code
stringlengths
1
13.8M
derand_RL <- function(P,F,CR,expt){ N <- length(P[,1]) d <- length(P[1,])-1 y <- P[expt[1],1:d] vyb <- nahvyb_expt(N,3,expt) r123 <- P[vyb,] fmin <- min(r123[,d+1]) indmin <- which.min(r123[,d+1]) r1 <- r123[indmin,1:d] r123 <- r123[-indmin,] r2 <- r123[1,1:d] r3 <- r123[2,1:d] v <- r1+F*(r2-r3) change <- which(runif(d)<CR) if (is.empty(change)) change <- 1+trunc(d*runif(1)) y[change]=v[change] return(y) }
mle.getPtBSbyK=function(S, ranks, num.misses=NULL) { if (is.null(num.misses)) { num.misses=log2(length(ranks)) } ranks2=ranks[which(names(ranks) %in% S)] pt.bitString=list() for (p in seq_len(length(S))) { miss=0 thresh=length(ranks2[[S[p]]]) for (ii in seq_len(length(ranks2[[S[p]]]))) { ind_t=as.numeric(ranks2[[S[p]]][ii] %in% S) if (ind_t==0) { miss=miss + 1 if (miss >= num.misses) { thresh=ii break; } } else { miss=0 } pt.bitString[[S[p]]][ii]=ind_t } pt.bitString[[S[p]]]=pt.bitString[[S[p]]][seq_len(thresh)] names(pt.bitString[[S[p]]])=ranks2[[S[p]]][seq_len(thresh)] ind=which(pt.bitString[[S[p]]] == 1) pt.bitString[[S[p]]]=pt.bitString[[S[p]]][seq_len(ind[length(ind)])] } pt.byK=list() for (k in seq_len(length(S))) { pt.byK_tmp=pt.bitString bestInd=vector("numeric", length(S)) for (p in seq_len(length(S))) { bestInd[p]=sum(pt.bitString[[p]]) } if (length(which(bestInd>=k))>0) { pt.byK_tmp=pt.byK_tmp[which(bestInd>=k)] bestInd=vector("numeric", length(pt.byK_tmp)) for (p in seq_len(length(pt.byK_tmp))) { bestInd[p]=sum(which(pt.byK_tmp[[p]] == 1)[seq_len(k)]) } maxInd=max(which(pt.byK_tmp[[which.min(bestInd)]]==1)[seq_len(k)]) pt.byK[[k]]=pt.byK_tmp[[which.min(bestInd)]][seq_len(maxInd)] } else {pt.byK[[k]]=pt.byK_tmp[[which.max(bestInd)]]} } return(pt.byK) }
summary_tamaan_normal_skillspace <- function(object) { cat("------------------------------------------------------------\n") cat("EAP Reliability\n") obji <- round( object$EAP.rel, 3 ) print( obji ) cat("------------------------------------------------------------\n") cat("Covariances and Variances\n") if ( object$G >1){ a1 <- stats::aggregate( object$variance, list( object$group ), mean ) object$variance <- a1[,2] } obji <- round( object$variance, 3 ) if ( object$G >1){ names(obji) <- paste0("Group", object$groups ) } print( obji ) cat("------------------------------------------------------------\n") cat("Correlations and Standard Deviations (in the diagonal)\n") if ( object$G >1){ obji <- sqrt( object$variance ) } else { obji <- stats::cov2cor(object$variance) diag(obji) <- sqrt( diag( object$variance) ) } if ( object$G >1){ names(obji) <- paste0("Group", object$groups ) } obji <- round( obji, 3 ) print( obji ) cat("------------------------------------------------------------\n") cat("Regression Coefficients\n") obji <- round( object$beta, 5 ) print( obji ) }
future_worldclim2 <- function(var = "tmin", res = 10, gcm = "BCC-CSM2-MR", ssp = "ssp585", interval = "2021-2040", bry = NULL, path = NULL, nm_mark = "clip", return_stack = TRUE) { stopifnot(res %in% c(2.5, 5, 10)) stopifnot(var %in% c('tmin', 'tmax', 'prec', 'bioc')) stopifnot(gcm %in% c("BCC-CSM2-MR", "CNRM-CM6-1", "CNRM-ESM2-1", "CanESM5", "GFDL-ESM4", "IPSL-CM6A-LR", "MIROC-ES2L", "MIROC6", "MRI-ESM2-0")) stopifnot(ssp %in% c("ssp126", "ssp245", "ssp370", "ssp585")) stopifnot(interval %in% c("2021-2040", "2041-2060", "2061-2080", "2081-2100")) if(gcm == "GFDL-ESM4" & ssp == "ssp245"){ stop("There is no any var to download.")} if (gcm == "GFDL-ESM4" & ssp == "ssp585" & var != "prec"){ stop("There is no such var to download.")} if (is.null(bry)) { nm_mark <- "global" message("No bry set, download global map...") } else{ if (!(is(bry, "sf") | is(bry, 'sfc') | is(bry, "SpatialPolygonsDataFrame") | is(bry, 'SpatialPolygons'))) { stop("Only support sf or sp.") } } if (is.null(path)) { path <- getwd() } else { if (!dir.exists(path)) { stop("Path does not exist!") } } path <- file.path(path, "wc2.1") dir.create(path, showWarnings = FALSE) url_base <- "https://biogeo.ucdavis.edu/data/worldclim/v2.1/fut" zip_name <- sprintf("%sm/wc2.1_%sm_%s_%s_%s_%s.zip", res, res, var, gcm, ssp, interval) url <- file.path(url_base, zip_name) temp <- tempfile() dl <- try(download.file(url, temp)) if (class(dl) == "try-error") { Sys.sleep(10) download.file(url, temp) } n <- ifelse(var == "bioc", 19, 12) if (is.null(bry)) { decompression <- system2( "unzip", args = c("-o", "-j", temp, sprintf("-d %s", path)), stdout = TRUE) if (grepl("Warning message", tail(decompression, 1))) { print(decompression) }; unlink(temp) fname <- sprintf("wc2.1_%sm_%s_%s_%s_%s.tif", res, var, gcm, ssp, interval) fpath <- file.path(path, fname) if (!file.exists(fpath)) stop('Fail to extract file.') if (return_stack == TRUE) clip_imgs <- read_stars(fpath) } else { temp_path <- file.path(path, "global") dir.create(temp_path, showWarnings = FALSE) decompression <- system2( "unzip", args = c("-o", "-j", temp, sprintf("-d %s", temp_path)), stdout = TRUE) if (grepl("Warning message", tail(decompression, 1))) { print(decompression) }; unlink(temp) fname <- sprintf("wc2.1_%sm_%s_%s_%s_%s.tif", res, var, gcm, ssp, interval) fpath <- file.path(temp_path, fname) if (!file.exists(fpath)) stop('Fail to extract file.') clip_imgs <- read_stars(fpath, RasterIO = list(bands = c(1:n))) bry <- st_as_sf(bry) %>% st_make_valid() clip_imgs <- st_crop(clip_imgs, bry) rst_name <- paste(nm_mark, names(clip_imgs), sep = "_") rst_path <- file.path(path, rst_name) write_stars(clip_imgs, rst_path) unlink(temp_path, recursive = TRUE) if (return_stack != TRUE) rm(clip_imgs) } if (return_stack == TRUE) { clip_imgs <- st_set_dimensions( clip_imgs, 'band', values = paste0(var, 1:n)) clip_imgs } else { message(sprintf("Files are written to %s.", path)) } }
NULL setClass("StringComparator", slots = c( ignore_case = "logical", use_bytes = "logical" ), prototype = structure( .Data = function(x, y, ...) 0, ignore_case = FALSE, use_bytes = FALSE ), contains = c("VIRTUAL", "SequenceComparator"), validity = function(object) { errs <- character() if (length(object@ignore_case) != 1) errs <- c(errs, "`ignore_case` must be a logical vector of length 1") if (length(object@use_bytes) != 1) errs <- c(errs, "`use_bytes` must be a logical vector of length 1") ifelse(length(errs) == 0, TRUE, errs) }) setMethod(elementwise, signature = c(comparator = "StringComparator", x = "vector", y = "vector"), function(comparator, x, y, ...) { xy = strings_to_code_vectors(x, y, ignore_case = comparator@ignore_case, use_bytes = comparator@use_bytes) elementwise(comparator, xy$x, xy$y, ...) } ) setMethod(pairwise, signature = c(comparator = "StringComparator", x = "vector", y = "vector"), function(comparator, x, y, return_matrix, ...) { xy = strings_to_code_vectors(x, y, ignore_case = comparator@ignore_case, use_bytes = comparator@use_bytes) pairwise(comparator, xy$x, xy$y, return_matrix, ...) } ) setMethod(pairwise, signature = c(comparator = "StringComparator", x = "vector", y = "NULL"), function(comparator, x, y, return_matrix, ...) { xy = strings_to_code_vectors(x, y = NULL, ignore_case = comparator@ignore_case, use_bytes = comparator@use_bytes) pairwise(comparator, xy$x, NULL, return_matrix, ...) } )
ISOPresentationForm <- R6Class("ISOPresentationForm", inherit = ISOCodeListValue, private = list( xmlElement = "CI_PresentationFormCode", xmlNamespacePrefix = "GMD" ), public = list( initialize = function(xml = NULL, value, description = NULL){ super$initialize(xml = xml, id = private$xmlElement, value = value, description = description) } ) ) ISOPresentationForm$values <- function(labels = FALSE){ return(ISOCodeListValue$values(ISOPresentationForm, labels)) }
ciu.textual <- function(ciu, instance=NULL, ind.inputs=NULL, ind.output=1, in.min.max.limits=NULL, n.samples=100, neutral.CU=0.5, show.input.values=TRUE, concepts.to.explain=NULL, target.concept=NULL, target.ciu=NULL, ciu.meta = NULL, sort="CI", n.features = NULL, use.text.effects = FALSE, CI.voc = data.frame(limits=c(0.2,0.4,0.6,0.8,1.0), texts=c("not important","slightly important", "important","very important","extremely important")), CU.voc = data.frame(limits=c(0.2,0.4,0.6,0.8,1.0), texts=c("very bad","bad","average","good","very good"))) { if ( !is.null(target.concept) ) { if ( is.null(target.ciu) ) { if ( inherits(ciu, "CIU") ) ciu.tmp <- ciu$as.ciu() else ciu.tmp <- ciu ind.inps <- ciu.tmp$vocabulary[target.concept][[1]] target.ciu <- ciu.explain(ciu, instance, ind.inputs.to.explain=ind.inputs, in.min.max.limits=in.min.max.limits, n.samples=n.samples*10) } } if ( is.null(ciu.meta) ) { ciu.meta <- ciu.meta.explain(ciu, instance, ind.inputs=ind.inputs, in.min.max.limits=in.min.max.limits, n.samples=n.samples, concepts.to.explain=concepts.to.explain, target.concept=target.concept, target.ciu=target.ciu) } else { instance <- ciu.meta$instance } ciu <- ciu.meta$ciu inst.name <- rownames(instance) ind.inputs <- ciu.meta$ind.inputs inp.names <- ciu.meta$inp.names ciu.text <-ciu.list.to.frame(ciu.meta$ciuvals, ind.output) ciu.text$ind.inputs <- ind.inputs ciu.text$inp.names <- inp.names ciu.text$CI.text <- ciu.values.to.text(ciu.text$CI, CI.voc) ciu.text$CU.text <- ciu.values.to.text(ciu.text$CU, CU.voc) if ( sort == "CI") ciu.text <- ciu.text[order(ciu.text$CI, decreasing = TRUE),] else if ( sort == "CU" ) ciu.text <- ciu.text[order(ciu.text$CU, decreasing = TRUE),] if ( is.null(n.features) ) n.features <- nrow(ciu.text) else n.features <- min(n.features, nrow(ciu.text)) if (is.null(target.concept) ) { outval <- ciu.text$outval[ind.output] abs.min.max <- ciu$abs.min.max; amin <- abs.min.max[ind.output,1]; amax <- abs.min.max[ind.output,2] out.CU <- (outval - amin)/(amax - amin) out.CU.text <- ciu.values.to.text(out.CU, CU.voc) } else { out.CU <- target.ciu[ind.output,"CU"] out.CU.text <- ciu.values.to.text(out.CU, CU.voc) } if (use.text.effects) out.CU.text <- crayon::bold(out.CU.text) if (is.null(target.concept) ) { t <- paste0("The value of output '", ciu$output.names[ind.output], "' for instance '", inst.name) t <- paste0(t, "' is ", round(outval,3), ", which is ", out.CU.text, " (CU=", round(out.CU,3), ").\n") } else { t <- paste0("The value of intermediate concept '", target.concept, "' for output '", ciu$output.names[ind.output], "', with instance '", inst.name, "' is ", out.CU.text, " (CU=", round(out.CU,3), ").\n") } for ( i in 1:n.features ) { ci.text <- ciu.text$CI.text[i]; if (use.text.effects) ci.text <- crayon::bold(ci.text) cu.text <- ciu.text$CU.text[i]; if (use.text.effects) cu.text <- crayon::bold(cu.text) fvalue <- instance[1, ciu.text$ind.inputs[i]] if ( is.null(ciu.meta$ind.inputs) ) { inds <- ciu$vocabulary[ciu.text$inp.names[i]][[1]] if ( length(inds) == 1 ) fvalue <- instance[1, inds] } t <- paste0(t, "Feature '", ciu.text$inp.names[i], "' is ", ci.text, " (CI=", round(ciu.text$CI[i],3), ") and value ") if ( length(fvalue) >= 1 ) t <- paste0(t, "'", fvalue, "' ") t <- paste0(t, "is ", cu.text, " (CU=", round(ciu.text$CU[i],3), ").\n") } return(t) } ciu.values.to.text <- function(values, voc) { res <- as.character(matrix(voc$texts[1], nrow = length(values))) for ( limit.ind in 2:length(voc$limits) ) { res[values > voc$limits[limit.ind-1] & values <= voc$limits[limit.ind]] <- voc$texts[limit.ind] } return(res) }
classify_labels <- function(df_final){ length_df <- dim(df_final)[1] classlabel <- as.character(length_df) for(i in 1:length_df){ if (df_final[i, "Model"] == "ARIMA") { ar_coef <- as.numeric(as.character(df_final[i, "p"])) num_diff <- as.numeric(as.character(df_final[i, "d"])) ma_coef <- as.numeric(as.character(df_final[i, "q"])) arma <- sum(ar_coef, ma_coef) drift <- as.numeric(df_final[i, "outcome_with_drift"] == 1) if (arma!=0 & num_diff== 0){ classlabel[i] <- "ARMA/AR/MA" } else classlabel[i] <- "ARIMA" } else if(df_final[i, "Model"] == "ETS"){ error <- as.character(df_final[i, "p"]) trend <- as.character(df_final[i, "d"]) seasonality <- as.character(df_final[i, "q"]) if(error== "A" & trend== "A" & seasonality== "A") { classlabel[i] <- "ETS-trendseasonal" } else if (error== "A" & trend== "A" & seasonality== "N") { classlabel[i] <- "ETS-trend" } else if (error== "A" & trend== "Ad" & seasonality== "A"){ classlabel[i] <- "ETS-dampedtrendseasonal" }else if (error== "A" & trend== "Ad" & seasonality== "N"){ classlabel[i] <- "ETS-dampedtrend" }else if (error== "A" & trend== "N" & seasonality== "A"){ classlabel[i] <- "ETS-seasonal" } else if (error== "A" & trend== "N" & seasonality== "N"){ classlabel[i] <- "ETS-notrendnoseasonal" }else if (error== "M" & trend== "A" & seasonality== "A"){ classlabel[i] <- "ETS-trendseasonal" } else if (error== "M" & trend== "A" & seasonality== "M"){ classlabel[i] <- "ETS-trendseasonal" } else if (error== "M" & trend== "A" & seasonality== "N"){ classlabel[i] <- "ETS-trend" }else if (error== "M" & trend== "Ad" & seasonality== "A"){ classlabel[i] <- "ETS-dampedtrendseasonal" }else if (error== "M" & trend== "Ad" & seasonality== "M"){ classlabel[i] <- "ETS-dampedtrendseasonal" }else if (error== "M" & trend== "Ad" & seasonality== "N"){ classlabel[i] <- "ETS-dampedtrend" }else if (error== "M" & trend== "N" & seasonality== "A"){ classlabel[i] <- "ETS-seasonal" }else if (error== "M" & trend== "N" & seasonality== "M"){ classlabel[i] <- "ETS-seasonal" }else classlabel[i] <- "ETS-notrendnoseasonal" } else { classlabel[i] <- df_final[i, "Model"] } } return(classlabel) }
MGC_Function_refClass <- setRefClass("MGC_Function", fields = list( dimension = "numeric", density = "function", center= "function", parameter = "function", shape = "function" ), methods = list( initialize = function(den, cen, par, sha) { dimension <<- length(cen(1)) density <<- den center <<- cen parameter <<- par shape <<- sha .self } ), ) MGC_Function_refClass$methods( get_attributes = function(time, attributes=NULL) { att <- list(density = density(time), parameter=parameter(time), center = center(time)) if(!is.null(attributes)) att <- att[attributes] att }, get_points = function(time) { shape(center=center(time), parameter=parameter(time)) } ) MGC_Function<- function(density, center, parameter, shape = NULL) { if(is.null(shape)) shape <- MGC_Shape_Gaussian structure(list(description = "Functional Moving Generator Cluster", RObj = MGC_Function_refClass$new(den = density, cen = center, par = parameter, sha = shape)), class = c("MGC_Function","MGC")) }
dataSim <- function(replicates,sites,treatment,percentage=10,effect=25, alpha=0.4,beta=0.5,theta=10, covariates=NULL,sample.ids=NULL,assembly="hg18", context="CpG",add.info=FALSE){ if(length(treatment) != replicates){ stop("treatment must be of same length as requested number of replicates")} if(!is.null(covariates)){ if(nrow(covariates)!=replicates){ stop("nrow(covariates) must be equal to replicates")} } if (replicates < 1) { stop("number of replicates has to be >= 1.") } if(replicates == 1){ warning("single replicate methylBase cannot be used downstream.") } if (!is.null(sample.ids)) { if (length(sample.ids) != replicates) { stop("sample.ids must be of same length as requested number of replicates") } } else { sample.ids <- ifelse(treatment == 1, paste0("test", cumsum(treatment)), paste0("ctrl", cumsum(!treatment))) } raw <- matrix(ncol=replicates*3,nrow=sites) index<-seq(1,replicates*3,by=3) x <- rbeta(sites,alpha,beta) treatment_indices<-sample((1:sites)[x < (1-(effect/100))], size=sites*(percentage/100)) covariate_indices<-sample(1:sites,size=sites*0.05) addinfo<-rep(0,sites) effects <- if(length(effect)==1) rep(effect,length(x)) else sample(effect, length(x),replace=TRUE) for(i in 1:replicates){ coverage <- rnbinom(sites,1,0.01) coverage <- ifelse(coverage<10,10,coverage) raw[,index[i]] <- coverage raw[,index[i]+1] <- ceiling(coverage * rbetabinom(n=sites,prob=x, size=50,theta=theta)/50) if(treatment[i]==1){ y<-x+(effects/100) ifelse(y>1,1-x,effect) addinfo<-ifelse(y>1,1-x,effect) addinfo[-treatment_indices]<-0 y<-ifelse(y>1,1,y) raw[treatment_indices,index[i]+1] <- ceiling(coverage[treatment_indices] * rbetabinom( n=length(treatment_indices),prob=y[treatment_indices], size=50,theta=theta)/50) } if(!is.null(covariates[i,,drop=FALSE])){ raw[covariate_indices,index[i]+1] <- ceiling(coverage[covariate_indices] * rbetabinom( n=length(covariate_indices), prob=influence(p=x[covariate_indices], x=rep(covariates[i,], times=length(covariate_indices))), size=50,theta=theta)/50) } raw[,index[i]+2] <- coverage - raw[,index[i]+1] } df<-raw df=as.data.frame(df) info<-data.frame(chr=rep("chr1",times=sites),start=1:sites, end=2:(sites+1),strand=rep("+",times=sites)) df<-cbind(info,df) coverage.ind=seq(5,by=3,length.out=replicates) numCs.ind =coverage.ind+1 numTs.ind =coverage.ind+2 names(df)[coverage.ind]=paste(c("coverage"),1:replicates,sep="" ) names(df)[numCs.ind] =paste(c("numCs"),1:replicates,sep="" ) names(df)[numTs.ind] =paste(c("numTs"),1:replicates,sep="" ) obj=new("methylBase",(df),sample.ids=sample.ids, assembly=assembly,context=context,treatment=treatment, coverage.index=coverage.ind,numCs.index=numCs.ind,numTs.index=numTs.ind, destranded=FALSE,resolution="base") if(add.info==FALSE){ obj } else{ addinfo=treatment_indices list(obj,addinfo) } } influence <- function(p,x=NULL,b0=0.1,b1=0.1,k=100){ if(is.null(x)){ p<-p } else{ y <- exp(b0 + b1*x) / (k + exp(b0 + b1*x)) p <- (p+y)/2 } }
FractalSegment <- function(P1, P2, angle, cut1, cut2, f, it){ if (it==0){ DrawSegmentPoints(P1, P2, "black") } if (it>0){ P11=P1+cut1*(P2-P1) P12=P1+cut2*(P2-P1) angle=(pi*angle)/180 xx=P11[1] yy=P11[2] x_fixed=P12[1] y_fixed=P12[2] xx_new=f*(xx-x_fixed)*cos(-angle)-f*(yy-y_fixed)*sin(-angle)+x_fixed yy_new=f*(xx-x_fixed)*sin(-angle)+f*(yy-y_fixed)*cos(-angle)+y_fixed if ((180*angle)/pi<=60 | ((180*angle)/pi>300 & (180*angle)/pi<=360)){P31=c(xx_new, yy_new)} if ((180*angle)/pi>60 & (180*angle)/pi<=300){P32=c(xx_new, yy_new)} xx=P12[1] yy=P12[2] x_fixed=P11[1] y_fixed=P11[2] xx_new=f*(xx-x_fixed)*cos(angle)-f*(yy-y_fixed)*sin(angle)+x_fixed yy_new=f*(xx-x_fixed)*sin(angle)+f*(yy-y_fixed)*cos(angle)+y_fixed if ((180*angle)/pi<=60 | ((180*angle)/pi>300 & (180*angle)/pi<=360)){P32=c(xx_new, yy_new)} if ((180*angle)/pi>60 & (180*angle)/pi<=300){P31=c(xx_new, yy_new)} angle=(180*angle)/pi K1=FractalSegment(P1, P11, angle, cut1, cut2, f, it-1) K2=FractalSegment(P11, P31, angle, cut1, cut2, f, it-1) K3=FractalSegment(P31, P32, angle, cut1, cut2, f, it-1) K4=FractalSegment(P32, P12, angle, cut1, cut2, f, it-1) K5=FractalSegment(P12, P2, angle, cut1, cut2, f, it-1) } }
downloadSource <- function(type,subtype=NULL,overwrite=FALSE) { argumentValues <- as.list(environment()) startinfo <- toolstartmessage(argumentValues, "+") on.exit(toolendmessage(startinfo,"-")) if(!all(is.character(type)) || length(type)!=1) stop("Invalid type (must be a single character string)!") if(!is.null(subtype) && (!all(is.character(subtype)) || length(subtype)!=1)) stop("Invalid subtype (must be a single character string)!") functionname <- prepFunctionName(type = type, prefix = "download", ignore = ifelse(is.null(subtype), "subtype", NA)) if(!grepl("subtype=subtype",functionname,fixed=TRUE)) subtype <- NULL cwd <- getwd() on.exit(setwd(cwd), add = TRUE) if(!file.exists(getConfig("sourcefolder"))) dir.create(getConfig("sourcefolder"), recursive = TRUE) typesubtype <- paste(c(make.names(type),make.names(subtype)),collapse="/") setwd(getConfig("sourcefolder")) if(file.exists(typesubtype)) { if(overwrite) { unlink(typesubtype,recursive = TRUE) } else { stop("Source folder for source \"",typesubtype,"\" does already exist! Delete folder or activate overwrite to proceed!") } } dir.create(typesubtype, recursive = TRUE) setwd(typesubtype) on.exit(if(length(dir())==0) unlink(getwd(), recursive = TRUE), add=TRUE, after = FALSE) meta <- eval(parse(text=functionname)) mandatory <- c("url","author","title","license","description","unit") if(!all(mandatory %in% names(meta))) { vcat(0, "Missing entries in the meta data of function '", functionname[1], "': ", toString(mandatory[!mandatory %in% names(meta)])) } reserved <- c("call","accessibility") if(any(reserved %in% names(meta))) {vcat(0, "The following entries in the meta data of the function '",functionname[1],"' are reserved and will be overwritten: ",reserved[reserved %in% names(meta)])} meta$call <- list(origin = paste0(gsub("\\s{2,}", " ", paste(deparse(match.call()),collapse="")), " -> ", functionname, " (madrat ", unname(getNamespaceVersion("madrat")), " | ", attr(functionname, "pkgcomment"), ")"), type = type, subtype = ifelse(is.null(subtype), "none",subtype), time = format(Sys.time(),"%F %T %Z")) meta$accessibility <- ifelse(!is.null(meta$doi),"gold","silver") preferred_order <- c("title","description","author","doi","url","accessibility","license","version","release_date","unit","call","reference") order <- c(intersect(preferred_order,names(meta)),setdiff(names(meta),preferred_order)) write_yaml(meta[order],"DOWNLOAD.yml") }
bandwidth_cross_validation<-function( r, m, x, H, link = c( "logit" ), guessing = 0, lapsing = 0, K = 2, p = 1, ker = c( "dnorm" ), maxiter = 50, tol = 1e-6, method = c( "all" ) ) { ISE <- function( f1, f2 ) { return( sum( ( f1 - f2 )^2 ) ); } get_ise_p <- function( h ) { fest <- NULL; for( i in 1:Lx ) { fest[i] <- locglmfit( x[i], r[-i], m[-i], x[-i], h, FALSE, link, guessing, lapsing, K, p, ker, maxiter, tol )$ pfit; } return( ISE( r / m, fest ) ); } get_ise <- function( h ) { fest <- NULL; for( i in 1:Lx ) { fest[i] <- locglmfit( x[i], r[-i], m[-i], x[-i], h, FALSE, link, guessing, lapsing, K, p, ker, maxiter, tol )$ etafit; } fit <- ( r + .5 ) / ( m + 1 ); fit_eta <- linkfun( fit ) return( ISE( fit_eta, fest ) ); } get_dev <- function( h ) { fest <- NULL; for( i in 1:Lx ) { fest[i] <- locglmfit( x[i], r[-i], m[-i], x[-i], h, FALSE, link, guessing, lapsing, K, p, ker, maxiter, tol )$ pfit; } return( deviance2( r, m, fest ) ); } if( missing("r") || missing("m") || missing("x") || missing("H") ) { stop("Check input. First 4 arguments are mandatory"); } checkdata<-list(); checkdata[[1]] <- x; checkdata[[2]] <- r; checkdata[[3]] <- m; checkinput( "psychometricdata", checkdata ); rm( checkdata ) checkinput( "minmaxbandwidth", H ); checkinput( "linkfunction", link ); if( length( guessing ) > 1 ) { stop( "guessing rate must be scalar" ); } if( length( lapsing ) > 1 ) { stop( "lapsing rate must be scalar" ); } checkinput( "guessingandlapsing", c( guessing, lapsing ) ); checkinput( "guessingandlapsing", c( guessing, lapsing ) ); if (link == "weibull" || link == "revweibull"){ checkinput( "exponentk", K ); } pn <- list() pn[[1]] <- p pn[[2]] <- x checkinput( "degreepolynomial", pn ); checkinput( "kernel", ker ); checkinput( "maxiter", maxiter ); checkinput( "tolerance", tol ); checkinput( "method", method ); LH = length(H); Lx = length(x); if( link == "logit" || link == "probit" || link == "loglog" || link == "comploglog" || link == "weibull" || link == "revweibull" ) { LINK <- paste( link, "_link_private", sep = "" ); }else{ LINK <- link } if( LINK != "weibull_link_private" && LINK != "revweibull_link_private" ) { linkuser <- eval( call( LINK, guessing, lapsing ) ); } else{ linkuser <- eval( call( LINK, K, guessing, lapsing ) ); } linkfun <- linkuser$linkfun; warn.current <- getOption("warn") on.exit(options(warn = warn.current)); options(warn=-1) h <- NULL; if( method == "ISE" ) { h <- optimize( get_ise_p, lower = H[1], upper = H[2] )$minimum; } else { if ( method == "ISEeta") { h <- optimize( get_ise, lower = H[1], upper = H[2] )$minimum; } else { if( method == "likelihood" ) { h <- optimize( get_dev, lower = H[1], upper = H[2] )$minimum; } else { h$pscale <- optimize( get_ise_p, lower = H[1], upper = H[2] )$minimum; h$etascale <- optimize( get_ise, lower = H[1], upper = H[2] )$minimum; h$deviance <- optimize( get_dev, lower = H[1], upper = H[2] )$minimum; } } } return( h ); }
inputBottleSim <- function(datafile, ndigit=3) { input=read.delim(file=datafile, sep='\r') noext= gsub("[.].*$","",datafile) popcount=rbind(which(input == 'pop', arr.ind=T),which(input=='Pop',arr.ind=T),which(input=='POP',arr.ind=T)) popcount=popcount[,1] npops=NROW(popcount) popcount=sort(popcount) nloci=popcount[1]-1 popsizes=vector(length=npops) for (h in 1:npops) { if (h<npops) popsizes[h]=popcount[h+1]-popcount[h]-1 if (h==npops) popsizes[h]=nrow(input)-popcount[h] } n.individuals=sum(popsizes) bottlesim=matrix(NA, n.individuals+3, nloci*2+1) bottlesim[1,1]=n.individuals bottlesim[2,1]=nloci for (a in 1:nloci){bottlesim[3,a]=as.character(input[a,])} input2=input[-popcount,] input3=input2[-(1:nloci)] for (b in 1:n.individuals) { inddata=input3[b] inddata=as.vector(inddata) indID= gsub("[ ]","",inddata) indID= gsub("[\t]|[,].*$","",indID) bottlesim[(3+b),1]=substr(indID,1,9) inddata=gsub( "[^[:alnum:]]", "", inddata) total=nchar(inddata) diff=total-(ndigit*2*nloci) for (x in 1:nloci) { bottlesim[(3+b),(1+((2*x)-1))]=substr(inddata,diff+(2*ndigit*(x-1))+(ndigit-(ndigit-1)), diff+(2*ndigit*(x-1))+ndigit) bottlesim[(3+b),(1+(2*x))]=substr(inddata,diff+(2*ndigit*(x-1))+ndigit+1, diff+(2*ndigit*(x-1))+(2*ndigit)) } } if (ndigit==2) missing='00' if (ndigit==3) missing='000' for (r in 1:nrow(bottlesim)) { for (c in 1:ncol(bottlesim)) { if (is.na(bottlesim[r,c])==T) bottlesim[r,c]='' } } for (x in 1:nrow(bottlesim)) { for (y in 1:ncol(bottlesim)) { if (bottlesim[x,y]==missing) bottlesim[x,y]='?' }} bottlesim2=bottlesim alleles.bsim=c(0,1,2,3,4,5,6,7,8,9, 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z') final.vec=NULL kvec=rep(NA,times=nloci) for (i in 1:nloci) { alleles=bottlesim[4:(nrow(bottlesim)),(i*2):((i*2)+1)] alleles=as.vector(alleles) vec=unique(alleles) if (length(which(vec[]=='?')>0)) vec=vec[-which(vec[]=='?')] kvec[i]=length(vec) sort.vec=sort(vec) for (j in 1:kvec[i]) { for (x in 4:(nrow(bottlesim)) ) { for (y in (i*2):((i*2)+1)) { if (bottlesim[x,y]==sort.vec[j]) bottlesim2[x,y] = alleles.bsim[j] }}} final.vec=c(final.vec,sort.vec) } filename=paste(noext,'_Bsim.txt',sep='') write.table(bottlesim2, file=filename, quote=F, row.names=F, col.names=F, sep='\t') save(final.vec, kvec, file='alleles') return(list('final.vec'=final.vec, 'kvec'=kvec)) }
ensuredim <- function (x){ if (is.null (dim (x))) x <- structure (x, .Dim = length (x), .Dimnames = lon (list (names (x))), .Names = NULL) x } .test (ensuredim) <- function (){ checkEquals (ensuredim (v), structure(1:3, .Dim = 3L, .Dimnames = list(c("a", "b", "c")))) checkEquals (ensuredim (as.numeric (v)), structure(1:3, .Dim = 3L)) checkEquals (ensuredim (m), m) checkEquals (ensuredim (a), a) } drop1d <- function (x, drop = TRUE){ if (drop && ndim (x) == 1) x <- structure (x, .Dim = NULL, .Dimnames = NULL, .Names = dimnames (x)[[1]]) x } .test (drop1d) <- function () { checkEquals (drop1d (a), a) checkEquals (drop1d (m), m) checkEquals (drop1d (v), v) checkEquals (drop1d (ensuredim (v)), v) checkEquals (drop1d (ensuredim (v), drop = FALSE), ensuredim (v)) }
context("oai") test_that("gbif_oai_identify", { vcr::use_cassette("gbif_oai_identify", { tt <- gbif_oai_identify() }, preserve_exact_body_bytes = TRUE) expect_is(tt, "list") expect_is(tt$repositoryName, "character") expect_equal(tt$repositoryName, "GBIF Registry") }) test_that("gbif_oai_list_metadataformats", { vcr::use_cassette("gbif_oai_list_metadataformats", { tt <- gbif_oai_list_metadataformats() }) expect_is(tt, "data.frame") expect_is(tt$metadataPrefix, "character") expect_named(tt, c('metadataPrefix', 'schema', 'metadataNamespace')) }) test_that("gbif_oai_list_sets", { vcr::use_cassette("gbif_oai_list_sets", { tt <- gbif_oai_list_sets() }, preserve_exact_body_bytes = TRUE) expect_is(tt, "data.frame") expect_is(tt$setSpec, "character") expect_named(tt, c('setSpec', 'setName')) }) test_that("gbif_oai_list_identifiers", { vcr::use_cassette("gbif_oai_list_identifiers", { tt <- gbif_oai_list_identifiers(from = "2017-01-15", until = "2017-01-30") }) expect_is(tt, "data.frame") expect_is(tt$setSpec, "character") }) test_that("gbif_oai_get_records", { vcr::use_cassette("gbif_oai_get_records", { tt <- gbif_oai_get_records("9c4e36c1-d3f9-49ce-8ec1-8c434fa9e6eb") }, preserve_exact_body_bytes = TRUE) expect_is(tt, "list") expect_is(tt[[1]], "list") expect_is(tt[[1]]$header, "data.frame") expect_is(tt[[1]]$metadata, "data.frame") expect_equal(length(tt), 1) expect_is(tt[[1]]$header$identifier, "character") expect_equal(tt[[1]]$header$identifier, "9c4e36c1-d3f9-49ce-8ec1-8c434fa9e6eb") expect_is(tt[[1]]$metadata$title, "character") expect_equal(tt[[1]]$metadata$title, "Freshwater fishes of Serbia and Montenegro") })
.onLoad <- function(lib, pkg){ Rdpack::Rdpack_bibstyles(package = pkg, authors = "LongNames") invisible(NULL) } multiple_breakpoints <- function(data, number_bp = "Unknown", max_bp = 80, inf_crit = "BIC", ext_out = "TRUE") { stopifnot("data must be a vector, matrix or data frame" = (is.vector(data) | is.data.frame(data) | is.matrix(data)) & !is.list(data)) stopifnot("inf_crit must be AIC, BIC or HQC" = inf_crit %in% c("AIC", "BIC", "HQC")) if (is.vector(data)) { data <- cbind(seq_len(length(data)), data) } if (is.data.frame(data)) { data <- as.matrix(data) if (ncol(data) == 1) data <- cbind(seq_len(length(data)), data) } if (is.matrix(data)) { stopifnot("Vector respectively second column of matrix or data frame is not binary" = all(sort(unique(data[, 2])) == c(0, 1))) if (dim(data)[2] == 1) { data <- cbind(seq_len(length(data)), data) } data <- data[order(data[, 1]), ] number <- nrow(data) data2 <- data colnames(data) <- c("V1", "V2") data <- as.matrix(cbind(aggregate(V2 ~ V1, data = data, sum), aggregate(V2 ~ V1, data = data, length)[, 2])) data <- cbind(data, 1 / number * cumsum((data[, 2] - data[, 3] * mean(data2[, 2])) / sd(data2[, 2]))) if (ext_out == TRUE) { dataexport <- data[, 1] } l <- limit <- correction <- 0 stand_dev <- 1 estimate <- safe_index <- ic <- numeric() loglik <- sum(data[, 2]) * log(mean(data2[, 2])) + (sum(data[, 3]) - sum(data[, 2])) * log(1 - mean(data2[, 2])) ic <- - 2 * loglik q <- 2 estimate[1] <- -Inf group <- vector(mode = "list") if (number_bp == "Unknown") { number_bp <- max_bp } while (limit < number_bp) { l <- l + 1 correction <- correction - 1 group <- group2 <- vector(mode = "list") estimate[length(estimate) + 1] <- data[which.max(abs(data[, 4])), 1] estimatesort <- c(sort(estimate), Inf) border <- which(data[, 1] <= estimatesort[which(estimate[length(estimate)] == estimatesort) + 1] & data[, 1] > estimatesort[which(estimate[length(estimate)] == estimatesort) - 1]) if (((quantile(abs(data[border, 4]), type = 1, probs = 0.85) >= max(abs(data[, 4])) * 0.95) & length(data[border, 4]) >= 20) & max(abs(data[, 4])) > 0) { safe_index <- c(safe_index, length(estimate)) correction <- 3 } else{ if (length(safe_index) > 0) { estimate <- estimate[-safe_index] estimatesort <- c(sort(estimate), Inf) safe_index <- numeric() } loglik <- numeric() for (i in 2:length(estimatesort)) { group[[i - 1]] <- matrix(c(data[data[, 1] <= estimatesort[i] & data[, 1] > estimatesort[i - 1], 2:3]), ncol = 2) if (sum(group[[i - 1]][, 1]) == 0 | sum(group[[i - 1]][, 1]) == sum(group[[i - 1]][, 2])) { loglik[i - 1] <- 0 } else { loglik[i - 1] <- sum(group[[i - 1]][, 1]) * log(weighted.mean(group[[i - 1]][, 1] / group[[i - 1]][, 2], group[[i - 1]][, 2])) + (sum(group[[i - 1]][, 2]) - sum(group[[i - 1]][, 1])) * log(1 - weighted.mean(group[[i - 1]][, 1] / group[[i - 1]][, 2], group[[i - 1]][, 2])) } } if (inf_crit == "BIC") { ic <- c(ic, - 2 * sum(loglik) + log(number) * (length(estimate) - 1)) } else if (inf_crit == "HQC") { ic <- c(ic, - 2 * sum(loglik) + 2 * (length(estimate) - 1) * log(log(number))) } else if (inf_crit == "AIC") { ic <- c(ic, - 2 * sum(loglik) + 2 * (length(estimate) - 1)) } if (number_bp >= max_bp) { if (ic[length(ic)] > ic[length(ic) - 1] & (correction < 1)) { limit <- Inf } else { limit <- limit + 1 if (ext_out == TRUE) { dataexport <- cbind(dataexport, data[, 4]) } } correction <- 0 } else { limit <- limit + 1 if (ext_out == TRUE) { dataexport <- cbind(dataexport, data[, 4]) } } } vektor <- numeric() stand_dev <- vector(mode = "list") for (j in 2:length(estimatesort)) { group[[j - 1]] <- matrix(c(data[data[, 1] <= estimatesort[j] & data[, 1] > estimatesort[j - 1], 2:3]), ncol = 2) group2[[j - 1]] <- c(data2[data2[, 1] <= estimatesort[j] & data2[, 1] > estimatesort[j - 1], 2]) if (sum(group[[j - 1]][, 2]) > 1) { stand_dev[[j - 1]] <- sd(group2[[j - 1]]) if (stand_dev[[j - 1]] == 0) { stand_dev[[j - 1]] <- 1 } } else { stand_dev[[j - 1]] <- 1 } vektor <- c(vektor, 1 / number * cumsum((group[[j - 1]][, 1] - group[[j - 1]][, 2] * weighted.mean(group[[j - 1]][, 1] / group[[j - 1]][, 2], group[[j - 1]][, 2])) / stand_dev[[j - 1]])) } data <- cbind(data[, 1:3], round(vektor, 12)) q <- q + 1 } if (limit == Inf) { estimate <- estimate[-length(estimate)] } colnames(data) <- c("X", "Y", paste("S_n", 1:(ncol(data) - 2))) success <- numeric() estimatesort <- c(sort(estimate), Inf) for (i in 2:length(estimatesort)) { group[[i - 1]] <- matrix(c(data[data[, 1] <= estimatesort[i] & data[, 1] > estimatesort[i - 1], 2:3]), ncol = 2) success[i - 1] <- sum(group[[i - 1]][, 1]) / sum(group[[i - 1]][, 2]) } if (ext_out == TRUE) { output <- c(list(Breakpoints = sort(estimate[-1]), Probabilities = success, ic = ic, S = dataexport)) names(output)[3] <- inf_crit class(output) <- c("mBP") print(output[1:3]) return(invisible(output)) } else { output <- c(list(Breakpoints = sort(estimate[-1]), Probabilities = success, ic = ic)) names(output)[3] <- inf_crit class(output) <- c("mBP") return(output) } } } plot.mBP <- function(x, ask = TRUE, ...) { stopifnot("Plot cannot be drawn. Set ext_out argument to TRUE in multiple_breakpoints command" = length(x) != 3) devAskNewPage(ask = ask) if (length(dim(x[[4]])) != 0) { old_par <- par("mar") par(mar = c(4.5, 5, 2.5, 0)) par(omd = c(0, 0.8, 0, 1)) if (dim(x[[4]])[2] >= 3) { plot(x[[4]][, 1], x[[4]][, 2], ylim = c(1.1 * min(x[[4]][, -1]), 1.1 * max(x[[4]][, -1])), xlab = "x", ylab = expression(paste(S[n]^(m), "(x)", sep = "")), type = "l") points(c(min(x[[4]][, 1]), max(x[[4]][, 1])), c(0, 0), type = "l", lty = "dashed") location <- which.max(abs(x[[4]][, 2])) segments(x[[4]][location, 1], 0, x1 = x[[4]][location, 1], y1 = x[[4]][location, 2], lty = "dashed") for (i in 3:ncol(x[[4]])) { points(x[[4]][, 1], x[[4]][, i], col = i - 1, type = "l") location <- which.max(abs(x[[4]][, i])) segments(x[[4]][location, 1], 0, x1 = x[[4]][location, 1], y1 = x[[4]][location, i], col = i - 1, lty = "dashed") } legend(par("usr")[2], par("usr")[4], xpd = NA, legend = paste("m=", 1:(ncol(x[[4]]) - 1), sep = ""), col = 1:(ncol(x[[4]]) - 1), lty = rep(1, (ncol(x[[4]]) - 1)), bty = "n", title = "Step") } else { plot(x[[4]][, 1], x[[4]][, 2], ylim = c(1.1 * min(x[[4]][, -1]), 1.1 * max(x[[4]][, -1])), xlab = "x", ylab = expression(paste(S[n]^m, "(x)", sep = "")), type = "l") points(c(min(x[[4]][, 1]), max(x[[4]][, 1])), c(0, 0), type = "l", lty = "dashed") location <- which.max(abs(x[[4]][, 2])) segments(x[[4]][location, 1], 0, x1 = x[[4]][location, 1], y1 = x[[4]][location, 2], lty = "dashed") legend(par("usr")[2], par("usr")[4], xpd = NA, legend = paste("m=", 1, sep = ""), col = 1, lty = 1, bty = "n", title = "Step") } } par(mar = c(4.5, 5, 2.5, 1)) if (length(x[[1]]) == 0) { plot(0, xlab = "x", ylab = "Succes Probability", ylim = c(0, 1.1 * x[[2]]), xlim = c(0, 1), type = "n") points(0:1, rep(x[[2]], 2), type = "l") } else { if (length(x[[1]]) > 1) { x_range <- range(x[[1]]) } else { x_range <- c(0.95 * x[[1]], 1.05 * x[[1]]) } add_to_x_range <- 0.05 * diff(x_range) xvec <- c(x_range[1] - add_to_x_range, rep(x[[1]], each = 2), x_range[2] + add_to_x_range) yvec <- rep(x[[2]], each = 2) par(las = 1) plot(0, xlab = "Breakpoints", ylab = "Succes Probability", ylim = c(0, max(1.1 * x[[2]])), xlim = c(min(xvec), max(xvec)), type = "n", xaxt = "n", yaxt = "n") axis(1, at = x[[1]], labels = round(x[[1]], 3)) axis(2, at = x[[2]], labels = round(x[[2]], 3)) for (i in seq(1, (length(xvec) - 1), by = 2)) { points(xvec[i:(i + 1)], yvec[i:(i + 1)], type = "l") } for (i in seq(2, (length(xvec) - 1), by = 2)) { points(xvec[i:(i + 1)], c(0, max(yvec[i:(i + 1)])), type = "l", lty = "dotted") } } par(mar = old_par, las = 0, ask = FALSE) }
attitude <- data.frame( rating = c(43, 63, 71, 61, 81, 43, 58, 71, 72, 67, 64, 67, 69, 68, 77, 81, 74, 65, 65, 50, 50, 64, 53, 40, 63, 66, 78, 48, 85, 82), complaints = c(51, 64, 70, 63, 78, 55, 67, 75, 82, 61, 53, 60, 62, 83, 77, 90, 85, 60, 70, 58, 40, 61, 66, 37, 54, 77, 75, 57, 85, 82), privileges = c(30, 51, 68, 45, 56, 49, 42, 50, 72, 45, 53, 47, 57, 83, 54, 50, 64, 65, 46, 68, 33, 52, 52, 42, 42, 66, 58, 44, 71, 39), learning = c(39, 54, 69, 47, 66, 44, 56, 55, 67, 47, 58, 39, 42, 45, 72, 72, 69, 75, 57, 54, 34, 62, 50, 58, 48, 63, 74, 45, 71, 59), raises = c(61, 63, 76, 54, 71, 54, 66, 70, 71, 62, 58, 59, 55, 59, 79, 60, 79, 55, 75, 64, 43, 66, 63, 50, 66, 88, 80, 51, 77, 64), critical = c(92, 73, 86, 84, 83, 49, 68, 66, 83, 80, 67, 74, 63, 77, 77, 54, 79, 80, 85, 78, 64, 80, 80, 57, 75, 76, 78, 83, 74, 78), advance = c(45, 47, 48, 35, 47, 34, 35, 41, 31, 41, 34, 41, 25, 35, 46, 36, 63, 60, 46, 52, 33, 41, 37, 49, 33, 72, 49, 38, 55, 39))
test_that("tolower works", { txt <- c("According to NATO", "There is G7 meeting") expect_equal(char_tolower(txt), c("according to nato", "there is g7 meeting")) expect_error(char_tolower(txt, logical()), "The length of keep_acronyms must be 1") expect_error(char_tolower(txt, c(TRUE, FALSE)), "The length of keep_acronyms must be 1") }) test_that("char_tolower/char_toUpper works", { txt <- c("According to NATO", "There is G7 meeting") expect_equal(char_tolower(txt[1]), "according to nato") expect_equal(char_toupper(txt[1]), "ACCORDING TO NATO") }) test_that("char_tolower keeps acronyms", { txt <- c("According to NATO", "There is G7 meeting") expect_equal(char_tolower(txt, keep_acronyms = TRUE), c("according to NATO", "there is G7 meeting")) }) test_that("tokens_tolower/tokens_toupper works", { txt <- c("According to NATO", "There is G7 meeting") toks <- tokens(txt) expect_equal(as.list(tokens_tolower(toks)), list(text1 = c("according", "to", "nato"), text2 = c("there", "is", "g7", "meeting"))) expect_equal(as.list(tokens_tolower(toks, keep_acronyms = TRUE)), list(text1 = c("according", "to", "NATO"), text2 = c("there", "is", "G7", "meeting"))) expect_equal(as.list(tokens_toupper(toks)), list(text1 = c("ACCORDING", "TO", "NATO"), text2 = c("THERE", "IS", "G7", "MEETING"))) expect_error(tokens_tolower(toks, logical()), "The length of keep_acronyms must be 1") expect_error(tokens_tolower(toks, c(TRUE, FALSE)), "The length of keep_acronyms must be 1") }) test_that("tokens_tolower/tokens_toupper works", { txt <- c("According to NATO", "There is G7 meeting") dfmat <- dfm(tokens(txt), tolower = FALSE) expect_equal(featnames(dfm_tolower(dfmat)), c("according", "to", "nato", "there", "is", "g7", "meeting")) expect_equal(featnames(dfm_tolower(dfmat, keep_acronyms = TRUE)), c("according", "to", "NATO", "there", "is", "G7", "meeting")) expect_equal(featnames(dfm_toupper(dfmat)), c("ACCORDING", "TO", "NATO", "THERE", "IS", "G7", "MEETING")) expect_error(dfm_tolower(dfmat, logical()), "The length of keep_acronyms must be 1") expect_error(dfm_tolower(dfmat, c(TRUE, FALSE)), "The length of keep_acronyms must be 1") }) test_that("set encoding when no gap or duplication is found, toks <- tokens("привет tschüß bye") toks <- tokens_tolower(toks) expect_equal(Encoding(types(toks)), c("UTF-8", "UTF-8", "unknown")) }) test_that("works with empty objects ( dfmat <- as.dfm(matrix(nrow = 0, ncol = 0)) toks <- as.tokens(list()) expect_identical(types(tokens_tolower(toks)), character()) expect_identical(types(tokens_toupper(toks)), character()) expect_identical(featnames(dfm_tolower(dfmat)), character()) expect_identical(featnames(dfm_toupper(dfmat)), character()) })
