code
stringlengths 1
13.8M
|
---|
mirtCluster <- function(spec, omp_threads, remove = FALSE, ...){
if(requireNamespace("parallel", quietly = TRUE)){
if(missing(spec))
spec <- parallel::detectCores()
if(missing(omp_threads))
.mirtClusterEnv$omp_threads <- 1L
if(remove){
if(is.null(.mirtClusterEnv$MIRTCLUSTER)){
message('There is no visible mirtCluster() definition')
return(invisible())
}
parallel::stopCluster(.mirtClusterEnv$MIRTCLUSTER)
.mirtClusterEnv$MIRTCLUSTER <- NULL
.mirtClusterEnv$ncores <- 1L
.mirtClusterEnv$omp_threads <- 1L
return(invisible())
}
if(!is.null(.mirtClusterEnv$MIRTCLUSTER)){
message('mirtCluster() has already been defined')
return(invisible())
}
.mirtClusterEnv$MIRTCLUSTER <- parallel::makeCluster(spec, ...)
.mirtClusterEnv$ncores <- length(.mirtClusterEnv$MIRTCLUSTER)
mySapply(1L:.mirtClusterEnv$ncores*2L, function(x) invisible())
}
return(invisible())
} |
at2 <- function(x, ...) UseMethod("at2")
at2.Container <- function(x, index, ...)
{
x$at2(index)
}
NULL
at2.dict.table <- function(x, index, ...)
{
.assert_index_and_arg(x, index)
.subset2(x, index)
}
NULL |
context("test-sanitize")
test_that("sanitize utility works", {
expect_equal(sanitize("["), "\\[")
expect_equal(sanitize("\\[|+$"), "\\\\\\[\\|\\+\\$")
}) |
impute.MAR = function(dataSet.mvs, model.selector, method = "MLE"){
if (length(which(model.selector[[1]]==1)) == 0){
dataSet.imputed = dataSet.mvs
}
else{
dataSet.MCAR = dataSet.mvs[which(model.selector[[1]]==1),]
switch(method,
MLE = {
dataSet.MCAR.imputed = impute.wrapper.MLE(dataSet.MCAR)
},
SVD = {
dataSet.MCAR.imputed = impute.wrapper.SVD(dataSet.MCAR, K = 2)
},
KNN = {
dataSet.MCAR.imputed = impute.wrapper.KNN(dataSet.MCAR, K = 15)
}
)
dataSet.imputed = dataSet.mvs
dataSet.imputed[which(model.selector[[1]]==1),] = dataSet.MCAR.imputed
}
return(dataSet.imputed)
} |
perturbationRpca <- function (lambda, U, x, n, f = 1/n, center, sort = TRUE)
{
stopifnot(f >= 0 & f <= 1)
q <- ncol(U)
d <- length(x)
stopifnot(length(lambda) == q)
stopifnot(nrow(U) == d)
if (!missing(center))
x <- x - center
lambda <- (1-f) * lambda
z <- sqrt(f) * crossprod(U,x)
z2 <- z * z
num <- tcrossprod(z)
den <- matrix(lambda + z2, q, q, byrow = TRUE) -
matrix(z2 + lambda^2, q, q)
V <- num / den
diag(V) <- 1
U <- U %*% V
sigma2 <- .colSums(U * U, d, q)
lambda <- (lambda + z2) * sigma2
U <- U * rep.int(1/sqrt(sigma2), rep.int(d,q))
if (sort) {
ind <- order(lambda, decreasing = TRUE)
if (!identical(ind, 1:q)) {
lambda <- lambda[ind]
U <- U[,ind]
}
}
list(values = lambda, vectors = U)
} |
context("test-press.R")
describe("press", {
it("Adds parameters to output", {
res <- press(
x = 1,
mark(1, max_iterations = 10)
)
expect_equal(colnames(res), c("expression", "x", summary_cols, data_cols))
expect_equal(nrow(res), 1)
res2 <- press(
x = 1:3,
mark(1, max_iterations = 10)
)
expect_equal(colnames(res2), c("expression", "x", summary_cols, data_cols))
expect_equal(nrow(res2), 3)
})
it("Outputs status message before evaluating each parameter", {
expect_message(regexp = "Running with:\n.*x",
res <- press(
x = 1,
mark(rep(1, x), max_iterations = 10)
)
)
expect_equal(colnames(res), c("expression", "x", summary_cols, data_cols))
expect_equal(nrow(res), 1)
msgs <- character()
withCallingHandlers(message = function(e) msgs <<- append(msgs, conditionMessage(e)),
res2 <- press(
x = 1:3,
mark(rep(1, x), max_iterations = 10)
)
)
expect_true(grepl("Running with:\n.*x\n.*1\n.*2\n.*3\n", paste(msgs, collapse = "")))
expect_equal(colnames(res2), c("expression", "x", summary_cols, data_cols))
expect_equal(nrow(res2), 3)
})
it("expands the grid if has named parameters", {
res <- press(
x = c(1, 2),
y = c(1, 3),
mark(list(x, y), max_iterations = 10)
)
expect_equal(res$x, c(1, 2, 1, 2))
expect_equal(res$y, c(1, 1, 3, 3))
expect_equal(res$result[[1]], list(1, 1))
expect_equal(res$result[[2]], list(2, 1))
expect_equal(res$result[[3]], list(1, 3))
expect_equal(res$result[[4]], list(2, 3))
})
it("takes values as-is if given in .grid", {
res <- press(
.grid = data.frame(x = c(1, 2), y = c(1,3)),
mark(list(x, y), max_iterations = 10)
)
expect_equal(res$x, c(1, 2))
expect_equal(res$y, c(1, 3))
expect_equal(res$result[[1]], list(1, 1))
expect_equal(res$result[[2]], list(2, 3))
})
it("runs `setup` with the parameters evaluated", {
x <- 1
res <- press(
y = 2,
{
x <- y
mark(x)
})
expect_equal(res$result[[1]], 2)
})
}) |
context("US States")
require(sf)
test_that("No date returns current states", {
expect_identical(us_states(), USAboundaries::states_contemporary_lores)
})
test_that("Dates outside the valid range have an error message", {
expect_error(us_states("1780-02-03"))
expect_error(us_states("2015-06-17"))
})
test_that("Current states can be filtered", {
expect_equal(nrow(us_states(states = c("Virginia", "Maryland"))), 2)
})
test_that("Error message if no matches are found", {
expect_error(us_states(states = "No place"), "No matches found")
})
test_that("Historical states can be filtered", {
expect_equal(nrow(us_states("1875-01-02",
states = c("Virginia", "Maryland"))),
2)
})
test_that("Correct resolution shapefiles are returned", {
skip_if_not_installed("USAboundariesData")
expect_identical(us_states(resolution = "low"),
USAboundaries::states_contemporary_lores)
expect_identical(us_states(resolution = "high"),
USAboundariesData::states_contemporary_hires)
}) |
loglikLOOCVVAR1 <- function(lambdas,
Y,
unbalanced=matrix(nrow=0, ncol=2),
...){
if (!is(Y, "array")){
stop("Input (Y) is of wrong class.")
}
if (length(dim(Y)) != 3){
stop("Input (Y) is of wrong dimensions: either covariate, time or sample dimension is missing.")
}
if (!is(lambdas, "numeric")){
stop("Input (lambdas) is of wrong class.")
}
if (length(lambdas) != 2){
stop("Input (lambdas) is of wrong length.")
}
if (any(is.na(lambdas))){
stop("Input (lambdas) is not a vector of non-negative numbers.")
}
if (any(lambdas < 0)){
stop("Input (lambdas) is not a vector of non-negative numbers.")
}
if (!is(unbalanced, "matrix")){
stop("Input (unbalanced) is of wrong class.")
}
if (ncol(unbalanced) != 2){
stop("Wrong dimensions of the matrix unbalanced.")
}
LOOscheme <- cbind(rep(2:dim(Y)[2], dim(Y)[3]),
sort(rep(1:dim(Y)[3], dim(Y)[2]-1)))
if (nrow(unbalanced) > 0){
LOO2unbalanced <- numeric()
for (k in 1:nrow(unbalanced)){
LOO2unbalanced <- c(LOO2unbalanced,
which(apply(LOOscheme,
1,
function(Y, Z){ all(Y == Z) },
Z=unbalanced[k,])))
}
LOOscheme <- LOOscheme[-LOO2unbalanced,]
}
loglik <- 0
for (k in 1:nrow(LOOscheme)){
VAR1hat <- ridgeVAR1(Y,
lambdas[1],
lambdas[2],
unbalanced=rbind(unbalanced, LOOscheme[k,,drop=FALSE]),
...)
loglik <- loglik +
.armaVAR1_loglik_LOOCVinternal(Y[,LOOscheme[k,1] , LOOscheme[k,2]],
Y[,LOOscheme[k,1]-1, LOOscheme[k,2]],
VAR1hat$A,
VAR1hat$P)
}
return(-loglik)
} |
"norm.proposal" <-
function(m,n,sigma) {
set <- function(sigma) {
s <<- sigma
}
get <- function() {
s
}
set <- function(sigma) {
s <<- sigma
}
tune <- function(x,scale=1,eps=1.0E-6) {
set(scale*pmax(apply(x,1:2,sd),eps))
}
proposal <- function(mu) {
matrix(rnorm(m*n,mu,s),m,n)
}
s <- sigma
list(m=m,
n=n,
set=set,
get=get,
tune=tune,
proposal=proposal)
} |
WavTransf1D <- function(P, order = 5, jmax, periodic = FALSE, metric = "Riemannian", ...) {
n <- dim(P)[3]
J <- log2(n)
if (!isTRUE(all.equal(as.integer(J), J))) {
stop(paste0("Input length is non-dyadic, please change length ", n,
" to dyadic number."))
}
if (!isTRUE(order %% 2 == 1)) {
warning("Refinement order should be an odd integer, by default set to 5")
order <- 5
}
metric <- match.arg(metric, c("Riemannian", "logEuclidean", "Cholesky", "rootEuclidean", "Euclidean", "Riemannian-Rahman"))
dots <- list(...)
method <- (if(is.null(dots$method)) "fast" else dots$method)
d <- dim(P)[1]
L <- (order - 1) / 2
L_round <- 2 * ceiling(L / 2)
N <- (2 * L + 1) * n
Nj <- as.integer(ifelse(periodic & (order > 1), N, n) / (2^(0:J)))
Mper <- wavPyr_C(P, ifelse(periodic & (order > 1), L, 0), J, Nj, ifelse(metric == "Riemannian-Rahman", "Riemannian", metric))
M <- list()
M[[1]] <- Mper[, , sum(head(Nj, J)) + 1:Nj[J + 1], drop = FALSE]
for(j in 1:J) {
if(periodic & (order > 1)) {
M[[j + 1]] <- Mper[, , ifelse(j < J, sum(Nj[1:(J - j)]), 0) + L * 2^j -
L_round + 1:(2^j + 2 * L_round), drop = FALSE]
} else {
M[[j + 1]] <- Mper[, , ifelse(j < J, sum(Nj[1:(J - j)]), 0) + 1:2^j, drop = FALSE]
}
}
D <- Dw <- list()
if (missing(jmax)) {
jmax <- J - 1
}
if (jmax > J - 1) {
warning(paste0("'jmax' cannot exceed maximum scale j = ", J - 1))
jmax <- J - 1
}
for (j in 0:jmax) {
n_M <- dim(M[[j + 1]])[3]
L1 <- ifelse(order > n_M, floor((n_M - 1) / 2), L)
tm1 <- impute_C(M[[j + 1]], W_1D[[min(L1 + 1, 5)]], L1, FALSE, metric, method)[, , 2 * (1:n_M), drop = FALSE]
tM <- (if(periodic){ tm1[, , L_round / 2 + ifelse(j > 0 | L %% 2 == 0, 0, -1) +
1:(2^j + L_round), drop = FALSE] } else tm1)
n_W <- dim(tM)[3]
W <- wavCoeff_C(tM, M[[j + 2]][, , 2 * (1:n_W), drop = FALSE], j, ifelse(metric == "Riemannian-Rahman", "Riemannian", metric))
Dw[[j + 1]] <- W[, , 1:n_W, drop = FALSE]
D[[j + 1]] <- W[, , n_W + 1:n_W, drop = FALSE]
names(D)[j + 1] <- names(Dw)[j + 1] <- paste0("D.scale", j)
}
return(list(D = D, D.white = Dw, M0 = M[[1]]))
}
WavTransf2D <- function(P, order = c(3, 3), jmax, metric = "Riemannian", ...) {
J1 <- log2(dim(P)[3])
J2 <- log2(dim(P)[4])
J <- max(J1, J2)
J0_2D <- abs(J1 - J2)
if (!isTRUE(all.equal(as.integer(J1), J1) & all.equal(as.integer(J2), J2))) {
stop(paste0("Input length is non-dyadic, please change length ", dim(P)[3], " or ",
dim(P)[4], " to dyadic number."))
}
if (!isTRUE((order[1] %% 2 == 1) & (order[2] %% 2 == 1))) {
warning("Refinement orders in both directions should be odd integers, by default set to c(3,3).")
order <- c(3, 3)
}
if (!isTRUE((order[1] <= 9) & (order[2] <= 9))) {
stop(paste0("Refinement orders in both directions should be smaller or equal to 9, please change ",
order, " to be upper bounded by c(9, 9)." ))
}
metric <- match.arg(metric, c("Riemannian", "logEuclidean", "Cholesky", "rootEuclidean", "Euclidean"))
dots <- list(...)
method <- (if(is.null(dots$method)) "fast" else dots$method)
L <- (order - 1) / 2
d <- dim(P)[1]
if(metric == "logEuclidean" | metric == "Cholesky" | metric == "rootEuclidean") {
P <- array(Ptransf2D_C(array(P, dim = c(d, d, dim(P)[3] * dim(P)[4])), FALSE, FALSE, metric), dim = dim(P))
}
grid_n <- cbind(2^((J1:0)[1:(J + 1)]), 2^((J2:0)[1:(J + 1)]))
grid_n[which(is.na(grid_n))] <- 0
M <- list()
for (j in J:0) {
if(j == J){
Mper <- array(c(P), dim = c(d, d, grid_n[1, 1] * grid_n[1, 2]))
M[[j + 1]] <- P
} else {
Mper <- wavPyr2D_C(Mper, max(grid_n[J - j, 1], 1), max(grid_n[J - j, 2], 1), metric)
M[[j + 1]] <- array(c(Mper), dim = c(d, d, max(grid_n[J + 1 - j, 1], 1), max(grid_n[J + 1 - j, 2], 1)))
}
}
D <- Dw <- list()
W <- lapply(1:length(W_2D), function(i) array(c(aperm(W_2D[[i]], c(3, 4, 1, 2))),
dim = c(dim(W_2D[[i]])[3] * dim(W_2D[[i]])[4], 4)))
if (missing(jmax)) {
jmax <- J - 1
}
if (jmax > J - 1) {
warning(paste0("'jmax' cannot exceed maximum scale j = ", J - 1))
jmax <- J - 1
}
for (j in 0:jmax) {
if(grid_n[J + 1 - j, 1] < 1) {
n_M <- dim(M[[j + 1]])[4]
L1 <- ifelse(order[2] > n_M, floor((n_M - 1) / 2), L[2])
tm1 <- impute_C(array(M[[j + 1]][, , 1, ], dim = c(d, d, 2^j)), W_1D[[min(L1 + 1, 5)]], L1, TRUE, metric, method)
W <- wavCoeff_C(tm1, M[[j + 2]][, , 1, ], J0_2D + j, metric)
Dw[[j + 1]] <- array(W[, , 1:(2 * n_M)], dim = dim(M[[j + 2]]))
D[[j + 1]] <- array(W[, , (2 * n_M) + 1:(2 * n_M)], dim = dim(M[[j + 2]]))
} else if(grid_n[J + 1 - j, 2] < 1) {
n_M <- dim(M[[j + 1]])[3]
L1 <- ifelse(order[1] > n_M, floor((n_M - 1) / 2), L[1])
tm1 <- impute_C(array(M[[j + 1]][, , , 1], dim = c(d, d, 2^j)), W_1D[[min(L1 + 1, 5)]], L1, TRUE, metric, method)
W <- wavCoeff_C(tm1, M[[j + 2]][, , , 1], J0_2D + j, metric)
Dw[[j + 1]] <- array(W[, , 1:(2 * n_M)], dim = dim(M[[j + 2]]))
D[[j + 1]] <- array(W[, , (2 * n_M) + 1:(2 * n_M)], dim = dim(M[[j + 2]]))
} else {
tm1 <- impute2D_R(M[[j + 1]], L, metric, method)
n_tM <- dim(tm1)[3] * dim(tm1)[4]
W <- wavCoeff_C(array(tm1, dim = c(d, d, n_tM)), array(M[[j + 2]], dim = c(d, d, n_tM)), 2 * j, metric)
Dw[[j + 1]] <- array(W[, , 1:n_tM], dim = dim(M[[j + 2]]))
D[[j + 1]] <- array(W[, , n_tM + 1:n_tM], dim = dim(M[[j + 2]]))
}
names(D)[j + 1] <- names(Dw)[j + 1] <- paste0("D.scale", j)
}
return(list(D = D, D.white = Dw, M0 = M[[1]]))
} |
plot.break_down_uncertainty <- function(x, ...,
vcolors = DALEX::colors_breakdown_drwhy(),
show_boxplots = TRUE,
max_features = 10,
max_vars = NULL) {
if (!is.null(max_vars)) {
max_features <- max_vars
}
variable <- contribution <- NULL
df <- as.data.frame(x)
df$variable <- reorder(df$variable, df$contribution, function(x) mean(abs(x)))
vnames <- tail(levels(df$variable), max_features)
df <- df[df$variable %in% vnames, ]
pl <- ggplot(df, aes(x = variable, y = contribution))
if (any(df$B == 0)) {
x_bars <- df[df$B == 0,]
pl <- pl +
geom_col(data = x_bars, aes(x = variable, y = contribution, fill = factor(sign(contribution)))) +
scale_fill_manual(values = vcolors)
}
if (show_boxplots) {
pl <- pl +
geom_boxplot(coef = 100, fill = "
}
pl +
facet_wrap(~label, ncol = 1) +
coord_flip() + DALEX::theme_drwhy_vertical() +
theme(legend.position = "none") + xlab("")
} |
test_that("posix offset is 1970-01-01 01:00:00 CET)", {
Sys.setenv(TZ = 'CET')
expect_equal(as.POSIXct(as.numeric(as.POSIXct("1975-12-16 03:46:00 CET")),
origin = min(as.POSIXct(Sys.Date()), 0)),
as.POSIXct("1975-12-16 03:46:00 CET"))
})
test_that("util_interpret_limits works", {
Sys.setenv(TZ = 'CET')
meta <- prep_create_meta(
VAR_NAMES = 1:26,
DATA_TYPE = c(rep(DATA_TYPES$INTEGER, 13), rep(DATA_TYPES$FLOAT, 9),
rep(DATA_TYPES$DATETIME, 4)),
LABEL = LETTERS,
MISSING_LIST = ""
)
expect_error(util_interpret_limits(meta), regexp =
"No column containing the term LIMIT")
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]] <- NA
expect_warning(util_interpret_limits(meta), regexp =
"HARD_LIMITS has no defined intervals and is omitted.")
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]] <- "xx"
expect_warning(util_interpret_limits(meta), regexp =
"Found invalid limits for .HARD_LIMITS.: .* will ignore these",
perl = TRUE)
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]] <- NA
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][1] <- "[0; 10)"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][2] <- "[0;Inf)"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][3] <- "(0; 10)"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][4] <- "[0; 10]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][5] <- "[-Inf; 0]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][6] <- "(-Inf; Inf]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][7] <- "(0.1; 13.324]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][8] <- "(0.1; 13324.0]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][23] <- "(2020-01-01 00:00:00 CET; Inf]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][24] <- "(+Inf; 2019-09-09 00:00:00 CET]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][25] <- "(2020-01-01 00:00:00 CET; ]"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][26] <- "(+Inf; ]"
m2 <- util_interpret_limits(meta)
a <- m2[, c("HARD_LIMIT_LOW", "HARD_LIMIT_UP", "INCL_HARD_LIMIT_LOW",
"INCL_HARD_LIMIT_UP")]
b <- dplyr::tribble(
~HARD_LIMIT_LOW, ~HARD_LIMIT_UP, ~INCL_HARD_LIMIT_LOW, ~INCL_HARD_LIMIT_UP,
0, 10, TRUE, FALSE,
0, Inf, TRUE, FALSE,
0, 10, FALSE, FALSE,
0, 10, TRUE, TRUE,
-Inf, 0, TRUE, TRUE,
-Inf, Inf, FALSE, TRUE,
0.1, 13.324, FALSE, TRUE,
0.1, 13324, FALSE, TRUE,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
NA, NA, NA, NA,
1577833200, Inf, FALSE, TRUE,
Inf, 1567980000, FALSE, TRUE,
1577833200, NA, FALSE, TRUE,
Inf, NA, FALSE, TRUE,
)
expect_equivalent(a, b, tolerance = 1e-3)
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]] <- NA
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][1] <- "[0; 0-0)"
meta[[WELL_KNOWN_META_VARIABLE_NAMES$HARD_LIMITS]][2] <- "[3-3;Inf)"
expect_warning(m3 <- util_interpret_limits(meta),
regexp =
paste0("In util_interpret_limits: Damaged (lower|upper)",
".+HARD_LIMITS.+: .+(3-3|0-0).+ in .+[12].+"),
all = TRUE,
perl = TRUE
)
}) |
print(si <- sessionInfo(), locale=FALSE)
Sys.info()
'
time make test-Large
'
Sys.memGB <- function (kind = "MemTotal")
{
mm <- drop(read.dcf("/proc/meminfo", fields = kind))
if (any(is.na(mm))) {
warning("Non-existing 'kind': ", names(mm)[is.na(mm)][1])
0
} else if (!all(grepl(" kB$", mm))) {
warning("Memory info ", dQuote(kind),
" is not returned in 'kB' aka kiloBytes")
0
} else
as.numeric(sub(" kB$", "", mm))/(1000 * 1024)
}
availableGB <-
if(file.exists("/proc/meminfo")) {
Sys.memGB("MemAvailable")
} else {
0
}
cat("Available (processor aka CPU) memory: ", round(availableGB, 1),
"GB (Giga Bytes)\n")
if(.Machine$sizeof.pointer < 8) {
cat(".Machine :\n"); str(.Machine)
cat("not a 64-bit system -- forget about these tests!\n")
q("no")
}
if(availableGB > 11) local(withAutoprint({
tf <- tempfile(); file <- file(tf, "wb")
txtLine <- c(rep(as.raw(32:127), 2^5), charToRaw("\n"))
system.time({
for(i in 1:(2^15-1)) writeBin(rep_len(txtLine, 2^16), file)
for(i in 1:(2^15-1)) writeBin(rep_len(as.raw(0L), 2^16), file)
})
close(file)
log2(file.size(tf))
"FIXME: on 32-bit Linux (F 24), still see
Program received signal SIGSEGV, Segmentation fault.
