrame(input, lat, lon) } write_geojson(res, file, precision = precision, ...) } return(geo_file(file, "list")) } geojson_write.geo_list <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, ...) { if (!overwrite && file.exists(file)) { stop(file, " already exists and overwrite = FALSE", call. = FALSE) } cat(as.json(input, ...), file = file) message("Success! File is at ", file) return(geo_file(file, "geo_list")) } geojson_write.json <- function(input, lat = NULL, lon = NULL, geometry = "point", group = NULL, file = "myfile.geojson", overwrite = TRUE, precision = NULL, ...) { if (!overwrite && file.exists(file)) { stop(file, " already exists and overwrite = FALSE", call. = FALSE) } if (is.null(precision)) precision <- 4 cat(toJSON(jsonlite::fromJSON(input), auto_unbox = TRUE, digits = precision, ...), file = file) message("Success! File is at ", file) return(geo_file(file, "json")) } print.spatialcoll <- function(x, ...) { cat("<spatial collection>", "\n", sep = "") x <- tg_compact(x) for (i in seq_along(x)) { cat(" <geojson>", "\n", sep = "") cat(" Path: ", x[[i]]$path, "\n", sep = "") cat(" From class: ", x[[i]]$type, "\n", sep = "") } } geo_file <- function(path, type) { structure(list(path = path, type = type), class = "geojson_file") } print.geojson_file <- function(x, ...) { cat("<geojson-file>", "\n", sep = "") cat(" Path: ", x$path, "\n", sep = "") cat(" From class: ", x$type, "\n", sep = "") }
library(knotR) filename <- "8_12.svg" a <- reader(filename) sym812 <- symmetry_object(a,Mver=NULL,xver=5) a <- symmetrize(a,sym812) ou812 <- matrix(c( 18,2, 3,16, 13,5, 6,10, 22,8, 9,21, 20,14, 15,19 ),ncol=2,byrow=TRUE) jj <- knotoptim(filename, symobj = sym812, ou = ou812, prob = 0, iterlim=1000,print.level=2,hessian=FALSE ) write_svg(jj, filename,safe=FALSE) dput(jj,file=sub('.svg','.S',filename))
LLsurface.secr <- function (object, betapar = c('g0', 'sigma'), xval = NULL, yval = NULL, centre = NULL, realscale = TRUE, plot = TRUE, plotfitted = TRUE, ncores = NULL, ...) { if (inherits(object, 'list')) { temp <- list() nsecr <- length(object) for (i in 1:nsecr) { temp[[i]] <- LLsurface.secr (object[[i]], betapar = betapar, xval=xval, yval=yval, centre = centre, realscale = realscale, plot = plot, plotfitted = plotfitted, ncores = ncores, ...) } invisible(temp) } else { if (is.null(centre)) centre <- t(coef(object))['beta',] else { if (is.null(names(centre))) names(centre) <- object$betanames else if (any(names(centre) != object$betanames)) stop ("names of 'centre' do not match 'object$betanames'") } if (object$detectfn %in% 14:19 & "g0" %in% betapar) { betapar[betapar=="g0"] <- "lambda0" warning ("substituting lambda0 for g0 to match detectfn") } betaindices <- match(betapar, names(centre)) if ((length(betapar) != 2) | (any(is.na(betaindices)))) stop ("requires two named beta parameters") if (realscale & any(is.na(match(betapar, names(object$link))))) stop ("link function not found - see Notes in help") linkx <- ifelse(realscale, object$link[[betapar[1]]], 'identity') linky <- ifelse(realscale, object$link[[betapar[2]]], 'identity') if (is.null(xval)) { betax0 <- centre[betaindices[1]] realx0 <- untransform(betax0, linkx) xval <- transform (seq(0.8,1.2,0.04) * realx0, linkx) xval <- sort(xval) } else if (realscale) xval <- transform(xval, linkx) if (is.null(yval)) { betay0 <- centre[betaindices[2]] realy0 <- untransform(betay0, linky) yval <- transform (seq(0.8,1.2,0.04) * realy0, linky) yval <- sort(yval) } else if (realscale) yval <- transform(yval, linky) varying <- list(xval,yval) names(varying) <- betapar grid <- expand.grid(c(as.list(centre[-betaindices]), varying)) grid <- grid[, object$betanames] details <- replace(object$details, 'hessian', FALSE) details$trace <- FALSE details$LLonly <- TRUE LL <- function (start) { suppressWarnings( secr.fit(capthist = object$capthist, model = object$model, mask = object$mask, CL = object$CL, detectfn = object$detectfn, start = start, link = object$link, fixed = object$fixed, timecov = object$timecov, sessioncov = object$sessioncov, groups = object$groups, dframe = object$dframe, details = details, method = object$fit$method, verify = FALSE, ncores = ncores) ) } cat ('Evaluating log likelihood across grid of', nrow(grid), 'points...\n') flush.console() temp <- apply (grid, 1, LL) temp <- matrix(temp, nrow=length(xval)) if (realscale) { xval <- round(untransform(xval, linkx),4) yval <- round(untransform(yval, linky),4) centre[betapar[1]] <- untransform(centre[betapar[1]], linkx) centre[betapar[2]] <- untransform(centre[betapar[2]], linky) } dimnames(temp) <- list(xval, yval) temp[temp < -1e9] <- NA if (plot) { contour(x=xval, y=yval, z=temp, xlab=betapar[1], ylab=betapar[2], ...) if (plotfitted) { points(centre[betapar[1]], centre[betapar[2]], pch = 3) } invisible(temp) } else { temp } } }
check_log_sort <- function(sort) { if (!sort %in% beautier::get_log_sorts()) { stop( "'sort' must be a valid log sort. \n", "Supported values: '", paste0(beautier::get_log_sorts(), collapse = ", "), "' \n", "Actual value: '", sort ) } }
context("AddressProvider works") test_that("AddressProvider works", { aa <- AddressProvider$new() expect_is(aa, "AddressProvider") expect_is(aa, "R6") expect_is(aa$locale, "character") expect_equal(aa$locale, "en_US") expect_is(aa$city_suffix, "function") expect_is(aa$city_suffix(), "character") expect_equal(length(aa$city_suffix()), 1) expect_is(aa$street_suffix, "function") expect_is(aa$street_suffix(), "character") expect_equal(length(aa$street_suffix()), 1) expect_is(aa$building_number, "function") expect_is(aa$building_number(), "character") expect_equal(length(aa$building_number()), 1) expect_is(aa$city, "function") expect_is(aa$city(), "character") expect_equal(length(aa$city()), 1) expect_is(aa$street_name, "function") expect_is(aa$street_name(), "character") expect_equal(length(aa$street_name()), 1) expect_is(aa$street_address, "function") expect_is(aa$street_address(), "character") expect_equal(length(aa$street_address()), 1) expect_is(aa$address, "function") expect_is(aa$address(), "character") expect_equal(length(aa$address()), 1) expect_is(aa$country, "function") expect_is(aa$country(), "character") expect_equal(length(aa$country()), 1) expect_is(aa$country_code, "function") expect_is(aa$country_code(), "character") expect_equal(length(aa$country_code()), 1) expect_is(aa$postcode, "function") expect_is(aa$postcode(), "character") expect_equal(length(aa$postcode()), 1) }) test_that("AddressProvider locale support works", { test_locale <- function(loc) { bb <- AddressProvider$new(locale = loc) expect_is(bb$locale, "character") expect_equal(bb$locale, loc) expect_is(bb$city_suffix(), "character") expect_is(bb$street_suffix(), "character") } locales <- c("en_US", "en_GB") for (loc in locales) { test_locale(loc) } })
context("nonLifeRisk S3 class") test_that("nonLifeRisk: checks at construction are ok", { expect_error(nonLifeRisk(type = "cdf")) expect_error(nonLifeRisk(param = list("cdf"))) expect_error(nonLifeRisk(currency = "CHF")) expect_error(nonLifeRisk(type = 1, param = list(simulations = c(1,2)), currency = c("CHF")), "type") expect_error(nonLifeRisk(type = c("simulations", "cdf"), param = list(simulations = c(1,2)), currency = c("CHF")), "type") expect_error(nonLifeRisk(type = "density", param = list(simulations = c(1,2)), currency = c("CHF")), "type") expect_error(nonLifeRisk(type = "simulations", param = c(1,2), currency = c("CHF")), "list") expect_error(nonLifeRisk(type = "simulations", param = data.frame(simulations = c(1,2)), currency = c("CHF")), "list") expect_error(nonLifeRisk(type = "simulations", param = list(c(1,2)), currency = c("CHF")), "named") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c(1,2)), currency = c(1)), "type") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c(1,2)), currency = c("CHF", "EUR")), "type") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c(1,2), other = c(1,2)), currency = c("CHF")), "dimensions") expect_error(nonLifeRisk(type = "simulations", param = list(other = c(1,2)), currency = c("CHF")), "param") expect_error(nonLifeRisk(type = "simulations", param = list(other = c(1,2)), currency = c("CHF")), "param") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c()), currency = c("CHF")), "simulations") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c("a")), currency = c("CHF")), "types") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c(NA,1)), currency = c("CHF")), "Missing") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c(1,NaN)), currency = c("CHF")), "Missing") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c(1,2)), currency = as.character(NA)), "Missing") expect_error(nonLifeRisk(type = "simulations", param = list(simulations = c(1,-Inf)), currency = c("CHF")), "finite") expect_error(nonLifeRisk(type = "log-normal", param = list(mu=3), currency = c("CHF")), "dimensions") expect_error(nonLifeRisk(type = "log-normal", param = list(mu = 3, var = 2), currency = c("CHF")), "param") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = c(1,2), mu = 3), currency = c("CHF")), "dimensions") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = 1, mu = "a"), currency = c("CHF")), "Invalid mu") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = 1, mu = NA), currency = c("CHF")), "Invalid mu") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = 1, mu = Inf), currency = c("CHF")), "Invalid mu") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = "a", mu = 1), currency = c("CHF")), "Invalid sigma") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = NA, mu = 1), currency = c("CHF")), "Invalid sigma") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = Inf, mu = 1), currency = c("CHF")), "Invalid sigma") expect_error(nonLifeRisk(type = "log-normal", param = list(sigma = 0, mu = 1), currency = c("CHF")), "Invalid sigma") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = c(1,2), x = c(1,2)), currency = c("CHF")), "dimensions") expect_error(nonLifeRisk(type = "cdf", param = list(x = c(1,2)), currency = c("CHF")), "param") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = c(1,2)), currency = c("CHF")), "data.frame") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1), y = c(2))), currency = c("CHF")), "data.frame") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c("a","b"), cdf = c(2,1))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,NA), cdf = c(2,1))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,Inf), cdf = c(2,1))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,2), cdf = c("a", "b"))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,2), cdf = c(0.1, NA))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,2), cdf = c(0.1, Inf))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(2,1), cdf = c(0,0.3))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,2), cdf = c(0,1.5))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,2), cdf = c(0.1,0.5))), currency = c("CHF")), "Invalid column") expect_error(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1,2), cdf = c(0.5,0))), currency = c("CHF")), "Invalid column") }) test_that("nonLifeRisk: internal structure is ok", { d <- nonLifeRisk(type = "simulations", param = list(simulations = rnorm(100)), currency = "CHF") expect_equal(is.nonLifeRisk(d), TRUE) expect_equal(is.insuranceRisk(d), TRUE) expect_equal(is.risk(d), TRUE) expect_equal(is.list(d), TRUE) }) test_that("nonLifeRisk: check method is OK", { d <- nonLifeRisk(type = "simulations", param = list(simulations = c(1, 1, 2, 3, 4)), currency = "CHF") cov.mat <- diag(2, 2, 2) %*% diag(rep(1, 2)) %*% diag(2, 2, 2) name <- c("2YCHF", "EURCHF") colnames(cov.mat) <- name rownames(cov.mat) <- name attr(cov.mat, "base.currency") <- "CHF" mapping.table <- mappingTable(rate(name = "2YCHF", currency = "CHF", horizon = "k"), rate(name = "2YCHF", currency = "EUR", horizon = "k", scale = 0.75), currency(name = "EURCHF", from = "EUR", to = "CHF")) initial.values <- list() initial.values$initial.fx <- data.frame(from = "EUR", to = "CHF", fx = 1.05, stringsAsFactors = F) initial.values$initial.rate <- data.frame(time = c(1L, 1L), currency = c("CHF", "EUR"), rate = c(0.01, 0.01), stringsAsFactors = F) mapping.time <- data.frame(time = 1L, mapping = "k", stringsAsFactors = F) mr <- marketRisk(cov.mat = cov.mat, mapping.table = mapping.table, initial.values = initial.values, base.currency = "CHF", mapping.time = mapping.time) expect_true(check(d, mr)) d <- nonLifeRisk(type = "simulations", param = list(simulations=c(1, 1, 2, 3, 4)), currency = "USD") expect_false(check(d, mr)) }) test_that("nonLifeRisk: standard methods are ok", { expect_equal(class(format(nonLifeRisk(type = "simulations", param = list(simulations=c(1, 1, 2, 3, 4)), currency = "USD"))), "character") expect_equal(class(format(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1), cdf = c(1))), currency = c("CHF")))), "character") expect_equal(class(format(nonLifeRisk(type = "log-normal", param = list(sigma = 2, mu = 1), currency = c("CHF")))), "character") expect_equal(class(summary(nonLifeRisk(type = "simulations", param = list(simulations=c(1, 1, 2, 3, 4)), currency = "USD"))), c("summaryDefault", "table")) expect_equal(class(summary(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1), cdf = c(1))), currency = c("CHF")))), c("summaryDefault", "table")) expect_equal(class(summary(nonLifeRisk(type = "log-normal", param = list(sigma = 2, mu = 1), currency = c("CHF")))), c("summaryDefault", "table")) expect_equal(class(print(nonLifeRisk(type = "simulations", param = list(simulations=c(1, 1, 2, 3, 4)), currency = "USD"))), "NULL") expect_equal(class(print(nonLifeRisk(type = "cdf", param = list(cdf = data.frame(x = c(1), cdf = c(1))), currency = c("CHF")))), "NULL") expect_equal(class(print(nonLifeRisk(type = "log-normal", param = list(sigma = 2, mu = 1), currency = c("CHF")))), "NULL") })
SSexp2P<-selfStart( function(predictor,a,b){a*exp(b*predictor)}, function(mCall,LHS, data, ...) { xy <- sortedXyData(mCall[["predictor"]],LHS, data) if (min(y)>0){ lmFit <- lm(log(xy[,"y"]) ~ xy[,"x"]) coefs <- coef(lmFit) a <- exp(coefs[1]) b <- coefs[2] value <- c(a, b) names(value) <- mCall[c("a","b")] value }else{stop(" >>Try to use other selfStart functions. Because the 'SSexp2P' function need ALL x values greater than 0.") } },c("a","b"))
context("poll stress test") test_that("many processes", { skip_on_cran() num <- 100 px <- get_tool("px") on.exit(try(lapply(pp, function(x) x$kill()), silent = TRUE), add = TRUE) pp <- lapply(1:num, function(i) { cmd <- c("sleep", "1", "outln", paste("out", i), "errln", paste("err", i)) process$new(px, cmd, stdout = "|", stderr = "|") }) results <- replicate(num, list(character(), character()), simplify = FALSE) while (TRUE) { pr <- poll(pp, -1) lapply(seq_along(pp), function(i) { if (pr[[i]]["output"] == "ready") { results[[i]][[1]] <<- c(results[[i]][[1]], pp[[i]]$read_output_lines()) } if (pr[[i]]["error"] == "ready") { results[[i]][[2]] <<- c(results[[i]][[2]], pp[[i]]$read_error_lines()) } }) inc <- sapply(pp, function(x) x$is_incomplete_output() || x$is_incomplete_error()) if (!any(inc)) break } exp <- lapply(1:num, function(i) list(paste("out", i), paste("err", i))) expect_identical(exp, results) })