setGeneric("resp_loglik", function(ip, resp, theta, derivative = 0) {standardGeneric("resp_loglik")}) setMethod( f = "resp_loglik", signature = c(ip = "Item"), function(ip, resp, theta, derivative = 0){ if (ip$model %in% c(UNIDIM_DICHO_MODELS, UNIDIM_POLY_MODELS)) { if (inherits(resp, 'integer')) { if (all(is.na(resp))) return(resp) if (!all(is.na(resp) | resp %in% 0L:length(ip$b))) stop(paste0("\nInvalid response. Response should be ", "either: ", paste0(0L:length(ip$b), collapse = ", "), " or NA (i.e. missing).")) if (length(theta) == length(resp)) { return(resp_loglik_item_cpp(resp = resp, theta = theta, item = ip, derivative = derivative)) } else stop(paste0("Invalid arguments. Number of subjects (theta) ", "should be equal to the number of responses.")) } else if (inherits(resp, c("numeric", "logical"))) { return(resp_loglik(ip = ip, resp = as.integer(resp), theta = theta, derivative = derivative)) } else if (inherits(resp, c("matrix"))) { if ((ncol(resp) == 1) && (nrow(resp) == length(theta))) { return(resp_loglik(ip = ip, resp = as.integer(resp), theta = theta, derivative = derivative)) } else stop(paste0("\nInvalid arguments. Either resp has more than ", "1 column, or number of rows in resp matrix is ", "not equal to the length of theta vector.")) } else if (inherits(resp, c("data.frame"))) { return(resp_loglik(ip = ip, resp = as.matrix(resp), theta = theta, derivative = derivative)) } else stop(paste0("Invalid response. Response cannot be a ", class(resp)[1], " object")) } else stop("\nThis model is not implemented in this function.") } ) setMethod( f = "resp_loglik", signature = c(ip = "Itempool"), function(ip, resp, theta, derivative = 0){ if (all(ip$model %in% c(UNIDIM_DICHO_MODELS, UNIDIM_POLY_MODELS) | sapply(ip@item_list, is, "Testlet"))) { num_items <- get_itempool_size(ip)["items"] num_theta <- length(theta) if (inherits(resp, 'integer')) { if (num_items == 1) { if (num_theta == length(resp)) { item <- ip@item_list[[1]] if (is(item, "Item")) { result <- resp_loglik_item_cpp(resp = resp, theta = theta, item = item, derivative = derivative) } else if (is(item, "Testlet")) { result <- resp_loglik_bare_testlet_cpp(resp = resp, theta = theta, testlet = item, derivative = derivative) } } else stop(paste0("Invalid arguments. Number of subjects (theta) ", "should be equal to the number of responses.")) } else { if (all(is.na(resp))) return(NA) if ((num_theta == 1) && (num_items == length(resp))) { result <- resp_loglik_itempool_cpp(resp = matrix(resp, nrow = 1), theta = theta, ip = ip, derivative = derivative) } else stop(paste0("Invalid arguments. Number of subjects (theta) ", "should be equal to 1 and the number of ", "responses should equal to the number of items.")) } } else if (inherits(resp, c("numeric", "logical"))) { return(resp_loglik(resp = as.integer(resp), ip = ip, theta = theta, derivative = derivative)) } else if (inherits(resp, c("matrix"))) { if ((ncol(resp) == num_items) && (nrow(resp) == num_theta) && is.numeric(resp)) { result <- resp_loglik_itempool_cpp(resp = resp, theta = theta, ip = ip, derivative = derivative) } else stop(paste0("\nInvalid arguments. Number of columns of the resp ", "matrix should be equal to the number of items.", "Also number of rows of the resp matrix should be ", "equal to the number of subjects (theta).")) } else if (inherits(resp, c("data.frame"))) { result <- resp_loglik(ip = ip, resp = sapply(resp, as.integer), theta = theta, derivative = derivative) } else stop(paste0("Invalid response. Response cannot be a ", class(resp)[1], " object")) if (!is.null(names(theta))) names(result) <- names(theta) return(result) } else stop(paste0("There is an item model in the item pool that is ", "not implemented in this function yet.")) } ) setMethod( f = "resp_loglik", signature = c(ip = "Testlet"), function(ip, resp, theta, derivative = 0){ return(resp_loglik(ip = itempool(ip), resp = resp, theta = theta, derivative = derivative)) } ) setMethod( f = "resp_loglik", signature = c(ip = "numMatDfListChar"), function(ip, resp, theta, derivative = 0){ if (inherits(ip, "numeric")) { return(resp_loglik(resp = resp, ip = item(ip), theta = theta, derivative = derivative)) } else if (inherits(ip, c("data.frame", "matrix", "list"))) { return(resp_loglik(ip = itempool(ip), resp = resp, theta = theta, derivative = derivative)) } else { stop("Cannot convert object to an 'Item' or an 'Itempool' object. ", "Please provide a valid 'Item' or 'Itempool' object using either ", "'item()' or 'itempool()' function.") } } ) setMethod( f = "resp_loglik", signature = c(ip = "Itempool", resp = "Response"), function(ip, resp, theta, derivative = 0){ resp <- response_set(lapply(1:length(theta), function(x) resp), ip = ip) return(resp_loglik_response_set_cpp(resp, theta, ip = ip, derivative = derivative)) } ) setMethod( f = "resp_loglik", signature = c(ip = "Itempool", resp = "Response_set"), function(ip, resp, theta, derivative = 0){ return(resp_loglik_response_set_cpp(resp_set = resp, theta = theta, ip = ip, derivative = derivative)) } )
library(igraph) test_that("one vertex best solution is returned", { solver <- rnc_solver(max_iterations = 100) g <- igraph::make_graph(c("A", "B"), directed = FALSE) V(g)$weight <- c(5, 5) E(g)$weight <- -7 solution <- solve_mwcsp(solver, g) expect_equal(solution$weight, 5) }) test_that("sgmwcs rnc solver works on specific test", { solver <- rnc_solver(max_iterations = 100) g <- igraph::make_ring(5) V(g)$weight <- 1:-3 E(g)$weight <- 1 solution <- solve_mwcsp(solver, g) expect_equal(solution$weight, 2) expect_equal(solution$solved_to_optimality, TRUE) expect_true(igraph::is_connected(solution$graph)) }) test_that("sgmwcs rnc solver does not crush on GAM instances", { solver <- rnc_solver(max_iterations = 100) solution <- solve_mwcsp(solver, gam_example) expect_gte(length(V(solution$graph)), 0) expect_true(igraph::is_connected(solution$graph)) }) test_that("sgmwcs rnc solver gives good solution for a GAM instance", { rnc <- rnc_solver(max_iterations = 100) solution <- solve_mwcsp(rnc, gmwcs_example) expect_gte(get_weight(solution$graph), 200) expect_true(igraph::is_connected(solution$graph)) })
mice.impute.rfpred.cate <- function( y, ry, x, wy = NULL, num.trees.cate = 10, use.pred.prob.cate = TRUE, forest.vote.cate = FALSE, pre.boot = TRUE, num.threads = NULL, ...) { if (is.null(wy)) wy <- !ry yMisNum <- sum(wy) if (is.logical(y)) { yIsLogical <- TRUE y <- as.factor(y) } else { yIsLogical <- FALSE } if (isTRUE(pre.boot)) { bootIdx <- sample(sum(ry), replace = TRUE) yObs <- y[ry][bootIdx] xObs <- x[ry, , drop = FALSE][bootIdx, , drop = FALSE] } else { yObs <- y[ry] xObs <- x[ry, , drop = FALSE] } yobsLvDrop <- droplevels(yObs) yObsLvNum <- nlevels(yobsLvDrop) if (yObsLvNum == 1) return(rep_len(yObs, length.out = yMisNum)) xMis <- x[wy, , drop = FALSE] if (isTRUE(forest.vote.cate)) { rangerObj <- rangerCallerSafe( x = xObs, y = yObs, oob.error = FALSE, num.trees = num.trees.cate, num.threads = num.threads, ...) impVal <- predictions(predict(rangerObj, xMis)) } else if (isTRUE(use.pred.prob.cate)) { rangerObjProb <- rangerCallerSafe( x = xObs, y = yObs, probability = TRUE, oob.error = FALSE, num.trees = num.trees.cate, num.threads = num.threads, ...) misPredMat <- predictions(predict(rangerObjProb, xMis)) yLevels <- colnames(misPredMat) impValChar <- apply( X = misPredMat, MARGIN = 1, FUN = function(voteProb) { sample(x = yLevels, size = 1, prob = voteProb) }) impVal <- factor(x = impValChar, levels = levels(y)) } else { rangerObj <- rangerCallerSafe( x = xObs, y = yObs, oob.error = FALSE, num.trees = num.trees.cate, num.threads = num.threads, ...) misPredMat <- predictions(predict(rangerObj, xMis, predict.all = TRUE)) impValChar <- apply( X = misPredMat, MARGIN = 1, FUN = function(x) sample(x = x, size = 1)) impVal <- factor(x = levels(y)[impValChar], levels = levels(y)) } if (yIsLogical) impVal <- as.logical(impVal == "TRUE") return(impVal) }
test_that("Box.Ljung.Test works", { blt <- Box.Ljung.Test(malleco, lag = 5) expect_equal(blt$data$y, rep(0, 5)) })
ICSS <- function(data = data, demean = FALSE){ if(demean) data <- data - mean(data) S <- rstack::stack$new() S$push(c(1,length(data))) potential_change_points <- rep(0, length(data)) cp_index <- 1; while (!S$is_empty()) { current_range <- S$pop() change_points_sub <- ICSS_step_1_and_2(data[current_range[1]:current_range[2]]) if(length(change_points_sub)==2){ S$push(change_points_sub + current_range[1]) } if(length(change_points_sub)>0){ potential_change_points[cp_index:(cp_index + (length(change_points_sub) -1))] <- change_points_sub + current_range[1] } cp_index <- cp_index + length(change_points_sub) } if(sum(potential_change_points, na.rm = T)==0) warning("Unable to identify structural variance breaks in the series.") potential_change_points <- unique(c(0, sort(potential_change_points), length(data))) converged <- FALSE while(!converged){ new_cps_stack <- rstack::stack$new() for(i in 2:(length(potential_change_points) -1)){ from <- potential_change_points[i-1] + 1 to <- potential_change_points[i+1] if(is.na(to)) return(NA) Dk <- CenteredCusumValues(data[from:to]) tmp <- check_critical_value(Dk) if(length(tmp$position)==0) return(NA) exceeds <- ifelse(is.na(tmp$exceeds), FALSE, tmp$exceeds) position <- tmp$position if(exceeds){ new_cps_stack$push(from + position) } } stack_entries <- vector(mode = "numeric", length = new_cps_stack$size()) for(j in 1:new_cps_stack$size()){stack_entries[j] <- new_cps_stack$pop()} new_cps <- unique(c(0, sort(stack_entries), length(data))) converged <- is_converged(potential_change_points, new_cps) if(!converged){ potential_change_points <- new_cps } } change_points <- potential_change_points[2:(length(potential_change_points) -1 )] return(change_points) } ICSS_step_1_and_2 <- function(x){ change_points <- vector(mode = "numeric") if (is.null(x)) return(NA) Dk <- CenteredCusumValues(x); tmp <- check_critical_value(Dk); if(length(tmp$position)==0) return(NA) exceeds <- tmp$exceeds position_step1 <- tmp$position if(exceeds){ position <- position_step1 while(exceeds){ t2 <- position Dk_step2a = CenteredCusumValues(x[1:t2]) tmp <- check_critical_value(Dk_step2a) if(length(tmp$position)==0) return(NA) exceeds <- ifelse(is.na(tmp$exceeds), FALSE, tmp$exceeds) position <- tmp$position } k_first <- t2 position <- position_step1 + 1 exceeds <- TRUE while(exceeds){ t1 <- position Dk_step2b <- CenteredCusumValues(x[t1:length(x)]) tmp <- check_critical_value(Dk_step2b) if(length(tmp$position)==0) return(NA) exceeds <- ifelse(is.na(tmp$exceeds), FALSE, tmp$exceeds) position2 <- tmp$position position <- position2 + position } k_last <- t1 - 1 if (k_first == k_last){ change_points <- k_first }else{ change_points = c(k_first, k_last) } } return(change_points) } CenteredCusumValues <- function(x){ T <- length(x) squared <- x^2 Ck <- cumsum(squared) CT = Ck[T] ks = 1:T Dk <- Ck/CT - (ks/T) return(Dk) } check_critical_value <- function(Dk){ value <- max(abs(Dk)) position <- which(abs(Dk)==value) if(length(position) > 1) return(list(position = NA, exceeds = NA)) M <- sqrt(length(Dk)/2) * value exceeds <- M > 1.358 return(list(position = position, exceeds = exceeds)) } is_converged <- function(old, new){ if(length(old) == length(new)){ for(i in 1:length(new)){ low <- min(old[i], new[i]) high <- max(old[i], new[i]) if((high - low) > 2){ return(FALSE) } } }else{ return(FALSE) } return(TRUE) }
parse_sets <- function(data) { template <- list( "id" = as.character, "code" = as.character, "name" = as.character, "mtgo_code" = as.character, "arena_code" = as.character, "tcgplayer_id" = as.integer, "uri" = as.character, "scryfall_uri" = as.character, "search_uri" = as.character, "released_at" = as.Date, "set_type" = as.character, "card_count" = as.integer, "parent_set_code" = as.character, "printed_size" = as.integer, "digital" = as.logical, "nonfoil_only" = as.logical, "foil_only" = as.logical, "block_code" = as.character, "block" = as.character, "icon_svg_uri" = as.character ) bind_rows(data, template) }
test_that("qr_version() works as expected", { expect_type(z <- qr_version("0"), "list") expect_identical(z[1:3], list(version = 1L, ecl = "L", mode = "Numeric")) expect_type(z <- qr_version("0", "M"), "list") expect_identical(z[1:3], list(version = 1L, ecl = "M", mode = "Numeric")) expect_type(z <- qr_version("100"), "list") expect_identical(z[1:3], list(version = 1L, ecl = "L", mode = "Numeric")) expect_type(z <- qr_version("0.1"), "list") expect_identical(z[1:3], list(version = 1L, ecl = "L", mode = "Alphanumeric")) expect_type(z <- qr_version("0.1", "M"), "list") expect_identical(z[1:3], list(version = 1L, ecl = "M", mode = "Alphanumeric")) x <- "fa\xE7ile" Encoding(x) <- "latin1" expect_type(z <- qr_version(x), "list") expect_identical(z[1:3], list(version = 1L, ecl = "L", mode = "Byte")) expect_type( z <- qr_version( "This text requires version 5 with error correction level Q", ecl = "Q" ), "list" ) expect_identical(z[1:3], list(version = 5L, ecl = "Q", mode = "Byte")) set.seed(20211005) expect_type( z <- qr_version( paste(sample(letters, 100, replace = TRUE), collapse = ""), ecl = "Q" ), "list" ) expect_identical(z[1:3], list(version = 8L, ecl = "Q", mode = "Byte")) expect_type( z <- qr_version( paste(sample(letters, 1600, replace = TRUE), collapse = ""), ecl = "Q" ), "list" ) expect_identical(z[1:3], list(version = 40L, ecl = "Q", mode = "Byte")) expect_true(has_attr(z$bit_string, "version")) expect_true(has_attr(z$bit_string, "ecl")) expect_true(has_attr(z$bit_string, "dcword1")) expect_true(has_attr(z$bit_string, "n1")) expect_true(has_attr(z$bit_string, "dcword2")) expect_true(has_attr(z$bit_string, "n2")) expect_true(has_attr(z$bit_string, "ecword")) expect_true(has_attr(z$bit_string, "remainder")) expect_true(has_attr(z$bit_string, "alignment")) })
c( Mod4Step5updateVind <- function(input, nb.IS){ m <- matrix(rep(0,(nb.IS*2)^2),(nb.IS*2)) diag(m)[1] <- input$Mod4Step5_Vi1 diag(m)[1 + nb.IS] <- input$Mod4Step5_Vi2 m[nb.IS + 1,1] <- input$Mod4Step5_Corr_I return(m) }, Mod4Step5updateB <- function(input, nb.IS){ m <- matrix(rep(0,(nb.IS*2)), nrow = 1) m[1,2] <- input$Mod4Step5_B11 m[1,nb.IS + 2] <- input$Mod4Step5_B12 return(m) }, output$Mod4Step5_hidden <- renderUI({ list( numericInput("Mod4Step5_Tmax", "", Modules_VAR$Tmax$max), numericInput("Mod4Step5_NI", "", 100), numericInput("Mod4Step5_NT", "", 2), numericInput("Mod4Step5_NR", "", 10), shinyMatrix::matrixInput("Mod4Step5_B", value = Mod4Step5updateB(input, nb.IS), class = "numeric"), shinyMatrix::matrixInput("Mod4Step5_Vind", value = Mod4Step5updateVind(input, nb.IS), class = "numeric"), shinyMatrix::matrixInput("Mod4Step5_Ve", value = matrix(c(input$Mod4Step5_Ve1, input$Mod4Step5_Corr_e, input$Mod4Step5_Corr_e, input$Mod4Step5_Ve2), 2), class = "numeric"), checkboxInput("Mod4Step5_X1_state", "", value = TRUE), checkboxInput("Mod4Step5_X1_sto_state", "", value = TRUE) ) }), outputOptions(output, "Mod4Step5_hidden", suspendWhenHidden = FALSE), get_data <- function(){ data <- squid::squidR(input, module = "Mod4Step5") dt <- as.data.table(data$sampled_data) dt <- dt[ , .(Time, Individual, Trait, Phenotype, X1)] dt[ , Trait := paste0("Phenotype_", Trait)] dt <- dcast(dt, Time + Individual + X1 ~ Trait, value.var = "Phenotype") return(list("sampled" = dt, "full_data" = data$full_data)) }, Mod4Step5_output <- reactive({ if (input$Mod4Step5_Run == 0) return(NULL) isolate({ updateCheckboxInput(session, "isRunning", value = TRUE) dt <- get_data() updateCheckboxInput(session, "isRunning", value = FALSE) return(dt) }) }), observe({ data <- Mod4Step5_output() if(is.null(data)){ disableActionButton("Mod4Step5_Run_1", session, "true") disableActionButton("Mod4Step5_Run_2", session, "true") }else{ disableActionButton("Mod4Step5_Run_1", session, "false") disableActionButton("Mod4Step5_Run_2", session, "false") } }), Mod4Step5_output_model1 <- reactive({ if (input$Mod4Step5_Run_1 == 0) return(NULL) isolate({ updateCheckboxInput(session, "isRunning", value = TRUE) data <- get_data()$sampled library(brms) fit1 <- readRDS("./source/server/modules/module4/stanFiles/module4_step5_brms_model1.rds") fit1 <- update(fit1, newdata = data, iter = 200, warmup = 100, chains = 1) updateCheckboxInput(session, "isRunning", value = FALSE) return(fit1) }) }), Mod4Step5_output_model2 <- reactive({ if (input$Mod4Step5_Run_2 == 0) return(NULL) isolate({ updateCheckboxInput(session, "isRunning", value = TRUE) data <- get_data()$sampled library(brms) fit2 <- readRDS("./source/server/modules/module4/stanFiles/module4_step5_brms_model2.rds") fit2 <- update(fit2, newdata = data, iter = 200, warmup = 100, chains = 1) updateCheckboxInput(session, "isRunning", value = FALSE) return(fit2) }) }), output$Mod4Step5_correlationplot <- renderPlot({ data <- Mod4Step5_output() if (!is.null(data)) { dt <- copy(data[["sampled"]]) ggplot2::ggplot(dt, ggplot2::aes(x = Phenotype_1, Phenotype_2, fill = as.factor(Individual), colour = as.factor(Individual))) + ggplot2::geom_point() + ggplot2::xlab("Phenotype of trait y") + ggplot2::ylab("Phenotype of trait z") + ggplotCustomTheme() }else{ sim_msg() } }), output$Mod4Step5_correlationplot2 <- renderPlot({ data <- Mod4Step5_output() if (!is.null(data)) { dt <- copy(data[["sampled"]]) dt <- dt[ , .(Phenotype_1 = mean(Phenotype_1), Phenotype_2 = mean(Phenotype_2)), by = Individual] ggplot2::ggplot(dt, ggplot2::aes(x = Phenotype_1, Phenotype_2, fill = as.factor(Individual), colour = as.factor(Individual))) + ggplot2::geom_point() + ggplot2::xlab("Mean phenotype of trait y") + ggplot2::ylab("Mean phenotype of trait z") + ggplotCustomTheme() }else{ defaultPlot() } }), output$Mod4Step5_correlationplot3 <- renderPlot({ data <- Mod4Step5_output() if (!is.null(data)) { dt <- copy(data[["sampled"]]) dt[ , ':='(Phenotype_1 = Phenotype_1 - mean(Phenotype_1), Phenotype_2 = Phenotype_2 - mean(Phenotype_2)), by = Individual] ggplot2::ggplot(dt, ggplot2::aes(x = Phenotype_1, Phenotype_2, fill = as.factor(Individual), colour = as.factor(Individual))) + ggplot2::geom_point() + ggplot2::xlab("Deviation from individual phenotype mean of trait y") + ggplot2::ylab("Deviation from individual phenotype mean of trait z") + ggplotCustomTheme() }else{ defaultPlot() } }), output$Mod4Step5_environment <- renderPlot({ data <- Mod4Step5_output() if (!is.null(data)) { dt <- copy(data[["full_data"]]) dt <- dt[1:(input$Mod4Step5_Tmax),] ggplot2::ggplot(dt, ggplot2::aes(x = Time, y = X1, fill = as.factor(Individual), colour = as.factor(Individual))) + ggplot2::geom_point() + ggplot2::xlab("Time") + ggplot2::ylab("Environment value") + ggplotCustomTheme() }else{ defaultPlot() } }), output$Mod4Step5_Phenotypic_Equation <- renderUI({ eq <- paste0("$$", NOT$trait.1,"_{",NOT$time,NOT$ind,"} = (0 + ",EQ$dev0.1,") + ",input$Mod4Step5_B11,NOT$env,"_{",NOT$time,NOT$ind,"} + ",NOT$error,"_{",NOT$trait.1,NOT$time,NOT$ind,"}$$ $$", NOT$trait.2,"_{",NOT$time,NOT$ind,"} = (0 + ",EQ$dev0.2,") + ",input$Mod4Step5_B12,NOT$env,"_{",NOT$time,NOT$ind,"} + ",NOT$error,"_{",NOT$trait.2,NOT$time,NOT$ind,"} $$") return(withMathJax(eq)) }), Matrices <- reactive({ cov1 <- round(input$Mod4Step5_Corr_I * sqrt(input$Mod4Step5_Vi1 * input$Mod4Step5_Vi2),3) eq1 <- paste0( "$$ \\Omega_{",NOT$devI,"}= \\begin{pmatrix} V_{",NOT$devI,"_",NOT$trait.1,"} & Cov_{",NOT$devI,"_",NOT$trait.1,",",NOT$devI,"_",NOT$trait.2,"} \\\\ Cov_{",NOT$devI,"_",NOT$trait.1,",",NOT$devI,"_",NOT$trait.2,"} & V_{", NOT$devI,"_",NOT$trait.2,"} \\\\ \\end{pmatrix} = \\begin{pmatrix} ",input$Mod4Step5_Vi1," & ",cov1," \\\\ ",cov1," & ",input$Mod4Step5_Vi2,"\\\\ \\end{pmatrix} $$") cov2 <- round(input$Mod4Step5_Corr_e * sqrt(input$Mod4Step5_Ve1 * input$Mod4Step5_Ve2),3) eq2 <- paste0( "$$ \\Omega_{",NOT$error,"}= \\begin{pmatrix} V_{",NOT$error,"_",NOT$trait.1,"} & Cov_{",NOT$error,"_",NOT$trait.1,",",NOT$error,"_",NOT$trait.2,"} \\\\ Cov_{",NOT$error,"_",NOT$trait.1,",",NOT$error,"_",NOT$trait.2,"} & V_{", NOT$error,"_",NOT$trait.2,"} \\\\ \\end{pmatrix} = \\begin{pmatrix} ",input$Mod4Step5_Ve1," & ",cov2," \\\\ ",cov2," & ",input$Mod4Step5_Ve2,"\\\\ \\end{pmatrix} $$") return(withMathJax(paste0(eq1, eq2))) }), output$Mod4Step5_Matrices_1 <- renderUI({Matrices()}), output$Mod4Step5_Matrices_2 <- renderUI({Matrices()}), output$Mod4Step5_Matrices_3 <- renderUI({Matrices()}), show_model_variance_results <- function(fit){ RanCoef <- VarCorr(fit) varI1 <- round(RanCoef[["Individual"]][["sd"]]["Phenotype1_Intercept", "Estimate"]^2, 2) varI2 <- round(RanCoef[["Individual"]][["sd"]]["Phenotype2_Intercept", "Estimate"]^2, 2) covI12 <- round(RanCoef[["Individual"]][["cov"]]["Phenotype1_Intercept", "Estimate", "Phenotype2_Intercept"], 2) varE1 <- round(RanCoef[["residual__"]][["sd"]]["Phenotype1", "Estimate"]^2, 2) varE2 <- round(RanCoef[["residual__"]][["sd"]]["Phenotype2", "Estimate"]^2, 2) covE12 <- round(RanCoef[["residual__"]][["cov"]]["Phenotype1", "Estimate", "Phenotype2"], 2) cov1 <- round(input$Mod4Step5_Corr_I * sqrt(input$Mod4Step5_Vi1 * input$Mod4Step5_Vi2),3) cov2 <- round(input$Mod4Step5_Corr_e * sqrt(input$Mod4Step5_Ve1 * input$Mod4Step5_Ve2),3) eq1 <- paste0( "$$\\Omega_{",NOT$devI,"'}= \\begin{pmatrix} ",varI1,"\\,[",input$Mod4Step5_Vi1,"] & ",covI12,"\\,[",cov1,"] \\\\ ",covI12,"\\,[",cov1,"] & ",varI2,"\\,[",input$Mod4Step5_Vi2,"]\\\\ \\end{pmatrix}\\quad") eq2 <- paste0( "\\Omega_{",NOT$error,"'}= \\begin{pmatrix} ",varE1,"\\,[",input$Mod4Step5_Ve1,"] & ",covE12,"\\,[",cov2,"] \\\\ ",covE12,"\\,[",cov2,"] & ",varE2,"\\,[",input$Mod4Step5_Ve1,"]\\\\ \\end{pmatrix} $$") return(paste0(eq1, eq2)) }, show_model_correlation_results <- function(fit){ RanCoef <- VarCorr(fit) corI12 <- round(RanCoef[["Individual"]][["cor"]]["Phenotype1_Intercept", "Estimate", "Phenotype2_Intercept"],2) corE12 <- round(RanCoef[["residual__"]][["cor"]]["Phenotype1", "Estimate", "Phenotype2"],2) cor <- paste0("$$\\text{Among-individual correlation: }",corI12,"\\,[",input$Mod4Step5_Corr_I,"]$$ $$\\text{Residual within-individual correlation: }",corE12,"\\,[",input$Mod4Step5_Corr_e,"]$$") return(cor) }, output$Mod4Step5_Result_Matrices_Model1 <- renderUI({ fit1 <- Mod4Step5_output_model1() if (!is.null(fit1)) { isolate({res <- show_model_variance_results(fit1)}) return(withMathJax(res)) }else{return(withMathJax("$$...$$"))} }), output$Mod4Step5_Result_Matrices_Model1_corr <- renderUI({ fit1 <- Mod4Step5_output_model1() if (!is.null(fit1)) { isolate({cor <- show_model_correlation_results(fit1)}) return(withMathJax(cor)) }else{return(withMathJax("$$...$$"))} }), output$Mod4Step5_Result_Matrices_Model2 <- renderUI({ fit2 <- Mod4Step5_output_model2() if (!is.null(fit2)) { isolate({res <- show_model_variance_results(fit2)}) return(withMathJax(res)) }else{return(withMathJax("$$...$$"))} }), output$Mod4Step5_Result_Matrices_Model2_corr <- renderUI({ fit2 <- Mod4Step5_output_model2() if (!is.null(fit2)) { isolate({cor <- show_model_correlation_results(fit2)}) return(withMathJax(cor)) }else{return(withMathJax("$$...$$"))} }) )
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(lrd) data("cued_recall_manuscript") head(cued_recall_manuscript) cued_recall_manuscript$Target <- tolower(cued_recall_manuscript$Target) cued_recall_manuscript$Answer <- tolower(cued_recall_manuscript$Answer) cued_output <- prop_correct_cued(data = cued_recall_manuscript, responses = "Answer", key = "Target", key.trial = "Trial_num", id = "Sub.ID", id.trial = "Trial_num", cutoff = 1, flag = TRUE, group.by = NULL) str(cued_output) cued_output$DF_Scored cued_output$DF_Participant
if (interactive()) { rank_list( text = "You can select multiple items and drag as a group:", labels = c("one", "two", "three", "four", "five"), input_id = "example_2", options = sortable_options( multiDrag = TRUE ) ) }
Tune_kernel_Ridge_MM <- function( Y_train, X_train=as.vector(rep(1,length(Y_train))), Z_train=diag(1,length(Y_train)), Matrix_covariates_train, method="RKHS", kernel="Gaussian", rate_decay_kernel=0.1, degree_poly=2, scale_poly=1, offset_poly=1, degree_anova=3, init_sigma2K=2, init_sigma2E=3, convergence_precision=1e-8, nb_iter=1000, display="FALSE", rate_decay_grid=seq(0.1,1.0,length.out=10), nb_folds=5, loss="mse") { N=length(Y_train) Index_whole=1:N Folds=cvFolds(N, nb_folds, type="consecutive") Vect_expected_loss_grid=rep(0, length(rate_decay_grid)) method_defined=method kernel_defined=kernel rate_decay_defined=rate_decay_kernel degree_poly_defined=degree_poly scale_poly_defined=scale_poly offset_poly_defined=offset_poly degree_anova_defined=degree_anova init_sigma2K_defined=init_sigma2K init_sigma2E_defined=init_sigma2E convergence_precision_defined=convergence_precision nb_iter_defined=nb_iter display_defined=display if( identical(loss, "mse") ) { l=1 for ( h in rate_decay_grid ) { Vect_loss_folds=rep(0,nb_folds) for ( fold_i in 1:nb_folds ) { Index_fold_i=which(Folds$which==fold_i) Y_fold_i=Y_train[Index_fold_i] Matrix_covariates_fold_i=Matrix_covariates_train[Index_fold_i, ] Index_minus_fold_i=Index_whole[-Index_fold_i] Y_minus_fold_i=Y_train[Index_minus_fold_i] X_minus_fold_i=as.vector(rep(1,length(Y_minus_fold_i))) Z_minus_fold_i=diag(1,length(Y_minus_fold_i)) Matrix_covariates_minus_fold_i=Matrix_covariates_train[Index_minus_fold_i, ] Model_KRR_minus_fold_i = Kernel_Ridge_MM( Y_train=Y_minus_fold_i, X_train=X_minus_fold_i, Z_train=Z_minus_fold_i, Matrix_covariates_train=Matrix_covariates_minus_fold_i, method=method_defined, kernel=kernel_defined, rate_decay_kernel=h, degree_poly=degree_poly_defined, scale_poly=scale_poly_defined, offset_poly=offset_poly_defined, degree_anova=degree_anova_defined, init_sigma2K=init_sigma2K_defined, init_sigma2E=init_sigma2E_defined, convergence_precision=convergence_precision_defined, nb_iter=nb_iter_defined, display=display_defined ) f_hat_fold_i = Predict_kernel_Ridge_MM( Model_KRR_minus_fold_i, Matrix_covariates_fold_i ) Vect_loss_folds[fold_i]= mean((f_hat_fold_i-Y_fold_i)^2) } Vect_expected_loss_grid[l]=mean(Vect_loss_folds) l=l+1 } optimal_h=rate_decay_grid[which.min(Vect_expected_loss_grid)] tuned_model=Kernel_Ridge_MM ( Y_train, X_train, Z_train, Matrix_covariates_train, method, kernel, rate_decay_kernel=optimal_h, degree_poly, scale_poly, offset_poly, degree_anova, init_sigma2K, init_sigma2E, convergence_precision, nb_iter, display) return( list( "tuned_model"=tuned_model, "optimal_h"=optimal_h, "loss"=loss, "expected_loss_grid"=Vect_expected_loss_grid, "rate_decay_grid"=rate_decay_grid ) ) } else if ( identical( loss, "cor" ) ){ l=1 for ( h in rate_decay_grid ) { Vect_loss_folds=rep(0,nb_folds) for ( fold_i in 1:nb_folds ) { Index_fold_i=which(Folds$which==fold_i) Y_fold_i=Y_train[Index_fold_i] Matrix_covariates_fold_i=Matrix_covariates_train[Index_fold_i, ] Index_minus_fold_i=Index_whole[-Index_fold_i] Y_minus_fold_i=Y_train[Index_minus_fold_i] X_minus_fold_i=as.vector(rep(1,length(Y_minus_fold_i))) Z_minus_fold_i=diag(1,length(Y_minus_fold_i)) Matrix_covariates_minus_fold_i=Matrix_covariates_train[Index_minus_fold_i, ] Model_KRR_minus_fold_i = Kernel_Ridge_MM( Y_train=Y_minus_fold_i, X_train=X_minus_fold_i, Z_train=Z_minus_fold_i, Matrix_covariates_train=Matrix_covariates_minus_fold_i, method=method_defined, kernel=kernel_defined, rate_decay_kernel=h, degree_poly=degree_poly_defined, scale_poly=scale_poly_defined, offset_poly=offset_poly_defined, degree_anova=degree_anova_defined, init_sigma2K=init_sigma2K_defined, init_sigma2E=init_sigma2E_defined, convergence_precision=convergence_precision_defined, nb_iter=nb_iter_defined, display=display_defined ) f_hat_fold_i = Predict_kernel_Ridge_MM( Model_KRR_minus_fold_i, Matrix_covariates_fold_i ) Vect_loss_folds[fold_i]= 0.5*(1-cor(f_hat_fold_i, Y_fold_i)) } Vect_expected_loss_grid[l]=mean(Vect_loss_folds) l=l+1 } optimal_h=rate_decay_grid[which.min(Vect_expected_loss_grid)] tuned_model=Kernel_Ridge_MM ( Y_train, X_train, Z_train, Matrix_covariates_train, method, kernel, rate_decay_kernel=optimal_h, degree_poly, scale_poly, offset_poly, degree_anova, init_sigma2K, init_sigma2E, convergence_precision, nb_iter, display) return( list( "tuned_model"=tuned_model, "optimal_h"=optimal_h, "loss"=loss, "expected_loss_grid"=Vect_expected_loss_grid, "rate_decay_grid"=rate_decay_grid ) ) } }
context("BMI operations") test_that("BMI grouping ok", { x <- 15:50 expect_equal(length(unique(levels(group_bmi(x, "standard")))), 7) expect_true(group_bmi(x, "standard")[[10]] == "lean") expect_equal(length(unique(levels(group_bmi(x, "even", 5)))), 5) expect_true(group_bmi(18, "standard") == "underweight") expect_true(group_bmi(18.5, "standard") == "lean") expect_true(group_bmi(20, "standard") == "lean") expect_true(group_bmi(22, "standard") == "lean") expect_true(group_bmi(25, "standard") == "overweight") expect_true(group_bmi(28, "standard") == "overweight") expect_true(group_bmi(30, "standard") == "obese") expect_true(group_bmi(32, "standard") == "obese") expect_true(group_bmi(35, "standard") == "severe") expect_true(group_bmi(37, "standard") == "severe") expect_true(group_bmi(40, "standard") == "morbid") expect_true(group_bmi(42, "standard") == "morbid") expect_true(group_bmi(45, "standard") == "super") expect_true(group_bmi(47, "standard") == "super") expect_true(group_bmi(50, "standard") == "super") expect_true(group_bmi(52, "standard") == "super") expect_true(group_bmi(55, "standard") == "super") })
set.seed(120) rlap_data = geoR::grf(50, cov.pars = c(1, 1), nugget = 0.1, messages = FALSE) y = rlap_data$data x = matrix(1, nrow = length(y)) coords = rlap_data$coords d = ganiso_d(rlap_data$coords, coords2 = rlap_data$coords, invert = TRUE) geoR_ml = geoR::likfit(rlap_data, ini = c(1, 1), cov.model = "matern", nugget = 0.1, kappa = 1, psiA = pi/8, psiR = 1.5, fix.nug = FALSE, fix.psiA = FALSE, fix.psiR = TRUE, fix.kappa = FALSE, messages = FALSE) geoR_reml = geoR::likfit(rlap_data, ini = c(1, 1), cov.model = "matern", nugget = 0.1, kappa = 1, psiA = pi/8, psiR = 1.5, fix.nug = FALSE, fix.psiA = FALSE, fix.psiR = TRUE, fix.kappa = FALSE, messages = FALSE, lik.method = "REML") aniso_coords = geoR::coords.aniso(coords, aniso.pars = geoR_reml$aniso.pars) rlap_data_noaniso = rlap_data rlap_data_noaniso$coords = aniso_coords geoR_reml_noaniso = geoR::likfit(rlap_data_noaniso, ini = c(1, 1), nugget = 0.1, fix.nug = TRUE, fix.psiA = TRUE, messages = FALSE, lik.method = "REML") geoR_ml_loglik = geoR::loglik.GRF(rlap_data, obj.model = geoR_ml) geoR_reml_loglik = geoR::loglik.GRF(rlap_data, obj.model = geoR_reml) geoR_reml_noaniso_loglik = geoR::loglik.GRF(rlap_data_noaniso, obj.model = geoR_reml_noaniso) kc_ml = geoR::krige.control(obj.model = geoR_ml) geoR_out = geoR::output.control(messages = FALSE) geoR_ml_beta = geoR::krige.conv(rlap_data, krige = kc_ml, locations = cbind(1, 1), output = geoR_out)$beta.est kc_reml = geoR::krige.control(obj.model = geoR_reml) geoR_reml_beta = geoR::krige.conv(rlap_data, krige = kc_reml, locations = cbind(1, 1), output = geoR_out)$beta.est fpath = system.file("testdata", package = "gear") fname = paste(fpath, "/ploglik_cmodStd_r_lambda_angle_par3.rda", sep = "") save(x, y, d, coords, geoR_ml, geoR_reml, geoR_ml_loglik, geoR_reml_loglik, geoR_reml_noaniso_loglik, geoR_ml_beta, geoR_reml_beta, compress = "bzip2", file = fname, version = 2)
NULL AUC2 <- function(pred, y) auc_cpp(pred[y == 1], pred[y == 0]) round2 <- function(x, digits = NULL) `if`(is.null(digits), x, round(x, digits)) AUC <- function(pred, target, digits = NULL) { assert_lengths(pred, target) y <- transform_levels(target) round2(AUC2(pred, y), digits) } AUCBoot <- function(pred, target, nboot = 1e3, seed = NA, digits = NULL) { assert_lengths(pred, target) y <- transform_levels(target) n <- length(y) if (!is.na(seed)) { old <- .Random.seed on.exit( { .Random.seed <<- old } ) set.seed(seed) } repl <- replicate(nboot, { ind <- sample(n, replace = TRUE) AUC2(pred[ind], y[ind]) }) if (nbNA <- sum(is.na(repl))) warning2("%d/%d bootstrap replicates were mono-class.", nbNA, nboot) res <- c("Mean" = mean(repl, na.rm = TRUE), stats::quantile(repl, c(0.025, 0.975), na.rm = TRUE), "Sd" = stats::sd(repl, na.rm = TRUE)) round2(res, digits) }
var.used.forestRK <- function(forestRK.object = forestRK(), tree.index = c()){ x.original <- forestRK.object$X if(is.null(forestRK.object)){ stop("'forestRK.object' has to be provided in the function call") } if(!(dim(x.original)[1] > 1) || !(dim(x.original)[2] >= 1) || is.null(x.original)){ stop("Invalid dimension for the dataset 'x.original'") } if(!(length(tree.index) >= 1) || is.null(tree.index)){ stop("Invalid length for the vector 'tree.index'") } forest.rk.tree.list <- forestRK.object$forest.rk.tree.list covariate.split.vec <- c() covariates.used.list <- list() length(covariates.used.list) <- length(tree.index) names(covariates.used.list) <- as.character(levels(as.factor(tree.index))) for(i in 1:length(tree.index)){ covariate.split.vec <- c(covariate.split.vec, ((forest.rk.tree.list)[[tree.index[i]]])$covariate.split[-1,1]) covariates.used.in.bag <- c((colnames(x.original))[covariate.split.vec]) covariates.used.list[[i]] <- covariates.used.in.bag } covariates.used.list }
knitr::opts_chunk$set(collapse = TRUE, comment = " library(ggplot2) library(reshape2) library(ABHgenotypeR) genotypes <- readABHgenotypes(system.file("extdata", "preprefall025TestData.csv", package = "ABHgenotypeR"), nameA = "NB", nameB = "OL") plotGenos(genotypes) plottedGenos <- plotGenos(genotypes) plottedGenos <- plottedGenos + theme(axis.text = element_text(face = "bold"), legend.position = "none") postImpGenotypes <- imputeByFlanks(genotypes) plotGenos(genotypes, chromToPlot = 1) plotGenos(postImpGenotypes,chromToPlot = 1) ErrCorr1Genotypes <- correctUndercalledHets(postImpGenotypes, maxHapLength = 3) ErrCorr2Genotypes <- correctStretches(ErrCorr1Genotypes, maxHapLength = 3) plotGenos(ErrCorr1Genotypes, chromToPlot = 1) plotGenos(ErrCorr2Genotypes,chromToPlot = 1) plotCompareGenos(genotypes, ErrCorr2Genotypes, chromToPlot = 1:3) plotMarkerDensity(genos = ErrCorr2Genotypes) plotAlleleFreq(genos = ErrCorr2Genotypes)
TML.Ave2G <- function(X,y,delta, sigma,sigma.t, mui,mui.t, wgt,cu){ cl <- -cu n <- length(y); p <- ncol(X); ku <- kc <- 0; nc <- sum(delta==0); zero <- 1e-6 indu <- (1:n)[delta==1]; indc <- (1:n)[delta==0] rs <- (y-mui)/sigma if (nc < n) { ki <- wgt[indu]*rs[indu]^2 ku <- sum(ki)} if (nc > 0) { muic <- mui[indc] muit <- mui.t[indc] rci <- rs[indc] ai <- pmax( rci, (sigma.t*cl - muic + muit )/sigma ) bi <- (sigma.t*cu - muic + muit )/sigma den <- 1-pnorm(rci) ok <- den > zero Iki <- ai*dnorm(ai) - bi*dnorm(bi) + pnorm(bi) - pnorm(ai) eki <- rep(0, nc) eki[bi > ai & ok] <- Iki[bi > ai & ok]/den[bi > ai & ok] kc <- sum(eki)} (ku + kc)/(n - p)}
setClass("membership", representation = representation(member="matrix", hard.label="vector") ) setValidity("membership", function(object){ if(length(hard.label(object))!= nrow(member(object))) return("hard.label Mismatch\n") if(any(member(object)<0 ||member(object)>1)) return("Constraint of membership matrix violated\n") rowSum.membership<-rowSums(member(object)) rowSum.membership<-round(rowSum.membership,3) if(any(rowSum.membership!=1)) { return("Constraint of membership matrix violated\n") } if(any(!is.numeric(member(object)))) return("Not Numeric") if(anyNA(object)) return("Missing value on membership detected\n") })