... in do_readLines (call=0x8.., op=0x8.., ....)
at ../../../R/src/main/connections.c:3852
3852 if(c != '\n') buf[nbuf++] = (char) c; else break;
"
if(.Machine$sizeof.pointer > 4) withAutoprint({
system.time( x <- readLines(tf) )
str(ncx <- nchar(x, "bytes"))
tail(ncx)
table(ncx)
head(iL <- which(ncx == 4075))
stopifnot(diff(iL) == 21)
}) else cat("32-bit: still seg.faulting - FIXME\n")
}))
if(availableGB > 21) system.time({
res <- c(a=raw(2), raw(2^31-1))
})
if(FALSE) {
os <- object.size(res)
} else {
os <- structure(19327353184, class = "object_size")
print(os, units = "GB")
}
if(exists("res")) rm(res)
gc(reset = TRUE)
if(availableGB > 37) system.time({
res <- c(a = list(rep(c(b=raw(1)), 2^31-2), raw(2)), recursive=TRUE)
})
if(exists("res")) withAutoprint({
str(res)
gc()
rm(res)
})
gc(reset = TRUE)
if(availableGB > 4) system.time(local(withAutoprint({
txt <- strrep("test me:", 53687091); object.size(txt)
nc <- nchar(txt)
nc*5L+8L
en <- encodeString(txt)
stopifnot(identical(txt,en))
})))
if(availableGB > 6) system.time(withAutoprint({
r <- pretty(c(-1,1)*1e300, n = 449423288, min.n = 1)
head(r) ; length(r)
stopifnot(all.equal(length(r), 400000001, tol = 0.1))
}))
rm(r)
gc()
n <- 4e4
n <- 2.2e9
if(availableGB > 60) withAutoprint({
n/.Machine$integer.max
ii <- seq_len(n)
system.time(ii <- ii + 0)
system.time(i2 <- ii[-n])
})
if(availableGB > 99) withAutoprint({
system.time( x <- ii/n )
system.time( y <- sin(pi*x) )
system.time(sorted <- !is.unsorted(x))
stopifnot(sorted)
system.time(ap1 <- approx(x,y, ties = "ordered"))
stopifnot(exprs = {
is.list(ap1)
names(ap1) == c("x","y")
length(ap1$x) == 50
all.equal(ap1$y, sin(pi*ap1$x), tol= 1e-9)
})
rm(ap1)
gc()
})
if(availableGB > 165) withAutoprint({
system.time(iis <- which(isMl <- ii < 9999))
gc()
system.time(r <- ifelse(isMl, ii, ii*1.125))
stopifnot(exprs = {
length(r) == n
iis == seq_len(9998)
})
rm(isMl, iis, r)
})
gc()
if(availableGB > 211) withAutoprint({
system.time(xo <- x + 1/(2*n))
system.time(ap <- approx(x,y, ties = "ordered", xout = xo))
gc(reset = TRUE)
stopifnot(exprs = {
is.list(ap)
names(ap) == c("x","y")
length(ap$x) == n
is.na(ap$y[n])
all.equal(ap$y[i2], sin(pi*xo[i2]), tol= if(n < 1e7) 1e-8 else 1e-15)
})
rm(ap); gc()
system.time(apf <- approxfun(x,y, ties="ordered", rule = 2))
xi <- seq(0, 1, by = 2^-12)
stopifnot(all.equal(apf(xi), sin(pi*xi), tol= if(n < 1e7) 1e-7 else 1e-11))
rm(apf); gc()
system.time(ssf <- splinefun(x,y, ties = "ordered"))
system.time(ss <- spline (x,y, ties = "ordered", xout = xi))
gc()
stopifnot(exprs = {
is.list(ss)
names(ss) == c("x","y")
length(ss$y) == length(xi)
all.equal(ss$y , sin(pi*xi), tol= 1e-15)
all.equal(ssf(xi), ss$y, tol= 1e-15)
})
rm(x, y, xo, ss, ssf)
gc(reset=TRUE)
})
if(availableGB > 24) withAutoprint({
system.time(L <- rep.int((0:15) %% 7 == 2, 2^28))
print(object.size(L), unit="GB")
system.time(sL <- sum(L))
stopifnot(exprs = {
is.logical(L)
length(L) == 2^32
!is.integer(length(L))
is.integer(sL)
identical(sL, as.integer(2^29))
})
})
gc(reset=TRUE)
L <- as.integer(2^31 - 1)
if(availableGB > 12) withAutoprint({
system.time(x31 <- rep.int(L, 2^31+1))
print(object.size(x31), unit = "GB")
system.time(S <- sum(x31))
system.time(S.4 <- sum(x31, x31, x31, x31))
stopifnot(is.integer(x31),
identical(S, 2^62),
identical(S.4, 2^64))
system.time(x32 <- c(x31, x31))
rm(x31)
system.time(S.2 <- sum(x32))
stopifnot(S.2 == 2^63)
rm(x32)
})
if(availableGB > 16) withAutoprint({
i <- as.integer(2^30)
system.time(i2.31 <- seq(-i, by=1L, length=2*i+1))
object.size(i2.31)
stopifnot(is.integer(i2.31), i2.31[1] == -i, i2.31[length(i2.31)] == i)
if(availableGB > 24) withAutoprint({
system.time(i2.31 <- pmin(i2.31, 0L))
str(i2.31)
system.time(stopifnot(i2.31[(i+1):length(i2.31)] == 0))
})
})
if(availableGB > 44) withAutoprint({
system.time(m <- match(rep("a", 2^31), "a"))
stopifnot(all(m == 1L))
rm(m)
system.time({x <- character(2^31); x[26:1] <- letters })
system.time(m <- match(x, "a"))
head(m, 30)
system.time(stopifnot(m[26] == 1L, is.na(m[-26])))
rm(x, m)
})
if(availableGB > 14) withAutoprint({
vec <- rep(0, 3e8)
raw_con <- rawConnection(serialize(vec, NULL))
repeat {
x <- readBin(raw_con, "raw", n = 1e+06)
if(length(x) == 0)
break
cat(".")
}; cat("\n")
})
if(availableGB > 20) withAutoprint({
x <- raw(2^31)
writeBin(x, con = nullfile())
con <- rawConnection(raw(0L), "w")
writeBin(x, con = con)
stopifnot(identical(x, rawConnectionValue(con)))
system.time(x <- pi*seq_len(2.1*2^30))
zzfil <- tempfile("test-large-bin")
zz <- file(zzfil, "wb")
system.time(z <- writeBin(x, zz))
stopifnot(is.null(z))
close(zz); zz <- file(zzfil, "rb")
system.time(r <- readBin(zz, double(), n = length(x) + 999))
system.time(stopifnot(identical(x, r)))
close(zz); rm(r, zz)
})
mkDat <- function(n) {
x <- 5*(1:n)/(n+1)
data.frame(x = x, y = sin(pi*x^2) * exp(-x/2) + rnorm(n)/8)
}
set.seed(1); dat <- mkDat(n = 42000)
system.time(
fit <- loess(y~x, data=dat)
)
r <- tools::assertError(
predict(fit, newdata=data.frame(x=.5), se=TRUE)
, verbose=TRUE)
stopifnot(grepl("^workspace .* is too large .* 'se = TRUE'", r[[1]]$message))
(i <- 2^31) > .Machine$integer.max
system.time(x <- raw(i))
x [i] <- r1 <- as.raw(1); stopifnot(x [i] == r1)
x[[i]] <- r2 <- as.raw(2); stopifnot(x[[i]] == r2)
x[[i]] <- r3 <- as.raw(3); stopifnot(x[[i]] == r3)
stopifnot((n <- 2^31 + 352) > .Machine$integer.max)
system.time(L <- integer(n))
system.time(LL <- vector("list", n))
system.time(nm <- c(LETTERS, letters, rep("xx", length(L) - 2*26)))
Ln <- L
system.time(names(Ln) <- nm)
op <- options(max.print = 300)
L
Ln
LL
options(op)
LL <- matrix(as.raw(1:2), 2, 2^30)
ca.half <- 0.5+ (eps <- unique(sort(outer(2^-c(16, 21, 26, 30), -1:1))))
print(eps, digits=3)
LL[cbind(2, ca.half)]
LL[cbind(1, 1+ca.half)]
LL[cbind(2+ca.half, 1)]
LL[cbind(-ca.half, 1)]
stopifnot(exprs = {
length(LL[cbind(2, ca.half)]) == 0
LL[cbind(1, 1+ca.half)] == as.raw(1L)
LL[cbind(2+ca.half, 1)] == as.raw(2L)
length(LL[cbind( -ca.half, 1)]) == 0
})
gc()
proc.time() |
context("calc_summary_measures")
samples <- data.frame(value = 1:10, type = "car")
test_that("calc_summary_measures works as expected with default arguments", {
expect_known_output(calc_summary_measures(samples),
file = testthat::test_path("test-data/calc_summary_measures_default.rds"))
})
test_that("calc_CrI works as expected when grouping", {
expect_known_output(calc_summary_measures(samples, summarise_by = "type"),
file = testthat::test_path("test-data/calc_summary_measures_grouping.rds"))
})
test_that("calc_CrI works as expected when given a custom CrI list", {
expect_known_output(calc_summary_measures(samples, CrIs = c(0.1, 0.4, 0.95)),
file = testthat::test_path("test-data/calc_summary_measures_custom_CrI.rds"))
}) |
cf <- check_that(women, height > 0, sd(weight) > 0)
as.data.frame(cf)
women$id <- letters[1:15]
i <- indicator(mw = mean(weight), ratio = weight/height)
as.data.frame(confront(women, i, key="id")) |
Lixn <- function(traj1,traj2,method="spatial",tc=0,hr1,hr2,OZ=NULL){
output <- NULL
trajs <- GetSimultaneous(traj1,traj2,tc)
tr1 <- ld(trajs[1])
tr2 <- ld(trajs[2])
n <- nrow(tr1)
pts1 <- SpatialPoints(tr1[,1:2])
pts2 <- SpatialPoints(tr2[,1:2])
if (method == 'spatial'){
if (gContains(hr1,hr2) == TRUE){output <- list(pTable=NA,nTable=NA,oTable=NA,Laa=NA,p.AA=NA,Lbb=NA,p.BB=NA,Lixn=NA,p.IXN="ContainsA")}
else if (gContains(hr2,hr1) == TRUE){output <- list(pTable=NA,nTable=NA,oTable=NA,Laa=NA,p.AA=NA,Lbb=NA,p.BB=NA,Lixn=NA,p.IXN="ContainsB")}
else {
areaA <- gDifference(hr1,hr2)
areaB <- gDifference(hr2,hr1)
areaAB <- gIntersection(hr1,hr2)
if (is.null(areaAB) == FALSE){
A1.int <- gCovers(areaA,pts1,byid=T)
AB1.int <- gCovers(areaAB,pts1,byid=T)
B2.int <- gCovers(areaB,pts2,byid=T)
AB2.int <- gCovers(areaAB,pts2,byid=T)
l.vec <- c(length(A1.int),length(B2.int),length(AB1.int),length(AB2.int))
if (diff(range(l.vec)) == 0){
n11 <- sum(AB1.int*AB2.int)
n22 <- sum(A1.int*B2.int)
n12 <- sum(A1.int*AB2.int)
n21 <- sum(AB1.int*B2.int)
} else {n11 <- 0; n12 <- 0; n21 <- 0; n22 <- 0}
a <- gArea(hr1)
b <- gArea(hr2)
ab <- gArea(areaAB)
p11 <- (ab^2)/(a*b)
p12 <- (1 - (ab/a))*(ab/b)
p21 <- (ab/a)*(1 - (ab/b))
p22 <- (1-(ab/a))*(1-(ab/b))
} else {output <- list(pTable=NA,nTable=NA,oTable=NA,Laa=NA,p.AA=NA,Lbb=NA,p.BB=NA,Lixn=NA,p.IXN=NA)}
}
} else if (method == 'frequency'){
areaAB <- OZ
areaA <- gDifference(gBoundary(pts1),areaAB)
areaB <- gDifference(gBoundary(pts2),areaAB)
if (is.null(areaAB) == FALSE){
A1.int <- gCovers(areaA,pts1,byid=T)
AB1.int <- gCovers(areaAB,pts1,byid=T)
B2.int <- gCovers(areaB,pts2,byid=T)
AB2.int <- gCovers(areaAB,pts2,byid=T)
l.vec <- c(length(A1.int),length(B2.int),length(AB1.int),length(AB2.int))
if (diff(range(l.vec)) == 0){
n11 <- sum(AB1.int*AB2.int)
n22 <- sum(A1.int*B2.int)
n12 <- sum(A1.int*AB2.int)
n21 <- sum(AB1.int*B2.int)
} else {n11 <- 0; n12 <- 0; n21 <- 0; n22 <- 0}
t1 <- ld(traj1)
t2 <- ld(traj2)
r <- nrow(t1)
s <- nrow(t2)
p1 <- SpatialPoints(t1[,1:2])
p2 <- SpatialPoints(t2[,1:2])
AB1.int <- gCovers(areaAB,p1,byid=T)
AB2.int <- gCovers(areaAB,p2,byid=T)
rAB <- length(which(AB1.int == T))
sAB <- length(which(AB2.int == T))
p11 <- (rAB*sAB)/(r*s)
p12 <- (1 - (rAB/r))*(sAB/s)
p21 <- (rAB/r)*(1-(sAB/s))
p22 <- (1 - (rAB/r))*(1 - (sAB/s))
} else {output <- list(pTable=NA,nTable=NA,oTable=NA,Laa=NA,p.AA=NA,Lbb=NA,p.BB=NA,Lixn=NA,p.IXN=NA)}
} else {stop(paste("The method - ",method,", is not recognized. Please try again.",sep=""))}
if (is.null(output)){
w <- (n11*n22)/(n12*n21)
L <- log(w)
se.L <- sqrt((1/n11) + (1/n12) + (1/n21) + (1/n22))
n.1 <- n11 + n21
n.2 <- n12 + n22
n1. <- n11 + n12
n2. <- n21 + n22
p.1 <- p11+p21
p.2 <- p12+p22
p1. <- p11+p12
p2. <- p21+p22
chi.tot <- (((n11-p11*n)^2)/p11*n) + (((n12-p12*n)^2)/p12*n) + (((n21-p21*n)^2)/(p21*n)) + (((n22-p22*n)^2)/(p22*n))
Laa <- log((p.2*n.1)/(p.1*n.2))
chiAA <- ((n.1-p.1*n)^2)/(p.2*p.1*n)
Lbb <- log((p2.*n1.)/(p1.*n2.))
chiBB <- ((n1.-p1.*n)^2)/(p2.*p1.*n)
Lixn <- log(((n11/p11)+(n22/p22))/((n12/p12)+(n21/p21)))
chiIXN <- (((n11/p11) + (n22/p22) - (n12/p12) - (n21/p21))^2)/(n*((1/p11) + (1/p12) + (1/p21) + (1/p22)))
o11 <- n11/(p11*n)
o12 <- n12/(p12*n)
o21 <- n21/(p21*n)
o22 <- n22/(p22*n)
p.AA <- 1 - pchisq(chiAA,df=1)
p.BB <- 1 - pchisq(chiBB,df=1)
p.IXN <- 1 - pchisq(chiIXN,df=1)
pTable <- matrix(c(p11,p12,p21,p22),ncol=2,byrow=T,dimnames=list(c("B","b"),c("A","b")))
nTable <- matrix(c(n11,n12,n21,n22),ncol=2,byrow=T,dimnames=list(c("B","b"),c("A","b")))
oTable <- matrix(c(o11,o12,o21,o22),ncol=2,byrow=T,dimnames=list(c("B","b"),c("A","b")))
output <- list(pTable=pTable,nTable=nTable,oTable=oTable,Laa=Laa,p.AA=p.AA,Lbb=Lbb,p.BB=p.BB,Lixn=Lixn,p.IXN=p.IXN)
}
return(output)
} |
prsim.weather <- function(data_p, data_t, station_id_p="Precip",station_id_t="Temp", number_sim=1, win_h_length=15,
n_wave=100,verbose=TRUE,t_margin='sep',p_margin='egpd',...){
fun_icwt<-function(x){
wt.r<-Re(x)
J<-length(x[1,])
dial<-2*2^(0:J*.125)
rec<-rep(NA,(length(x[,1])))
for(l in 1:(length(x[,1]))){
rec[l]<-0.2144548*sum(wt.r[l,]/sqrt(dial)[1:length(wt.r[l,])])
}
return(rec)
}
p_margin <- p_margin[1]
if (!(p_margin %in% c("egpd"))) {
if (!is.character(p_margin)) stop("'p_margin' should be a character string.")
rCDF_p <- get(paste0("r",p_margin), mode = "function")
CDF_fit_p <- get(paste0(p_margin,"_fit"), mode = "function")
}
t_margin <- t_margin[1]
if (!(t_margin %in% c("sep"))) {
if (!is.character(t_margin)) stop("'p_margin' should be a character string.")
rCDF_t <- get(paste0("r",t_margin), mode = "function")
CDF_fit_t <- get(paste0(t_margin,"_fit"), mode = "function")
}
op <- options("warn")$warn
for(l in 1:length(data_p)){
if (nrow(data_p[[l]])[1]<730) stop("At least one year of data required.")
if (is.numeric(station_id_p)){
station_id_p <- colnames(data_p[[l]])[station_id_p]
}
if (is.na(station_id_p)||!("Precip" %in% colnames(data_p[[l]]))) stop("Wrong column (name) for observations selected.")
if (any(class(data_p[[l]][,1])%in%c("POSIXct","POSIXt"))){
data <- data.frame(YYYY=as.integer(format(data_p[[l]][,1],'%Y')),
MM=as.integer(format(data_p[[l]][,1],'%m')),
DD=as.integer(format(data_p[[l]][,1],'%d')),
Precip=data_p[[l]][,station_id_p],
timestamp=data_p[[l]][,1])
} else {
if(!all(c("YYYY","MM","DD") %in% colnames(data_p[[l]]))) stop("Wrong time column names")
data_p[[l]] <- data_p[[l]][,c("YYYY","MM","DD", station_id_p)]
tmp <- paste(data_p[[l]]$YYYY,data_p[[l]]$MM,data_p[[l]]$DD,sep=" ")
names(data_p[[l]]) <- c("YYYY","MM","DD","Precip")
data_p[[l]]$timestamp <- as.POSIXct(strptime(tmp, format="%Y %m %d", tz="GMT"))
}
if (nrow(data_t[[l]])[1]<730) stop("At least one year of data required.")
if (is.numeric(station_id_t)){
station_id_t <- colnames(data_t[[l]])[station_id_t]
}
if (is.na(station_id_t)||!("Temp" %in% colnames(data_t[[l]]))) stop("Wrong column (name) for observations selected.")
if (any(class(data_t[[l]][,1])%in%c("POSIXct","POSIXt"))){
data <- data.frame(YYYY=as.integer(format(data_t[[l]][,1],'%Y')),
MM=as.integer(format(data_t[[l]][,1],'%m')),
DD=as.integer(format(data_t[[l]][,1],'%d')),
Temp=data_t[[l]][,station_id_t],
timestamp=data_t[[l]][,1])
} else {
if(!all(c("YYYY","MM","DD") %in% colnames(data_t[[l]]))) stop("Wrong time column names")
data_t[[l]] <- data_t[[l]][,c("YYYY","MM","DD", station_id_t)]
tmp <- paste(data_t[[l]]$YYYY,data_t[[l]]$MM,data_t[[l]]$DD,sep=" ")
names(data_t[[l]]) <- c("YYYY","MM","DD","Temp")
data_t[[l]]$timestamp <- as.POSIXct(strptime(tmp, format="%Y %m %d", tz="GMT"))
}
data_p[[l]] <- data_p[[l]][format(data_p[[l]]$timestamp, "%m %d") != "02 29",]
data_t[[l]] <- data_t[[l]][format(data_t[[l]]$timestamp, "%m %d") != "02 29",]
if(which(format(data_p[[l]]$timestamp,format='%j')=='001')[1]>1){
data_p[[l]] <- data_p[[l]][-c(1:(which(format(data_p[[l]]$timestamp,format='%j')=='001')[1]-1)),]
}
if ((nrow(data_p[[l]]) %% 365)>0) stop("No missing values allowed. Some days are missing.")