denseFLMM <- function(Y, gridpoints = 1:ncol(Y), Zlist = NA, G = NA, Lvec = NA, groups = matrix(1, nrow(Y), 1), Zvars, L = NA, NPC = NA, smooth = FALSE, bf = 10, smoothalg = "gamm"){ if(all(is.na(Zlist)) & all(is.na(groups))){ stop("either Zlist or groups and Zvars must be specified") } if(all(is.na(Zlist)) & all(is.na(Zvars))){ stop("either Zlist or groups and Zvars must be specified") } if(all(is.na(Zlist))){ if(nrow(Y) != nrow(groups)){ stop("The number of rows in Y needs to agree with the number of rows in the grouping matrix") } if(ncol(groups) != length(Zvars)){ stop("the number of grouping factors has to correspond to the number of groups of random variables") } if(!prod(sapply(seq(len = length(Zvars)), function(r) nrow(Zvars[[r]])) == nrow(Y))){ stop("the number of rows in Y needs to agree with the number of rows in the matrices of random variables") } if(prod(!is.na(NPC))){ if(!prod(sapply(seq(len = length(NPC)), function(N){!(NPC[N] > floor(NPC[N]))}))){ warning("NPC contains not only integers, will use rounded values") NPC <- round(NPC) } if(length(NPC) != ncol(groups) + 1){ warning("the length of NPC has to correspond to the number of groups + 1, will repeatedly use last value") temp <- length(NPC) NPC <- c(NPC, rep(NPC[temp], ncol(groups) + 1 - temp)) } } }else{ check_dims <- function(Zlist, Y, Lvec){ zdim <- list() for(z in seq_along(Zlist)){ zdim[[z]] <- do.call(rbind, (lapply(Zlist[[z]], dim))) } zdim_un <- do.call(rbind, zdim) if(isTRUE(all.equal(zdim_un[, 1], rep(zdim_un[1, 1], nrow(zdim_un))))){ x <- isTRUE(all.equal(zdim_un[1, 1], nrow(Y))) if(!x) stop("the number of rows of each matrix in Zlist need to correspond to the number of rows of Y") }else{ stop("the number of rows of each matrix in Zlist need to correspond to the number of rows of Y") } y <- (all(Lvec == zdim_un[, 2])) if(!y) stop("the number of columns of each matrix in Zlist need to correspond to the respective number in Lvec") } check_dims(Zlist = Zlist, Y = Y, Lvec = Lvec) } if(ncol(Y) != length(gridpoints)){ stop("the number of columns in Y needs to agree with the length of the gridpoints vector") } if(is.na(L) & (!prod(!is.na(NPC)))){ warning("as both L and part of NPC are missing, will default to L = 0.9, NPC = NA") L <- 0.9 NPC <- NA } if(!is.na(L) & (prod(!is.na(NPC)))){ warning("NPC will override choice of L") } if(!is.na(L)){ if(L > 1 | L < 0){ stop("the level of explained variance needs to be between 0 and 1") } } if(smooth) stopifnot(smoothalg %in% c("gamm", "gamGCV", "gamREML", "bamGCV", "bamREML", "bamfREML")) message("set up") D <- ncol(Y) n <- nrow(Y) if(all(is.na(Zlist))){ G <- length(Zvars) rhovec <- 1 Lvec <- n if(G > 0){ rhovec <- c(sapply(1:G, function(g){ncol(Zvars[[g]])}), 1) Lvec <- c(sapply(1:G, function(g){nlevels(as.factor(groups[, g]))}), n) } }else{ H <- length(Zlist) rhovec <- unlist(lapply(Zlist, length)) } sq2 <- sum(rhovec^2) if(all(is.na(Zlist))){ H <- G + 1 } if(all(is.na(Zlist))){ message("construct Zlist") foroneq <- function(g, q){ gp1 <- as.factor(groups[, g]) sparse.model.matrix(~ gp1 * Zvars[[g]][, q] - gp1 - Zvars[[g]][, q] - 1) } Zlist <- lapply(seq(len = G), function(g){lapply(1:rhovec[g], function(q) foroneq(g, q))}) Zlist[[H]] <- list(Diagonal(n)) } Y.tilde <- Y message("estimate covariance(s)") gcyc <- rep(1:(H), rhovec^2) qcyc <- unlist(sapply(rhovec, FUN = function(q){rep(1:q, each = q)})) pcyc <- unlist(sapply(rhovec, FUN = function(p){rep(1:p, p)})) XtXentry <- function(ro, co){ A1 <- if(H == G + 1){ if(gcyc[co] == H){ Zlist[[gcyc[ro]]][[pcyc[ro]]] }else{ if(gcyc[ro] == H){ t(Zlist[[gcyc[co]]][[pcyc[co]]]) }else{ crossprod(Zlist[[gcyc[co]]][[pcyc[co]]], Zlist[[gcyc[ro]]][[pcyc[ro]]]) } } }else{ crossprod(Zlist[[gcyc[co]]][[pcyc[co]]], Zlist[[gcyc[ro]]][[pcyc[ro]]]) } A2 <- if(H == G + 1){ if(gcyc[co] == H){ Zlist[[gcyc[ro]]][[qcyc[ro]]] }else{ if(gcyc[ro] == H){ t(Zlist[[gcyc[co]]][[qcyc[co]]]) }else{ crossprod(Zlist[[gcyc[co]]][[qcyc[co]]], Zlist[[gcyc[ro]]][[qcyc[ro]]]) } } }else{ crossprod(Zlist[[gcyc[co]]][[qcyc[co]]], Zlist[[gcyc[ro]]][[qcyc[ro]]]) } traceA1tA2 <- function(A1, A2){ ret <- if(all(dim(A1) == dim(A2))){ sum(rowSums(A1 * A2)) }else{ if(ncol(A1) < nrow(A1)){ sum(sapply(1:ncol(A1), function(i) as.numeric(crossprod(A1[, i, drop = F], A2[, i, drop = F])), simplify = T)) }else{ sum(sapply(1:nrow(A1), function(i) as.numeric(tcrossprod(A1[i, , drop = F], A2[i,, drop = F])), simplify = T)) } } return(ret) } return(traceA1tA2(A1, A2)) } matrixouter <- function(rows, cols, FUN){ FUN <- match.fun(FUN) do.call(rbind, lapply(rows, function(g) do.call(cbind, lapply(cols, function(h) FUN(g, h))))) } XtX <- matrixouter(seq(len = sq2), seq(len = sq2), FUN = "XtXentry") Xtcentry <- function(ro){ if(gcyc[ro] == H & H == (G + 1)){ return(as.vector(crossprod(Y.tilde))) }else{ A1 <- crossprod(Zlist[[gcyc[ro]]][[pcyc[ro]]], Y.tilde) A2 <- crossprod(Zlist[[gcyc[ro]]][[qcyc[ro]]], Y.tilde) return(as.vector(crossprod(A1, A2))) } } Xtc <- do.call(rbind, lapply(seq(len = sq2), function(h){Xtcentry(h)})) Ktilde <- solve(XtX, Xtc) rowvec <- rep(gridpoints, each = D) colvec <- rep(gridpoints, D) cum_rhovec2 <- cumsum(rhovec^2) if(H == G + 1){ diago <- diag(matrix(Ktilde[sq2, ], D, D)) }else{ diagos <- list() use <- cum_rhovec2[(G + 1):H] for(k in seq(along = use)){ diagos[[k]] <- diag(matrix(Ktilde[use[k], ], D, D)) } } if(smooth){ message("smooth covariance(s)") if(H == G + 1){ Ktilde[sq2, as.logical(diag(D))] <- rep(NA, D) }else{ use <- cum_rhovec2[(G + 1):H] for(k in seq(along = use)){ Ktilde[use[k], as.logical(diag(D))] <- rep(NA, D) } } Km <- t(sapply(1:sq2, function(r){ m <- switch(smoothalg, "gamm" = gamm(Ktilde[r, ] ~ te(rowvec, colvec, k = bf))$gam,, "gamREML" = gam(Ktilde[r, ] ~ te(rowvec, colvec, k = bf), method = "REML"), "gamGCV" = gam(Ktilde[r, ] ~ te(rowvec, colvec, k = bf), method = "GCV.Cp"), "bamGCV" = bam(Ktilde[r, ] ~ te(rowvec, colvec, k = bf), method = "GCV.Cp"), "bamREML" = bam(Ktilde[r, ] ~ te(rowvec, colvec, k = bf), method = "REML"), "bamfREML" = bam(Ktilde[r, ] ~ te(rowvec, colvec, k = bf), method = "fREML")) return(predict(m, newdata = data.frame(rowvec = rowvec, colvec = colvec))) })) }else{ Km <- Ktilde } onecov <- function(g){ covcomp <- function(s, r){ matrix(Km[sum(rhovec[seq(len = g - 1)]^2) + (s - 1) * rhovec[g] + r, ], D, byrow = TRUE) } matrixouter(1:rhovec[g], 1:rhovec[g], FUN = "covcomp") } K <- lapply(1:(H), "onecov") K <- lapply(1:(H), function(g){(K[[g]] + t(K[[g]])) / 2}) message("estimate error variance") if(H == (G + 1)){ sigma2.hat <- max(mean((diago - diag(K[[H]]))[floor(D * 0.2):ceiling(D * 0.8)], na.rm = TRUE), 0) }else{ sigma2.hat_parts <- numeric() use <- (G + 1):H for(k in seq(along = use)){ sigma2.hat_parts[k] <- max(mean((diagos[[k]] - diag(K[[use[k]]]))[floor(D * 0.2):ceiling(D * 0.8)], na.rm = TRUE), 0) } sigma2.hat <- max(mean(sigma2.hat_parts, na.rm = TRUE), 0) } sigma2.hat_int <- (max(gridpoints) - min(gridpoints)) * sigma2.hat interv <- gridpoints[2] - gridpoints[1] message("make eigen decomposition(s)") eigen.list <- lapply(1:(H), function(g) eigen(K[[g]], symmetric = TRUE)) nu.hat <- lapply(1:(H), function(g) eigen.list[[g]]$values * interv) total.variance <- sigma2.hat_int + sum(unlist(nu.hat) * (unlist(nu.hat) > 0)) if(any(is.na(NPC))){ message("get truncation level(s)") explained.variance <- sigma2.hat_int / total.variance NPC <- rep(0, H) while(explained.variance < L){ maxl <- sapply(1:(H), function(g){nu.hat[[g]][NPC[[g]] + 1]}) maxg <- match(max(maxl), maxl) NPC[[maxg]] <- NPC[[maxg]] + 1 explained.variance <- explained.variance + nu.hat[[maxg]][NPC[[maxg]]] / total.variance } } phi <- lapply(1:(H), function(g) (eigen.list[[g]]$vectors * (1 / sqrt(interv)))[, seq(len = NPC[g]), drop = FALSE]) nu.hat <- lapply(1:(H), function(g){nu.hat[[g]][seq(len = NPC[g]), drop = FALSE]}) explained.variance <- (sigma2.hat_int + sum(unlist(nu.hat))) / total.variance message("update error variance") if(H == (G + 1)){ newdiag <- diag(phi[[H]] %*% tcrossprod(Diagonal(length(nu.hat[[H]]), nu.hat[[H]]), phi[[H]])) if(length(nu.hat[[H]]) == 0){ newdiag <- rep(0,D)} sigma2.hat <- max(mean((diago - newdiag)[floor(D * 0.2):ceiling(D * 0.8)], na.rm = TRUE), 0) }else{ newdiag <- list() sigma2.hat_parts <- numeric() use <- (G + 1):H for(k in seq(along = use)){ newdiag[[k]] <- diag(phi[[use[k]]] %*% tcrossprod(Diagonal(length(nu.hat[[use[k]]]), nu.hat[[use[k]]]), phi[[use[k]]])) if(length(nu.hat[[use[k]]]) == 0){ newdiag[[k]] <- rep(0,D) } sigma2.hat_parts[k] <- max(mean((diagos[[k]] - newdiag[[k]])[floor(D * 0.2):ceiling(D * 0.8)], na.rm = TRUE), 0) } sigma2.hat <- max(mean(sigma2.hat_parts, na.rm = TRUE), 0) } message("predict basis weights") ZtYfunc <- function(g){ foroneq <- function(q){ as.vector(crossprod(Zlist[[g]][[q]], Y.tilde) %*% phi[[g]][(q - 1) * D + (1:D), ]) } rowSums(sapply(1:rhovec[g], 'foroneq')) } ZtY <- do.call("c", lapply((1:(H))[NPC != 0], 'ZtYfunc')) ZtZcomp <- function(g, h){ foroneqr <- function(q, r){ phitphi <- crossprod(phi[[g]][(q - 1) * D + (1:D), ], phi[[h]][(r - 1) * D + (1:D), ]) ZtZ <- if(H == G + 1){ if(g == H){ Zlist[[h]][[r]] }else{ if(h == H){ t(Zlist[[g]][[q]]) }else{ crossprod(Zlist[[g]][[q]], Zlist[[h]][[r]]) } } }else{ crossprod(Zlist[[g]][[q]], Zlist[[h]][[r]]) } return(kronecker(phitphi, ZtZ)) } Reduce('+', mapply(foroneqr, c(rep(1:rhovec[g], rhovec[h])), c(rep(1:rhovec[h], each = rhovec[g])), SIMPLIFY = FALSE)) } ZtZ <- matrixouter((1:(H))[NPC != 0], (1:(H))[NPC != 0], "ZtZcomp") cIN <- c(0, cumsum(Lvec * NPC)) IN <- Lvec * NPC Dinv <- Diagonal(sum(IN), rep(1 / unlist(nu.hat), rep(Lvec, NPC))) b.hat <- solve(ZtZ + sigma2.hat * Dinv, ZtY) xi.hat <- vector(H, mode = "list") xi.hat[NPC != 0] <- lapply((1:(H))[NPC != 0], function(g) matrix(b.hat[cIN[g] + 1:IN[g]], Lvec[g])) results <- list(Y = Y, gridpoints = gridpoints, groups = groups, Zvars = Zvars, rhovec = rhovec, Lvec = Lvec, NPC = NPC, phi = phi, sigma2 = sigma2.hat, nu = nu.hat, xi = xi.hat, L = L, totvar = total.variance, exvar = explained.variance, bf = bf, smooth = smooth, smoothalg = smoothalg, Zlist = Zlist) return(results) }
ascii.summary.table <- function(x, caption = NULL, caption.level = NULL, list.type = "bullet", ...) { x <- as.list(capture.output(x)) obj <- asciiList$new(x = x, caption = caption, caption.level = caption.level, list.type = list.type) return(obj) }
checkConstColumns <- function(y,prednames) { ny <- length(y) eps <- sqrt(.Machine$double.eps) noCC <- TRUE oneOK <- TRUE for(i in ny) { xxx <- apply(y[[i]],2,function(x){all(diff(x)==0)}) if(sum(xxx)>1) { j <- which(xxx) whinge <- paste0("Predictor matrix ",i," has at least two\n", " constant columns.\n") stop(whinge) } xxx <- apply(y[[i]],2,function(x){all(abs(x-1) <= eps)}) if(sum(xxx)) noCC <- FALSE if(!xxx[1]) oneOK <- FALSE if(!(noCC | oneOK)) { whinge <- paste0("Predictor matrix ",i," has a column of 1's\n", " which is not the first column.\n") stop(whinge) } } if(!(noCC | oneOK)) { whinge("Some predictor matrices have a first column of 1's\n", " and some don't.\n") stop(whinge) } if(oneOK) { if(!is.null(prednames) && prednames[1] != "Intercept") stop("The initial column of 1's must be named \"Intercept\".\n") } oneOK }
dfp_createTeams <- function(request_data, as_df=TRUE, verbose=FALSE){ request_body <- form_request_body(service='TeamService', root_name='createTeams', data=request_data) httr_response <- execute_soap_request(request_body=request_body, verbose=verbose) result <- parse_soap_response(httr_response=httr_response, resp_element='createTeamsResponse', as_df=as_df) return(result) } dfp_getTeamsByStatement <- function(request_data, as_df=TRUE, verbose=FALSE){ request_body <- form_request_body(service='TeamService', root_name='getTeamsByStatement', data=request_data) httr_response <- execute_soap_request(request_body=request_body, verbose=verbose) result <- parse_soap_response(httr_response=httr_response, resp_element='getTeamsByStatementResponse', as_df=as_df) return(result) } dfp_performTeamAction <- function(request_data, as_df=TRUE, verbose=FALSE){ request_body <- form_request_body(service='TeamService', root_name='performTeamAction', data=request_data) httr_response <- execute_soap_request(request_body=request_body, verbose=verbose) result <- parse_soap_response(httr_response=httr_response, resp_element='performTeamActionResponse', as_df=as_df) return(result) } dfp_updateTeams <- function(request_data, as_df=TRUE, verbose=FALSE){ request_body <- form_request_body(service='TeamService', root_name='updateTeams', data=request_data) httr_response <- execute_soap_request(request_body=request_body, verbose=verbose) result <- parse_soap_response(httr_response=httr_response, resp_element='updateTeamsResponse', as_df=as_df) return(result) }
FHtestrcc <- function(L, ...) { UseMethod("FHtestrcc") }
encode_bounds = function(x) { encoded = paste0(x[1], ",", x[2], "|", x[3], ",", x[4]) return(encoded) }
with_tempfile <- function(new, code, envir = parent.frame(), .local_envir = parent.frame(), pattern = "file", tmpdir = tempdir(), fileext = "") { if (!missing(envir)) { .Deprecated(msg = "`envir` argument of with_tempfile() is deprecated.\n Use `with_tempfile(.local_envir=)` instead.") .local_envir <- envir } env <- new.env(parent = .local_envir) for (f in new) { assign(f, tempfile(pattern = pattern, tmpdir = tmpdir, fileext = fileext), envir = env) } on.exit(unlink(mget(new, envir = env), recursive = TRUE)) eval(substitute(code), envir = env) } local_tempfile <- function(new = NULL, lines = NULL, envir = parent.frame(), .local_envir = parent.frame(), pattern = "file", tmpdir = tempdir(), fileext = "") { if (!missing(envir)) { .Deprecated(msg = "`envir` argument of local_tempfile() is deprecated.\n Use `local_tempfile(.local_envir=)` instead.") .local_envir <- envir } if (is.null(new)) { path <- tempfile(pattern = pattern, tmpdir = tmpdir, fileext = fileext) if (!is.null(lines)) { writeLines(lines, path) } defer(unlink(path, recursive = TRUE), envir = .local_envir) return(path) } .Deprecated(msg = "`new` argument of local_tempfile() is deprecated.\n Use `path <- local_tempfile()` instead.") for (f in new) { assign(f, tempfile(pattern = pattern, tmpdir = tmpdir, fileext = fileext), envir = .local_envir) } defer(unlink(mget(new, envir = .local_envir), recursive = TRUE), envir = .local_envir) } with_tempdir <- function(code, clean = TRUE, pattern = "file", tmpdir = tempdir(), fileext = "") { if (length(clean) > 1 || !is.logical(clean)) { stop("`clean` must be a single TRUE or FALSE", call. = FALSE) } tmp <- tempfile(pattern = pattern, tmpdir = tmpdir, fileext = fileext) dir.create(tmp) if (clean) { on.exit(unlink(tmp, recursive = TRUE), add = TRUE) } withr::with_dir(tmp, code) } local_tempdir <- function(pattern = "file", tmpdir = tempdir(), fileext = "", .local_envir = parent.frame(), clean = TRUE) { if (length(clean) > 1 || !is.logical(clean)) { stop("`clean` must be a single TRUE or FALSE", call. = FALSE) } path <- tempfile(pattern = pattern, tmpdir = tmpdir, fileext = fileext) dir.create(path, recursive = TRUE) if (isTRUE(clean)) { defer(unlink(path, recursive = TRUE), envir = .local_envir) } path }