draw.quintuple.venn <- function( area1, area2, area3, area4, area5, n12, n13, n14, n15, n23, n24, n25, n34, n35, n45, n123, n124, n125, n134, n135, n145, n234, n235, n245, n345, n1234, n1235, n1245, n1345, n2345, n12345, category = rep('', 5), lwd = rep(2, 5), lty = rep('solid', 5), col = rep('black', 5), fill = NULL, alpha = rep(0.5, 5), label.col = rep('black', 31), cex = rep(1, 31), fontface = rep('plain', 31), fontfamily = rep('serif', 31), cat.pos = c(0, 287.5, 215, 145, 70), cat.dist = rep(0.2, 5), cat.col = rep('black', 5), cat.cex = rep(1, 5), cat.fontface = rep('plain', 5), cat.fontfamily = rep('serif', 5), cat.just = rep(list(c(0.5, 0.5)), 5), rotation.degree = 0, rotation.centre = c(0.5, 0.5), ind = TRUE, cex.prop=NULL, print.mode = 'raw', sigdigs=3, direct.area=FALSE, area.vector=0, ... ) { if (length(category) == 1) { cat <- rep(category, 5); } else if (length(category) != 5) { flog.error('Unexpected parameter length for "category"",name="VennDiagramLogger') stop('Unexpected parameter length for "category"'); } if (length(lwd) == 1) { lwd <- rep(lwd, 5); } else if (length(lwd) != 5) { flog.error('Unexpected parameter length for "lwd"",name="VennDiagramLogger') stop('Unexpected parameter length for "lwd"'); } if (length(lty) == 1) { lty <- rep(lty, 5); } else if (length(lty) != 5) { flog.error('Unexpected parameter length for "lty"",name="VennDiagramLogger') stop('Unexpected parameter length for "lty"'); } if (length(col) == 1) { col <- rep(col, 5); } else if (length(col) != 5) { flog.error('Unexpected parameter length for "col"",name="VennDiagramLogger') stop('Unexpected parameter length for "col"'); } if (length(label.col) == 1) { label.col <- rep(label.col, 31); } else if (length(label.col) != 31) { flog.error('Unexpected parameter length for "label.col"",name="VennDiagramLogger') stop('Unexpected parameter length for "label.col"'); } if (length(cex) == 1) { cex <- rep(cex, 31); } else if (length(cex) != 31) { flog.error('Unexpected parameter length for "cex"",name="VennDiagramLogger') stop('Unexpected parameter length for "cex"'); } if (length(fontface) == 1) { fontface <- rep(fontface, 31); } else if (length(fontface) != 31) { flog.error('Unexpected parameter length for "fontface"",name="VennDiagramLogger') stop('Unexpected parameter length for "fontface"'); } if (length(fontfamily) == 1) { fontfamily <- rep(fontfamily, 31); } else if (length(fontfamily) != 31) { flog.error('Unexpected parameter length for "fontfamily"",name="VennDiagramLogger') stop('Unexpected parameter length for "fontfamily"'); } if (length(fill) == 1) { fill <- rep(fill, 5); } else if (length(fill) != 5 & length(fill) != 0) { flog.error('Unexpected parameter length for "fill"",name="VennDiagramLogger') stop('Unexpected parameter length for "fill"'); } if (length(alpha) == 1) { alpha <- rep(alpha, 5); } else if (length(alpha) != 5 & length(alpha) != 0) { flog.error('Unexpected parameter length for "alpha"",name="VennDiagramLogger') stop('Unexpected parameter length for "alpha"'); } if (length(cat.pos) == 1) { cat.pos <- rep(cat.pos, 5); } else if (length(cat.pos) != 5) { flog.error('Unexpected parameter length for "cat.pos"",name="VennDiagramLogger') stop('Unexpected parameter length for "cat.pos"'); } if (length(cat.dist) == 1) { cat.dist <- rep(cat.dist, 5); } else if (length(cat.dist) != 5) { flog.error('Unexpected parameter length for "cat.dist"",name="VennDiagramLogger') stop('Unexpected parameter length for "cat.dist"'); } if (length(cat.col) == 1) { cat.col <- rep(cat.col, 5); } else if (length(cat.col) != 5) { flog.error('Unexpected parameter length for "cat.col"",name="VennDiagramLogger') stop('Unexpected parameter length for "cat.col"'); } if (length(cat.cex) == 1) { cat.cex <- rep(cat.cex, 5); } else if (length(cat.cex) != 5) { flog.error('Unexpected parameter length for "cat.cex"",name="VennDiagramLogger') stop('Unexpected parameter length for "cat.cex"'); } if (length(cat.fontface) == 1) { cat.fontface <- rep(cat.fontface, 5); } else if (length(cat.fontface) != 5) { flog.error('Unexpected parameter length for "cat.fontface"",name="VennDiagramLogger') stop('Unexpected parameter length for "cat.fontface"'); } if (length(cat.fontfamily) == 1) { cat.fontfamily <- rep(cat.fontfamily, 5); } else if (length(cat.fontfamily) != 5) { flog.error('Unexpected parameter length for "cat.fontfamily"",name="VennDiagramLogger') stop('Unexpected parameter length for "cat.fontfamily"'); } if (!(class(cat.just) == 'list' & length(cat.just) == 5 & length(cat.just[[1]]) == 2 & length(cat.just[[2]]) == 2 & length(cat.just[[3]]) == 2 & length(cat.just[[4]]) == 2 & length(cat.just[[5]]) == 2)) { flog.error('Unexpected parameter format for "cat.just"",name="VennDiagramLogger') stop('Unexpected parameter format for "cat.just"'); } cat.pos <- cat.pos + rotation.degree; if(direct.area){ areas <- area.vector; for(i in 1:31) { assign(paste('a',i,sep=''),area.vector[i]); } } else{ a31 <- n12345; a30 <- n1234 - a31; a29 <- n1235 - a31; a28 <- n1245 - a31; a27 <- n1345 - a31; a26 <- n2345 - a31; a25 <- n245 - a26 - a28 - a31; a24 <- n234 - a26 - a30 - a31; a23 <- n134 - a27 - a30 - a31; a22 <- n123 - a29 - a30 - a31; a21 <- n235 - a26 - a29 - a31; a20 <- n125 - a28 - a29 - a31; a19 <- n124 - a28 - a30 - a31; a18 <- n145 - a27 - a28 - a31; a17 <- n135 - a27 - a29 - a31; a16 <- n345 - a26 - a27 - a31; a15 <- n45 - a18 - a25 - a16 - a28 - a27 - a26 - a31; a14 <- n24 - a19 - a24 - a25 - a30 - a28 - a26 - a31; a13 <- n34 - a16 - a23 - a24 - a26 - a27 - a30 - a31; a12 <- n13 - a17 - a22 - a23 - a27 - a29 - a30 - a31; a11 <- n23 - a21 - a22 - a24 - a26 - a29 - a30 - a31; a10 <- n25 - a20 - a21 - a25 - a26 - a28 - a29 - a31; a9 <- n12 - a19 - a20 - a22 - a28 - a29 - a30 - a31; a8 <- n14 - a18 - a19 - a23 - a27 - a28 - a30 - a31; a7 <- n15 - a17 - a18 - a20 - a27 - a28 - a29 - a31; a6 <- n35 - a16 - a17 - a21 - a26 - a27 - a29 - a31; a5 <- area5 - a6 - a7 - a15 - a16 - a17 - a18 - a25 - a26 - a27 - a28 - a31 - a20 - a29 - a21 - a10; a4 <- area4 - a13 - a14 - a15 - a16 - a23 - a24 - a25 - a26 - a27 - a28 - a31 - a18 - a19 - a8 - a30; a3 <- area3 - a21 - a11 - a12 - a13 - a29 - a22 - a23 - a24 - a30 - a31 - a26 - a27 - a16 - a6 - a17; a2 <- area2 - a9 - a10 - a19 - a20 - a21 - a11 - a28 - a29 - a31 - a22 - a30 - a26 - a25 - a24 - a14; a1 <- area1 - a7 - a8 - a18 - a17 - a19 - a9 - a27 - a28 - a31 - a20 - a30 - a29 - a22 - a23 - a12; areas <- c(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25, a26, a27, a28, a29, a30, a31); } areas.error <- c( 'a1 <- area1 - a7 - a8 - a18 - a17 - a19 - a9 - a27 - a28 - a31 - a20 - a30 - a29 - a22 - a23 - a12', 'a2 <- area2 - a9 - a10 - a19 - a20 - a21 - a11 - a28 - a29 - a31 - a22 - a30 - a26 - a25 - a24 - a14', 'a3 <- area3 - a21 - a11 - a12 - a13 - a29 - a22 - a23 - a24 - a30 - a31 - a26 - a27 - a16 - a6 - a17', 'a4 <- area4 - a13 - a14 - a15 - a16 - a23 - a24 - a25 - a26 - a27 - a28 - a31 - a18 - a19 - a8 - a30', 'a5 <- area5 - a6 - a7 - a15 - a16 - a17 - a18 - a25 - a26 - a27 - a28 - a31 - a20 - a29 - a21 - a10', 'a6 <- n35 - a16 - a17 - a21 - a26 - a27 - a29 - a31', 'a7 <- n15 - a17 - a18 - a20 - a27 - a28 - a29 - a31', 'a8 <- n14 - a18 - a19 - a23 - a27 - a28 - a30 - a31', 'a9 <- n12 - a19 - a20 - a22 - a28 - a29 - a30 - a31', 'a10 <- n25 - a20 - a21 - a25 - a26 - a28 - a29 - a31', 'a11 <- n23 - a21 - a22 - a24 - a26 - a29 - a30 - a31', 'a12 <- n13 - a17 - a22 - a23 - a27 - a29 - a30 - a31', 'a13 <- n34 - a16 - a23 - a24 - a26 - a27 - a30 - a31', 'a14 <- n24 - a19 - a24 - a25 - a30 - a28 - a26 - a31', 'a15 <- n45 - a18 - a25 - a16 - a28 - a27 - a26 - a31', 'a16 <- n345 - a26 - a27 - a31', 'a17 <- n135 - a27 - a29 - a31', 'a18 <- n145 - a27 - a28 - a31', 'a19 <- n124 - a28 - a30 - a31', 'a20 <- n125 - a28 - a29 - a31', 'a21 <- n235 - a26 - a29 - a31', 'a22 <- n123 - a29 - a30 - a31', 'a23 <- n134 - a27 - a30 - a31', 'a24 <- n234 - a26 - a30 - a31', 'a25 <- n245 - a26 - a28 - a31', 'a26 <- n2345 - a31', 'a27 <- n1345 - a31', 'a28 <- n1245 - a31', 'a29 <- n1235 - a31', 'a30 <- n1234 - a31', 'a31 <- n12345' ); for (i in 1:length(areas)) { if (areas[i] < 0) { flog.error(paste('Impossible:', areas.error[i], 'produces negative area'),name='VennDiagramLogger') stop(paste('Impossible:', areas.error[i], 'produces negative area')); } } if(length(cex.prop) > 0){ if(length(cex.prop) != 1) { flog.error('Value passed to cex.prop is not length 1',name='VennDiagramLogger') stop('Value passed to cex.prop is not length 1') } func = cex.prop if(class(cex.prop) != 'function'){ if(cex.prop == 'lin'){ func = function(x) x } else if(cex.prop == 'log10'){ func = log10 } else flog.error(paste0('Unknown value passed to cex.prop: ', cex.prop),name='VennDiagramLogger') stop(paste0('Unknown value passed to cex.prop: ', cex.prop)) } maxArea = max(areas) for(i in 1:length(areas)){ cex[i] = cex[i] * func(areas[i]) / func(maxArea) if(cex[i] <= 0) stop(paste0('Error in rescaling of area labels: the label of area ', i, ' is less than or equal to zero')) } } grob.list <- gList(); dist <- 0.13; a <- 0.24; b <- 0.46; init.angle <- -20; ellipse.positions <- matrix( nrow = 5, ncol = 3 ); colnames(ellipse.positions) <- c('x', 'y', 'rotation'); ellipse.positions[1,] <- c( 0.5 + dist * sin(init.angle * pi / 180), 0.5 + dist * cos(init.angle * pi / 180), 0 ); ellipse.positions[2,] <- c( 0.5 - dist * cos((288 + init.angle - 270) * pi / 180), 0.5 + dist * sin((288 + init.angle - 270) * pi / 180), -110 ); ellipse.positions[3,] <- c( 0.5 - dist * sin((216 + init.angle - 180) * pi / 180), 0.5 - dist * cos((216 + init.angle - 180) * pi / 180), 145 ); ellipse.positions[4,] <- c( 0.5 + dist * sin((180 - 144 - init.angle) * pi / 180), 0.5 - dist * cos((180 - 144 - init.angle) * pi / 180), 35 ); ellipse.positions[5,] <- c( 0.5 + dist * cos((init.angle + 72 - 90) * pi / 180), 0.5 - dist * sin((init.angle + 72 - 90) * pi / 180), -72.5 ); for (i in 1:5) { grob.list <- gList( grob.list, VennDiagram::ellipse( x = ellipse.positions[i,'x'], y = ellipse.positions[i,'y'], a = a, b = b, rotation = ellipse.positions[i,'rotation'], gp = gpar( lty = 0, fill = fill[i], alpha = alpha[i] ) ) ); } for (i in 1:5) { grob.list <- gList( grob.list, VennDiagram::ellipse( x = ellipse.positions[i,'x'], y = ellipse.positions[i,'y'], a = a, b = b, rotation = ellipse.positions[i,'rotation'], gp = gpar( lwd = lwd[i], lty = lty[i], col = col[i], fill = 'transparent' ) ) ); } label.matrix <- matrix( nrow = 31, ncol = 3 ); colnames(label.matrix) <- c('label', 'x', 'y'); label.matrix[ 1,] <- c(a1, 0.4555, 0.9322); label.matrix[ 2,] <- c(a2, 0.0800, 0.6000); label.matrix[ 3,] <- c(a3, 0.3000, 0.1000); label.matrix[ 4,] <- c(a4, 0.7900, 0.1700); label.matrix[ 5,] <- c(a5, 0.9000, 0.6800); label.matrix[ 6,] <- c(a6, 0.7400, 0.6950); label.matrix[ 7,] <- c(a7, 0.6300, 0.8050); label.matrix[ 8,] <- c(a8, 0.4000, 0.7950); label.matrix[ 9,] <- c(a9, 0.2550, 0.7150); label.matrix[10,] <- c(a10, 0.1930, 0.4800); label.matrix[11,] <- c(a11, 0.2250, 0.3330); label.matrix[12,] <- c(a12, 0.4200, 0.2050); label.matrix[13,] <- c(a13, 0.5720, 0.1800); label.matrix[14,] <- c(a14, 0.7530, 0.3200); label.matrix[15,] <- c(a15, 0.8230, 0.4700); label.matrix[16,] <- c(a16, 0.7470, 0.5820); label.matrix[17,] <- c(a17, 0.6620, 0.7500); label.matrix[18,] <- c(a18, 0.4880, 0.7610); label.matrix[19,] <- c(a19, 0.3230, 0.7370); label.matrix[20,] <- c(a20, 0.2530, 0.5730); label.matrix[21,] <- c(a21, 0.2250, 0.3950); label.matrix[22,] <- c(a22, 0.3550, 0.2900); label.matrix[23,] <- c(a23, 0.5150, 0.2050); label.matrix[24,] <- c(a24, 0.6550, 0.2900); label.matrix[25,] <- c(a25, 0.7830, 0.4200); label.matrix[26,] <- c(a26, 0.7200, 0.4450); label.matrix[27,] <- c(a27, 0.6050, 0.7010); label.matrix[28,] <- c(a28, 0.3420, 0.6680); label.matrix[29,] <- c(a29, 0.2940, 0.4100); label.matrix[30,] <- c(a30, 0.5220, 0.2730); label.matrix[31,] <- c(a31, 0.5000, 0.5000); processedLabels <- rep('',length(label.matrix[,'label'])); if(print.mode[1] == 'percent'){ processedLabels <- paste(signif(label.matrix[,'label']/sum(label.matrix[,'label'])*100,digits=sigdigs),'%',sep=''); if(isTRUE(print.mode[2] == 'raw')) { processedLabels <- paste(processedLabels,'\n(',label.matrix[,'label'],')',sep=''); } } if(print.mode[1] == 'raw'){ processedLabels <- label.matrix[,'label']; if(isTRUE(print.mode[2] == 'percent')) { processedLabels <- paste(processedLabels,'\n(',paste(signif(label.matrix[,'label']/sum(label.matrix[,'label'])*100,digits=sigdigs),'%)',sep=''),sep=''); } } for (i in 1:nrow(label.matrix)) { tmp <- textGrob( label = processedLabels[i], x = label.matrix[i,'x'], y = label.matrix[i,'y'], gp = gpar( col = label.col[i], cex = cex[i], fontface = fontface[i], fontfamily = fontfamily[i] ) ); grob.list <- gList(grob.list, tmp); } cat.pos.x <- c(0.4555, 0.08, 0.3, 0.79, 0.90); cat.pos.y <- c(0.9322, 0.60, 0.1, 0.17, 0.68); for (i in 1:5) { this.cat.pos <- find.cat.pos( x = cat.pos.x[i], y = cat.pos.y[i], pos = cat.pos[i], dist = cat.dist[i] ); grob.list <- gList( grob.list, textGrob( label = category[i], x = this.cat.pos$x, y = this.cat.pos$y, just = cat.just[[i]], gp = gpar( col = cat.col[i], cex = cat.cex[i], fontface = cat.fontface[i], fontfamily = cat.fontfamily[i] ) ) ); } grob.list <- VennDiagram::adjust.venn(VennDiagram::rotate.venn.degrees(grob.list, rotation.degree, rotation.centre[1], rotation.centre[2]), ...); if (ind) { grid.draw(grob.list); } return(grob.list); }
test_that("decoding works", { expect_identical( decode_ids(c( "32013030-2d30-3033-3338-3733fa30c4fa", "NA", "00-0033873", "NA", "32013030-2d30-3032-3739-3434d4d3846d" )), c("00-0033873", NA_character_, "00-0033873", NA_character_, "00-0027944") ) })
NULL "election_turnout"
year_quarter_day <- function(year, quarter = NULL, day = NULL, hour = NULL, minute = NULL, second = NULL, subsecond = NULL, ..., start = NULL, subsecond_precision = NULL) { check_dots_empty() start <- quarterly_validate_start(start) if (is_null(quarter)) { precision <- PRECISION_YEAR fields <- list(year = year) } else if (is_null(day)) { precision <- PRECISION_QUARTER fields <- list(year = year, quarter = quarter) } else if (is_null(hour)) { precision <- PRECISION_DAY fields <- list(year = year, quarter = quarter, day = day) } else if (is_null(minute)) { precision <- PRECISION_HOUR fields <- list(year = year, quarter = quarter, day = day, hour = hour) } else if (is_null(second)) { precision <- PRECISION_MINUTE fields <- list(year = year, quarter = quarter, day = day, hour = hour, minute = minute) } else if (is_null(subsecond)) { precision <- PRECISION_SECOND fields <- list(year = year, quarter = quarter, day = day, hour = hour, minute = minute, second = second) } else { precision <- calendar_validate_subsecond_precision(subsecond_precision) fields <- list(year = year, quarter = quarter, day = day, hour = hour, minute = minute, second = second, subsecond = subsecond) } if (is_last(fields$day)) { fields$day <- 1L last <- TRUE } else { last <- FALSE } fields <- vec_recycle_common(!!!fields) fields <- vec_cast_common(!!!fields, .to = integer()) fields <- collect_year_quarter_day_fields(fields, precision, start) names <- NULL out <- new_year_quarter_day_from_fields(fields, precision, start, names) if (last) { out <- set_day(out, "last") } out } vec_proxy.clock_year_quarter_day <- function(x, ...) { .Call(`_clock_clock_rcrd_proxy`, x) } vec_restore.clock_year_quarter_day <- function(x, to, ...) { .Call(`_clock_year_quarter_day_restore`, x, to) } format.clock_year_quarter_day <- function(x, ...) { out <- format_year_quarter_day_cpp(x, calendar_precision_attribute(x), quarterly_start(x)) names(out) <- names(x) out } vec_ptype_full.clock_year_quarter_day <- function(x, ...) { start <- quarterly_start(x) start <- quarterly_start_prettify(start, abbreviate = FALSE) class <- paste0("year_quarter_day<", start, ">") calendar_ptype_full(x, class) } vec_ptype_abbr.clock_year_quarter_day <- function(x, ...) { start <- quarterly_start(x) start <- quarterly_start_prettify(start, abbreviate = TRUE) class <- paste0("yqd<", start, ">") calendar_ptype_abbr(x, class) } is_year_quarter_day <- function(x) { inherits(x, "clock_year_quarter_day") } vec_ptype.clock_year_quarter_day <- function(x, ...) { names <- NULL precision <- calendar_precision_attribute(x) start <- quarterly_start(x) f <- integer() fields <- switch( precision + 1L, list(year = f), list(year = f, quarter = f), abort("Internal error: Invalid precision"), abort("Internal error: Invalid precision"), list(year = f, quarter = f, day = f), list(year = f, quarter = f, day = f, hour = f), list(year = f, quarter = f, day = f, hour = f, minute = f), list(year = f, quarter = f, day = f, hour = f, minute = f, second = f), list(year = f, quarter = f, day = f, hour = f, minute = f, second = f, subsecond = f), list(year = f, quarter = f, day = f, hour = f, minute = f, second = f, subsecond = f), list(year = f, quarter = f, day = f, hour = f, minute = f, second = f, subsecond = f), abort("Internal error: Invalid precision.") ) new_year_quarter_day_from_fields(fields, precision, start, names) } vec_ptype2.clock_year_quarter_day.clock_year_quarter_day <- function(x, y, ...) { if (quarterly_start(x) != quarterly_start(y)) { stop_incompatible_type(x, y, ..., details = "Can't combine quarterly types with different `start`s.") } ptype2_calendar_and_calendar(x, y, ...) } vec_cast.clock_year_quarter_day.clock_year_quarter_day <- function(x, to, ...) { if (quarterly_start(x) != quarterly_start(to)) { stop_incompatible_cast(x, to, ..., details = "Can't cast between quarterly types with different `start`s.") } cast_calendar_to_calendar(x, to, ...) } calendar_is_valid_precision.clock_year_quarter_day <- function(x, precision) { year_quarter_day_is_valid_precision(precision) } year_quarter_day_is_valid_precision <- function(precision) { if (!is_valid_precision(precision)) { FALSE } else if (precision == PRECISION_YEAR || precision == PRECISION_QUARTER) { TRUE } else if (precision >= PRECISION_DAY && precision <= PRECISION_NANOSECOND) { TRUE } else { FALSE } } invalid_detect.clock_year_quarter_day <- function(x) { invalid_detect_year_quarter_day_cpp(x, calendar_precision_attribute(x), quarterly_start(x)) } invalid_any.clock_year_quarter_day <- function(x) { invalid_any_year_quarter_day_cpp(x, calendar_precision_attribute(x), quarterly_start(x)) } invalid_count.clock_year_quarter_day <- function(x) { invalid_count_year_quarter_day_cpp(x, calendar_precision_attribute(x), quarterly_start(x)) } invalid_resolve.clock_year_quarter_day <- function(x, ..., invalid = NULL) { check_dots_empty() precision <- calendar_precision_attribute(x) start <- quarterly_start(x) invalid <- validate_invalid(invalid) fields <- invalid_resolve_year_quarter_day_cpp(x, precision, start, invalid) new_year_quarter_day_from_fields(fields, precision, start, names = names(x)) } NULL get_year.clock_year_quarter_day <- function(x) { field_year(x) } get_quarter.clock_year_quarter_day <- function(x) { calendar_require_minimum_precision(x, PRECISION_QUARTER, "get_quarter") field_quarter(x) } get_day.clock_year_quarter_day <- function(x) { calendar_require_minimum_precision(x, PRECISION_DAY, "get_day") field_day(x) } get_hour.clock_year_quarter_day <- function(x) { calendar_require_minimum_precision(x, PRECISION_HOUR, "get_hour") field_hour(x) } get_minute.clock_year_quarter_day <- function(x) { calendar_require_minimum_precision(x, PRECISION_MINUTE, "get_minute") field_minute(x) } get_second.clock_year_quarter_day <- function(x) { calendar_require_minimum_precision(x, PRECISION_SECOND, "get_second") field_second(x) } get_millisecond.clock_year_quarter_day <- function(x) { calendar_require_precision(x, PRECISION_MILLISECOND, "get_millisecond") field_subsecond(x) } get_microsecond.clock_year_quarter_day <- function(x) { calendar_require_precision(x, PRECISION_MICROSECOND, "get_microsecond") field_subsecond(x) } get_nanosecond.clock_year_quarter_day <- function(x) { calendar_require_precision(x, PRECISION_NANOSECOND, "get_nanosecond") field_subsecond(x) } NULL set_year.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() set_field_year_quarter_day(x, value, "year") } set_quarter.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_minimum_precision(x, PRECISION_YEAR, "set_quarter") set_field_year_quarter_day(x, value, "quarter") } set_day.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_minimum_precision(x, PRECISION_QUARTER, "set_day") set_field_year_quarter_day(x, value, "day") } set_hour.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_minimum_precision(x, PRECISION_DAY, "set_hour") set_field_year_quarter_day(x, value, "hour") } set_minute.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_minimum_precision(x, PRECISION_HOUR, "set_minute") set_field_year_quarter_day(x, value, "minute") } set_second.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_minimum_precision(x, PRECISION_MINUTE, "set_second") set_field_year_quarter_day(x, value, "second") } set_millisecond.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_any_of_precisions(x, c(PRECISION_SECOND, PRECISION_MILLISECOND), "set_millisecond") set_field_year_quarter_day(x, value, "millisecond") } set_microsecond.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_any_of_precisions(x, c(PRECISION_SECOND, PRECISION_MICROSECOND), "set_microsecond") set_field_year_quarter_day(x, value, "microsecond") } set_nanosecond.clock_year_quarter_day <- function(x, value, ...) { check_dots_empty() calendar_require_any_of_precisions(x, c(PRECISION_SECOND, PRECISION_NANOSECOND), "set_nanosecond") set_field_year_quarter_day(x, value, "nanosecond") } set_field_year_quarter_day <- function(x, value, component) { if (is_last(value) && identical(component, "day")) { return(set_field_year_quarter_day_last(x)) } start <- quarterly_start(x) precision_fields <- calendar_precision_attribute(x) precision_value <- year_quarter_day_component_to_precision(component) precision_out <- precision_common2(precision_fields, precision_value) value <- vec_cast(value, integer(), x_arg = "value") args <- vec_recycle_common(x = x, value = value) x <- args$x value <- args$value result <- set_field_year_quarter_day_cpp(x, value, precision_fields, precision_value, start) fields <- result$fields field <- year_quarter_day_component_to_field(component) fields[[field]] <- result$value new_year_quarter_day_from_fields(fields, precision_out, start, names = names(x)) } set_field_year_quarter_day_last <- function(x) { start <- quarterly_start(x) precision_fields <- calendar_precision_attribute(x) precision_out <- precision_common2(precision_fields, PRECISION_DAY) result <- set_field_year_quarter_day_last_cpp(x, precision_fields, start) fields <- result$fields fields[["day"]] <- result$value new_year_quarter_day_from_fields(fields, precision_out, start, names = names(x)) } calendar_name.clock_year_quarter_day <- function(x) { "year_quarter_day" } year_quarter_day_component_to_precision <- function(component) { switch( component, year = PRECISION_YEAR, quarter = PRECISION_QUARTER, day = PRECISION_DAY, hour = PRECISION_HOUR, minute = PRECISION_MINUTE, second = PRECISION_SECOND, millisecond = PRECISION_MILLISECOND, microsecond = PRECISION_MICROSECOND, nanosecond = PRECISION_NANOSECOND, abort("Internal error: Unknown component name.") ) } year_quarter_day_component_to_field <- function(component) { switch ( component, year = component, quarter = component, day = component, hour = component, minute = component, second = component, millisecond = "subsecond", microsecond = "subsecond", nanosecond = "subsecond", abort("Internal error: Unknown component name.") ) } vec_arith.clock_year_quarter_day <- function(op, x, y, ...) { UseMethod("vec_arith.clock_year_quarter_day", y) } vec_arith.clock_year_quarter_day.MISSING <- function(op, x, y, ...) { arith_calendar_and_missing(op, x, y, ...) } vec_arith.clock_year_quarter_day.clock_year_quarter_day <- function(op, x, y, ...) { arith_calendar_and_calendar(op, x, y, ..., calendar_minus_calendar_fn = year_quarter_day_minus_year_quarter_day) } vec_arith.clock_year_quarter_day.clock_duration <- function(op, x, y, ...) { arith_calendar_and_duration(op, x, y, ...) } vec_arith.clock_duration.clock_year_quarter_day <- function(op, x, y, ...) { arith_duration_and_calendar(op, x, y, ...) } vec_arith.clock_year_quarter_day.numeric <- function(op, x, y, ...) { arith_calendar_and_numeric(op, x, y, ...) } vec_arith.numeric.clock_year_quarter_day <- function(op, x, y, ...) { arith_numeric_and_calendar(op, x, y, ...) } year_quarter_day_minus_year_quarter_day <- function(op, x, y, ...) { args <- vec_recycle_common(x = x, y = y) args <- vec_cast_common(!!!args) x <- args$x y <- args$y names <- names_common(x, y) start <- quarterly_start(x) precision <- calendar_precision_attribute(x) if (precision > PRECISION_QUARTER) { stop_incompatible_op(op, x, y, ...) } fields <- year_quarter_day_minus_year_quarter_day_cpp(x, y, precision, start) new_duration_from_fields(fields, precision, names = names) } NULL add_years.clock_year_quarter_day <- function(x, n, ...) { year_quarter_day_plus_duration(x, n, PRECISION_YEAR) } add_quarters.clock_year_quarter_day <- function(x, n, ...) { calendar_require_minimum_precision(x, PRECISION_QUARTER, "add_quarters") year_quarter_day_plus_duration(x, n, PRECISION_QUARTER) } year_quarter_day_plus_duration <- function(x, n, precision_n) { start <- quarterly_start(x) precision_fields <- calendar_precision_attribute(x) n <- duration_collect_n(n, precision_n) args <- vec_recycle_common(x = x, n = n) x <- args$x n <- args$n names <- names_common(x, n) fields <- year_quarter_day_plus_duration_cpp(x, n, precision_fields, precision_n, start) new_year_quarter_day_from_fields(fields, precision_fields, start, names = names) } as_year_quarter_day <- function(x, ..., start = NULL) { UseMethod("as_year_quarter_day") } as_year_quarter_day.default <- function(x, ..., start = NULL) { stop_clock_unsupported_conversion(x, "clock_year_quarter_day") } as_year_quarter_day.clock_year_quarter_day <- function(x, ..., start = NULL) { check_dots_empty() if (is_null(start)) { return(x) } start <- quarterly_validate_start(start) x_start <- quarterly_start(x) if (x_start == start) { return(x) } as_year_quarter_day(as_sys_time(x), start = start) } as_sys_time.clock_year_quarter_day <- function(x) { calendar_require_all_valid(x) start <- quarterly_start(x) precision <- calendar_precision_attribute(x) fields <- as_sys_time_year_quarter_day_cpp(x, precision, start) new_sys_time_from_fields(fields, precision, clock_rcrd_names(x)) } as_naive_time.clock_year_quarter_day <- function(x) { as_naive_time(as_sys_time(x)) } as.character.clock_year_quarter_day <- function(x, ...) { format(x) } calendar_group.clock_year_quarter_day <- function(x, precision, ..., n = 1L) { n <- validate_calendar_group_n(n) x <- calendar_narrow(x, precision) precision <- validate_precision_string(precision) if (precision == PRECISION_YEAR) { value <- get_year(x) value <- group_component0(value, n) x <- set_year(x, value) return(x) } if (precision == PRECISION_QUARTER) { value <- get_quarter(x) value <- group_component1(value, n) x <- set_quarter(x, value) return(x) } if (precision == PRECISION_DAY) { value <- get_day(x) value <- group_component1(value, n) x <- set_day(x, value) return(x) } x <- calendar_group_time(x, n, precision) x } calendar_narrow.clock_year_quarter_day <- function(x, precision) { precision <- validate_precision_string(precision) start <- quarterly_start(x) out_fields <- list() x_fields <- unclass(x) if (precision >= PRECISION_YEAR) { out_fields[["year"]] <- x_fields[["year"]] } if (precision >= PRECISION_QUARTER) { out_fields[["quarter"]] <- x_fields[["quarter"]] } if (precision >= PRECISION_DAY) { out_fields[["day"]] <- x_fields[["day"]] } out_fields <- calendar_narrow_time(out_fields, precision, x_fields) new_year_quarter_day_from_fields(out_fields, precision, start, names = names(x)) } calendar_widen.clock_year_quarter_day <- function(x, precision) { x_precision <- calendar_precision_attribute(x) precision <- validate_precision_string(precision) if (precision >= PRECISION_QUARTER && x_precision < PRECISION_QUARTER) { x <- set_quarter(x, 1L) } if (precision >= PRECISION_DAY && x_precision < PRECISION_DAY) { x <- set_day(x, 1L) } x <- calendar_widen_time(x, x_precision, precision) x } NULL calendar_start.clock_year_quarter_day <- function(x, precision) { x_precision <- calendar_precision_attribute(x) precision <- validate_precision_string(precision) calendar_start_end_checks(x, x_precision, precision, "start") if (precision <= PRECISION_YEAR && x_precision > PRECISION_YEAR) { x <- set_quarter(x, 1L) } if (precision <= PRECISION_QUARTER && x_precision > PRECISION_QUARTER) { x <- set_day(x, 1L) } x <- calendar_start_time(x, x_precision, precision) x } calendar_end.clock_year_quarter_day <- function(x, precision) { x_precision <- calendar_precision_attribute(x) precision <- validate_precision_string(precision) calendar_start_end_checks(x, x_precision, precision, "end") if (precision <= PRECISION_YEAR && x_precision > PRECISION_YEAR) { x <- set_quarter(x, 4L) } if (precision <= PRECISION_QUARTER && x_precision > PRECISION_QUARTER) { x <- set_day(x, "last") } x <- calendar_end_time(x, x_precision, precision) x } calendar_count_between.clock_year_quarter_day <- function(start, end, precision, ..., n = 1L) { NextMethod() } calendar_count_between_standardize_precision_n.clock_year_quarter_day <- function(x, precision, n) { precision_int <- validate_precision_string(precision) allowed_precisions <- c(PRECISION_YEAR, PRECISION_QUARTER) if (!(precision_int %in% allowed_precisions)) { abort("`precision` must be one of: 'year', 'quarter'.") } list(precision = precision, n = n) } calendar_count_between_compute.clock_year_quarter_day <- function(start, end, precision) { precision <- validate_precision_string(precision) if (precision == PRECISION_YEAR) { out <- get_year(end) - get_year(start) return(out) } if (precision == PRECISION_QUARTER) { out <- (get_year(end) - get_year(start)) * 4L out <- out + (get_quarter(end) - get_quarter(start)) return(out) } abort("Internal error: `precision` should be 'year' or 'quarter' at this point.") } calendar_count_between_proxy_compare.clock_year_quarter_day <- function(start, end, precision) { precision <- validate_precision_string(precision) start <- vec_proxy_compare(start) end <- vec_proxy_compare(end) if (precision >= PRECISION_YEAR) { start$year <- NULL end$year <- NULL } if (precision >= PRECISION_QUARTER) { start$quarter <- NULL end$quarter <- NULL } list(start = start, end = end) } seq.clock_year_quarter_day <- function(from, to = NULL, by = NULL, length.out = NULL, along.with = NULL, ...) { precision <- calendar_precision_attribute(from) if (precision > PRECISION_QUARTER) { abort("`from` must be 'year' or 'quarter' precision.") } seq_impl( from = from, to = to, by = by, length.out = length.out, along.with = along.with, precision = precision, ... ) } quarterly_start <- function(x) { attr(x, "start", exact = TRUE) } quarterly_start_prettify <- function(start, ..., abbreviate = FALSE) { check_dots_empty() if (abbreviate) { month.abb[start] } else { month.name[start] } } quarterly_validate_start <- function(start) { if (is_null(start)) { return(1L) } start <- vec_cast(start, integer(), x_arg = "start") if (!is_number(start)) { abort("`start` must be a single number.") } if (start < 1L || start > 12L) { abort("`start` must be a number between [1, 12].") } start }
GenerateHTMLQuestion <- function (character = NULL, file = NULL, frame.height = 450) { if (!is.null(character)) { html <- paste0(character, collapse = "\n") } else if (!is.null(file)) { html <- paste0(readLines(file, warn = FALSE), collapse="\n") } string <- paste0( "<HTMLQuestion xmlns=\"http://mechanicalturk.amazonaws.com/AWSMechanicalTurkDataSchemas/2011-11-11/HTMLQuestion.xsd\"><HTMLContent><![CDATA[", html, "]]></HTMLContent><FrameHeight>",frame.height,"</FrameHeight></HTMLQuestion>") return(structure(list(xml.parsed = XML::xmlParse(string), string = string), class='HTMLQuestion')) }
context("test_get_ER2.R") test_that("get_ER2 agrees with version 0.3", with(simulate(sparse = TRUE), { original.res = readRDS('ER2_original_res.rds') scaledX = set_X_attributes(X) scaledX.sparse = set_X_attributes(X.sparse) s$Xr = colSums(compute_MXt(s$alpha*s$mu, scaledX)) dense.res = get_ER2(scaledX, y, s) sparse.res = get_ER2(scaledX.sparse, y, s) expect_equal(dense.res, original.res) expect_equal(sparse.res, original.res) }))
expected <- eval(parse(text="c(\"1\", \"2\", NA)")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(2L, 1L, 3L), .Label = c(\"1\", \"2\", NA), class = c(\"ordered\", \"factor\")), \"levels\")")); do.call(`attr`, argv); }, o=expected);
HPDinterval.stFit = function(stFit, burn = 1, prob = .95) { res = lapply(stFit$parameters$samples, function(s) { r = s[-(1:burn),] if(length(r)>1) { HPDinterval(mcmc(as.matrix(r))) } else { NULL } }) if(!is.null(stFit$parameters$beta.names)) { rownames(res$beta) = stFit$parameters$beta.names } res }
iterators::nextElem itertools::hasNext prevElem <- function(obj, ...) { UseMethod("prevElem") } hasPrev <- function(obj, ...) { UseMethod("hasPrev") } getFirst <- function(obj, ...) { UseMethod("getFirst") } getLast <- function(obj, ...) { UseMethod("getLast") }
eform <- function (object, ...) UseMethod("eform") eform.default <- function(object, parm, level = 0.95, method=c("Delta","Profile"), name="exp(beta)", ...) { method <- match.arg(method) if (missing(parm)) parm <- TRUE if (method == "Profile") class(object) <- c(class(object),"glm") estfun <- switch(method, Profile = confint, Delta = stats::confint.default) val <- exp(cbind(coef = coef(object), estfun(object, level = level))) colnames(val) <- c(name,colnames(val)[-1]) val[parm, ] } irr <- function(..., name = "IRR") eform(..., name = name) or <- function(..., name = "OR") eform(..., name = name)
get_crime_data <- function (years = NULL, cities = NULL, type = "sample", cache = TRUE, quiet = FALSE, output = "tbl") { stopifnot(type %in% c("core", "extended", "sample")) stopifnot(is.character(cities) | is.null(cities)) stopifnot(is.integer(as.integer(years)) | is.null(years)) stopifnot(is.logical(quiet)) stopifnot(output %in% c("tbl", "sf")) urls <- get_file_urls(quiet = quiet) if (is.null(years)) { years <- max(urls$year) } if (is.null(cities)) { cities <- "all cities" } years <- as.integer(years) if (!all(years %in% unique(urls$year))) { stop("One or more of the specified years does not correspond to a year of ", "data available in the Open Crime Database. For details of available ", "data, see <https://osf.io/zyaqn/>. Data for the current year are ", "not available because the database is updated annually.") } if (cities[1] != "all" & !all(cities %in% unique(urls$city))) { stop("One or more of the specified cities does not correspond to a city ", "for which data are available in the Open Crime Database. Check your ", "spelling or for details of available data, see ", "<https://osf.io/zyaqn/>.") } urls <- urls[urls$data_type == type & urls$year %in% years & urls$city %in% cities, ] if (nrow(urls) == 0) { stop("The Crime Open Database does not contain data for any of the ", "specified years for the specified cities.") } else { throw_away <- expand.grid(year = years, city = cities) %>% apply(1, function (x) { if (nrow(urls[urls$year == x[[1]] & urls$city == x[[2]], ]) == 0 & quiet == FALSE) { warning("Data are not available for crimes in ", x[[2]], " in ", x[[1]], call. = FALSE, immediate. = TRUE, noBreaks. = TRUE) } }) rm(throw_away) } hash <- digest::digest(c(type, years, cities)) cache_file <- tempfile( pattern = paste0("crimedata_", hash, "_"), fileext = ".Rds" ) cache_files <- dir(tempdir(), pattern = hash, full.names = TRUE) if (cache == FALSE & length(cache_files) > 0) { lapply(cache_files, file.remove) message("Deleting cached data and re-downloading from server.", appendLF = TRUE) } if (cache == TRUE & length(cache_files) > 0) { if (quiet == FALSE) { message("Loading cached data from previous request in this session. To ", "download data again, call get_crime_data() with cache = FALSE.", appendLF = TRUE) } crime_data <- readRDS(cache_files[1]) } else { crime_data <- urls %>% purrr::transpose(.names = paste0(.$data_type, .$city, .$year)) %>% purrr::map(function (x) { if (quiet == FALSE) { message("Downloading ", x[["data_type"]], " data for ", x[["city"]], " in ", x[["year"]], appendLF = TRUE) } temp_file <- tempfile(pattern = "code_data_", fileext = ".Rds") httr::GET(x[["file_url"]], progress(type = "down")) %>% httr::content(as = "raw") %>% writeBin(temp_file) this_crime_data <- readRDS(temp_file) file.remove(temp_file) this_crime_data }) %>% dplyr::bind_rows() %>% dplyr::arrange(.data$uid) saveRDS(crime_data, cache_file) } if (output == "sf") { crime_data <- sf::st_as_sf(crime_data, coords = c("longitude", "latitude"), crs = 4326, remove = FALSE) } crime_data <- dplyr::mutate_at( crime_data, vars(one_of(c("city_name", "offense_code", "offense_type", "offense_group", "offense_against", "location_type", "location_category"))), as.factor ) crime_data <- dplyr::mutate_at( crime_data, vars("date_single"), as.POSIXct, format = "%Y-%m-%d %H:%M" ) if ("date_start" %in% names(crime_data) | "date_end" %in% names(crime_data)) { crime_data <- dplyr::mutate_at( crime_data, vars(one_of(c("date_start", "date_end"))), as.POSIXct, format = "%Y-%m-%d %H:%M" ) } crime_data }
setClassUnion("allowedDist", c("normalDist", "logNormalDist", "gammaDist", "studentDist", "logisticDist")) setClassUnion("allowedFitDist", c("fitNormalDist", "fitLogNormalDist", "fitGammaDist", "fitStudentDist", "fitLogisticDist", "undefined", "fitUserDefinedDist"))
mice.impute.myfunc <- function (y, ry, x, wy = NULL, ...) { if (is.null(wy)) wy <- !ry aug <- augment(y, ry, x, wy) x <- aug$x y <- aug$y ry <- aug$ry wy <- aug$wy w <- aug$w x <- cbind(1, as.matrix(x)) expr <- expression(glm.fit(x = x[ry, , drop = FALSE], y = y[ry], family = quasibinomial(link = logit), weights = w[ry], control = list(maxit=1000))) fit <- eval(expr) fit.sum <- summary.glm(fit) beta <- coef(fit) rv <- t(chol(sym(fit.sum$cov.unscaled))) beta.star <- beta + rv %*% rnorm(ncol(rv)) p <- 1/(1 + exp(-(x[wy, , drop = FALSE] %*% beta.star))) vec <- (runif(nrow(p)) <= p) vec[vec] <- 1 if (is.factor(y)) { vec <- factor(vec, c(0, 1), levels(y)) } return(vec) }
getLastShortSelling=function() { domain="https://www.hkex.com.hk/" webpage="eng/stat/smstat/ssturnover/ncms/ASHTMAIN.HTM" argument="" urlLink=paste(domain,webpage,argument,sep="") page= RCurl::getURL(urlLink) hp=XML::htmlParse(page) x <- XML::xpathApply(hp,"//pre") s=x[[1]][[1]][[1]] xs=XML::xmlValue(s) sDate=substr(xs, regexpr("TRADING DATE", xs)+15,regexpr("TRADING DATE", xs)+15+10) sDate=as.Date(sDate,"%d %b %Y") skip=function(xs,n, pattern) { for ( i in 1:n) { xs=substr(xs, regexpr(pattern, xs)+nchar(pattern), nchar(xs)) } return (xs) } xs=skip(xs,7, "\r\n") f=function(x) !is.na(as.numeric(x)) df=data.frame() for ( i in 1:2000) { code=substr(xs, 1, 7) code=gsub(" ","", code) if (f(code)==FALSE) break cname=substr(xs, 10, 30) to.sh=substr(xs, 31, 41) to.val=substr(xs, 42, 56) df=rbind(df, data.frame(date=sDate, code,cname,to.sh, to.val)) xs=skip(xs,1, "\r\n") } df$to.sh=gsub(",","", df$to.sh) df$to.val=gsub(",","", df$to.val) return(df) }
implicativestat <- function(x, y, type="intensity", resid="standard") { if (!(type %in% c("intensity", "indice"))) { stop("type should be intensity or indice") } if (!(resid %in% c("standard", "deviance", "Freeman-Tukey", "adjusted"))) { stop("resid should be one of standard, deviance, Freeman-Tukey or ajusted") } x <- factor(x) if (length(levels(x)==1)) x <- factor(x, levels=c("0","1")) y <- factor(y) if (length(levels(y)==1)) y <- factor(y, levels=c("0","1")) xgrp <- levels(x) ygrp <- levels(y) result <- matrix(0, nrow=length(xgrp), ncol=length(ygrp)) n <- length(x) rownames(result) <- xgrp colnames(result) <- ygrp for (i in 1:length(xgrp)) { condi <- x==xgrp[i] for (j in 1:length(ygrp)) { condj <- y==ygrp[j] Nnbj <- sum((condi)&!condj) Nexpnbj <- sum(condi)*sum(!condj)/n if (resid=="standard") { indice <- (Nnbj-Nexpnbj)/sqrt(Nexpnbj) } else if (resid=="deviance") { indice <- sign(Nnbj-Nexpnbj)*sqrt(abs(2*Nnbj*log(Nnbj/Nexpnbj))) } else if (resid=="Freeman-Tukey") { indice <- sqrt(Nnbj)+sqrt(1+Nnbj)-sqrt(4*Nexpnbj+1) } else if (resid=="adjusted") { indice <- (Nnbj-Nexpnbj)/sqrt(Nexpnbj*(sum(condj)/n)*(1-sum(condi)/n)) } if (type=="indice") { result[i, j] <- indice } else { result[i, j] <- pnorm(-indice) } } } return(result) }
ARp <- function(margdist, margarg, acsvalue, actfpara, n, p = NULL, p0 = 0) { transacsvalue <- actf(acsvalue, b = actfpara$actfcoef[1], c = actfpara$actfcoef[2]) if (any(c(is.null(p), p > 1000))) { temp <- length(transacsvalue[transacsvalue > .01]) - 1 p <- ifelse(temp > 1000, 1000, temp) message(paste('Order "p" limited to ', p)) } if(length(transacsvalue) - 1 < p) { stop(paste0('Please supply ACS of length up to order p = ', p, ', or leave argument p = NULL')) } P <- matrix(NA, p, p) for (i in 1:p) { P[i, i:p] <- transacsvalue[1:(p - i + 1)] P[i, 1:i] <- transacsvalue[i:1] } rho <- matrix(transacsvalue[2:(p + 1)], p, 1) a <- solve(P, rho) esd <- sqrt(1 - sum(rho*a)) val <- AR1(n = p, alpha = rho[1]) gn <- rnorm(n = (p + n), mean = 0, sd = esd) a.rev <- rev(a) for (i in (p + 1):(n + p)) { val[i] <- sum(val[(i - p):(i - 1)]*a.rev) + gn[i] } uval <- (pnorm(val[-1:-p]) - p0)/(1 - p0) uval[uval < 0] <- 0 out <- do.call(paste0('q', margdist), args = c(list(p = uval), margarg)) structure(.Data = out, margdist = margdist, margarg = margarg, acsvalue = acsvalue, p0 = p0, a = a, esd = esd, gaussian = val[-1:-p], trACS = transacsvalue) }