if(which(format(data_t[[l]]$timestamp,format='%j')=='001')[1]>1){
data_t[[l]] <- data_t[[l]][-c(1:(which(format(data_t[[l]]$timestamp,format='%j')=='001')[1]-1)),]
}
if ((nrow(data_t[[l]]) %% 365)>0) stop("No missing values allowed. Some days are missing.")
if(length(which(is.na(data_p[[l]]$timestamp)))>0){
data_p[[l]][which(is.na(data_p[[l]]$timestamp)),]$Precip <- mean(data_p[[l]]$Precip,na.rm=T)
}
if(length(which(is.na(data_t[[l]]$timestamp)))>0){
data_t[[l]][which(is.na(data_t[[l]]$timestamp)),]$Temp <- mean(data_p[[l]]$Temp,na.rm=T)
}
data_p[[l]]$index <- as.numeric(format(data_p[[l]]$timestamp,format='%j'))
data_t[[l]]$index <- as.numeric(format(data_t[[l]]$timestamp,format='%j'))
if(length(which(is.na(data_p[[l]]$index))>0)){
data_p[[l]]$index[which(is.na(data_p[[l]]$index))] <- rep(c(1:365), times=length(unique(data_p[[l]]$YYYY)))[which(is.na(data_p[[l]]$index))]
}
if(length(which(is.na(data_t[[l]]$index))>0)){
data_t[[l]]$index[which(is.na(data_t[[l]]$index))] <- rep(c(1:365), times=length(unique(data_t[[l]]$YYYY)))[which(is.na(data_t[[l]]$index))]
}
}
if (verbose) cat(paste0("Detrending with (half-)length ",win_h_length,"...\n"))
set.seed(10)
noise_mat_r <- list()
for (r in 1:number_sim){
station_rand <- sample(size=1,1:length(data_t))
years <- unique(data_t[[station_rand]]$YYYY)
year_samp <- sample(years)
data_samp <- data_t[[station_rand]][which(data_t[[station_rand]]$YYYY==year_samp[1]),]
for(i in 2:length(year_samp)){
data_year <- data_t[[station_rand]][which(data_t[[station_rand]]$YYYY==year_samp[i]),]
data_samp <- rbind(data_samp,data_year)
}
ts_wn <- data_samp$Temp
scale.range = deltat(data_p[[l]]$Precip) * c(1, length(data_p[[l]]$Precip))
sampling.interval <- 0.1
octave <- logb(scale.range, 2)
scale <- ifelse1(n_wave > 1, 2^c(octave[1] + seq(0, n_wave -
2) * diff(octave)/(floor(n_wave) - 1), octave[2]), scale.range[1])
scale <- unique(round(scale/sampling.interval) * sampling.interval)
wt_morlet <- cwt_wst(signal=ts_wn,scales=scale,wname='MORLET',makefigure=FALSE,dt=1,powerscales=FALSE,wparam=5)
noise_mat_r[[r]] <- as.matrix(wt_morlet$coefs)
}
p_fit <-p_val_p <- t_fit <- p_val_t<- rep(list(rep(list(NA),times=12)),times=length(data_p))
if(p_margin=='egpd'){
for(i in 1:length(data_p)){
for(m in 1:12){
pos_month <- as.numeric(data_p[[i]]$MM)%in%m
data_month <- data_p[[i]]$Precip[which(as.numeric(data_p[[i]]$MM)==m)]
data_month <- data_month[which(data_month>0)]
p_fit[[i]][[m]] <- fit.extgp(data=data_month,method='pwm',init= c(0.9, 4,0.1),model=1)
}
}
}
if(p_margin!='egpd'){
for(i in 1:length(data_p)){
for(m in 1:12){
pos_month <- as.numeric(data_p[[i]]$MM)%in%m
data_month <- data_p[[i]]$Precip[which(as.numeric(data_p[[i]]$MM)==m)]
data_month <- data_month[which(data_month>0)]
p_fit[[i]][[m]] <- CDF_fit_p(xdat=data_month,...)
}
}
}
if(t_margin=='sep'){
for(i in 1:length(data_p)){
for(m in 1:12){
data_month <- data_t[[i]]$Temp[which(as.numeric(data_t[[i]]$MM)==m)]
l_moments <- lmoms(data_month)
aep_par <- lmom2par(lmom=l_moments, type='aep4')
t_fit[[i]][[m]] <- aep_par
}
}
}
if(t_margin!='sep'){
for(i in 1:length(data_t)){
for(m in 1:12){
pos_month <- as.numeric(data_t[[i]]$MM)%in%m
data_month <- data_t[[i]]$Temp[which(as.numeric(data_t[[i]]$MM)==m)]
data_month <- data_month[which(data_month>0)]
t_fit[[i]][[m]] <- CDF_fit_t(xdat=data_month,...)
}
}
}
if(verbose) cat(paste0("Starting ",number_sim," simulations:\n"))
out_list<-list()
for(l in 1:length(data_p)){
data_sim_t <- data_sim_p <- list()
for (r in c(1:number_sim)){
scale.range = deltat(data_p[[l]]$Precip) * c(1, length(data_p[[l]]$Precip))
sampling.interval <- 0.1
octave <- logb(scale.range, 2)
scale <- ifelse1(n_wave > 1, 2^c(octave[1] + seq(0, n_wave -
2) * diff(octave)/(floor(n_wave) - 1), octave[2]), scale.range[1])
scale <- unique(round(scale/sampling.interval) * sampling.interval)
wt_morlet_p <- cwt_wst(signal=data_p[[l]]$Precip,scales=scale,wname='MORLET',
powerscales=FALSE,makefigure=FALSE,dt=1,wparam=5)
wt_morlet_t <- cwt_wst(signal=data_t[[l]]$Temp,scales=scale,wname='MORLET',
powerscales=FALSE,makefigure=FALSE,dt=1,wparam=5)
morlet_mat_p <- as.matrix(wt_morlet_p$coefs)
morlet_mat_t <- as.matrix(wt_morlet_t$coefs)
modulus_p <- Mod(morlet_mat_p)
modulus_t <- Mod(morlet_mat_t)
phases_p <- Arg(morlet_mat_p)
phases_t <- Arg(morlet_mat_t)
noise_mat <- noise_mat_r[[r]]
phases_random <- Arg(noise_mat)
mat_new_p <- matrix(complex(modulus=modulus_p,argument=phases_random),ncol=ncol(phases_random))
mat_new_t <- matrix(complex(modulus=modulus_t,argument=phases_random),ncol=ncol(phases_random))
rec_orig_p = fun_icwt(x=morlet_mat_p)+mean(data_p[[l]]$Precip)
rec_orig_t = fun_icwt(x=morlet_mat_t)+mean(data_t[[l]]$Temp)
rec_p<- fun_icwt(x=mat_new_p)
rec_t<- fun_icwt(x=mat_new_t)
rec_random_p<-rec_p
rec_random_t<-rec_t
data_new <- data.frame("random_p"=rec_random_p,'random_t'=rec_random_t)
data_new$MM <- data_p[[l]]$MM
data_new$DD <- data_p[[l]]$DD
data_new$YYYY <- data_p[[l]]$YYYY
data_new$index <- data_p[[l]]$index
data_new$seasonal_p <- data_new$random_p
data_new$seasonal_t <- data_new$random_t
data_new$rank_p <- rank(data_new$seasonal_p)
data_new$rank_t <- rank(data_new$seasonal_t)
d<-1
data_new$simulated_p <- NA
data_new$simulated_t <- NA
for(m in c(1:12)){
data_month <- data_t[[l]][which(as.numeric(data_t[[l]]$MM)%in%c(m)),]
if(t_margin=='sep'){
sample <- rlmomco(n=length(data_month$Temp),t_fit[[l]][[m]])
}
if(t_margin!='sep'){
sample <- rCDF_t(n=length(data_month$Temp),t_fit[[l]][[m]])
}
ranks <- rank(sample,ties.method='first')
data_new$rank_t[which(as.numeric(data_t[[l]]$MM)%in%c(m))] <- rank(round(data_new[which(as.numeric(data_t[[l]]$MM)%in%c(m)),]$seasonal_t),1)
data_ordered <- sample[order(ranks)]
data_new$simulated_t[which(as.numeric(data_t[[l]]$MM)%in%c(m))] <- data_ordered[data_new$rank_t[which(as.numeric(data_t[[l]]$MM)%in%c(m))]]
}
for(m in c(1:12)){
data_month <- data_p[[l]][which(as.numeric(data_p[[l]]$MM)%in%c(m)),]
if(p_margin=='egpd'){
sample <- rextgp(n=length(which(data_month$Precip>0)),kappa=p_fit[[l]][[m]]$fit$pwm[1],sigma=p_fit[[l]][[m]]$fit$pwm[2], xi=p_fit[[l]][[m]]$fit$pwm[3])
}
if(p_margin!='egpd'){
sample <- rCDF_t(n=length(data_month$Precip),p_fit[[l]][[m]])
}
zeros <- rep(0,length(which(data_month$Precip==0)))
outs <- c(sample,zeros)
ranks <- rank(outs,ties.method='first')
data_new$rank_p[which(as.numeric(data_p[[l]]$MM)%in%c(m))] <- rank(data_new[which(as.numeric(data_p[[l]]$MM)%in%c(m)),]$seasonal_p)
data_ordered <- outs[order(ranks)]
data_new$simulated_p[which(as.numeric(data_p[[l]]$MM)%in%c(m))] <- data_ordered[data_new$rank_p[which(as.numeric(data_p[[l]]$MM)%in%c(m))]]
}
data_sim_p[[r]] <- data_new$simulated_p
data_sim_t[[r]] <- data_new$simulated_t
if(verbose) cat(".")
}
if(verbose) cat("\nFinished.\n")
data_sim_p <- as.data.frame(data_sim_p)
names(data_sim_p) <- paste("r",seq(1:number_sim),sep="")
data_stoch_p <- data.frame(data_p[[l]][,c("YYYY", "MM", "DD", "timestamp", "Precip")],
data_sim_p)
data_sim_t <- as.data.frame(data_sim_t)
names(data_sim_t) <- paste("r",seq(1:number_sim),sep="")
data_stoch_t <- data.frame(data_t[[l]][,c("YYYY", "MM", "DD", "timestamp", "Temp")],
data_sim_t)
out_list[[l]] <- list(data_stoch_t,data_stoch_p)
}
return(out_list)
} |
context("general justifier tests")
testthat::test_that("reading a file with justifications works", {
examplePath <- file.path(system.file(package="justifier"), 'extdata');
res <- justifier::load_justifications(file.path(examplePath,
"example-minutes.jmd"));
testthat::expect_equal(length(res$raw), 2);
});
testthat::test_that("reading a directory with justifications works", {
examplePath <- file.path(system.file(package="justifier"), 'extdata');
res <- load_justifications_dir(examplePath);
testthat::expect_equal(length(res), 8);
});
testthat::test_that("parsing justifications works", {
examplePath <- file.path(system.file(package="justifier"), 'extdata');
res <- load_justifications(file.path(examplePath,
"pp19.1-target-behavior-selection.jmd"));
testthat::expect_equal(res$supplemented$decisions$
decision_to_select_behavior_1$
justification$justification_05$
assertion$assertion_nocturnal_2$
source$source_Lange$xdoi,
"doi:10.1111/j.1749-6632.2009.05300.x");
testthat::expect_equal(res$supplemented$assertions$
assertion_sleep_memory_1$
source$source_Diekelmann$xdoi,
"doi:10.1038/nrn2762");
testthat::expect_equal(res$supplemented$sources$
source_Diekelmann$
comment,
"test of a comment");
});
testthat::test_that("parsing simplified, just extracted justifications from yum works", {
examplePath <- file.path(system.file(package="justifier"), 'extdata');
res1 <- yum::load_and_simplify(file.path(examplePath,
"pp19.1-target-behavior-selection.jmd"));
res2 <- justifier::parse_justifications(res1);
testthat::expect_equal(res2$supplemented$decisions$
decision_to_select_behavior_1$
justification$justification_05$
assertion$assertion_nocturnal_2$
source$source_Lange$xdoi,
"doi:10.1111/j.1749-6632.2009.05300.x");
});
testthat::test_that("the intervention development justification from the vignette is parsed correctly", {
exampleFile <-
system.file("doc",
"justifier-in-intervention-development.Rmd",
package="justifier");
if (file.exists(exampleFile)) {
res1 <- yum::load_and_simplify(exampleFile);
res2 <- justifier::parse_justifications(res1);
testthat::expect_equal(res2$supplemented$decisions$target_behavior_selection$type,
"selection_target_behavior");
}
});
testthat::test_that("odd objects provided to to_specList throw an error", {
testthat::expect_error(justifier::to_specList(list(1:4)));
});
testthat::test_that("reading the example study jmd file works", {
examplePath <- file.path(system.file(package="justifier"), 'extdata');
res <- load_justifications(file=file.path(examplePath,
"study-example.jmd"));
testthat::expect_equal(length(res$raw), 6);
}); |
context("ml classification - logistic regression")
skip_databricks_connect()
test_that("ml_logistic_regression() default params", {
test_requires_latest_spark()
sc <- testthat_spark_connection()
test_default_args(sc, ml_logistic_regression)
})
test_that("ml_logistic_regression() param setting", {
test_requires_latest_spark()
sc <- testthat_spark_connection()
test_args <- list(
fit_intercept = FALSE,
elastic_net_param = 1e-4,
reg_param = 1e-5,
max_iter = 50,
thresholds = c(0.3, 0.7),
tol = 1e-04,
weight_col = "wow",
aggregation_depth = 3,
features_col = "foo",
label_col = "bar",
family = "multinomial",
prediction_col = "pppppp",
probability_col = "apweiof",
raw_prediction_col = "rparprpr"
)
test_param_setting(sc, ml_logistic_regression, test_args)
})
test_that("ml_logistic_regression.tbl_spark() works properly", {
sc <- testthat_spark_connection()
training <- tibble(
id = 0:3L,
text = c(
"a b c d e spark",
"b d",
"spark f g h",
"hadoop mapreduce"
),
label = c(1, 0, 1, 0)
)
test <- tibble(
id = 4:7L,
text = c("spark i j k", "l m n", "spark hadoop spark", "apache hadoop")
)
training_tbl <- testthat_tbl("training")
test_tbl <- testthat_tbl("test")
pipeline <- ml_pipeline(sc) %>%
ft_tokenizer("text", "words") %>%
ft_hashing_tf("words", "features", num_features = 1000) %>%
ml_logistic_regression(max_iter = 10, reg_param = 0.001)
m1 <- pipeline %>%
ml_fit(training_tbl)
m1_predictions <- m1 %>%
ml_transform(test_tbl) %>%
pull(probability)
m2 <- training_tbl %>%
ft_tokenizer("text", "words") %>%
ft_hashing_tf("words", "features", num_features = 1000) %>%
ml_logistic_regression(max_iter = 10, reg_param = 0.001)
m2_predictions <- m2 %>%
ml_transform(test_tbl %>%
ft_tokenizer("text", "words") %>%
ft_hashing_tf("words", "features", num_features = 1000)) %>%
pull(probability)
expect_equal(m1_predictions, m2_predictions)
})
test_that("ml_logistic_regression() agrees with stats::glm()", {
sc <- testthat_spark_connection()
set.seed(42)
iris_weighted <- iris %>%
mutate(
weights = rpois(nrow(iris), 1) + 1,
ones = rep(1, nrow(iris)),
versicolor = ifelse(Species == "versicolor", 1L, 0L)
)
iris_weighted_tbl <- testthat_tbl("iris_weighted")
r <- glm(versicolor ~ Sepal.Width + Petal.Length + Petal.Width,
family = binomial(logit), weights = weights,
data = iris_weighted
)
s <- ml_logistic_regression(iris_weighted_tbl,
formula = "versicolor ~ Sepal_Width + Petal_Length + Petal_Width",
reg_param = 0L,
weight_col = "weights"
)
expect_equal(unname(coef(r)), unname(coef(s)), tolerance = 1e-5, scale = 1)
r <- glm(versicolor ~ Sepal.Width + Petal.Length + Petal.Width,
family = binomial(logit), data = iris_weighted
)
s <- ml_logistic_regression(iris_weighted_tbl,
formula = "versicolor ~ Sepal_Width + Petal_Length + Petal_Width",
reg_param = 0L,
weight_col = "ones"
)
expect_equal(unname(coef(r)), unname(coef(s)), tolerance = 1e-5, scale = 1)
})
test_that("ml_logistic_regression can fit without intercept", {
sc <- testthat_spark_connection()
set.seed(42)
iris_weighted <- iris %>%
mutate(
weights = rpois(nrow(iris), 1) + 1,
ones = rep(1, nrow(iris)),
versicolor = ifelse(Species == "versicolor", 1L, 0L)
)
iris_weighted_tbl <- testthat_tbl("iris_weighted")
expect_error(s <- ml_logistic_regression(
iris_weighted_tbl,
formula = versicolor ~ Sepal_Width + Petal_Length + Petal_Width,
fit_intercept = FALSE
), NA)
r <- glm(versicolor ~ Sepal.Width + Petal.Length + Petal.Width - 1, family = binomial(logit), data = iris_weighted)
expect_equal(unname(coef(r)), unname(coef(s)), tolerance = 1e-5, scale = 1)
})
test_that("ml_logistic_regression() agrees with stats::glm() for reversed categories", {
sc <- testthat_spark_connection()
set.seed(42)
iris_weighted <- iris %>%
mutate(
weights = rpois(nrow(iris), 1) + 1,
ones = rep(1, nrow(iris)),
versicolor = ifelse(Species == "versicolor", 1L, 0L)
)
iris_weighted_tbl <- testthat_tbl("iris_weighted")
r <- glm(versicolor ~ Sepal.Width + Petal.Length + Petal.Width,
family = binomial(logit), weights = weights,
data = iris_weighted
)
s <- ml_logistic_regression(iris_weighted_tbl,
formula = "versicolor ~ Sepal_Width + Petal_Length + Petal_Width",
reg_param = 0L,
weight_col = "weights"
)
expect_equal(unname(coef(r)), unname(coef(s)), tolerance = 1e-5, scale = 1)
r <- glm(versicolor ~ Sepal.Width + Petal.Length + Petal.Width,
family = binomial(logit), data = iris_weighted
)
s <- ml_logistic_regression(iris_weighted_tbl,
formula = "versicolor ~ Sepal_Width + Petal_Length + Petal_Width",
reg_param = 0L,
weight_col = "ones"
)
expect_equal(unname(coef(r)), unname(coef(s)), tolerance = 1e-5, scale = 1)
})
test_that("ml_logistic_regression.tbl_spark() takes both quoted and unquoted formulas", {
sc <- testthat_spark_connection()
iris_weighted_tbl <- testthat_tbl("iris_weighted")
m1 <- ml_logistic_regression(
iris_weighted_tbl,
formula = "versicolor ~ Sepal_Width + Petal_Length + Petal_Width"
)
m2 <- ml_logistic_regression(
iris_weighted_tbl,
formula = versicolor ~ Sepal_Width + Petal_Length + Petal_Width
)
expect_identical(m1$formula, m2$formula)
})
test_that("ml_logistic_regression.tbl_spark() takes 'response' and 'features' columns instead of formula for backwards compatibility", {
sc <- testthat_spark_connection()
iris_weighted_tbl <- testthat_tbl("iris_weighted")
m1 <- ml_logistic_regression(
iris_weighted_tbl,
formula = "versicolor ~ Sepal_Width + Petal_Length + Petal_Width"
)
m2 <- ml_logistic_regression(
iris_weighted_tbl,
response = "versicolor",
features = c("Sepal_Width", "Petal_Length", "Petal_Width")
)
expect_identical(m1$formula, m2$formula)
})
test_that("ml_logistic_regression.tbl_spark() warns when 'response' is a formula and 'features' is specified", {
sc <- testthat_spark_connection()
iris_weighted_tbl <- testthat_tbl("iris_weighted")
expect_warning(
ml_logistic_regression(iris_weighted_tbl,
response = versicolor ~ Sepal_Width + Petal_Length + Petal_Width,
features = c("Sepal_Width", "Petal_Length", "Petal_Width")
),
"'features' is ignored when a formula is specified"
)
})
test_that("ml_logistic_regression.tbl_spark() errors if 'formula' is specified and either 'response' or 'features' is specified", {
sc <- testthat_spark_connection()
iris_weighted_tbl <- testthat_tbl("iris_weighted")
expect_error(
ml_logistic_regression(iris_weighted_tbl,
"versicolor ~ Sepal_Width + Petal_Length + Petal_Width",
response = "versicolor"
),
"only one of 'formula' or 'response'-'features' should be specified"
)
expect_error(
ml_logistic_regression(iris_weighted_tbl,
"versicolor ~ Sepal_Width + Petal_Length + Petal_Width",
features = c("Sepal_Width", "Petal_Length", "Petal_Width")
),
"only one of 'formula' or 'response'-'features' should be specified"
)
})
test_that("we can fit multinomial models", {
sc <- testthat_spark_connection()
test_requires_version("2.1.0", "multinomial models not supported < 2.1.0")
n <- 200
data <- data.frame(
x = seq_len(n),
y = rep.int(letters[1:4], times = n / 4)
)