vw_rename_datasets <- function(spec) { spec <- as_vegaspec(spec) if (!("datasets" %in% names(spec))) { return(spec) } dataset_names <- names(spec$datasets) dataset_names_new <- list(sprintf("data_%03d", seq_along(dataset_names))) names(dataset_names_new) <- dataset_names fn_replace <- function(x) { if (rlang::has_name(dataset_names_new, x)) { x <- dataset_names_new[[x]] } x } names(spec$datasets) <- dataset_names_new fn_crawl <- function(x, fn_rep) { if (is.data.frame(x) || !is.list(x)) { return(x) } if (rlang::has_name(x, "data") && rlang::has_name(x$data, "name")) { x$data$name <- fn_rep(x$data$name) } x <- lapply(x, fn_crawl, fn_rep) x } spec <- fn_crawl(spec, fn_replace) spec <- as_vegaspec(spec) spec }
first_row_to_header <- function(a_table){ colnames(a_table) <- a_table[1, , drop = FALSE] colnames(a_table) <- gsub(" ", ".", colnames(a_table)) a_table <- a_table[-1, , drop = FALSE] rownames(a_table) <- seq(nrow(a_table)) a_table } is_rstudio_selection <- function(){ context <- rstudioapi::getActiveDocumentContext() !all(context$selection[[1]]$range$start == context$selection[[1]]$range$end) } is_tibble <- function(x) inherits(x, "tbl_df") is_data.table <- function(x) inherits(x, "data.table")
Election.getElection <- function (electionId) { Election.getElection.basic <- function (.electionId) { request <- "Election.getElection?" inputs <- paste("&electionId=",.electionId,sep="") output <- pvsRequest10(request,inputs) output } output.list <- lapply(electionId, FUN= function (s) { Election.getElection.basic(.electionId=s) } ) output.list <- redlist(output.list) output <- dfList(output.list) output }
setMethod( 'prune', signature( x = 'lineage_tree' ), function( x, ... ){ x@graph <- x@graph %>% prune(...) x@x <- x@x[V(x@graph)$name %>% unlist()] x } ) setMethod( 'prune', signature( x = 'igraph' ), function( x, weighted = TRUE, ... ){ is_leaf <- degree(x, mode = 'out') == 0 is_branch <- degree(x, mode = 'out') == 2 is_link <- degree(x, mode = 'out') == 1 d <- distances(x, v = V(x)[is_link], to = V(x)[is_leaf | is_branch], mode = 'out') d_lb <- distances(x, v = V(x)[is_leaf | is_branch], to = V(x)[is_leaf | is_branch]) n_nodes <- sum(is_leaf | is_branch) new2old <- which(is_leaf | is_branch) name2id <- 1:n_nodes names(name2id) <- names(new2old) old2new <- rep(NA, vcount(x)) names(old2new) <- V(x)$name old2new[is_leaf] <- name2id[names(which(is_leaf))] old2new[is_branch] <- name2id[names(which(is_branch))] old2new[is_link] <- name2id[names(new2old[apply(d, 1, which.min)])] x <- contract(x, old2new) x <- simplify(x) x <- x %>% set_vertex_attr('name', index = 1:vcount(x), value = names(name2id)) if (weighted){ edges <- (x[] %>% summary())[, 1:2] %>% as.matrix() E(x)$weight <- d_lb[edges] } x } )
max_min_assoc.gee = function(target, reps, group, dataset, test, wei, threshold, max_k, selectedVars, pvalues, stats, remainingVars, univariateModels, selectedVarsOrder, hash, stat_hash, pvalue_hash, correl, se) { selected_var = -1; selected_pvalue = 2; selected_stat = 0; varsToIterate = which(remainingVars==1); for (cvar in varsToIterate) { mma_res = min_assoc.gee(target, reps, group, dataset, test, max_k, cvar, wei, selectedVars, pvalues, stats, univariateModels, selectedVarsOrder, hash, stat_hash, pvalue_hash, correl = correl, se = se); pvalues = mma_res$pvalues; stats = mma_res$stats; stat_hash = mma_res$stat_hash; pvalue_hash = mma_res$pvalue_hash; if(mma_res$pvalue > threshold) remainingVars[[cvar]] = 0; if ( compare_p_values(mma_res$pvalue, selected_pvalue, mma_res$stat, selected_stat) ) { selected_var = cvar; selected_pvalue = mma_res$pvalue; selected_stat = mma_res$stat; } } results <- list(selected_var = selected_var, selected_pvalue = selected_pvalue, remainingVars = remainingVars, pvalues = pvalues, stats = stats, stat_hash=stat_hash, pvalue_hash = pvalue_hash, correl = correl, se = se); return(results); }
context("GEER method") data('schools') rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school), schools, method="geer", rprpair='hl-disp') test_that("GEER calculates correct fixed effects for schools data", { expect_equal(rlme.fit$fixed.effects$Estimate, c(0.09027762, -0.36728706, 0.07401874), tolerance=0.01) }) test_that("GEER calculates correct covariance matrix for school data", { correct.var.b = matrix(c( 7.475441e-02, -0.0009965355, -2.297116e-05, -9.965355e-04, 0.0082464809, 4.872454e-04, -2.297116e-05, 0.0004872454, 2.069968e-02), nrow=3, ncol=3) expect_equal(unname(rlme.fit$var.b), correct.var.b, tolerance = 0.01) }) test_that("GEER calculates correct random effect variances for school data (hl-disp)", { expect_equal(rlme.fit$random.effects$Variance, c(0.12837229, 0.01994128, 0.81967053), tolerance=0.01) }) rlme.fit = rlme(y ~ 1 + sex + age + (1 | region) + (1 | region:school), schools, method="jr", rprpair='med-mad') test_that("GEER calculates correct random effect variances for school data (med-mad)", { expect_equal(rlme.fit$random.effects$Variance, c(0.02413042, 0.09661321, 0.38645392), tolerance=0.01) }) rlme.fit = rlme(y ~ 1 + sex + age + (1 | region), schools, method="geer", rprpair='hl-disp') test_that("2 Level GEER calculates correct fixed effects for schools data", { expect_equal(rlme.fit$fixed.effects$Estimate, c(2.351191e-01, -4.185243e-01, 2.942611e-10), tolerance=0.01) }) test_that("2 Level GEER calculates correct covariance matrix for school data", { correct.var.b = matrix(c( 7.354120e-02, -0.0004833065, 8.462203e-06, -4.833065e-04, 0.0061781128, 1.521761e-04, 8.462203e-06, 0.0001521761, 1.526932e-02), nrow=3, ncol=3) expect_equal(unname(rlme.fit$var.b), correct.var.b, tolerance = 0.01) }) test_that("2 Level GEER calculates correct random effect variances for school data (hl-disp)", { expect_equal(rlme.fit$random.effects$Variance, c(0.1668618, 0.8385061), tolerance=0.01) }) rlme.fit = rlme(y ~ 1 + sex + age + (1 | region), schools, method="geer", rprpair='med-mad') test_that("2 Level GEER calculates correct random effect variances for school data (med-mad)", { expect_equal(rlme.fit$random.effects$Variance, c(4.329403e-09, 3.864539e-01), tolerance=0.01) })
dkumar <- function(x, a = 1, b = 1, log = FALSE) { cpp_dkumar(x, a, b, log[1L]) } pkumar <- function(q, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE) { cpp_pkumar(q, a, b, lower.tail[1L], log.p[1L]) } qkumar <- function(p, a = 1, b = 1, lower.tail = TRUE, log.p = FALSE) { cpp_qkumar(p, a, b, lower.tail[1L], log.p[1L]) } rkumar <- function(n, a = 1, b = 1) { if (length(n) > 1) n <- length(n) cpp_rkumar(n, a, b) }
sim.taxa <- function (numbsim, n, m=n, waitsp, waitext="rexp(0)", symmetric=TRUE, complete=TRUE, tiplabel=c("sp.", "ext.","Ss", "Se"), shiftsp=list(prob=0, strength="runif(0.5,0.9)"), shiftext=list(prob=0, strength="runif(0.1,0.2)"), sampling=list(frac=1, branchprop=FALSE), sampling.gsa=1, gsa=FALSE) { if (complete==TRUE & sampling$frac!=1) { warning("Sampling on taxa based can only be used with complete=FALSE, thus complete was changed to FALSE") complete=FALSE } if (sampling$frac>1 | sampling$frac<0){ warning("Sampling Sampling fraction needs to range between 0 and 1, thus sampling$frac was changed to 1") sampling$frac=1 } if (sampling$frac!=1){ n=round(n/sampling$frac) if (m<n) { warning("You are using sampling, thus tips=n/sampling$frac. m is smaller than n, thus we changed m=n/frac") m=n } } if (m<n){ warning("m can not be samller than n, thus we changed m=n") m=n } check<-gsa if (gsa==F && complete==T){check<-T} mytreegsazed <- list() while (length(mytreegsazed) < numbsim) { mytree <- list() step <- 1 { if (symmetric == TRUE) { for (step in 1: (numbsim) ){ mytreenext <- mytree.symmetric.taxa(m=m, waitsp=waitsp, waitext=waitext, complete=check, tiplabel=tiplabel, shiftsp=shiftsp, shiftext=shiftext, sampling=sampling, gsa=gsa) mytree<- c(mytree, list(mytreenext)) } } else { for (step in 1: (numbsim) ){ mytreenext <- mytree.asymmetric.taxa(m=m, waitsp=waitsp, waitext=waitext, complete=check, tiplabel=tiplabel, shiftsp=shiftsp, shiftext=shiftext, sampling=sampling, gsa=gsa) mytree<- c(mytree, list(mytreenext)) } } } { if (gsa==T) { mytreegsa <- sim.gsa.taxa(mytree, n=n, sampling=sampling.gsa, frac=sampling$frac, complete=complete) } else { mytreegsa <- mytree } } mytreegsazed <- c(mytreegsazed, mytreegsa) } mytreegsazeds <- sample(mytreegsazed, numbsim) mytreegsazed <- mytreegsazeds return(mytreegsazed) }
NULL new_ml_sample_transformer <- function(jobj) { new_ml_transformer(jobj, class = "ml_sample_transformer") } ft_dplyr_transformer <- function(x, tbl, uid = random_string("dplyr_transformer_"), ...) { UseMethod("ft_dplyr_transformer") } ml_dplyr_transformer <- ft_dplyr_transformer ft_dplyr_transformer.spark_connection <- function(x, tbl, uid = random_string("dplyr_transformer_"), ...) { if (!identical(class(tbl)[1], "tbl_spark")) stop("'tbl' must be a Spark table") if (is.null(attributes(tbl)$sampling_params)) { ft_sql_transformer(x, ft_extract_sql(tbl), uid = uid) } else { sc <- spark_connection(tbl) sampling_params <- attributes(tbl)$sampling_params if (sampling_params$frac) { jobj <- invoke_new(sc, "sparklyr.SampleFrac", uid) %>% invoke("setFrac", sampling_params$args$size) } else { jobj <- invoke_new(sc, "sparklyr.SampleN", uid) %>% invoke("setN", as.integer(sampling_params$args$size)) } jobj <- jobj %>% invoke( "%>%", list( "setWeight", if (rlang::quo_is_null(sampling_params$args$weight)) { "" } else { rlang::as_name(sampling_params$args$weight) } ), list("setReplace", sampling_params$args$replace), list("setGroupBy", as.list(sampling_params$group_by)), list("setSeed", as.integer(sampling_params$args$seed %||% Sys.time())) ) new_ml_sample_transformer(jobj) } } ft_dplyr_transformer.ml_pipeline <- function(x, tbl, uid = random_string("dplyr_transformer_"), ...) { stage <- ft_dplyr_transformer.spark_connection( x = spark_connection(x), tbl = tbl, uid = uid, ... ) ml_add_stage(x, stage) } ft_dplyr_transformer.tbl_spark <- function(x, tbl, uid = random_string("dplyr_transformer_"), ...) { stage <- ft_dplyr_transformer.spark_connection( x = spark_connection(x), tbl = tbl, uid = uid, ... ) ml_transform(stage, x) }
sirt_progress_cat <- function(progress) { if (progress){ cat("\n") } }
context("checking that the length of DP_PSSM feature vector is equal to 240") test_that("whether the DP_PSSM function gives us the expected output",{ ss<-DP_PSSM(system.file("extdata","C7GQS7.txt.pssm",package="PSSMCOOL")) expect_equal(length(ss),240) })
restrict_coef <- function(model, restrictions){ if ( inherits(model, "glm") ){ fm <- formula(model) offset_term <- get_offset(model) fm_no_offset <- remove_offset_formula(fm) df_new <- model$data model_call <- model$call model_out <- model rfdf <- rating_factors1(model) rst_lst <- list(restrictions) names(rst_lst) <- names(restrictions[1]) restricted_df <- restrict_df(restrictions) new_col_nm <- NULL old_col_nm <- NULL mgd_rst <- NULL mgd_smt <- NULL } if ( inherits(model, c("smooth", "restricted")) ){ fm <- model$formula_restricted offset_term <- model$offset fm_no_offset <- model$formula_removed df_new <- model$data_restricted model_call <- model$model_call model_out <- model$model_out rfdf <- model$rating_factors rst_lst <- model$restrictions_lst rst_lst[[names(restrictions)[1]]] <- restrictions restricted_df <- restrict_df(restrictions) new_col_nm <- model$new_col_nm old_col_nm <- model$old_col_nm mgd_rst <- model$mgd_rst mgd_smt <- model$mgd_smt } if ( inherits(model, "restricted") ){ restricted_df <- rbind(model$rf_restricted_df, restricted_df) } if ( inherits(model, "smooth") ){ restricted_df <- rbind(model$new_rf, restricted_df) } fm_remove <- update_formula_remove(fm_no_offset, names(restrictions)[1]) fm_add <- update_formula_add(offset_term, fm_remove, names(restrictions)[2]) df_restricted <- add_restrictions_df(df_new, restrictions) nrst <- unique(setdiff(names(restrictions), unique(rfdf$risk_factor))) orst <- unique(setdiff(names(restrictions), new_col_nm)) mgd_rst <- append(mgd_rst, list(unique(c(orst, nrst)))) new_col_nm <- unique(append(new_col_nm, setdiff(names(restrictions), unique(rfdf$risk_factor)))) old_col_nm <- unique(append(old_col_nm, setdiff(names(restrictions), new_col_nm))) rt <- list(formula_restricted = fm_add[[1]], formula_removed = fm_remove, data_restricted = df_restricted, fm_no_offset = fm_no_offset, offset = fm_add[[2]], rating_factors = rfdf, restrictions_lst = rst_lst, rf_restricted_df = restricted_df, model_call = model_call, model_out = model_out, new_col_nm = new_col_nm, old_col_nm = old_col_nm, mgd_rst = mgd_rst, mgd_smt = mgd_smt) attr(rt, "class") <- "restricted" invisible(rt) } smooth_coef <- function(model, x_cut, x_org, degree = NULL, breaks = NULL){ if ( is.null(breaks) | !is.numeric(breaks) ){ stop("'breaks' must be a numerical vector", call. = FALSE) } if ( inherits(model, "glm") ){ fm <- formula(model) offset_term <- get_offset(model) fm_no_offset <- remove_offset_formula(fm) df_new <- model$data model_call <- model$call model_out <- model rfdf <- rating_factors1(model) rst_lst <- NULL new_col_nm <- NULL old_col_nm <- NULL mgd_smt <- NULL mgd_rst <- NULL } if ( inherits(model, c("smooth", "restricted")) ){ fm <- model$formula_restricted offset_term <- model$offset fm_no_offset <- model$formula_removed df_new <- model$data_restricted model_call <- model$model_call model_out <- model$model_out rfdf <- model$rating_factors rst_lst <- model$restrictions_lst new_col_nm <- model$new_col_nm old_col_nm <- model$old_col_nm mgd_smt <- model$mgd_smt mgd_rst <- model$mgd_rst } mgd_smt <- append(mgd_smt, list(c(paste0(x_org, "_smooth"), paste0(x_cut, "_smooth")))) old_col_nm <- append(old_col_nm, paste0(x_org, "_smooth")) new_col_nm <- append(new_col_nm, paste0(x_cut, "_smooth")) fm_remove <- update_formula_remove(fm_no_offset, x_cut) fm_add <- update_formula_add(offset_term, fm_remove, paste0(x_cut, "_smooth")) borders_x_cut <- cut_borders_model(model, x_cut) if ( is.null(degree) ){ degree <- nrow(borders_x_cut) - 1 } fit_poly <- fit_polynomial(borders_x_cut, x_org, degree, breaks) df_poly <- fit_poly[["new_poly_df"]] df_poly_line <- fit_poly[["poly_line"]] df_new_rf <- fit_poly[["new_rf"]] if ( inherits(model, "smooth")){ df_new_rf <- rbind(model$new_rf, df_new_rf) } if ( inherits(model, "restricted")){ df_new_rf <- rbind(model$rf_restricted_df, df_new_rf) } df_smooth <- join_to_nearest(df_new, df_poly, x_org) names(df_smooth)[names(df_smooth) == 