NULL cubehelix <- function(n=25, start = 0.5, r = -1.5, hue = 1, gamma = 1) { lambda <- seq(0, 1, length=n) lgam <- rep(lambda^gamma, each = 3) phi <- 2 * pi * (start/3 + r * lambda) amp <- hue * lgam * (1 - lgam)/2 M <- matrix(c(-0.14861, -0.29227, 1.97294, 1.78277, -0.90649, 0), byrow=FALSE, ncol = 2) out <- lgam + amp * (M %*% rbind(cos(phi), sin(phi))) out <- pmin(pmax(out, 0), 1) rgb(t(out)) } gnuplot <- function (n = 25, trim = 0.1) { if (trim >= 1 || trim < 0) stop("trim should be in [0, 1]") i <- seq(0.5 * trim, 1 - 0.5 * trim, length = n) R <- ifelse(i < 0.25, 0, ifelse(i < 0.57, i/0.32 - 0.78125, 1)) G <- ifelse(i < 0.42, 0, ifelse(i < 0.92, 2 * i - 0.84, 1)) B <- ifelse(i < 0.25, 4 * i, ifelse(i < 0.42, 1, ifelse(i < 0.92, -2 * i + 1.84, i/0.08 - 11.5))) rgb(R, G, B) } tol.rainbow <- function(n=25, manual=TRUE){ if(manual & n >= 14 & n <= 21) { banded <- matrix(c(17, 68, 119, 17, 68, 119, 17, 68, 136, 119, 170, 221, 119, 170, 221, 119, 170, 221, 119, 170, 204, 68, 119, 170, 119, 170, 204, 119, 170, 204, 119, 170, 221, 68, 119, 170, 17, 68, 119, 17, 68, 153, 119, 170, 221, 119, 170, 204, 68, 119, 170, 17, 68, 119, 17, 68, 119, 34, 85, 136, 85, 136, 187), byrow=FALSE, ncol=3) banded <- rgb(banded, maxColorValue=255) ix <- list( c(0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16), c(0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17), c(20, 0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17), c(19, 20, 0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17), c(18, 19, 20, 0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17), c(20, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), c(19, 20, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), c(18, 19, 20, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17))[[n-13]] return(banded[ix+1]) } if (manual & n <=13) { x <- list( c(0.137), c(0.137, 1), c(0.137, 0.511, 1), c(0.137, 0.36, 0.762, 1), c(0.137, 0.335, 0.483, 0.794, 1), c(0.137, 0.287, 0.402, 0.651, 0.833, 1), c(0., 0.195, 0.34, 0.436, 0.685, 0.843, 1), c(0., 0.177, 0.301, 0.39, 0.536, 0.735, 0.861, 1), c(0., 0.162, 0.266, 0.36, 0.437, 0.617, 0.768, 0.874, 1), c(0., 0.149, 0.239, 0.337, 0.399, 0.508, 0.676, 0.794, 0.885, 1), c(0., 0.137, 0.218, 0.312, 0.374, 0.44, 0.577, 0.715, 0.813, 0.894, 1), c(0., 0.128, 0.203, 0.284, 0.351, 0.402, 0.487, 0.628, 0.742, 0.826, 0.9, 1), c(0., 0.118, 0.188, 0.259, 0.332, 0.38, 0.437, 0.544, 0.67, 0.765, 0.839, 0.907, 1))[[n]] } else { x <- seq(from=0, to=1, length=n) } R <- (0.472-0.567*x+4.05*x^2)/(1+8.72*x-19.17*x^2+14.1*x^3) G <- 0.108932 - 1.22635*x + 27.284*x^2 - 98.577*x^3 + 163.3*x^4 - 131.395*x^5 + 40.634*x^6 B <- 1/(1.97 + 3.54*x - 68.5*x^2 + 243*x^3-297*x^4 + 125*x^5) return(rgb(R,G,B)) } jet <- function(n=25) colorRampPalette(syspals$jet)(n) parula <- function(n=25) colorRampPalette(syspals$parula)(n) turbo <- function(n=25) colorRampPalette(syspals$turbo)(n) coolwarm <- function(n=25) colorRampPalette(syspals$coolwarm)(n) warmcool <- function(n=25){ rev(coolwarm(n)) } cividis <- function(n=25) colorRampPalette(syspals$cividis)(n) NULL get.brewer.pal <- function(bpal, n){ rng <- as.numeric(names(bpal)) maxn <- max(rng) if(n < 3) warning("Only accepts n>2") if(n <= maxn) { return(bpal[[n-2]]) } else { return(colorRampPalette(bpal[[maxn-2]])(n)) } } brewer.blues <- function(n) get.brewer.pal(syspals$brewer.blues, n) brewer.bugn <- function(n) get.brewer.pal(syspals$brewer.bugn, n) brewer.bupu <- function(n) get.brewer.pal(syspals$brewer.bupu, n) brewer.gnbu <- function(n) get.brewer.pal(syspals$brewer.gnbu, n) brewer.greens <- function(n) get.brewer.pal(syspals$brewer.greens, n) brewer.greys <- function(n) get.brewer.pal(syspals$brewer.greys, n) brewer.oranges <- function(n) get.brewer.pal(syspals$brewer.oranges, n) brewer.orrd <- function(n) get.brewer.pal(syspals$brewer.orrd, n) brewer.pubu <- function(n) get.brewer.pal(syspals$brewer.pubu, n) brewer.pubugn <- function(n) get.brewer.pal(syspals$brewer.pubugn, n) brewer.purd <- function(n) get.brewer.pal(syspals$brewer.purd, n) brewer.purples <- function(n) get.brewer.pal(syspals$brewer.purples, n) brewer.rdpu <- function(n) get.brewer.pal(syspals$brewer.rdpu, n) brewer.reds <- function(n) get.brewer.pal(syspals$brewer.reds, n) brewer.ylgn <- function(n) get.brewer.pal(syspals$brewer.ylgn, n) brewer.ylgnbu <- function(n) get.brewer.pal(syspals$brewer.ylgnbu, n) brewer.ylorbr <- function(n) get.brewer.pal(syspals$brewer.ylorbr, n) brewer.ylorrd <- function(n) get.brewer.pal(syspals$brewer.ylorrd, n) brewer.brbg <- function(n) get.brewer.pal(syspals$brewer.brbg, n) brewer.piyg <- function(n) get.brewer.pal(syspals$brewer.piyg, n) brewer.prgn <- function(n) get.brewer.pal(syspals$brewer.prgn, n) brewer.puor <- function(n) get.brewer.pal(syspals$brewer.puor, n) brewer.rdbu <- function(n) get.brewer.pal(syspals$brewer.rdbu, n) brewer.rdgy <- function(n) get.brewer.pal(syspals$brewer.rdgy, n) brewer.rdylbu <- function(n) get.brewer.pal(syspals$brewer.rdylbu, n) brewer.rdylgn <- function(n) get.brewer.pal(syspals$brewer.rdylgn, n) brewer.spectral <- function(n) get.brewer.pal(syspals$brewer.spectral, n) brewer.accent <- function(n) get.brewer.pal(syspals$brewer.accent, n) brewer.dark2 <- function(n) get.brewer.pal(syspals$brewer.dark2, n) brewer.paired <- function(n) get.brewer.pal(syspals$brewer.paired, n) brewer.pastel1 <- function(n) get.brewer.pal(syspals$brewer.pastel1, n) brewer.pastel2 <- function(n) get.brewer.pal(syspals$brewer.pastel2, n) brewer.set1 <- function(n) get.brewer.pal(syspals$brewer.set1, n) brewer.set2 <- function(n) get.brewer.pal(syspals$brewer.set2, n) brewer.set3 <- function(n) get.brewer.pal(syspals$brewer.set3, n) NULL ocean.algae <- function(n) colorRampPalette(syspals$ocean.algae)(n) ocean.deep <- function(n) colorRampPalette(syspals$ocean.deep)(n) ocean.dense <- function(n) colorRampPalette(syspals$ocean.dense)(n) ocean.gray <- function(n) colorRampPalette(syspals$ocean.gray)(n) ocean.haline <- function(n) colorRampPalette(syspals$ocean.haline)(n) ocean.ice <- function(n) colorRampPalette(syspals$ocean.ice)(n) ocean.matter <- function(n) colorRampPalette(syspals$ocean.matter)(n) ocean.oxy <- function(n) colorRampPalette(syspals$ocean.oxy)(n) ocean.phase <- function(n) colorRampPalette(syspals$ocean.phase)(n) ocean.solar <- function(n) colorRampPalette(syspals$ocean.solar)(n) ocean.thermal <- function(n) colorRampPalette(syspals$ocean.thermal)(n) ocean.turbid <- function(n) colorRampPalette(syspals$ocean.turbid)(n) ocean.balance <- function(n) colorRampPalette(syspals$ocean.balance)(n) ocean.curl <- function(n) colorRampPalette(syspals$ocean.curl)(n) ocean.delta <- function(n) colorRampPalette(syspals$ocean.delta)(n) ocean.amp <- function(n) colorRampPalette(syspals$ocean.amp)(n) ocean.speed <- function(n) colorRampPalette(syspals$ocean.speed)(n) ocean.tempo <- function(n) colorRampPalette(syspals$ocean.tempo)(n) NULL cubicyf <- function(n) colorRampPalette(syspals$cubicyf)(n) isol <- function(n) colorRampPalette(syspals$isol)(n) cubicl <- function(n) colorRampPalette(syspals$cubicl)(n) linearl <- function(n) colorRampPalette(syspals$linearl)(n) linearlhot <- function(n) colorRampPalette(syspals$linearlhot)(n) NULL magma <- function(n) colorRampPalette(syspals$magma)(n) inferno <- function(n) colorRampPalette(syspals$inferno)(n) plasma <- function(n) colorRampPalette(syspals$plasma)(n) viridis <- function(n) colorRampPalette(syspals$viridis)(n) NULL kovesi.cyclic_grey_15_85_c0 <- function(n) colorRampPalette(syspals$kovesi.cyclic_grey_15_85_c0)(n) kovesi.cyclic_grey_15_85_c0_s25 <- function(n) colorRampPalette(syspals$kovesi.cyclic_grey_15_85_c0_s25)(n) kovesi.cyclic_mrybm_35_75_c68 <- function(n) colorRampPalette(syspals$kovesi.cyclic_mrybm_35_75_c68)(n) kovesi.cyclic_mrybm_35_75_c68_s25 <- function(n) colorRampPalette(syspals$kovesi.cyclic_mrybm_35_75_c68_s25)(n) kovesi.cyclic_mygbm_30_95_c78 <- function(n) colorRampPalette(syspals$kovesi.cyclic_mygbm_30_95_c78)(n) kovesi.cyclic_mygbm_30_95_c78_s25 <- function(n) colorRampPalette(syspals$kovesi.cyclic_mygbm_30_95_c78_s25)(n) kovesi.cyclic_wrwbw_40_90_c42 <- function(n) colorRampPalette(syspals$kovesi.cyclic_wrwbw_40_90_c42)(n) kovesi.cyclic_wrwbw_40_90_c42_s25 <- function(n) colorRampPalette(syspals$kovesi.cyclic_wrwbw_40_90_c42_s25)(n) kovesi.diverging_isoluminant_cjm_75_c23 <- function(n) colorRampPalette(syspals$kovesi.diverging_isoluminant_cjm_75_c23)(n) kovesi.diverging_isoluminant_cjm_75_c24 <- function(n) colorRampPalette(syspals$kovesi.diverging_isoluminant_cjm_75_c24)(n) kovesi.diverging_isoluminant_cjo_70_c25 <- function(n) colorRampPalette(syspals$kovesi.diverging_isoluminant_cjo_70_c25)(n) kovesi.diverging_linear_bjr_30_55_c53 <- function(n) colorRampPalette(syspals$kovesi.diverging_linear_bjr_30_55_c53)(n) kovesi.diverging_linear_bjy_30_90_c45 <- function(n) colorRampPalette(syspals$kovesi.diverging_linear_bjy_30_90_c45)(n) kovesi.diverging_rainbow_bgymr_45_85_c67 <- function(n) colorRampPalette(syspals$kovesi.diverging_rainbow_bgymr_45_85_c67)(n) kovesi.diverging_bkr_55_10_c35 <- function(n) colorRampPalette(syspals$kovesi.diverging_bkr_55_10_c35)(n) kovesi.diverging_bky_60_10_c30 <- function(n) colorRampPalette(syspals$kovesi.diverging_bky_60_10_c30)(n) kovesi.diverging_bwr_40_95_c42 <- function(n) colorRampPalette(syspals$kovesi.diverging_bwr_40_95_c42)(n) kovesi.diverging_bwr_55_98_c37 <- function(n) colorRampPalette(syspals$kovesi.diverging_bwr_55_98_c37)(n) kovesi.diverging_cwm_80_100_c22 <- function(n) colorRampPalette(syspals$kovesi.diverging_cwm_80_100_c22)(n) kovesi.diverging_gkr_60_10_c40 <- function(n) colorRampPalette(syspals$kovesi.diverging_gkr_60_10_c40)(n) kovesi.diverging_gwr_55_95_c38 <- function(n) colorRampPalette(syspals$kovesi.diverging_gwr_55_95_c38)(n) kovesi.diverging_gwv_55_95_c39 <- function(n) colorRampPalette(syspals$kovesi.diverging_gwv_55_95_c39)(n) kovesi.isoluminant_cgo_70_c39 <- function(n) colorRampPalette(syspals$kovesi.isoluminant_cgo_70_c39)(n) kovesi.isoluminant_cgo_80_c38 <- function(n) colorRampPalette(syspals$kovesi.isoluminant_cgo_80_c38)(n) kovesi.isoluminant_cm_70_c39 <- function(n) colorRampPalette(syspals$kovesi.isoluminant_cm_70_c39)(n) kovesi.linear_bgy_10_95_c74 <- function(n) colorRampPalette(syspals$kovesi.linear_bgy_10_95_c74)(n) kovesi.linear_bgyw_15_100_c67 <- function(n) colorRampPalette(syspals$kovesi.linear_bgyw_15_100_c67)(n) kovesi.linear_bgyw_15_100_c68 <- function(n) colorRampPalette(syspals$kovesi.linear_bgyw_15_100_c68)(n) kovesi.linear_blue_5_95_c73 <- function(n) colorRampPalette(syspals$kovesi.linear_blue_5_95_c73)(n) kovesi.linear_blue_95_50_c20 <- function(n) colorRampPalette(syspals$kovesi.linear_blue_95_50_c20)(n) kovesi.linear_bmw_5_95_c86 <- function(n) colorRampPalette(syspals$kovesi.linear_bmw_5_95_c86)(n) kovesi.linear_bmw_5_95_c89 <- function(n) colorRampPalette(syspals$kovesi.linear_bmw_5_95_c89)(n) kovesi.linear_bmy_10_95_c71 <- function(n) colorRampPalette(syspals$kovesi.linear_bmy_10_95_c71)(n) kovesi.linear_bmy_10_95_c78 <- function(n) colorRampPalette(syspals$kovesi.linear_bmy_10_95_c78)(n) kovesi.linear_gow_60_85_c27 <- function(n) colorRampPalette(syspals$kovesi.linear_gow_60_85_c27)(n) kovesi.linear_gow_65_90_c35 <- function(n) colorRampPalette(syspals$kovesi.linear_gow_65_90_c35)(n) kovesi.linear_green_5_95_c69 <- function(n) colorRampPalette(syspals$kovesi.linear_green_5_95_c69)(n) kovesi.linear_grey_0_100_c0 <- function(n) colorRampPalette(syspals$kovesi.linear_grey_0_100_c0)(n) kovesi.linear_grey_10_95_c0 <- function(n) colorRampPalette(syspals$kovesi.linear_grey_10_95_c0)(n) kovesi.linear_kry_5_95_c72 <- function(n) colorRampPalette(syspals$kovesi.linear_kry_5_95_c72)(n) kovesi.linear_kry_5_98_c75 <- function(n) colorRampPalette(syspals$kovesi.linear_kry_5_98_c75)(n) kovesi.linear_kryw_5_100_c64 <- function(n) colorRampPalette(syspals$kovesi.linear_kryw_5_100_c64)(n) kovesi.linear_kryw_5_100_c67 <- function(n) colorRampPalette(syspals$kovesi.linear_kryw_5_100_c67)(n) kovesi.linear_ternary_blue_0_44_c57 <- function(n) colorRampPalette(syspals$kovesi.linear_ternary_blue_0_44_c57)(n) kovesi.linear_ternary_green_0_46_c42 <- function(n) colorRampPalette(syspals$kovesi.linear_ternary_green_0_46_c42)(n) kovesi.linear_ternary_red_0_50_c52 <- function(n) colorRampPalette(syspals$kovesi.linear_ternary_red_0_50_c52)(n) kovesi.rainbow_bgyr_35_85_c72 <- function(n) colorRampPalette(syspals$kovesi.rainbow_bgyr_35_85_c72)(n) kovesi.rainbow <- function(n) colorRampPalette(syspals$kovesi.rainbow_bgyr_35_85_c72)(n) kovesi.rainbow_bgyr_35_85_c73 <- function(n) colorRampPalette(syspals$kovesi.rainbow_bgyr_35_85_c73)(n) kovesi.rainbow_bgyrm_35_85_c69 <- function(n) colorRampPalette(syspals$kovesi.rainbow_bgyrm_35_85_c69)(n) kovesi.rainbow_bgyrm_35_85_c71 <- function(n) colorRampPalette(syspals$kovesi.rainbow_bgyrm_35_85_c71)(n)
options(width=65,digits=5)
KMedoids <- function(data, k, ground.truth=NULL, distance, ...) { if (is.character(ground.truth)) { distance <- ground.truth ground.truth <- NULL } d <- as.matrix(TSDatabaseDistances(data, distance=distance, ...)) if (distance=="lcss") { d <- exp(-d) } clus <- pam(d, k=k, diss=TRUE) if (! is.null(ground.truth)) { f <- F(clus$clustering, ground.truth) return(list(clustering=as.numeric(clus$clustering), F=f)) } else { return(as.numeric(clus$clustering)) } } F <- function(clus, true) { tab1 <- 2 * table(clus, true) tab2 <- outer(rowSums(tab1), colSums(tab1), `+`) result <- 1 / length(true) * sum(colSums(tab1) * apply((tab1 / tab2), 2, max)) return(result) }
absorb.dbn=function(object,node,evidence) { class_nodes=object$dbn_nodes bngraph<-as.graphNEL(object$dbn) blM<-grMAT(bngraph) dnodes=c() for (i in 1:dim(class_nodes)[1]) { if(!dSep(blM,node,class_nodes[i,1],cond=NULL)) dnodes<-rbind(dnodes,class_nodes[i,]) } for (i in 1:length(node)) { Xnode<-which(dnodes[,1]==node[i]) if(length(Xnode)!=0) dnodes<-dnodes[-Xnode,] } if(!is.matrix(evidence)) stop("In function(absorb.dbn),'evidence' must be a matrix of factors") network<-as.grain(object$dbn) setEvidence(network) grn<-querygrain(network) marginal<-.get.cpt.grn(grn,dnodes) Y<-which(dnodes[,4]=="geno" ) Z<-which(dnodes[,4]=="pheno") FC=matrix(nrow=length(dnodes[Z,1]),ncol=dim(evidence)[2]) pheno_state=matrix(nrow=length(dnodes[Z,1]),ncol=dim(evidence)[2]) belief_pheno_freq_list=list() belief_pheno_freq=vector() belief_geno_freq_list=list() belief_geno_freq=vector() for (i in 1:dim(evidence)[2]) { retractEvidence(network) grn<-setEvidence(network,node,evidence[,i]) grnstate<-querygrain(grn) belief<-.get.cpt.grn(grnstate,dnodes) FC_temp<-.get.FC.grn(marginal,belief,dnodes) FC[,i]<- FC_temp[,2] pheno_state[,i]<-FC_temp[,1] if(length(Z)!=0) belief_pheno_freq = cbind(belief_pheno_freq,matrix(belief[dnodes[Z,1],1:ncol(belief)], nrow=length(dnodes[Z,1]), ncol=as.numeric(max(dnodes[,3])), dimnames=(list(dnodes[Z,1], colnames(belief))))) if(length(Y)!=0) belief_geno_freq = cbind(belief_geno_freq,matrix(belief[dnodes[Y,1],1:ncol(belief)], nrow=length(dnodes[Y,1]), ncol=as.numeric(max(dnodes[,3])), dimnames=(list(dnodes[Y,1], colnames(belief))))) } rownames(FC)=dnodes[Z,1] rownames(pheno_state)=dnodes[Z,1] FC=list(FC=FC,pheno_state=pheno_state) for (j in 1:as.numeric(max(dnodes[Z,3]))) { belief_pheno_freq_temp = matrix(belief_pheno_freq[,seq(j,ncol(belief_pheno_freq),by=as.numeric(max(dnodes[,3])))], nrow=nrow(belief_pheno_freq), ncol=dim(evidence)[2], dimnames=list(rownames(belief_pheno_freq),NULL)) name<-paste("state",j,sep="") belief_pheno_freq_list[[name]]= belief_pheno_freq_temp } phenomarginal<- marginal[dnodes[Z,1],1:as.numeric(max(dnodes[Z,3]))] if(length(belief_geno_freq)!=0) { for (j in 1:as.numeric(max(dnodes[Y,3]))) { belief_geno_freq_temp = matrix(belief_geno_freq[,seq(j,ncol(belief_geno_freq),by=as.numeric(max(dnodes[,3])))], nrow=nrow(belief_geno_freq), ncol=dim(evidence)[2], dimnames=list(rownames(belief_geno_freq),NULL)) name<-paste("state",j,sep="") belief_geno_freq_list[[name]]= belief_geno_freq_temp } genomarginal<- marginal[dnodes[Y,1],1:as.numeric(max(dnodes[Y,3]))] }else { belief_geno_freq_list<-NULL genomarginal<-NULL } results=list(gp=grn, gp_flag="db", gp_nodes=class_nodes, evidence=evidence, node=node, marginal=list(pheno = list(freq = phenomarginal), geno = list(freq = genomarginal)), belief=list(pheno = belief_pheno_freq_list,geno = belief_geno_freq_list), FC=FC) class(results)<-"dbn" return(results) } .get.cpt.grn=function(grnstate,dnodes) { cpt<-matrix(NA,nrow=dim(dnodes)[1],ncol=as.numeric(max(dnodes[,3]))) rownames(cpt)=dnodes[,1] for (j in 1:dim(dnodes)[1]) { cpt_temp<-unlist(grnstate[dnodes[j,1]]) cpt[dnodes[j,1],1:length(cpt_temp)]<-cbind(cpt_temp) } if(length(cpt)!=0) { freqnames<-matrix(nrow=as.numeric(max(dnodes[,3])),ncol=1) for (i in 1:max(dnodes[,3])) freqnames[i]=paste("state",i,sep="") colnames(cpt)=freqnames } return(cpt) } .get.FC.grn=function(marginal,belief,dnodes) { Z<- which(dnodes[,4]=="pheno") FC = matrix(nrow=length(dnodes[Z,1]),ncol=2) for (i in 1:nrow(dnodes[Z,])) { FC[i,1] = which.max(belief[dnodes[Z[i],1],]) FC[i,2] = belief[dnodes[Z[i],1],FC[i,1]]/marginal[dnodes[Z[i],1],FC[i,1]] } return(FC) }
dDAGroot <- function (g) { if(class(g)=="graphNEL"){ ig <- igraph.from.graphNEL(g) }else{ ig <- g } if (class(ig) != "igraph"){ stop("The function must apply to either 'igraph' or 'graphNEL' object.\n") } fast <- TRUE if(fast){ neighs.in <- igraph::neighborhood(ig, order=1, nodes=V(ig), mode="in") num.neighs.in <- sapply(neighs.in, length) root <- V(ig)[num.neighs.in==1]$name }else{ e <- get.data.frame(ig, what="edges") allnodes <- V(ig)$name times.child <- sapply(allnodes, function(child) sum(e[,2]==child)) root <- names(which(times.child==0)) } return(root) }
readXlsxBatch <- function(fileNames=NULL, path=".", fileExtension="xlsx", excludeFiles=NULL, sheetInd=1, checkFormat=TRUE, returnArray=TRUE, columns=c("Plate","Well","StainA"), simpleNames=3, silent=FALSE, callFrom=NULL){ fxNa <- .composeCallName(callFrom, newNa="readXlsxBatch") packages <- c("readxl", "Rcpp") checkPkg <- function(pkg) requireNamespace(pkg, quietly=TRUE) checkPkgs <- sapply(packages, checkPkg) if(!isTRUE(silent)) silent <- FALSE if(!isFALSE(returnArray)) returnArray <- TRUE if(any(!checkPkgs)) { out <- NULL warning(fxNa,"package 'readxl' and/or 'Rcpp' not found ! Please install first from CRAN") } else { if(is.null(path)) path <- "." chPath <- file.exists(path) if(!chPath) {message(fxNa,"Cannot find path '",path,"' ! ... Setting to default='.'")} if(is.null(fileNames)) { fileNames <- dir(path=path,pattern=paste0(fileExtension,"$")) if(length(fileNames) <1) message(fxNa,"Could not find ANY suitable files !!") else { if(silent) message(fxNa," found ",length(fileNames)," files to extract (eg ",pasteC(utils::head(fileNames,3),quoteC="'"),")")} useFi <- file.path(path,fileNames) } else { douPath <- grep(path,fileNames) useFi <- if(length(douPath) <1) file.path(path, fileNames) else fileNames checkFi <- file.exists(useFi) if(sum(!checkFi) >0) { if(silent) message(fxNa,"Could not find ",sum(!checkFi)," files out of ",length(useFi), " (eg ",pasteC(utils::head(fileNames[which(!checkFi)],3),quoteC="'"),")") useFi <- fileNames[which(checkFi)] fileNames <- fileNames[which(checkFi)] }} checkFi <- if(!is.null(excludeFiles)) grep(excludeFiles, fileNames) else NULL if(!any("try-error" %in% checkFi)) useFi <- NULL if(length(checkFi) >0) { if(silent) message(fxNa,"Based on 'excludeFiles': excluding ",length(checkFi)," files (out of ",length(fileNames),")") useFi <- useFi[-1*checkFi] fileNames <- fileNames[-1*checkFi] } outL <- list() if(length(useFi) >0) { for(i in 1:length(useFi)) { sheets <- try(readxl::excel_sheets(useFi[i])) if("try-error" %in% class(sheets)) { sheetInd <- NULL warning(fxNa,"Unable to read '",fileNames[i],"' Check if you have sufficient rights to open the file !?!") } else { if(is.numeric(sheetInd)) { sheetInd <- as.integer(sheetInd) if(length(sheets) < sheetInd | sheetInd <1) { sheetInd <- NULL }} else sheetInd <- naOmit(match(sheetInd,sheets)) if(silent & length(sheetInd) <1) message(fxNa,"Unable to read '",fileNames[i],"', the sheet '",sheetInd, "' was not found (existing: ",pasteC(sheets,quoteC="'"),")") } if(silent & length(sheetInd) >1) message(fxNa,"Only '",sheets[sheetInd],"', ie first match of 'sheetInd' will be read !") tmp <- if(length(sheetInd)==1) readxl::read_excel(useFi[i], sheet=sheets[sheetInd]) else NULL if(length(tmp) >0) { outL[[i]] <- as.data.frame(tmp) if(isTRUE(checkFormat)) { silent2 <- isTRUE(silent) | i !=1 outL[[i]] <- .inspectHeader(outL[[i]], headNames=columns,silent=silent2, callFrom=fxNa) outL[[i]] <- .removeEmptyCol(outL[[i]], fromBackOnly=FALSE,silent=silent2, callFrom=fxNa) } if(i ==1) { outDim <- dim(outL[[i]]) out <- if(returnArray) array(NA, dim=c(outDim[1],length(fileNames),outDim[2]), dimnames=list(rownames(outL[[i]]), basename(fileNames),colnames(outL[[i]]))) else NULL } if(returnArray) outL[[i]] <- as.matrix(outL[[i]]) else { if(identical(dim(outL[[i]]),outDim)) out[,i,] <- as.matrix(outL[[i]]) else { message(fxNa," Omit ",i,"th file ''",fileNames[i],"': format (",dim(outL[[i]])[1]," rows & ",dim(outL[[i]])[2]," cols) NOT consistent with previous files - omitting") } } } } names(outL) <- fileNames if(returnArray) { chColNa <- length(unique(colnames(out)))==1 arrNames <- if(chColNa) paste(colnames(out),sub("\\.xlsx$","",if(length(simpleNames) >1) .trimFromStart(fileNames, minNchar=simpleNames, callFrom=fxNa) else fileNames),sep=".") else colnames(out) } else { out <- outL if(length(fileNames) !=length(out)) message(fxNa," Problem ? Got ",length(fileNames)," fileNames BUT ",length(out)," list-elements !") names(out) <- substr(basename(fileNames), 1, nchar(basename(fileNames)) -4) if(simpleNames) names(out) <- if(length(simpleNames) >1) .trimFromStart(fileNames, minNchar=simpleNames, callFrom=fxNa) else fileNames } } else out <- NULL } out }
fitDRMperSubject <- function(subjectData, doseID, responseID, addCovars, funcList, bounds, EDp, addCovarsVar ){ names(subjectData)[doseID] <- "dose" names(subjectData)[responseID] <- "response" fittedModels <-NULL extraCovariates <- NULL subjectData <- as.data.frame(subjectData) estEDp <- rep(0, length(funcList)) estAIC <- rep(0, length(funcList)) extraCovariatesNames <- all.vars(as.formula(addCovars)) if (addCovars != as.formula(~1)){ paramEst <- matrix(NA, length(funcList), length(extraCovariatesNames)) paramVar <- matrix(NA, length(funcList), length(extraCovariatesNames)) } for (iModel in 1:length(funcList)){ tmpModel <- DoseFinding::fitMod(dose = "dose", resp = "response", data = subjectData, model = funcList[iModel], S = NULL, type = "normal", addCovars = addCovars, bnds = bounds[[iModel]], df = NULL, start = NULL) fittedModels[[iModel]] <- tmpModel estEDp[iModel] <- DoseFinding::ED(tmpModel, p = EDp, EDtype = "continuous") estAIC[iModel] <- AIC(tmpModel) if (addCovars != as.formula(~1)){ idxAddedCovariate <- which(names(coefficients(tmpModel)) %in% extraCovariatesNames) paramEst[iModel,] <- coefficients(tmpModel)[idxAddedCovariate] if (addCovarsVar){ computedVariance <- try(vcov(tmpModel)) if (!is.character(computedVariance)){ paramVar[iModel,] <- diag(computedVariance)[idxAddedCovariate] }else{ addCovarsVar <- FALSE } } } } minAICEDp <- estEDp[which.min(estAIC)] weightsAIC <- modelAveragingWeightsAIC(estAIC) modelAveragingEDp <- sum(weightsAIC * estEDp) if (addCovars != as.formula(~1)){ addedCovarsEst <- apply(weightsAIC * paramEst, 2, mean) addedCovarsVar <- rep(NA, length(addedCovarsEst)) if (addCovarsVar){ paramDiff <- paramEst - matrix(rep(addedCovarsEst,length(funcList)), length(funcList), length(addedCovarsEst), byrow = TRUE) addedCovarsVar <- (apply(weightsAIC *sqrt(paramVar + (paramDiff^2)), 2, sum))^2 } addedCovariatesModelAveraging <- cbind(addedCovarsEst, sqrt(addedCovarsVar)) colnames(addedCovariatesModelAveraging) <- c("Est.", "StdErr.") addedCovariatesMinAIC <- cbind(paramEst[which.min(estAIC),], sqrt(paramVar[which.min(estAIC),])) colnames(addedCovariatesMinAIC) <- c("Est.", "StdErr.") extraCovariates <- list(modelAveraging = addedCovariatesModelAveraging, minAIC = addedCovariatesMinAIC) class(extraCovariates) <- "drmExtraCovariates" } estEDpFinal <- c(estEDp, minAICEDp, modelAveragingEDp) names(estEDpFinal) <- c(funcList, "minAIC", "modelAveragingAIC") names(estAIC) <- funcList return(list(estEDp = estEDpFinal, fittedModels = fittedModels, estAIC = estAIC, extraCovariates = extraCovariates)) }
ecd.rational <- function(x, pref.denominator=numeric(0), cycles=10, max.denominator=500, as.character=FALSE) { if (length(x) > 1) { f <- function(x) ecd.rational(x, cycles=cycles, pref.denominator=pref.denominator, max.denominator=max.denominator, as.character=as.character) if (!as.character) return(t(sapply(x,f))) else return(sapply(x,f)) } if (length(x) != 1 | !is.finite(x)) { stop("Input must be length-one finite numeric!") } a0 <- rep(0, length(x)) b0 <- rep(1, length(x)) A <- matrix(b0) B <- matrix(floor(x)) r <- as.vector(x) - drop(B) len <- 0 while(any(r > 1/max.denominator) && (len <- len + 1) <= cycles) { a <- a0 b <- b0 a <- 1 r <- 1/r b <- floor(r) r <- r - b A <- cbind(A, a) B <- cbind(B, b) } pq1 <- cbind(b0, a0) pq <- cbind(B[, 1], b0) len <- 1 while((len <- len + 1) <= ncol(B)) { pq0 <- pq1 pq1 <- pq pq <- B[, len] * pq1 + A[, len] * pq0 } R <- unname(as.vector(pq)) for (pd in pref.denominator) { if (floor(pd/R[2]) == pd/R[2]) { R <- R*(pd/R[2]) break } } if (!as.character) return(R) else { if (R[1] == 0) return("0") if (R[1] == R[2]) return("1") return(sprintf("%d/%d", R[1], R[2])) } }
require(dynr) testthat::expect_error( me1 <- prep.measurement(values.load=matrix(c(1, 0), 1, 1), obs.names=c('y'), state.names=c('x1', 'x2')), regexp="Matrix values.load has 1 columns and 2 state.names (i.e., column names).\nHint: they should match.\nNot even the King of Soul could set these column names.", fixed=TRUE) testthat::expect_error( me2 <- prep.measurement(values.load=matrix(c(1, 0), 1, 1), obs.names=c('y1', 'y2'), state.names=c('x1')), regexp="Matrix values.load has 1 rows and 2 obs.names (i.e., row names).\nHint: they should match.\nNot even the King of Pop could set these row names.", fixed=TRUE) testthat::expect_error( me3 <- prep.measurement(values.load=matrix(c(1, 0), 1, 1), values.exo=matrix(c(1, 0), 1, 1), obs.names=c('y'), state.names=c('x1'), exo.names=c('u1', 'u2')), regexp="Matrix values.exo has 1 columns and 2 exo.names (i.e., column names).\nHint: they should match.\nNot even the King of Soul could set these column names.", fixed=TRUE) testthat::expect_error( me4 <- prep.measurement(values.load=matrix(c(1, 0), 1, 2), values.int=matrix(c(1, 1), 2, 1), obs.names=c('y'), state.names=c('x1', 'x2')), regexp="Matrix values.int has 2 rows and 1 obs.names (i.e., row names).\nHint: they should match.\nNot even the King of Pop could set these row names.", fixed=TRUE)
readFam = function(famfile, useDVI = NA, Xchrom = FALSE, verbose = TRUE) { if(!endsWith(famfile, ".fam")) stop("Input file must end with '.fam'", call. = FALSE) raw = readLines(famfile) x = gsub("\\\"", "", raw) checkInt = function(a, line, txt, value) { if(!is.na(a)) return() stop(sprintf('Expected line %d to be %s, but found: "%s"', line, txt, x[line]), call. = FALSE) } version = x[3] if(verbose) message("Familias version: ", version) if(is.na(useDVI)) useDVI = "[DVI]" %in% x else if(useDVI && !"[DVI]" %in% x) stop2("`useDVI` is TRUE, but no line equals '[DVI]'") if(verbose) message("Read DVI: ", if(useDVI) "Yes" else "No") nid.line = if(x[4] != "") 4 else 5 nid = as.integer(x[nid.line]) checkInt(nid, nid.line, "number of individuals") if(verbose) message("\nNumber of individuals (excluding 'extras'): ", nid) id = character(nid) sex = integer(nid) datalist = vector("list", nid) id.line = nid.line + 1 for(i in seq_len(nid)) { id[i] = x[id.line] sex[i] = ifelse(x[id.line + 4] == " nmi = as.integer(x[id.line + 5]) checkInt(nmi, id.line + 5, sprintf('number of genotypes for "%s"', id[i])) if(verbose) message(sprintf(" Individual '%s': Genotypes for %d markers read", id[i], nmi)) a1.lines = seq(id.line + 6, by = 3, length = nmi) a1.idx = as.integer(x[a1.lines]) + 1 a2.idx = as.integer(x[a1.lines + 1]) + 1 mark.idx = as.integer(x[a1.lines + 2]) + 1 datalist[[i]] = list(id = id[i], a1.idx = a1.idx, a2.idx = a2.idx, mark.idx = mark.idx) id.line = id.line + 6 + 3*nmi } twins = list() kr.line = id.line if(x[kr.line] != "Known relations") stop2(sprintf('Expected line %d to be "Known relations", but found: "%s"', id.line, x[id.line])) nFem = as.integer(x[kr.line + 1]) nMal = as.integer(x[kr.line + 2]) id = c(id, character(length = nFem + nMal)) sex = c(sex, rep.int(2:1, c(nFem, nMal))) fidx = midx = integer(length(id)) nRel = as.integer(x[kr.line + 3]) rel.line = kr.line + 4 for(i in seq_len(nRel)) { par.idx = as.integer(x[rel.line]) + 1 child.idx = as.integer(x[rel.line+1]) + 1 if(sex[par.idx] == 1) fidx[child.idx] = par.idx else midx[child.idx] = par.idx rel.line = rel.line + 2 } nPed = as.integer(x[rel.line]) checkInt(nPed, "number of pedigrees") if(verbose) message("\nNumber of pedigrees: ", nPed) if(nPed == 0) { pedigrees = asFamiliasPedigree(id, fidx, midx, sex) } ped.line = rel.line + 1 if(nPed > 0) { pedigrees = vector("list", nPed) for(i in seq_len(nPed)) { ped.idx = as.integer(x[ped.line]) + 1 ped.name = x[ped.line + 1] nFem.i = as.integer(x[ped.line + 2]) nMal.i = as.integer(x[ped.line + 3]) id.i = c(id, character(nFem.i + nMal.i)) sex.i = c(sex, rep.int(2:1, c(nFem.i, nMal.i))) fidx.i = c(fidx, integer(nFem.i + nMal.i)) midx.i = c(midx, integer(nFem.i + nMal.i)) if(verbose) message(sprintf(" Pedigree '%s' (%d extra females, %d extra males)", ped.name, nFem.i, nMal.i)) nRel.i = as.integer(x[ped.line + 4]) rel.line = ped.line + 5 for(i in seq_len(nRel.i)) { par.idx = as.integer(x[rel.line]) + 1 child.idx = as.integer(x[rel.line+1]) + 1 if(is.na(par.idx)) { if(grepl("Direct", x[rel.line])) { par.idx = as.integer(substring(x[rel.line], 1, 1)) + 1 twins = c(twins, list(par.idx, child.idx)) if(verbose) message(" Twins: ", toString(id[c(par.idx, child.idx)])) stop2("File contains twins - this is not supported yet") } } if(sex[par.idx] == 1) fidx.i[child.idx] = par.idx else midx.i[child.idx] = par.idx rel.line = rel.line + 2 } pedigrees[[ped.idx]] = asFamiliasPedigree(id.i, fidx.i, midx.i, sex.i) names(pedigrees)[ped.idx] = ped.name ped.line = rel.line } } has.probs = x[ped.line] == " if(has.probs) stop("\nThis file includes precomputed probabilities; this is not supported yet.") db.line = ped.line + 1 nLoc = as.integer(x[db.line]) checkInt(nLoc, "number of loci") has.info = x[db.line + 1] == " if(verbose) { if(has.info) message("\nDatabase: ", x[db.line + 2]) else message("") } if(verbose) message("Number of loci: ", nLoc) loci = vector("list", nLoc) loc.line = db.line + 2 + has.info unsupp = character() for(i in seq_len(nLoc)) { loc.name = x[loc.line] mutrate.fem = as.numeric(x[loc.line + 1]) mutrate.mal = as.numeric(x[loc.line + 2]) model.idx.fem = as.integer(x[loc.line + 3]) model.idx.mal = as.integer(x[loc.line + 4]) nAll.with.silent = as.integer(x[loc.line + 5]) range.fem = as.numeric(x[loc.line + 6]) range.mal = as.numeric(x[loc.line + 7]) mutrate2.fem = as.numeric(x[loc.line + 8]) mutrate2.mal = as.numeric(x[loc.line + 9]) has.silent = x[loc.line + 10] == " if(has.silent) stop2("Locus ", loc.name, " has silent frequencies: this is not implemented yet") silent.freq = as.numeric(x[loc.line + 11]) nAll = x[loc.line + 12] nAll = as.integer(strsplit(nAll, "\t")[[1]][[1]]) checkInt(nAll, sprintf('number of alleles for marker "%s"', loc.name)) als.lines = seq(loc.line + 13, by = 2, length.out = nAll) als = x[als.lines] frqs = as.numeric(x[als.lines + 1]) names(frqs) = als models = c("equal", "proportional", "stepwise", "3", "4") maleMod = models[model.idx.mal + 1] femaleMod = models[model.idx.fem + 1] if(maleMod %in% models[1:3]) { maleMutMat = mutationMatrix(model = maleMod, alleles = als, afreq = frqs, rate = mutrate.mal, rate2 = mutrate2.mal) } else { if(verbose) message(sprintf("*** Ignoring male mutation model '%s' ***", maleMod)) maleMutMat = NULL unsupp = c(unsupp, maleMod) } if(femaleMod %in% models[1:3]) { femaleMutMat = mutationMatrix(model = femaleMod, alleles = als, afreq = frqs, rate = mutrate.fem, rate2 = mutrate2.fem) } else { if(verbose) message(sprintf("*** Ignoring female mutation model '%s' ***", femaleMod)) femaleMutMat = NULL unsupp = c(unsupp, femaleMod) } if(maleMod == femaleMod && mutrate.fem == mutrate.mal) mut_txt = sprintf("model = %s, rate = %.2g (unisex)", maleMod, mutrate.mal) else mut_txt = sprintf("male model = %s, male rate = %.2g, female model = %s, female rate = %.2g", maleMod, mutrate.mal, femaleMod, mutrate.fem) if(verbose) message(sprintf(" %s: %d alleles, %s", loc.name, length(frqs), mut_txt)) loci[[i]] = list(locusname = loc.name, alleles = frqs, femaleMutationType = femaleMod, femaleMutationMatrix = femaleMutMat, maleMutationType = maleMod, maleMutationMatrix = maleMutMat) loc.line = loc.line + 13 + 2*nAll } if(length(unsupp) > 0) { unsupp = sort(unique.default(unsupp)) tmp ="Some mutation models were set to NULL. Model '%s' is not supported yet." warning(paste0(sprintf(tmp, unsupp), collapse = "\n"), call. = FALSE) } if(useDVI) { if(verbose) message("\n*** Reading DVI section ***") dvi.start = match("[DVI]", raw) if(is.na(dvi.start)) stop2("Expected keyword '[DVI]' not found") dvi.lines = raw[dvi.start:length(raw)] dvi.families = readDVI(dvi.lines, verbose = verbose) if(verbose) message("*** Finished DVI section ***\n") if(verbose) message("\nConverting to `ped` format") res = lapply(dvi.families, function(fam) { Familias2ped(familiasped = fam$pedigrees, datamatrix = fam$datamatrix, loci = loci, matchLoci = TRUE) }) if(Xchrom) { if(verbose) message("Changing all chromosome attributes to `X`") chrom(res, seq_along(loci)) = "X" } if(verbose) message("") return(res) } has.data = nid > 0 && any(lengths(sapply(datalist, '[[', "mark.idx"))) if(!has.data) { datamatrix = NULL } else { loc.names = vapply(loci, function(ll) ll$locusname, FUN.VALUE = "") dm.a1.idx = dm.a2.idx = matrix(NA, nrow = nid, ncol = nLoc, dimnames = list(id[seq_len(nid)], loc.names)) for(i in seq_len(nid)) { g = datalist[[i]] dm.a1.idx[i, g$mark.idx] = g$a1.idx dm.a2.idx[i, g$mark.idx] = g$a2.idx } dmn = list(id[seq_len(nid)], paste(rep(loc.names, each = 2), 1:2, sep = ".")) datamatrix = matrix(NA_character_, nrow = nid, ncol = 2*nLoc, dimnames = dmn) for(i in seq_len(nLoc)) { als.i = names(loci[[i]]$alleles) datamatrix[, 2*i - 1] = als.i[dm.a1.idx[, i]] datamatrix[, 2*i] = als.i[dm.a2.idx[, i]] } } if(!is.null(pedigrees)) { if(verbose) message("\nConverting to `ped` format") res = Familias2ped(familiasped = pedigrees, datamatrix = datamatrix, loci = loci) if(Xchrom) { if(verbose) message("Changing all chromosome attributes to `X`") chrom(res, seq_along(loci)) = "X" } } else { if(verbose) message("\nReturning database only") res = readFamiliasLoci(loci = loci) } if(verbose) message("") res } asFamiliasPedigree = function(id, findex, mindex, sex) { if(length(id) == 0) return(NULL) if(is.numeric(sex)) sex = ifelse(sex == 1, "male", "female") x = list(id = id, findex = findex, mindex = mindex, sex = sex) class(x) = "FamiliasPedigree" x } readDVI = function(rawlines, verbose = TRUE) { r = rawlines if(r[1] != "[DVI]") stop("Expected the first line of DVI part to be '[DVI]', but got '", r[1], "'") dvi = list() ivec = character() brackets = as.integer(regexpr("[^[]", r)) - 1 splits = strsplit(r, "= ") for(i in seq_along(r)) { line = r[i] if(line == "") next br = brackets[i] if(br == 0) { dvi[[ivec]] = c(dvi[[ivec]], list(splits[[i]])) } else { name = gsub("[][]", "", line) ivec = c(ivec[seq_len(br - 1)], name) dvi[[ivec]] = list() } } res = list() un = parseUnidentified(dvi$DVI$`Unidentified persons`, verbose = verbose) if(!is.null(un)) res$`Unidentified persons` = un refs_raw = dvi$DVI$`Reference Families` refs = refs_raw[-1] stopifnot((nFam <- length(refs)) == as.integer(refs_raw[[c(1,2)]])) if(verbose) message("\nReference families: ", nFam) names(refs) = sapply(refs, function(fam) fam[[1]][2]) refs = lapply(refs, parseFamily, verbose = verbose) c(res, refs) } parseUnidentified = function(x, verbose = TRUE) { if(length(x) == 0) return(NULL) nPers = x[[c(1,2)]] if(verbose) message("Unidentified persons: ", nPers) if(nPers == "0") return(NULL) x = x[-1] id = sapply(x, function(p) getValue(p[[1]], iftag = "Name", NA)) sex = sapply(x, function(p) getValue(p[[2]], iftag = "Gender", 0)) sex[sex == "Male"] = 1 sex[sex == "Female"] = 2 s = asFamiliasPedigree(as.character(id), 0, 0, as.integer(sex)) if(verbose) for(nm in id) message(" ", nm) vecs = lapply(x, function(p) dnaData2vec(p$`DNA data`)) vecs = vecs[!sapply(vecs, is.null)] allnames = unique(unlist(lapply(vecs, names))) vecs_ordered = lapply(vecs, function(v) structure(v[allnames], names = allnames)) datamatrix = do.call(rbind, vecs_ordered) rownames(datamatrix) = id[rownames(datamatrix)] list(pedigrees = s, datamatrix = datamatrix) } parseFamily = function(x, verbose = TRUE) { famname = x[[c(1,2)]] nPers = as.integer(x$Persons[[c(1,2)]]) nPeds = as.integer(x$Pedigrees[[c(1,2)]]) if(verbose) message(sprintf(" %s (%d persons, %d pedigrees)", famname, nPers, nPeds)) persons_list = x$Persons[-1] id = sapply(persons_list, function(p) getValue(p[[1]], iftag = "Name", NA)) sex = sapply(persons_list, function(p) getValue(p[[2]], iftag = "Gender", 0)) sex[sex == "Male"] = 1 sex[sex == "Female"] = 2 sex = as.integer(sex) ped_list = x$Pedigrees[-1] names(ped_list) = sapply(ped_list, function(pd) getValue(pd[[1]], iftag = "Name", NA)) pedigrees = lapply(ped_list, function(pd) { if(verbose) message(" ", pd[[1]][2]) this.id = as.character(id) this.sex = sex tags = sapply(pd, '[', 1) vals = sapply(pd, '[', 2) parent.tags = which(tags == "Parent") po = data.frame(parent = vals[parent.tags], child = vals[parent.tags + 1], stringsAsFactors = FALSE) extras <- setdiff(c(po$parent, po$child), id) if(length(extras)) { this.id = c(this.id, extras) this.sex = c(this.sex, rep(0L, length(extras))) } names(this.sex) = this.id parent.sex = this.sex[po$parent] if(any(parent.sex == 0)) { par.nosex = unique(po$parent[parent.sex == 0]) for(p in par.nosex) { chi = po$child[po$parent == p] spou = unique(setdiff(po$parent[po$child %in% chi], p)) if(all(this.sex[spou] == 1)) this.sex[p] = 2 else if(all(this.sex[spou] == 2)) this.sex[p] = 1 else stop2("Cannot decide sex of this parent: ", p) } parent.sex = this.sex[po$parent] } parent.idx = match(po$parent, this.id) child.idx = match(po$child, this.id) this.fidx = this.midx = integer(length(this.id)) this.fidx[child.idx[parent.sex == 1]] = parent.idx[parent.sex == 1] this.midx[child.idx[parent.sex == 2]] = parent.idx[parent.sex == 2] asFamiliasPedigree(this.id, this.fidx, this.midx, this.sex) }) vecs = lapply(persons_list, function(p) dnaData2vec(p$`DNA data`)) vecs = vecs[!sapply(vecs, is.null)] allnames = unique(unlist(lapply(vecs, names))) vecs_ordered = lapply(vecs, function(v) structure(v[allnames], names = allnames)) datamatrix = do.call(rbind, vecs_ordered) rownames(datamatrix) = id[rownames(datamatrix)] list(pedigrees = pedigrees, datamatrix = datamatrix) } dnaData2vec = function(x) { dat = do.call(rbind, x) val = dat[, 2] idx = which(dat[,1] == "SystemName") nLoc = length(idx) if(nLoc == 0) return() res = character(2 * nLoc) res[2*(1:nLoc) - 1] = val[idx + 1] res[2*(1:nLoc)] = val[idx + 2] names(res) = paste(rep(val[idx], each = 2), 1:2, sep = ".") res } getValue = function(x, iftag, default) { if(x[1] == iftag) x[2] else default }