capture.output(r <- nnet::multinom(y ~ x, data = data))
tbl <- copy_to(sc, data, overwrite = TRUE)
s <- ml_logistic_regression(tbl, y ~ x)
train <- data.frame(x = sample(n))
rp <- predict(r, train)
sp <- predict(s, copy_to(sc, train, overwrite = TRUE))
expect_equal(as.character(rp), as.character(sp))
})
test_that("weights column works for logistic regression", {
sc <- testthat_spark_connection()
set.seed(42)
iris_weighted <- iris %>%
mutate(
weights = rpois(nrow(iris), 1) + 1,
ones = rep(1, nrow(iris)),
versicolor = ifelse(Species == "versicolor", 1L, 0L)
)
iris_weighted_tbl <- testthat_tbl("iris_weighted")
r <- glm(versicolor ~ Sepal.Width + Petal.Length + Petal.Width,
family = binomial(logit), weights = weights,
data = iris_weighted
)
s <- ml_logistic_regression(iris_weighted_tbl,
response = "versicolor",
features = c("Sepal_Width", "Petal_Length", "Petal_Width"),
reg_param = 0L,
weight_col = "weights"
)
expect_equal(unname(coef(r)), unname(coef(s)), tolerance = 1e-5, scale = 1)
r <- glm(versicolor ~ Sepal.Width + Petal.Length + Petal.Width,
family = binomial(logit), data = iris_weighted
)
s <- ml_logistic_regression(iris_weighted_tbl,
response = "versicolor",
features = c("Sepal_Width", "Petal_Length", "Petal_Width"),
reg_param = 0L,
weight_col = "ones"
)
expect_equal(unname(coef(r)), unname(coef(s)), tolerance = 1e-5, scale = 1)
})
test_that("logistic regression bounds on coefficients", {
sc <- testthat_spark_connection()
test_requires_version("2.2.0", "coefficient bounds require 2.2+")
iris_tbl <- testthat_tbl("iris")
lr <- ml_logistic_regression(
iris_tbl, Species ~ Petal_Width + Sepal_Length,
upper_bounds_on_coefficients = matrix(rep(1, 6), nrow = 3),
lower_bounds_on_coefficients = matrix(rep(-1, 6), nrow = 3),
upper_bounds_on_intercepts = c(1, 1, 1),
lower_bounds_on_intercepts = c(-1, -1, -1)
)
expect_equal(max(coef(lr)), 1)
expect_equal(min(coef(lr)), -1)
}) |
strikes <- stats::ts(c(4737, 5117, 5091, 3468, 4320, 3825, 3673, 3694,
3708, 3333, 3367, 3614, 3362, 3655, 3963, 4405, 4595, 5045,
5700, 5716, 5138, 5010, 5353, 6074, 5031, 5648, 5506, 4230,
4827, 3885),start=1951,frequency=1) |
intervalICC <-
function(r1, r2, predefined.classes=FALSE, classes, c.limits, optim.method=1){
if(missing(r1) | missing(r2))
stop("Both r1 and r2 need to be specified")
if(optim.method!=1 & optim.method!=2)
stop("Misspecified optimization method: must be 1 or 2")
if(predefined.classes){
if(missing(classes))
stop("Unspecified classes")
if(missing(c.limits))
stop("Unspecified classes limits")
if(!is.matrix(c.limits) & !is.data.frame(c.limits))
stop("Classes limits should be a matrix or a data frame")
if(!is.vector(classes))
stop("Classes should be a vector")
if(!is.vector(r1) | !is.vector(r2))
stop("r1 and r2 should be vectors")
if(length(r1)!=length(r2))
stop("r1 and r2 should have equal lenghts")
ratings <- as.data.frame(cbind(r1,r2))
c.limits <- as.data.frame(c.limits)
if(ncol(c.limits)!=2)
stop("Classes limits should be a matrix or a data frame with 2 columns")
if(length(classes)!=nrow(c.limits))
stop("Number of classes differs from number of intervals given in c.limits")
names(ratings) <- c("t1","t2")
names(c.limits) <- c("lower","upper")
if(!is.numeric(c.limits$lower) | !is.numeric(c.limits$upper))
stop("Classes limits must be numeric")
if(any(is.na(classes)))
stop("Missing values in classes")
if(any(is.na(c.limits)))
stop("Missing values in classes limits")
if(any(is.na(ratings))){
warning("Missing values detected: data rows omitted from calculation")
ratings <- na.omit(ratings)
}
ratings$t1 <- factor(ratings$t1, levels=classes)
ratings$t2 <- factor(ratings$t2, levels=classes)
if(any(is.na(ratings)))
stop("Unrecognized class in r1 or r2")
if(any(c.limits$lower >= c.limits$upper))
stop("Misspecified classes limits: lower bound equal to upper bound or greater detected")
c.means <- rowMeans(c.limits)
n.classes <- nrow(c.limits)
n.resp <- nrow(ratings)
t.means <- mat.or.vec(n.classes,n.classes)
t.sd <- mat.or.vec(n.classes,n.classes)
for(i in 1:n.classes){
for(j in i:n.classes){
t.means[i,j] <- 0.5*(c.means[i] + c.means[j])
t.means[j,i] <- t.means[i,j]
t.sd[i,j] <- sqrt((c.means[i] - t.means[i,j])^2 + (c.means[j] - t.means[i,j])^2)
t.sd[j,i] <- t.sd[i,j]
}
}
t.r <- table(ratings$t1,ratings$t2)
theta0 <- c(0,0, sum(t.means*t.r)/n.resp)
theta0[1:2] <- c(max(sqrt(sum((t.means - theta0[3])^2*t.r)/(n.resp-1)),.Machine$double.eps+1e-10), max(sum(t.sd*t.r)/n.resp,.Machine$double.eps+1e-10))
if(optim.method==1){
est <- .intervalICC.est1(ratings,classes,c.limits,theta0)
}else{
est <- .intervalICC.est2(ratings,classes,c.limits,theta0)
}
}else{
if( (!is.matrix(r1) & !is.data.frame(r1)) | (!is.matrix(r2) & !is.data.frame(r2)) )
stop("r1 and r2 should be matrices or data frames")
if(ncol(r1)!=2 | ncol(r2)!=2)
stop("r1 and r2 should be matrices or data frames with 2 columns")
if(nrow(r1)!=nrow(r2))
stop("r1 and r2 should have equal number of rows")
if(!is.numeric(r1[,1]) | !is.numeric(r1[,2]) | !is.numeric(r2[,1]) | !is.numeric(r2[,2]))
stop("r1 and r2 should be numeric")
if(any(r1[,1] >= r1[,2]) | any(r2[,1] >= r2[,2]))
stop("Misspecified limits: lower bound equal to upper bound or greater detected")
ratings <- cbind(r1,r2)
if(any(is.na(ratings))){
warning("Missing values detected: data rows omitted from calculation")
ratings <- na.omit(ratings)
}
r1 <- ratings[,1:2]
r2 <- ratings[,3:4]
ratings.num <- cbind(rowMeans(r1), rowMeans(r2))
theta0=c(max(sd(rowMeans(ratings.num)),.Machine$double.eps+1e-10), max(mean(apply(ratings.num,1,sd)),.Machine$double.eps+1e-10), mean(ratings.num))
if(optim.method==1){
est <- .intervalICC.est3(r1,r2,theta0)
}else{
est <- .intervalICC.est4(r1,r2,theta0)
}
}
class(est) <- "ICCfit"
est
} |
mtcars
nrow(mtcars)
sample(x=1:32, size=.7 * 32)
index = sample(x=1:nrow(mtcars), size=.7 * nrow(mtcars), replace=F)
index
train= mtcars[index,]
test= mtcars[-index,]
nrow(train)
nrow(test)
nrow(train) + nrow(test)
data(mtcars)
smp_size <- floor(0.75 * nrow(mtcars))
set.seed(123)
train_ind <- sample(seq_len(nrow(mtcars)), size = smp_size)
train <- mtcars[train_ind, ]
test <- mtcars[-train_ind, ]
require(caTools)
set.seed(101)
sample = sample.split(mtcars$am, SplitRatio = .75)
sample
train = subset(mtcars, sample == TRUE)
test = subset(mtcars, sample == FALSE)
train; test
table(train$am); table(test$am)
mtcars$id <- 1:nrow(mtcars)
train <- mtcars %>% dplyr::sample_frac(.75)
test <- dplyr::anti_join(mtcars, train, by = 'id')
library(caret)
intrain<-createDataPartition(y=factor(mtcars$am),p=0.7,list=FALSE)
intrain
training<-mtcars[intrain,]
testing<-mtcars[-intrain,]
training
testing
table(training$am)
table(testing$am) |
tam_mml_3pl_deviance <- function( hwt0, rfx, res.hwt, pweights, snodes,
deviance=NA, deviance.history=NULL, iter=NULL )
{
rfx <- NULL
olddeviance <- deviance
if ( snodes==0 ){
rfx <- rowSums( hwt0 )
deviance <- - 2 * sum( pweights * log( rfx ) )
} else {
deviance <- - 2 * sum( pweights * log( res.hwt$rfx ) )
}
rel_deviance_change <- abs( ( deviance - olddeviance ) / deviance )
deviance_change <- abs( ( deviance - olddeviance ) )
if (!is.null(deviance.history)){
deviance.history[iter,2] <- deviance
}
res <- list( rfx=rfx, deviance=deviance, deviance_change=deviance_change,
rel_deviance_change=rel_deviance_change,
deviance.history=deviance.history)
return(res)
} |
brocolors <-
function(set=c("general", "general2", "bg", "bgpng", "CC", "CCalt", "f2", "sex", "main", "crayons", "web"))
{
general <- c('lightblue' =rgb(102,203,254,maxColorValue=255),
'hotpink' =rgb(254, 0,128,maxColorValue=255),
'pink' =rgb(254,102,254,maxColorValue=255),
'green' =rgb(102,254,102,maxColorValue=255),
'purple' =rgb(128, 0,128,maxColorValue=255),
'lightpurple'=rgb(203,102,254,maxColorValue=255),
'yellow' =rgb(254,203,102,maxColorValue=255),
'darkblue' =rgb( 0,128,128,maxColorValue=255))
general2 <- c(blue="
green="
orange="
red="
bg <- rgb(24, 24, 24, maxColorValue=255)
bgpng <- rgb(32, 32, 32, maxColorValue=255)
text <- c('yellow' =rgb(255, 255, 102, maxColorValue=255),
'lightblue'=rgb(102, 204, 255, maxColorValue=255),
'pink' =rgb(255, 102, 255, maxColorValue=255))
CC <- c("AJ" =rgb(240,240, 0,maxColorValue=255),
"B6" =rgb(128,128,128,maxColorValue=255),
"129" =rgb(240,128,128,maxColorValue=255),
"NOD" =rgb( 16, 16,240,maxColorValue=255),
"NZO" =rgb( 0,160,240,maxColorValue=255),
"CAST"=rgb( 0,160, 0,maxColorValue=255),
"PWK" =rgb(240, 0, 0,maxColorValue=255),
"WSB" =rgb(144, 0,224,maxColorValue=255))
CCalt <- c("AJ" = "
"B6" = "
"129" = "
"NOD" = "
"NZO" = "
"CAST"= "
"PWK" = "
"WSB" = "
f2 <- c(AA=as.character(CCalt[1]), AB=rgb(0, 200, 0, maxColorValue=255), BB=as.character(CCalt[4]),
error="
sex <- c(female=rgb(255,80,80, maxColorValue=255), male=as.character(CCalt[4]))
main <- rgb(0, 64, 128, maxColorValue=255)
crayons = c("Almond"="
"Antique Brass"="
"Apricot"="
"Aquamarine"="
"Asparagus"="
"Atomic Tangerine"="
"Banana Mania"="
"Beaver"="
"Bittersweet"="
"Black"="
"Blizzard Blue"="
"Blue"="
"Blue Bell"="
"Blue Gray"="
"Blue Green"="
"Blue Violet"="
"Blush"="
"Brick Red"="
"Brown"="
"Burnt Orange"="
"Burnt Sienna"="
"Cadet Blue"="
"Canary"="
"Caribbean Green"="
"Carnation Pink"="
"Cerise"="
"Cerulean"="
"Chestnut"="
"Copper"="
"Cornflower"="
"Cotton Candy"="
"Dandelion"="
"Denim"="
"Desert Sand"="
"Eggplant"="
"Electric Lime"="
"Fern"="
"Forest Green"="
"Fuchsia"="
"Fuzzy Wuzzy"="
"Gold"="
"Goldenrod"="
"Granny Smith Apple"="
"Gray"="
"Green"="
"Green Blue"="
"Green Yellow"="
"Hot Magenta"="
"Inchworm"="
"Indigo"="
"Jazzberry Jam"="
"Jungle Green"="
"Laser Lemon"="
"Lavender"="
"Lemon Yellow"="
"Macaroni and Cheese"="
"Magenta"="
"Magic Mint"="
"Mahogany"="
"Maize"="
"Manatee"="
"Mango Tango"="
"Maroon"="
"Mauvelous"="
"Melon"="
"Midnight Blue"="
"Mountain Meadow"="
"Mulberry"="
"Navy Blue"="
"Neon Carrot"="
"Olive Green"="
"Orange"="
"Orange Red"="
"Orange Yellow"="
"Orchid"="
"Outer Space"="
"Outrageous Orange"="
"Pacific Blue"="
"Peach"="
"Periwinkle"="
"Piggy Pink"="
"Pine Green"="
"Pink Flamingo"="
"Pink Sherbert"="
"Plum"="
"Purple Heart"="
"Purple Mountain's Majesty"="
"Purple Pizzazz"="
"Radical Red"="
"Raw Sienna"="
"Raw Umber"="
"Razzle Dazzle Rose"="
"Razzmatazz"="
"Red"="
"Red Orange"="
"Red Violet"="
"Robin's Egg Blue"="
"Royal Purple"="
"Salmon"="
"Scarlet"="
"Screamin' Green"="
"Sea Green"="
"Sepia"="
"Shadow"="
"Shamrock"="
"Shocking Pink"="
"Silver"="
"Sky Blue"="
"Spring Green"="
"Sunglow"="
"Sunset Orange"="
"Tan"="
"Teal Blue"="
"Thistle"="
"Tickle Me Pink"="
"Timberwolf"="
"Tropical Rain Forest"="
"Tumbleweed"="
"Turquoise Blue"="
"Unmellow Yellow"="
"Violet (Purple)"="
"Violet Blue"="
"Violet Red"="
"Vivid Tangerine"="
"Vivid Violet"="
"White"="
"Wild Blue Yonder"="
"Wild Strawberry"="
"Wild Watermelon"="
"Wisteria"="
"Yellow"="
"Yellow Green"="
"Yellow Orange"="
web <- c(navy="
blue="
aqua="
teal="
olive="
green="
lime="
yellow="
orange="
red="
maroon="
fuchsia="
purple="
black="
gray="
silver="
switch(match.arg(set),
general=general,
general2=general2,
bg=bg,
bgpng=bgpng,
CC=CC,
CCalt=CCalt,
f2=f2,
sex=sex,
main=main,
crayons=crayons,
web=web)
}
plot_crayons <-
function(method2order=c("hsv", "cluster"), cex=0.6, mar=rep(0.1, 4),
bg="white", fg="black", border=FALSE)
{
method2order <- match.arg(method2order)
crayons <- brocolors("crayons")
colval <- col2rgb(crayons)
if(method2order == "hsv") {
colval <- t(rgb2hsv(colval))
ord <- order(names(crayons)!="Black", names(crayons)!="Gray",
names(crayons)!="Silver", names(crayons)!="White",
colval[,1], colval[,2], colval[,3])
} else {
ord <- hclust(dist(t(colval)))$ord
}
oldmar <- par("mar")
oldfg <- par("fg")
oldbg <- par("bg")
on.exit(par(mar=oldmar, fg=oldfg, bg=oldbg))
par(mar=mar, fg=fg, bg=bg)
x <- (1:7)-1
y <- (1:19)-1
x <- rep(x, each=19)
y <- rep(y, 7)
plot(0, 0, type="n", xlab="", ylab="", xaxs="i", yaxs="i",
xlim=c(0, max(x)+1), ylim=c(max(y)+0.5, -0.5),
xaxt="n", yaxt="n")
dx <- 0.2
dy <- 0.4
if(border) border <- fg
else border <- crayons[ord]
rect(x+dx/4, y-dy, x+dx, y+dy,
border=border, col=crayons[ord])
text(x+dx*1.2, y, names(crayons)[ord], cex=cex, adj=c(0, 0.5))
}
crayons <-
function(color_names=NULL, ...)
{
crayons <- brocolors("crayons")
if(is.null(color_names)) return(crayons)
dots <- list(...)
color_names <- unlist(c(color_names,dots))
allnames <- names(crayons)
m <- match(color_names, allnames)
notfound <- color_names[is.na(m)]
g <- vapply(notfound, function(a) {
z <- grep(a, allnames, ignore.case=TRUE)
if(length(z) < 1) return(-1)
if(length(z) > 1) return(-2)
z }, 1)
if(any(g < 0)) {
if(any(g == -1)) warning("Some colors not found")
if(any(g == -2)) warning("Some colors with multiple matches")
}
g[g < 0] <- NA
m[is.na(m)] <- g
result <- crayons[g]
names(result)[is.na(g)] <- color_names[is.na(g)]
result
} |
sc09G <- function(data, k=2, nnbd=7, ...){
mydata = prec_input_dist(data)
myk = max(1, round(k))
mynnbd = max(5, round(nnbd))
params = list(...)
pnames = names(params)
myiter = ifelse(("maxiter"%in%pnames), max(10, round(params$maxiter)), 10)
myclust = ifelse(("algclust"%in%pnames), match.arg(tolower(params$algclust),c("kmeans","gmm")), "kmeans")
kmeansflag = ifelse(all(myclust=="kmeans"), TRUE, FALSE)
cpprun = cpp_sc09G(mydata, myk, mynnbd, kmeansflag, myiter)
output = list()
output$cluster = round(as.vector(cpprun$labels+1))
output$eigval = as.vector(cpprun$values)
output$embeds = cpprun$embeds
output$algorithm = "sc09G"
return(structure(output, class="T4cluster"))
} |
stop <- function(..., call. = TRUE, domain = NULL)
{
args <- list(...)
if (length(args) == 1L && inherits(args[[1L]], "condition")) {
cond <- args[[1L]]
if(nargs() > 1L)
warning("additional arguments ignored in stop()")
message <- conditionMessage(cond)
call <- conditionCall(cond)
.Internal(.signalCondition(cond, message, call))
.Internal(.dfltStop(message, call))
} else
.Internal(stop(call., .makeMessage(..., domain = domain)))
}
stopifnot <- function(..., exprs, local = TRUE)
{
missE <- missing(exprs)
cl <-
if(missE) {
match.call()[-1L]
} else {
if(...length())
stop("Must use 'exprs' or unnamed expressions, but not both")
envir <- if (isTRUE(local)) parent.frame()
else if(isFALSE(local)) .GlobalEnv
else if (is.environment(local)) local
else stop("'local' must be TRUE, FALSE or an environment")
exprs <- substitute(exprs)
E1 <- if(is.symbol(exprs)) exprs else exprs[[1]]
if(identical(quote(`{`), E1))
do.call(expression, as.list(exprs[-1]))
else if(identical(quote(expression), E1))
eval(exprs, envir=envir)
else
as.expression(exprs)
}
Dparse <- function(call, cutoff = 60L) {
ch <- deparse(call, width.cutoff = cutoff)
if(length(ch) > 1L) paste(ch[1L], "....") else ch
}
head <- function(x, n = 6L)
x[seq_len(if(n < 0L) max(length(x) + n, 0L) else min(n, length(x)))]
abbrev <- function(ae, n = 3L)
paste(c(head(ae, n), if(length(ae) > n) "...."), collapse="\n ")
for (i in seq_along(cl)) {
cl.i <- cl[[i]]
r <- withCallingHandlers(
tryCatch(if(missE) ...elt(i) else eval(cl.i, envir=envir),
error = function(e) { e$call <- cl.i; stop(e) }),
warning = function(w) { w$call <- cl.i; w })
if (!(is.logical(r) && !anyNA(r) && all(r))) {
msg <-
if(is.call(cl.i) && identical(cl.i[[1]], quote(all.equal)) &&
(is.null(ni <- names(cl.i)) || length(cl.i) == 3L ||
length(cl.i <- cl.i[!nzchar(ni)]) == 3L))
sprintf(gettext("%s and %s are not equal:\n %s"),
Dparse(cl.i[[2]]),
Dparse(cl.i[[3]]), abbrev(r))
else
sprintf(ngettext(length(r),
"%s is not TRUE",
"%s are not all TRUE"),
Dparse(cl.i))
stop(simpleError(msg, call = sys.call(-1)))
}
}
invisible()
}
warning <- function(..., call. = TRUE, immediate. = FALSE,
noBreaks. = FALSE, domain = NULL)
{
args <- list(...)
if (length(args) == 1L && inherits(args[[1L]], "condition")) {
cond <- args[[1L]]
if(nargs() > 1L)
cat(gettext("additional arguments ignored in warning()"),
"\n", sep = "", file = stderr())
message <- conditionMessage(cond)
call <- conditionCall(cond)
withRestarts({
.Internal(.signalCondition(cond, message, call))
.Internal(.dfltWarn(message, call))
}, muffleWarning = function() NULL)
invisible(message)
} else
.Internal(warning(call., immediate., noBreaks.,
.makeMessage(..., domain = domain)))
}
gettext <- function(..., domain = NULL) {
args <- lapply(list(...), as.character)
.Internal(gettext(domain, unlist(args)))
}
bindtextdomain <- function(domain, dirname = NULL)
.Internal(bindtextdomain(domain, dirname))
ngettext <- function(n, msg1, msg2, domain = NULL)
.Internal(ngettext(n, msg1, msg2, domain))
gettextf <- function(fmt, ..., domain = NULL)
sprintf(gettext(fmt, domain = domain), ...) |
plot2Densities <- function(Data, Cls, col = c("red", "blue"), pde = TRUE, meanLines = FALSE, medianLines = FALSE, ...) {
if (length(Data) != length(Cls))
stop("Impact: Data and Cls have different lengths!")