'yhat'] <- paste0(x_cut, "_smooth") st <- list(formula_restricted = fm_add[[1]], formula_removed = fm_remove, data_restricted = df_smooth, fm_no_offset = fm_no_offset, offset = fm_add[[2]], borders = borders_x_cut, new = df_poly, new_line = df_poly_line, model_call = model_call, rating_factors = rfdf, restrictions_lst = rst_lst, new_rf = df_new_rf, degree = degree, model_out = model_out, new_col_nm = new_col_nm, old_col_nm = old_col_nm, mgd_rst = mgd_rst, mgd_smt = mgd_smt) attr(st, "class") <- "smooth" invisible(st) } print.restricted <- function(x, ...){ cat("Formula: ") print(x$formula_restricted) } print.smooth <- function(x, ...){ cat("Formula: ") print(x$formula_restricted) } autoplot.restricted <- function(object, ...){ names_rf <- names(object$restrictions_lst) name <- names_rf[length(names_rf)] naam_rst <- object$restrictions_lst[[name]] rf <- object$rating_factors naam_rf <- rf[rf$risk_factor == name,] naam_rf <- naam_rf[,2:3] names(naam_rst)[names(naam_rst) == name] <- "level" naam_rf <- matchColClasses(naam_rst, naam_rf) koppel <- dplyr::left_join(naam_rst, naam_rf, by = "level") meas_vars <- c(names(naam_rst)[2], names(rf)[3]) koppel_dt <- data.table::setDT(koppel) koppel_ldt <- data.table::melt(koppel_dt, id.vars = names(koppel_dt)[!names( koppel_dt) %in% meas_vars], measure.vars = meas_vars, variable.name = "type", value.name = "Coef") koppel <- data.table::setDF(koppel_ldt) koppel$level <- as.factor(koppel$level) koppel$type <- as.character(koppel$type) koppel$type[koppel$type == names(naam_rst)[2]] <- "restricted" koppel$type[koppel$type == names(rf)[3]] <- "unrestricted" ggplot2::ggplot(data = koppel, aes(x = level, y = Coef, color = type, group = type)) + ggplot2::geom_point() + ggplot2::geom_line() + ggplot2::theme_minimal() + ggplot2::labs(x = name, color = NULL) } autoplot.smooth <- function(object, ...){ rf2 <- object$borders new <- object$new new_line <- object$new_line degree <- scales::ordinal(object$degree) degree_name <- paste0(degree, " order polynomial") rf2_start_open <- rf2[rf2$start_oc == "open",] rf2_start_closed <- rf2[rf2$start_oc == "closed",] rf2_end_open <- rf2[rf2$end_oc == "open",] rf2_end_closed <- rf2[rf2$end_oc == "closed",] new_start_open <- new[new$start_oc == "open",] new_start_closed <- new[new$start_oc == "closed",] new_end_open <- new[new$end_oc == "open",] new_end_closed <- new[new$end_oc == "closed",] x_name <- names(new_line)[1] names(new_line)[names(new_line) == x_name] <- "col1" ggplot2::ggplot(data = rf2) + ggplot2::geom_segment(ggplot2::aes(x = start_, y = estimate, xend = end_, yend = estimate, color = "Model fit"), group = 1) + ggplot2::geom_segment(data = new, ggplot2::aes(x = breaks_min, y = yhat, xend = breaks_max, yend = yhat, color = "New cluster"), group = 2) + ggplot2::geom_point(data = rf2_start_closed, ggplot2::aes(x = start_, y = estimate), color = "dodgerblue") + ggplot2::geom_point(data = rf2_end_closed, ggplot2::aes(x = end_, y = estimate), color = "dodgerblue") + ggplot2::geom_point(data = rf2_start_open, ggplot2::aes(x = start_, y = estimate), color = "dodgerblue", shape = 21, fill = "white") + ggplot2::geom_point(data = rf2_end_open, ggplot2::aes(x = end_, y = estimate), color = "dodgerblue", shape = 21, fill = "white") + ggplot2::geom_point(data = new_start_closed, ggplot2::aes(x = start_, y = yhat), color = "red") + ggplot2::geom_point(data = new_end_closed, ggplot2::aes(x = end_, y = yhat), color = "red") + ggplot2::geom_point(data = new_start_open, ggplot2::aes(x = start_, y = yhat), color = "red", shape = 21, fill = "white") + ggplot2::geom_point(data = new_end_open, ggplot2::aes(x = end_, y = yhat), color = "red", shape = 21, fill = "white") + ggplot2::labs(x = x_name, y = "Estimated coefficient") + ggplot2::geom_line(data = new_line, ggplot2::aes(x = col1, y = yhat, color = "Smooth"), group = 3) + ggplot2::scale_colour_manual(name = "Risk factor", values = c("Model fit" = "dodgerblue", "New cluster" = "red", "Smooth" = "black"), labels = c("Model fit", "New cluster", degree_name)) + ggplot2::theme_minimal() } update_glm <- function(x){ if( !inherits(x, c("restricted", "smooth")) ) { stop("Input must be of class restricted or of class smooth", call. = FALSE) } lst_call <- as.list(x$model_call) lst <- list(formula = x$formula_restricted, data = x$data_restricted, offset = NULL) y <- eval(as.call(modifyList(lst_call, lst))) y$call$formula <- lst$formula y$call$data <- quote(df_new) offweights <- NULL if ( !is.null(lst_call$weights) ) { offweights <- append(offweights, as.character(lst_call$weights)) } if ( !is.null(lst_call$offset) ) { offweights <- append(offweights, as.character(lst_call$offset)[2]) } if ( inherits(x, "smooth")) { attr(y, "new_rf") <- x[["new_rf"]] attr(y, "class") <- append(class(y), "refitsmooth") } if ( inherits(x, "restricted")) { attr(y, "new_rf_rst") <- x[["rf_restricted_df"]] attr(y, "class") <- append(class(y), "refitrestricted") } rf <- x$rating_factors rf2 <- unique(rf$risk_factor[rf$risk_factor != "(Intercept)"]) attr(y, "new_col_nm") <- x$new_col_nm attr(y, "old_col_nm") <- x$old_col_nm attr(y, "rf") <- rf2 attr(y, "mgd_smt") <- x$mgd_smt attr(y, "mgd_rst") <- x$mgd_rst attr(y, "offweights") <- offweights y }
makeOMLSeedParList = function(seed, prefix = "openml") { assertIntegerish(seed) assert(checkString(prefix), checkNull(prefix)) rng.kind = RNGkind() if (length(rng.kind) == 2) seed.pars = setNames(c(seed, rng.kind), c("seed", "kind", "normal.kind")) if (length(rng.kind) == 3) seed.pars = setNames(c(seed, rng.kind), c("seed", "kind", "normal.kind", "sample.kind")) if (!is.null(prefix)) names(seed.pars) = paste0(prefix, ".", names(seed.pars)) seed.setting = lapply(seq_along(seed.pars), function(x) { makeOMLRunParameter( name = names(seed.pars[x]), value = as.character(seed.pars[x]), component = NA_character_ ) }) seed.setting = setNames(seed.setting, names(seed.pars)) setClasses(seed.setting, "OMLSeedParList") } print.OMLSeedParList = function(x, ...) { catf("This is a '%s' with the following parameters:", class(x)[1]) if (length(x) > 0) x = rbindlist(lapply(x, function(x) x[c("name", "value", "component")])) else x = data.frame() x$component = NULL print(x) } getOMLSeedParList = function(run) { assertClass(run, "OMLRun") par = run$parameter.setting return(setClasses(par[isSeedPar(par)], "OMLSeedParList")) } isSeedPar = function(par) { rpl.names = vcapply(par, function(x) x$name) stri_detect_regex(rpl.names, "(seed$|kind$|normal.kind$)") } setOMLSeedParList = function(x, flow = NULL) { assertClass(x, "OMLSeedParList") seed.pars = vcapply(x, function(x) x$value) prefix = unique(gsub("seed|kind|normal.kind|sample.kind", "", names(seed.pars))) names(seed.pars) = gsub(prefix, "", names(seed.pars)) xRNG = seed.pars[names(seed.pars) %nin% "seed"] currentRNG = RNGkind() if (!identical(currentRNG, unname(xRNG))) messagef("Kind of RNG has been changed to '%s'", convertToShortString(as.list(xRNG))) if (!is.null(flow)) RNGversion(extractRVersionFromFlow(flow)) do.call("set.seed", as.list(seed.pars)) } extractSeed = function(x) { assertClass(x, "OMLSeedParList") seed.names = vcapply(x, function(x) x$name) seed = vcapply(x, function(x) x$value)[stri_detect_fixed(seed.names, "seed")] as.integer(seed) }
coxseiest2 <- function(dat,par.init,m=2, mit=1000,tr=TRUE,method="L-BFGS-B", lower=c(rep(-Inf,ncol(dat)-3),-Inf,0), upper=rep(Inf,ncol(dat)-3 + 2), gfun=function(x,pa){ ifelse(x <= 0, rep(0,length(x)), pa[1]*exp(-pa[2]*x)) }){ ids <- unique(dat$id) ng <- length(ids) gs <- as.numeric(table(dat$id)) gofst <- cumsum(gs)-gs C <- dat$Y[!dat$delta] Z <- as.matrix(dat[,setdiff(colnames(dat),c("Y","delta","id"))], nrow=nrow(dat)) Zs <- array(0,dim=c(dim(Z),ng)) for(l in 1:ng){ for(i in 1:ng){ for(j in 1:NCOL(Z)){ Zs[dat$id==ids[i],j,l] <- if(diff(range(Z[dat$id==ids[l],j]))==0){ Z[dat$id==ids[l],j][1] }else{ approxfun(dat$Y[dat$id==ids[l]], Z[dat$id==ids[l],j],method="constant", f=1,rule=2)(dat$Y[dat$id==ids[i]]) } } } } loglik <- function(param){ .Call("ll",dat$Y, as.double(as.vector(Z)), as.double(as.vector(Zs)), as.double(C), as.integer(gs), as.integer(gofst), as.double(param), gfun, as.integer(2), as.integer(m), new.env(), PACKAGE="coxsei") } ret <- optim(par.init,loglik,control=list(trace=tr,maxit=mit), hessian=TRUE,method=method, lower=lower, upper=upper) ret }
metareg_plot <- function(full, reg, compar, cov_value, drug_names, save_xls) { if (length(unique(reg$covariate)) < 3 & !is.element(cov_value[[1]], reg$covariate)) { aa <- "The first element of the argument 'cov_value' is out of the value" stop(paste(aa, "range of the analysed covariate"), call. = FALSE) } else if (length(unique(reg$covariate)) > 2 & (cov_value[[1]] < min(reg$covariate) | cov_value[[1]] > max(reg$covariate))) { aa <- "The first element of the argument 'cov_value' is out of the value" stop(paste(aa, "range of the analysed covariate"), call. = FALSE) } if (length(drug_names) < 3) { stop("This function is *not* relevant for a pairwise meta-analysis", call. = FALSE) } cov_value <- if (missing(cov_value)) { stop("The argument 'cov_value' has not been defined", call. = FALSE) } else if (length(cov_value) < 2) { aa <- "The argument 'cov_value' must be a list with elements a number and" stop(paste(aa, "a character"), call. = FALSE) } else if (length(cov_value) == 2) { cov_value } save_xls <- if (missing(save_xls)) { FALSE } else { save_xls } compar <- if (missing(compar)) { stop("The argument 'compar' has not been defined", call. = FALSE) } else if (!is.element(compar, drug_names)) { stop("The value of the argument 'compar' is not found in the 'drug_names'", call. = FALSE) } else if (is.element(compar, drug_names)) { compar } covariate <- if (length(unique(reg$covariate)) < 3) { unique(reg$covariate) } else { reg$covariate } cov_val <- ifelse(length(unique(covariate)) < 3, cov_value[[1]], cov_value[[1]] - mean(covariate)) drug_names <- if (missing(drug_names)) { aa <- "The argument 'drug_names' has not been defined." bb <- "The intervention ID, as specified in 'data' is used as" cc <- "intervention names" message(cat(paste0("\033[0;", col = 32, "m", aa, " ", bb, " ", cc, "\033[0m", "\n"))) as.character(seq_len(length(full$SUCRA[, 1]))) } else { drug_names } model <- full$model measure <- effect_measure_name(full$measure) sucra_full <- round(full$SUCRA, 2) sucra_full_order <- round(full$SUCRA, 2)[order(sucra_full[, 1], decreasing = TRUE), ] drug_names_sorted <- drug_names[order(sucra_full[, 1], decreasing = TRUE)] poss_pair_comp1 <- data.frame(exp = t(combn(drug_names, 2))[, 2], comp = t(combn(drug_names, 2))[, 1]) poss_pair_comp2 <- data.frame(exp = t(combn(drug_names, 2))[, 1], comp = t(combn(drug_names, 2))[, 2]) poss_pair_comp <- rbind(poss_pair_comp1, poss_pair_comp2) em_ref00_nma <- cbind(rbind(data.frame(mean = full$EM[, 1], lower = full$EM[, 3], upper = full$EM[, 7]), data.frame(mean = full$EM[, 1] * (-1), lower = full$EM[, 7] * (-1), upper = full$EM[, 3] * (-1))), poss_pair_comp) em_subset_nma <- subset(em_ref00_nma, em_ref00_nma[5] == compar) em_ref0_nma <- rbind(em_subset_nma[, 1:3], c(rep(NA, 3))) sucra_full_new <- data.frame(sucra_full[, 1], drug_names)[ order(match(data.frame(sucra_full[, 1], drug_names)[, 2], em_subset_nma[, 4])), 1] em_ref_nma <- em_ref0_nma[order(sucra_full_new, decreasing = TRUE), ] if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { beta00 <- cbind(rbind(data.frame(mean = reg$beta_all[, 1], lower = reg$beta_all[, 3], upper = reg$beta_all[, 7]), data.frame(mean = reg$beta_all[, 1] * (-1), lower = reg$beta_all[, 7] * (-1), upper = reg$beta_all[, 3] * (-1))), poss_pair_comp) beta_all_subset <- subset(beta00, beta00[5] == compar) beta0 <- rbind(beta_all_subset[, 1:3], c(rep(NA, 3))) beta <- beta0[order(sucra_full_new, decreasing = TRUE), ] rownames(beta) <- NULL } else { beta <- reg$beta[1, c(1, 3, 7)] } par_mean <- as.vector(c(reg$EM[, 1] + reg$beta_all[, 1] * cov_val, (reg$EM[, 1] * (-1)) + (reg$beta_all[, 1] * (-1) * cov_val))) par_sd <- as.vector(c(sqrt(((reg$EM[, 2])^2) + ((reg$beta_all[, 2] * cov_val)^2)), sqrt(((reg$EM[, 2])^2) + ((reg$beta_all[, 2] * cov_val)^2)))) em_ref00_nmr <- cbind(mean = par_mean, lower = par_mean - 1.96 * par_sd, upper = par_mean + 1.96 * par_sd, poss_pair_comp) em_subset_nmr <- subset(em_ref00_nmr, em_ref00_nmr[5] == compar) em_ref0_nmr <- rbind(em_subset_nmr[, 1:3], c(rep(NA, 3))) em_ref_nmr <- em_ref0_nmr[order(sucra_full_new, decreasing = TRUE), ] rownames(em_ref_nma) <- rownames(em_ref_nmr) <- NULL if (model == "RE") { pred_ref00_nma <- cbind(rbind(data.frame(mean = full$EM_pred[, 1], lower = full$EM_pred[, 3], upper = full$EM_pred[, 7]), data.frame(mean = full$EM_pred[, 1] * (-1), lower = full$EM_pred[, 7] * (-1), upper = full$EM_pred[, 3] * (-1))), poss_pair_comp) pred_subset_nma <- subset(pred_ref00_nma, pred_ref00_nma[5] == compar) pred_ref0_nma <- rbind(pred_subset_nma[, 1:3], c(rep(NA, 3))) par_mean <- as.vector(c(reg$EM_pred[, 1] + reg$beta_all[, 1] * cov_val, (reg$EM_pred[, 1] * (-1)) + (reg$beta_all[, 1] * (-1) * cov_val))) par_sd <- as.vector(c(sqrt(((reg$EM_pred[, 2])^2) + ((reg$beta_all[, 2] * cov_val)^2)), sqrt(((reg$EM_pred[, 2])^2) + ((reg$beta_all[, 2] * cov_val)^2)))) pred_ref00_nmr <- cbind(data.frame(mean = par_mean, lower = par_mean - 1.96 * par_sd, upper = par_mean + 1.96 * par_sd), poss_pair_comp) pred_subset_nmr <- subset(pred_ref00_nmr, pred_ref00_nmr[5] == compar) pred_ref0_nmr <- rbind(pred_subset_nmr[, 1:3], c(rep(NA, 3))) pred_ref_nma <- pred_ref0_nma[order(sucra_full_new, decreasing = TRUE), ] pred_ref_nmr <- pred_ref0_nmr[order(sucra_full_new, decreasing = TRUE), ] rownames(pred_ref_nma) <- rownames(pred_ref_nmr) <- NULL } if (!is.element(measure, c("Odds ratio", "Ratio of means")) & model == "RE") { em_ref_nma <- em_ref_nma em_ref_nmr <- em_ref_nmr pred_ref_nma <- pred_ref_nma pred_ref_nmr <- pred_ref_nmr beta <- beta cri_est_nma <- paste0("(", round(em_ref_nma[, 2], 2), ",", " ", round(em_ref_nma[, 3], 2), ")", ifelse(em_ref_nma[, 2] > 0 | em_ref_nma[, 3] < 0, "*", " ")) cri_est_nmr <- paste0("(", round(em_ref_nmr[, 2], 2), ",", " ", round(em_ref_nmr[, 3], 2), ")", ifelse(em_ref_nmr[, 2] > 0 | em_ref_nmr[, 3] < 0, "*", " ")) cri_pred_nma <- paste0("(", round(pred_ref_nma[, 2], 2), ",", " ", round(pred_ref_nma[, 3], 2), ")", ifelse(pred_ref_nma[, 2] > 0 | pred_ref_nma[, 3] < 0, "*", " ")) cri_pred_nmr <- paste0("(", round(pred_ref_nmr[, 2], 2), ",", " ", round(pred_ref_nmr[, 3], 2), ")", ifelse(pred_ref_nmr[, 2] > 0 | pred_ref_nmr[, 3] < 0, "*", " ")) cri_beta <- if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { paste0("(", round(beta[, 2], 2), ",", " ", round(beta[, 3], 2), ")", ifelse(beta[, 2] > 0 | beta[, 3] < 0, "*", " ")) } else { paste0("(", round(reg$beta[2], 2), ",", " ", round(reg$beta[3], 2), ")", ifelse(reg$beta[2] > 0 | reg$beta[3] < 0, "*", " ")) } } else if (is.element(measure, c("Odds ratio", "Ratio of means")) & model == "RE") { em_ref_nma <- exp(em_ref_nma) em_ref_nmr <- exp(em_ref_nmr) pred_ref_nma <- exp(pred_ref_nma) pred_ref_nmr <- exp(pred_ref_nmr) beta <- exp(beta) cri_est_nma <- paste0("(", round(em_ref_nma[, 2], 2), ",", " ", round(em_ref_nma[, 3], 2), ")", ifelse(em_ref_nma[, 2] > 1 | em_ref_nma[, 3] < 1, "*", " ")) cri_est_nmr <- paste0("(", round(em_ref_nmr[, 2], 2), ",", " ", round(em_ref_nmr[, 3], 2), ")", ifelse(em_ref_nmr[, 2] > 1 | em_ref_nmr[, 3] < 1, "*", " ")) cri_pred_nma <- paste0("(", round(pred_ref_nma[, 2], 2), ",", " ", round(pred_ref_nma[, 3], 2), ")", ifelse(pred_ref_nma[, 2] > 1 | pred_ref_nma[, 3] < 1, "*", " ")) cri_pred_nmr <- paste0("(", round(pred_ref_nmr[, 2], 2), ",", " ", round(pred_ref_nmr[, 3], 2), ")", ifelse(pred_ref_nmr[, 2] > 1 | pred_ref_nmr[, 3] < 1, "*", " ")) cri_beta <- if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { paste0("(", round(beta[, 2], 2), ",", " ", round(beta[, 3], 2), ")", ifelse(beta[, 2] > 1 | beta[, 3] < 1, "*", " ")) } else { paste0("(", round(beta[2], 2), ",", " ", round(beta[3], 2), ")", ifelse(beta[2] > 1 | beta[3] < 1, "*", " ")) } } else if (!is.element(measure, c("Odds ratio", "Ratio of means")) & model == "FE") { em_ref_nma <- em_ref_nma em_ref_nmr <- em_ref_nmr beta <- beta cri_est_nma <- paste0("(", round(em_ref_nma[, 2], 2), ",", " ", round(em_ref_nma[, 3], 2), ")", ifelse(em_ref_nma[, 2] > 0 | em_ref_nma[, 3] < 0, "*", " ")) cri_est_nmr <- paste0("(", round(em_ref_nmr[, 2], 2), ",", " ", round(em_ref_nmr[, 3], 2), ")", ifelse(em_ref_nmr[, 2] > 0 | em_ref_nmr[, 3] < 0, "*", " ")) cri_beta <- if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { paste0("(", round(beta[, 2], 2), ",", " ", round(beta[, 3], 2), ")", ifelse(beta[, 2] > 0 | beta[, 3] < 0, "*", " ")) } else { paste0("(", round(reg$beta[2], 2), ",", " ", round(reg$beta[3], 2), ")", ifelse(reg$beta[2] > 0 | reg$beta[3] < 0, "*", " ")) } } else if (is.element(measure, c("Odds ratio", "Ratio of means")) & model == "FE") { em_ref_nma <- exp(em_ref_nma) em_ref_nmr <- exp(em_ref_nmr) beta <- exp(beta) cri_est_nma <- paste0("(", round(em_ref_nma[, 2], 2), ",", " ", round(em_ref_nma[, 3], 2), ")", ifelse(em_ref_nma[, 2] > 1 | em_ref_nma[, 3] < 1, "*", " ")) cri_est_nmr <- paste0("(", round(em_ref_nmr[, 2], 2), ",", " ", round(em_ref_nmr[, 3], 2), ")", ifelse(em_ref_nmr[, 2] > 1 | em_ref_nmr[, 3] < 1, "*", " ")) cri_beta <- if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { paste0("(", round(beta[, 2], 2), ",", " ", round(beta[, 3], 2), ")", ifelse(beta[, 2] > 1 | beta[, 3] < 1, "*", " ")) } else { paste0("(", round(beta[2], 2), ",", " ", round(beta[3], 2), ")", ifelse(beta[2] > 1 | beta[3] < 1, "*", " ")) } } tau_nma <- if (model == "RE") { round(full$tau, 2) } tau_nmr <- if (model == "RE") { round(reg$tau, 2) } model_assess_nma <- round(full$model_assessment, 2) model_assess_nmr <- round(reg$model_assessment, 2) if (model == "RE") { cri_tau_nma <- paste0("(", tau_nma[, 3], ",", " ", tau_nma[, 7], ")") cri_tau_nmr <- paste0("(", tau_nmr[, 3], ",", " ", tau_nmr[, 7], ")") } if (model == "RE") { table_model_assess <- data.frame(c("Network meta-analysis", "Meta-regression"), rbind(model_assess_nma[c(1, 3, 2)], model_assess_nmr[c(1, 3, 2)]), rbind(cbind(tau_nma[, 5], tau_nma[, 2], cri_tau_nma), cbind(tau_nmr[, 5], tau_nmr[, 2], cri_tau_nmr))) colnames(table_model_assess) <- c("Analysis", "DIC", "Mean deviance", "pD", "Median tau", "SD tau", "95% CrI tau") } else { table_model_assess <- data.frame(c("Network meta-analysis", "Meta-regression"), rbind(model_assess_nma[c(1, 3, 2)], model_assess_nmr[c(1, 3, 2)])) colnames(table_model_assess) <- c("Analysis", "DIC", "Mean deviance", "pD") } message(ifelse(model_assess_nma[1] - model_assess_nmr[1] > 5, "NMR preferred when accounting for model fit and complexity", ifelse( model_assess_nma[1] - model_assess_nmr[1] < -5, "NMA preferred when accounting for model fit and complexity", "There is little to choose between the two models"))) if (model == "RE") { est_both_models <- na.omit(data.frame(drug_names_sorted, round(em_ref_nma[, 1], 2), cri_est_nma, round(em_ref_nmr[, 1], 2), cri_est_nmr)) pred_both_models <- na.omit(data.frame(drug_names_sorted, round(pred_ref_nma[, 1], 2), cri_pred_nma, round(pred_ref_nmr[, 1], 2), cri_pred_nmr)) colnames(est_both_models) <- colnames(pred_both_models) <- c(paste("versus", compar), "Mean NMA", "95% CrI NMA", "Mean NMR", "95% CrI NMR") rownames(est_both_models) <- rownames(pred_both_models) <- NULL } else { est_both_models <- na.omit(data.frame(drug_names_sorted, round(em_ref_nma[, 1], 2), cri_est_nma, round(em_ref_nmr[, 1], 2), cri_est_nmr)) colnames(est_both_models) <- c(paste("versus", compar), "Mean NMA", "95% CrI NMA", "Mean NMR", "95% CrI NMR") rownames(est_both_models) <- NULL } if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { reg_coeff <- na.omit(data.frame(drug_names_sorted, round(beta[, 1], 2), cri_beta)) colnames(reg_coeff) <- c(paste("versus", compar), "Mean beta", "95% CrI beta") } else { reg_coeff <- data.frame(round(beta[1], 2), cri_beta) colnames(reg_coeff) <- c("Mean beta", "95% CrI beta") } rownames(reg_coeff) <- NULL forest_plots <- forestplot_metareg(full, reg, compar, cov_value, drug_names) sucra_scatterplot <- scatterplot_sucra(full, reg, cov_value, drug_names) if (save_xls == TRUE & model == "RE") { write_xlsx(est_both_models, paste0("Table NMA vs NMR_Estimation", ".xlsx")) write_xlsx(pred_both_models, paste0("Table NMA vs NMR_Prediction", ".xlsx")) write_xlsx(table_model_assess, paste0("Table Model Assessment_NMA vs NMR", ".xlsx")) if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { write_xlsx(reg_coeff, paste0("Table NMA vs NMR_Coefficient", ".xlsx")) } } else if (save_xls == TRUE & model == "FE") { write_xlsx(est_both_models, paste0("Table NMA vs NMR_Estimation", ".xlsx")) write_xlsx(table_model_assess, paste0("Table Model Assessment_NMA vs NMR", ".xlsx")) if (is.element(reg$covar_assumption, c("exchangeable", "independent"))) { write_xlsx(reg_coeff, paste0("Table NMA vs NMR_Coefficient", ".xlsx")) } } results <- if (model == "RE") { list(table_estimates = knitr::kable(est_both_models), table_predictions = knitr::kable(pred_both_models), table_model_assessment = knitr::kable(table_model_assess), table_regression_coeffients = knitr::kable(reg_coeff), interval_plots = suppressWarnings(ggarrange(forest_plots)), sucra_scatterplot = sucra_scatterplot) } else { list(table_estimates = knitr::kable(est_both_models), table_model_assessment = knitr::kable(table_model_assess), table_regression_coeffients = knitr::kable(reg_coeff), interval_plots = suppressWarnings(ggarrange(forest_plots)), sucra_scatterplot = sucra_scatterplot) } return(results) }
test_that( desc = "hybrid methods works", code = { options(tibble.width = Inf) library(lme4) set.seed(123) lmm_mod <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) df_lmm <- tidy_parameters(lmm_mod, effects = "fixed") expect_equal( df_lmm$estimate, c(251.40510, 10.46729), tolerance = 0.001 ) expect_equal( dim(glance_performance(lmm_mod, effects = "fixed")), c(1L, 10L) ) set.seed(123) lm_mod <- lm(Reaction ~ Days, sleepstudy) df_lm <- tidy_parameters(lm_mod, robust = TRUE) expect_equal(df_lm$estimate[1], 251.4051, tolerance = 0.001) expect_equal( dim(glance_performance(lm_mod, effects = "fixed"))[[1]], 1L ) set.seed(123) library(lavaan) HS.model <- " visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 " mod_lavaan <- lavaan( HS.model, data = HolzingerSwineford1939, auto.var = TRUE, auto.fix.first = TRUE, auto.cov.lv.x = TRUE ) expect_identical( tidy_parameters(mod_lavaan, effects = "fixed"), tidy_parameters(mod_lavaan, effects = "fixed", exponentiate = TRUE) ) library(MASS) set.seed(123) mod <- rlm(stack.loss ~ ., stackloss) df_rlm <- tidy_parameters(mod) df <- suppressMessages(suppressWarnings(tidy_parameters(tidy(mod)))) expect_snapshot(df_rlm) expect_equal(dim(df_rlm)[[1]], 4L) expect_s3_class(df, "tbl_df") expect_equal( dim(suppressWarnings(broomExtra::tidy_parameters(acf(lh, plot = FALSE)))), c(17L, 2L) ) expect_null(suppressWarnings(broomExtra::glance_performance(acf(lh, plot = FALSE)))) expect_null(broomExtra::tidy_parameters(list(1, c("x", "y")), verbose = FALSE)) } )
read_initial_state <- function(model.path) { IRdata <- get.model.file(model.path, PARAMETERS_DIR, file.pattern=INITIAL_STATE, header=FALSE) initial.state <- list( detritus_so=IRdata[1,2], detritus_d=IRdata[2,2], x_detritus_s1=IRdata[3,2], x_detritus_s2=IRdata[4,2], x_detritus_s3=IRdata[5,2], x_detritus_d1=IRdata[6,2], x_detritus_d2=IRdata[7,2], x_detritus_d3=IRdata[8,2], xR_detritus_s1=IRdata[9,2], xR_detritus_s2=IRdata[10,2], xR_detritus_s3=IRdata[11,2], xR_detritus_d1=IRdata[12,2], xR_detritus_d2=IRdata[13,2], xR_detritus_d3=IRdata[14,2], discard_o=IRdata[15,2], corpse_s1=IRdata[16,2], corpse_s2=IRdata[17,2], corpse_s3=IRdata[18,2], corpse_d1=IRdata[19,2], corpse_d2=IRdata[20,2], corpse_d3=IRdata[21,2], ammonia_so=IRdata[22,2], ammonia_d=IRdata[23,2], x_ammonia_s1=IRdata[24,2], x_ammonia_s2=IRdata[25,2], x_ammonia_s3=IRdata[26,2], x_ammonia_d1=IRdata[27,2], x_ammonia_d2=IRdata[28,2], x_ammonia_d3=IRdata[29,2], nitrate_so=IRdata[30,2], nitrate_d=IRdata[31,2], x_nitrate_s1=IRdata[32,2], x_nitrate_s2=IRdata[33,2], x_nitrate_s3=IRdata[34,2], x_nitrate_d1=IRdata[35,2], x_nitrate_d2=IRdata[36,2], x_nitrate_d3=IRdata[37,2], phyt_so=IRdata[38,2], phyt_d=IRdata[39,2], omni_o=IRdata[40,2], carn_o=IRdata[41,2], benthslar_o=IRdata[42,2], benths_o=IRdata[43,2], benthclar_o=IRdata[44,2], benthc_o=IRdata[45,2], fishp_o=IRdata[46,2], fishplar_o=IRdata[47,2], fishd_o=IRdata[48,2], fishdlar_o=IRdata[49,2], fishm_o=IRdata[50,2], bird_o=IRdata[51,2], detritus_si=IRdata[52,2], ammonia_si=IRdata[53,2], nitrate_si=IRdata[54,2], phyt_si=IRdata[55,2], benthslar_i=IRdata[56,2], benthclar_i=IRdata[57,2], benths_i=IRdata[58,2], benthc_i=IRdata[59,2], discard_i=IRdata[60,2], omni_i=IRdata[61,2], carn_i=IRdata[62,2], fishplar_i=IRdata[63,2], fishdlar_i=IRdata[64,2], fishp_i=IRdata[65,2], fishm_i=IRdata[66,2], fishd_i=IRdata[67,2], bird_i=IRdata[68,2], seal_o=IRdata[69,2], seal_i=IRdata[70,2], ceta_o=IRdata[71,2], ceta_i=IRdata[72,2], corpse_s0=IRdata[73,2], corpse_d0=IRdata[74,2], kelpC= IRdata[75,2], kelpN= IRdata[76,2], kelpdebris= IRdata[77,2], netpprod_o=0, netpprod_i=0, NNCP_o=0, NNCP_i=0, phytgrossprod_o=0, phytgrossprod_i=0, kelpCprod_i=0, kelpCexud_i=0, kelpNprod_i=0, omnigrossprod_o=0, omnigrossprod_i=0, carngrossprod_o=0, carngrossprod_i=0, pfishlargrossprod_o=0, pfishlargrossprod_i=0, dfishlargrossprod_o=0, dfishlargrossprod_i=0, pfishgrossprod_o=0, pfishgrossprod_i=0, mfishgrossprod_o=0, mfishgrossprod_i=0, dfishgrossprod_o=0, dfishgrossprod_i=0, benthslargrossprod_o=0, benthslargrossprod_i=0, benthclargrossprod_o=0, benthclargrossprod_i=0, benthsgrossprod_o=0, benthsgrossprod_i=0, benthcgrossprod_o=0, benthcgrossprod_i=0, birdgrossprod_o=0, birdgrossprod_i=0, sealgrossprod_o=0, sealgrossprod_i=0, cetagrossprod_o=0, cetagrossprod_i=0, wcdenitrif_o=0, wcdenitrif_i=0, seddenitrif_o=0, seddenitrif_i=0, fluxsedamm_wcamm=0, fluxwcdet_wcamm=0, fluxomni_wcamm=0, fluxcarn_wcamm=0, fluxpfishlar_wcamm=0, fluxdfishlar_wcamm=0, fluxpfish_wcamm=0, fluxmfish_wcamm=0, fluxdfish_wcamm=0, fluxbenthslar_wcamm=0, fluxbenthclar_wcamm=0, fluxbenths_wcamm=0, fluxbenthc_wcamm=0, fluxbird_wcamm=0, fluxseal_wcamm=0, fluxceta_wcamm=0, fluxxdet_sedamm=0, fluxxRdet_sedamm=0, fluxwcamm_wcnit=0, fluxsednit_wcnit=0, fluxsedamm_sednit=0, fluxxdet_wcdet=0, fluxkelpdebris_wcdet=0, fluxcorp_wcdet=0, fluxphyt_wcdet=0, fluxomni_wcdet=0, fluxcarn_wcdet=0, fluxpfishlar_wcdet=0, fluxdfishlar_wcdet=0, fluxpfish_wcdet=0, fluxmfish_wcdet=0, fluxdfish_wcdet=0, fluxbenthslar_wcdet=0, fluxbenthclar_wcdet=0, fluxbenths_wcdet=0, fluxbenthc_wcdet=0, fluxbird_wcdet=0, fluxseal_wcdet=0, fluxceta_wcdet=0, fluxwcdet_xdet=0, fluxcorp_xdet=0, fluxbenths_xdet=0, fluxbenthc_xdet=0, fluxxdet_xRdet=0, fluxkelpdebris_xRdet=0, fluxcorp_xRdet=0, fluxkelp_kelpdebris=0, fluxdisc_corp=0, fluxpfish_corp=0, fluxmfish_corp=0, fluxdfish_corp=0, fluxbenths_corp=0, fluxbenthc_corp=0, fluxbird_corp=0, fluxseal_corp=0, fluxceta_corp=0, fluxwcamm_kelp=0, fluxwcnit_kelp=0, fluxwcamm_phyt_o=0, fluxwcamm_phyt_i=0, fluxwcnit_phyt_o=0, fluxwcnit_phyt_i=0, fluxwcdet_omni=0, fluxphyt_omni=0, fluxbenthslar_omni=0, fluxbenthclar_omni=0, fluxomni_carn=0, fluxpfishlar_carn=0, fluxdfishlar_carn=0, fluxbenthslar_carn=0, fluxbenthclar_carn=0, fluxomni_pfishlar=0, fluxbenthslar_pfishlar=0, fluxbenthclar_pfishlar=0, fluxomni_dfishlar=0, fluxbenthslar_dfishlar=0, fluxbenthclar_dfishlar=0, fluxomni_pfish=0, fluxcarn_pfish=0, fluxpfishlar_pfish=0, fluxdfishlar_pfish=0, fluxbenthslar_pfish=0, fluxbenthclar_pfish=0, fluxomni_mfish=0, fluxcarn_mfish=0, fluxpfishlar_mfish=0, fluxdfishlar_mfish=0, fluxbenthslar_mfish=0, fluxbenthclar_mfish=0, fluxcorp_dfish=0, fluxdisc_dfish=0, fluxcarn_dfish=0, fluxpfishlar_dfish=0, fluxdfishlar_dfish=0, fluxpfish_dfish=0, fluxmfish_dfish=0, fluxdfish_dfish=0, fluxbenths_dfish=0, fluxbenthc_dfish=0, fluxwcdet_benthslar=0, fluxphyt_benthslar=0, fluxwcdet_benthclar=0, fluxphyt_benthclar=0, fluxwcdet_benths=0, fluxxdet_benths=0, fluxxRdet_benths=0, fluxphyt_benths=0, fluxkelp_benthc=0, fluxkelpdebris_benthc=0, fluxcorp_benthc=0, fluxbenths_benthc=0, fluxcorp_bird=0, fluxdisc_bird=0, fluxcarn_bird=0, fluxpfish_bird=0, fluxmfish_bird=0, fluxdfish_bird=0, fluxbenths_bird=0, fluxbenthc_bird=0, fluxcorp_seal=0, fluxdisc_seal=0, fluxcarn_seal=0, fluxpfish_seal=0, fluxmfish_seal=0, fluxdfish_seal=0, fluxbenths_seal=0, fluxbenthc_seal=0, fluxbird_seal=0, fluxdisc_ceta=0, fluxomni_ceta=0, fluxcarn_ceta=0, fluxpfish_ceta=0, fluxmfish_ceta=0, fluxdfish_ceta=0, fluxbenths_ceta=0, fluxbenthc_ceta=0, fluxbird_ceta=0, fluxseal_ceta=0, Bs_spawn=0, Bs_recruit=0, Bc_spawn=0, Bc_recruit=0, Pfish_spawn=0, Pfish_recruit=0, Dfish_spawn=0, Dfish_recruit=0, fluxwcnit_Ngas=0, fluxsednit_Ngas=0, fluxkelpdebris_beachexport=0, fluxAMMoutflow_o=0, fluxNIToutflow_o=0, fluxAMMoutflow_i=0, fluxNIToutflow_i=0, fluxPHYToutflow_o=0, fluxDEToutflow_o=0, fluxPHYToutflow_i=0, fluxDEToutflow_i=0, mfish_emigration=0, fluxsedboundary_o=0, fluxsedboundary_i=0, fluxAMMinflow_o=0, fluxNITinflow_o=0, fluxAMMinflow_i=0, fluxNITinflow_i=0, fluxPHYTinflow_o=0, fluxDETinflow_o=0, fluxPHYTinflow_i=0, fluxDETinflow_i=0, mfish_imigration=0, atmosAMMinput_o=0, atmosNITinput_o=0, atmosAMMinput_i=0, atmosNITinput_i=0, rivAMMinflow=0, rivNITinflow=0, rivPARTinflow=0, DINflux_i_o=0, DINflux_o_i=0, PARTflux_i_o=0, PARTflux_o_i=0, activemigpelfish_i_o=0, activemigmigfish_i_o=0, activemigdemfish_i_o=0, activemigbird_i_o=0, activemigseal_i_o=0, activemigceta_i_o=0, activemigpelfish_o_i=0, activemigmigfish_o_i=0, activemigdemfish_o_i=0, activemigbird_o_i=0, activemigseal_o_i=0, activemigceta_o_i=0, vertnitflux=0, horiznitflux=0, landp_o=0, landd_quota_o=0, landd_nonquota_o=0, landm_o=0, landsb_o=0, landcb_o=0, landcz_o=0, landbd_o=0, landsl_o=0, landct_o=0, discpel_o=0, discdem_quota_o=0, discdem_nonquota_o=0, discmig_o=0, discsb_o=0, disccb_o=0, disccz_o=0, discbd_o=0, discsl_o=0, discct_o=0, landp_i=0, landd_quota_i=0, landd_nonquota_i=0, landm_i=0, landsb_i=0, landcb_i=0, landcz_i=0, landbd_i=0, landsl_i=0, landct_i=0, landkp_i=0, discpel_i=0, discdem_quota_i=0, discdem_nonquota_i=0, discmig_i=0, discsb_i=0, disccb_i=0, disccz_i=0, discbd_i=0, discsl_i=0, discct_i=0, disckp_i=0, offalpel_o=0, offaldem_quota_o=0, offaldem_nonquota_o=0, offalmig_o=0, offalsb_o=0, offalcb_o=0, offalcz_o=0, offalbd_o=0, offalsl_o=0, offalct_o=0, offalpel_i=0, offaldem_quota_i=0, offaldem_nonquota_i=0, offalmig_i=0, offalsb_i=0, offalcb_i=0, offalcz_i=0, offalbd_i=0, offalsl_i=0, offalct_i=0, offalkp_i=0, omninetprod_o=0, omninetprod_i=0, carnnetprod_o=0, carnnetprod_i=0, pfishlarnetprod_o=0, pfishlarnetprod_i=0, dfishlarnetprod_o=0, dfishlarnetprod_i=0, pfishnetprod_o=0, pfishnetprod_i=0, mfishnetprod_o=0, mfishnetprod_i=0, dfishnetprod_o=0, dfishnetprod_i=0, benthslarnetprod_o=0, benthslarnetprod_i=0, benthclarnetprod_o=0, benthclarnetprod_i=0, benthsnetprod_o=0, benthsnetprod_i=0, benthcnetprod_o=0, benthcnetprod_i=0, birdnetprod_o=0, birdnetprod_i=0, sealnetprod_o=0, sealnetprod_i=0, cetanetprod_o=0, cetanetprod_i=0 ) }