splat <- function(flat) { function(args, ...) { do.call(flat, c(args, list(...))) } }
objfun <- function(theta, W, M, X, X_star, np, npstar, link, phi.link) { b <- utils::head(theta, np) b_star <- utils::tail(theta, npstar) mu.withlink <- X %*% b phi.withlink <- X_star %*% b_star mu <- switch(link, "logit" = invlogit(mu.withlink)) phi <- switch(phi.link, "fishZ" = invfishZ(phi.withlink), "logit" = invlogit(phi.withlink)) val <- suppressWarnings(sum(VGAM::dbetabinom(W, M, prob = mu, rho = phi, log = TRUE))) if (is.nan(val) || any(phi <= sqrt(.Machine$double.eps)) || any(phi >= 1 - sqrt(.Machine$double.eps))) { return(list(value = Inf)) } value <- -val gam <- phi/(1 - phi) dg1 <- digamma(1/gam) dg2 <- digamma(M + 1/gam) dg3 <- digamma(M - (mu + W * gam - 1)/gam) dg4 <- digamma((1 - mu)/gam) dg5 <- digamma(mu/gam) dg6 <- digamma(mu/gam + W) dldmu <- (-dg3 + dg4 - dg5 + dg6)/gam dldgam <- (-dg1 + dg2 + (mu - 1) * (dg3 - dg4) + mu * (dg5 - dg6))/gam^2 tmp_b <- switch(link, "logit" = mu * (1 - mu) * dldmu) tmp_bstar <- switch(phi.link, "fishZ" = (gam + 0.5) * dldgam, "logit" = gam * dldgam) g_b <- c(crossprod(tmp_b, X)) g_bstar <- c(crossprod(tmp_bstar, X_star)) gradient <- -c(g_b, g_bstar) tg1 <- trigamma(M - (mu + W * gam - 1)/gam) tg2 <- trigamma((1 - mu)/gam) tg3 <- trigamma(mu/gam) tg4 <- trigamma(mu/gam + W) tg5 <- trigamma(1/gam) tg6 <- trigamma(M + 1/gam) dldmu2 <- (tg1 - tg2 - tg3 + tg4)/gam^2 dldgam2 <- (2 * gam * dg1 + tg5 - 2 * gam * dg2 - tg6 + (mu - 1)^2 * tg1 - 2 * gam * (mu - 1) * dg3 - mu^2 * tg3 + mu^2 * tg4 + (mu - 1)^2 * (-tg2) + 2 * gam * (mu - 1) * dg4 - 2 * gam * mu * dg5 + 2 * gam * mu * dg6)/gam^4 dldmdg <- (gam * (dg3 - dg4 + dg5 - dg6) + (mu - 1) * (tg2 - tg1) + mu * (tg3 - tg4))/gam^3 dpdb <- switch(link, logit = t(X * c(mu * (1 - mu)))) dgdb <- switch(phi.link, fishZ = t(X_star * c(gam + 0.5)), logit = t(X_star * c(gam))) mid4 <- switch(link, logit = c(dldmu * mu * (1 - mu) * (1 - 2 * mu))) mid5 <- switch(phi.link, fishZ = c(dldgam * (gam + 0.5)), logit = c(dldgam * gam)) term4 <- crossprod(X, diag(mid4)) %*% X term5 <- crossprod(X_star, diag(mid5)) %*% X_star term1 <- dpdb %*% tcrossprod(diag(c(-dldmu2)), dpdb) term2 <- dpdb %*% tcrossprod(diag(c(-dldmdg)), dgdb) term3 <- dgdb %*% tcrossprod(diag(c(-dldgam2)), dgdb) hessian <- cbind(rbind(term1 - term4, t(term2)),rbind(term2, term3 - term5)) return(list(value = value, gradient = gradient, hessian = hessian)) }
"modeP"<-function(postP, threshold=0, marginal=FALSE, USasNA=TRUE){ post_prob2=NULL if(is.list(postP)){ ped<-matrix(NA, length(postP), 3) ped[,1]<-names(postP) if(marginal){ ped[,2]<-unlist(lapply(postP, function(x){colnames(x)[which.max(colSums(x))]})) post_prob<-unlist(lapply(postP, function(x){colSums(x)[which.max(colSums(x))]/sum(x)})) ped[,2][which(post_prob<threshold)]<-NA if(USasNA){ ped[,2][which(ped[,2]=="us")]<-NA } ped[,3]<-unlist(lapply(postP, function(x){rownames(x)[which.max(rowSums(x))]})) post_prob2<-unlist(lapply(postP, function(x){rowSums(x)[which.max(rowSums(x))]/sum(x)})) ped[,3][which(post_prob2<threshold)]<-NA if(USasNA){ ped[,3][which(ped[,3]=="us")]<-NA } }else{ ped[,2]<-unlist(lapply(postP, function(x){colnames(x)[which(x==max(x), arr.ind=TRUE)[1,][2]]})) ped[,3]<-unlist(lapply(postP, function(x){rownames(x)[which(x==max(x), arr.ind=TRUE)[1,][1]]})) post_prob<-unlist(lapply(postP, function(x){x[which.max(x)]/sum(x)})) ped[,2][which(post_prob<threshold)]<-NA ped[,3][which(post_prob<threshold)]<-NA if(USasNA){ ped[,2][which(ped[,2]=="us")]<-NA ped[,3][which(ped[,3]=="us")]<-NA } } }else{ ped<-matrix(NA, dim(postP)[1], 3) lpost<-dim(postP)[2] ped[,1]<-rownames(postP) if(marginal){ postP1<-apply(postP, 1, function(x){table(x[seq(1,lpost,2)])/(lpost/2)}) if(is.list(postP1)==FALSE){ ped[,2]<-apply(postP, 1, function(x){x[1]}) post_prob<-rep(1, dim(ped)[1]) }else{ ped[,2]<-unlist(lapply(postP1, function(x){names(x)[which.max(x)]})) post_prob<-unlist(lapply(postP1, function(x){max(x)})) } ped[,2][which(post_prob<threshold)]<-NA if(USasNA){ ped[,2][which(ped[,2]=="us")]<-NA } postP2<-apply(postP, 1, function(x){table(x[seq(2,lpost,2)])/(lpost/2)}) if(is.list(postP2)==FALSE){ ped[,3]<-apply(postP, 1, function(x){x[2]}) post_prob2<-rep(1, dim(ped)[1]) }else{ ped[,3]<-unlist(lapply(postP2, function(x){names(x)[which.max(x)]})) post_prob2<-unlist(lapply(postP2, function(x){max(x)})) } ped[,3][which(post_prob2<threshold)]<-NA if(USasNA){ ped[,3][which(ped[,3]=="us")]<-NA } }else{ postP<-apply(postP, 1, function(x){table(paste(x[seq(1,lpost,2)], x[seq(2,lpost,2)]))}) ped[,2]<-unlist(lapply(postP, function(x){strsplit(names(x)[which.max(x)], " ")[[1]][1]})) ped[,3]<-unlist(lapply(postP, function(x){strsplit(names(x)[which.max(x)], " ")[[1]][2]})) post_prob<-unlist(lapply(postP, function(x){x[which.max(x)]/sum(x)})) ped[,2:3][which(post_prob<threshold),]<-NA if(USasNA){ ped[,2][which(ped[,2]=="us")]<-NA ped[,3][which(ped[,3]=="us")]<-NA } } } list(P=ped, prob=as.vector(post_prob), prob.male=as.vector(post_prob2)) }
single_band_lomb_scargle <- function(tms, omega_seq) { nOmega <- length(omega_seq) B <- length(tms) sol.names <- list(band=names(tms), NULL, param=c("beta0","amp","rho","rss")) sol <- array(NA,dim=c(B,nOmega,4),dimnames=sol.names) last_success <- c(0,1,0) for(ii in 1:B) { for(jj in 1:nOmega) { tmp <- try(lomb_scargle(tms[[ii]][,1], tms[[ii]][,2], tms[[ii]][,3], omega_seq[jj]),silent=TRUE) if (!inherits(tmp, "try-error")) { sol[ii,jj,] <- unlist(tmp) sol[ii,jj,4] <- sol[ii,jj,4] / 2 last_success <- sol[ii,jj,1:3] } else { sol[ii,jj,1:3] <- last_success sol[ii,jj,4] <- 0 } } } return(sol) }
gvcm.cat.flex <- function( whichCoefs, intercept = TRUE, data, family = gaussian(), method = "REML", tuning = NULL, indexNrCoefs, indexPenNorm, indexPenA, indexPenWeight, control = list(c=1e-05, epsilon=1e-07, gama=35, maxi=1500, nu=.5) ) { newton = list( conv.tol = 1e-6, maxNstep = 15, maxSstep = 5, maxHalf = 50 ) gamcontrol <- gam.control(newton=newton) optimizer <- c("outer", "newton") optimizer <- c("outer", "newton") p <- length(whichCoefs) vonBis <- matrix(nrow=2, ncol=p) vonBis[1, ] <- c(0, cumsum(indexNrCoefs)[-p])+1 vonBis[2, ] <- cumsum(indexNrCoefs) if(intercept) {vonBis <- vonBis+1} L1 <- function(xi, control=control) sqrt((xi^2 + control$c) )^(-1) control$L0.log <- TRUE L0 <- if (control$L0.log==TRUE) { function(xi, control=control){p <- 1+exp(-control$gama*abs(xi)) 2*control$gama*(sqrt(xi^2 + control$c))^(-1)*p^(-1)*(1 - 1/p)} } else { function(xi, control=control){2*(xi+control$c)^(-2)} } L2 <- function(xi, control=control){2} elastic <- function(xi, control=control) {control$elastic * L1(xi, control=control) + (1-control$elastic) * L1(xi, control=control)} grouped <- function(beta, Aj, control=control) { dfj <- ncol(Aj) AjtAj <- Aj%*%t(Aj) rep(sqrt(dfj) / sqrt(t(beta)%*%AjtAj%*%beta + control$c), ncol(Aj) ) } A <- function(beta, PenNorm, PenA, PenWeight, control) { if (PenNorm=="grouped") { appro <- as.vector(PenWeight * grouped(beta, PenA, control)) } else { appro <- as.vector(PenWeight * get(PenNorm)(t(PenA)%*%beta, control)) } crossprod(t(PenA)*sqrt(appro)) } start <- coefs <- coefold <- rep(1, sum(indexNrCoefs) + ifelse(intercept, 1, 0)) ff <- as.formula(paste("y ~ ", paste(whichCoefs, collapse="+"), ifelse(intercept, "+1", "-1"))) PP <- vector("list", p) names(PP) <- whichCoefs npen <- 0 for (j in 1:length(indexPenA)) { npen <- if (is.matrix(indexPenA[[j]])) {npen + 1} else {npen + length(indexPenA[[j]])} } inout <- rep(0.01, npen) conv <- FALSE if (is.null(tuning)) { for (i in 1L:control$maxi) { for (j in 1:p) { PenAjLength <- length(indexPenA[[j]]) if (!is.matrix(indexPenA[[j]])) { l <- list() for (k in 1:PenAjLength) { l[[k]] <- A(start[vonBis[1,j]:vonBis[2,j]], indexPenNorm[j], indexPenA[[j]][[k]], indexPenWeight[[j]][[k]], control) } PP[[j]] <- l } else { PP[[j]] <- list(A(start[vonBis[1,j]:vonBis[2,j]], indexPenNorm[j], indexPenA[[j]], indexPenWeight[[j]], control)) } } mj <- gam(formula=ff, family=family, data=data, na.action=na.omit, method=method, optimizer=optimizer, control=gamcontrol, scale=0, select=FALSE, knots=NULL, sp=tuning, min.sp=NULL, H=NULL, gamma=1, fit=TRUE, paraPen=PP, in.out=list(sp=inout, scale=1) , start = start ) start <- (1-control$nu)*coefold + control$nu*mj$coefficients inout <- mj$sp if (any(is.na(start))) { coefs <- coefold break } if (sum(abs(start - coefold))/sum(abs(coefold)) <= control$epsilon) { conv <- TRUE coefs <- start break } else { coefs <- coefold <- start } } } else { for (i in 1L:control$maxi) { for (j in 1:p) { PenAjLength <- length(indexPenA[[j]]) if (!is.matrix(indexPenA[[j]])) { l <- list() for (k in 1:PenAjLength) { l[[k]] <- A(start[vonBis[1,j]:vonBis[2,j]], indexPenNorm[j], indexPenA[[j]][[k]], indexPenWeight[[j]][[k]], control) } PP[[j]] <- l } else { PP[[j]] <- list(A(start[vonBis[1,j]:vonBis[2,j]], indexPenNorm[j], indexPenA[[j]], indexPenWeight[[j]], control)) } } mj <- gam(formula=ff, family=family, data=data, na.action=na.omit, method=method, optimizer=optimizer, control=gamcontrol, scale=0, select=FALSE, knots=NULL, sp=tuning, min.sp=NULL, H=NULL, gamma=1, fit=TRUE, paraPen=PP , start = start ) start <- (1-control$nu)*coefold + control$nu*mj$coefficients if (any(is.na(start))) { coefs <- coefold break } if (sum(abs(start - coefold))/sum(abs(coefold)) <= control$epsilon) { conv <- TRUE coefs <- start break } else { coefs <- coefold <- start } } } if (conv == FALSE) warning("The algorithm did not converge.") mj$converged <- conv mj$iter <- i mj }
coherence = function(x, tcm, metrics = c("mean_logratio", "mean_pmi", "mean_npmi", "mean_difference", "mean_npmi_cosim", "mean_npmi_cosim2"), smooth = 1e-12, n_doc_tcm = -1) { implemented_metrics = c("mean_logratio", "mean_pmi", "mean_npmi", "mean_difference", "mean_npmi_cosim", "mean_npmi_cosim2") stopifnot(all(metrics %in% implemented_metrics)) n_metrics = length(metrics) top_terms = as.vector(x) top_terms_unique = unique(top_terms) n_topics = ncol(x) n_terms = nrow(x) stopifnot( identical(colnames(tcm), rownames(tcm))) terms_tcm = colnames(tcm) if (length( setdiff(top_terms_unique, terms_tcm) ) > 0) { msg = paste("Not all of the top terms 'x' are represented in 'tcm'.", "Coherence scores for individual topics will be based on incomplete word sets and will be only partially valid.", "Please consider a thorough check of results before further downstream analysis.") warning(msg) } top_terms_tcm = intersect(top_terms_unique, terms_tcm) tcm = as.matrix(tcm[top_terms_tcm, top_terms_tcm]) terms_tcm = colnames(tcm) res = matrix(NA_real_, nrow = n_topics, ncol = n_metrics, dimnames = list(paste0("topic_", 1:n_topics), metrics)) for(i in seq_len(n_topics)) { topic_i_term_indices = match(x[, i], terms_tcm) topic_i_term_indices = topic_i_term_indices[!is.na(topic_i_term_indices)] for(j in seq_len(n_metrics)) { m = metrics[j] logger$debug("calculating coherence metric '%s' for topic %d", m, i) res[i, j] = calc_coherence(m, topic_i_term_indices, tcm, smooth, n_doc_tcm = n_doc_tcm) } } res } calc_coherence = function(metric, term_indices, tcm, smooth, ...) { switch(metric, "mean_logratio" = coherence_mean_logratio (term_indices, tcm, smooth, ...), "mean_pmi" = coherence_mean_pmi (term_indices, tcm, smooth, ...), "mean_npmi" = coherence_mean_npmi (term_indices, tcm, smooth, ...), "mean_difference" = coherence_mean_difference (term_indices, tcm, smooth, ...), "mean_npmi_cosim" = coherence_mean_npmi_cosim (term_indices, tcm, smooth, ...), "mean_npmi_cosim2" = coherence_mean_npmi_cosim2 (term_indices, tcm, smooth, ...), stop(sprintf("don't know how to calculate metric '%s'", metric)) ) } coherence_mean_logratio = function(term_indices, tcm, smooth, ...) { res = NA if(length(term_indices) >= 2) { term_indices = sort(term_indices, decreasing = TRUE) res = tcm[term_indices, term_indices] res[upper.tri(res)] = res[upper.tri(res)] + smooth d = diag(res) res = t(res) res = res / d res = res[lower.tri(res)] res = log(res) res = mean(res, na.rm = T) } return(res) } coherence_mean_pmi = function(term_indices, tcm, smooth, n_doc_tcm, ...) { stopifnot(n_doc_tcm > 0L) res = NA if(length(term_indices) >= 2) { res = tcm[term_indices, term_indices] / n_doc_tcm res[upper.tri(res)] = res[upper.tri(res)] + smooth d = diag(res) res = res/d res = res %*% diag(1 / d) res = res[upper.tri(res)] res = log2(res) res = mean(res, na.rm = T) } return(res) } coherence_mean_difference = function(term_indices, tcm, smooth, n_doc_tcm, ...) { stopifnot(n_doc_tcm > 0L) res = NA if (length(term_indices) >= 2) { res = tcm[term_indices, term_indices] / n_doc_tcm d = diag(res) res = res/d res = t(res) - d res = res[lower.tri(res)] res = mean(res, na.rm = T) } return(res) } coherence_mean_npmi = function(term_indices, tcm, smooth, n_doc_tcm, ...) { stopifnot(n_doc_tcm > 0L) res = NA if(length(term_indices) >= 2) { res = tcm[term_indices, term_indices] / n_doc_tcm res[upper.tri(res)] = res[upper.tri(res)] + smooth denominator = res[upper.tri(res)] d = diag(res) res = res/d res = res %*% diag(1 / d) res = res[upper.tri(res)] res = log2(res) / -log2(denominator) res = mean(res, na.rm = T) } return(res) } coherence_mean_npmi_cosim = function(term_indices, tcm, smooth, n_doc_tcm, ...) { stopifnot(n_doc_tcm > 0L) res = NA if(length(term_indices) >= 2) { res = tcm[term_indices, term_indices] / n_doc_tcm res[lower.tri(res, diag = F)] = t(res)[lower.tri(res, diag = FALSE)] res = res + smooth diag(res) = diag(res) - smooth denominator = res d = diag(res) res = res/d res = res %*% diag(1 / d) res = log2(res) / -log2(denominator) res_compare = t(matrix(rep(colSums(res), nrow(res)), nrow = nrow(res))) res = psim2(res, res_compare, method = "cosine", norm = "l2") res = mean(res, na.rm = T) } return(res) } coherence_mean_npmi_cosim2 = function(term_indices, tcm, smooth, n_doc_tcm, ...) { stopifnot(n_doc_tcm > 0L) res = NA if(length(term_indices) >= 2) { res = tcm[term_indices, term_indices] / n_doc_tcm res[lower.tri(res, diag = F)] = t(res)[lower.tri(res, diag = FALSE)] res = res + smooth diag(res) = diag(res) - smooth denominator = res d = diag(res) res = res/d res = res %*% diag(1 / d) res = log2(res) / -log2(denominator) res = sim2(res, method = "cosine", norm = "l2") res = res[upper.tri(res)] res = mean(res, na.rm = T) } return(res) }
sel_herb <- function(start, result, thresh, sdrate, rate, put, max_vec_length=1e+07){ herb_check(put=put, sdrate=sdrate, thresh=thresh, rate=rate) dfgenotype <- get0("dfgenotype", envir = parent.frame(n = 1)) n_loci <- get0("n_loci", envir = parent.frame(n = 1)) if(is.null(n_loci) | n_loci == 0){ eval(parse(text=paste("dfgenotype$",result,"<-", "dfgenotype$",start, sep=""))) assign("dfgenotype", value=dfgenotype, pos = -1, envir=parent.frame(n = 1)) return(dfgenotype)} if(is.null(dfgenotype$resist)){ eval(parse(text=paste("dfgenotype$",result,"<-", "dfgenotype$",start,sep=""))) return(dfgenotype) } first_amount <- eval(parse(text=paste("dfgenotype$",start,sep=""))) return_amount <- rep(0,nrow(dfgenotype)) for(pres_GT in which(first_amount > 0)){ i1 <- first_amount[pres_GT] %/% max_vec_length i2 <- first_amount[pres_GT] %% max_vec_length for(i in seq_len(i1)){ return_amount[pres_GT] <- intern_herbicide(resist=dfgenotype$resist[pres_GT], n_samples=max_vec_length, put=put, rate= rate, sdrate=sdrate, thresh=thresh) } return_amount[pres_GT] <- intern_herbicide(resist=dfgenotype$resist[pres_GT], n_samples=i2, put=put, rate= rate, sdrate=sdrate, thresh=thresh) } eval(parse(text=paste("dfgenotype$",result,"<-", data.frame(return_amount),sep=""))) assign("dfgenotype", value=dfgenotype, pos = -1, envir=parent.frame(n = 1)) return(dfgenotype) }
rinfec <- function(npoints, s.region, t.region, nsim=1, alpha, beta, gamma, s.distr="exponential", t.distr="uniform", maxrad, delta, h="step", g="min", recent=1, lambda=NULL, lmax=NULL, nx=100, ny=100, nt=1000, t0, inhibition=FALSE, ...) { if (missing(s.region)) s.region <- matrix(c(0,0,1,1,0,1,1,0),ncol=2) if (missing(t.region)) t.region <- c(0,1) if (missing(t0)) t0 <- t.region[1] if (missing(maxrad)) maxrad <- c(0.05,0.05) maxrads <- maxrad[1] maxradt <- maxrad[2] if (missing(delta)) delta <- maxrads if (s.distr=="poisson") { if (is.matrix(lambda)) { nx <- dim(lambda)[1] ny <- dim(lambda)[2] Lambda <- lambda } s.grid <- .make.grid(nx,ny,s.region) s.grid$mask <- matrix(as.logical(s.grid$mask),nx,ny) if (is.function(lambda)) { Lambda <- lambda(as.vector(s.grid$X),as.vector(s.grid$Y),...) Lambda <- matrix(Lambda,ncol=ny,byrow=T) } if (is.null(lambda)) { Lambda <- matrix(npoints/areapl(s.region),ncol=ny,nrow=nx) } Lambda[s.grid$mask==FALSE] <- NaN } if (h=="step") { hk <- function(t,t0,alpha,beta,gamma) { res <- rep(0,length(t)) mask <- (t <= t0+alpha+gamma) & (t >= t0+alpha) res[mask] <- beta return(res) } } if (h=="gaussian") { hk <- function(t,t0,alpha,beta,gamma) { t0 <- alpha+t0 d <- gamma/8 top <- beta*sqrt(2*pi)*d res <- top*dnorm(t,mean=t0+gamma/2,sd=d) return(res) } d <- gamma/8 top <- beta*sqrt(2*pi)*d ug <- top*dnorm(0,mean=alpha+gamma/2,sd=d) } if (g=="min") { pk <- function(mu,recent) { if (recent=="all") res <- min(mu) else { if (is.numeric(recent)) { if(recent<=length(ITK)) res <- min(mu[(length(ITK)-recent+1):length(ITK)]) else res <- min(mu) } else stop("'recent' must be numeric") } return(res) } } if (g=="max") { pk <- function(mu,recent) { if (recent=="all") res <- max(mu) else { if (is.numeric(recent)) { if(recent<=length(ITK)) res <- max(mu[(length(ITK)-recent+1):length(ITK)]) else res <- max(mu) } else stop("'recent' must be numeric") } return(res) } } if (g=="prod") { pk <- function(mu,recent) { if (recent=="all") res <- prod(mu) else { if (is.numeric(recent)) { if(recent<=length(ITK)) res <- prod(mu[(length(ITK)-recent+1):length(ITK)]) else res <- prod(mu) } else stop("'recent' must be numeric") } return(res) } } t.grid <- list(times=seq(t.region[1],t.region[2],length=nt),tinc=((t.region[2]-t.region[1])/(nt-1))) pattern <- list() ni <- 1 while(ni<=nsim) { xy <- csr(npoints=1,poly=s.region) npts <- 1 pattern.interm <- cbind(x=xy[1],y=xy[2],t=t0) Mu <- rep(0,nt) ti <- t0 ITK <- findInterval(vec=t.grid$times,x=ti) continue <- FALSE while(continue==FALSE) { while (npts<npoints) { ht <- hk(t=t.grid$times,t0=ti[npts],alpha=alpha,beta=beta,gamma=gamma) ht <- ht/(sum(ht)*t.grid$tinc) mu <- Mu+ht if (sum(mu)==0) mu2 <- mu else mu2 <- mu/max(mu) if (t.distr=="uniform") tk <- ti[npts] + runif(1,min=0,max=maxradt) if (t.distr=="exponential") tk <- ti[npts] + rexp(1,rate=1/maxradt) if (tk>=t.region[2]) { N = npts npts <- npoints continue <- TRUE M = paste("only",N,"points have been generated over",npoints,". Process stopped when getting a time t greater than max(t.region): try a larger t.region or check your parameters",sep=" ") warning(M) } else { itk <- findInterval(vec=t.grid$times,x=tk) if ((mu[itk]==0) || ((h=="gaussian") && (mu[itk]<ug))) { N = npts npts <- npoints continue <- TRUE M = paste("only",N,"points have been generated over",npoints,"(process stopped when getting mu(t)=0",sep=" ") warning(M) } else { Mu <- mu if (inhibition==FALSE) { cont <- FALSE while(cont==FALSE) { uk <- runif(1) xpar <- pattern.interm[npts,1] ypar <- pattern.interm[npts,2] out <- TRUE while(out==TRUE) { if (s.distr=="uniform") { xp <- xpar+runif(1,min=-maxrads,max=maxrads) yp <- ypar+runif(1,min=-maxrads,max=maxrads) } if (s.distr=="gaussian") { xp <- xpar+rnorm(1,mean=0,sd=maxrads/2) yp <- ypar+rnorm(1,mean=0,sd=maxrads/2) } if (s.distr=="exponential") { xp <- xpar+sample(c(-1,1),1)*rexp(1,rate=1/maxrads) yp <- ypar+sample(c(-1,1),1)*rexp(1,rate=1/maxrads) } if (s.distr=="poisson") { if (is.null(lmax)) lmax <- max(Lambda,na.rm=TRUE) retain.eq.F <- FALSE while(retain.eq.F==FALSE) { xy <- csr(poly=s.region,npoints=1) xp <- xy[1] yp <- xy[2] up <- runif(1) nix <- findInterval(vec=s.grid$x,x=xp) niy <- findInterval(vec=s.grid$y,x=yp) if (nix!=0 & niy!=0) { Up <- Lambda[nix,niy]/lmax retain <- up <= Up if ((retain==FALSE) || is.na(retain)) retain.eq.F <- FALSE else retain.eq.F <- TRUE } else retain.eq.F <- FALSE } } M <- inout(pts=rbind(c(xp,yp),c(xp,yp)),poly=s.region) if ((sqrt((xp - pattern.interm[npts,1])^2 + (yp - pattern.interm[npts,2])^2) < maxrads)) M <- c(M,M) if (sum(M)==4) out <- FALSE } if (all(sqrt((xp - pattern.interm[,1])^2 + (yp - pattern.interm[,2])^2) < delta)) umax <- 1 else umax <- pk(mu=mu2[ITK],recent=recent) if (uk < umax) { npts <- npts+1 ITK <- c(ITK,itk) ti <- c(ti,tk) pattern.interm <- rbind(pattern.interm,c(xp,yp,tk)) cont <- TRUE } } } else { uk <- runif(1) xy <- csr(npoints=1,poly=s.region) xp <- xy[1] yp <- xy[2] if (all((sqrt((xp - pattern.interm[,1])^2 + (yp - pattern.interm[,2])^2)) > delta)) umax <- 1 else umax <- pk(mu=mu2[ITK],recent=recent) if (uk < umax) { npts <- npts+1 ITK <- c(ITK,itk) ti <- c(ti,tk) pattern.interm <- rbind(pattern.interm,c(xp,yp,tk)) } } } } } continue <- TRUE } dimnames(pattern.interm) <- list(NULL,c("x","y","t")) if (nsim==1) { pattern <- as.3dpoints(pattern.interm) ni <- ni+1 } else { pattern[[ni]] <- as.3dpoints(pattern.interm) ni <- ni+1 } } invisible(return(list(xyt=pattern,s.region=s.region,t.region=t.region))) }
devpart <- function (null, environment, community, full) { getdev <- function (y, z) { p <- pnorm(z, log.p = TRUE) for(j in 1:ncol(y)) { ind <- which(!y[, j]) p[, ind, j] <- log(-expm1(p[, ind, j])) } -2 * apply(p, 1, colSums) } nuldev <- getdev(null$call$Y, null$trace$z) envdev <- getdev(environment$call$Y, environment$trace$z) comdev <- getdev(community$call$Y, community$trace$z) fuldev <- getdev(full$call$Y, full$trace$z) nul <- rbind(rowMeans(nuldev), apply(nuldev, 1, quantile, c(0.25, 0.975))) env <- rbind(rowMeans(envdev), apply(envdev, 1, quantile, c(0.25, 0.975))) com <- rbind(rowMeans(comdev), apply(comdev, 1, quantile, c(0.25, 0.975))) ful <- rbind(rowMeans(fuldev), apply(fuldev, 1, quantile, c(0.25, 0.975))) rownames(nul)[1] <- rownames(env)[1] <- rownames(com)[1] <- rownames(ful)[1] <- "Mean" propR2 <- t(rbind(1 - env[1, ] / nul[1, ], 1 - com[1, ] / nul[1, ], 1 - ful[1, ] / nul[1, ], rep(1, length(env[1, ])))) colnames(propR2) <- c("env", "com", "full", "total") rownames(propR2) <- colnames(full$call$Y) list(devpart = propR2, null = nul, environment = env, community = com, full = ful) }
grid_plot <- function(figs, width = NULL, height = NULL, nrow = 1, ncol = 1, byrow = TRUE, xlim = NULL, ylim = NULL, logo = NULL, same_axes = FALSE, simplify_axes = TRUE, y_margin = NULL, x_margin = NULL, link_data = FALSE) { tb_pars <- list(logo = logo) tb_pars <- handle_extra_pars(tb_pars, grid_plot_par_validator_map) if (length(same_axes) == 1) { same_x <- same_y <- same_axes } else { same_x <- same_axes[1] same_y <- same_axes[2] } if (length(simplify_axes) == 1) { simplify_x <- simplify_y <- simplify_axes } else { simplify_x <- simplify_axes[1] simplify_y <- simplify_axes[2] } if (!is.list(figs)) stop("'figs' must be a list") is_fig_list <- sapply(figs, function(x) inherits(x$x$spec, "BokehFigure") || is.null(x)) if (any(is_fig_list)) { if (!all(is_fig_list)) stop(paste("'figs' argument to makeGrid must be a list of BokehFigure objects", "or a list of lists of BokehFigure objects"), call. = FALSE) nn <- length(figs) if (missing(ncol)) ncol <- ceiling(nn / nrow) if (missing(nrow)) nrow <- ceiling(nn / ncol) if ((nrow * ncol) < nn) { if (byrow) { ncol <- ceiling(nn / nrow) } else { nrow <- ceiling(nn / ncol) } } tmp <- lapply(figs, function(fig) fig$x$spec$model$plot[c("type", "subtype", "id")]) idx <- rep(NA, length(tmp)) cur_fig <- 1 for (ii in seq_along(idx)) { if (!is.null(figs[[ii]])) { idx[ii] <- cur_fig cur_fig <- cur_fig + 1 } } idx <- c(idx, rep(NA, (nrow * ncol) - length(idx))) tmp[sapply(tmp, is.null)] <- NULL idxm <- matrix(idx, nrow = nrow, ncol = ncol, byrow = byrow) plot_refs <- vector("list", nrow) for (ii in seq_len(nrow(idxm))) { plot_refs[[ii]] <- vector("list", ncol) for (jj in seq_len(ncol(idxm))) plot_refs[[ii]][[jj]] <- tmp[[idxm[ii, jj]]] } } else { ok <- sapply(figs, function(x) { all(sapply(x, function(y) inherits(y$x$spec, "BokehFigure") || is.null(y))) }) if (!all(ok)) stop(paste("'figs' argument to makeGrid must be a list of BokehFigure objects", "or a list of lists of BokehFigure objects"), call. = FALSE) plot_refs <- lapply(figs, function(x) { lapply(x, function(y) { y$x$spec$model$plot[c("type", "subtype", "id")] }) }) nrow <- length(plot_refs) ncol <- max(sapply(plot_refs, length)) idxm <- matrix(nrow = nrow, ncol = ncol, data = NA) cur_fig <- 1 for (ii in seq_along(figs)) { for (jj in seq_along(figs[[ii]])) { if (!is.null(figs[[ii]][[jj]])) { idxm[ii, jj] <- cur_fig cur_fig <- cur_fig + 1 } } } figs <- unlist(figs, recursive = FALSE) } figs[sapply(figs, is.null)] <- NULL if (!is.null(names(figs))) { fig_names <- names(figs) for (ii in seq_along(figs)) { figs[[ii]] <- add_title(figs[[ii]], fig_names[ii]) } } else { for (ii in seq_along(figs)) { figs[[ii]]$x$spec$model$plot$attributes$title <- NULL } } x_range <- y_range <- NULL if (same_x) { x_range <- get_grid_ranges(figs, "x") for (ii in seq_along(figs)) { figs[[ii]]$x$spec$xlim <- x_range$range figs[[ii]]$x$spec$has_x_range <- TRUE figs[[ii]]$x$spec$model$plot$attributes$x_range <- x_range$mod$ref } if (simplify_x) { idxs <- as.vector(idxm[-nrow(idxm), ]) idxs <- idxs[!is.na(idxs)] for (ii in idxs) { if (figs[[ii]]$x$spec$has_x_axis) { figs[[ii]]$x$spec$model$x_axis$attributes$visible <- FALSE } else { figs[[ii]] <- figs[[ii]] %>% x_axis(visible = FALSE) } } if (is.null(x_margin)) x_margin <- 70 } } if (same_y) { y_range <- get_grid_ranges(figs, "y") for (ii in seq_along(figs)) { figs[[ii]]$x$spec$ylim <- y_range$range figs[[ii]]$x$spec$has_y_range <- TRUE figs[[ii]]$x$spec$model$plot$attributes$y_range <- y_range$mod$ref } if (simplify_y) { idxs <- as.vector(idxm[, -1]) idxs <- idxs[!is.na(idxs)] for (ii in idxs) { if (figs[[ii]]$x$spec$has_y_axis) { figs[[ii]]$x$spec$model$y_axis$attributes$visible <- FALSE } else { figs[[ii]] <- figs[[ii]] %>% y_axis(visible = FALSE) } } if (is.null(y_margin)) y_margin <- 45 } } if (!is.null(xlim)) { id <- gen_id(figs[[1]], c("x", "GridRange")) x_range <- list(range = xlim, mod = range_model(ifelse(is.numeric(xlim), "Range1d", "FactorRange"), id, xlim)) for (ii in seq_along(figs)) { figs[[ii]]$x$spec$xlim <- xlim figs[[ii]]$x$spec$has_x_range <- TRUE figs[[ii]]$x$spec$model$plot$attributes$x_range <- x_range$mod$ref } } if (!is.null(ylim)) { id <- gen_id(figs[[1]], c("y", "GridRange")) y_range <- list(range = ylim, mod = range_model(ifelse(is.numeric(ylim), "Range1d", "FactorRange"), id, ylim)) for (ii in seq_along(figs)) { figs[[ii]]$x$spec$ylim <- ylim figs[[ii]]$x$spec$has_y_range <- TRUE figs[[ii]]$x$spec$model$plot$attributes$y_range <- y_range$mod$ref } } for (ii in seq_along(figs)) { figs[[ii]]$x$spec$model$plot$attributes["toolbar_location"] <- list(NULL) figs[[ii]]$x$spec$model$plot$attributes$sizing_mode <- NULL } layoutspec <- list() mcid <- gen_id(figs[[1]], "MasterColumn") mcmod <- base_model_object("Column", mcid) spacer_id_mat <- matrix(nrow = nrow(idxm), ncol = ncol(idxm), data = NA) rrefs <- list() for (row in seq_len(nrow(idxm))) { refs <- list() for (col in seq_along(idxm[row, ])) { idx <- idxm[row, col] if (is.na(idx)) { spid <- gen_id(figs[[idx]], paste0("spacer", row, "_", col)) spmod <- base_model_object("Spacer", spid) layoutspec[[spid]] <- spmod$model refs[[col]] <- spmod$ref spacer_id_mat[row, col] <- spmod$ref$id } else { refs[[col]] <- figs[[idx]]$x$spec$ref } } rid <- gen_id(figs[[1]], paste0("Row", row)) rowmod <- base_model_object("Row", rid) rowmod$model$attributes$children <- refs rowmod$model$attributes$id <- NULL rowmod$model$attributes$tags <- NULL layoutspec[[rid]] <- rowmod$model rrefs[[row]] <- rowmod$ref } mcmod$model$attributes$children <- rrefs mcmod$model$attributes$id <- NULL mcmod$model$attributes$tags <- NULL layoutspec$mastercolumn <- mcmod$model tbbid <- gen_id(figs[[1]], "ToolbarBox") tbbmod <- base_model_object("ToolbarBox", tbbid) tbbmod$model$attributes$sizing_mode <- "scale_width" tbbmod$model$attributes$toolbar_location <- "above" if ("logo" %in% names(tb_pars)) tbbmod$model$attributes["logo"] <- list(tb_pars$logo) alltools <- unname(unlist(lapply(figs, function(a) { unname(a$x$spec$model$toolbar$attributes$tools) } ), recursive = FALSE)) tbbmod$model$attributes$tools <- alltools tbbmod$model$attributes$sizing_mode <- "scale_width" layoutspec$toolbarbox <- tbbmod$model rcid <- gen_id(list(x = list(spec = list(time = Sys.time()))), "root_column") root_column <- base_model_object("Column", rcid) root_column$model$attributes$children <- list(tbbmod$ref, mcmod$ref) root_column$model$attributes$id <- NULL root_column$model$attributes$tags <- NULL layoutspec$root <- root_column$model spec <- structure(list( layout = layoutspec, plot_refs = plot_refs, spacer_id_mat = spacer_id_mat, figs = figs, x_range = x_range$mod$model, y_range = y_range$mod$model, link_data = link_data, x_margin = x_margin, y_margin = y_margin, nrow = nrow, ncol = ncol), class = "BokehGridPlot") obj <- htmlwidgets::createWidget( name = "rbokeh", x = list( spec = spec, elementid = digest(Sys.time()), modeltype = "GridPlot", modelid = rcid, docid = digest::digest(paste("rbokehgridplot", Sys.time())), docs_json = list(list( version = get_bokeh_version(), title = "Bokeh GridPlot", roots = list( root_ids = list(rcid), references = NULL ))) ), sizingPolicy = htmlwidgets::sizingPolicy(defaultWidth = 800, defaultHeight = 800), preRenderHook = rbokeh_prerender, width = width, height = height, package = "rbokeh" ) names(obj$x$docs_json) <- obj$x$docid dims <- lapply(obj$x$spec$figs, function(x) { list( id = x$x$spec$model$plot$id, width = x$x$spec$model$plot$attributes$plot_width, height = x$x$spec$model$plot$attributes$plot_height ) }) names(dims) <- sapply(dims, function(x) x$id) wmat <- matrix(0, nrow = obj$x$spec$nrow, ncol = obj$x$spec$ncol) hmat <- matrix(0, nrow = obj$x$spec$nrow, ncol = obj$x$spec$ncol) for (ii in seq_along(obj$x$spec$plot_refs)) { for (jj in seq_along(obj$x$spec$plot_refs[[ii]])) { if (is.null(obj$x$spec$plot_refs[[ii]][[jj]])) { wmat[ii, jj] <- NA hmat[ii, jj] <- NA } else { ww <- dims[[obj$x$spec$plot_refs[[ii]][[jj]]$id]]$width if (is.null(ww)) ww <- 800 / ncol(wmat) wmat[ii, jj] <- ww hh <- dims[[obj$x$spec$plot_refs[[ii]][[jj]]$id]]$height if (is.null(hh)) hh <- 800 / nrow(hmat) hmat[ii, jj] <- hh } } } cmax <- apply(wmat, 2, max, na.rm = TRUE) rmax <- apply(hmat, 1, max, na.rm = TRUE) wna <- which(is.na(wmat), arr.ind = TRUE) if (length(wna) > 0) { for (ii in seq_len(nrow(wna))) { wmat[wna[ii, 1], wna[ii, 2]] <- cmax[wna[ii, 2]] } } hna <- which(is.na(hmat), arr.ind = TRUE) if (length(hna) > 0) { for (ii in seq_len(nrow(hna))) { hmat[hna[ii, 1], hna[ii, 2]] <- rmax[hna[ii, 1]] } } obj$x$spec$wmat <- wmat obj$x$spec$hmat <- hmat obj_width <- sum(apply(wmat, 2, function(x) max(x, na.rm = TRUE))) obj_height <- sum(apply(hmat, 1, function(x) max(x, na.rm = TRUE))) if (is.null(obj$width)) obj$width <- obj_width if (is.null(obj$height)) obj$height <- obj_height names(obj$x$spec$figs) <- sapply(obj$x$spec$figs, function(x) x$x$spec$model$plot$id) obj } prepare_gridplot <- function(obj) { obj <- update_grid_sizes(obj) figs <- lapply(obj$x$spec$figs, prepare_figure) data_mods <- list() if (obj$x$spec$link_data) { sigs <- do.call(c, lapply(figs, function(x) unique(do.call(c, lapply(x$x$spec$data_sigs, function(y) y$sig))))) sigst <- table(sigs) idx <- which(sigst > 1) if (length(idx) > 0) { for (sig in names(idx)) { has_data <- list() for (ii in seq_along(figs)) { for (jj in seq_along(figs[[ii]]$x$spec$data_sigs)) { if (!is.null(figs[[ii]]$x$spec$data_sigs[[jj]]$sig)) if (figs[[ii]]$x$spec$data_sigs[[jj]]$sig == sig) has_data[[length(has_data) + 1]] <- list(index = c(ii, jj), glr_id = figs[[ii]]$x$spec$data_sigs[[jj]]$glr_id) } } d_id <- gen_id(NULL, sig) new_data_ref <- list(type = "ColumnDataSource", id = d_id) hd1 <- has_data[[1]]$index gl1 <- has_data[[1]]$glr_id ds1 <- figs[[hd1[1]]]$x$spec$model[[gl1]]$attributes$data_source$id d1 <- figs[[hd1[1]]]$x$spec$model[[ds1]]$attributes$data figs[[hd1[1]]]$x$spec$model[[gl1]]$attributes$data_source <- new_data_ref new_data <- d1 figs[[hd1[1]]]$x$spec$model[[ds1]] <- NULL for (ii in seq_along(has_data)[-1]) { hd <- has_data[[ii]]$index glr <- has_data[[ii]]$glr_id ds <- figs[[hd[1]]]$x$spec$model[[glr]]$attributes$data_source$id gl <- figs[[hd[1]]]$x$spec$model[[glr]]$attributes$glyph$id nsgl <- figs[[hd[1]]]$x$spec$model[[glr]]$attributes$nonselection_glyph$id d <- figs[[hd[1]]]$x$spec$model[[ds]]$attributes$data merge_names <- intersect(names(d), c("x", "y", "fill_color", "fill_alpha", "line_color", "line_width", "line_alpha")) new_names <- paste0(merge_names, ii) d2 <- d[merge_names] names(d2) <- new_names new_data <- c(new_data, d2, d[setdiff(names(d), c(new_names, names(new_data)))]) upd <- figs[[hd[1]]]$x$spec$model[[gl]]$attributes[merge_names] for (nm in names(upd)) { if (!is.null(upd[[nm]]$field)) upd[[nm]]$field <- paste0(upd[[nm]]$field, ii) } figs[[hd[1]]]$x$spec$model[[gl]]$attributes[merge_names] <- upd upd <- figs[[hd[1]]]$x$spec$model[[nsgl]]$attributes[merge_names] for (nm in names(upd)) { if (!is.null(upd[[nm]]$field)) upd[[nm]]$field <- paste0(upd[[nm]]$field, ii) } figs[[hd[1]]]$x$spec$model[[nsgl]]$attributes[merge_names] <- upd figs[[hd[1]]]$x$spec$model[[glr]]$attributes$data_source <- new_data_ref figs[[hd[1]]]$x$spec$model[[ds]] <- NULL } data_mods[[sig]] <- data_model(new_data, d_id) } } else { message(paste("'link_data' was set to TRUE, but none of the figures", "in the grid have the same data source.")) } } mod <- unlist(lapply(figs, function(fig) remove_model_names(fig$x$spec$model)), recursive = FALSE) xxrange <- obj$x$spec$x_range if (!is.null(xxrange)) { xxrange <- list(xxrange) } yyrange <- obj$x$spec$y_range if (!is.null(yyrange)) { yyrange <- list(yyrange) } dmods <- unname(lapply(data_mods, function(x) x$model)) if (length(dmods) == 0) dmods <- NULL mod <- c(mod, remove_model_names(obj$x$spec$layout), xxrange, yyrange, dmods) names(mod) <- NULL obj$x$padding <- list(type = "gridplot") obj$x$spec$model <- mod obj } get_grid_ranges <- function(objs, which = "x") { w1 <- paste0("glyph_", which, "_ranges") w2 <- paste0(which, "_axis_type") ranges <- unlist(lapply(objs, function(x) x$x$spec[[w1]]), recursive = FALSE) rng <- get_all_glyph_range(ranges, objs[[1]]$x$spec$padding_factor, objs[[1]]$x$spec[[w2]]) id <- gen_id(objs[[1]], c(which, "GridRange")) list(range = rng, mod = range_model(ifelse(is.numeric(rng), "Range1d", "FactorRange"), id, rng)) } update_grid_sizes <- function(obj) { width <- obj$width height <- obj$height hmat <- obj$x$spec$hmat wmat <- obj$x$spec$wmat x_margin <- obj$x$spec$x_margin y_margin <- obj$x$spec$y_margin if (is.null(x_margin)) x_margin <- 0 if (is.null(y_margin)) y_margin <- 0 widths <- apply(wmat, 2, function(x) max(x, na.rm = TRUE)) heights <- apply(hmat, 1, function(x) max(x, na.rm = TRUE)) full_width <- sum(widths) full_height <- sum(heights) new_width_factor <- (width - y_margin) / full_width new_height_factor <- (height - x_margin - 30) / full_height new_wmat <- wmat * new_width_factor new_hmat <- hmat * new_height_factor new_wmat[, 1] <- new_wmat[, 1] + y_margin new_hmat[nrow(new_hmat), ] <- new_hmat[nrow(new_hmat), ] + x_margin obj$width <- sum(apply(new_wmat, 2, function(x) max(x, na.rm = TRUE))) + 30 obj$height <- sum(apply(new_hmat, 1, function(x) max(x, na.rm = TRUE))) for (ii in seq_along(obj$x$spec$plot_refs)) { for (jj in seq_along(obj$x$spec$plot_refs[[ii]])) { if (!is.null(obj$x$spec$plot_refs[[ii]][[jj]])) { cur_id <- obj$x$spec$plot_refs[[ii]][[jj]]$id obj$x$spec$figs[[cur_id]]$width <- new_wmat[ii, jj] obj$x$spec$figs[[cur_id]]$height <- new_hmat[ii, jj] if (jj == 1) { obj$x$spec$figs[[cur_id]]$x$spec$model$plot$attributes$min_border_left <- y_margin } if (ii == length(obj$x$spec$plot_refs)) { obj$x$spec$figs[[cur_id]]$x$spec$model$plot$attributes$min_border_bottom <- x_margin } } else { spid <- obj$x$spec$spacer_id_mat[ii, jj] obj$x$spec$layout[[spid]]$attributes$width <- new_wmat[ii, jj] obj$x$spec$layout[[spid]]$attributes$height <- new_hmat[ii, jj] } } } obj } grid_plot_par_validator_map <- list( "toolbar_location" = "toolbar_location", "logo" = "logo" )
vkGetGroupStatGenderAge <- function( date_from = Sys.Date() - 7, date_to = Sys.Date(), group_id = NULL, interval = "day", intervals_count = NULL, filters = NULL, stats_groups = c("visitors", "reach", "activity"), username = getOption("rvkstat.username"), api_version = getOption("rvkstat.api_version"), token_path = vkTokenPath(), access_token = getOption("rvkstat.access_token") ) { if ( is.null(access_token) ) { if ( Sys.getenv("RVK_API_TOKEN") != "" ) { access_token <- Sys.getenv("RVK_API_TOKEN") } else { access_token <- vkAuth(username = username, token_path = token_path)$access_token } } if ( class(access_token) == "vk_auth" ) { access_token <- access_token$access_token } answer <- GET("https://api.vk.com/method/stats.get", query = list( group_id = group_id, timestamp_from = as.numeric(as.POSIXct(date_from)), timestamp_to = as.numeric(as.POSIXct(paste0(date_to, " 23:59:59"))), interval = interval, intervals_count = intervals_count, filters = filters, stats_groups = paste0(stats_groups, collapse = ","), access_token = access_token, v = api_version ) ) stop_for_status(answer) dataRaw <- content(answer, "parsed", "application/json") if(!is.null(dataRaw$error)){ stop(paste0("Error ", dataRaw$error$error_code," - ", dataRaw$error$error_msg)) } result <- tibble(response = dataRaw$response) %>% unnest_wider("response") %>% select("period_from", "period_to", "reach") %>% unnest_wider("reach") %>% select("period_from", "period_to", "sex_age") %>% unnest_longer("sex_age") %>% unnest_wider("sex_age") %>% separate("value", into = c("gender", "age"), sep = ";") %>% rename(visitors = "count") if ( nrow(result) > 0 ) { result$period_from <- as.POSIXct(result$period_from, origin = '1970-01-01') result$period_to <- as.POSIXct(result$period_to, origin = '1970-01-01') } return(result) }