UniqueCls <- sort(unique(Cls))
if (length(table(Data = Data[Cls == UniqueCls[1]])) < 2 |
length(table(Data = Data[Cls == UniqueCls[2]])) < 2) {
suppressWarnings(pdeX1Try <- try(ParetoDensityEstimationIE(Data = Data[Cls == UniqueCls[1]]), TRUE))
suppressWarnings(pdeX2Try <- try(ParetoDensityEstimationIE(Data = Data[Cls == UniqueCls[2]]), TRUE))
} else{
suppressWarnings(PDEKernelsTry <- try(ParetoDensityEstimationIE(Data), TRUE))
if (class(PDEKernelsTry) != "try-error") {
PDEKernels <- PDEKernelsTry$kernels
suppressWarnings(pdeX1Try <- try(ParetoDensityEstimationIE(Data = Data[Cls == UniqueCls[1]], kernels = PDEKernels), TRUE))
suppressWarnings(pdeX2Try <- try(ParetoDensityEstimationIE(Data = Data[Cls == UniqueCls[2]], kernels = PDEKernels), TRUE))
} else{
message("Pareto density estimation failed. Reverting to standard pdf.")
pde <- FALSE
}
}
if (class(pdeX1Try) == "try-error" | class(pdeX2Try) == "try-error") {
message("Pareto density estimation failed. Reverting to standard pdf.")
pde <- FALSE
}
if (hasArg("pde") == TRUE & pde == FALSE) {
pdx1 <- density(Data[Cls == UniqueCls[1]])$x
pdx2 <- density(Data[Cls == UniqueCls[2]])$x
pd1 <- density(Data[Cls == UniqueCls[1]])$y
pd2 <- density(Data[Cls == UniqueCls[2]])$y
} else {
pdx1 <- pdeX1Try$kernels
pdx2 <- pdeX2Try$kernels
pd1 <- pdeX1Try$paretoDensity
pd2 <- pdeX2Try$paretoDensity
}
xmin <- min(pdx1, pdx2)
xmax <- max(pdx1, pdx2)
ymax <- max(pd1, pd2)
plot(pd1 ~ pdx1, type = "l", lwd = 3, col = col[1], xlim = c(xmin, xmax), ylim = c(0, ymax), ...)
lines(pd2 ~ pdx2, lwd = 3, col = col[2], ...)
if (hasArg("medianLines") == TRUE & medianLines == TRUE) {
abline(v = c_median(Data[Cls == UniqueCls[1]]), col = "magenta")
abline(v = c_median(Data[Cls == UniqueCls[2]]), col = "magenta", lty = 2)
}
if (hasArg("meanLines") == TRUE & meanLines == TRUE) {
abline(v = mean(Data[Cls == UniqueCls[1]]), col = "darkgreen")
abline(v = mean(Data[Cls == UniqueCls[2]]), col = "darkgreen", lty = 2)
}
} |
printnum <- function(x, ...) {
UseMethod("printnum", x)
}
printnum.default <- function(x, na_string = getOption("papaja.na_string"), ...) {
if(is.null(x)) stop("The parameter 'x' is NULL. Please provide a value for 'x'")
x <- as.character(x)
if(anyNA(x)) {
x[is.na(x)] <- na_string
}
x
}
printnum.list <- function(x, ...) {
lapply(x, printnum, ...)
}
printnum.integer <- function(x, numerals = TRUE, capitalize = FALSE, zero_string = "no", na_string = getOption("papaja.na_string"), ...) {
validate(x, check_integer = TRUE, check_NA = FALSE)
validate(numerals, check_class = "logical", check_length = 1)
validate(capitalize, check_class = "logical", check_length = 1)
validate(na_string, check_class = "character", check_length = 1)
system_call <- sys.call()
if(!is.null(system_call[["zero"]]) && is.null(system_call[["zero_string"]])) zero_string <- "no"
validate(zero_string, check_class = "character", check_length = 1)
if(numerals) return(as.character(x))
if(anyNA(x)) return(rep(na_string, length(x)))
zero_string <- tolower(zero_string)
number_to_words <- function(x) {
if(x == 0) return(zero_string)
single_digits <- c("", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine")
names(single_digits) <- 0:9
teens <- c("ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", " seventeen", "eighteen", "nineteen")
names(teens) <- 0:9
tens <- c("twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety")
names(tens) <- 2:9
number_names <- c("thousand", "million", "billion", "trillion", "quadrillion", "quintillion", "sextillion", "septillion", "octillion", "nonillion", "decillion")
digits <- rev(strsplit(as.character(x), "")[[1]])
n_digits <- length(digits)
if(n_digits == 1) {
number <- as.vector(single_digits[digits])
} else if (n_digits == 2) {
if (x <= 19) {
number <- as.vector(teens[digits[1]])
} else {
number <- paste(
tens[digits[2]]
, Recall(as.numeric(digits[1]))
, sep = "-"
)
}
} else if(n_digits == 3) {
number <- paste(
single_digits[digits[3]]
, "hundred and"
, Recall(collapse(digits[2:1]))
)
} else {
required_number_word <- ((n_digits + 2) %/% 3) - 1
if (required_number_word > length(number_names)) {
stop("Number is too large.")
}
number <- paste(
Recall(collapse(digits[n_digits:(3*required_number_word + 1)]))
, number_names[required_number_word]
, ","
, Recall(collapse(digits[(3*required_number_word):1])))
}
number
}
collapse <- function(...) as.numeric(paste(..., collapse = ""))
clean_number <- function(x) {
x <- gsub("^\ +|\ +$", "", x)
x <- gsub("\ +,", ",", x)
x <- gsub(paste0("( and ", zero_string, "|-", zero_string, "|, ", zero_string, ")"), "", x)
x <- gsub("(\ *,|-|\ +and)$", "", x)
if(!grepl(" and ", x)) x <- gsub(", ", " and ", x)
x
}
if(length(x) > 1) {
return(
vapply(
x
, function(y) {
y_number <- clean_number(number_to_words(y))
if(capitalize) x_number <- capitalize(y_number)
y_number
}
, FUN.VALUE = "a"
)
)
}
x_number <- clean_number(number_to_words(x))
if(capitalize) x_number <- capitalize(x_number)
x_number
}
printnum.numeric <- function(
x
, gt1 = TRUE
, zero = TRUE
, margin = 1
, na_string = getOption("papaja.na_string")
, use_math = TRUE
, add_equals = FALSE
, ...
) {
if(is.null(x)) stop("The parameter 'x' is NULL. Please provide a value for 'x'")
ellipsis <- list(...)
validate(gt1, check_class = "logical")
validate(zero, check_class = "logical")
validate(margin, check_class = "numeric", check_integer = TRUE, check_length = 1, check_range = c(1, 2))
validate(na_string, check_class = "character", check_length = 1)
validate(use_math, check_class = "logical")
validate(add_equals, check_class = "logical")
ellipsis <- defaults(
ellipsis
, set = list(
x = x
, gt1 = gt1
, zero = zero
, na_string = na_string
, use_math = use_math
)
, set.if.null = list(
digits = 2
, big.mark = ","
)
)
validate(ellipsis$digits, "digits", check_class = "numeric", check_integer = TRUE, check_range = c(0, Inf))
if(length(x) > 1) {
vprintnumber <- function(i, x){
ellipsis.i <- lapply(X = ellipsis, FUN = sel, i)
do.call("printnumber", ellipsis.i)
}
}
if(is.numeric(x) & length(x) > 1) {
x_out <- sapply(seq_along(x), vprintnumber, x)
names(x_out) <- names(x)
} else {
x_out <- do.call("printnumber", ellipsis)
}
if(add_equals) {
x_out <- add_equals(x_out)
}
x_out
}
printnum.data.frame <- function(
x
, margin = 2
, ...
) {
if(margin == 1) {
ellipsis <- list(...)
ellipsis$x <- x
ellipsis$margin <- margin
x_out <- do.call("printnum.matrix", ellipsis)
} else {
x_out <- mapply(
FUN = printnum
, x = x
, ...
, SIMPLIFY = FALSE
)
}
x_out <- as.data.frame(
x_out
, stringsAsFactors = FALSE
, check.names = FALSE
, fix.empty.names = FALSE
)
rownames(x_out) <- rownames(x)
x_out
}
printnum.matrix <- function(
x
, margin = 2
, ...
) {
ellipsis <- list(...)
x_out <- apply(
X = x
, MARGIN = (3 - margin)
, FUN = function(x) {
ellipsis$x <- x
do.call("printnum", ellipsis)
}
)
if(margin == 2 || nrow(x) == 1) {
x_out <- t(x_out)
dimnames(x_out) <- dimnames(x)
}
if(!is.matrix(x_out)) x_out <- matrix(x_out, ncol = ncol(x))
x_out
}
printnum.papaja_labelled <-function(x, ...){
x_out <- NextMethod("printnum")
variable_label(x_out) <- variable_label(x)
x_out
}
printnumber <- function(x, gt1 = TRUE, zero = TRUE, na_string = "", use_math = TRUE, ...) {
ellipsis <- list(...)
validate(x, check_class = "numeric", check_NA = FALSE, check_length = 1, check_infinite = FALSE)
if(is.na(x)) return(na_string)
if(is.infinite(x)) {
x_out <- paste0(ifelse(x < 0, "-", ""), "\\infty")
if(use_math) x_out <- paste0("$", x_out, "$")
return(x_out)
}
if(!is.null(ellipsis$digits)) {
validate(ellipsis$digits, "digits", check_class = "numeric", check_integer = TRUE, check_length = 1, check_range = c(0, Inf))
}
validate(gt1, check_class = "logical", check_length = 1)
validate(zero, check_class = "logical", check_length = 1)
validate(na_string, check_class = "character", check_length = 1)
if(!gt1 & abs(x) > 1) warning("You specified gt1 = FALSE, but passed absolute value(s) that exceed 1.")
ellipsis <- defaults(
ellipsis
, set.if.null = list(
digits = 2
, format = "f"
, flag = "0"
, big.mark = ","
)
)
x_out <- round(x, ellipsis$digits) + 0
if(sign(x_out) == -1) {
xsign <- "-"
lt <- "> "
gt <- "< "
} else {
xsign <- ""
lt <- "< "
gt <- "> "
}
if(x_out == 0 & !zero) x_out <- paste0(lt, "0.", paste0(rep(0, ellipsis$digits-1), collapse = ""), "1")
if(!gt1) {
if(x_out == 1) {
x_out <- paste0(gt, xsign, ".", paste0(rep(9, ellipsis$digits), collapse = ""))
} else if(x_out == -1) {
x_out <- paste0(lt, xsign, ".", paste0(rep(9, ellipsis$digits), collapse = ""))
}
ellipsis$x <- x_out
x_out <- do.call("formatC", ellipsis)
x_out <- gsub("0\\.", "\\.", x_out)
} else {
ellipsis$x <- x_out
x_out <- do.call("formatC", ellipsis)
}
x_out
}
printp <- function(x, digits = 3L, na_string = "", add_equals = FALSE) {
validate(x, check_class = "numeric", check_range = c(0, 1), check_NA = FALSE)
validate(na_string, check_class = "character", check_length = 1)
validate(digits, check_class = "numeric")
p <- printnum(x, digits = digits, gt1 = FALSE, zero = FALSE, na_string = na_string, add_equals = add_equals)
p
}
print_df <- function(x, digits = 2L) {
if(is.null(x)) return(NULL)
if(is.integer(x)) return(printnum(x))
return(printnum(x, digits = as.numeric(x %% 1 != 0) * digits))
} |
setClass("modelorg_irrev",
representation(
irrev = "logical",
matchrev = "integer",
rev2irrev = "matrix",
irrev2rev = "integer"
),
contains = "modelorg"
)
modelorg_irrev <- function(id, name) {
if (missing(id) || missing(name)) {
stop("Creating an object of class modelorg_irrev needs name and id!")
}
id <- as.character(id)
name <- as.character(name)
obj <- new("modelorg_irrev", id = id, name = name)
return(obj)
}
setMethod(f = "initialize",
signature = "modelorg_irrev",
definition = function(.Object, id, name) {
if (!missing(id) || !missing(name)) {
.Object <- callNextMethod(.Object, id = id, name = name)
}
return(.Object)
}
)
setMethod("irrev", signature(object = "modelorg_irrev"),
function(object) {
return(object@irrev)
}
)
setReplaceMethod("irrev", signature(object = "modelorg_irrev"),
function(object, value) {
object@irrev <- value
return(object)
}
)
setMethod("matchrev", signature(object = "modelorg_irrev"),
function(object) {
return(object@matchrev)
}
)
setReplaceMethod("matchrev", signature(object = "modelorg_irrev"),
function(object, value) {
object@matchrev <- value
return(object)
}
)
setMethod("rev2irrev", signature(object = "modelorg_irrev"),
function(object) {
return(object@rev2irrev)
}
)
setReplaceMethod("rev2irrev", signature(object = "modelorg_irrev"),
function(object, value) {
object@rev2irrev <- value
return(object)
}
)
setMethod("irrev2rev", signature(object = "modelorg_irrev"),
function(object) {
return(object@irrev2rev)
}
)
setReplaceMethod("irrev2rev", signature(object = "modelorg_irrev"),
function(object, value) {
object@irrev2rev<- value
return(object)
}
) |
library(readr)
relig_income <- read_csv("data-raw/relig_income.csv")
usethis::use_data(relig_income, overwrite = TRUE) |
makebreaks.ic <- function(y,d,x,w, breaks){
n <- nrow(y)
q <- ncol(x)
yy <- c(y[,1], y[,2])
r <- range(yy[abs(yy) != Inf])
n1 <- sum(o <- (d %in% c(1,3)))
yc <- (y[o,1] + y[o,2])/2
if(missing(breaks)){breaks <- max(5, min(10, ceiling(n1/q/5)))}
if(length(breaks) > 1){
breaks <- sort(unique(breaks))
k <- length(breaks) - 1
if(r[1] < breaks[1] | r[2] > breaks[k + 1])
{stop("all finite y values must be within the breaks")}
breaks <- breaks[1:which(breaks >= r[2])[1]]
k <- length(breaks) - 1
}
else{
k <- breaks
breaks <- wtd.quantile(yc, weights = w, probs = (0:k)/k)
check.l <- (mean(yy < breaks[1]) > 0.03)
check.r <- (mean(yy > breaks[k + 1]) > 0.03)
if(k > 2 && (check.l | check.r)){
if(check.l & !check.r){breaks <- c(-Inf, wtd.quantile(yc, weights = w, probs = (0:(k - 1))/(k - 1)))}
if(!check.l & check.r){breaks <- c(wtd.quantile(yc, weights = w, probs = (0:(k - 1))/(k - 1)), Inf)}
if(check.l & check.r){breaks <- c(-Inf, wtd.quantile(yc, weights = w, probs = (0:(k - 2))/(k - 2)), Inf)}
}
breaks[1] <- r[1]; breaks[k + 1] <- r[2]
a <- duplicated(round(breaks,8))
if(any(a)){
for(j in which(a)){
if(a[j - 1]){breaks[j] <- NA}
else{
h <- abs(yc - breaks[j])
h <- min(h[h > 0])
h <- max(1e-6, min(h/2, (r[2] - r[1])/n/100))
breaks[j-1] <- breaks[j-1] - h
breaks[j] <- breaks[j] + h
}
}
breaks <- breaks[!is.na(breaks)]
k <- length(breaks)
h <- c(Inf, breaks[2:k] - breaks[1:(k - 1)])
breaks[h <= 0] <- NA
breaks <- breaks[!is.na(breaks)]
k <- length(breaks) - 1
}
}
if(any(yy %in% breaks)){
eps <- min(breaks[2:(k + 1)] - breaks[1:k])/n1
breaks[1:k] <- breaks[1:k] - eps
breaks[k + 1] <- breaks[k + 1] + eps
}
names(breaks) <- NULL
list(breaks = breaks, k = k)
}
convert.Surv <- function(y){
code <- y[,3]
n <- nrow(y)
y1 <- rep.int(-Inf,n)
y2 <- rep.int(Inf,n)
w1 <- (code != 2)
y1[w1] <- y[w1,1]
w2 <- (code != 0)
y2[w2] <- y[w2,2]
w2bis <- (code == 2)
y2[w2bis] <- y[w2bis,1]
w2ter <- (code == 1)
y2[w2ter] <- y[w2ter,1]
yy <- c(y1,y2); yy <- yy[is.finite(yy)]
eps <- (max(yy) - min(yy))/1e+5
w <- (code == 1)
y1[w] <- y1[w] - eps
y2[w] <- y2[w] + eps
y <- cbind(y1, y2)
attr(y, "code") <- code
attr(y, "eps") <- eps
y
}
pch.fit.ic <- function(z,y,d,x,w,breaks){
if(missing(z)){z <- rep.int(-Inf,n)}
if(missing(d)){d <- rep.int(1,n)}
if(missing(w)){w <- rep.int(1,n)}
Breaks <- suppressWarnings(if(all(attr(y, "code") %in% 0:1)) makebreaks.ct(y[,1],is.finite(y[,2]),x,w,breaks)
else makebreaks.ic(y,d,x,w,breaks))
n <- nrow(y); k <- Breaks$k
Breaks <- Breaks$breaks
h <- Breaks[2:(k + 1)] - Breaks[1:k]
attr(Breaks, "h") <- h; attr(Breaks, "k") <- k
mod <- icpch.fit(y,d,x,w,Breaks)
beta <- mod$beta
beta[is.na(beta)] <- 0
lambda <- cleanlambda(exp(x%*%beta),x, mod$rangex)
Lambda <- CumSum(t(t(lambda)*h))
colnames(lambda) <- colnames(Lambda) <- 1:k
br <- c(Breaks[1] - 1, Breaks)
u <- approxfun(br, c(1:k, k + 1, k + 1), rule = 2, method = "constant")
conv.status <- 0
if(!mod$conv){conv.status <- 1; warning("the algorithm did not converge", call. = FALSE)}
list(beta = beta, lambda = lambda, Lambda = Lambda, loglik = mod$loglik, s.i = mod$s.i, h = mod$h,
covar = mod$vcov, breaks = Breaks, y = y, u = u, rangex = mod$rangex, conv.status = conv.status)
}
icpch.fit <- function(y,d,x,w,breaks){
k <- length(breaks) - 1
n <- nrow(y)
zeror <- NULL
rangex <- list()
for(j in 1:k){
open <- (y[,1] >= breaks[j] | y[,1] <= breaks[j+1])
close <- (y[,2] >= breaks[j] | y[,2] <= breaks[j+1])
r <- myapply(x[(open | close),, drop = FALSE], range)
delta <- r[,2] - r[,1]
r[,1] <- r[,1] - 0.2*delta
r[,2] <- r[,2] + 0.2*delta
zeror.j <- rep.int(FALSE, n)
for(h in 1:ncol(x)){
out.l <- (x[,h] < r[h,1])
out.r <- (x[,h] > r[h,2])
ml <- mean(out.l); mr <- mean(out.r)
if(max(ml,mr) < 0.05){r[h,1] <- -Inf; r[h,2] <- Inf}
else{
if(ml > mr){outx <- out.l; r[h,2] <- Inf}
else{outx <- out.r; r[h,1] <- -Inf}
zeror.j <- (zeror.j | outx)
}
}
zeror <- cbind(zeror, zeror.j)
rangex[[j]] <- r
}
cn <- colnames(x)
qq <- ncol(x)
xx <- qr(x)
sel <- xx$pivot[1:xx$rank]
x <- x0 <- x[,sel, drop = FALSE]
q <- ncol(x)
mx <- colMeans(x)
sx <- myapply(x,sd)
const <- (sx == 0)
if(int <- any(const)){
const <- which(const)
mx[const] <- 0
sx[const] <- x[1,const]
}
else{
const <- integer(0)
mx <- rep.int(0, q)
}
vars <- which(sx > 0)
x <- scale(x, center = mx, scale = sx)
conv <- TRUE
U1 <- break.y(y[,1], breaks)
U2 <- break.y(y[,2], breaks)
beta0 <- matrix(0,q,k)
if(int){beta0[const,] <- max(-10, -log(mean(breaks - breaks[1])))}
safeit <- 0; fit.ok <- FALSE; count <- 0
while(!fit.ok){
fit <- newton(beta0, icpch.loglik, tol = 1e-5, maxit = 10*(1 + q*k), safeit = safeit,
y = y, x = x, w = w, U1 = U1, U2 = U2, zeror = zeror)
fit.ok <- all(abs(fit$gradient) < sqrt(n)/15 + count)
count <- count + 1; safeit <- safeit + 2
if(count == 20){conv <- FALSE; break}
}
beta <- matrix(fit$estimate, q,k)
beta[vars,] <- beta[vars,]/sx[vars]
beta[const,] <- beta[const,] - colSums(beta[vars,, drop = FALSE]*mx[vars])
loglik <- icpch.loglik(beta, y, x0,w,U1,U2, zeror, deriv = 2, final = TRUE)
Beta <- matrix(NA, qq, k)
Beta[sel,] <- beta
rownames(Beta) <- cn
h <- attr(loglik, "hessian")
s.i <- attr(loglik, "s.i")
eps <- 1/(n^2)
ok <- FALSE
while(!ok){
omega <- try(chol2inv(chol(t(s.i*w)%*%s.i + diag(eps, q*k))), silent = TRUE)
v <- try(chol2inv(chol(h%*%omega%*%h + diag(eps, q*k))), silent = TRUE)
ok <- (!inherits(omega, "try-error") && !inherits(v, "try-error"))
eps <- eps*5
}
V <- matrix(0, qq*k, qq*k)
sel2 <- rep.int(sel, k)
sel2 <- sel2 + rep(0:(k - 1), each = length(sel))*q
V[sel2,sel2] <- v
list(beta = Beta, vcov = V, rangex = rangex, converged = conv, loglik = as.numeric(loglik), s.i = s.i, h = h)
}
break.y <- function(y,breaks){
k <- length(breaks) - 1
U <- NULL
for(j in 1:k){
u <- pmin(y - breaks[j], breaks[j + 1] - breaks[j])
U <- cbind(U, pmax(u,0))
}
U
}
icpch.loglik <- function(beta, y, x,w,U1,U2, zeror, deriv = 0, final = FALSE){
k <- ncol(U1)
q <- ncol(x)
n <- nrow(x)
beta <- matrix(beta, q,k)
log.lambda <- tcrossprod(x, t(beta))*(!zeror) - zeror*1e+10
lambda <- exp(log.lambda)
lambda <- pmin(lambda, 1e+10)
H1 <- .rowSums(lambda*U1, n, k)
H2 <- .rowSums(lambda*U2, n, k)
S1 <- exp(-H1); S1[y[,1] == -Inf] <- 1
S2 <- exp(-H2); S2[y[,2] == Inf] <- 0
deltaS <- pmax(S1 - S2, 1e-12)
dS <- deltaS
if(final){
events <- which(attr(y, "code") == 1)
dS[events] <- dS[events]/2/attr(y, "eps")
}
l <- sum(w*log(dS))
if(deriv == 0){return(-l)}
xw <- x*w
deltaSU <- S1*U1 - S2*U2
deltaU <- U2 - U1
lambda.deltaU <- lambda*deltaU
lambda.deltaSU <- lambda*deltaSU
A1 <- lambda.deltaSU/deltaS
A2 <- S1*S2/deltaS^2
A3 <- A1 + A2*lambda.deltaU^2
xA2 <- x*A2
s.i <- NULL
for(j in 1:k){s.i <- cbind(s.i, -x*A1[,j])}
s <- .colSums(w*s.i, n, q*k)
h <- matrix(NA, q*k, q*k)
for(j1 in 1:k){
ind1 <- (j1*q - q + 1):(j1*q)
for(j2 in j1:k){
ind2 <- (j2*q - q + 1):(j2*q)
if(j1 == j2){h[ind1,ind2] <- -crossprod(xw, x*A3[,j1])}
else{h[ind1,ind2] <- h[ind2,ind1] <- -crossprod(xw, xA2*lambda.deltaU[,j1]*lambda.deltaU[,j2])}
}
}
out <- -l
attr(out, "gradient") <- -s
attr(out, "hessian") <- -h
attr(out, "s.i") <- s.i
out
} |
list.save <- function(x, file, type = tools::file_ext(file), ...) {
fun <- paste("list.savefile", tolower(type), sep = ".")