[ { "title": "Spline wiggles (I)", "href": "http://dankelley.github.io//r/2014/02/03/splines.html" }, { "title": "P-values: the Continuing Saga", "href": "https://matloff.wordpress.com/2016/03/10/p-values-the-continuing-saga/" }, { "title": "Packages for By-Group Processing in R", "href": "http://blog.revolutionanalytics.com/2011/02/packages-for-by-group-processing-in-r.html" }, { "title": "ISMB coverage on Twitter? It’s possible there was…", "href": "https://nsaunders.wordpress.com/2011/08/01/ismb-coverage-on-twitter-its-possible-there-was/" }, { "title": "Nairobi Data Science Meetup: Paradigm Shift in Research with Samuel Kamande", "href": "http://datascience-africa.org/2016/02/nairobi-data-science-meetup-paradigm-shift-in-research-with-samuel-kamande/" }, { "title": "Climate datasets in R", "href": "https://web.archive.org/web/http://inundata.org/2011/08/10/climate-datasets-in-r/" }, { "title": "Pipeline to Plot Annual % Change", "href": "http://timelyportfolio.blogspot.com/2014/11/pipeline-to-plot-annual-change.html" }, { "title": "Interactive color picker, using locator()", "href": "http://is-r.tumblr.com/post/35332733463/interactive-color-picker-using-locator" }, { "title": "New R User Groups in Sydney, South Asia", "href": "http://blog.revolutionanalytics.com/2010/06/new-r-user-groups-in-sydney-south-asia.html" }, { "title": "Digitizing jpeg graphs in R", "href": "http://rscriptsandtips.blogspot.com/2014/02/digitizing-jpeg-graphs-in-r-i-have-been.html" }, { "title": "text2vec 0.3", "href": "http://dsnotes.com//articles/text2vec-0-3" }, { "title": "Free Workshop: Mapping Open Data in R", "href": "http://www.arilamstein.com/blog/2016/04/25/free-workshop-may-17-mapping-open-data-r/" }, { "title": "cricketr digs the Ashes!", "href": "https://gigadom.wordpress.com/2015/07/20/cricketr-digs-the-ashes/" }, { "title": "Beaten by sheer pace – Cricket analytics with yorkr", "href": "https://gigadom.wordpress.com/2016/05/08/beaten-by-sheer-pace-cricket-analytics-with-yorkr/" }, { "title": "Cool articles in the New York Time’s: Statistics + R", "href": "http://blog.nguyenvq.com/blog/2009/08/14/cool-articles-in-the-new-york-times-statistics-r/" }, { "title": "Updates to the ‘aqp’ Package for R (version 0.98-3)", "href": "https://casoilresource.lawr.ucdavis.edu/" }, { "title": "Hypothesis testing on normally distributed data in R", "href": "http://firsttimeprogrammer.blogspot.com/2015/07/hypothesis-testing-on-normally.html" }, { "title": "Interactive plotting with rbokeh", "href": "http://datascienceplus.com/interactive-plotting-with-rbokeh/" }, { "title": "Hadley Wickham: ggplot2 Webinar (Today!)", "href": "http://www.gettinggeneticsdone.com/2012/02/hadley-wickham-ggplot2-webinar-today.html" }, { "title": "New ‘R Talk’ podcast with news from R Consortium", "href": "http://blog.revolutionanalytics.com/2015/08/r-talk.html" }, { "title": "Building JSON in R: Three Methods", "href": "http://randyzwitch.com/r-json-jsonlite-sprintf-paste/" }, { "title": "Random and fixed effects in sensory profiling", "href": "http://wiekvoet.blogspot.com/2012/08/random-and-fixed-effects-in-sensory.html" }, { "title": "Bio7 1.7 for Windows Released!", "href": "http://bio7.org/?p=2049" }, { "title": "More BLAS, BLASter, BLAStest: Updates on gcbd", "href": "http://dirk.eddelbuettel.com/blog/2010/10/03/" }, { "title": "Adding Sweave.sty and Rd.sty to your LaTeX path in Mac OS X", "href": "https://joey711.wordpress.com/2011/07/28/adding-sweave-sty-and-rd-sty-to-your-latex-path-in-mac-os-x/" }, { "title": "London UseR Group Talk – Slides", "href": "https://web.archive.org/web/http://www.theresearchkitchen.com/blog/archives/434" }, { "title": "Mapped: Twitter Languages in New York", "href": "http://spatial.ly/2013/02/mapped-twitter-languages-york/" }, { "title": "Codes for common Data Frame operations in R", "href": "https://ujjwalkarn.me/2016/05/29/codes-for-common-dataframe-operations-in-r/" }, { "title": "Sensitivity analysis for neural networks", "href": "https://beckmw.wordpress.com/2013/10/07/sensitivity-analysis-for-neural-networks/" }, { "title": "Happy Birthday rasterVis!", "href": "https://procomun.wordpress.com/2013/06/07/happy-birthday-rastervis/" }, { "title": "In case you missed it: December 2013 Roundup", "href": "http://blog.revolutionanalytics.com/2014/01/in-case-you-missed-it-december-2013-roundup.html" }, { "title": "Creating a text grob that automatically adjusts to viewport size", "href": "https://ryouready.wordpress.com/2012/08/01/creating-a-text-grob-that-automatically-adjusts-to-viewport-size/" }, { "title": "Lattice when modeling, ggplot when publishing", "href": "http://www.quantumforest.com/2011/10/lattice-when-modeling-ggplot-when-publishing/" }, { "title": "STL random_sample", "href": "http://gallery.rcpp.org/articles/stl-random-sample/" }, { "title": "slumping model", "href": "http://dankelley.github.io//r/2014/06/08/slumping-model.html" }, { "title": "Yep. He made it; country voted No", "href": "https://feedproxy.google.com/~r/danielmarcelino/~3/jzTO5ME8BZE/" }, { "title": "Short tales of two NCAA basketball conferences (Big 12 and West Coast) using graphs", "href": "http://www.analyticsandvisualization.com/2013/08/short-tales-of-two-ncaa-basketball.html" }, { "title": "Five great charts in 5 lines of R code each", "href": "http://blog.revolutionanalytics.com/2016/08/five-great-charts-in-5-lines-of-r-code-each.html" }, { "title": "ggplot2: A little twist on back-to-back bar charts", "href": "http://anythingbutrbitrary.blogspot.com/2012/07/ggplot2-little-twist-on-back-to-back.html" }, { "title": "A quetion", "href": "http://sgsong.blogspot.com/2010/06/quetion.html" }, { "title": "Object Orientation in R – Notes from a novice", "href": "https://web.archive.org/web/http://pirategrunt.com/2013/01/25/object-orientation-in-r-notes-from-a-novice/" }, { "title": "Google Statistician uses R and other programming tools", "href": "http://industrialengineertools.blogspot.com/2013/02/google-statistician-uses-r-and-other.html" }, { "title": "Betterment uses R for modeling and reporting", "href": "http://blog.revolutionanalytics.com/2015/11/betterment-uses-r.html" }, { "title": "R’s Testing Predicament", "href": "http://www.mango-solutions.com/wp/2016/10/rs-testing-predicament/" }, { "title": "What can other languages learn from R?", "href": "http://blog.revolutionanalytics.com/2010/09/what-can-other-languages-learn-from-r.html" }, { "title": "Wikipedia Attention and the US elections", "href": "http://beautifuldata.net/2012/11/wikipedia-attention-and-the-us-elections/" }, { "title": "Email Netiquette", "href": "http://applyr.blogspot.com/2011/10/email-netiquette.html" }, { "title": "Sinterklaas and Santa Claus gave presents", "href": "http://wiekvoet.blogspot.com/2013/12/sinterklaas-and-santa-claus-gave.html" }, { "title": "Peer-reviewed R packages?", "href": "https://rmazing.wordpress.com/2012/11/23/peer-reviews/" }, { "title": "Using rvest and dplyr to look at aviation incidents", "href": "https://datashenanigan.wordpress.com/2015/04/30/using-rvest-and-dplyr-to-look-at-aviation-incidents/" } ]
h.mcv <- function(x, ...) UseMethod("h.mcv") h.mcv.default <- function(x,deriv.order=0,lower=0.1*hos,upper=2*hos,tol=0.1 * lower, kernel=c("gaussian","epanechnikov","triweight","tricube", "biweight","cosine"),...) { if (!is.numeric(x) || length(dim(x)) >=1 || length(x) < 3L) stop("argument 'x' must be numeric and need at least 3 data points") if (any(deriv.order < 0 || deriv.order != round(deriv.order))) stop("argument 'deriv.order' is non-negative integers") if (missing(kernel)) kernel <- "gaussian" r <- deriv.order name <- deparse(substitute(x)) x <- x[!is.na(x)] x <- sort(x) n <- length(x) if (kernel=="epanechnikov" && (2*r) + 2 >= 3) return(structure(list(x=x, data.name=name,n=n, kernel=kernel, deriv.order=r, h = NA ,min.mcv=NA),class="h.mcv")) else if (kernel=="triweight" && (2*r) + 2 >= 7) return(structure(list(x=x, data.name=name,n=n, kernel=kernel, deriv.order=r, h = NA ,min.mcv=NA),class="h.mcv")) else if (kernel=="biweight" && (2*r) + 2 >= 5) return(structure(list(x=x, data.name=name,n=n, kernel=kernel, deriv.order=r, h = NA ,min.mcv=NA),class="h.mcv")) else if (kernel=="tricube" && (2*r) + 2 >= 10) return(structure(list(x=x, data.name=name,n=n, kernel=kernel, deriv.order=r, h = NA ,min.mcv=NA),class="h.mcv")) hos <- ((243 *(2*r+1)*A3_kMr(kernel,r))/(35* A2_kM(kernel)^2))^(1/(2*r+5)) * sd(x,na.rm = TRUE) * n^(-1/(2*r+5)) if (!is.numeric(upper)){ stop("argument 'upper' must be numeric. Default 2*hos (Oversmoothing) boundary was used") upper= 2*hos } if (!is.numeric(lower)){ stop("argument 'lower' must be numeric. Default 0.1*hos boundary was used") lower=0.1*hos } if (lower < 0 | lower >= upper){ stop("the boundaries must be positive and 'lower' must be smaller than 'upper'. Default boundaries were used") upper=2*hos lower=0.1*hos } R_Kr1 <- A3_kMr(kernel,r) fmcv <- function(h) { L1 <- kernel_fun_conv(kernel,outer(x,x,"-")/h,deriv.order=r) diag(L1) <- 0 L2 <- ((-1)^(r)/((n-1)*h^(2*r+1)))* colSums(L1) Q1 <- mean(L2) D1 <- kernel_fun_der(kernel, outer(x,x,"-")/h,deriv.order=2*r) diag(D1) <- 0 D2 <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D1) Q2 <- mean(D2) D3 <- kernel_fun_der(kernel, outer(x,x,"-")/h,deriv.order=2*r+2) diag(D3) <- 0 D4 <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D3) Q3 <- mean(D4) (1/(n*h^(2*r+1)))* R_Kr1 + Q1 - Q2 - 0.5 * A2_kM(kernel) * Q3 } obj <- optimize(fmcv , c(lower, upper),tol=tol) structure(list(x=x, data.name=name,n=n, kernel=kernel, deriv.order=r,h = obj$minimum , min.mcv=obj$objective),class="h.mcv") } print.h.mcv <- function(x, digits=NULL, ...) { class(x) <- "h.mcv" cat("\nCall:\t","\tModified Cross-Validation","\n", "\nDerivative order = ",x$deriv.order, "\nData: ",x$data.name," (",x$n," obs.);","\tKernel: ",x$kernel, "\nMin MCV = ",format(x$min.mcv,digits=digits),";","\tBandwidth 'h' = ",format(x$h,digits=digits), "\n\n",sep="") invisible(x) } plot.mcv <- function(f,seq.bws=NULL,main=NULL,sub = NULL, xlab=NULL, ylab=NULL, type="l",las=1,lwd=1,...) { class(f) <- "h.mcv" r <- f$deriv.order n <- f$n kernel <- f$kernel x <- sort(f$x) if (kernel=="epanechnikov" && (2*r) + 2 >= 3) stop(" 'epanechnikov kernel derivative = 0' for '(2 * order) + 2 >= 3' ") else if (kernel=="triweight" && (2*r) + 2 >= 7) stop(" 'triweight kernel derivative = 0' for '(2 * order) + 2 >= 7' ") else if (kernel=="biweight" && (2*r) + 2 >= 5) stop(" 'biweight kernel derivative = 0' for '(2 * order) + 2 >= 5' ") else if (kernel=="tricube" && (2*r) + 2 >= 10) stop(" 'tricube kernel derivative = 0' for '(2 * order) + 2 >= 10' ") if(is.null(xlab)) xlab <- "Bandwidths" if(is.null(ylab)) ylab <- bquote(MCV~(h[(.(r))])) if(is.null(main)){ if(r !=0) {main <- "Modified Cross-Validation function for \nBandwidth Choice for Density Derivative"}else{ main <- "Modified Cross-Validation function for \nBandwidth Choice for Density Function"} } if(is.null(sub)) sub <- paste("Kernel",kernel,";","Derivative order = ",r) if(is.null(seq.bws)){ hos <- ((243 *(2*r+1)*A3_kMr(kernel,r))/(35* A2_kM(kernel)^2))^(1/(2*r+5)) * sd(x,na.rm = TRUE) * n^(-1/(2*r+5)) seq.bws <- seq(0.15*hos,2*hos,length=50) } R_Kr1 <- A3_kMr(kernel,r) fmcv <- function(h) { L1 <- kernel_fun_conv(kernel,outer(x,x,"-")/h,deriv.order=r) diag(L1) <- 0 L2 <- ((-1)^(r)/((n-1)*h^(2*r+1)))* colSums(L1) Q1 <- mean(L2) D1 <- kernel_fun_der(kernel, outer(x,x,"-")/h,deriv.order=2*r) diag(D1) <- 0 D2 <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D1) Q2 <- mean(D2) D3 <- kernel_fun_der(kernel, outer(x,x,"-")/h,deriv.order=2*r+2) diag(D3) <- 0 D4 <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D3) Q3 <- mean(D4) (1/(n*h^(2*r+1)))* R_Kr1 + Q1 - Q2 - 0.5 * A2_kM(kernel) * Q3 } D <- lapply(1:length(seq.bws), function(i) fmcv(seq.bws[i])) Minf <- c(do.call("rbind",D)) plot.default(seq.bws,Minf,type=type,las=las,lwd=lwd,xlab=xlab,ylab=ylab, main=main,sub=sub,font.main=2,cex.main=0.9,font.sub=2,cex.sub=0.7,...) return(list(kernel=kernel,deriv.order=r,seq.bws=seq.bws, mcv=Minf)) } plot.h.mcv <- function(x,seq.bws=NULL,...) plot.mcv(x,seq.bws,...) lines.mcv <- function(f,seq.bws=NULL,...) { class(f) <- "h.mcv" r <- f$deriv.order n <- f$n kernel <- f$kernel x <- sort(f$x) if (kernel=="epanechnikov" && (2*r) + 2 >= 3) stop(" 'epanechnikov kernel derivative = 0' for '(2 * order) + 2 >= 3' ") else if (kernel=="triweight" && (2*r) + 2 >= 7) stop(" 'triweight kernel derivative = 0' for '(2 * order) + 2 >= 7' ") else if (kernel=="biweight" && (2*r) + 2 >= 5) stop(" 'biweight kernel derivative = 0' for '(2 * order) + 2 >= 5' ") else if (kernel=="tricube" && (2*r) + 2 >= 10) stop(" 'tricube kernel derivative = 0' for '(2 * order) + 2 >= 10' ") if(is.null(seq.bws)){ hos <- ((243 *(2*r+1)*A3_kMr(kernel,r))/(35* A2_kM(kernel)^2))^(1/(2*r+5)) * sd(x,na.rm = TRUE) * n^(-1/(2*r+5)) seq.bws <- seq(0.15*hos,2*hos,length=50) } R_Kr1 <- A3_kMr(kernel,r) fmcv <- function(h) { L1 <- kernel_fun_conv(kernel,outer(x,x,"-")/h,deriv.order=r) diag(L1) <- 0 L2 <- ((-1)^(r)/((n-1)*h^(2*r+1)))* colSums(L1) Q1 <- mean(L2) D1 <- kernel_fun_der(kernel, outer(x,x,"-")/h,deriv.order=2*r) diag(D1) <- 0 D2 <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D1) Q2 <- mean(D2) D3 <- kernel_fun_der(kernel, outer(x,x,"-")/h,deriv.order=2*r+2) diag(D3) <- 0 D4 <- ((-1)^r / ((n-1)*h^(2*r+1)))* colSums(D3) Q3 <- mean(D4) (1/(n*h^(2*r+1)))* R_Kr1 + Q1 - Q2 - 0.5 * A2_kM(kernel) * Q3 } D <- lapply(1:length(seq.bws), function(i) fmcv(seq.bws[i])) Minf <- c(do.call("rbind",D)) lines.default(seq.bws,Minf,...) invisible(NULL) } lines.h.mcv <- function(x,seq.bws=NULL,...) lines.mcv(x,seq.bws,...)