dcl.boot<-function(dcl.par,sigma2,Ntriangle,boot.type=2,B=999,Tail=TRUE, summ.by="diag",Tables=TRUE,num.dec=2,n.cal=NA) { if (missing(sigma2)) sigma2<-dcl.par$sigma2 if (is.na(sigma2) | sigma2<=0) stop('The variance estimate is null or negative. See the documentation for suggestions.') Ntriangle<-as.matrix(Ntriangle) mu.adj<-dcl.par$mu.adj Vy<-dcl.par$Vy Ey<-dcl.par$Ey pj<-dcl.par$pj adj<-dcl.par$adj m<-length(pj);d<-m-1 Nhat<-dcl.par$Nhat alpha.N<-dcl.par$alpha.N beta.N<-dcl.par$beta.N if (missing(Ntriangle)) Ntriangle<-Nhat preds<-dcl.predict(dcl.par,Ntriangle,Model=2,Tail,Tables=FALSE) Drbns<-preds$Drbns Rrbns<-preds$Rrbns Dibnr<-preds$Dibnr Ribnr<-preds$Ribnr Dtotal<-preds$Dtotal Rtotal<-preds$Rtotal BootI<-function(b,Ntriangle,Nhat,m,d,pj,Ey,Vy) { delta<- Ey^2 / Vy nu<- Ey/Vy delta_star<- delta nu_star<- nu Npred_star<-Nhat pj_star<-pj Npred_star[row(Npred_star)+col(Npred_star)<=m+1]<-NA Nest_ext<-cbind(Npred_star,matrix(NA,nrow=m,ncol=d)) Nlist_star<-apply(Nest_ext, MARGIN=1:2, function(v) if (!is.na(v)) as.vector(rmultinom(n=1,size=v,prob=pj_star)) else NA) Narray_star<-array(NA,dim=c(m,m+d,d+1)) for (i in 2:m) { for (j in (m-i+2):m) { Narray_star[i,j,]<-rmultinom(n=1,size=Npred_star[i,j],prob=pj_star) } } Nibnr_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 2:m) { for (j in (m-i+2):(m+d)) { lim2<- j:(max(m-i+2,j-d)) for (ll in lim2) { Nibnr_star[i,j]<- sum(c(Nibnr_star[i,j],Narray_star[i,ll,j-ll+1]),na.rm=T) } } } rm(Narray_star) Xibnr_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 2:m) { for (j in (m-i+2):(m+d)) { Xibnr_star[i,j]<-rgamma(n=1,scale=1/nu_star[i],shape=Nibnr_star[i,j]*delta_star[i]) } } Nlist_star<-apply(Ntriangle, MARGIN=1:2, FUN=function(v) { if (!is.na(v)) as.vector(rmultinom(n=1,size=v,prob=pj_star)) else NA} ) Narray_star<-array(NA,dim=c(m,m,d+1)) for (i in 1:m) { for (j in 1:(m-i+1)) { Narray_star[i,j,]<-rmultinom(n=1,size=Ntriangle[i,j],prob=pj_star) } } Nrbns_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 1:m) { for (j in (m-i+2):(m+d-i+1)) { lim2<- (max(1,j-d)):(max(m-i+1,j-d)) for (ll in lim2) { Nrbns_star[i,j]<- sum(c(Nrbns_star[i,j],Narray_star[i,ll,j-ll+1]),na.rm=T) } } } rm(Narray_star) Xrbns_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 1:m) { for (j in (m-i+2):(m+d-i+1)) { Xrbns_star[i,j]<-rgamma(n=1,scale=1/nu_star[i],shape=Nrbns_star[i,j]*delta_star[i]) } } return(list(Xibnr_star=Xibnr_star,Xrbns_star=Xrbns_star)) } BootII<-function(b,Ntriangle,alpha.N,beta.N,m,d,pj,Ey,Vy) { set.triangle<-expand.grid(1:m,1:m) Npois<-apply(set.triangle,MARGIN=1, FUN= function(v) { j<-as.numeric(v[1]) i<-as.numeric(v[2]) if (j<(m-i+2)) { if (Ntriangle[i,j]>0) v.e<-rpois(n=1,lambda=round(Ntriangle[i,j])) else v.e<-0 } else v.e<-NA return(v.e) }) Ntriangle_star<-matrix(Npois,m,m,byrow=T) clm.N.star<-clm(Ntriangle_star,n.cal=n.cal) Npred_star<-clm.N.star$triangle.hat Nlist_star<-apply(Ntriangle, MARGIN=1:2, function(v) { if (!is.na(v)) { if (v>0) return(as.vector(rmultinom(n=1,size=v,prob=pj))) else return(rep(0,d)) }}) v.Npaid<-apply(set.triangle,MARGIN=1, FUN= function(v){ j<-as.numeric(v[1]);i<-as.numeric(v[2]); if (j<(m-i+2)) {lim.m<-0:(min(d,j-1)) v.n<- sapply(lim.m, function(vv) unlist(Nlist_star[i,j-vv])[vv+1]); v.n<-sum(v.n,na.rm=T)} else v.n<-NA return(v.n) }) Npaid_star<-matrix(v.Npaid,m,m,byrow=T) Npaid_star<-cbind(Npaid_star,matrix(NA,nrow=m,ncol=d)) Xtriangle_star<-matrix(NA,nrow=m,ncol= m) delta<- Ey^2 / Vy nu<- Ey/Vy v.X<-apply(set.triangle,MARGIN=1,FUN= function(v) { j<-as.numeric(v[1]);i<-as.numeric(v[2]); if (j<(m-i+2)) v.X<-rgamma(n=1,scale=1/nu[i],shape=Npaid_star[i,j]*delta[i]) else v.X<-NA return(v.X)}) Xtriangle_star<-matrix(v.X,m,m,byrow=T) par.star<-dcl.estimation(Xtriangle_star,Ntriangle,adj,Tables=FALSE,n.cal=n.cal) pj_star<-par.star$pj Ey_star<-as.vector(par.star$Ey) mu_star<-Ey_star[1] Vy_star<-as.vector(par.star$Vy) if (any(Vy_star<=0)) Vy_star<-Vy delta_star<- Ey_star^2 / Vy_star nu_star<- Ey_star/Vy_star Npred_star[row(Npred_star)+col(Npred_star)<=m+1]<-NA Nest_ext<-cbind(Npred_star,matrix(NA,nrow=m,ncol=d)) Nlist_star<-apply(Nest_ext, MARGIN=1:2, function(v) if (!is.na(v)) as.vector(rmultinom(n=1,size=v,prob=pj_star)) else NA) Narray_star<-array(NA,dim=c(m,m+d,d+1)) for (i in 2:m) { for (j in (m-i+2):m) { Narray_star[i,j,]<-rmultinom(n=1,size=Npred_star[i,j],prob=pj_star) } } Nibnr_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 2:m) { for (j in (m-i+2):(m+d)) { lim2<- j:(max(m-i+2,j-d)) for (ll in lim2) { Nibnr_star[i,j]<- sum(c(Nibnr_star[i,j],Narray_star[i,ll,j-ll+1]),na.rm=T) } } } rm(Narray_star) Xibnr_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 2:m) { for (j in (m-i+2):(m+d)) { Xibnr_star[i,j]<-rgamma(n=1,scale=1/nu_star[i],shape=Nibnr_star[i,j]*delta_star[i]) } } Nlist_star<-apply(Ntriangle, MARGIN=1:2, FUN=function(v) { if (!is.na(v)) as.vector(rmultinom(n=1,size=v,prob=pj_star)) else NA} ) Narray_star<-array(NA,dim=c(m,m,d+1)) for (i in 1:m) { for (j in 1:(m-i+1)) { Narray_star[i,j,]<-rmultinom(n=1,size=Ntriangle[i,j],prob=pj_star) } } Nrbns_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 1:m) { for (j in (m-i+2):(m+d-i+1)) { lim2<- (max(1,j-d)):(max(m-i+1,j-d)) for (ll in lim2) { Nrbns_star[i,j]<- sum(c(Nrbns_star[i,j],Narray_star[i,ll,j-ll+1]),na.rm=T) } } } rm(Narray_star) Xrbns_star<-matrix(NA,nrow=m,ncol= m+d) for (i in 1:m) { for (j in (m-i+2):(m+d-i+1)) { Xrbns_star[i,j]<-rgamma(n=1,scale=1/nu_star[i],shape=Nrbns_star[i,j]*delta_star[i]) } } return(list(Xibnr_star=Xibnr_star,Xrbns_star=Xrbns_star)) } app<-logical(0) array.rbns.boot<-array.ibnr.boot<-array(0,dim=c(m,m+d,B)) for (b in 1:B) { if (b==1) {app<-F; print('Please wait, simulating the distribution...') } else app<-T if (boot.type==1) res.boot<-BootI(b,Ntriangle,Nhat,m,d,pj,Ey,Vy) if (boot.type==2) res.boot<-BootII(b,Ntriangle,alpha.N,beta.N,m,d,pj,Ey,Vy) array.rbns.boot[,,b]<-as.matrix(res.boot$Xrbns_star) array.ibnr.boot[,,b]<-as.matrix(res.boot$Xibnr_star) if (b==B) print('Done!') } if (summ.by=='diag') { dd<-m+d-1 +1 Mat_rbns<-Mat_ibnr<-matrix(0,B,dd) for (b in 1:B) { Xrbns_star<-array.rbns.boot[,,b] Xibnr_star<-array.ibnr.boot[,,b] if (Tail==FALSE) {Xrbns_star[,(m+1):( 2*m-1)]<-0;Xibnr_star[,(m+1):( 2*m-1)]<-0} Drbns_star<-sapply(split(Xrbns_star, row(Xrbns_star)+col(Xrbns_star)), sum, na.rm=T) Drbns_star<-as.vector(Drbns_star[-(1:m)]) Mat_rbns[b,]<-c(Drbns_star,sum(Drbns_star,na.rm =T)) Dibnr_star<-sapply(split(Xibnr_star, row(Xibnr_star)+col(Xibnr_star)), sum, na.rm=T) Dibnr_star<-as.vector(Dibnr_star[-(1:m)]) Mat_ibnr[b,]<-c(Dibnr_star,sum(Dibnr_star,na.rm =T)) } } else { dd<-m+1 Mat_rbns<-Mat_ibnr<-matrix(0,B,dd) for (b in 1:B) { Xrbns_star<-array.rbns.boot[,,b] Rrbns_star<-as.vector(rowSums(Xrbns_star)) Mat_rbns[b,]<-c(Rrbns_star,sum(Rrbns_star,na.rm =T)) Xibnr_star<-array.ibnr.boot[,,b] Ribnr_star<-as.vector(rowSums(Xibnr_star)) Mat_ibnr[b,]<-c(Ribnr_star,sum(Ribnr_star,na.rm =T)) } } Mat_total<-Mat_rbns+Mat_ibnr mean.Drbns<-colMeans(Mat_rbns) mean.Drbns<-round(mean.Drbns,num.dec) sd.Drbns<-apply(Mat_rbns,2,sd) sd.Drbns<-round(sd.Drbns,num.dec) quantiles.Drbns<-apply(Mat_rbns,2,quantile,c(0.01,0.05,0.5,0.95,0.99)) quantiles.Drbns<-round(quantiles.Drbns,num.dec) mean.Dibnr<-colMeans(Mat_ibnr) mean.Dibnr<-round(mean.Dibnr,num.dec) sd.Dibnr<-apply(Mat_ibnr,2,sd) sd.Dibnr<-round(sd.Dibnr,num.dec) quantiles.Dibnr<-apply(Mat_ibnr,2,quantile,c(0.01,0.05,0.5,0.95,0.99)) quantiles.Dibnr<-round(quantiles.Dibnr,num.dec) mean.Dtotal<-colMeans(Mat_total) mean.Dtotal<-round(mean.Dtotal,num.dec) sd.Dtotal<-apply(Mat_total,2,sd) sd.Dtotal<<-round(sd.Dtotal,num.dec) quantiles.Dtotal<-apply(Mat_total,2,quantile,c(0.01,0.05,0.5,0.95,0.99)) quantiles.Dtotal<-round(quantiles.Dtotal,num.dec) if (Tables==TRUE) { period<-c(1:(dd-1),'Tot.') resD_rbns<-data.frame(period,rbns=round(Drbns,num.dec), mean.rbns=round(mean.Drbns,num.dec),sd.rbns=round(sd.Drbns,num.dec), Q1.rbns=round(quantiles.Drbns[1,],num.dec), Q5.rbns=round(quantiles.Drbns[2,],num.dec) ,Q50.rbns=round(quantiles.Drbns[3,],num.dec), Q95.rbns=round(quantiles.Drbns[4,],num.dec), Q99.rbns=round(quantiles.Drbns[5,],num.dec)) resD_ibnr<-data.frame(period,ibnr=round(Dibnr,num.dec), mean.ibnr=round(mean.Dibnr,num.dec),sd.ibnr=round(sd.Dibnr,num.dec), Q1.ibnr=round(quantiles.Dibnr[1,],num.dec), Q5.ibnr=round(quantiles.Dibnr[2,],num.dec), Q50.ibnr=round(quantiles.Dibnr[3,],num.dec), Q95.ibnr=round(quantiles.Dibnr[4,],num.dec), Q99.ibnr=round(quantiles.Dibnr[5,],num.dec)) resD_total<-data.frame(period,total=round(Dtotal,num.dec), mean.total=round(mean.Dtotal,num.dec),sd.total=round(sd.Dtotal,num.dec), Q1.total=round(quantiles.Dtotal[1,],num.dec), Q5.total=round(quantiles.Dtotal[2,],num.dec), Q50.total=round(quantiles.Dtotal[3,],num.dec), Q95.total=round(quantiles.Dtotal[4,],num.dec), Q99.total=round(quantiles.Dtotal[5,],num.dec)) print(resD_rbns) print(resD_ibnr) print(resD_total) res<-list(array.rbns.boot=array.rbns.boot,array.ibnr.boot=array.ibnr.boot, Mat.rbns=Mat_rbns,Mat.ibnr=Mat_ibnr,Mat.total=Mat_total, summ.rbns=resD_rbns,summ.ibnr=resD_ibnr,summ.total=resD_total) } else { res<-list(array.rbns.boot=array.rbns.boot,array.ibnr.boot=array.ibnr.boot, Mat.rbns=Mat_rbns,Mat.ibnr=Mat_ibnr,Mat.total=Mat_total) } return(res) }
library(RFLPtools) library(MKomics) M <- 5 N <- 10 nrB <- 3:10 checkResultsGerm <- function(newName, resData){ rownames(resData[[newName]])[1] == newName } dist2ref <- function(nB, newData, refData, distfun = dist, nrMissing = 0, LOD = 0){ newData$Sample <- paste("New", newData$Sample, sep = "_") complData <- rbind(newData, refData) if(nrMissing == 0){ res <- RFLPdist(complData, nrBands = nB, distfun = distfun, LOD = LOD) }else{ res <- RFLPdist2(complData, nrBands = nB, distfun = distfun, nrMissing = nrMissing) } res } checkResultsRFLP <- function(resData){ resData <- as.matrix(resData) resData <- resData[,grepl("New", colnames(resData))] resData <- resData[!grepl("New", rownames(resData)),] newNam <- sapply(strsplit(colnames(resData), split = "_"), "[", 2) refNam <- rownames(resData)[apply(resData, 2, which.min)] sum(refNam == newNam) } checkResultsFragMatch <- function(resData, nrMissing = 0){ Matches <- sapply(apply(resData, 2, strsplit, split = "_"), function(x, nrMissing){ sapply(x, function(x, nrMissing){ as.integer(x[1]) == (as.integer(x[2])-nrMissing) }, nrMissing = nrMissing) }, nrMissing = nrMissing) rowNams <- rownames(resData) colNams <- colnames(resData) nrMatch <- 0 for(i in 1:ncol(Matches)){ if(colNams[i] %in% rowNams[which(Matches[,i])]) nrMatch <- nrMatch + 1 } nrMatch } acc.germ.joint1 <- numeric(M) acc.germ.forward1 <- numeric(M) acc.germ.backward1 <- numeric(M) acc.germ.sum1 <- numeric(M) acc.rflptools.eucl1 <- numeric(M) acc.rflptools.cor1 <- numeric(M) acc.rflptools.diff1 <- numeric(M) acc.FragMatch1.5 <- numeric(M) acc.FragMatch1.10 <- numeric(M) acc.FragMatch1.25 <- numeric(M) for(i in 1:M){ print(i) refData1 <- simulateRFLPdata(N = N, bandCenters = seq(200, 800, by = 100), nrBands = nrB, refData = TRUE) newData1 <- refData1 newData1$MW <- newData1$MW + rnorm(nrow(newData1), mean = 0, sd = 5) res1.germ.joint <- germ(newData = newData1, refData = refData1) res1.germ.forward <- lapply(res1.germ.joint, function(x) x[order(x[,"Forward Max"]),]) res1.germ.backward <- lapply(res1.germ.joint, function(x) x[order(x[,"Backward Max"]),]) res1.germ.sum <- lapply(res1.germ.joint, function(x) x[order(x[,"Sum of Bands"]),]) SampleNames <- unique(refData1$Sample) acc.germ.joint1[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res1.germ.joint))/length(SampleNames) acc.germ.forward1[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res1.germ.forward))/length(SampleNames) acc.germ.backward1[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res1.germ.backward))/length(SampleNames) acc.germ.sum1[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res1.germ.sum))/length(SampleNames) res1.rflptools.eucl <- lapply(nrB, dist2ref, newData = newData1, refData = refData1) res1.rflptools.cor <- lapply(nrB, dist2ref, newData = newData1, refData = refData1, dist = corDist) res1.rflptools.diff <- lapply(nrB, dist2ref, newData = newData1, refData = refData1, dist = diffDist) acc.rflptools.eucl1[i] <- 100*sum(sapply(res1.rflptools.eucl, checkResultsRFLP))/length(SampleNames) acc.rflptools.cor1[i] <- 100*sum(sapply(res1.rflptools.cor, checkResultsRFLP))/length(SampleNames) acc.rflptools.diff1[i] <- 100*sum(sapply(res1.rflptools.diff, checkResultsRFLP))/length(SampleNames) res1.FragMatch.5 <- FragMatch(newData = newData1, refData = refData1, errorBound = 5) res1.FragMatch.10 <- FragMatch(newData = newData1, refData = refData1, errorBound = 10) res1.FragMatch.25 <- FragMatch(newData = newData1, refData = refData1, errorBound = 25) acc.FragMatch1.5[i] <- 100*checkResultsFragMatch(res1.FragMatch.5)/length(SampleNames) acc.FragMatch1.10[i] <- 100*checkResultsFragMatch(res1.FragMatch.10)/length(SampleNames) acc.FragMatch1.25[i] <- 100*checkResultsFragMatch(res1.FragMatch.25)/length(SampleNames) } mean(acc.germ.joint1) mean(acc.germ.forward1) mean(acc.germ.backward1) mean(acc.germ.sum1) mean(acc.rflptools.eucl1) mean(acc.rflptools.cor1) mean(acc.rflptools.diff1) mean(acc.FragMatch1.5) mean(acc.FragMatch1.10) mean(acc.FragMatch1.25) acc.germ.joint2 <- numeric(M) acc.germ.forward2 <- numeric(M) acc.germ.backward2 <- numeric(M) acc.germ.sum2 <- numeric(M) acc.rflptools.eucl2 <- numeric(M) acc.rflptools.cor2 <- numeric(M) acc.rflptools.diff2 <- numeric(M) acc.rflptools.eucl21 <- numeric(M) acc.rflptools.cor21 <- numeric(M) acc.rflptools.diff21 <- numeric(M) acc.FragMatch2.5 <- numeric(M) acc.FragMatch2.10 <- numeric(M) acc.FragMatch2.25 <- numeric(M) for(i in 1:M){ print(i) refData2 <- simulateRFLPdata(N = N, bandCenters = seq(200, 800, by = 100), nrBands = nrB, refData = TRUE) SampleNames <- unique(refData2$Sample) for(j in 1:length(SampleNames)){ temp <- refData2[refData2$Sample == SampleNames[j],] addLOD <- data.frame(Sample = SampleNames[j], Band = 0, MW = runif(1, min = 0, max = 100), Enzyme = temp$Enzyme[1], Taxonname = temp$Taxonname[1], Accession = temp$Accession[1]) temp <- rbind(addLOD, temp) temp$Band <- temp$Band + 1 if(j == 1) newData2 <- temp else newData2 <- rbind(newData2, temp) } rownames(newData2) <- 1:nrow(newData2) newData2$MW <- newData2$MW + rnorm(nrow(newData2), mean = 0, sd = 5) res2.germ.joint <- germ(newData = newData2, refData = refData2) res2.germ.forward <- lapply(res2.germ.joint, function(x) x[order(x[,"Forward Max"]),]) res2.germ.backward <- lapply(res2.germ.joint, function(x) x[order(x[,"Backward Max"]),]) res2.germ.sum <- lapply(res2.germ.joint, function(x) x[order(x[,"Sum of Bands"]),]) acc.germ.joint2[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res2.germ.joint))/length(SampleNames) acc.germ.forward2[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res2.germ.forward))/length(SampleNames) acc.germ.backward2[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res2.germ.backward))/length(SampleNames) acc.germ.sum2[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res2.germ.sum))/length(SampleNames) res2.rflptools.eucl <- lapply(nrB, dist2ref, newData = newData2, refData = refData2, LOD = 125) res2.rflptools.cor <- lapply(nrB, dist2ref, newData = newData2, refData = refData2, dist = corDist, LOD = 125) res2.rflptools.diff <- lapply(nrB, dist2ref, newData = newData2, refData = refData2, dist = diffDist, LOD = 125) res2.rflptools.eucl1 <- lapply(nrB, dist2ref, newData = newData2, refData = refData2, nrMissing = 1) res2.rflptools.cor1 <- lapply(nrB, dist2ref, newData = newData2, refData = refData2, dist = corDist, nrMissing = 1) res2.rflptools.diff1 <- lapply(nrB, dist2ref, newData = newData2, refData = refData2, dist = diffDist, nrMissing = 1) acc.rflptools.eucl2[i] <- 100*sum(sapply(res2.rflptools.eucl, checkResultsRFLP))/length(SampleNames) acc.rflptools.cor2[i] <- 100*sum(sapply(res2.rflptools.cor, checkResultsRFLP))/length(SampleNames) acc.rflptools.diff2[i] <- 100*sum(sapply(res2.rflptools.diff, checkResultsRFLP))/length(SampleNames) acc.rflptools.eucl21[i] <- 100*sum(sapply(res2.rflptools.eucl1, checkResultsRFLP))/length(SampleNames) acc.rflptools.cor21[i] <- 100*sum(sapply(res2.rflptools.cor1, checkResultsRFLP))/length(SampleNames) acc.rflptools.diff21[i] <- 100*sum(sapply(res2.rflptools.diff1, checkResultsRFLP))/length(SampleNames) res2.FragMatch.5 <- FragMatch(newData = newData2, refData = refData2, errorBound = 5) res2.FragMatch.10 <- FragMatch(newData = newData2, refData = refData2, errorBound = 10) res2.FragMatch.25 <- FragMatch(newData = newData2, refData = refData2, errorBound = 25) acc.FragMatch2.5[i] <- 100*checkResultsFragMatch(res2.FragMatch.5)/length(SampleNames) acc.FragMatch2.10[i] <- 100*checkResultsFragMatch(res2.FragMatch.10)/length(SampleNames) acc.FragMatch2.25[i] <- 100*checkResultsFragMatch(res2.FragMatch.25)/length(SampleNames) } mean(acc.germ.joint2) mean(acc.germ.forward2) mean(acc.germ.backward2) mean(acc.germ.sum2) mean(acc.rflptools.eucl2) mean(acc.rflptools.cor2) mean(acc.rflptools.diff2) mean(acc.rflptools.eucl21) mean(acc.rflptools.cor21) mean(acc.rflptools.diff21) mean(acc.FragMatch2.5) mean(acc.FragMatch2.10) mean(acc.FragMatch2.25) acc.germ.joint3 <- numeric(M) acc.germ.forward3 <- numeric(M) acc.germ.backward3 <- numeric(M) acc.germ.sum3 <- numeric(M) acc.rflptools.eucl3 <- numeric(M) acc.rflptools.cor3 <- numeric(M) acc.rflptools.diff3 <- numeric(M) acc.FragMatch3.5 <- numeric(M) acc.FragMatch3.10 <- numeric(M) acc.FragMatch3.25 <- numeric(M) for(i in 1:M){ print(i) refData3 <- simulateRFLPdata(N = N, bandCenters = seq(200, 800, by = 100), nrBands = nrB, refData = TRUE) SampleNames <- unique(refData3$Sample) for(j in 1:length(SampleNames)){ temp <- refData3[refData3$Sample == SampleNames[j],] addBand <- data.frame(Sample = SampleNames[j], Band = max(temp$Band)+1, MW = -runif(1, min = 150, max = 850), Enzyme = temp$Enzyme[1], Taxonname = temp$Taxonname[1], Accession = temp$Accession[1]) temp <- rbind(temp, addBand) temp <- temp[order(abs(temp$MW)),] temp$Band <- 1:nrow(temp) if(j == 1) newData3 <- temp else newData3 <- rbind(newData3, temp) } rownames(newData3) <- 1:nrow(newData3) newData3$MW <- newData3$MW + rnorm(nrow(newData3), mean = 0, sd = 5) res3.germ.joint <- germ(newData = newData3, refData = refData3) res3.germ.forward <- lapply(res3.germ.joint, function(x) x[order(x[,"Forward Max"]),]) res3.germ.backward <- lapply(res3.germ.joint, function(x) x[order(x[,"Backward Max"]),]) res3.germ.sum <- lapply(res3.germ.joint, function(x) x[order(x[,"Sum of Bands"]),]) acc.germ.joint3[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res3.germ.joint))/length(SampleNames) acc.germ.forward3[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res3.germ.forward))/length(SampleNames) acc.germ.backward3[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res3.germ.backward))/length(SampleNames) acc.germ.sum3[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res3.germ.sum))/length(SampleNames) newData31 <- newData3 newData31$MW <- abs(newData31$MW) res3.rflptools.eucl1 <- lapply(nrB, dist2ref, newData = newData31, refData = refData3, nrMissing = 1) res3.rflptools.cor1 <- lapply(nrB, dist2ref, newData = newData31, refData = refData3, dist = corDist, nrMissing = 1) res3.rflptools.diff1 <- lapply(nrB, dist2ref, newData = newData31, refData = refData3, dist = diffDist, nrMissing = 1) acc.rflptools.eucl3[i] <- 100*sum(sapply(res3.rflptools.eucl1, checkResultsRFLP))/length(SampleNames) acc.rflptools.cor3[i] <- 100*sum(sapply(res3.rflptools.cor1, checkResultsRFLP))/length(SampleNames) acc.rflptools.diff3[i] <- 100*sum(sapply(res3.rflptools.diff1, checkResultsRFLP))/length(SampleNames) res3.FragMatch.5 <- FragMatch(newData = newData31, refData = refData3, errorBound = 5) res3.FragMatch.10 <- FragMatch(newData = newData31, refData = refData3, errorBound = 10) res3.FragMatch.25 <- FragMatch(newData = newData31, refData = refData3, errorBound = 25) acc.FragMatch3.5[i] <- 100*checkResultsFragMatch(res3.FragMatch.5)/length(SampleNames) acc.FragMatch3.10[i] <- 100*checkResultsFragMatch(res3.FragMatch.10)/length(SampleNames) acc.FragMatch3.25[i] <- 100*checkResultsFragMatch(res3.FragMatch.25)/length(SampleNames) } mean(acc.germ.joint3) mean(acc.germ.forward3) mean(acc.germ.backward3) mean(acc.germ.sum3) mean(acc.rflptools.eucl3) mean(acc.rflptools.cor3) mean(acc.rflptools.diff3) mean(acc.FragMatch3.5) mean(acc.FragMatch3.10) mean(acc.FragMatch3.25) acc.germ.joint4 <- numeric(M) acc.germ.forward4 <- numeric(M) acc.germ.backward4 <- numeric(M) acc.germ.sum4 <- numeric(M) acc.rflptools.eucl4 <- numeric(M) acc.rflptools.cor4 <- numeric(M) acc.rflptools.diff4 <- numeric(M) acc.FragMatch4.5 <- numeric(M) acc.FragMatch4.10 <- numeric(M) acc.FragMatch4.25 <- numeric(M) for(i in 1:M){ print(i) refData4 <- simulateRFLPdata(N = N, bandCenters = seq(200, 800, by = 100), nrBands = nrB, refData = TRUE) SampleNames <- unique(refData4$Sample) for(j in 1:length(SampleNames)){ temp <- refData4[refData4$Sample == SampleNames[j],] temp <- temp[-sample(1:nrow(temp), 1),] temp$Band <- 1:nrow(temp) if(j == 1) newData4 <- temp else newData4 <- rbind(newData4, temp) } rownames(newData4) <- 1:nrow(newData4) newData4$MW <- newData4$MW + rnorm(nrow(newData4), mean = 0, sd = 5) res4.germ.joint <- germ(newData = newData4, refData = refData4) res4.germ.forward <- lapply(res4.germ.joint, function(x) x[order(x[,"Forward Max"]),]) res4.germ.backward <- lapply(res4.germ.joint, function(x) x[order(x[,"Backward Max"]),]) res4.germ.sum <- lapply(res4.germ.joint, function(x) x[order(x[,"Sum of Bands"]),]) acc.germ.joint4[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res4.germ.joint))/length(SampleNames) acc.germ.forward4[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res4.germ.forward))/length(SampleNames) acc.germ.backward4[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res4.germ.backward))/length(SampleNames) acc.germ.sum4[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res4.germ.sum))/length(SampleNames) res4.rflptools.eucl1 <- lapply(nrB, dist2ref, newData = newData4, refData = refData4, nrMissing = 1) res4.rflptools.cor1 <- lapply(nrB, dist2ref, newData = newData4, refData = refData4, dist = corDist, nrMissing = 1) res4.rflptools.diff1 <- lapply(nrB, dist2ref, newData = newData4, refData = refData4, dist = diffDist, nrMissing = 1) acc.rflptools.eucl4[i] <- 100*sum(sapply(res4.rflptools.eucl1[-length(nrB)], checkResultsRFLP))/length(SampleNames) acc.rflptools.cor4[i] <- 100*sum(sapply(res4.rflptools.cor1[-length(nrB)], checkResultsRFLP))/length(SampleNames) acc.rflptools.diff4[i] <- 100*sum(sapply(res4.rflptools.diff1[-length(nrB)], checkResultsRFLP))/length(SampleNames) res4.FragMatch.5 <- FragMatch(newData = newData4, refData = refData4, errorBound = 5) res4.FragMatch.10 <- FragMatch(newData = newData4, refData = refData4, errorBound = 10) res4.FragMatch.25 <- FragMatch(newData = newData4, refData = refData4, errorBound = 25) acc.FragMatch4.5[i] <- 100*checkResultsFragMatch(res4.FragMatch.5, nrMissing = 1)/length(SampleNames) acc.FragMatch4.10[i] <- 100*checkResultsFragMatch(res4.FragMatch.10, nrMissing = 1)/length(SampleNames) acc.FragMatch4.25[i] <- 100*checkResultsFragMatch(res4.FragMatch.25, nrMissing = 1)/length(SampleNames) } mean(acc.germ.joint4) mean(acc.germ.forward4) mean(acc.germ.backward4) mean(acc.germ.sum4) mean(acc.rflptools.eucl4) mean(acc.rflptools.cor4) mean(acc.rflptools.diff4) mean(acc.FragMatch4.5) mean(acc.FragMatch4.10) mean(acc.FragMatch4.25) acc.germ.joint5 <- numeric(M) acc.germ.forward5 <- numeric(M) acc.germ.backward5 <- numeric(M) acc.germ.sum5 <- numeric(M) acc.rflptools.eucl5 <- numeric(M) acc.rflptools.cor5 <- numeric(M) acc.rflptools.diff5 <- numeric(M) acc.FragMatch5.5 <- numeric(M) acc.FragMatch5.10 <- numeric(M) acc.FragMatch5.25 <- numeric(M) for(i in 1:M){ print(i) refData5 <- simulateRFLPdata(N = N, bandCenters = seq(200, 800, by = 100), nrBands = nrB, refData = TRUE) SampleNames <- unique(refData5$Sample) for(j in 1:length(SampleNames)){ temp <- refData5[refData5$Sample == SampleNames[j],] addBand <- temp[sample(1:nrow(temp), 1),, drop = FALSE] temp <- rbind(temp, addBand) temp <- temp[order(abs(temp$MW)),] temp$Band <- 1:nrow(temp) if(j == 1) newData5 <- temp else newData5 <- rbind(newData5, temp) } rownames(newData5) <- 1:nrow(newData5) newData5$MW <- newData5$MW + rnorm(nrow(newData5), mean = 0, sd = 5) res5.germ.joint <- germ(newData = newData5, refData = refData5) res5.germ.forward <- lapply(res5.germ.joint, function(x) x[order(x[,"Forward Max"]),]) res5.germ.backward <- lapply(res5.germ.joint, function(x) x[order(x[,"Backward Max"]),]) res5.germ.sum <- lapply(res5.germ.joint, function(x) x[order(x[,"Sum of Bands"]),]) acc.germ.joint5[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res5.germ.joint))/length(SampleNames) acc.germ.forward5[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res5.germ.forward))/length(SampleNames) acc.germ.backward5[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res5.germ.backward))/length(SampleNames) acc.germ.sum5[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res5.germ.sum))/length(SampleNames) res5.rflptools.eucl1 <- lapply(nrB, dist2ref, newData = newData5, refData = refData5, nrMissing = 1) res5.rflptools.cor1 <- lapply(nrB, dist2ref, newData = newData5, refData = refData5, dist = corDist, nrMissing = 1) res5.rflptools.diff1 <- lapply(nrB, dist2ref, newData = newData5, refData = refData5, dist = diffDist, nrMissing = 1) acc.rflptools.eucl5[i] <- 100*sum(sapply(res5.rflptools.eucl1, checkResultsRFLP))/length(SampleNames) acc.rflptools.cor5[i] <- 100*sum(sapply(res5.rflptools.cor1, checkResultsRFLP))/length(SampleNames) acc.rflptools.diff5[i] <- 100*sum(sapply(res5.rflptools.diff1, checkResultsRFLP))/length(SampleNames) res5.FragMatch.5 <- FragMatch(newData = newData5, refData = refData5, errorBound = 5) res5.FragMatch.10 <- FragMatch(newData = newData5, refData = refData5, errorBound = 10) res5.FragMatch.25 <- FragMatch(newData = newData5, refData = refData5, errorBound = 25) acc.FragMatch5.5[i] <- 100*checkResultsFragMatch(res5.FragMatch.5)/length(SampleNames) acc.FragMatch5.10[i] <- 100*checkResultsFragMatch(res5.FragMatch.10)/length(SampleNames) acc.FragMatch5.25[i] <- 100*checkResultsFragMatch(res5.FragMatch.25)/length(SampleNames) } mean(acc.germ.joint5) mean(acc.germ.forward5) mean(acc.germ.backward5) mean(acc.germ.sum5) mean(acc.rflptools.eucl5) mean(acc.rflptools.cor5) mean(acc.rflptools.diff5) mean(acc.FragMatch5.5) mean(acc.FragMatch5.10) mean(acc.FragMatch5.25) shift <- 50 acc.germ.joint6 <- numeric(M) acc.germ.forward6 <- numeric(M) acc.germ.backward6 <- numeric(M) acc.germ.sum6 <- numeric(M) acc.rflptools.eucl6 <- numeric(M) acc.rflptools.cor6 <- numeric(M) acc.rflptools.diff6 <- numeric(M) acc.FragMatch6.5 <- numeric(M) acc.FragMatch6.10 <- numeric(M) acc.FragMatch6.25 <- numeric(M) for(i in 1:M){ print(i) refData6 <- simulateRFLPdata(N = N, bandCenters = seq(200, 800, by = 100), nrBands = nrB, refData = TRUE) newData6 <- refData6 newData6$MW <- newData6$MW + shift newData6$MW <- newData6$MW + rnorm(nrow(newData6), mean = 0, sd = 5) res6.germ.joint <- germ(newData = newData6, refData = refData6) res6.germ.forward <- lapply(res6.germ.joint, function(x) x[order(x[,"Forward Max"]),]) res6.germ.backward <- lapply(res6.germ.joint, function(x) x[order(x[,"Backward Max"]),]) res6.germ.sum <- lapply(res6.germ.joint, function(x) x[order(x[,"Sum of Bands"]),]) SampleNames <- unique(refData6$Sample) acc.germ.joint6[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res6.germ.joint))/length(SampleNames) acc.germ.forward6[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res6.germ.forward))/length(SampleNames) acc.germ.backward6[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res6.germ.backward))/length(SampleNames) acc.germ.sum6[i] <- 100*sum(sapply(SampleNames, checkResultsGerm, resData = res6.germ.sum))/length(SampleNames) res6.rflptools.eucl <- lapply(nrB, dist2ref, newData = newData6, refData = refData6) res6.rflptools.cor <- lapply(nrB, dist2ref, newData = newData6, refData = refData6, dist = corDist) res6.rflptools.diff <- lapply(nrB, dist2ref, newData = newData6, refData = refData6, dist = diffDist) acc.rflptools.eucl6[i] <- 100*sum(sapply(res6.rflptools.eucl, checkResultsRFLP))/length(SampleNames) acc.rflptools.cor6[i] <- 100*sum(sapply(res6.rflptools.cor, checkResultsRFLP))/length(SampleNames) acc.rflptools.diff6[i] <- 100*sum(sapply(res6.rflptools.diff, checkResultsRFLP))/length(SampleNames) res6.FragMatch.5 <- FragMatch(newData = newData6, refData = refData6, errorBound = 5) res6.FragMatch.10 <- FragMatch(newData = newData6, refData = refData6, errorBound = 10) res6.FragMatch.25 <- FragMatch(newData = newData6, refData = refData6, errorBound = 25) acc.FragMatch6.5[i] <- 100*checkResultsFragMatch(res6.FragMatch.5)/length(SampleNames) acc.FragMatch6.10[i] <- 100*checkResultsFragMatch(res6.FragMatch.10)/length(SampleNames) acc.FragMatch6.25[i] <- 100*checkResultsFragMatch(res6.FragMatch.25)/length(SampleNames) } mean(acc.germ.joint6) mean(acc.germ.forward6) mean(acc.germ.backward6) mean(acc.germ.sum6) mean(acc.rflptools.eucl6) mean(acc.rflptools.cor6) mean(acc.rflptools.diff6) mean(acc.FragMatch6.5) mean(acc.FragMatch6.10) mean(acc.FragMatch6.25)
find_neighbors2 <- function(sce, platform) { if (platform == "Visium") { offsets <- data.frame(x.offset=c(-2, 2, -1, 1, -1, 1), y.offset=c( 0, 0, -1, -1, 1, 1)) } else if (platform == "ST") { offsets <- data.frame(x.offset=c( 0, 1, 0, -1), y.offset=c(-1, 0, 1, 0)) } else { stop(".find_neighbors: Unsupported platform \"", platform, "\".") } spot.positions <- SingleCellExperiment::colData(sce)[, c("col", "row")] spot.positions$spot.idx <- seq_len(nrow(spot.positions)) neighbor.positions <- merge(spot.positions, offsets) neighbor.positions$x.pos <- neighbor.positions$col + neighbor.positions$x.offset neighbor.positions$y.pos <- neighbor.positions$row + neighbor.positions$y.offset neighbors <- merge(as.data.frame(neighbor.positions), as.data.frame(spot.positions), by.x=c("x.pos", "y.pos"), by.y=c("col", "row"), suffixes=c(".primary", ".neighbor"), all.x=TRUE) neighbors <- neighbors[order(neighbors$spot.idx.primary, neighbors$spot.idx.neighbor), ] df_j <- split(neighbors$spot.idx.neighbor, neighbors$spot.idx.primary) df_j <- unname(df_j) df_j <- purrr::map(df_j, function(nbrs) purrr::discard(nbrs, function(x) is.na(x))) n_with_neighbors <- length(purrr::keep(df_j, function(nbrs) length(nbrs) > 0)) message("Neighbors were identified for ", n_with_neighbors, " out of ", ncol(sce), " spots.") n <- length(df_j) D <- Matrix::sparseMatrix(i = 1:n, j = 1:n, x = 0) for (i in 1:n) { if(length(df_j[[i]]) != 0) D[i, df_j[[i]]] <- 1 } D }
NULL align_pander <- function(x, align_idx = NULL, caption = NULL) { .Deprecated("kable", package = "knitr") invisible() }
context("running company_information") with_mock_api({ test_that("running ", { expect_error(company_information("BAD")) res <- company_information("EA") expect_is(res, "data.frame") expect_length(res, 19) expect_length(rownames(res), 1) expect_equal(res$name, "ELECTRONIC ARTS INC.") }) })
.file.extensions <- list(clustal = "aln", fasta = c("fas", "fasta", "fa"), fastq = c("fq", "fastq"), newick = c("nwk", "newick", "tre", "tree"), nexus = c("nex", "nexus"), phylip = "phy") Xplorefiles <- function(from = "HOME", recursive = TRUE, ignore.case = TRUE) { if (from == "HOME") from <- Sys.getenv("HOME") FILES <- list.files(path = from, recursive = recursive, full.names = TRUE) ext <- if (exists(".file.extensions", envir = .PlotPhyloEnv)) get(".file.extensions", envir = .PlotPhyloEnv) else .file.extensions res <- vector("list", length(ext)) names(res) <- names(ext) for (i in seq_along(res)) { e <- paste0("\\.", ext[[i]], "$") if (length(e) > 1) e <- paste(e, collapse = "|") x <- grep(e, FILES, ignore.case = ignore.case, value = TRUE) res[[i]] <- data.frame(File = x, Size = file.size(x), stringsAsFactors = FALSE) } res } editFileExtensions <- function() { foo <- function(x) { n <- length(x) if (n < m) x[(n + 1):m] <- NA x } res <- if (exists(".file.extensions", envir = .PlotPhyloEnv)) get(".file.extensions", envir = .PlotPhyloEnv) else .file.extensions m <- max(lengths(res, FALSE)) res <- lapply(res, foo) res <- as.data.frame(res, stringsAsFactors = FALSE) res <- edit(res) res <- lapply(res, function(x) x[!is.na(x)]) assign(".file.extensions", res, envir = .PlotPhyloEnv) } bydir <- function(x) { nofile <- which(sapply(x, nrow) == 0) if (length(nofile)) x <- x[-nofile] if (!length(x)) { cat("No file\n") return(invisible(NULL)) } for (i in seq_along(x)) x[[i]]$Type <- names(x)[i] x <- do.call(rbind, x) x <- x[order(x$File), ] SPLIT <- strsplit(x$File, "/") LL <- lengths(SPLIT) foo <- function(i, PATH) { K <- grep(paste0("^", PATH, "/"), x$File) sel <- intersect(K, which(LL == i + 1L)) if (length(sel)) { y <- x[sel, ] y$File <- gsub(".*/", "", y$File) cat("\n", PATH, "/\n", sep = "") print(y, row.names = FALSE) } if (length(sel) < length(K)) { d <- setdiff(K, sel) subdir <- unlist(lapply(SPLIT[d], "[", i + 1L)) for (z in unique(subdir)) foo(i + 1L, paste(PATH, z, sep = "/")) } } top <- unlist(lapply(SPLIT, "[", 1L)) for (z in unique(top)) foo(1L, z) } Xplor <- function(from = "HOME") { ext <- if (exists(".file.extensions", envir = .PlotPhyloEnv)) get(".file.extensions", envir = .PlotPhyloEnv) else .file.extensions OUT <- paste0(tempfile(), ".html") mycat <- function(...) cat(..., sep = "", file = OUT, append = TRUE) FILES <- Xplorefiles(from = from) filetypes <- names(FILES) NR <- sapply(FILES, nrow) mycat('<html><title>Files Sorted by Type</title></head>') mycat('<h2>File types searched:</h2>') mycat('<TABLE border=0>') mycat('<tr><th align="center"> Type </th><th align="center"> Number of files </th><th align="center"> Extensions* </th></tr>') for (type in filetypes) { mycat('<tr><td><a href= '</td><td align="center">', paste(paste0(".", ext[[type]]), collapse = " "), '</td></tr>') } mycat('</TABLE>') mycat('<br>*Case-independent<br>To change the files extensions, type in R: <font face = "courier">editFileExtensions()</font><br>') if (all(NR == 0)) { browseURL(OUT) return(invisible(NULL)) } OUTBYDIR <- paste0(tempfile(), ".html") sink(OUTBYDIR) cat('<html><title>Files Sorted by Directory</title></head>') .bydir.html(FILES) cat('</html>') sink(NULL) mycat('<br><a target="blank" href=', OUTBYDIR, '><h2>Files sorted by directory (in new tab)</h2></a><br>') for (type in filetypes) { nr <- NR[type] mycat('<a name=', type, '></a><h1>', toupper(type), '</h1>') if (nr == 0) { mycat('no file of this type') next } DF <- FILES[[type]] mycat('<TABLE border=1>') mycat('<tr><th> File name </th><th align="center"> Size (KB) </th></tr>') for (i in 1:nr) mycat('<tr><td><a href="file://', DF[i, 1], '">', DF[i, 1], '</a></td><td align="right">', round(DF[i, 2]/1000, 1), '</td></tr>') mycat('</TABLE>') } mycat('</html>') browseURL(OUT) } .bydir.html <- function(x) { nofile <- which(sapply(x, nrow) == 0) if (length(nofile)) x <- x[-nofile] if (!length(x)) return(NULL) for (i in seq_along(x)) x[[i]]$Type <- names(x)[i] x <- do.call(rbind, x) x <- x[order(x$File), ] SPLIT <- strsplit(x$File, "/") LL <- lengths(SPLIT) foo <- function(i, PATH) { K <- grep(paste0("^", PATH, "/"), x$File) sel <- intersect(K, which(LL == i + 1L)) if (length(sel)) { y <- x[sel, ] y$File <- gsub(".*/", "", y$File) cat('<h2><a href="file://', PATH, '">', PATH, '/</a></h2>', sep = "") cat('<TABLE border=1>') cat('<tr><th> File </th><th align="center"> Size (KB) </th><th align="center"> Type </th></tr>') for (i in 1:nrow(y)) cat('<tr><td><a href="file://', PATH, '/', y[i, 1], '">', y[i, 1], '</a></td><td align="right">', round(y[i, 2]/1000, 1), '</td><td align="right">', y[i, 3], '</td></tr>', sep = "") cat('</TABLE><br>') } if (length(sel) < length(K)) { d <- setdiff(K, sel) subdir <- unlist(lapply(SPLIT[d], "[", i + 1L)) for (z in unique(subdir)) foo(i + 1L, paste(PATH, z, sep = "/")) } } top <- unlist(lapply(SPLIT, "[", 1L)) for (z in unique(top)) foo(1L, z) }
save.session <- function(object,folder){ curr <- getwd() dir.create(folder) setwd(folder) save(object,file="GENOME") if([email protected]){ if(length([email protected])>0){ bial <- [email protected][[1]] ffsave(bial,file="bial_1") }else{ for(xx in 1:length([email protected]@biallelic.matrix)){ file.name <- paste("bial_",xx,sep="") bial <- [email protected]@biallelic.matrix[[xx]] ffsave(bial,file=file.name) if([email protected]){ if(is([email protected]@Coding.matrix[[xx]])[1]=="ff_matrix"){ file.name <- paste("Coding.matrix_",xx,sep="") Coding.matrix <- [email protected]@Coding.matrix[[xx]] ffsave(Coding.matrix,file=file.name) } if(is([email protected]@Gene.matrix[[xx]])[1]=="ff_matrix"){ file.name <- paste("Gene.matrix_",xx,sep="") Gene.matrix <- [email protected]@Gene.matrix[[xx]] ffsave(Gene.matrix,file=file.name) } if(is([email protected]@Exon.matrix[[xx]])[1]=="ff_matrix"){ file.name <- paste("Exon.matrix_",xx,sep="") Exon.matrix <- [email protected]@Exon.matrix[[xx]] ffsave(Exon.matrix,file=file.name) } if(is([email protected]@Intron.matrix[[xx]])[1]=="ff_matrix"){ file.name <- paste("Intron.matrix_",xx,sep="") Intron.matrix <- [email protected]@Intron.matrix[[xx]] ffsave(Intron.matrix,file=file.name) } if(is([email protected]@UTR.matrix[[xx]])[1]=="ff_matrix"){ file.name <- paste("UTR.matrix_",xx,sep="") UTR.matrix <- [email protected]@UTR.matrix[[xx]] ffsave(UTR.matrix,file=file.name) } } } } } setwd(curr) } load.session <- function(folder){ curr <- getwd() setwd(folder) name <- load("GENOME") object <- get(name[1]) change <- [email protected] if([email protected]){ if(length([email protected])>0){ ffload("bial_1",overwrite=TRUE) vcv <- get("bial") [email protected][[1]] <- vcv }else{ for(xx in 1:length([email protected]@biallelic.matrix)){ file.name <- paste("bial_",xx,sep="") ffload(file.name) ff.object <- get("bial") [email protected][[xx]] <- ff.object open([email protected][[xx]]) if([email protected]){ file.name <- paste("Coding.matrix_",xx,sep="") if(file.exists(paste(file.name,".RData",sep=""))){ ffload(file.name) ff.object <- get("Coding.matrix") [email protected][[xx]] <- ff.object open([email protected][[xx]]) } file.name <- paste("Gene.matrix_",xx,sep="") if(file.exists(paste(file.name,".RData",sep=""))){ ffload(file.name) ff.object <- get("Gene.matrix") [email protected][[xx]] <- ff.object open([email protected][[xx]]) } file.name <- paste("Exon.matrix_",xx,sep="") if(file.exists(paste(file.name,".RData",sep=""))){ ffload(file.name) ff.object <- get("Exon.matrix") [email protected][[xx]] <- ff.object open([email protected][[xx]]) } file.name <- paste("Intron.matrix_",xx,sep="") if(file.exists(paste(file.name,".RData",sep=""))){ ffload(file.name) ff.object <- get("Intron.matrix") [email protected][[xx]] <- ff.object open([email protected][[xx]]) } file.name <- paste("UTR.matrix_",xx,sep="") if(file.exists(paste(file.name,".RData",sep=""))){ ffload(file.name) ff.object <- get("UTR.matrix") [email protected][[xx]] <- ff.object open([email protected][[xx]]) } } } } } [email protected] <- change setwd(curr) assign(folder,object,envir=parent.frame()) }