if (exists(fun, mode = "function")) {
fun <- get(fun, mode = "function")
fun(x, file, ...)
} else {
stop("Unrecognized type of file: ", file, call. = FALSE)
}
invisible(x)
}
list.savefile.json <- function(x, file, ...) {
json <- jsonlite::toJSON(x, ...)
writeLines(json, file)
}
list.savefile.yaml <- function(x, file, ...) {
yaml <- yaml::as.yaml(x, ...)
writeLines(yaml, file)
}
list.savefile.yml <- list.savefile.yaml
list.savefile.rdata <- function(x, file, name = "x", ...) {
if (!is.list(x))
stop("x is not a list")
env <- new.env(parent = parent.frame(), size = 1L)
assign(name, x, envir = env)
save(list = name, file = file, envir = env, ...)
}
list.savefile.rds <- function(x, file, ...) saveRDS(x, file, ...) |
classclustermeds<-function(citrus.foldFeatureSet,citrus.foldClustering,citrus.combinedFCSSet,groupsizes,meds){
cutoffs<-cumsum(groupsizes)
cutoffs<-c(0,cutoffs)
if(is.null(meds)){
signals<-allmeds(citrus.combinedFCSSet = citrus.combinedFCSSet,citrus.foldClustering = citrus.foldClustering,citrus.foldFeatureSet = citrus.foldFeatureSet)
}else{
signals<-meds
}
data<-citrus.combinedFCSSet$data
parnames<-colnames(signals[[1]])
ind<-grep("fileId",parnames)
group<-list()
ameds<-list()
count<-1
for(j in signals){
for(i in 2:length(cutoffs)){
a<-j[j[,ind]<=cutoffs[i]&j[,ind]>cutoffs[i-1],]
ameds[[i-1]]<-apply(a,2,median)
}
group[[count]]<-do.call("rbind",ameds)
count<-count+1
}
return(group)
} |
create_batch_body <- function(metabolites_type = 'all-except-peptides',
databases = '["all-except-mine"]',
masses_mode = 'mz',
ion_mode = 'positive',
adducts = '["M+H","M+Na"]',
tolerance = 10,
tolerance_mode = 'ppm',
unique_mz) {
masses <- paste(unique_mz, collapse = ",")
tolerance <- as.character(tolerance)
post_body <- paste0(
'{"metabolites_type":"' , metabolites_type,
'","databases":' , databases,
',"masses_mode":"' , masses_mode,
'","ion_mode":"' , ion_mode,
'","adducts":' , adducts,
',"tolerance":' , tolerance,
',"tolerance_mode":"' , tolerance_mode,
'","masses":[' , masses,
']}')
} |
suppressMessages(library(LatticeKrig))
options( echo=FALSE)
test.for.zero.flag<-1
set.seed( 333)
xLocation<- cbind( runif( 10, 3,5), runif( 10,3,5))
xNew<- cbind( runif( 4, 3,5), runif( 4,3,5))
LKinfo<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=3, NC.buffer=2,
a.wght=5, alpha=c(1), nlevel=1, normalize=TRUE)
PHI<- LKrig.basis(xNew, LKinfo)
Q<- LKrig.precision(LKinfo)
covMatrix<- (PHI)%*% solve( Q)%*%t(PHI)
test.for.zero( diag(covMatrix), rep( 1, nrow( xNew)),
tag="check using Qinverse formula", tol=1e-7)
covMatrix2<- LKrig.cov( xNew, LKinfo=LKinfo)
test.for.zero( covMatrix,covMatrix2,
tag="check using Qinverse formula full matrix",, tol=1e-7)
alpha<- c( 1, .8,.2)
LKinfo<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=2, NC.buffer=2,
a.wght=5, alpha=alpha, nlevel=3, normalize=TRUE)
varTest<- sum( alpha)
PHI<- LKrig.basis(xNew, LKinfo)
Q<- LKrig.precision(LKinfo)
covMatrix<- (PHI)%*% solve( Q)%*%t(PHI)
test.for.zero( diag(covMatrix), rep( varTest, nrow( xNew)),
tag=" Qinverse formula norm", tol=1e-7)
alpha<- c( 1, .8,.2)
alpha<- alpha/sum( alpha)
LKinfo<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=2, NC.buffer=2,
a.wght=5, alpha=alpha, nlevel=3, normalize=FALSE)
PHI<- LKrig.basis(xNew, LKinfo)
Q<- LKrig.precision(LKinfo)
covMatrix<- (PHI)%*% solve( Q)%*%t(PHI)
covMatrix2<- LKrig.cov( xNew, LKinfo=LKinfo)
test.for.zero( covMatrix, covMatrix2,
tag=" Qinverse formula nonorm")
alpha<- c( 1, .8,.2)
alpha<- alpha/sum( alpha)
LKinfo<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=2, NC.buffer=2,
a.wght=4.5, alpha=alpha, nlevel=3, normalize=TRUE,
BasisType="Tensor")
varTest<- sum( alpha)
PHI<- LKrig.basis(xNew, LKinfo)
Q<- LKrig.precision(LKinfo)
covMatrix<- (PHI)%*% solve( Q)%*%t(PHI)
varTest<-LKrig.cov( xNew, marginal=TRUE, LKinfo=LKinfo)
test.for.zero( diag(covMatrix), varTest,
tag=" Qinverse formula Tensor no norm")
test.for.zero( diag(covMatrix), sum(alpha),
tag=" Qinverse formula Tensor no norm")
set.seed( 333)
xLocation<- cbind( runif( 10, 3,5), runif( 10,3,5))
LKinfo<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=3, NC.buffer=2,
a.wght=5, alpha=1, nlevel=1, normalize=TRUE)
LKinfo0<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=3, NC.buffer=2,
a.wght=5, alpha=1, nlevel=1, normalize=FALSE)
wght1<- LKrigNormalizeBasisFast.LKRectangle(LKinfo, Level=1, xLocation)
wght0<-LKrig.cov( xLocation, LKinfo= LKinfo0, marginal=TRUE)
test.for.zero( wght0, wght1, tag=" 1 level Marginal variance compared to fast normalize", tol=2e-7)
alphaVec<- c( 1,.5,.2)
LKinfo0<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=3, NC.buffer=2,
a.wght=5, alpha=alphaVec, nlevel=3, normalize=FALSE )
LKinfo<- LKrigSetup( cbind( c(3,5), c(3,5)), NC=3, NC.buffer=2,
a.wght=5, alpha=alphaVec,nlevel=3,normalize=TRUE)
test1<-LKrigNormalizeBasisFast.LKRectangle( LKinfo, Level=1, xLocation )
test2<-LKrigNormalizeBasisFast.LKRectangle( LKinfo, Level=2, xLocation )
test3<-LKrigNormalizeBasisFast.LKRectangle( LKinfo, Level=3, xLocation )
testVar1<- cbind( test1, test2, test3) %*% alphaVec
testVar0<-LKrig.cov( xLocation, LKinfo= LKinfo0, marginal=TRUE)
test.for.zero( testVar0, testVar1, tag="Marginal variance and fast normalize", tol=1e-7)
cat( "Done with testing fast normalize algorithm", fill=TRUE)
options( echo=TRUE) |
source("ESEUR_config.r")
pal_col=rainbow(2)
dad=read.csv(paste0(ESEUR_dir, "sourcecode/13-13.csv.xz"), as.is=TRUE)
samp=sample(1:nrow(dad), 20000)
dad=dad[samp, ]
plot(dad$inscount, dad$O3, log="xy", col=pal_col[2],
xlab="LLVM instructions", ylab="Compile time (secs)\n")
one_dad=subset(dad, (inscount >= 300) | (inscount < 300 & O3 <= 0.10))
O3_mod=nls(O3 ~ a+b*inscount^c, data=one_dad,
start=list(a=0.01, b=1e-3, c=0.6))
x_vals=exp(seq(1, 10, by=0.1))
pred=predict(O3_mod, newdata=data.frame(inscount=x_vals))
lines(x_vals, pred, col=pal_col[1]) |
options(prompt = "R> ", continue = "+ ", width = 70, useFancyQuotes = FALSE)
set.seed(123)
numSim=100
library("lifecontingencies")
showClass("lifetable")
showClass("actuarialtable")
showMethods(classes=c("actuarialtable","lifetable"))
interest2Discount(0.03)
discount2Interest(interest2Discount(0.03))
convertible2Effective(i=0.10,k=4)
capitals <- c(-1000,200,500,700)
times <- c(0,1,2,5)
presentValue(cashFlows=capitals, timeIds=times, interestRates=0.03)
presentValue(cashFlows=capitals, timeIds=times,
interestRates=c( 0.04, 0.02, 0.03, 0.05),
probabilities=c(1,1,1,0.5))
getIrr <- function(p) (presentValue(cashFlows=capitals, timeIds=times,
interestRates=p) - 0)^2
nlm(f=getIrr, p=0.1)$estimate
100 * annuity(i=0.03, n=5)
100 * accumulatedValue(i=0.03, n=5)
ann1 <- annuity(i=0.03, n=5, k=1, type="immediate")
ann2 <- annuity(i=0.03, n=5, k=12, type="immediate")
c(ann1,ann2)
incrAnn <- increasingAnnuity(i=0.03, n=10, type="due")
decrAnn <- decreasingAnnuity(i=0.03, n=10, type="immediate")
c(incrAnn, decrAnn)
annuity(i=((1+0.04)/(1+0.03)-1), n=10)
capital <- 100000
interest <- 0.05
payments_per_year <- 2
rate_per_period <- (1+interest)^(1/payments_per_year)-1
years <- 30
R <- 1/payments_per_year *
capital/annuity(i=interest, n=years,
k=payments_per_year)
R
balanceDue <- numeric(years * payments_per_year)
balanceDue[1] <- capital * (1+rate_per_period) - R
for(i in 2:length(balanceDue)) balanceDue[i]<-
balanceDue[i-1] * (1+rate_per_period) - R
plot(x=c(1:length(balanceDue)), y=balanceDue, main="Loan amortization",
ylab="EoP balance due", xlab="year", type="l",col="steelblue")
bond<-function(faceValue, couponRate, couponsPerYear, yield,maturity)
{
out <- numeric(1)
numberOfCF <- maturity * couponsPerYear
CFs <- numeric(numberOfCF)
payments <- couponRate * faceValue / couponsPerYear
cf <- payments * rep(1,numberOfCF)
cf[numberOfCF] <- faceValue + payments
times <- seq.int(from=1/couponsPerYear, to=maturity,
by=maturity/numberOfCF)
out <- presentValue(cashFlows=cf, interestRates=yield,
timeIds=times)
return(out)
}
perpetuity<-function(yield, immediate=TRUE)
{
out <- numeric(1)
out <- 1 / yield
out <- ifelse(immediate==TRUE, out, out*(1+yield))
return(out)
}
bndEx1 <-bond(1000, 0.06, 2, 0.05, 3)
bndEx2 <-bond(1000, 0.06, 2, 0.06, 3)
ppTy1 <-perpetuity(0.1)
c(bndEx1, bndEx2, ppTy1)
cashFlows <- c(100,100,100,600,500,700)
timeVector <- seq(1:6)
interestRate <- 0.03
dur1 <-duration(cashFlows = cashFlows, timeIds = timeVector,
i = interestRate, k = 1, macaulay = TRUE)
dur2 <-duration(cashFlows = cashFlows, timeIds = timeVector,
i = interestRate, k = 1, macaulay = FALSE)
cvx1 <-convexity(cashFlows = cashFlows, timeIds = timeVector,
i = interestRate, k = 1)
c(dur1, dur2, cvx1)
GTCFin<- 10000 * (1 + 0.05)^7
GTCFin
yieldT0 <- 0.04
durLiab <- 7
pvLiab <- presentValue(cashFlows = GTCFin,timeIds = 7,
interestRates = yieldT0)
convLiab <- convexity(cashFlows=GTCFin, timeIds = 7,
i=yieldT0)
pvBond <- bond(100,0.03,1,yieldT0,5)
durBond <- duration(cashFlows=c(3,3,3,3,103),
timeIds=seq(1,5), i = yieldT0)
convBond <- convexity(cashFlows=c(3,3,3,3,103),
timeIds=seq(1,5), i = yieldT0)
pvPpty <- perpetuity(yieldT0)
durPpty <- (1+yieldT0)/yieldT0
covnPpty <- 2/(yieldT0^2)
a <- matrix(c(durBond, durPpty,1,1), nrow=2,
byrow=TRUE)
b <- as.vector(c(7,1))
weights <-solve(a,b)
weights
bondNum <- weights[1] * pvLiab / pvBond
pptyNum <- weights[2] * pvLiab / pvPpty
bondNum
pptyNum
convAsset <- weights[1] * convBond + weights[2] * covnPpty
convAsset>convLiab
yieldT1low <- 0.03
immunizationTestLow <- (bondNum * bond(100,0.03,1,yieldT1low,5) +
pptyNum * perpetuity(yieldT1low)>
GTCFin / (1+yieldT1low)^7)
yieldT1high <- 0.05
immunizationTestHigh <- (bondNum * bond(100,0.03,1,yieldT1high,5) +
pptyNum * perpetuity(yieldT1high)>
GTCFin/(1+yieldT1high)^7)
immunizationTestLow
immunizationTestHigh
x_example <- seq(from=0,to=9, by=1)
lx_example <- c(1000,950,850,700,680,600,550,400,200,50)
exampleLt <- new("lifetable", x=x_example, lx=lx_example,
name="example lifetable")
print(exampleLt)
head(exampleLt)
data("demoUsa")
data("demoIta")
usaMale07 <- demoUsa[,c("age", "USSS2007M")]
usaMale00 <- demoUsa[,c("age", "USSS2000M")]
names(usaMale07) <- c("x","lx")
names(usaMale00) <- c("x","lx")
usaMale07Lt <-as(usaMale07,"lifetable")
usaMale07Lt@name <- "USA MALES 2007"
usaMale00Lt <-as(usaMale00,"lifetable")
usaMale00Lt@name <- "USA MALES 2000"
lxIPS55M <- with(demoIta, IPS55M)
pos2Remove <- which(lxIPS55M %in% c(0,NA))
lxIPS55M <-lxIPS55M[-pos2Remove]
xIPS55M <-seq(0,length(lxIPS55M)-1,1)
ips55M <- new("lifetable",x=xIPS55M, lx=lxIPS55M,
name="IPS 55 Males")
lxIPS55F <- with(demoIta, IPS55F)
pos2Remove <- which(lxIPS55F %in% c(0,NA))
lxIPS55F <- lxIPS55F[-pos2Remove]
xIPS55F <- seq(0,length(lxIPS55F)-1,1)
ips55F <- new("lifetable",x=xIPS55F, lx=lxIPS55F,
name="IPS 55 Females")
data("demoIta")
itaM2002 <- demoIta[,c("X","SIM92")]
names(itaM2002) <- c("x","lx")
itaM2002Lt <- as(itaM2002,"lifetable")
itaM2002Lt@name <- "IT 2002 Males"
itaM2002 <- as(itaM2002Lt,"data.frame")
itaM2002$qx <- 1-itaM2002$px
for(i in 20:60) itaM2002$qx[itaM2002$x==i] = 0.2 * itaM2002$qx[itaM2002$x==i]
itaM2002reduced <- probs2lifetable(probs=itaM2002[,"qx"], radix=100000,
type="qx",name="IT 2002 Males reduced")
exampleAct <- new("actuarialtable",x=exampleLt@x, lx=exampleLt@lx,
interest=0.03, name="example actuarialtable")
getOmega(exampleAct)
print(exampleLt)
print(exampleAct)
exampleActDf <- as(exampleAct, "data.frame")
data(soa08)
require(markovchain)
soa08Mc<-as(soa08,"markovchainList")
data("soa08Act")
soa08ActDf <- as(soa08Act, "data.frame")
plot(soa08Act, type="l",col="steelblue")
demoEx1<-pxt(ips55M,20,1)
demoEx2<-qxt(ips55M,30,2)
demoEx3<-exn(ips55M, 50,20,"complete")
c(demoEx1,demoEx2,demoEx3)
mx20t1 <- mxt(ips55M,20,1)
qx20t1 <- mx2qx(mx20t1)
c(mx20t1,qx20t1)
data("soa08Act")
pxtLin <- pxt(soa08Act,80,0.5,"linear")
pxtCnst <- pxt(soa08Act,80,0.5,"constant force")
pxtHyph <- pxt(soa08Act,80,0.5,"hyperbolic")
c(pxtLin,pxtCnst,pxtHyph)
tablesList <- list(ips55M, ips55F)
jsp <- pxyzt(tablesList, x=c(65,63), t=2)
lsp <- pxyzt(tablesList, x=c(65,63), t=2, status="last")
jelt <- exyzt(tablesList, x=c(65,63), status="joint")
c(jsp,lsp,jelt)
data(soa08Act)
UComm <- Axn(actuarialtable=soa08Act, x=25, n=65-25, k=12)
UCpt <- ((soa08ActDf$Mx[26]-soa08ActDf$Mx[66])/soa08ActDf$Dx[26]) *
0.06/real2Nominal(i=0.06,k=12)
c(UComm, UCpt)
P <- UCpt/axn(actuarialtable=soa08Act,x=25,n=10)
P
(10 + 1 ) * Axn(actuarialtable=soa08Act, x=25, n=10)
DAxn(actuarialtable = soa08Act, x=25, n=10) +
IAxn(actuarialtable = soa08Act, x=25, n=10)
UCpt <- axn(actuarialtable=soa08Act, x=75, m=10)
UComm <- with(soa08ActDf,Nx[86]/Dx[76])
c(UCpt,UComm)
P=axn(actuarialtable=soa08Act, x=75, m=10) /
axn(actuarialtable=soa08Act, x=75, n=5)
P
PComm <- with(soa08ActDf,(Nx[86]/Dx[76]) /
((Nx[76]-Nx[81])/Dx[76]))
PComm
U <- axn(actuarialtable=soa08Act, x=75, m=10, k=12)
P <- axn(actuarialtable=soa08Act, x=75, m=10, k=12) /
axn(actuarialtable=soa08Act, x=75, n=5)
c(U,P)
P=100000 * Axn(soa08Act,x=25,n=40)/axn(soa08Act,x=25,n=40)
reserveFun = function(t) return(100000*Axn(soa08Act,x=25+t,n=40-t)-P*
axn(soa08Act,x=25+t,n=40-t))
for(t in 0:40) {if(t%%5==0) cat("At time ",t,
" benefit reserve is ",
reserveFun(t),"\n")}
yearlyRate <- 12000
irate <- 0.02
APV <- yearlyRate*axn(soa08Act, x=25, i=irate,m=65-25,k=12)