NULL .codegurureviewer$associate_repository_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Repository = structure(list(CodeCommit = structure(list(Name = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), Bitbucket = structure(list(Name = structure(logical(0), tags = list(type = "string")), ConnectionArn = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), GitHubEnterpriseServer = structure(list(Name = structure(logical(0), tags = list(type = "string")), ConnectionArn = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), ClientRequestToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$associate_repository_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RepositoryAssociation = structure(list(AssociationId = structure(logical(0), tags = list(type = "string")), AssociationArn = structure(logical(0), tags = list(type = "string")), ConnectionArn = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProviderType = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), StateReason = structure(logical(0), tags = list(type = "string")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), CreatedTimeStamp = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$create_code_review_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Name = structure(logical(0), tags = list(type = "string")), RepositoryAssociationArn = structure(logical(0), tags = list(type = "string")), Type = structure(list(RepositoryAnalysis = structure(list(RepositoryHead = structure(list(BranchName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")), ClientRequestToken = structure(logical(0), tags = list(idempotencyToken = TRUE, type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$create_code_review_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeReview = structure(list(Name = structure(logical(0), tags = list(type = "string")), CodeReviewArn = structure(logical(0), tags = list(type = "string")), RepositoryName = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProviderType = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), StateReason = structure(logical(0), tags = list(type = "string")), CreatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), Type = structure(logical(0), tags = list(type = "string")), PullRequestId = structure(logical(0), tags = list(type = "string")), SourceCodeType = structure(list(CommitDiff = structure(list(SourceCommit = structure(logical(0), tags = list(type = "string")), DestinationCommit = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RepositoryHead = structure(list(BranchName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), AssociationArn = structure(logical(0), tags = list(type = "string")), Metrics = structure(list(MeteredLinesOfCodeCount = structure(logical(0), tags = list(type = "long")), FindingsCount = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$describe_code_review_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeReviewArn = structure(logical(0), tags = list(location = "uri", locationName = "CodeReviewArn", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$describe_code_review_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeReview = structure(list(Name = structure(logical(0), tags = list(type = "string")), CodeReviewArn = structure(logical(0), tags = list(type = "string")), RepositoryName = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProviderType = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), StateReason = structure(logical(0), tags = list(type = "string")), CreatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), Type = structure(logical(0), tags = list(type = "string")), PullRequestId = structure(logical(0), tags = list(type = "string")), SourceCodeType = structure(list(CommitDiff = structure(list(SourceCommit = structure(logical(0), tags = list(type = "string")), DestinationCommit = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")), RepositoryHead = structure(list(BranchName = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "structure")), AssociationArn = structure(logical(0), tags = list(type = "string")), Metrics = structure(list(MeteredLinesOfCodeCount = structure(logical(0), tags = list(type = "long")), FindingsCount = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$describe_recommendation_feedback_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeReviewArn = structure(logical(0), tags = list(location = "uri", locationName = "CodeReviewArn", type = "string")), RecommendationId = structure(logical(0), tags = list(location = "querystring", locationName = "RecommendationId", type = "string")), UserId = structure(logical(0), tags = list(location = "querystring", locationName = "UserId", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$describe_recommendation_feedback_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecommendationFeedback = structure(list(CodeReviewArn = structure(logical(0), tags = list(type = "string")), RecommendationId = structure(logical(0), tags = list(type = "string")), Reactions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), UserId = structure(logical(0), tags = list(type = "string")), CreatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$describe_repository_association_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AssociationArn = structure(logical(0), tags = list(location = "uri", locationName = "AssociationArn", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$describe_repository_association_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RepositoryAssociation = structure(list(AssociationId = structure(logical(0), tags = list(type = "string")), AssociationArn = structure(logical(0), tags = list(type = "string")), ConnectionArn = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProviderType = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), StateReason = structure(logical(0), tags = list(type = "string")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), CreatedTimeStamp = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$disassociate_repository_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(AssociationArn = structure(logical(0), tags = list(location = "uri", locationName = "AssociationArn", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$disassociate_repository_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RepositoryAssociation = structure(list(AssociationId = structure(logical(0), tags = list(type = "string")), AssociationArn = structure(logical(0), tags = list(type = "string")), ConnectionArn = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProviderType = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), StateReason = structure(logical(0), tags = list(type = "string")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), CreatedTimeStamp = structure(logical(0), tags = list(type = "timestamp"))), tags = list(type = "structure")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_code_reviews_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProviderTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "ProviderTypes", type = "list")), States = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "States", type = "list")), RepositoryNames = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "RepositoryNames", type = "list")), Type = structure(logical(0), tags = list(location = "querystring", locationName = "Type", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "MaxResults", type = "integer")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "NextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_code_reviews_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeReviewSummaries = structure(list(structure(list(Name = structure(logical(0), tags = list(type = "string")), CodeReviewArn = structure(logical(0), tags = list(type = "string")), RepositoryName = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProviderType = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string")), CreatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), Type = structure(logical(0), tags = list(type = "string")), PullRequestId = structure(logical(0), tags = list(type = "string")), MetricsSummary = structure(list(MeteredLinesOfCodeCount = structure(logical(0), tags = list(type = "long")), FindingsCount = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_recommendation_feedback_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "NextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "MaxResults", type = "integer")), CodeReviewArn = structure(logical(0), tags = list(location = "uri", locationName = "CodeReviewArn", type = "string")), UserIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "UserIds", type = "list")), RecommendationIds = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "RecommendationIds", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_recommendation_feedback_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecommendationFeedbackSummaries = structure(list(structure(list(RecommendationId = structure(logical(0), tags = list(type = "string")), Reactions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), UserId = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_recommendations_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "NextToken", type = "string")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "MaxResults", type = "integer")), CodeReviewArn = structure(logical(0), tags = list(location = "uri", locationName = "CodeReviewArn", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_recommendations_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RecommendationSummaries = structure(list(structure(list(FilePath = structure(logical(0), tags = list(type = "string")), RecommendationId = structure(logical(0), tags = list(type = "string")), StartLine = structure(logical(0), tags = list(type = "integer")), EndLine = structure(logical(0), tags = list(type = "integer")), Description = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_repository_associations_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(ProviderTypes = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "ProviderType", type = "list")), States = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "State", type = "list")), Names = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "Name", type = "list")), Owners = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "Owner", type = "list")), MaxResults = structure(logical(0), tags = list(location = "querystring", locationName = "MaxResults", type = "integer")), NextToken = structure(logical(0), tags = list(location = "querystring", locationName = "NextToken", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_repository_associations_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(RepositoryAssociationSummaries = structure(list(structure(list(AssociationArn = structure(logical(0), tags = list(type = "string")), ConnectionArn = structure(logical(0), tags = list(type = "string")), LastUpdatedTimeStamp = structure(logical(0), tags = list(type = "timestamp")), AssociationId = structure(logical(0), tags = list(type = "string")), Name = structure(logical(0), tags = list(type = "string")), Owner = structure(logical(0), tags = list(type = "string")), ProviderType = structure(logical(0), tags = list(type = "string")), State = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure"))), tags = list(type = "list")), NextToken = structure(logical(0), tags = list(type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_tags_for_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(resourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$list_tags_for_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$put_recommendation_feedback_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(CodeReviewArn = structure(logical(0), tags = list(type = "string")), RecommendationId = structure(logical(0), tags = list(type = "string")), Reactions = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$put_recommendation_feedback_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$tag_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(resourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string")), Tags = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "map"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$tag_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$untag_resource_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(resourceArn = structure(logical(0), tags = list(location = "uri", locationName = "resourceArn", type = "string")), TagKeys = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(location = "querystring", locationName = "tagKeys", type = "list"))), tags = list(type = "structure")) return(populate(args, shape)) } .codegurureviewer$untag_resource_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(), tags = list(type = "structure")) return(populate(args, shape)) }
bandwidth_optimal<-function( ptrue, r, m, x, H, link = c( "logit" ), guessing = 0, lapsing = 0, K = 2, p = 1, ker = c( "dnorm" ), maxiter = 50, tol = 1e-6, method = c( "all" ) ) { ISE <- function( f1, f2 ) { return( sum( ( f1 - f2 )^2 ) ); } get_ise_p <- function( h ) { fest <- locglmfit( x, r, m, x, h, FALSE, link, guessing, lapsing, K, p, ker, maxiter, tol ); return( ISE( ptrue, fest$pfit ) ); } get_ise <- function( h ) { ftmp <- locglmfit( x, r, m, x, h, FALSE, link, guessing, lapsing, K, p, ker, maxiter, tol ); fit_eta <- linkfun( ptrue ); return( ISE( fit_eta, ftmp$eta ) ); } get_dev <- function( h ) { ftmp <- locglmfit( x, r, m, x, h, FALSE, link, guessing, lapsing, K, p, ker, maxiter, tol ); D = return( deviance2( ptrue * m, m, ftmp$pfit ) ); } if( missing("ptrue") || missing("r") || missing("m") || missing("x") || missing("H") ) { stop("Check input. First 5 arguments are mandatory"); } if ( length(ptrue) != length(x)){ stop("ptrue must have the same length as the stimulus levels x") } checkdata<-list(); checkdata[[1]] <- x; checkdata[[2]] <- r; checkdata[[3]] <- m; checkinput( "psychometricdata", checkdata ); rm( checkdata ) checkinput( 'minmaxbandwidth', H ); checkinput( 'linkfunction', link ); if( length( guessing ) > 1 ) { stop( 'guessing rate must be scalar' ); } if( length( lapsing ) > 1 ) { stop( 'lapsing rate must be scalar' ); } checkinput( 'guessingandlapsing', c( guessing, lapsing ) ); if (link == "weibull" || link == "revweibull"){ checkinput( "exponentk", K ); } pn <- list() pn[[1]] <- p pn[[2]] <- x checkinput( "degreepolynomial", pn ); checkinput( 'kernel', ker ); checkinput( 'maxiter', maxiter ); checkinput( 'tolerance', tol ); checkinput( 'method', method ); if( link == "logit" || link == "probit" || link == "loglog" || link == "comploglog" || link == "weibull" || link == "revweibull" ) { LINK <- paste( link, "_link_private", sep = "" ); }else{ LINK <- link } if( LINK != "weibull_link_private" && LINK != "revweibull_link_private" ) { linkuser <- eval( call( LINK, guessing, lapsing ) ); } else{ linkuser <- eval( call( LINK, K, guessing, lapsing ) ); } linkfun <- linkuser$linkfun; options(warn=-1) h <- NULL; if( method == "ISE" ) { h <- optimize( get_ise_p, lower = H[1], upper = H[2] )$minimum; } else { if ( method == "ISEeta") { h <- optimize( get_ise, lower = H[1], upper = H[2] )$minimum; } else { if( method == "likelihood" ) { h <- optimize( get_dev, lower = H[1], upper = H[2] )$minimum; } else { h$pscale <- optimize( get_ise_p, lower = H[1], upper = H[2] )$minimum; h$etascale <- optimize( get_ise, lower = H[1], upper = H[2] )$minimum; h$deviance <- optimize( get_dev, lower = H[1], upper = H[2] )$minimum; } } } options(warn=-1) return( h ); }
redcap_project <- setRefClass( Class = "redcap_project", fields = list( redcap_uri = "character", token = "character" ), methods = list( read = function( batch_size = 100L, interbatch_delay = 0, records = NULL, records_collapsed = "", fields = NULL, fields_collapsed = "", forms = NULL, forms_collapsed = "", events = NULL, events_collapsed = "", raw_or_label = "raw", raw_or_label_headers = "raw", export_checkbox_label = FALSE, export_survey_fields = FALSE, export_data_access_groups = FALSE, filter_logic = "", guess_type = TRUE, guess_max = 1000L, verbose = TRUE, config_options = NULL ) { "Exports records from a REDCap project." return(REDCapR::redcap_read( batch_size = batch_size, interbatch_delay = interbatch_delay, redcap_uri = redcap_uri, token = token, records = records, records_collapsed = records_collapsed, fields = fields, fields_collapsed = fields_collapsed, forms = forms, forms_collapsed = forms_collapsed, events = events, events_collapsed = events_collapsed, raw_or_label = raw_or_label, raw_or_label_headers = raw_or_label_headers, export_checkbox_label = export_checkbox_label, export_survey_fields = export_survey_fields, export_data_access_groups = export_data_access_groups, filter_logic = filter_logic, guess_type = guess_type, verbose = verbose, config_options = config_options )) }, write = function( ds_to_write, batch_size = 100L, interbatch_delay = 0, continue_on_error = FALSE, verbose = TRUE, config_options = NULL ) { "Imports records to a REDCap project." return(REDCapR::redcap_write( ds_to_write = ds_to_write, batch_size = batch_size, interbatch_delay = interbatch_delay, continue_on_error = continue_on_error, redcap_uri = redcap_uri, token = token, config_options = config_options )) } ) )