require(OpenMx) data("myRegDataRaw", package="OpenMx") MultipleDataRaw<-myRegData[,c("z","y","x")] selVars <- c("x","y","z") multiRegModel<-mxModel("Multiple Regression Matrix Specification", mxData(MultipleDataRaw,type="raw"), mxMatrix("Full", nrow=3, ncol=3, values=c(0, 0, 0, 1, 0, 1, 0, 0, 0), free= c(F, F, F, T, F, T, F, F, F), labels=c(NA, NA, NA, "betax", NA,"betaz", NA, NA, NA), byrow=TRUE, name = "A" ), mxMatrix("Symm", nrow=3, ncol=3, values=c(1, 0, .5, 0, 1, 0, .5, 0, 1), free= c(T, F, T, F, T, F, T, F, T), labels=c("varx", NA, "covxz", NA, "residual", NA, "covxz", NA, "varz"), byrow=TRUE, name="S" ), mxMatrix("Iden", nrow=3, ncol=3, dimnames = list(selVars,selVars), name="F" ), mxMatrix("Full", nrow=1, ncol=3, values=0, free =T, labels=c("meanx","beta0","meanz"), dimnames = list(NULL, selVars), name="M" ), mxFitFunctionML(),mxExpectationRAM("A","S","F","M") ) multiRegFit<-mxRun(multiRegModel) summary(multiRegFit) omxCheckCloseEnough(multiRegFit$output$estimate[["beta0"]], 1.6332, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["betax"]], 0.4246, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["betaz"]], 0.2260, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["residual"]], 0.6267, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["varx"]], 1.1053, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["varz"]], 0.8275, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["covxz"]], 0.2862, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["meanx"]], 0.0542, 0.001) omxCheckCloseEnough(multiRegFit$output$estimate[["meanz"]], 4.0611, 0.001)
context("test-statement") test_that("creation", { s <- statement(quote(cl <- theta[1]*exp(eta[1])), quote(v <- theta[2])) expect_s3_class(s, "assemblerr_statement") expect_length(s, 2) }) test_that("creation from character", { expect_equal( statement("cl <- theta"), statement(quote(cl <- theta)) ) index <- 5 expect_equal( statement("cl <- theta[{index}]"), statement(quote(cl <- theta[5])) ) }) test_that("creation with quoting works", { a <- 10 s <- statement(bquote(cl <- theta[.(a)]*exp(eta[.(a)]))) expect_equal(s, statement(quote(cl <- theta[10]*exp(eta[10])))) }) test_that("conversion from declaration",{ d <- declaration(cl~theta[1]*exp(eta[1]), v ~ theta[2], ~exp(eta[1])) s <- as_statement(d) expect_equal(s[1], statement(quote(cl <- theta[1]*exp(eta[1])))) expect_equal(s[2], statement(quote(v <- theta[2]))) expect_equal(s[3], statement(quote(exp(eta[1])))) }) test_that("code rendering", { s <- statement( quote(cl <- theta[1]*exp(eta[1])), quote(v <- theta[2]) ) expect_equal(render_component(s), "CL = THETA(1) * EXP(ETA(1))\nV = THETA(2)") })
changeMissings <- function(GADSdat, varName, value, missings) { UseMethod("changeMissings") } changeMissings.GADSdat <- function(GADSdat, varName, value, missings) { checkMissingsInput(varName = varName, value = value, missings = missings, labels = GADSdat$labels) changeTable <- getChangeMeta(GADSdat, level = "value") existing_values <- value[value %in% changeTable[changeTable$varName == varName, "value"]] existing_missings <- missings[value %in% changeTable[changeTable$varName == varName, "value"]] new_values <- value[!value %in% changeTable[changeTable$varName == varName, "value"]] new_missings <- missings[!value %in% changeTable[changeTable$varName == varName, "value"]] for(i in seq_along(existing_values)) { changeTable[changeTable$varName == varName & changeTable$value == value[i], "value_new"] <- changeTable[changeTable$varName == varName & changeTable$value == value[i], "value"] changeTable[changeTable$varName == varName & changeTable$value == value[i], "valLabel_new"] <- changeTable[changeTable$varName == varName & changeTable$value == value[i], "valLabel"] changeTable[changeTable$varName == varName & changeTable$value == value[i], "missings_new"] <- missings[i] } for(i in seq_along(new_values)) { change_row <- changeTable[changeTable$varName == varName, ][1, ] if(i == 1 && nrow(changeTable[changeTable$varName == varName, ]) == 1) { changeTable <- changeTable[changeTable$varName != varName, ] } change_row[, "value"] <- NA change_row[, "value_new"] <- new_values[i] change_row[, "missings_new"] <- new_missings[i] changeTable <- rbind(changeTable, change_row) } applyChangeMeta(GADSdat, changeTable = changeTable) } changeMissings.all_GADSdat <- function(GADSdat, varName, value, missings) { stop("This method has not been implemented yet") } checkMissingsInput <- function(varName, value, missings, labels) { if(!is.character(varName) || !length(varName) == 1) stop("'varName' is not a character vector of length 1.") if(!varName %in% labels$varName) stop("'varName' is not a variable name in the GADSdat.") if(length(value) != length(missings)) stop("'value' and 'missings' are not of identical length.", call. = FALSE) if(!all(missings %in% c("miss", "valid"))) stop("All values in 'missings' need to be 'miss' or 'valid'.") return() }
GLMMMiRKAT <- function(y, X = NULL, Ks, id = NULL, time.pt = NULL, model, method = "perm" , slope = FALSE, omnibus = "perm", nperm = 5000){ om <- substring(tolower(omnibus), 1, 1) if (is.null(time.pt) & slope) { stop("time.pt is required for the random slope model") } if(model != "gaussian" & method == "davies"){ stop("Davies is only available for Gaussian traits") } if (model == "gaussian" & method =="davies"){ if (om == "p") { warning("Permutation omnibus test not available with Davies P-values. Defaulting to Cauchy combination test.") } y <- scale(y) if (is.null(X)) { if (!is.null(time.pt) & slope) { fit <- lmer(y ~ (time.pt | id)) } else { fit <- lmer(y ~ (1 | id)) } } else { if (!is.null(time.pt) & slope) { fit <- lmer(y ~ (time.pt | id) + X) } else { fit <- lmer(y ~ (1 | id) + X) } } out <- CSKAT(fit, Ks=Ks) return(out) } if (is.matrix(Ks)) { Ks <- list(Ks) no.omnibus <- TRUE } else { no.omnibus <- FALSE } if (is.null(time.pt)) { id <- as.character(id) ind <- order(id) id <- id[ind] y <- y[ind] if (is.matrix(X)|is.data.frame(X)) { X <- as.matrix(X)[ind, ] } else { X <- X[ind] } for (i in 1:length(Ks)) { Ks[[i]] <- Ks[[i]][ind, ind] } } else { ind <- order(as.character(time.pt)) id <- as.character(id) id <- id[ind] y <- y[ind] if (is.matrix(X)|is.data.frame(X)) X <- as.matrix(X)[ind, ] else X <- X[ind] time.pt <- time.pt[ind] for (i in 1:length(Ks)) { Ks[[i]] <- Ks[[i]][ind, ind] } ind <- order(id) id <- id[ind] y <- y[ind] if (is.matrix(X)|is.data.frame(X)) X <- as.matrix(X)[ind, ] else X <- X[ind] time.pt <- time.pt[ind] for (i in 1:length(Ks)) { Ks[[i]] <- Ks[[i]][ind, ind] } } if (model == "gaussian") { y <- scale(y) if (is.null(X)) { if (!is.null(time.pt) & slope) { fit <- lmer(y ~ (time.pt | id)) } else { fit <- lmer(y ~ (1 | id)) } } else { if (!is.null(time.pt) & slope) { fit <- lmer(y ~ (time.pt | id) + X) } else { fit <- lmer(y ~ (1 | id) + X) } } } else { if (is.null(X)) { if (!is.null(time.pt) & slope) { fit <- glmer(y ~ (time.pt | id), family = model) } else { fit <- glmer(y ~ (1 | id), family = model) } } else { if (!is.null(time.pt) & slope) { fit <- glmer(y ~ (time.pt | id) + X, family = model) } else { fit <- glmer(y ~ (1 | id) + X, family = model) } } } fe <- as.numeric(getME(fit, "X") %*% getME(fit, "fixef")) re <- as.numeric(getME(fit, "Z") %*% getME(fit, "b")) if (model == "gaussian") { mu <- fe + re inv.de.mu <- diag(length(y)) } if (model == "binomial") { mu <- exp(fe + re)/(1 + exp(fe + re)) inv.de.mu <- diag(as.numeric(mu * (1 - mu))) } if (model == "poisson") { mu <- exp(fe + re) inv.de.mu <- diag(as.numeric(mu)) } y.star <- as.numeric(fe + re + ginv(inv.de.mu) %*% (y - mu)) r <- y.star - fe r.X <- as.matrix((getME(fit, "Z") %*% Matrix::crossprod(getME(fit, "Lambdat")) %*% getME(fit, "Zt"))) if (model == "gaussian") { e.var <- diag(rep(var(mu), length(y))) } if (model == "binomial") { e.var <- diag(rep(1, length(y))) } if (model == "poisson") { e.var <- diag(rep(1, length(y))) } v.X <- r.X + e.var inv.vX <- ginv(v.X) r.s <- list() if (!slope) { id.time.pt <- id p.ind <- as.matrix(getPermuteMatrix(nperm, length(r), strata = id.time.pt)) clust.sizes <- as.numeric(names(table(table(id.time.pt)))) block.r.ids <- list() for (l in 1:nperm) { block.r.id <- list() for (j in 1:length(clust.sizes)) { block.r.id.clust <- list() u.id.clust <- names(which(table(id.time.pt) == clust.sizes[j])) r.u.id.clust <- u.id.clust[shuffle(length(u.id.clust))] for (k in 1:length(u.id.clust)) { block.r.id.clust[[k]] <- which(id.time.pt == r.u.id.clust[k]) } block.r.id[[j]] <- unlist(block.r.id.clust) } unlist.block.r.id <- rep(NA, length(id.time.pt)) for (j in 1:length(clust.sizes)) { unlist.block.r.id[id.time.pt %in% names(which(table(id.time.pt) == clust.sizes[j]))] <- block.r.id[[j]] } block.r.ids[[l]] <- unlist.block.r.id } for (l in 1:nperm) { p.ind[l, ] <- p.ind[l, block.r.ids[[l]]] } for (j in 1:nperm) { r.s[[j]] <- r[p.ind[j, ]] } } if (!is.null(time.pt) & slope) { id.names <- names(table(id)) id.time.pt <- rep(NA, length(id)) for (j in 1:length(id.names)) { ind <- which(id == id.names[j]) id.time.pt[ind] <- paste(c(id.names[j], as.character(time.pt[ind])), collapse = ".") } noid.time.pt <- rep(NA, length(id)) for (j in 1:length(id.names)) { ind <- which(id == id.names[j]) noid.time.pt[ind] <- paste(as.character(time.pt[ind]), collapse = ".") } ex.clust <- names(table(noid.time.pt)) ids <- rep(NA, length(id)) for (j in 1:length(id.names)) { ind <- which(id == id.names[j]) ids[ind] <- id.names[j] } if (length(names(which(table(noid.time.pt)==1))) != 0) { warn.ids <- unique(ids[noid.time.pt %in% names(which(table(noid.time.pt)==1))]) } if (length(warn.ids) == 1) warning("The cluster id (", warn.ids, ") is a silent block which is not exchangeable with any other blocks. It did not contribute to the analysis.") if (length(warn.ids) > 1) warning("The cluster ids (", paste(warn.ids, collapse=", "), ") are silent blocks which are not exchangeable with any other blocks. They did not contribute to the analysis.") block.r.ids <- list() for (l in 1:nperm) { block.r.id <- list() for (j in 1:length(ex.clust)) { block.r.id.clust <- list() u.id.clust <- unique(id.time.pt[which(noid.time.pt == ex.clust[j])]) r.u.id.clust <- u.id.clust[shuffle(length(u.id.clust))] for (k in 1:length(u.id.clust)) { block.r.id.clust[[k]] <- which(id.time.pt == r.u.id.clust[k]) } block.r.id[[j]] <- unlist(block.r.id.clust) } unlist.block.r.id <- rep(NA, length(id.time.pt)) for (j in 1:length(ex.clust)) { unlist.block.r.id[id.time.pt %in% unique(id.time.pt[which(noid.time.pt == ex.clust[j])])] <- block.r.id[[j]] } block.r.ids[[l]] <- unlist.block.r.id } for (j in 1:nperm) { r.s[[j]] <- r[block.r.ids[[j]]] } } Qs <- rep(NA, length(Ks)) for (j in 1:length(Ks)) { Qs[j] <- (t(r) %*% inv.vX %*% Ks[[j]] %*% inv.vX %*% r)/(t(r) %*% inv.vX %*% r) } Q0s <- list() for (j in 1:length(Ks)) { Q0s.inv <- rep(NA, nperm) for (k in 1:nperm) { Q0s.inv[k] <- (t(r.s[[k]]) %*% inv.vX %*% Ks[[j]] %*% inv.vX %*% r.s[[k]])/(t(r.s[[k]]) %*% inv.vX %*% r.s[[k]]) } Q0s[[j]] <- Q0s.inv } pvs <- rep(NA, length(Ks)) for (j in 1:length(Ks)) { pvs[j] <- (length(which(Q0s[[j]] > Qs[[j]])) + 1)/(nperm + 1) } if (!no.omnibus) { if (om == "p") { T <- min(pvs) T0 <- rep(NA, nperm) for (l in 1:nperm) { T0.s.n <- list() for (m in 1:length(Ks)) { T0.s.n[[m]] <- Q0s[[m]][-l] } a.Ts <- unlist(lapply(Ks, function(x) return((t(r.s[[l]]) %*% inv.vX %*% x %*% inv.vX %*% r.s[[l]])/(t(r.s[[l]]) %*% inv.vX %*% r.s[[l]])))) a.pvs <- unlist(mapply(function(x, y) (length(which(x > y)) + 1)/nperm, T0.s.n, a.Ts)) T0[l] <- min(a.pvs) } pv.opt <- (length(which(T0 < T)) + 1)/(nperm + 1) } else if (om == "c") { cauchy.t <- sum(tan((0.5 - pvs)*pi))/length(pvs) pv.opt <- 1 - pcauchy(cauchy.t) } else { stop("I don't know that omnibus option. Please choose 'permutation' or 'Cauchy'.") } } names(pvs) <- names(Ks) if (no.omnibus) { return(list(p_values = pvs)) } return(list(p_values = pvs, omnibus_p = pv.opt)) }
Iteration_GMR <- function(num, full_id, G_all, M_all, R_all, evectors1, evectors2, evectors3, evals1, evals2, evals3, pskat1, pskat2, pskat3, acc, method) { p1<-p2<-p3<-vector() for (k in 1:num) { r_star = rnorm(dim(full_id)[1], 0, 1) r_star = cbind(full_id, r_star) G_all_star = merge(r_star, G_all) G_all_star = G_all_star[order(G_all_star$order),] M_all_star = merge(r_star, M_all) M_all_star = M_all_star[order(M_all_star$order),] R_all_star = merge(r_star, R_all) R_all_star = R_all_star[order(R_all_star$order),] r_star1 = t(evectors1) %*% G_all_star$r_star r_star2 = t(evectors2) %*% M_all_star$r_star r_star3 = t(evectors3) %*% R_all_star$r_star if (length(evals1)==1) { Q1_star = r_star1 * evals1 * r_star1 } else { Q1_star = t(r_star1) %*% diag(evals1) %*% r_star1 } if (length(evals2)==1) { Q2_star = r_star2 * evals2 * r_star2 } else { Q2_star = t(r_star2) %*% diag(evals2) %*% r_star2 } if (length(evals3)==1) { Q3_star = r_star3 * evals3 * r_star3 } else { Q3_star = t(r_star3) %*% diag(evals3) %*% r_star3 } if (method=="davies"){ tmpout1_star<-davies(Q1_star, evals1, acc=acc) tmpout2_star<-davies(Q2_star, evals2, acc=acc) tmpout3_star<-davies(Q3_star, evals3, acc=acc) p1[k]<-tmpout1_star$Qq p2[k]<-tmpout2_star$Qq p3[k]<-tmpout3_star$Qq } else if (method=="kuonen"){ p1[k]<-pchisqsum(Q1_star,rep(1,length(evals1)),evals1,lower.tail=F,method="sad") p2[k]<-pchisqsum(Q2_star,rep(1,length(evals2)),evals2,lower.tail=F,method="sad") p3[k]<-pchisqsum(Q3_star,rep(1,length(evals3)),evals3,lower.tail=F,method="sad") } } p1[p1==0|p1<0] = 1e-4 p1[p1>1] = 1 p2[p2==0|p2<0] = 1e-4 p2[p2>1] = 1 p3[p3==0|p3<0] = 1e-4 p3[p3>1] = 1 p01_single = pskat1 p02_single = pskat2 p03_single = pskat3 T01 = -2*(log(pskat1) + log(pskat2)) T02 = -2*(log(pskat1) + log(pskat3)) T03 = -2*(log(pskat2) + log(pskat3)) T0tri = -2*(log(pskat1) + log(pskat2) + log(pskat3)) E_T01 = E_T02 = E_T03 = 2*2 E_T0tri = 2*3 V_T01 = 2*2*2 + 2*cov(-2*log(p1),-2*log(p2)) V_T02 = 2*2*2 + 2*cov(-2*log(p1),-2*log(p3)) V_T03 = 2*2*2 + 2*cov(-2*log(p2),-2*log(p3)) V_T0tri = 2*2*3 + 2*cov(-2*log(p1),-2*log(p2)) + 2*cov(-2*log(p1),-2*log(p3)) + 2*cov(-2*log(p2),-2*log(p3)) v01 = 2*E_T01**2/V_T01 v02 = 2*E_T02**2/V_T02 v03 = 2*E_T03**2/V_T03 v0tri = 2*E_T0tri**2/V_T0tri c01 = v01/E_T01 c02 = v03/E_T02 c03 = v02/E_T03 c0tri = v0tri/E_T0tri p01_dual = pchisq( c01*T01, df=v01, lower.tail=FALSE) p02_dual = pchisq( c02*T02, df=v02, lower.tail=FALSE) p03_dual = pchisq( c03*T03, df=v03, lower.tail=FALSE) p0_tri = pchisq( c0tri*T0tri, df=v0tri, lower.tail=FALSE) min0 = min(c(p01_single,p02_single,p03_single,p01_dual,p02_dual,p03_dual,p0_tri)) p1_single = p1 p2_single = p2 p3_single = p3 T1 = -2*(log(p1) + log(p2)) T2 = -2*(log(p1) + log(p3)) T3 = -2*(log(p2) + log(p3)) Ttri = -2*(log(p1) + log(p2) + log(p3)) E_T1 = E_T2 = E_T3 = 2*2 E_Ttri = 2*3 V_T1 = 2*2*2 + 2*cov(-2*log(p1),-2*log(p2)) V_T2 = 2*2*2 + 2*cov(-2*log(p1),-2*log(p3)) V_T3 = 2*2*2 + 2*cov(-2*log(p2),-2*log(p3)) V_Ttri = 2*2*3 + 2*cov(-2*log(p1),-2*log(p2)) + 2*cov(-2*log(p1),-2*log(p3)) + 2*cov(-2*log(p2),-2*log(p3)) v1 = 2*E_T1**2/V_T1 v2 = 2*E_T2**2/V_T2 v3 = 2*E_T3**2/V_T3 vtri = 2*E_Ttri**2/V_Ttri c1 = v1/E_T1 c2 = v3/E_T2 c3 = v2/E_T3 ctri = vtri/E_Ttri p1_dual = pchisq( c1*T1, df=v1, lower.tail=FALSE) p2_dual = pchisq( c2*T2, df=v2, lower.tail=FALSE) p3_dual = pchisq( c3*T3, df=v3, lower.tail=FALSE) p_tri = pchisq( ctri*Ttri, df=vtri, lower.tail=FALSE) min_pert = apply(cbind(p1_single,p2_single,p3_single,p1_dual,p2_dual,p3_dual,p_tri),1,min) pval_pert = sum(min_pert<min0)/(length(min_pert)+1) if (is.na(pval_pert)) pval_pert=1 if (is.na(p0_tri)) p0_tri=1 c(pval_pert, p0_tri, p01_single,p02_single,p03_single) }
GREEK <- intToUtf8(c(913:929, 931:937), multiple = TRUE) greek <- intToUtf8(c(945:961, 963:969), multiple = TRUE) next_label <- function(figure) { n <- length(figure$grobs) / 2 + 1L panelLabelType <- attr(figure, "multipanelfigure.panelLabelType") switch( panelLabelType, "upper-alpha" = LETTERS[n], "lower-alpha" = letters[n], "decimal" = as.character(n), "upper-roman" = as.roman(n), "lower-roman" = tolower(as.roman(n)), "upper-greek" = GREEK[n], "lower-greek" = greek[n], "none" = "", stop("The label type ", panelLabelType, " is not supported.") ) }
generate_feature_network <- function( model ) { model <- .add_timing(model, "3_feature_network", "checks") if (model$verbose) cat("Sampling feature network from real network\n") assert_that( model %has_names% c("feature_info", "feature_network"), msg = "Execute generate_tf_network() before executing generate_feature_network()" ) model <- .add_timing(model, "3_feature_network", "process realnet") realnet <- model$feature_network_params$realnet if (is.character(realnet)) { realnet <- .feature_network_fetch_realnet(model) } assert_that( dynutils::is_sparse(realnet), !is.null(rownames(realnet)), !is.null(colnames(realnet)) ) assert_that( nrow(model$feature_info) <= nrow(realnet), msg = paste0("Number of regulators in realnet (", nrow(realnet), ") is not large enough (>= ", nrow(model$feature_info), ")") ) sample_tfs_per <- min(model$feature_network_params$target_resampling, model$numbers$num_targets) sample_hks_per <- min(model$feature_network_params$target_resampling, model$numbers$num_hks) ncol_at_least <- model$numbers$num_tfs + max(sample_tfs_per, sample_hks_per) assert_that( ncol(realnet) >= ncol_at_least, msg = paste0( "Number of genes in realnet (", ncol(realnet), ") is not large enough (>= ", ncol_at_least, "). ", "Choose a larger realnet or make use of the `feature_network_params$target_resampling` parameter." ) ) model <- .add_timing(model, "3_feature_network", "sample target network") if (sample_tfs_per > 0) { num_target_start <- seq(1, model$numbers$num_targets, by = sample_tfs_per) num_target_stop <- c((num_target_start - 1) %>% tail(-1), model$numbers$num_targets) downstreams <- pmap(lst(start = num_target_start, stop = num_target_stop), function(start, stop) { .feature_network_sample_downstream(model, realnet, num_targets = stop - start + 1, target_index_offset = start - 1) }) target_info <- map_df(downstreams, "target_info") target_network <- map_df(downstreams, "target_network") } else { target_info <- NULL target_network <- NULL } model <- .add_timing(model, "3_feature_network", "sample housekeeping network") if (sample_hks_per > 0) { num_hk_start <- seq(1, model$numbers$num_hks, by = sample_hks_per) num_hk_stop <- c((num_hk_start - 1) %>% tail(-1), model$numbers$num_hks) housekeepings <- pmap(lst(start = num_hk_start, stop = num_hk_stop), function(start, stop) { .feature_network_sample_housekeeping(model, realnet, num_hks = stop - start + 1, hk_index_offset = start - 1) }) hk_info <- map_df(housekeepings, "hk_info") hk_network <- map_df(housekeepings, "hk_network") } else { hk_info <- NULL hk_network <- NULL } model <- .add_timing(model, "3_feature_network", "return output") model$feature_info <- bind_rows( model$feature_info, target_info, hk_info ) model$feature_network <- bind_rows( model$feature_network, target_network, hk_network ) model %>% .add_timing("3_feature_network", "end") } feature_network_default <- function( realnet = NULL, damping = 0.01, target_resampling = Inf, max_in_degree = 5 ) { realnets <- NULL if (is.null(realnet)) { data(realnets, package = "dyngen", envir = environment()) realnet <- sample(realnets$name, 1) } lst( realnet, damping, target_resampling, max_in_degree ) } .feature_network_fetch_realnet <- function(model) { realnets <- NULL realnet <- model$feature_network_params$realnet data(realnets, package = "dyngen", envir = environment()) assert_that(realnet %all_in% realnets$name) realnet_url <- realnets$url[[match(realnet, realnets$name)]] .download_cacheable_file( url = realnet_url, cache_dir = model$download_cache_dir, verbose = model$verbose ) } .feature_network_sample_downstream <- function( model, realnet, num_targets = model$numbers$num_targets, target_index_offset = 0 ) { requireNamespace("igraph") tf_info <- model$feature_info %>% mutate( num_targets = .generate_partitions( num_elements = num_targets, num_groups = n(), min_elements_per_group = 0 ) ) tf_names <- tf_info$feature_id tf_mapper <- set_names(tf_names, sample(rownames(realnet), length(tf_names))) rownames(realnet) <- ifelse(rownames(realnet) %in% names(tf_mapper), tf_mapper[rownames(realnet)], rownames(realnet)) colnames(realnet) <- ifelse(colnames(realnet) %in% names(tf_mapper), tf_mapper[colnames(realnet)], colnames(realnet)) gr <- realnet %>% Matrix::summary() %>% as.data.frame() %>% group_by(.data$j) %>% sample_n(min(n(), sample(seq_len(model$feature_network_params$max_in_degree), 1)), weight = .data$x) %>% ungroup() %>% transmute( i = rownames(realnet)[.data$i], j = colnames(realnet)[.data$j], weight = .data$x ) %>% igraph::graph_from_data_frame(vertices = colnames(realnet)) personalized <- rep(0, ncol(realnet)) %>% set_names(colnames(realnet)) personalized[tf_info$feature_id] <- tf_info$num_targets page_rank <- igraph::page_rank( gr, personalized = personalized, directed = TRUE, weights = igraph::E(gr)$weight, damping = model$feature_network_params$damping ) features_sel <- enframe(page_rank$vector, "feature_id", "score") %>% mutate(score = .data$score + runif(n(), 0, 1e-15)) %>% filter(!.data$feature_id %in% tf_names) %>% sample_n(num_targets, weight = .data$score) %>% pull(.data$feature_id) %>% unique() subgr <- gr %>% igraph::induced_subgraph(c(features_sel, tf_names)) target_regnet <- subgr %>% igraph::as_data_frame() %>% as_tibble() %>% select(.data$from, .data$to) %>% filter(!.data$to %in% tf_names) missing_targets <- setdiff(features_sel, target_regnet$to) if (length(missing_targets) > 0) { deg <- igraph::degree(subgr) new_regs <- sample(names(deg), length(missing_targets), prob = deg, replace = TRUE) target_regnet <- bind_rows( target_regnet, tibble(from = new_regs, to = missing_targets) ) } target_names <- unique(c(target_regnet$from, target_regnet$to)) %>% setdiff(tf_names) target_mapper <- set_names( paste0("Target", seq_along(target_names) + target_index_offset), target_names ) target_regnet <- target_regnet %>% mutate_all(~ ifelse(. %in% names(target_mapper), target_mapper[.], .)) target_info <- tibble( feature_id = unname(target_mapper), is_tf = FALSE, is_hk = FALSE, burn = TRUE ) lst( target_network = target_regnet, target_info = target_info ) } .feature_network_sample_housekeeping <- function( model, realnet, num_hks = model$numbers$num_hks, hk_index_offset = 0 ) { requireNamespace("igraph") gr <- realnet %>% Matrix::summary() %>% as.data.frame() %>% group_by(.data$j) %>% sample_n(min(n(), sample(seq_len(model$feature_network_params$max_in_degree), 1)), weight = .data$x) %>% ungroup() %>% transmute( i = rownames(realnet)[.data$i], j = colnames(realnet)[.data$j], weight = .data$x ) %>% igraph::graph_from_data_frame(vertices = colnames(realnet)) hk_names <- gr %>% igraph::bfs(sample.int(ncol(realnet), 1), neimode = "all") %>% `[[`("order") %>% `[`(seq_len(num_hks)) %>% names() hk_regnet <- gr %>% igraph::induced_subgraph(hk_names) %>% igraph::as_data_frame() %>% as_tibble() %>% select(.data$from, .data$to) %>% filter(.data$from != .data$to) hk_mapper <- set_names( paste0("HK", seq_along(hk_names) + hk_index_offset), hk_names ) hk_regnet <- hk_regnet %>% mutate(from = hk_mapper[.data$from], to = hk_mapper[.data$to]) hk_info <- tibble( feature_id = unname(hk_mapper), is_tf = FALSE, is_hk = TRUE, burn = TRUE ) lst( hk_network = hk_regnet, hk_info = hk_info ) }
library(testthat) library(logging) context("Testing data interactions [test.data.interaction]") test_that("000/getLoggerWithoutInitializingDoesNotCrash", { root_logger <- getLogger("") succeed() }) test_that("001/defaultLoggingLevelIsINFO", { basicConfig() root_logger <- getLogger("") expect <- logging:::loglevels["INFO"] expect_equal(root_logger[["level"]], expect) }) test_that("002/canInitializeTwice", { basicConfig() basicConfig() root_logger <- getLogger("") expect <- logging:::loglevels["INFO"] expect_equal(root_logger[["level"]], expect) }) test_that("003/sameNameMeansSameObject", { basicConfig() root1 <- getLogger("abc") root2 <- getLogger("abc") expect_identical(root1, root2) }) test_that("004/noNameMeansRoot", { root_logger1 <- getLogger("") root_logger2 <- getLogger() expect_identical(root_logger1, root_logger2) }) test_that("500.basicConfigSetsLevelOfHandler", { logReset() basicConfig("DEBUG") root_logger <- getLogger("") expect <- logging:::loglevels["NOTSET"] current <- root_logger$getHandler("basic.stdout")[["level"]] expect_equal(current, expect) logReset() basicConfig("ERROR") root_logger <- getLogger("") expect <- logging:::loglevels["NOTSET"] current <- root_logger$getHandler("basic.stdout")[["level"]] expect_equal(current, expect) }) test_that("canFindLoggingLevels", { expect_equal(logging:::loglevels[["NOTSET"]], 0) expect_equal(logging:::loglevels[["DEBUG"]], 10) expect_equal(logging:::loglevels[["INFO"]], 20) expect_equal(logging:::loglevels[["WARN"]], 30) expect_equal(logging:::loglevels[["ERROR"]], 40) expect_equal(logging:::loglevels[["FATAL"]], 50) }) test_that("fineLevelsAreOrdered", { expect_true(logging:::loglevels[["FINEST"]] < logging:::loglevels[["FINER"]]) expect_true(logging:::loglevels[["FINER"]] < logging:::loglevels[["FINE"]]) expect_true(logging:::loglevels[["FINE"]] < logging:::loglevels[["DEBUG"]]) }) test_that("canSetLoggerLevelByNamedValue", { logReset() basicConfig() setLevel(logging:::loglevels["DEBUG"], "") root_logger <- getLogger("") expect <- logging:::loglevels["DEBUG"] expect_equal(root_logger[["level"]], expect) }) test_that("canSetLoggerLevelByName", { logReset() basicConfig() setLevel("DEBUG", "") root_logger <- getLogger("") expect <- logging:::loglevels["DEBUG"] expect_equal(root_logger[["level"]], expect) }) test_setup <- function(...) { test_env <- new.env(parent = emptyenv()) test_env$logged <- NULL mock_action <- function(msg, handler, ...) { if (length(list(...)) && "dry" %in% names(list(...))) return(TRUE) test_env$logged <- c(test_env$logged, msg) } mock_formatter <- function(record) { msg <- trimws(record$msg) paste(record$levelname, record$logger, msg, sep = ":") } logReset() addHandler(mock_action, formatter = mock_formatter, ...) return(test_env) } test_that("recordIsEmitted/rootToRoot", { env <- test_setup() logfinest("test") logfiner("test") logfine("test") logdebug("test") loginfo("test") logerror("test") expect_equal(length(env$logged), 2) }) test_that("recordIsEmitted/tooDeep", { env <- test_setup(logger = "too.deep") logfinest("test") logfiner("test") logfine("test") logdebug("test") loginfo("test") logerror("test") expect_equal(length(env$logged), 0) }) test_that("recordIsEmitted/unrelated", { env <- test_setup(logger = "too.deep") logdebug("test", logger = "other.branch") loginfo("test", logger = "other.branch") logerror("test", logger = "other.branch") expect_equal(length(env$logged), 0) }) test_that("recordIsEmitted/deepToRoot", { env <- test_setup(logger = "") logdebug("test", logger = "other.branch") loginfo("test", logger = "other.branch") logerror("test", logger = "other.branch") expect_equal(length(env$logged), 2) }) test_that("recordIsEmitted/deepToRoot.DI.dropped", { env <- test_setup(level = "DEBUG", logger = "") setLevel("INFO", "other.branch") logdebug("test", logger = "other.branch") loginfo("test", logger = "other.branch") logerror("test", logger = "other.branch") expect_equal(length(env$logged), 2) }) test_that("recordIsEmitted/deepToRoot.DD.passed", { env <- test_setup(level = "DEBUG", logger = "") setLevel("DEBUG", "other.branch") setLevel("DEBUG", "") logdebug("test", logger = "other.branch") loginfo("test", logger = "other.branch") logerror("test", logger = "other.branch") expect_equal(length(env$logged), 3) }) test_that("formattingRecord/lengthZero", { env <- test_setup(level = "DEBUG", logger = "") loginfo("test '%s'", numeric(0)) expect_equal(env$logged, "INFO::test ''") }) test_that("formattingRecord/lengthOne", { env <- test_setup(level = "DEBUG", logger = "") loginfo("test '%s'", 12) expect_equal(env$logged, "INFO::test '12'") }) test_that("formattingRecord/lengthMore", { env <- test_setup(level = "DEBUG", logger = "") loginfo("test '%s'", c(0, 1, 2)) expect_equal(env$logged, "INFO::test '0,1,2'") }) test_that("formattingRecord/moreArguments", { env <- test_setup(level = "DEBUG", logger = "") loginfo("%s: %d", "name", 123) expect_equal(env$logged, "INFO::name: 123") env$logged <- NULL loginfo("%s: %0.2f", "name", 123.0) expect_equal(env$logged, "INFO::name: 123.00") }) test_that("formattingRecord/moreArguments.lengthMore", { env <- test_setup(level = "DEBUG", logger = "") loginfo("%s '%s'", "name", c(0, 1, 2)) expect_equal(env$logged, "INFO::name '0,1,2'") }) test_that("formattingRecord/strips.whitespace", { env <- test_setup(level = "DEBUG", logger = "") loginfo("a string with trailing whitespace \n") expect_equal(env$logged, "INFO::a string with trailing whitespace") env$logged <- NULL loginfo(" this string has also leading whitespace ") expect_equal(env$logged, "INFO::this string has also leading whitespace") })
bcdc_options <- function() { null_to_na <- function(x) { ifelse(is.null(x), NA, as.numeric(x)) } dplyr::tribble( ~ option, ~ value, ~default, "bcdata.max_geom_pred_size", null_to_na(getOption("bcdata.max_geom_pred_size")), 5E5, "bcdata.chunk_limit", null_to_na(getOption("bcdata.chunk_limit")), 1000, "bcdata.single_download_limit", null_to_na(getOption("bcdata.single_download_limit", default = bcdc_single_download_limit())), 10000 ) } check_chunk_limit <- function(){ chunk_value <- getOption("bcdata.chunk_limit") chunk_limit <- getOption("bcdata.single_download_limit", default = bcdc_single_download_limit()) if (!is.null(chunk_value) && chunk_value >= chunk_limit) { stop(glue::glue("Your chunk value of {chunk_value} exceed the BC Data Catalogue chunk limit of {chunk_limit}"), call. = FALSE) } } bcdc_get_capabilities <- function() { current_xml <- ._bcdataenv_$get_capabilities_xml if (!is.null(current_xml) && inherits(current_xml, "xml_document")) { return(current_xml) } if (has_internet()) { url <- make_url(bcdc_web_service_host(https = FALSE), "geo/pub/ows") cli <- bcdc_http_client(url, auth = FALSE) cc <- try(cli$get(query = list( SERVICE = "WFS", VERSION = "2.0.0", REQUEST = "Getcapabilities" ))) if (inherits(cc, "try-error")) { return(NULL) } cc$raise_for_status() res <- cc$parse("UTF-8") ret <- xml2::read_xml(res) ._bcdataenv_$get_capabilities_xml <- ret return(ret) } invisible(NULL) } bcdc_get_wfs_records <- function() { doc <- bcdc_get_capabilities() if (is.null(doc)) stop("Unable to access wfs record listing", call. = FALSE) features <- xml2::xml_find_all(doc, "./d1:FeatureTypeList/d1:FeatureType") tibble::tibble( whse_name = gsub("^pub:", "", xml2::xml_text(xml2::xml_find_first(features, "./d1:Name"))), title = xml2::xml_text(xml2::xml_find_first(features, "./d1:Title")), cat_url = xml2::xml_attr(xml2::xml_find_first(features, "./d1:MetadataURL"), "href") ) } bcdc_single_download_limit <- function() { doc <- bcdc_get_capabilities() if (is.null(doc)) { message("Unable to access wfs record listing, using default download limit of 10000") return(10000L) } count_default_xpath <- "./ows:OperationsMetadata/ows:Operation[@name='GetFeature']/ows:Constraint[@name='CountDefault']" count_defaults <- xml2::xml_find_first(doc, count_default_xpath) xml2::xml_integer(count_defaults) }
CPMCGLM<-function(formula,family,link,data,varcod,dicho,nb.dicho,categ,nb.categ,boxcox,nboxcox,FP,N=1000,cutpoint) { if(missing(dicho) & missing(nb.dicho) & missing(categ) & missing(nb.categ) & missing(boxcox) & missing(nboxcox) & missing(cutpoint) & missing(FP) ){stop("You need to enter at least one transformation in the function")} if(!missing(dicho) & !missing(nb.dicho))stop("Specify only one argument for the dichotomous transformation ('dicho' or 'nb.dicho')") if(!missing(categ) & !missing(nb.categ))stop("Specify only one argument for the categorical transformation ('categ' or 'nb.categ')") if(!missing(boxcox) & !missing(nboxcox))stop("Specify only one argument for the boxcox transformation ('boxcox' or 'nboxcox')") continuous<-"FALSE" if (missing(boxcox)) { if(!missing(nboxcox)){ if((nboxcox > 5)){stop("The nboxcox argument must not be upper than 5")} if(nboxcox<6){ if (nboxcox==0) {boxcox<-NULL} if (nboxcox==1) {boxcox<-1} if (nboxcox==2) {boxcox<-c(1,0)} if (nboxcox==3) {boxcox<-c(1,0,2)} if (nboxcox==4) {boxcox<-c(1,0,2,0.5)} if (nboxcox==5) {boxcox<-c(1,0,2,0.5,1.5)} } } } if(missing(dicho) & (!missing(nb.dicho))){ dicho<-c((1:nb.dicho)/(nb.dicho+1)) } if(missing(categ) & (!missing(nb.categ))){ categ<-matrix(NA,ncol=nb.categ+1,nrow=nb.categ) for(i in 1:nb.categ) { categ[i,1:(i+1)]<-c(1:(1+i))/(i+2) } } if(missing(categ) & (!missing(dicho))){ quantile<-matrix(NA,ncol=1,nrow=length(dicho)) for( i in 1:length(dicho)) { quantile[i,1]<-dicho[i] } } if(missing(categ) & (missing(dicho))){quantile<-NULL} if(!missing(categ) & (missing(dicho))){quantile<-categ} if(!missing(categ) & (!missing(dicho))){ binc<-matrix(NA,ncol=ncol(categ),nrow=length(dicho)) for( i in 1:length(dicho)) { binc[i,1]<-dicho[i] } quantile<-rbind(binc,categ) } call <- match.call() if(!(family %in% c("binomial","gaussian","poisson"))) stop("This family of distribution is not taken into account in this function") family1<- switch(family, "binomial"=binomial, "gaussian"=gaussian , "poisson"=poisson ) if(missing(data)) stop("Missing data argument.") if(missing(family)) stop("Missing family argument.") if(missing(link)) stop("Missing link argument.") if(missing(varcod)) stop("Missing varcod argument.") if(missing(dicho) & missing(boxcox) & missing(categ) & missing(nb.dicho) & missing(nboxcox) & missing(nb.categ) & missing(cutpoint) & missing(FP)){ stop("No transformation is available") } if(class(formula)!="formula") stop("The argument formula must be a formula.") if(class(data)!="data.frame") stop("The argument must be a data frame.") if(class(varcod)!="character") stop("The argument varcod must be a character.") if(!missing(boxcox)){ if(is.vector(boxcox)=="FALSE") stop("The argument boxcox must be a vector.") } m <- match.call(expand.dots=FALSE) m$family <- m$link <- m$varcod <- m$quantile <- m$FP <- m$dicho <- m$nb.dicho<- m$nb.categ<- m$categ<- m$continuous <- m$boxcox<- m$nboxcox <-m$cutpoint <- m$N <- NULL m[[1]] <- as.name("model.frame") m <- eval(m) NamesY <- all.names(update(formula,"~1"))[2] Y <- as.vector(model.response(model.frame(formula=update(formula,"~1"),data=data))) mat.exp <- if (!is.empty.model(attr(m,"terms")))model.matrix(attr(m,"terms"),m, contrasts) mtt <- model.matrix(attr(m,"terms"),m, contrasts) Nom1 <- attributes(mtt)$dimnames[[2]] type <- paste("factor\\(",varcod,"\\)",sep="") if(length(grep(type,Nom1))!= 0){ stop("The coding variable needs to be continuous") } if(ncol(mat.exp)==1)stop("the dataset must be contain the varcod variable.") mat.exp <- mat.exp[,-1] factor.names <- function(x){ x <- matrix(x,nrow=1) Names <- apply(x,MARGIN=2,FUN=function(x){ if(length(grep("factor",x))!= 0){ pos1 <- grep("\\(",unlist(strsplit(x,split="")))+1 pos2 <- grep("\\)",unlist(strsplit(x,split="")))-1 compris.factor <- substr(x,start=pos1,stop=pos2) after.factor <- substr(x,start=(pos2+2),stop=length(unlist(strsplit(x,split="")))) paste(compris.factor,after.factor,sep=".") }else{ x } } ) return(Names) } if(is.matrix(mat.exp)){ colnames(mat.exp) <-factor.names(colnames(mat.exp)) } if(is.vector(mat.exp)){ Z <- NULL nb <- 0 namesZ <- NULL var.cod <- as.vector(mat.exp) ind.ajust <- 0 } if(!is.vector(mat.exp)){ if(!(varcod %in% colnames(mat.exp)))stop("varcod argument it is not present in the dataset.") ind.ajust <- 1 if(ncol(mat.exp)!=2){ Z <- mat.exp[,-grep(varcod,colnames(mat.exp))] nb <- ncol(Z) namesZ <- NULL names1 <- unlist(colnames(Z)) for(i in 1:nb){ if(i < nb) namesZ <- paste(namesZ,names1[i],"+") else namesZ <- paste(namesZ,colnames(Z)[i]) } }else{ Z <- as.matrix(mat.exp[,-grep(varcod,colnames(mat.exp))]) nb <- 1 namesZ <- NULL names1 <- as.matrix(colnames(mat.exp)) posi<-grep(varcod,names1) namesZ <-names1[-posi,] colnames(Z)<-namesZ } var.cod <- as.vector(mat.exp[,varcod]) } n<-nrow(data) coup<-NULL a <- Codage(data,quantile,var.cod) X3 <- a[[1]] coup2<- a[[2]] b <- Boxcox(boxcox,var.cod) X2<- b[[1]] coup1<- b[[2]] d <- codcut(data,cutpoint,var.cod) X4<- d [[1]] coup4<-d [[2]] e <- PF(FP,var.cod) X5 <- e[[1]] coup5 <- e[[2]] if(continuous=="TRUE"){ X1<-cbind(X3,X4,var.cod,X2) coup3<-1 }else{ X1<-cbind(X3,X4,X2) coup3<-NULL } if( missing(dicho) & missing(nb.dicho) & missing(categ) & missing(nb.categ) & missing(boxcox) & missing(nboxcox) & missing(cutpoint)){ X1ter <- X5 }else{ if(missing(FP)){X1ter <- X1}else{ X1bis <- array(data=NA,c(length(var.cod),ncol(FP),ncol(X1))) for(i in 1:ncol(X1)){X1bis[,1,i] <- X1[,i]} X1ter <- abind(X1bis,X5) } } coup<-c(coup2,coup4,coup3,coup1,coup5) if(ind.ajust==1){ formula1 <-update(formula,paste("~",namesZ)) }else{ formula1 <-update(formula,paste("~",1)) } data <- as.data.frame(cbind(Y,mat.exp)) colnames(data)[1] <- NamesY t.obs<-test.score(formula=formula1,data=data,codage=X1ter,Z=Z,Y=Y,family1=family1,family=family,link1=link,ind.ajust=ind.ajust) pval<-p.val<-NULL if(missing(FP)){nbtransf1 <- ncol(X1ter) }else{ nbtransf1 <- dim(X1ter)[3] } for (i in 1:nbtransf1){ pval[i]<-(1-pchisq(t.obs[i],coup[i])) p.val[i]<- min(p.val[i-1],pval[i]) } if(sum(is.na(p.val))!=0){stop("At least one of the coding, it isn't adapt for the model specification")} pval.exact1<-pval.bonf1<-pval.naive1<-NULL control<-rep(1,nbtransf1) if(all.equal(coup,control)==TRUE){ pval.exact1<-test.liquet(formula=formula1,data=data,codage=X1ter,Z=Z,Y=Y,family=family,link1=link,family1=family1)} else {pval.exact1<-"Correction not available for these codings"} Y1<-matrix(ncol=N,nrow=n) tboot1<-matrix(nrow=N,ncol=nbtransf1) alphaboot<-NULL alphapermut<-NULL tpermut1<-matrix(nrow=N,ncol=nbtransf1) link0 <- link beta<-glm(formula1,family=family1(link0),data)$coeff res<-glm(formula1,family=family1(link0),data)$res design <- cbind(rep(1,n),Z) param<- switch(link, "logit"= exp(design%*%beta)/(1+exp(design%*%beta)), "probit"= pnorm(design%*%beta), "log"=exp(design%*%beta), "identity"=(design%*%beta) ) tboot<-matrix(ncol=nbtransf1,nrow=N) pval.boot<-matrix(ncol=nbtransf1,nrow=N) progress_bar_tk <- create_progress_bar (title="step 1 :Parametric Bootstrap resampling","tk") progress_bar_tk $ init (N) for (j in 1:N){ progress_bar_tk $ step () Y1[,j]<- switch(family, "gaussian"= rnorm(n,mean=mean(param),sd=sd(res)) , "binomial"= rbinom(n,1,prob=param) , "poisson"= rpois(n,mean(param)), ) if(ind.ajust==1){ f1<-paste("~",namesZ) }else{ f1<-"~1" } tboot[j,]<-tmultboot(f1,data,Y1=Y1[,j],Z,X1ter,family1,family=family,link1=link) for (i in 1:nbtransf1){ pval.boot[j,i]<-(1-pchisq(tboot[j,i],coup[i])) } } cat("\n") progress_bar_tk $ term () tpermut<-matrix(ncol=nbtransf1,nrow=N) pval.permut<-matrix(ncol=nbtransf1,nrow=N) progress_bar_tk <- create_progress_bar (title="step 2 : Permutation resampling","tk") progress_bar_tk $ init (N) for (k in 1:N){ data1<-NULL progress_bar_tk $ step () ind.permut <- permut(length(Y)) if(ind.ajust==1){ if(ncol(Z)==1) { Z11<-as.matrix(Z[ind.permut,]) colnames(Z11)<-namesZ formula2 <-formula(paste("Y","~",namesZ)) data.permut <- data.frame(Y=Y[ind.permut],varcod=var.cod,Z11) tpermut[k,]<-test.score(formula=formula2,data=data.permut,codage=X1ter,Z=Z11,Y=Y[ind.permut],family1,family=family,link1=link,ind.ajust=ind.ajust) } else{ formula2 <-formula(paste("Y","~",namesZ)) data.permut <- data.frame(Y=Y[ind.permut],varcod=var.cod,Z[ind.permut,]) tpermut[k,]<-test.score(formula=formula2,data=data.permut,codage=X1ter,Z=Z[ind.permut,],Y=Y[ind.permut],family1,family=family,link1=link,ind.ajust=ind.ajust) } }else{ formula2<-formula(paste("Y","~",1)) data.permut <- data.frame(Y=Y[ind.permut],varcod=var.cod) tpermut[k,]<-test.score(formula=formula2,data=data.permut,codage=X1ter,Z=Z,Y=Y[ind.permut],family1=family1,family=family,link1=link,ind.ajust=ind.ajust) } for (i in 1:nbtransf1){ pval.permut[k,i]<-(1-pchisq(tpermut[k,i],coup[i])) } } cat("\n") progress_bar_tk $ term () pval.boot2<-pval.permut2<-matrix(0,ncol=nbtransf1,nrow=N) for (i in 1:nbtransf1) { for (j in 1:N){ pval.boot[is.na(pval.boot)] <- 9999 pval.permut[is.na(pval.permut)] <- 9999 if (i>1){ pval.boot2[j,i]<-min(pval.boot2[j,i-1],min(pval.boot[j,i])) pval.permut2[j,i]<-min(pval.permut2[j,i-1],min(pval.permut[j,i])) } else{ pval.boot2[j,i]<-min(pval.boot[j,i]) pval.permut2[j,i]<-min(pval.permut[j,i]) } } } cat("\n") for (i in 1:nbtransf1){ pval.bonf<-p.val[i]*i pval.bonf1<-c(pval.bonf1,pval.bonf) pval.naive<-p.val[i] pval.naive1<-c(pval.naive1,pval.naive) for (ii in 1:N){ if(pval.boot2[ii,i]< p.val[i]){tboot1[ii,i]<-1} } alphaboot[i]<-(length(which(tboot1[,i]>0))/N) for (l in 1:N){ if(pval.permut2[l,i]< p.val[i]){tpermut1[l,i]<-1} } alphapermut[i]<-(length(which(tpermut1[,i]>0))/N) } cat("\n") trans<-transf(quantile,continuous,boxcox,cutpoint,FP) adj<-ncol(Z) if(continuous=="TRUE"){q<-"TRUE"}else{q<-"FALSE"} if(class(quantile)=="NULL"){nbq=0}else{nbq=nrow(quantile)} if(missing(cutpoint)){nbc=0}else{nbc=nrow(cutpoint)} if(missing(boxcox)){nbb=0}else{nbb=length(boxcox)} if(missing(FP)){nbf=0}else{nbf=nrow(FP)} BC<-trans[which.min(pval.naive1)] print(substr(BC,1,22)) bestcod1<-bestcod(continuous=continuous,quantile=quantile,boxcox=boxcox,cutpoint=cutpoint,PF=FP,pval.naive=pval.naive1) print(bestcod1) bcod<-which(is.na(bestcod1)==TRUE) if((is.numeric(bestcod1)) & (length(bcod!=0)) ) {bestcod1<-bestcod1[-bcod]} info<-list("link"=link,"nbt"=nbtransf1,"nbb"=nbb,"nbq"=nbq,"nbf"=nbf,"nbcont"=q,"adj"=adj,"trans"=trans,"BC"=BC,"bestcod"=bestcod1,"nbc"=nbc) if(substr(BC,1,8)=="Quantile"){ vq<-quantile(var.cod,bestcod1) }else{vq<-NULL} out <- NULL out$call <- call out$n <- n out$N <- N out$family <- family out$link <- link out$nbt <- nbtransf1 out$nbb <- nbb out$nbq <- nbq out$nbf <- nbf out$nbcont <- q out$nbc <- nbc out$adj <- adj out$vq<-vq out$trans <- trans out$BC <- BC out$bestcod <-bestcod1 out$naive.pvalue <- pval.naive1[nbtransf1] if(is.numeric(pval.exact1)==TRUE) {out$exact.pvalue <- pval.exact1[nbtransf1]} else{out$exact.pvalue<-pval.exact1} out$bonferroni.adjusted.pvalue <- pval.bonf1[nbtransf1] out$parametric.bootstrap.adjusted.pvalue <- alphaboot[nbtransf1] out$permutation.adjusted.pvalue <- alphapermut[nbtransf1] class(out) <- c("CPMCGLM") out }