levelPremium <- APV/axn(soa08Act, x=25,n=65-25,k=12)
annuityReserve<-function(t) {
out<-NULL
if(t<65-25) out <- yearlyRate*axn(soa08Act, x=25+t,
i=irate, m=65-(25+t),k=12)-levelPremium*axn(soa08Act,
x=25+t, n=65-(25+t),k=12) else {
out <- yearlyRate*axn(soa08Act, x=25+t, i=irate,k=12)
}
return(out)
}
years <- seq(from=0, to=getOmega(soa08Act)-25-1,by=1)
annuityRes <- numeric(length(years))
for(i in years) annuityRes[i+1] <- annuityReserve(i)
dataAnnuityRes <- data.frame(years=years, reserve=annuityRes)
plot(y=dataAnnuityRes$reserve, x=dataAnnuityRes$years,
col="steelblue", main="Deferred annuity benefit reserve",
ylab="amount",xlab="years",type="l")
G <- (100000*Axn(soa08Act, x=35) + (2.5*100000/1000 + 25)*
axn(soa08Act,x=35))/((1-.1)*axn(soa08Act,x=35))
G
twoLifeTables <- list(maleTable=soa08Act, femaleTable=soa08Act)
axn(soa08Act, x=65,m=1)+axn(soa08Act, x=70,m=1)-
axyzn(tablesList=twoLifeTables, x=c(65,y=70),status="joint",m=1)
axyzn(tablesList=twoLifeTables, x=c(65,y=70), status="last",m=1)
axn(actuarialtable = soa08Act, x=60,m=1)-
axyzn(tablesList = twoLifeTables,
x=c(65,60),status="joint",m=1)
rLife(n = 5, object = soa08Act, x = 45, type = "Kx")
futureLifetimes <- as.data.frame(rLifexyz(n=numSim,
tablesList=list(husband=ips55M,wife=ips55F),
x=c(68,65), type="Tx"))
names(futureLifetimes) <- c("husband","wife")
temp <- futureLifetimes$wife - futureLifetimes$husband
futureLifetimes$widowance <- sapply(temp, max,0)
mean(futureLifetimes$widowance)
hist(futureLifetimes$widowance, freq=FALSE, main="Distribution of widowance yars",
xlab="Widowance years", col="steelblue", nclass=100);abline(v=mean(futureLifetimes$widowance),
col="red", lwd=2)
APVAxn <- Axn(soa08Act,x=25,n=40,type="EV")
APVAxn
sampleAxn <- rLifeContingencies(n=numSim, lifecontingency="Axn",
object=soa08Act,x=25,t=40,parallel=FALSE)
tt1 <-t.test(x=sampleAxn,mu=APVAxn)$p.value
APVIAxn <- IAxn(soa08Act,x=25,n=40,type="EV")
APVIAxn
sampleIAxn <- rLifeContingencies(n=numSim, lifecontingency="IAxn",
object=soa08Act,x=25,t=40,parallel=FALSE)
tt2 <-t.test(x=sampleIAxn,mu=APVIAxn)$p.value
APVaxn <- axn(soa08Act,x=25,n=40,type="EV")
APVaxn
sampleaxn <- rLifeContingencies(n=numSim, lifecontingency="axn",
object=soa08Act,x=25,t=40,parallel=FALSE)
tt3 <- t.test(x=sampleaxn,mu=APVaxn)$p.value
APVAExn <- AExn(soa08Act,x=25,n=40,type="EV")
APVAExn
sampleAExn <- rLifeContingencies(n=numSim, lifecontingency="AExn",
object=soa08Act,x=25,t=40,parallel=FALSE)
tt4 <-t.test(x=sampleAExn,mu=APVAExn)$p.value
c(tt1, tt2,tt3, tt4)
par(mfrow=c(2,2))
hist(sampleAxn, main="Term Insurance", xlab="Actuarial present value",nclass=50, col="steelblue",freq=FALSE);abline(v=APVAxn, col="red", lwd=2)
hist(sampleIAxn, main="Increasing Life Insurance", xlab="Actuarial present value",nclass=50, col="steelblue",freq=FALSE);abline(v=APVIAxn, col="red", lwd=2)
hist(sampleaxn, main="Temporary Annuity Due", xlab="Actuarial present value",nclass=50, col="steelblue",freq=FALSE);abline(v=APVaxn, col="red", lwd=2)
hist(sampleAExn, main="Endowment Insurance", xlab="Actuarial present value",nclass=50, col="steelblue",freq=FALSE);abline(v=APVAExn, col="red", lwd=2)
tablesList=list(soa08Act,soa08Act);x=c(60,60);m=0;status="last";t=30;k=1
APVAxyz<-Axyzn(tablesList=tablesList,x=x,n=t,status=status,type="EV")
samplesAxyz<-rLifeContingenciesXyz(n=numSim,lifecontingency = "Axyz",
tablesList = tablesList,x=x,t=t,m=m,k=k,status=status,
parallel=FALSE)
tt5<-t.test(x=samplesAxyz, mu=APVAxyz)$p.value
APVaxyz<-axyzn(tablesList=tablesList,x=x,n=t,m=m,k=k,status=status,type="EV")
samplesaxyz<-rLifeContingenciesXyz(n=numSim,lifecontingency = "axyz",
tablesList = tablesList,x=x,t=t,m=m,k=k,status=status,
parallel=FALSE)
tt6<-t.test(x=samplesaxyz, mu=APVaxyz)$p.value
c(tt5,tt6)
var(sampleAxn)
Axn(soa08Act, x=25,n=40, power=2)-Axn(soa08Act, x=25,n=40, power=1)^2
APV <- Axn(actuarialtable = soa08Act, x=25, n=40)
APV
samples <- rLifeContingencies(n=numSim, lifecontingency = "Axn",
object= soa08Act, x=25,t=40,parallel=FALSE)
pct90Pr <- as.numeric(quantile(samples,.90))
pct90Pr
pct90Pr2 <- qnorm(p=0.90,mean=APV, sd=sd(samples)/sqrt(1000))
pct90Pr2
nsim <- 50
employees <- 100
salaryDistribution <- rlnorm(n=employees,m=10.77668944,s=0.086177696)
ageDistribution <- round(runif(n=employees,min=25, max=65))
policyLength <- sapply(65-ageDistribution, min, 1)
getEmployeeBenefit<-function(index,type="EV") {
out <- numeric(1)
out <- salaryDistribution[index]*Axn(actuarialtable=soa08Act,
x=ageDistribution[index],n=policyLength[index],
i=0.02,m=0,k=1, type=type)
return(out)
}
require(parallel)
cl <- makeCluster(1)
worker.init <- function(packages) {
for (p in packages) {
library(p, character.only=TRUE)
}
invisible(NULL)
}
clusterCall(cl,
worker.init, c('lifecontingencies'))
clusterExport(cl, varlist=c("employees","getEmployeeBenefit",
"salaryDistribution","policyLength",
"ageDistribution","soa08Act"))
employeeBenefits <- numeric(employees)
employeeBenefits <- parSapply(cl, 1:employees,getEmployeeBenefit, type="EV")
employeeBenefit <- sum(employeeBenefits)
benefitDistribution<-numeric(nsim)
yearlyBenefitSimulate<-function(i)
{
out <- numeric(1)
expenseSimulation <- numeric(employees)
expenseSimulation <- sapply(1:employees, getEmployeeBenefit, type="ST")
out <- sum(expenseSimulation)
return(out)
}
benefitDistribution <- parSapply(cl, 1:nsim,yearlyBenefitSimulate )
stopCluster(cl)
riskMargin <- as.numeric(quantile(benefitDistribution,.75)-employeeBenefit)
totalBookedCost <- employeeBenefit+riskMargin
employeeBenefit
riskMargin
totalBookedCost
valdezDf<-data.frame(
x=c(50:54),
lx=c(4832555,4821937,4810206,4797185,4782737),
heart=c(5168, 5363, 5618, 5929, 6277),
accidents=c(1157, 1206, 1443, 1679,2152),
other=c(4293,5162,5960,6840,7631)
)
valdezMdt<-new("mdt",name="ValdezExample",table=valdezDf)
valdezDf<-as(valdezMdt,"data.frame")
require(markovchain)
valdezMarkovChainList<-as(valdezMdt,"markovchainList")
getOmega(valdezMdt)
getDecrements(valdezMdt)
summary(valdezMdt)
dxt(valdezMdt,x=51,decrement="other")
dxt(valdezMdt,x=51,t=2, decrement="other")
dxt(valdezMdt,x=51)
dxt(valdezMdt,x=51,t=2, decrement="other")
pxt(valdezMdt,x=50,t=3)
qxt(valdezMdt,x=53,t=2,decrement=1)
rmdt(n = 2,object = valdezMdt,x = 50,t = 2)
qxt.prime.fromMdt(object = valdezMdt,x=53, decrement="accidents")
qxt.fromQxprime(qx.prime = 0.01,other.qx.prime = c(0.03,0.06))
myTable<-data.frame(x=c(16,17,18),
lx=c(20000,17600,14520),
da=c(1300,1870,2380),
doc=c(1100,1210,1331)
)
myMdt<-new("mdt",table=myTable,name="Sample")
Axn.mdt(object=myMdt,x=16,i=.1,decrement="da")
axnmdt.firsttype<-function (object, x, n, i , payment="advance", delta=0) {
out <- numeric(1)
if (!(class(object) %in% c("lifetable", "actuarialtable", "mdt")))
stop("Error! Only lifetable, actuarialtable or mdt classes are accepted")
if (missing(object))
stop("Error! Need a Multiple decrement table")
if (missing(x))
stop("Error! Need age!")
if (x > getOmega(object)) {
stop("Age greater than Omega")
}
if(class(object)=="mdt"){
if (x < min(object@table$x)) {
stop("Age lower than minimum age")
}}
if(class(object)=="actuarialtable"){
if (x < min(object@x)) {
stop("Age lower than minimum age")
}}
if(!(missing(i))){
interest <- i
}else{
if(class(object)=="actuarialtable"){
interest=object@interest
}else{
stop("Needed Interest Rate ")
}
}
if (missing(n))
n <- (getOmega(object) - x)
if (n == 0) {
stop("Contract duration equal to zero")
}
probs = numeric(n)
times = seq(from = 0, to = n-1, by = 1)
if (payment == "arrears") times = times + 1
for (j in 1:length(times)) probs[j] = pxt(object, x, times[j])
out <- sum(apply(cbind(probs,((1 + interest)/(1+delta))^-times),1,prod))
return(out)
}
data("de_angelis_di_falco")
HealthyMaleTable2013 <- de_angelis_di_falco$HealthyMaleTable2013
DAT<-new("actuarialtable", x=de_angelis_di_falco$DisabledMaleLifeTable$age, lx=de_angelis_di_falco$DisabledMaleLifeTable$'2013',
name="DisabledTable",i=0.03)
axnmdt.firsttype(DAT,x=65,n=10,i=0.03,payment="arrears",delta=0.02)
axnmdt.firsttype(DAT,65,10,payment="arrears",delta=0.02)
axnmdt.firsttype(DAT,65,10,payment="arrears",i=0.03,delta=0.02)
axnmdt.firsttype(DAT,65,10,payment="arrears",delta=0)
axn(DAT,65,10,payment="arrears") |
waldLLR = function(target, dataset, xIndex, csIndex, wei = NULL, univariateModels=NULL, hash = FALSE, stat_hash=NULL, pvalue_hash=NULL){
if (!survival::is.Surv(target) ) stop('The survival test can not be performed without a Surv object target');
csIndex[which(is.na(csIndex))] = 0;
if ( hash ) {
csIndex2 = csIndex[which(csIndex!=0)]
csIndex2 = sort(csIndex2)
xcs = c(xIndex,csIndex2)
key = paste(as.character(xcs) , collapse=" ");
if (is.null(stat_hash[key]) == FALSE) {
stat = stat_hash[key];
pvalue = pvalue_hash[key];
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
}
}
pvalue <- log(1);
stat <- 0;
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
event <- target[, 2]
numCases <- dim(dataset)[1];
if (length(event) == 0) event = vector('numeric',numCases) + 1;
if ( length(csIndex) == 0 || sum(csIndex == 0, na.rm = TRUE) > 0 ) {
llr_results <- survival::survreg( target ~ dataset[, index], weights = wei, control = list(iter.max = 5000), dist = "loglogistic" )
res <- summary(llr_results)[[ 9 ]]
stat <- res[2, 3]^2
pvalue <- pchisq(stat, 1, lower.tail = FALSE, log.p = TRUE);
} else {
llr_results_full <- survival::survreg( target ~ ., data = as.data.frame( dataset[ , c(csIndex, xIndex)] ), weights = wei, control = list(iter.max = 5000), dist = "loglogistic" )
res <- summary(llr_results_full)[[ 9 ]]
pr <- dim(res)[1] - 1
stat <- res[pr, 3]^2
pvalue <- pchisq(stat, 1, lower.tail = FALSE, log.p = TRUE)
}
if ( is.na(pvalue) || is.na(stat) ) {
pvalue <- log(1);
stat <- 0;
} else {
if( hash ) {
stat_hash[key] <- stat;
pvalue_hash[key] <- pvalue;
}
}
results <- list(pvalue = pvalue, stat = stat, stat_hash=stat_hash, pvalue_hash=pvalue_hash);
return(results);
} |
library(fitdistrplus)
visualize <- FALSE
nsample <- 1000
nsample <- 10
data(groundbeef)
serving <- groundbeef$serving
fitW <- fitdist(serving,"weibull")
fitln <- fitdist(serving,"lnorm")
fitg <- fitdist(serving,"gamma")
try(cdfcomp("list(fitW, fitln, fitg)",horizontals = FALSE), silent=TRUE)
try(cdfcomp(list(fitW, fitln, fitg, a=1),horizontals = FALSE), silent=TRUE)
cdfcomp(list(fitW, fitln, fitg), horizontals = FALSE)
cdfcomp(list(fitW, fitln, fitg), horizontals = TRUE)
cdfcomp(list(fitW, fitln, fitg), horizontals = TRUE, lines01 = TRUE)
cdfcomp(list(fitW, fitln, fitg), horizontals = TRUE, verticals = TRUE, datacol = "grey")
if (requireNamespace ("ggplot2", quietly = TRUE)) {
cdfcomp(list(fitW, fitln, fitg), horizontals = FALSE, plotstyle = "ggplot")
}
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fitW, fitln, fitg), horizontals = TRUE, plotstyle = "ggplot")
cdfcomp(list(fitW, fitln, fitg), horizontals = TRUE, lines01 = TRUE, plotstyle = "ggplot")
cdfcomp(list(fitW, fitln, fitg), horizontals = TRUE, verticals = TRUE, datacol = "grey", plotstyle = "ggplot")
}
cdfcomp(list(fitW, fitln, fitg), legendtext = c("Weibull", "lognormal", "gamma"),
main = "ground beef fits", xlab = "serving sizes (g)",
ylab = "F(g)", xlim = c(0, 250), ylim = c(.5, 1))
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fitW, fitln, fitg), legendtext = c("Weibull", "lognormal", "gamma"),
main = "ground beef fits", xlab = "serving sizes (g)",
ylab = "F(g)", xlim = c(0, 250), ylim = c(.5, 1), plotstyle = "ggplot")
}
cdfcomp(list(fitW, fitln, fitg), legendtext = c("Weibull", "lognormal", "gamma"),
main = "ground beef fits", xlab = "serving sizes (g)",
ylab = "F(g)", xlogscale = TRUE)
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fitW, fitln, fitg), legendtext = c("Weibull", "lognormal", "gamma"),
main = "ground beef fits", xlab = "serving sizes (g)",
ylab = "F(g)", xlogscale = TRUE, plotstyle = "ggplot")
}
cdfcomp(list(fitW,fitln,fitg),legendtext=c("Weibull","lognormal","gamma"),
main="ground beef fits",xlab="serving sizes (g)",
ylab="F(g)", xlogscale=TRUE, ylogscale=TRUE, ylim=c(.005, .99))
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fitW,fitln,fitg),legendtext=c("Weibull","lognormal","gamma"),
main="ground beef fits",xlab="serving sizes (g)",
ylab="F(g)", xlogscale=TRUE, ylogscale=TRUE, ylim=c(.005, .99), plotstyle = "ggplot")
}
cdfcomp(list(fitW,fitln,fitg), legendtext=c("Weibull","lognormal","gamma"),
main="ground beef fits",xlab="serving sizes (g)",
ylab="F(g)",xlim = c(0,250), xlegend = "topleft")
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fitW,fitln,fitg), legendtext=c("Weibull","lognormal","gamma"),
main="ground beef fits",xlab="serving sizes (g)",
ylab="F(g)",xlim = c(0,250), xlegend = "topleft", plotstyle = "ggplot")
}
data(endosulfan)
ATV <-subset(endosulfan, group == "NonArthroInvert")$ATV
taxaATV <- subset(endosulfan, group == "NonArthroInvert")$taxa
flnMGEKS <- fitdist(ATV,"lnorm",method="mge",gof="KS")
flnMGEAD <- fitdist(ATV,"lnorm",method="mge",gof="AD")
flnMGEADL <- fitdist(ATV,"lnorm",method="mge",gof="ADL")
flnMGEAD2L <- fitdist(ATV,"lnorm",method="mge",gof="AD2L")
llfit <- list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L)
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L), xlogscale=TRUE,
main="fits of a lognormal dist. using various GOF dist.")