context("CUSUMfixed") set.seed(410) T <- 100 d <- 0 x <- fracdiff::fracdiff.sim(n=T, d=d)$series expect_error(CUSUMfixed(x, d=d, procedure="something_else", bandw=0.1)) expect_error(CUSUMfixed(x, d=d, procedure="CUSUMfixedb_typeA", bandw=10)) expect_error(CUSUMfixed(x, d=d, procedure="CUSUMfixedm_typeA", bandw=0.1)) expect_error(CUSUMfixed(c(x,NA), d=d, procedure="CUSUMfixedb_typeA", bandw=0.1)) expect_error(CUSUMfixed(x, d=d, procedure="CUSUMfixedb_typeA", bandw=0.1,tau=2)) expect_warning(CUSUMfixed(x, d=d, procedure="CUSUMfixedb_typeA", bandw=0.1,tau=0.1)) x=stats::ts(x) expect_error(CUSUMfixed(x, d=d, procedure="CUSUMfixedb_typeA", bandw=0.1)) T = 100 procedure = c("CUSUMfixedb_typeA", "CUSUMfixedb_typeB", "CUSUMfixedm_typeA", "CUSUMfixedm_typeB") d_grid = c(0.1,0.2) for(a in 1:length(procedure)){ proc = procedure[a] if((proc == "CUSUMfixedb_typeA" | proc == "CUSUMfixedb_typeB")) bandw=0.1 if((proc == "CUSUMfixedm_typeA" | proc == "CUSUMfixedm_typeB")) bandw=10 for(b in 1:length(d_grid)){ d = d_grid[b] q = 0 for(i in 1:15){ x = fracdiff::fracdiff.sim(n=T, d=d)$series mod = CUSUMfixed(x, d=d, procedure=proc, bandw=bandw) q = q+sum(mod[4]>mod[3]) } expect_lt(q,11) } } T = 100 procedure = c("CUSUMfixedb_typeA", "CUSUMfixedb_typeB", "CUSUMfixedm_typeA", "CUSUMfixedm_typeB") d_grid = c(0.1,0.2) for(a in 1:length(procedure)){ proc = procedure[a] if((proc == "CUSUMfixedb_typeA" | proc == "CUSUMfixedb_typeB")) bandw=0.1 if((proc == "CUSUMfixedm_typeA" | proc == "CUSUMfixedm_typeB")) bandw=10 for(b in 1:length(d_grid)){ d = d_grid[b] q = 0 for(i in 1:15) { x = fracdiff::fracdiff.sim(n=T, d=d)$series changep = c(rep(0,T/2), rep(1,T/2)) x = x+changep mod = CUSUMfixed(x, d=d, procedure=proc, bandw=bandw) q = q+sum(mod[4]>mod[1]) } expect_gt(q,2) } }
shortesttimepath <- function(g, startvertexname, startvertextime, stopvertexname) { if (length(startvertexname) != 1 | length(stopvertexname) != 1) { stop("must provide single startvertex and stop vertex") } startvertex <- V(g)[V(g)$Name==startvertexname & V(g)$Time==startvertextime] stopvertices <- V(g)[V(g)$Name==stopvertexname & V(g)$Time>=startvertextime] paths <- get.shortest.paths(g, startvertex, stopvertices, mode="out", weights=E(g)$TimeCost) if (is.list(paths) && "vpath" %in% names(paths)) { paths <- paths$vpath } shortestpath <- paths[[which.min(lapply(paths, function(x) { tail(V(g)[x]$Time,1) })) ]] return(V(g)[shortestpath]) }
MultiDimen_test = function(data , stat = "HT",pair=FALSE, method_p = "sampling" ,rank = FALSE, diff = FALSE , samplenum = 1000){ if(!is.matrix(data) & !is.data.frame(data)) stop("The input data must be a matrix or dataframe") if(!is.numeric(samplenum)) stop("samplenum input is not true") if(pair==TRUE){ if(stat %in% c("wsum")) stop("The stat input is not suitable for paired calculation") if( length(unique(data[,ncol(data)-1])) != 2) stop("The last two column of the data must only contain two unique numbers if pair = 'TRUE'") if(method_p == "asymptotic" & stat != "HT") stop("Asymptotic method can only be used when statistic is HT when pair = 'TRUE'") } if(pair==FALSE) { if(stat %in% c("zmax","zmaxabs")) stop("The stat input is not suitable for not paired calculation") if(sum(unique(data[,ncol(data)]) == c(0,1)) != 2 ) stop("The last column of the data must only contain 0 and 1 if pair = 'FALSE'") if(method_p == "asymptotic" & stat %in% c("tmax","tmaxabs")) stop("Asymptotic method can not be used when statistic is tmax or tmaxabs and pair = 'FALSE'") if(method_p == "asymptotic" & rank == TRUE & stat == "HT") stop("Asymptotic method can not be used when statistic is ranked HT and pair = 'FALSE'") } parameter_value = c(stat , method_p , rank , diff , pair) parameter_name = c("stat" , "method_p" , "rank" , "diff","pair") parameter_content = c("HT tmax tmaxabs wsum zmax zmaxabs" , "sampling exact asymptotic" , "TRUE FALSE 1 0" , "TRUE FALSE 1 0", "TRUE FALSE 1 0") parameter = data.frame(parameter_value , parameter_name , parameter_content) for(i in 1:nrow(parameter)){ if(!parameter[i,1] %in% strsplit(parameter[i,3]," ")[[1]]) stop(paste(parameter[i,2] , "input is not true")) } if(stat == "wsum" & diff == TRUE & pair == FALSE) warning("The diff is not calculating when stat = 'wsum'") if(method_p != "sampling" & !missing(samplenum)) warning("\n samplenum is not working") if(stat == "wsum" & pair == FALSE) { rank = TRUE if(rank == FALSE) warning("Changing the rank to TRUE, because stat = 'wsum' is chosen") } if(pair == FALSE){ HT <- function(dat,index,rank){ x = dat[index==0,] y = dat[index==1,] m = dim(x)[1] k = dim(x)[2] n = dim(y)[1] mx = apply(x,2,mean) vx = var(x) my = apply(y,2,mean) vy = var(y) v = (m-1)*vx+(n-1)*vy v = v/(m+n-2) diff = mx-my t2 = t(diff)%*%solve(v)%*%diff t2 = t2*m*n/(m+n) fs = (m+n-k-1)*t2/((m+n-2)*k) as.numeric(fs) } wilcox.sd <- function(x, index){ rd = rank(x) m = sum(index==0) nt = length(index) n = nt-m mw = m*(nt+1)/2 vw1 = mw*n/6 ux = unique(x) freq = ux for(i in 1:length(ux)){ freq[i] = sum(x==ux[i]) } af = sum(freq^3-freq)*m*n tmp = 12*nt*(nt-1) af = af/tmp vw = vw1-af w = sum(rd[index==0]) (w-mw)/sqrt(vw) } tall <- function(dat,index=NULL , rank=NULL){ if(rank == FALSE){ x = dat[index==0,] y = dat[index==1,] m = dim(x)[1] k = dim(x)[2] n = dim(y)[1] stata = rep(0,k) for(i in 1:k){ stata[i] = t.test(x[,i],y[,i],var.equal=TRUE)$statistic } stata } else if(rank == TRUE){ k = dim(dat)[2] stat = rep(0,k) for(i in 1:k){ stat[i] = wilcox.sd(dat[,i],index) } stat } } tmax <- function(dat,index=NULL,rank=NULL){ max(tall(dat,index,rank)) } tmaxabs <- function(dat,index=NULL,rank=NULL){ max(abs(tall(dat,index,rank))) } wsum <- function(rd,index , rank){ sum(rd[index==0,]) } nc = ncol(data) index = data[,nc] data = data[,-nc] STAT = stat if(stat == "HT") stat = HT else if(stat == "tmax") stat = tmax else if(stat == "tmaxabs") stat = tmaxabs else if(stat == "wsum") stat = wsum if(rank == TRUE){ for(i in 1:ncol(data)){ data[,i] = rank(data[,i]) } } else if(rank == FALSE) { } x = data[index==0,] y = data[index==1,] m = dim(x)[1] k = dim(x)[2] n = dim(y)[1] nt=n+m data = as.matrix(data) Fobs = stat(data, index , rank) if( method_p == "exact"){ all.comb = combn(nt, m) N = dim(all.comb)[2] replace = rep(1, N) for(i in 1:N){ ind = all.comb[,i] index = rep(0,nt) index[ind] = 1 replace[i] = stat(data,index,rank) } p.value <- length(replace[replace >= Fobs]) / N } else if(method_p == "sampling"){ replace <- replicate(samplenum, stat(data, sample(index) , rank)) p.value <- length(replace[replace >= Fobs]) / samplenum } else if( method_p == "asymptotic"){ if(STAT == "HT" & rank == FALSE){ p.value = 1-pf(Fobs, k, nt-k-1) } else if(STAT == "wsum"){ S = apply(data,1,sum) sigmaz = var(S)*(nt-1)/nt varw = m*n*sigmaz/(nt-1) mw = k*m*(nt+1)/2 z = (Fobs - mw) / sqrt(varw) p.value = 1 - pnorm(z) } } if(diff == TRUE & STAT != "wsum"){ replace <- replicate(samplenum, tmaxabs(data, sample(index) , rank)) quan = quantile(replace , 0.95) large = which(abs(tall(data , index , rank)) >= quan) larger=NULL for(i in 1:length(large)){ if(i<length(large)){larger<-c(larger,paste(large[i],", "))} else{larger<-c(larger,paste(large[i]))} } larger<-paste(larger,collapse = "") } } else { HT1<-function(x){ mx = apply(x,2,mean) vx = var(x) n = dim(x)[1] k = dim(x)[2] t2 = n*t(mx)%*%solve(vx)%*%mx t2[1,1] } HT2<-function(x){ mx=apply(x,2,mean) vx=var(x) n=dim(x)[1] k=dim(x)[2] t2=n*t(mx)%*%solve(vx)%*%mx fs = (n-k)*t2/((n-1)*k) fs[1,1] } statistic <- function(x, fun){ n = dim(x)[1] bin = rbinom(n,1,0.5) bin = 2*bin-1 y = diag(bin)%*%x fun(y) } binary <- function(x, k){ tmp = NULL y = x if(x < 2^k) { for(i in k-1:k){ a = floor(y/2^i) tmp = c(tmp, a) y = y-a*2^i } } 2*(tmp-0.5) } tall <- function(dat,index=NULL , rank=NULL){ x=dat mx=apply(x,2,mean) vx=apply(x,2,var) n=dim(x)[1] t=mx*sqrt(n)/sqrt(vx) t } tmax <- function(dat,index=NULL , rank=NULL){ max(tall(dat))} tmaxabs <- function(dat,index=NULL , rank=NULL){ max(abs(tall(dat)))} zall<-function(x){ mx=apply(abs(x),2,sum)/2 vx=apply(x^2,2,sum)/4 sr=apply(x*(x>0),2,sum) z=(sr-mx)/sqrt(vx) z } zmax<-function(x){ max(zall(x)) } zmaxabs<-function(x){ max(abs(zall(x))) } STAT = stat if(stat == "HT") stat = HT1 else if(stat == "tmax") stat = tmax else if(stat == "tmaxabs") stat = tmaxabs else if(stat == "zmax") stat = zmax else if(stat == "zmaxabs") stat = zmaxabs m = nrow(data) / 2 n = nrow(data) / 2 k = ncol(data) - 2 nc = ncol(data) uni_index = unique(data[,nc-1]) uni_pair = unique(data[,nc]) x = data[data[,nc-1] == uni_index[1],] y = data[data[,nc-1] == uni_index[2],] x = x[x[,nc] == uni_pair,] y = y[y[,nc] == uni_pair,] x = x[,1:k] y = y[,1:k] D = x - y rank=FALSE if(STAT == "zmax" | STAT == "zmaxabs"){ rank=TRUE sd = sign(D) SRD = abs(D) for(i in 1:k){ SRD[,i] = rank(SRD[,i]) } D = SRD*sd } Fobs = stat(D) if(method_p == "exact"){ l = dim(D)[1] ppm = NULL N = 2^l-1 for(i in 0:N) { condition = diag(binary(i, l)) %*% D ppm = c(ppm, stat(condition)) } p.value = length(ppm[ppm >= Fobs]) / N } else if(method_p == "sampling"){ results <- replicate(samplenum, statistic(D,stat)) p.value = length(results[results >= Fobs]) / samplenum } if(method_p == "asymptotic" & STAT == "HT"){ f = HT2(D) p.value = 1 - pf(f,k,n-k) } } names(p.value) = method_p names(Fobs) = STAT if(method_p == "asymptotic") { attr(p.value , "type") = switch(STAT,"HT"="F distribution","wsum"="normal") } alternative=if(STAT=="wsum"){"Each components in sample0 is greater than sample1."}else{"The means are different."} output <- list(method = if(pair){"Multiple Dimensional paired test"}else("Multiple Dimensional test") , score = if(rank){"Wilcoxon"}else{"original"} , stat =Fobs ,pval = p.value , alternative=alternative) if(diff == TRUE & STAT != "wsum"){ output<-c(output,addition=paste(larger , 'dimensions are considered having significant differences\n')) } class(output) = "nonp" output }
checkInteger <- function( x ) { all( x == as.integer(x) ) } if ( 0 == 1 ) { object <- getExampleSetOfTimePoints(0:21) str( object ) checkSetOfTimePoints( object ) wrongObject <- object [email protected] <- [email protected][1:2,1:2] colnames([email protected]) <- c("bla", "bla") [email protected][1,1] <- 1.5 wrongObject@nFullTimePoints <- 300 checkSetOfTimePoints( wrongObject ) objectWrongTime <- object [email protected] <- [email protected] checkSetOfTimePoints() object <- getExampleSetOfTimePoints( 0:21 ) } checkSetOfTimePoints <- function( object ) { errors <- character( ) dimData <- dim( [email protected] ) nDimensions <- length( dimData ) if( !length(object@fullTimePoints) == object@nFullTimePoints ) { msg <- paste0( "Number of fullTimePoints do no match nFullTimePoints", "\n" ) errors <- c ( errors , msg ) } if( !nDimensions == 2 ) { msg <- paste0( "Dimensions of data array should be 2, not: ", nDimensions, "\n" ) errors <- c ( errors , msg ) } if( !object@nTimePointsSelect== dimData[ 2 ] ) { msg <- paste0( "Number of timePoints: ", object@nTimePointsSelect ," does not match number of timePoints in time point options: ", dimData[ 2 ], "\n" ) errors <- c ( errors , msg ) } timeChoiceNames <- rownames( [email protected] ) nNames <- length( timeChoiceNames ) uniqueNames <- unique( timeChoiceNames ) nUniqueNames <- length( uniqueNames ) checkUnique <- ( nNames == nUniqueNames ) && ( ! is.null( timeChoiceNames ) ) if ( ! checkUnique ) { msg <- paste0( "non-unique names of time point options ( .Data slot )" , "\n" ) errors <- c( errors , msg ) } firstTimePoint <- [email protected][ , 1 ] lastTimePoint <- [email protected][ , object@nTimePointsSelect] fullTimePoints <- object@fullTimePoints indZeroPoint <- any( firstTimePoint == min( fullTimePoints ) ) indAllLast <- all( lastTimePoint == max( fullTimePoints ) ) if ( indZeroPoint ) { msg <- paste0( "Zero point cannot be included as sample option" , "\n" ) errors <- c( errors , msg ) } if ( ! indAllLast ) { msg <- paste0( "Not all time points options end with the last time" , "\n" ) errors <- c( errors , msg ) } if ( length(errors) == 0 ) { TRUE } else { cat( errors ) FALSE } } setClass( "SetOfTimePoints", representation = representation( .Data = "array" , fullTimePoints = "numeric" , nFullTimePoints = "numeric" , nTimePointsSelect = "numeric" , nTimePointOptions = "numeric" , ranking = "data.frame" ) , validity = checkSetOfTimePoints ) if( 0 == 1 ) { fullTimePoints = 0:10 nTimePointsSelect = 5 nChoicesSubset = 7 } getExampleSetOfTimePoints <- function( fullTimePoints, nTimePointsSelect = 5, nChoicesSubset = 7 ) { nFulltimePoints <- length( fullTimePoints ) nTimeOptions <- nFulltimePoints - 2 nTimeOptionsToSelect <- nTimePointsSelect - 1 timePointChoices <- combinations( nTimeOptions, nTimeOptionsToSelect ) ncomb <- dim( timePointChoices )[ 1 ] set.seed(1234) indSample <- sample( ncomb, nChoicesSubset, replace = FALSE ) samplePointsInternal <- timePointChoices[ indSample , ] samplePoints <- data.frame( samplePointsInternal + 1, nFulltimePoints) samplePoints <- as.matrix(samplePoints) timePointMatrix <- matrix( fullTimePoints[ samplePoints ] , nrow = nrow(samplePoints ) ) colnames( timePointMatrix ) <- paste0( "time" , 1:nTimePointsSelect) rownames( timePointMatrix ) <- paste0( "timeOption" , 1:nChoicesSubset ) exampleTimes <- new("SetOfTimePoints", .Data = timePointMatrix , fullTimePoints = fullTimePoints , nFullTimePoints = nFulltimePoints , nTimePointsSelect = nTimePointsSelect , nTimePointOptions = nChoicesSubset ) exampleTimes } setMethod( "getTimePoints", "SetOfTimePoints", function( object ) { return( object@fullTimePoints ) } ) if( 0 == 1 ) { timeZonesEx <- getExampleTimeZones() fullTimePointsEx <- seq( 0 , 21 , 1 ) object <- getAllTimeOptions( timeZones = timeZonesEx , fullTimePoints = fullTimePointsEx ) str( object ) } setMethod( "getData", "SetOfTimePoints", function( object ) { return( [email protected]) } ) setMethod( "getNames" , "SetOfTimePoints" , function( object ){ dimNames <- dimnames( [email protected] ) names <- dimNames[[ 1 ]] return( names ) } ) setMethod( "getRanking", "SetOfTimePoints", function( object ) { return( object@ranking) } ) setReplaceMethod( f = "setRanking", signature = "SetOfTimePoints", definition = function( object, value) { object@ranking <- value validObject( object ) return( object ) } ) if( 0 == 1 ){ object <- getExampleSetOfTimePoints( 0 :10 ) pkData <- getPkData(getExamplePkModel() , getTimePoints( object ) , 1 , 5 ) objectRanked <- rankObject( object , pkData ) object <- objectRanked rank <- 2 extractRank.timePoints( object, 5 ) extractByRank( object, 1) } extractRank.timePoints <- function( object , rank ) { ranking <- getRanking( object ) checkNoRank <- all( dim( ranking ) == c(0,0) ) if( checkNoRank ) { stop( "SetOfTimePoints is not ranked" ) } checkRankOk <- length( rank ) == 1 if( ! checkRankOk) { stop( "Only one rank should be selected" ) } indRanks <- getTopNRanking( ranking , rank ) rankToSelect <- indRanks[ rank ] object[rankToSelect , , drop = FALSE ] } setMethod( "extractByRank" , signature = c( "SetOfTimePoints" , "numeric" ) , definition = extractRank.timePoints ) if( 0 == 1 ) { extrac }
spec_compliance <- c( spec_compliance_methods, NULL )
clicklpp <- local({ clicklpp <- function(L, n=NULL, types=NULL, ..., add=FALSE, main=NULL, hook=NULL) { if(!inherits(L, "linnet")) stop("L should be a linear network", call.=FALSE) instructions <- if(!is.null(n)) paste("click", n, "times in window") else paste("add points: click left mouse button in window\n", "exit: press ESC or another mouse button") if(is.null(main)) main <- instructions W <- Window(L) if(is.null(types)) { plot(L, add=add, main=main) if(!is.null(hook)) plot(hook, add=TRUE) xy <- if(!is.null(n)) spatstatLocator(n=n, ...) else spatstatLocator(...) ok <- inside.owin(xy, w=W) if((nbad <- sum(!ok)) > 0) warning(paste("Ignored", nbad, ngettext(nbad, "point", "points"), "outside window"), call.=FALSE) X <- as.lpp(xy$x[ok], xy$y[ok], L=L) return(X) } ftypes <- factor(types, levels=types) X <- getem(ftypes[1L], instructions, n=n, L=L, add=add, ..., pch=1) X <- X %mark% ftypes[1L] for(i in 2:length(types)) { Xi <- getem(ftypes[i], instructions, n=n, L=L, add=add, ..., hook=X, pch=i) Xi <- Xi %mark% ftypes[i] X <- superimpose(X, Xi, L=L) } if(!add) plot(X, main="Final pattern") return(X) } getem <- function(i, instr, ...) { main <- paste("Points of type", sQuote(i), "\n", instr) do.call(clicklpp, resolve.defaults(list(...), list(main=main))) } clicklpp })
"AIBS"
Proportional_D <- function(train, test, seed=-1){ alg <- RKEEL::R6_Proportional_D$new() alg$setParameters(train, test, seed) return (alg) } R6_Proportional_D <- R6::R6Class("R6_Proportional_D", inherit = PreprocessAlgorithm, public = list( seed = -1, setParameters = function(train, test, seed=-1){ super$setParameters(train, test) if(seed == -1) { self$seed <- sample(1:1000000, 1) } else { self$seed <- seed } } ), private = list( jarName = "Disc-Proportional.jar", algorithmName = "Proportional-D", algorithmString = "Proportional Discretizer", getParametersText = function(){ text <- "" text <- paste0(text, "seed = ", self$seed, "\n") return(text) } ) )
remove.duplicated.variances.lavsyn <- function( res0, items ) { res0 <- gsub( " ", "", res0 ) res1 <- strsplit( res0, split="\n")[[1]] res1 <- data.frame( "syn"=res1, "sel"=0 ) res1$variance <- 0 ind <- grep( "~~", res1$syn ) res1$variance.index <- 0 l0 <- strsplit( paste(res1[ ind, "syn" ]), split="~~") l0 <- unlist( lapply( l0, FUN=function(ll){ ll[1] } ) ) ind <- ind[ l0 %in% items ] if ( length(ind) > 0){ res1$variance.index[ind] <- 1 } if ( length(ind) > 0 ){ res1[ ind,"variance"] <- 1 res1$variance.obs <- "" l1 <- res1[ ind, "syn" ] l1 <- strsplit( paste(l1), split="~~") l2 <- lapply( l1, FUN=function(ll){ ll[1] } ) res1$variance.obs[ind] <- unlist(l2) l3 <- duplicated( res1[ind, "variance.obs"] ) if ( sum(l3) > 0 ){ res1 <- res1[ - ind[ l3 ], ] } } lav2 <- paste( res1$syn, collapse="\n") return(lav2) }