individuals_defensive_actual_floor_stats <- function(df1,df2,df3){ stats <- cbind(df1[1],df1[2]) poss <- df2[1,4] - df2[1,15] / (df2[1,15] + df3[1,16]) * (df2[1,4] - df2[1,3]) * 1.07 + df2[1,21] + 0.4 * df2[1,13] ope_poss <- df3[1,4] - df3[1,15] / (df3[1,15] + df2[1,16]) * (df3[1,4] - df3[1,3]) * 1.07 + df3[1,21] + 0.4 * df3[1,13] team_possessions <- (poss+ope_poss)/2 dor <- df3[1,15] / (df3[1,15] + df2[1,16]) dfg <- df3[1,3] / df3[1,4] fmwt <- (dfg * (1 - dor)) / (dfg * (1 - dor) + (1 - dfg) * dor) dstops <- df1[7] + df1[8] + df1[10]/10 + (df1[4] + df1[5]) * fmwt * (1-dor) + df1[3] * (1-fmwt) aux <- 0.45 * (df1[10] + df1[12]) * (1-(1- df1[12]/(df1[10]+df1[12])))^2 aux[is.na(aux)] <- 0 dscposs <- df1[11] + aux dposs <- dstops + dscposs stops <- dstops / (dstops + dscposs) tmdposs <- (40/df1[2])*dposs/team_possessions team_defensive_rating <- 100 * (df3[1,23] / team_possessions) d_pts_per_scposs <- df3[1,23] / (df3[1,3] + (1 - (1 - (df3[1,12] / df3[1,13]))^2) * df3[1,13]*0.4) drtg <- team_defensive_rating + tmdposs * (100 * d_pts_per_scposs * (1-stops) - team_defensive_rating) stats <- cbind(stats,round(dstops,2),round(dscposs,2),round(dposs,2),round(stops,3),round(tmdposs,3),round(drtg,2)) names(stats) = c("Name","MP","DStops","DScPoss","DPoss","Stop%","TMDPoss%","DRtg") stats[is.na(stats)] <- 0 return(stats) }
gpdTailPlot = function(object, plottype = c("xy", "x", "y", ""), doplot = TRUE, extend = 1.5, labels = TRUE, ...) { threshold = object@fit$threshold x = as.vector(object@data$x) data = x[x > threshold] xi = as.numeric(object@fit$par.ests["xi"]) beta = as.numeric(object@fit$par.ests["beta"]) plotmin = threshold plotmax = max(data) * max(1, extend) z = qgpd(seq(from = 0, to = 1, length = 501), xi, threshold, beta) z = pmax(pmin(z, plotmax), plotmin) invProb = 1 - length(data)/length(x) ypoints = invProb*(1-ppoints(sort(data))) y = invProb*(1-pgpd(z, xi, threshold, beta)) shape = xi scale = beta * invProb^xi location = threshold - (scale*(invProb^(- xi)-1))/xi if (doplot) { plot(sort(data), ypoints, xlim = range(plotmin, plotmax), ylim = range(ypoints, y, na.rm = TRUE), col = "steelblue", pch = 19, xlab = "", ylab = "", log = plottype[1], axes = TRUE, ...) lines(z[y >= 0], y[y >= 0]) grid() alog = plottype[1] if (labels) { xLab = "x" if (alog == "x" || alog == "xy" || alog == "yx") xLab = paste(xLab, "(on log scale)") yLab = "1-F(x)" if (alog == "xy" || alog == "yx" || alog == "y") yLab = paste(yLab, "(on log scale)") title(xlab = xLab, ylab = yLab) title(main = "Tail Estimate Plot") } } object@fit$n = length(x) object@fit$data = object@data$exceedances object@fit$n.exceed = length(object@fit$data) if(object@method[2] == "mle") { object@fit$method = "ml" } else { object@fit$method = "" } lastfit = object@fit class(lastfit) = "gpd" ans = list(lastfit = lastfit, type = "tail", dist = "gpd", plotmin = plotmin, plotmax = plotmax, alog = plottype[1], location = location, shape = shape, scale = scale) invisible(ans) } gpdQPlot = function(x, p = 0.99, ci = 0.95, type = c("likelihood", "wald"), like.num = 50) { par(new = TRUE) ci.p = ci pp = p ci.type = type[1] if (x$dist != "gpd") stop("This function is used only with GPD curves") if (length(pp) > 1) stop("One probability at a time please") threshold = x$lastfit$threshold par.ests = x$lastfit$par.ests xihat = par.ests["xi"] betahat = par.ests["beta"] varcov = x$lastfit$varcov p.less.thresh = x$lastfit$p.less.thresh lambda = 1 if (x$type == "tail") lambda = 1/(1 - p.less.thresh) a = lambda * (1 - pp) gfunc = function(a, xihat) (a^(-xihat) - 1)/xihat gfunc.deriv = function(a, xihat) (-(a^(-xihat) - 1)/xihat - a^(-xihat) * logb(a))/xihat q = q.keep = threshold + betahat * gfunc(a, xihat) out = as.numeric(q) if (ci.type == "wald") { if (class(x$lastfit) != "gpd") stop("Wald method requires model be fitted with gpd (not pot)") scaling = threshold betahat = betahat/scaling xivar = varcov[1, 1] betavar = varcov[2, 2]/(scaling^2) covar = varcov[1, 2]/scaling term1 = betavar * (gfunc(a, xihat))^2 term2 = xivar * (betahat^2) * (gfunc.deriv(a, xihat))^2 term3 = 2 * covar * betavar * gfunc(a, xihat) * gfunc.deriv(a, xihat) qvar = term1 + term2 + term3 if (qvar < 0) stop("Negative estimate of quantile variance") qse = scaling * sqrt(qvar) qq = qnorm(1 - (1 - ci.p)/2) upper = q + qse * qq lower = q - qse * qq abline(v = upper, lty = 2, col = 2) abline(v = lower, lty = 2, col = 2) out = as.numeric(c(lower, q, qse, upper)) names(out) = c("Lower CI", "Estimate", "Std.Err", "Upper CI") } if (ci.type == "likelihood") { parloglik = function(theta, tmp, a, threshold, xpi) { beta = (theta * (xpi - threshold))/(a^(-theta) - 1) if ((beta <= 0) || ((theta <= 0) && (max(tmp) > (-beta/theta)))) f = 1e+06 else { y = logb(1 + (theta * tmp)/beta) y = y/theta f = length(tmp) * logb(beta) + (1 + theta) * sum(y) } if(is.na(f)) f = 1e+6 f } theta = xihat parmax = NULL xp = exp(seq(from = logb(threshold), to = logb(x$plotmax), length = like.num)) excess = as.numeric(x$lastfit$data - threshold) for (i in 1:length(xp)) { fit2 = optim(theta, parloglik, method = "BFGS", hessian = FALSE, tmp = excess, a = a, threshold = threshold, xpi = xp[i]) parmax = rbind(parmax, fit2$value) } parmax = -parmax overallmax = -parloglik(xihat, excess, a, threshold, q) crit = overallmax - qchisq(0.999, 1)/2 cond = parmax > crit xp = xp[cond] parmax = parmax[cond] par(new = TRUE) dolog = "" if (x$alog == "xy" || x$alog == "x") dolog = "x" plot(xp, parmax, type = "n", xlab = "", ylab = "", axes = FALSE, xlim = range(x$plotmin, x$plotmax), ylim = range(overallmax, crit), log = dolog) axis(4, at = overallmax - qchisq(c(0.95, 0.99), 1)/2, labels = c("95", "99"), tick = TRUE) aalpha = qchisq(ci.p, 1) abline(h = overallmax - aalpha/2, lty = 2, col = 2) cond = !is.na(xp) & !is.na(parmax) smth = spline(xp[cond], parmax[cond], n = 200) lines(smth, lty = 2, col = 2) ci = smth$x[smth$y > overallmax - aalpha/2] abline(v = q.keep, lty = 2) out = c(min(ci), q, max(ci)) names(out) = c("Lower CI", "Estimate", "Upper CI") } out } gpdSfallPlot = function(x, p = 0.99, ci = 0.95, like.num = 50) { par(new = TRUE) pp = p ci.p = ci object = x if(x$dist != "gpd") stop("This function is used only with GPD curves") if(length(pp) > 1) stop("One probability at a time please") threshold = x$lastfit$threshold par.ests = x$lastfit$par.ests xihat = par.ests["xi"] betahat = par.ests["beta"] varcov = x$lastfit$varcov p.less.thresh = x$lastfit$p.less.thresh lambda = 1 lambda = 1/(1 - p.less.thresh) a = lambda * (1 - pp) gfunc = function(a, xihat) (a^( - xihat) - 1) / xihat q = threshold + betahat * gfunc(a, xihat) s = s.keep = q + (betahat + xihat * (q - threshold))/(1 - xihat) out = as.numeric(s) parloglik = function(theta, tmp, a, threshold, xpi) { beta = ((1 - theta) * (xpi - threshold)) / (((a^( - theta) - 1)/theta) + 1) if((beta <= 0) || ((theta <= 0) && (max(tmp) > ( - beta/theta)))) { f = 1e+06 } else { y = log(1 + (theta * tmp)/beta) y = y/theta f = length(tmp) * log(beta) + (1 + theta) * sum(y) } f } theta = xihat parmax = NULL xp = exp(seq(from = log(threshold), to = log(x$plotmax), length = like.num)) excess = as.numeric(x$lastfit$data - threshold) for (i in 1:length(xp)) { fit2 = optim(theta, parloglik, method = "BFGS", hessian = FALSE, tmp = excess, a = a, threshold = threshold, xpi = xp[i]) parmax = rbind(parmax, fit2$value) } parmax = - parmax overallmax = - parloglik(xihat, excess, a, threshold, s) crit = overallmax - qchisq(0.999, 1)/2 cond = parmax > crit xp = xp[cond] parmax = parmax[cond] dolog = "" if(x$alog == "xy" || x$alog == "x") dolog = "x" par(new = TRUE) plot(xp, parmax, type = "n", xlab = "", ylab = "", axes = FALSE, xlim = range(x$plotmin, x$plotmax), ylim = range(overallmax, crit), log = dolog) axis(4, at = overallmax - qchisq(c(0.95, 0.99), 1)/2, labels = c("95", "99"), tick = TRUE) aalpha = qchisq(ci.p, 1) abline(h = overallmax - aalpha/2, lty = 2, col = 2) cond = !is.na(xp) & !is.na(parmax) smth = spline(xp[cond], parmax[cond], n = 200) lines(smth, lty = 2, col = 2) ci = smth$x[smth$y > overallmax - aalpha/2] abline(v = s.keep, lty = 2) out = c(min(ci), s, max(ci)) names(out) = c("Lower CI", "Estimate", "Upper CI") out } gpdQuantPlot = function(x, p = 0.99, ci = 0.95, models = 30, start = 15, end = 500, doplot = TRUE, plottype = c("normal", "reverse"), labels = TRUE, ...) { data = as.vector(x) n = length(data) exceed = trunc(seq(from = min(end, n), to = start, length = models)) p = max(p, 1 - min(exceed)/n) start = max(start, ceiling(length(data) * (1 - p))) .quantFit = function(nex, data) { prob = 1 - nex/length(as.vector(data)) fit = gpdFit(data, u = quantile(data, prob))@fit c(fit$threshold, fit$par.ests, fit$par.ses, as.vector(fit$varcov)[c(1,4,2)]) } mat = apply(as.matrix(exceed), 1, .quantFit, data = data) thresh = mat[1, ] xihat = mat[2, ] betahat = mat[3, ] lambda = length(data)/exceed a = lambda * (1 - p) gfunc = function(a, xihat) (a^( - xihat) - 1) / xihat qest = thresh + betahat * gfunc(a, xihat) l = u = qest yrange = range(qest) if (ci) { qq = qnorm(1 - (1 - ci)/2) xivar = mat[4, ] betavar = mat[5, ] covar = mat[6, ] scaling = thresh betahat = betahat/scaling betavar = betavar/(scaling^2) covar = covar/scaling gfunc.deriv = function(a, xihat) (-(a^(-xihat)-1)/xihat-a^(-xihat)*log(a))/xihat term1 = betavar * (gfunc(a, xihat))^2 term2 = xivar * (betahat^2) * (gfunc.deriv(a, xihat))^2 term3 = 2 * covar * betavar * gfunc(a, xihat) * gfunc.deriv(a, xihat) qvar = term1 + term2 + term3 if (min(qvar) < 0) stop(paste( "Conditioning problems lead to estimated negative", "quantile variance", sep = "\n")) qse = scaling * sqrt(qvar) u = qest + qse * qq l = qest - qse * qq yrange = range(qest, u, l) } mat = rbind(thresh, qest, exceed, l, u) rownames(mat) = c("threshold", "qest", "exceedances", "lower", "upper") colnames(mat) = paste(1:dim(mat)[2]) if (doplot) { if (plottype[1] == "normal") { index = exceed } else if (plottype[1] == "reverse") { index = -exceed } plot(index, qest, ylim = yrange, type = "l", xlab = "", ylab = "", axes = FALSE) axis(1, at = index, labels = paste(exceed)) axis(2) axis(3, at = index, labels = paste(format(signif (thresh, 3)))) box() if (ci) { lines(index, l, lty = 2, col = "steelblue") lines(index, u, lty = 2, col = "steelblue") } if (labels) { title(xlab = "Exceedances", ylab = paste("Quantiles:", substitute(x))) mtext("Threshold", side = 3, line = 3) } p = round(p, 3) ci = round(ci, 3) text = paste("p =", p, "| ci =", ci, "| start =", start, "| end =", end ) mtext(text, side = 4, adj = 0, cex = 0.7) } mat = t(mat) attr(mat, "control") = data.frame(cbind(p = p, ci = ci, start = start, end = end), row.names = "") invisible(mat) } gpdShapePlot = function(x, ci = 0.95, models = 30, start = 15, end = 500, doplot = TRUE, plottype = c("normal", "reverse"), labels = TRUE, ...) { data = as.vector(x) X = trunc(seq(from = min(end, length(data)), to = start, length = models)) .shapeFit = function(nex, data) { prob = 1 - nex/length(as.vector(data)) fit = gpdFit(data, u = quantile(data, prob), information = "expected")@fit c(fit$threshold, fit$par.ests[1], fit$par.ses[1]) } mat = apply(as.matrix(X), 1, .shapeFit, data = data) mat = rbind(mat, X) rownames(mat) = c("threshold", "shape", "se", "exceedances") colnames(mat) = paste(1:dim(mat)[2]) if (doplot) { thresh = mat[1, ] y = mat[2, ] yrange = range(y) if (plottype[1] == "normal") { index = X } else if (plottype == "reverse") { index = -X } if (ci) { sd = mat[3, ] * qnorm(1 - (1 - ci)/2) yrange = range(y, y + sd, y - sd) } plot(index, y, ylim = yrange, type = "l", xlab = "", ylab = "", axes = FALSE) axis(1, at = index, labels = paste(X)) axis(2) axis(3, at = index, labels = paste(format(signif(thresh, 3)))) box() grid() if (ci) { sd = mat[3, ] * qnorm(1 - (1 - ci)/2) yrange = range(y, y + sd, y - sd) lines(index, y + sd, lty = 2, col = "steelblue") lines(index, y - sd, lty = 2, col = "steelblue") } if (labels) { title(xlab = "Exceedances", ylab = paste("Shape:", substitute(x))) mtext("Threshold", side = 3, line = 3) } text = paste("ci =", ci, "| start =", start, "| end =", end ) mtext(text, side = 4, adj = 0, cex = 0.7) } attr(mat, "control") = data.frame(cbind(ci = ci, start = start, end = end), row.names = "") mat = t(mat) invisible(mat) } gpdRiskMeasures = function(object, prob = c(0.99, 0.995, 0.999, 0.9995, 0.9999)) { u = object@parameter$u par.ests = object@fit$par.ests xi = par.ests["xi"] beta = par.ests["beta"] lambda = 1/(1 - object@fit$prob) q = u + (beta * ((lambda * (1 - prob))^( - xi) - 1))/xi es = (q * (1 + (beta - xi * u)/q)) / (1 - xi) ans = data.frame(p = prob, quantile = q, shortfall = es) ans } tailPlot <- function(object, p = 0.99, ci = 0.95, nLLH = 25, extend = 1.5, grid = TRUE, labels = TRUE, ...) { ci.p = p pp = p like.num = nLLH threshold = object@fit$threshold x = as.vector(object@data$x) data = x[x > threshold] xi = as.numeric(object@fit$par.ests["xi"]) beta = as.numeric(object@fit$par.ests["beta"]) plotmin = threshold plotmax = max(data) * max(1, extend) z = qgpd(seq(from = 0, to = 1, length = 501), xi, threshold, beta) z = pmax(pmin(z, plotmax), plotmin) invProb = 1 - length(data)/length(x) ypoints = invProb*(1-ppoints(sort(data))) y = invProb*(1-pgpd(z, xi, threshold, beta)) shape = xi scale = beta * invProb^xi location = threshold - (scale*(invProb^(- xi)-1))/xi xlim = range(plotmin, plotmax) ylim = range(ypoints, y[y>0], na.rm = TRUE) plot(sort(data), ypoints, xlim = xlim, ylim = ylim, col = "steelblue", pch = 19, xlab = "", ylab = "", log = "xy", axes = TRUE, ...) lines(z[y >= 0], y[y >= 0]) if (grid) grid() alog = "xy" if (labels) { xLab = "x" if (alog == "x" || alog == "xy" || alog == "yx") xLab = paste(xLab, "(on log scale)") yLab = "1-F(x)" if (alog == "xy" || alog == "yx" || alog == "y") yLab = paste(yLab, "(on log scale)") title(xlab = xLab, ylab = yLab) title(main = "Tail Estimate Plot") } object@fit$n = length(x) object@fit$data = object@data$exceedances object@fit$n.exceed = length(object@fit$data) lastfit = object@fit x = list(lastfit = lastfit, type = "tail", dist = "gpd", plotmin = plotmin, plotmax = plotmax, alog = "xy", location = location, shape = shape, scale = scale) threshold = lastfit$threshold par.ests = lastfit$par.ests xihat = par.ests["xi"] betahat = par.ests["beta"] varcov = lastfit$varcov p.less.thresh = lastfit$p.less.thresh par(new = TRUE) a = 1/(1 - p.less.thresh) * (1 - pp) gfunc = function(a, xihat) (a^(-xihat) - 1)/xihat gfunc.deriv = function(a, xihat) (-(a^(-xihat)-1)/xihat - a^(-xihat)*logb(a))/xihat q = q.keep = threshold + betahat * gfunc(a, xihat) out1 = as.numeric(q) parloglik = function(theta, tmp, a, threshold, xpi) { beta = (theta * (xpi - threshold))/(a^(-theta) - 1) if ((beta <= 0) || ((theta <= 0) && (max(tmp) > (-beta/theta)))) f = 1e+06 else { y = logb(1 + (theta * tmp)/beta) y = y/theta f = length(tmp) * logb(beta) + (1 + theta) * sum(y) } if(is.na(f)) f = 1e+6 f } theta = xihat parmax = NULL xp = exp(seq(from = logb(threshold), to = logb(x$plotmax), length = like.num)) excess = as.numeric(x$lastfit$data - threshold) for (i in 1:length(xp)) { fit2 = optim(theta, parloglik, method = "BFGS", hessian = FALSE, tmp = excess, a = a, threshold = threshold, xpi = xp[i]) parmax = rbind(parmax, fit2$value) } parmax = -parmax overallmax = -parloglik(xihat, excess, a, threshold, q) crit = overallmax - qchisq(0.999, 1)/2 cond = parmax > crit xp = xp[cond] parmax = parmax[cond] par(new = TRUE) plot(xp, parmax, type = "n", xlab = "", ylab = "", axes = FALSE, xlim = range(x$plotmin, x$plotmax), ylim = range(overallmax, crit), log = "x") axis(4, at = overallmax - qchisq(c(0.95, 0.99), 1)/2, labels = c("95", "99"), tick = TRUE) aalpha = qchisq(ci.p, 1) abline(h = overallmax - aalpha/2, lty = 2, col = 2) cond = !is.na(xp) & !is.na(parmax) smth = spline(xp[cond], parmax[cond], n = 200) lines(smth, lty = 2, col = 2) ci = smth$x[smth$y > overallmax - aalpha/2] abline(v = q.keep, lty = 2) out1 = c(min(ci), q, max(ci)) names(out1) = c("Lower CI", "Estimate", "Upper CI") a = 1/(1 - p.less.thresh) * (1 - pp) gfunc = function(a, xihat) (a^( - xihat) - 1) / xihat q = threshold + betahat * gfunc(a, xihat) s = s.keep = q + (betahat + xihat * (q - threshold))/(1 - xihat) out = as.numeric(s) parloglik = function(theta, tmp, a, threshold, xpi) { beta = ((1-theta)*(xpi-threshold)) / (((a^(-theta)-1)/theta)+1) if((beta <= 0) || ((theta <= 0) && (max(tmp) > ( - beta/theta)))) { f = 1e+06 } else { y = log(1 + (theta * tmp)/beta) y = y/theta f = length(tmp) * log(beta) + (1 + theta) * sum(y) } f } theta = xihat parmax = NULL xp = exp(seq(from = log(threshold), to = log(x$plotmax), length = like.num)) excess = as.numeric(x$lastfit$data - threshold) for (i in 1:length(xp)) { fit2 = optim(theta, parloglik, method = "BFGS", hessian = FALSE, tmp = excess, a = a, threshold = threshold, xpi = xp[i]) parmax = rbind(parmax, fit2$value) } parmax = -parmax overallmax = -parloglik(xihat, excess, a, threshold, s) crit = overallmax - qchisq(0.999, 1)/2 cond = parmax > crit xp = xp[cond] parmax = parmax[cond] par(new = TRUE) plot(xp, parmax, type = "n", xlab = "", ylab = "", axes = FALSE, xlim = range(x$plotmin, x$plotmax), ylim = range(overallmax, crit), log = "x") axis(4, at = overallmax - qchisq(c(0.95, 0.99), 1)/2, labels = c("95", "99"), tick = TRUE) aalpha = qchisq(ci.p, 1) abline(h = overallmax - aalpha/2, lty = 2, col = 2) cond = !is.na(xp) & !is.na(parmax) smth = spline(xp[cond], parmax[cond], n = 200) lines(smth, lty = 2, col = 2) ci = smth$x[smth$y > overallmax - aalpha/2] abline(v = s.keep, lty = 2) out2 = c(min(ci), s, max(ci)) names(out2) = c("Lower CI", "Estimate", "Upper CI") ans = list(var = out1, sfall = out2) invisible(ans) } .tailSlider.last.Quantile = NA .tailSlider.last.nThresholds = NA .tailSlider.param = NA .tailSlider.conf = NA .tailSlider.counter = NA .tailSlider.Thresholds = NA tailSlider = function(x) { x = as.vector(x) on.exit(rm(.tailSlider.last.Quantile)) on.exit(rm(.tailSlider.last.nThresholds)) on.exit(rm(.tailSlider.param)) on.exit(rm(.tailSlider.conf)) on.exit(rm(.tailSlider.counter)) on.exit(rm(x)) refresh.code = function(...) { .tailSlider.counter <<- .tailSlider.counter + 1 u = thresholdStart = .sliderMenu(no = 1) du = .sliderMenu(no = 2) max.x = .sliderMenu(no = 3) nThresholds = .sliderMenu(no = 4) Quantile = .sliderMenu(no = 5) pp = .sliderMenu(no = 6) if (.tailSlider.counter > 5) { par(mfrow = c(2, 2), cex = 0.7) ans = mxfPlot(x, u = quantile(x, 1), xlim = c(min(x), max.x), labels = FALSE) grid() U = min(c(u+du, max(x))) abline(v = u, lty = 3, col = "red") abline(v = U, lty = 3, col = "red") X = as.vector(ans[, 1]) Y = as.vector(ans[, 2]) Y = Y[X > u & X < U] X = X[X > u & X < U] lineFit = lsfit(X, Y) abline(lineFit, col = "red", lty = 2) c = lineFit$coef[[1]] m = lineFit$coef[[2]] xi = c(xi = m/(1+m)) beta = c(beta = c/(1+m)) Xi = signif(xi, 3) Beta = signif(beta, 3) Main = paste("Fig 1: xi = ", Xi, "| beta =", Beta) title(main = Main, xlab = "Threshold", ylab = "Mean Excess") if (.tailSlider.last.Quantile != Quantile | .tailSlider.last.nThresholds != nThresholds) { .tailSlider.param <<- NULL .tailSlider.conf <<- NULL .tailSlider.Thresholds <<- seq(quantile(x, Quantile), quantile(x, 1-Quantile), length = nThresholds) for (threshold in .tailSlider.Thresholds) { ans = gpdFit(x, threshold)@fit .tailSlider.param <<- rbind(.tailSlider.param, c(u = threshold, ans$par.ests)) .tailSlider.conf <<- rbind(.tailSlider.conf, c(u = threshold, ans$par.ses)) } .tailSlider.last.Quantile <<- Quantile .tailSlider.last.nThresholds <<- nThresholds } ymax = max(c(.tailSlider.param[, 2] + .tailSlider.conf[, 2])) ymin = min(c(.tailSlider.param[, 2] - .tailSlider.conf[, 2])) plot(.tailSlider.Thresholds, .tailSlider.param[, 2], xlab = "Threshold", ylab = "xi", ylim = c(ymin, ymax), col = "steelblue", type = "l", main = "xi Estimation") grid() points(.tailSlider.Thresholds, .tailSlider.param[, 2], pch = 19, col = "steelblue") lines(.tailSlider.Thresholds, .tailSlider.param[, 2] + .tailSlider.conf[, 2], lty = 3) lines(.tailSlider.Thresholds, .tailSlider.param[, 2] - .tailSlider.conf[, 2], lty = 3) abline(h = xi, lty = 3, col = "red") abline(v = u, lty = 3, col = "red") abline(v = U, lty = 3, col = "red") ymax = max(c(.tailSlider.param[, 3] + .tailSlider.conf[, 3])) ymin = min(c(.tailSlider.param[, 3] - .tailSlider.conf[, 3])) plot(.tailSlider.Thresholds, .tailSlider.param[, 3], xlab = "Threshold", ylab = "beta", ylim = c(ymin, ymax), col = "steelblue", type = "l", main = "beta Estimation") grid() points(.tailSlider.Thresholds, .tailSlider.param[, 3], pch = 19, col = "steelblue") lines(.tailSlider.Thresholds, .tailSlider.param[, 3] + .tailSlider.conf[, 3], lty = 3) lines(.tailSlider.Thresholds, .tailSlider.param[, 3] - .tailSlider.conf[, 3], lty = 3) abline(h = beta, lty = 3, col = "red") abline(v = u, lty = 3, col = "red") abline(v = U, lty = 3, col = "red") fit = gpdFit(x, u) tailPlot(object = fit, p = pp) par(mfrow = c(2, 2), cex = 0.7) } } x <<- as.vector(x) xmax = max(x) delta.x = (max(x)-min(x))/200 start.x = par()$usr[2] qmin = quantile(x, 0.25) qmax = quantile(x, 0.995) delta.q = (qmax-qmin)/200 start.q = (qmin+qmax)/2 .tailSlider.last.Quantile <<- 0.05*(1+1e-4) .tailSlider.last.nThresholds <<- 10+1 .tailSlider.param <<- NA .tailSlider.conf <<- NA .tailSlider.counter <<- 0 .sliderMenu(refresh.code, names = c("1 thresholdStart", "1 thresholdInterval", "1 max(x)", "2|3 nThresholds", "2|3 Quantile", "pp"), minima = c( qmin, 0, min(x), 5, 0.005, 0.900), maxima = c( qmax, qmax, max(x), 50, 0.500, 0.999), resolutions = c( delta.q, delta.x, delta.x, 5, 0.005, 0.001), starts = c( start.q, start.x, max(x), 10, 0.050, 0.990)) } tailRisk = function(object, prob = c(0.99, 0.995, 0.999, 0.9995, 0.9999), ...) { u = object@parameter$u par.ests = object@fit$par.ests xi = par.ests["xi"] beta = par.ests["beta"] lambda = 1/(1 - object@fit$prob) q = u + (beta * ((lambda * (1 - prob))^( - xi) - 1))/xi es = (q * (1 + (beta - xi * u)/q)) / (1 - xi) ans = data.frame(Prob = prob, VaR = q, ES = es) ans }
DisjunctivePower = function(test.result, statistic.result, parameter) { if (is.null(parameter$alpha)) stop("Evaluation model: DisjunctivePower: alpha parameter must be specified.") alpha = parameter$alpha if (is.numeric(test.result)) significant = (test.result <= alpha) if (is.matrix(test.result)) significant = (rowSums(test.result <= alpha) > 0) power = mean(significant, na.rm = TRUE) return(power) }
check4SPSS <- function(GADSdat) { UseMethod("check4SPSS") } check4SPSS.GADSdat <- function(GADSdat) { check_GADSdat(GADSdat) labels <- GADSdat$labels spclChar_varNams <- colnames(GADSdat$dat)[grep("[^[:alnum:]_\\$@ long_varNames <- unique(namesGADS(GADSdat)[nchar_4_spss(namesGADS(GADSdat)) > 64]) long_varLabels <- unique(labels$varName[!is.na(labels$varLabel) & nchar_4_spss(labels$varLabel) > 256]) long_valLabels <- unique(labels$varName[!is.na(labels$valLabel) & nchar_4_spss(labels$valLabel) > 120]) if(length(long_valLabels) > 0 ){ names(long_valLabels) <- long_valLabels long_valLabels <- lapply(long_valLabels, function(nam) { single_meta <- extractMeta(GADSdat, nam) single_long_valLabels <- single_meta[!is.na(single_meta$valLabel) & nchar_4_spss(single_meta$valLabel) > 120, "value"] }) } chv <- sapply(GADSdat$dat, is.character) misInfo <- unique(labels[which(!is.na(labels$value) & labels$missings == "miss"), c("varName", "value", "valLabel", "missings")]) many_missCodes <- unlist(lapply(namesGADS(GADSdat), function(v) { if(isTRUE(chv[v]) & length(misInfo$value[which(misInfo$varName==v)]) > 3) { return(v) } character() })) list(varNames_special = spclChar_varNams, varNames_length = long_varNames, varLabels = long_varLabels, valLabels = long_valLabels, missings = many_missCodes) } nchar_4_spss <- function(x) { long_str <- stringi::stri_escape_unicode(x) nchar(gsub("\\\\u00", "", long_str), type = "chars") }
setupDataLists <- function(data, ctrlOpts = NULL, lv_model = NULL){ if (is.null(data)){ stop(paste0( "gimme ERROR: neither a data directory nor a data list is specified. ", "Please either specify a directory of data or a list of individual data files." ) ) } if (is.list(data)){ ts_list <- list() if(is.null(names(data))){ names(data) <- paste0("subj", 1:length(data)) } ts_list <- data } else if (!is.list(data)){ files <- list.files(data, full.names = TRUE) if (is.null(ctrlOpts$sep)){ stop(paste0( "gimme ERROR: a data directory is specified but a ctrlOpts$sep argument is not. ", "Please specify a ctrlOpts$sep argument before continuing." )) } if (is.null(ctrlOpts$header)){ stop(paste0( "gimme ERROR: a data directory is specified but a ctrlOpts$header argument is not. ", "Please specify a logical value for ctrlOpts$header before continuing." )) } ts_list <- list() for (i in 1:length(files)){ ts_list[[i]] <- read.table(files[i], sep = ctrlOpts$sep, header = ctrlOpts$header) } names(ts_list) <- tools::file_path_sans_ext(basename(files)) } else { stop(paste0( "gimme ERROR: Format of data argument not recognized. " )) } varnames <- colnames(ts_list[[1]]) n_orig_vars <- ncol(ts_list[[1]]) if(is.null(varnames)){ varnames <- c(paste0("V", seq(1,n_orig_vars))) ts_list <- lapply(ts_list, function(x) { colnames(x)<-varnames; x }) } else { if(is.null(lv_model)){ ts_list <- lapply(ts_list, function(x) { x[,varnames]}) } } return(ts_list) }
girregrec <- function(siginput, gtinput, phi, nbnodes, nvoice, freqstep, scale, epsilon = 0.5,fast = FALSE, prob= 0.8, plot = FALSE, para = 0, hflag = FALSE, real = FALSE, check = FALSE) { tmp <- RidgeSampling(phi,nbnodes) node <- tmp$node phinode <- tmp$phinode phi.x.min <- scale phi.x.max <- scale x.min <- node[1] x.max <- node[length(node)] x.max <- x.max + round(para * phi.x.max) x.min <- x.min - round(para * phi.x.min) node <- node - x.min + 1 x.inc <- 1 np <- as.integer((x.max-x.min)/x.inc)+1 cat(" (np:",np,")") if(epsilon == 0) Q2 <- 0 else { if (fast == FALSE) Q2 <- gkernel(node,phinode,freqstep,scale,x.min = x.min, x.max = x.max) else Q2 <- fastgkernel(node,phinode,freqstep,scale,x.min = x.min, x.max = x.max) } cat(" kernel;") if (hflag == TRUE) one <- gsampleOne(node,scale,np) else{ one <- numeric(np) one[] <- 1 } if (epsilon !=0 ){ Q <- epsilon * Q2 for(j in 1:np) Q[j,j] <- Q[j,j] + one[j] Qinv <- solve(Q) } else{ Qinv <- 1/one } tmp2 <- gridrec(gtinput,node,phinode,nvoice, freqstep,scale,Qinv,epsilon,np, real = real, check = check) tmp <- RidgeIrregSampling(phinode, node, tmp2$lam, prob) node <- tmp$node phinode <- tmp$phinode phi.x.min <- scale phi.x.max <- scale x.min <- node[1] x.max <- node[length(node)] x.max <- x.max + round(para * phi.x.max) x.min <- x.min - round(para * phi.x.min) node <- node - x.min + 1 x.inc <- 1 np <- as.integer((x.max-x.min)/x.inc)+1 cat(" (np:",np,")") if(epsilon == 0) Q2 <- 0 else { if (fast == FALSE) Q2 <- gkernel(node,phinode,freqstep,scale,x.min = x.min, x.max = x.max) else Q2 <- fastgkernel(node,phinode,freqstep,scale,x.min = x.min, x.max = x.max) } cat(" kernel;") if (hflag == TRUE) one <- gsampleOne(node,scale,np) else{ one <- numeric(np) one[] <- 1 } if (epsilon !=0 ){ Q <- epsilon * Q2 for(j in 1:np) Q[j,j] <- Q[j,j] + one[j] Qinv <- solve(Q) } else{ Qinv <- 1/one } tmp2 <- gridrec(gtinput,node,phinode,nvoice, freqstep,scale,Qinv,epsilon,np, real = real, check = check) if(plot == TRUE){ par(mfrow=c(2,1)) plot.ts(Re(siginput)) title("Original signal") plot.ts(Re(tmp2$sol)) title("Reconstructed signal") } list(sol=tmp2$sol,A=tmp2$A,lam=tmp2$lam,dualwave=tmp2$dualwave, gaborets=tmp2$gaborets, solskel=tmp2$solskel, inputskel = tmp2$inputskel, Q2 = Q2) } RidgeIrregSampling <- function(phinode, node, lam, prob) { nbnodes <- length(node) mlam <- numeric(nbnodes) for(j in 1:nbnodes) mlam[j] <- Mod(lam[j] + 1i*lam[nbnodes + j]) pct <- quantile(mlam,prob) count <- sum(mlam > pct) newnode <- numeric(count) newphinode <- numeric(count) count <- 0 for(j in 1:nbnodes) { if(mlam[j] > pct) { newnode[count+1] <- node[j] newphinode[count+1] <- phinode[j] count <- count + 1 } } list(node = newnode,phinode = newphinode, nbnodes = count) }
calc.rate.weib <- function(par) { rate <- par[1]/exp(lgamma(1+1/par[2])) return(rate) }
l2 <- function(x){ return(sqrt(sum(x^2)))}
options(guiToolkit="RGtk2") readRepo <- function(dir=getwd()) { files <- gitLsFiles(dir, "stage") status <- gitStatus(dir, ignored=TRUE) if ("??" %in% status$XY) { tmp <- data.frame(tag = "", mode = NA, object = "", stage = NA, file = with(status, file[XY == "??"])) files <- if (nrow(files) > 0) rbind(files, tmp) else tmp } if ("!!" %in% status$XY) { tmp <- data.frame(tag = "", mode = NA, object = "", stage = NA, file = with(status, file[XY == "!!"])) files <- if (nrow(files) > 0) rbind(files,tmp) else tmp } if ("D " %in% status$XY) { tmp <- data.frame(tag = "", mode = NA, object = "", stage = NA, file = with(status, file[XY == "D "])) files <- if (nrow(files) > 0) rbind(files,tmp) else tmp } if (nrow(files) == 0) return(data.frame()) files$directory = sub("/[^/]*$", "", files$file) files <- within(files, directory[directory == file] <- "") dirs <- unique(files$directory) dirs <- dirs[dirs != ""] if (length(dirs) > 0) files <- rbind(files, data.frame(tag = "", mode = 040000, object = "", stage = NA, file = dirs, directory = sub("/?[^/]+/?$", "", dirs))) files$was <- files$status <- "" for (file in status$file) { idx1 <- status$file == file idx2 <- files$file == file files$status[idx2] <- status$XY[idx1] files$was[idx2] <- status$was[idx1] } for (dir in dirs) { statuses <- subset(files, directory == dir)$status if (all(statuses == "??")) files$status[files$file == dir] <- "??" if (all(grepl("R.", statuses))) files$status[files$file == dir] <- "R " } if (nrow(files) > 1) files <- files[with(files, mixedorder(file)),] files$filename <- sub(".*/", "", files$file) files <- files[!grepl("^\\. files } offspring <- function(path, user.data, ...) { obj <- user.data$obj if(length(path) > 0) directory <- obj$absPath(path) else { directory <- obj$absPath() dirty <- gitIsDirty(directory) Branch <- gitBranch(directory) Upstream <- gitUpstream(directory) status <- c("dirty", "detached HEAD", "unpushed commits", "unpulled commits") return(data.frame(Filename = obj$repo, mode=0, Staged = FALSE, Modified = dirty, Upstream = Upstream, Branch = Branch, Status = paste(status[c(dirty, nchar(Branch)==0, grepl("\\+", Upstream), grepl("\\-", Upstream))], collapse=", "), Mode=gitMode2Str(0))) } files <- readRepo(directory) files <- files[files$directory == "", ,drop=FALSE] Branch <- rep("", nrow(files)) idx <- !is.na(files$mode) & files$mode == 160000 if (any(idx)) Branch[idx] <- sapply(paste(directory, files$filename[idx], sep = .Platform$file.sep), gitBranch) Status <- gitStatus2Str(files$status) Staged <- grepl("(from|to|in) index", Status) Modified <- grepl("in work tree", Status) if (any(idx)) Status[idx] <- ifelse(nchar(Branch[idx]) == 0, "detached HEAD", "") idx <- files$mode == 160000 & substring(files$status, 2, 2) == "M" if (any(idx)) { Status[idx] <- paste(Status[idx], gitStatus2Str(sprintf("%s ", substring(files$status[idx], 1, 1))), gitSubmoduleStatus(directory, files$file[idx]), sep=", ") } idx <- Branch != "" Upstream <- Branch Upstream[idx] <- sapply(paste(directory, files$filename[idx], sep = .Platform$file.sep), gitUpstream) Status[idx] <- paste(Status[idx], ifelse(grepl("\\+", Upstream[idx]), "unpushed commits", ""), ifelse(grepl("\\-", Upstream[idx]), "unpulled commits", ""), sep=", ") Status <- sub(", $", "", sub("^, ", "", gsub(", , ", ", ", Status))) ret <- data.frame(Filename=files$filename, mode = as.numeric(files$mode), Staged = Staged, Modified = Modified, Upstream = Upstream, Branch = Branch, Status = Status, Mode=gitMode2Str(files$mode)) idx <- rep(TRUE, nrow(ret)) if (obj$preferences["hiddenFiles"] == "hide") idx <- idx & !grepl("^\\.", ret$Filename) if (obj$preferences["untrackedFiles"] == "hide") idx <- idx & files$status != "??" if (obj$preferences["ignoredFiles"] == "hide") idx <- idx & files$status != "!!" ret[idx, ] } hasOffspring <- function(children,user.data=NULL, ...) { return(children$mode %in% c(0, 160000, 40000)) } icon.FUN <- function(children,user.data=NULL, ...) { x <- rep("file", length=nrow(children)) x[children$mode == 0] <- "about" x[children$mode == 160000] <- "jump-to" x[children$mode == 40000] <- "directory" x[is.na(children$mode)] <- "missing-image" x[grepl(paste("(", gitStatus2Str(c("D ", " D")), ")", collapse="|", sep=""), children$Status)] <- "delete" return(x) } contextMenu <- function(h, widget, event, action=NULL, ...) { if(event$GetButton() == 3 || (event$GetState() == GdkModifierType['control-mask'] && event$GetButton() == 1)) { obj <- h$action$actualobj path <- obj$tr$getPathAtPos(event$x, event$y)$path sel <- obj$tr$getSelection() sel$unselectAll() sel$selectPath(path) menulist <- genContextMenulist(obj) mb = gmenu(menulist, popup = TRUE) mb = tag(mb,"mb") gtkMenuPopup(mb,button = event$GetButton(), activate.time=event$GetTime()) } else { return(FALSE) } } setRefClass("gitR", fields = list( path = "character", repo = "character", w = "gWindow", m = "guiComponent", tb = "gToolbar", grp = "gGroup", la = "gImage", tr = "gTree", s = "gStatusbar", position = "list", lastout = "character", preferences = "character", prefMenu = "list" ), methods = list( getWindow = function() { 'Return gtkWindow object' w@widget@widget }, getGTree = function() { 'Return GTree object' tr@widget }, getTreeView = function() { 'Return gtkTreeView object' tr@widget@widget }, refresh = function() { 'Refresh gTree' update(.self$getGTree(), user.data = list(obj=.self)) }, status = function(...) { 'Set or get status bar message' values <- list(...) if (length(values) == 0) return(svalue(s)) svalue(s) <<- paste(values, collapse=" ") invisible(svalue(s)) }, hide = function() { 'Hide tree view and display loading animation' grp$Remove(tr@widget@block@widget@widget) grp$Add(la@widget@block) }, show = function() { 'Show tree view and hide loading animation' grp$Remove(la@widget@block) grp$Add(tr@widget@block@widget@widget) }, absPath = function(...) { 'Return absolute path' paths <- unlist(list(...)) rPath <- if (length(paths) == 0) { rPath <- repo } else paste(paths, collapse=.Platform$file.sep) paste(path, rPath, sep=.Platform$file.sep) }, quit = function(...) { saveRDS(preferences, file="~/.gitR") dispose(w) } )) createGUI <- function(path=getwd()) { path <- try(gitToplevel(path)) if (is(path, "try-error")) { return("This is not a git repository.") } w <- gwindow("gitR", visible=FALSE) addHandlerDestroy(w, handler=function(...) { assign(".gitR.windows", get(".gitR.windows", envir=.GlobalEnv, mode="numeric") - 1, envir=.GlobalEnv) }) obj <- new("gitR", w=w, path = sub("(.*)/[^/]+/?$", "\\1", path), repo = sub(".*/([^/]+)/?$", "\\1", path)) obj$m <- gmenu(menulist <- genMenulist(obj), container=w) obj$prefMenu <- menulist$Preferences obj$tb <- gtoolbar(genToolbar(obj), style="both", container=w) obj$grp <- ggroup(horizontal=FALSE, spacing=0, container=w) obj$la <- gimage(system.file("images/loading.gif", package="traitr"), expand = TRUE) obj$tr <- gtree(offspring, hasOffspring = hasOffspring, icon.FUN = icon.FUN, container=obj$grp, offspring.data = list(obj = obj), expand=TRUE) obj$s <- gstatusbar("Initializing...", container=w) addHandlerDoubleclick(obj$getGTree(), handler=doubleClickHandler, action=list(actualobj=obj)) addHandler(obj$getGTree(), signal="button-press-event", handler=contextMenu, action=list(actualobj=obj)) tv <- obj$getTreeView() tv$GetColumn(2)$SetVisible(FALSE) cellrenderer <- gtkCellRendererToggleNew() cellrenderer$radio <- TRUE column <- tv$GetColumn(3) column$Clear() column$PackStart(cellrenderer, TRUE) column$AddAttribute(cellrenderer, "active", 3) column <- tv$GetColumn(4) column$Clear() column$PackStart(cellrenderer, TRUE) column$AddAttribute(cellrenderer, "active", 4) obj$tr$ExpandRow(gtkTreePathNewFromString("0"), FALSE) obj$status("Initialized.") w$resize(1000, 600) visible(obj$w) <- TRUE .gitR.windows <- if (!exists(".gitR.windows", envir=.GlobalEnv)) { 0 } else { get(".gitR.windows", envir=.GlobalEnv, mode="numeric") } assign(".gitR.windows", .gitR.windows + 1, envir=.GlobalEnv) obj }