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE,main="fits of a lognormal dist. using various GOF dist.",
legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"))
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE,main="fits of a lognormal dist. using various GOF dist.",
legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"),
fitcol=c("black", "darkgreen", "yellowgreen", "yellow2"),
horizontals=FALSE, datapch="+")
cdfcomp(llfit, xlogscale=TRUE, main="fits of a lognormal dist. using various GOF dist.",
legendtext=paste("MGE", c("KS","AD","ADL","AD2L")), fitcol="grey35",
fitlty="dotted", horizontals=FALSE, datapch=21, datacol="grey30")
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE, verticals=TRUE, xlim=c(10,100000), datapch=21)
cdfcomp(flnMGEKS, xlogscale=TRUE, verticals=TRUE, xlim=c(10,100000))
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE, verticals=TRUE, xlim=c(1,100000), datapch=21, name.points=taxaATV)
cdfcomp(flnMGEKS, xlogscale=TRUE, verticals=TRUE, xlim=c(1,100000), name.points=taxaATV)
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L), xlogscale=TRUE,
main = "fits of a lognormal dist. using various GOF dist.", plotstyle = "ggplot")
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE,main="fits of a lognormal dist. using various GOF dist.",
legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"), plotstyle = "ggplot")
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE,main="fits of a lognormal dist. using various GOF dist.",
legendtext=c("MGE KS","MGE AD","MGE ADL","MGE AD2L"),
fitcol=c("black", "darkgreen", "yellowgreen", "yellow2"),
horizontals=FALSE, datapch="+", plotstyle = "ggplot")
cdfcomp(llfit, xlogscale=TRUE, main="fits of a lognormal dist. using various GOF dist.",
legendtext=paste("MGE", c("KS","AD","ADL","AD2L")), fitcol="grey35",
fitlty="dotted", horizontals=FALSE, datapch=21, datacol="grey30", plotstyle = "ggplot")
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE, verticals=TRUE, xlim=c(10,100000), datapch=21, plotstyle = "ggplot")
cdfcomp(flnMGEKS, xlogscale=TRUE, verticals=TRUE, xlim=c(10,100000), plotstyle = "ggplot")
cdfcomp(list(flnMGEKS, flnMGEAD, flnMGEADL, flnMGEAD2L),
xlogscale=TRUE, verticals=TRUE, xlim=c(1,100000), datapch=21, name.points=taxaATV,
plotstyle = "ggplot")
cdfcomp(flnMGEKS, xlogscale=TRUE, verticals=TRUE, xlim=c(1,100000), name.points=taxaATV,
plotstyle = "ggplot")
}
if (visualize)
{
data(endosulfan)
log10ATV <-log10(subset(endosulfan, group == "NonArthroInvert")$ATV)
taxaATV <- subset(endosulfan, group == "NonArthroInvert")$taxa
fln <- fitdist(log10ATV, "norm")
fll <- fitdist(log10ATV, "logis")
cdfcomp(list(fln, fll), legendtext = c("normal", "logistic"), xlab = "log10ATV",
name.points=taxaATV, xlim = c(0,5))
if (requireNamespace ("ggplot2", quietly = TRUE)) {
cdfcomp(list(fln, fll), legendtext = c("normal", "logistic"),xlab = "log10ATV",
name.points=taxaATV, xlim=c(0,5), plotstyle = "ggplot")
}
cdfcomp(list(fln,fll),legendtext=c("normal","logistic"),xlab="log10ATV",
use.ppoints = TRUE, a.ppoints = 0)
if (requireNamespace ("ggplot2", quietly = TRUE)) {
cdfcomp(list(fln,fll),legendtext=c("normal","logistic"),xlab="log10ATV",
use.ppoints = TRUE, a.ppoints = 0, plotstyle = "ggplot")
}
cdfcomp(list(fln,fll),legendtext=c("normal","logistic"),xlab="log10ATV",
use.ppoints = FALSE)
if (requireNamespace ("ggplot2", quietly = TRUE)) {
cdfcomp(list(fln,fll),legendtext=c("normal","logistic"),xlab="log10ATV",
use.ppoints = FALSE, plotstyle = "ggplot")
}
}
if (visualize)
{
x1 <- c(6.4,13.3,4.1,1.3,14.1,10.6,9.9,9.6,15.3,22.1,13.4,13.2,8.4,6.3,8.9,5.2,10.9,14.4)
x <- seq(0, 1.1*max(x1), length=100)
dgumbel <- function(x,a,b) 1/b*exp((a-x)/b)*exp(-exp((a-x)/b))
pgumbel <- function(q,a,b) exp(-exp((a-q)/b))
f1 <- mledist(x1, "norm")
f2 <- mledist(x1, "gumbel", start = list(a = 10, b = 5))
f3 <- mledist(x1, "exp")
plot(ecdf(x1))
lines(x, pnorm(x, f1$estimate[1], f1$estimate[2]), col = "red")
lines(x, pgumbel(x, f2$estimate[1], f2$estimate[2]), col = "green")
lines(x, pexp(x, f3$estimate[1]), col = "blue")
legend("bottomright", lty = 1, leg = c("Normal", "Gumbel", "Exp"), col = c("red", "green", "blue"))
f1 <- fitdist(x1, "norm")
f2 <- fitdist(x1, "gumbel", start = list(a = 10, b = 5))
f3 <- fitdist(x1, "exp")
cdfcomp(list(f1, f2, f3), xlim=range(x), fitcol = c("red", "green", "blue"), fitlty = 1, legendtext = c("Normal", "Gumbel", "Exp"))
cdfcomp(list(f1, f2, f3), xlim=range(x), fitcol = c("red", "green", "blue"), fitlty = 1, fitlwd = (1:3)*2, legendtext = c("Normal", "Gumbel", "Exp"))
if (requireNamespace ("ggplot2", quietly = TRUE)) {
cdfcomp(list(f1, f2, f3), xlim=range(x), fitcol=c("red","green","blue"), fitlty = 1, legendtext = c("Normal", "Gumbel", "Exp"), plotstyle = "ggplot")
cdfcomp(list(f1, f2, f3), xlim=range(x), fitcol=c("red","green","blue"), fitlty = 1, fitlwd = 1:3, legendtext = c("Normal", "Gumbel", "Exp"), plotstyle = "ggplot")
}
}
dnorm2 <- function(x, poid, m1, s1, m2, s2)
poid*dnorm(x, m1, s1) + (1-poid)*dnorm(x, m2, s2)
qnorm2 <- function(p, poid, m1, s1, m2, s2)
{
L2 <- function(x, prob)
(prob - pnorm2(x, poid, m1, s1, m2, s2))^2
sapply(p, function(pr) optimize(L2, c(-1000, 1000), prob=pr)$minimum)
}
pnorm2 <- function(q, poid, m1, s1, m2, s2)
poid*pnorm(q, m1, s1) + (1-poid)*pnorm(q, m2, s2)
set.seed(1234)
x2 <- c(rnorm(nsample, 5), rnorm(nsample, 10))
fit1 <- fitdist(x2, "norm2", "mle", start=list(poid=1/3, m1=4, s1=2, m2=8, s2=2),
lower=c(0, 0, 0, 0, 0))
fit2 <- fitdist(x2, "norm2", "qme", probs=c(1/6, 1/4, 1/3, 1/2, 2/3),
start=list(poid=1/3, m1=4, s1=2, m2=8, s2=2),
lower=c(0, 0, 0, 0, 0), upper=c(1/2, Inf, Inf, Inf, Inf))
fit3 <- fitdist(x2, "norm2", "mge", gof="AD",
start=list(poid=1/3, m1=4, s1=2, m2=8, s2=2),
lower=c(0, 0, 0, 0, 0), upper=c(1/2, Inf, Inf, Inf, Inf))
cdfcomp(list(fit1, fit2, fit3), datapch=".")
cdfcomp(list(fit1, fit2, fit3), datapch=".", xlim=c(6, 8), ylim=c(.4, .55))
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fit1, fit2, fit3), datapch=".", plotstyle = "ggplot")
cdfcomp(list(fit1, fit2, fit3), datapch=".", xlim=c(6, 8), ylim=c(.4, .55), plotstyle = "ggplot")
}
set.seed(1234)
x3 <- rpois(20, 10)
fit1 <- fitdist(x3, "pois", "mle")
fit2 <- fitdist(x3, "nbinom", "qme", probs=c(1/3, 2/3))
cdfcomp(list(fit1, fit2), datapch=21, horizontals=FALSE)
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fit1, fit2), datapch=21, horizontals=FALSE, plotstyle = "ggplot")
}
if (visualize)
{
n <- 1e4
f1 <- fitdist(rlnorm(n), "lnorm")
cdfcomp(f1, do.points=TRUE)
cdfcomp(f1, do.points=FALSE)
cdfcomp(f1, horizontals = FALSE, verticals = FALSE, do.points = FALSE)
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(f1, do.points = TRUE, plotstyle = "ggplot")
cdfcomp(f1, do.points = FALSE, plotstyle = "ggplot")
cdfcomp(f1, horizontals = FALSE, verticals = FALSE, do.points = FALSE, plotstyle = "ggplot")
}
}
set.seed(1234)
x3 <- rpois(nsample, 10)
fit1 <- fitdist(x3, "pois", "mle")
cdfcomp(fit1, fitcol = "red", horizontals=FALSE, addlegend = FALSE)
fit2 <- fitdist(x3, "nbinom", "qme", probs=c(1/3, 2/3))
cdfcomp(fit2, fitcol = "blue", horizontals=FALSE, addlegend = FALSE, add = TRUE)
cdfcomp(list(fit1, fit2), horizontals=FALSE, addlegend = FALSE,
fitcol=c("red", "blue"))
if (requireNamespace ("ggplot2", quietly = TRUE) & visualize) {
cdfcomp(list(fit1, fit2), fitcol = c("red", "blue"), fitlty = 1, horizontals = FALSE, addlegend = FALSE, plotstyle = "ggplot")
}
if (visualize)
{
serving <- groundbeef$serving
fitW <- fitdist(serving,"weibull")
fitW2 <- fitdist(serving,"weibull", method="qme", probs=c(1/3,2/3))
fitW3 <- fitdist(serving,"weibull", method="qme", probs=c(1/2,2/3))
fitln <- fitdist(serving,"lnorm")
fitg <- fitdist(serving,"gamma")
cdfcomp(list(fitW, fitln, fitg))
cdfcomp(list(fitW, fitW2, fitln, fitg))
cdfcomp(list(fitW, fitW2, fitW3, fitln, fitg))
if (requireNamespace ("ggplot2", quietly = TRUE))
cdfcomp(list(fitW, fitW2, fitW3, fitln, fitg), plotstyle = "ggplot")
} |
x= rnorm(100, 50,10)
y= rnorm(100, 70, 15)
x1= runif(100, 50,100)
x2= runif(100, 70, 120)
y1 = runif(100, 100,200)
y2 = runif(100, 100,200)
matplot(x, cbind(y1,y2),type="l",col=c("red","green"),lty=c(1,1))
x1 <- seq(-2, 2, 0.05)
x2 <- seq(-3, 3, 0.05)
y1 <- pnorm(x1)
y2 <- pnorm(x2,1,1)
plot(x1,y1,ylim=range(c(y1,y2)),xlim=range(c(x1,x2)), type="l",col="red")
lines(x2,y2,col="green")
par(mfrow=c(1,2))
plot(x)
plot(y)
par(mfrow=c(1,1))
plot(x1, y1,col='red')
points(x2,y2,col='blue')
lines(x2,y2,col='green')
kx = matrix( c(21,50,80,41), nrow=2 )
x
y = matrix( c(1,2,1,2), nrow=2 )
y
plot(x, y, col=c("red","blue"))
require(ggplot2)
df= data.frame(x, y1,y2)
ggplot(df, aes(x,y1)) +
geom_line(colour="red")
ggplot(df, aes(x)) +
geom_line(aes(y=y1), colour="red") +
geom_line(aes(y=y2), colour="green") |
`peak.2.array` <-
function(peak)
{
if ( !all(attr(peak,'class',exact=TRUE) %in% c('peak','list')) )
stop("Input should have class \"peak\".")
for ( i in seq(names(peak)) ){
for (j in 1:length(peak[[i]])) {
if ( is.data.frame(peak[[i]][[j]])){
feat <- names(peak[[i]][[j]])
break
}
}
if (is.data.frame(peak[[i]][[j]])) break
}
cat('peaks features:\n')
print(feat)
cat('\n')
array <- data.frame(t(rep(NA,length(feat)+2)))
for ( i in seq(names(peak)) ){
for ( j in 1:length(peak[[i]]) ) {
if ( is.data.frame(peak[[i]][[j]]) ) {
for ( z in seq(length(as.vector(peak[[i]][[j]]$mname.peak))) ){
w <- NA
for ( y in 1:length(feat) ) w <- c(w,as.vector(peak[[i]][[j]][[y]][z]))
array <- rbind( array,data.frame(t(c( names(peak[i]),
names(peak[[i]][j]),
w[-1]
)))
)
}
} else {
array <- rbind( array,data.frame(t(c( names(peak[i]),
names(peak[[i]][j]),
rep(NA,length(feat))
)))
)
}
}
}
attributes(array)$names <- c('trait','chr',feat)
array <- array[-1,]
attributes(array)$class <- c('peak.array','data.frame')
return(array)
} |
assert_valid_compression <- function(compression){
assert(
is_scalar_atomic(compression) && (
compression %in% c("base::zip", "zip::zipr") ||
compression %in% 1:9 ||
is_bool(compression)
),
'`compression` must be `TRUE`, `FALSE`, or an integer between 1 and 9',
'or the character scalers "base::zip" or "zip::zipr" not: ',
string_repr(compression)
)
} |
context("Calculate aggregate Elo scores")
library(bwsTools)
res1 <- elo(agg, "pid", "trial", "character", "decision", iter = 1)
res2 <- elo(indiv, "id", "block", "label", "value", iter = 100)
test_that("function works on BIBD and non-BIBD data", {
expect_equal(nrow(res1), length(unique(agg$character)))
expect_equal(nrow(res2), length(unique(indiv$label)))
expect_equal(ncol(res1), 2)
expect_equal(ncol(res2), 2)
})
test_that("function outputs scores that are not constant", {
expect_true(length(unique(round(res1$elo))) > 1)
expect_true(length(unique(round(res2$elo))) > 1)
})
test_that("scores between ae_mnl and elo correlate positively", {
totals <- unique(table(indiv$label))
bests <- with(indiv, tapply(value, label, function(x) sum(x == 1)))
worsts <- with(indiv, tapply(value, label, function(x) sum(x == -1)))
res3 <- ae_mnl(data.frame(totals, bests, worsts), "totals", "bests", "worsts")
expect_true(cor(res3$b, res2$elo) > .9)
})
rm(res1, res2) |
test_that("data loads", {
imd_uk <- load_composite_imd()
expect_equal(nrow(imd_uk), 42619)
})
test_that("error thrown", {
expect_error(load_composite_imd("Z"), "Invalid nation: it must be one of 'E', 'W', 'S', 'N'")
}) |
bal.plot <- function(x, var.name, ..., which, which.sub = NULL, cluster = NULL, which.cluster = NULL,
imp = NULL, which.imp = NULL, which.treat = NULL, which.time = NULL,
mirror = FALSE, type = "density", colors = NULL, grid = FALSE, sample.names,
position = "right", facet.formula = NULL, disp.means = getOption("cobalt_disp.means", FALSE),
alpha.weight = TRUE) {
tryCatch(identity(x), error = function(e) stop(conditionMessage(e), call. = FALSE))
.call <- match.call(expand.dots = TRUE)
.alls <- vapply(seq_along(.call), function(z) identical(.call[[z]], quote(.all)), logical(1L))
.nones <- vapply(seq_along(.call), function(z) identical(.call[[z]], quote(.none)), logical(1L))
if (any(c(.alls, .nones))) {
.call[.alls] <- expression(NULL)
.call[.nones] <- expression(NA)
return(eval.parent(.call))
}
tryCatch(force(x), error = function(e) stop(conditionMessage(e), call. = FALSE))
args <- list(...)
x <- process_obj(x)
X <- x2base(x, ..., cluster = cluster, imp = imp)
if (is_null(X$covs.list)) {
X$covs <- get.C2(X$covs, addl = X$addl, distance = X$distance, cluster = X$cluster, treat = X$treat,
drop = FALSE)
co.names <- attr(X$covs, "co.names")
if (missing(var.name)) {
var.name <- NULL; k = 1
while(is_null(var.name)) {
x <- co.names[[k]]
if ("isep" %nin% x[["type"]]) var.name <- x[["component"]][x[["type"]] == "base"][1]
else {
if (k < length(co.names)) k <- k + 1
else
stop("Please specify an argument to 'var.name'.", call. = FALSE)
}
}
message(paste0("No 'var.name' was provided. Displaying balance for ", var.name, "."))
}
var.name_in_name <- vapply(co.names, function(x) var.name %in% x[["component"]][x[["type"]] == "base"] &&
"isep" %nin% x[["type"]], logical(1L))
var.name_in_name_and_factor <- vapply(seq_along(co.names), function(x) var.name_in_name[x] && "fsep" %in% co.names[[x]][["type"]], logical(1L))
if (any(var.name_in_name_and_factor)) {
X$var <- unsplitfactor(as.data.frame(X$covs[,var.name_in_name_and_factor, drop = FALSE]),
var.name, sep = attr(co.names, "seps")["factor"])[[1]]
}
else if (any(var.name_in_name)) {
X$var <- X$covs[,var.name]
}
else {
stop(paste0("\"", var.name, "\" is not the name of an available covariate."), call. = FALSE)
}
if (get.treat.type(X$treat) != "continuous") X$treat <- treat_vals(X$treat)[X$treat]
}
else {
X$covs.list <- lapply(seq_along(X$covs.list), function(i) {
get.C2(X$covs.list[[i]], addl = X$addl.list[[i]], distance = X$distance.list[[i]], cluster = X$cluster,
treat = X$treat.list[[i]], drop = FALSE)
})
co.names.list <- lapply(X$covs.list, attr, "co.names")
ntimes <- length(X$covs.list)
if (missing(var.name)) {
var.name <- NULL; k <- 1; time <- 1
while (is_null(var.name)) {
x <- co.names.list[[time]][[k]]
if ("isep" %nin% x[["type"]]) {
var.name <- x[["component"]][x[["type"]] == "base"][1]
}
else {
if (time < ntimes) {
if (k < length(co.names.list[[time]])) k <- k + 1
else {
k <- 1
time <- time + 1
}
}
else if (k < length(co.names.list[[time]])) k <- k + 1
else stop("Please specified an argument to 'var.name'.", call. = FALSE)
}
}
message(paste0("No 'var.name' was provided. Displaying balance for ", var.name, "."))
}
var.list <- make_list(length(X$covs.list))
appears.in.time <- rep.int(TRUE, length(X$covs.list))
for (i in seq_along(X$covs.list)) {
var.name_in_name <- vapply(co.names.list[[i]], function(x) var.name %in% x[["component"]][x[["type"]] == "base"] &&
"isep" %nin% x[["type"]], logical(1L))
var.name_in_name_and_factor <- var.name_in_name & vapply(co.names.list[[i]], function(x) "fsep" %in% x[["type"]], logical(1L))
if (any(var.name_in_name_and_factor)) {
var.list[[i]] <- unsplitfactor(as.data.frame(X$covs.list[[i]][,var.name_in_name_and_factor, drop = FALSE]),
var.name, sep = attr(co.names.list[[i]], "seps")["factor"])[[1]]
}
else if (any(var.name_in_name)) {
var.list[[i]] <- X$covs.list[[i]][,var.name]
}
else {
appears.in.time[i] <- FALSE
}
}
if (all(vapply(var.list, is_null, logical(1L)))) stop(paste0("\"", var.name, "\" is not the name of an available covariate."), call. = FALSE)
X$var <- unlist(var.list[appears.in.time])
X$time <- rep(which(appears.in.time), times = lengths(var.list[appears.in.time]))
X$treat.list[appears.in.time] <- lapply(X$treat.list[appears.in.time], function(t) if (get.treat.type(t) != "continuous") treat_vals(t)[t] else t)
X$treat <- unlist(X$treat.list[appears.in.time])
if (is_not_null(names(X$treat.list)[appears.in.time])) treat.names <- names(X$treat.list)[appears.in.time]
else treat.names <- which(appears.in.time)
if (is_not_null(X$weights)) X$weights <- do.call("rbind", lapply(seq_len(sum(appears.in.time)), function(x) X$weights))
if (is_not_null(X$cluster)) X$cluster <- rep(X$cluster, sum(appears.in.time))
if (is_not_null(X$imp)) X$imp <- rep(X$imp, sum(appears.in.time))
}
if (is_null(X$subclass)) {
if (NCOL(X$weights) == 1L) weight.names <- "adjusted"
else weight.names <- names(X$weights)
}
else weight.names <- "adjusted"
if (missing(which)) {
if (is_not_null(args$un)) {
message("Note: \'un\' is deprecated; please use \'which\' for the same and added functionality.")
if (args$un) which <- "unadjusted"
else which <- weight.names
}
else {
if (is_null(X$weights) && is_null(X$subclass)) which <- "unadjusted"
else which <- weight.names
}
}
else {
if (is_null(X$weights) && is_null(X$subclass)) which <- "unadjusted"
else {
which <- tolower(which)
which <- match_arg(which, unique(c("adjusted", "unadjusted", "both", weight.names)),
several.ok = TRUE)
}
}
if (is_not_null(args$size.weight)) {
message("Note: \'size.weight\' is no longer allowed; please use \'alpha.weight\' for similar functionality.")
}
title <- paste0("Distributional Balance for \"", var.name, "\"")
subtitle <- NULL
facet <- NULL
is.categorical.var <- is.factor(X$var) || is.character(X$var) || is_binary(X$var)
if (is_null(X$subclass) || (length(which) == 1 && which == "unadjusted")) {
if (is_not_null(which.sub) && !all(is.na(which.sub))) {
if (is_null(X$subclass)) warning("which.sub was specified but no subclasses were supplied. Ignoring which.sub.", call. = FALSE)
else warning("which.sub was specified but only the unadjusted sample was requested. Ignoring which.sub.", call. = FALSE)
}
facet <- "which"
if ("both" %in% which) which <- c("Unadjusted Sample", weight.names)
else {
if ("adjusted" %in% which) which <- c(which[which != "adjusted"], weight.names)
if ("unadjusted" %in% which) which <- c("Unadjusted Sample", which[which != "unadjusted"])
}
which <- unique(which)
if (is_null(X$weights)) X$weights <- setNames(data.frame(rep.int(1, length(X$treat))),
"Unadjusted Sample")
else {
if (ncol(X$weights) == 1) {
which[which != "Unadjusted Sample"] <- "Adjusted Sample"
names(X$weights) <- "Adjusted Sample"
}
if ("Unadjusted Sample" %in% which) {
X$weights <- setNames(data.frame(rep.int(max(X$weights), length(X$treat)),
X$weights),
c("Unadjusted Sample", names(X$weights)))
}
}
X$weights <- X$weights[which]
ntypes <- length(which)
nadj <- sum(which != "Unadjusted Sample")
if (!missing(sample.names)) {
if (!is.vector(sample.names, "character")) {
warning("The argument to sample.names must be a character vector. Ignoring sample.names.", call. = FALSE)
sample.names <- NULL
}
else if (length(sample.names) %nin% c(ntypes, nadj)) {
warning("The argument to sample.names must contain as many names as there are sample types, or one fewer. Ignoring sample.names.", call. = FALSE)
sample.names <- NULL
}
}
else sample.names <- NULL
in.imp <- rep.int(TRUE, length(X$var))
if (is_not_null(X$imp)) {
if (is_null(which.imp)) {
in.imp <- !is.na(X$imp)
facet <- c("imp", facet)
}
else if (!all(is.na(which.imp))) {
if (is.numeric(which.imp)) {
if (all(which.imp %in% seq_len(nlevels(X$imp)))) {
in.imp <- !is.na(X$imp) & X$imp %in% levels(X$imp)[which.imp]
}
else {
stop(paste0("The following inputs to 'which.imp' do not correspond to given imputations:\n\t", word_list(which.imp[!which.imp %in% seq_len(nlevels(X$imp))])), call. = FALSE)
}
facet <- c("imp", facet)
}
else stop("The argument to 'which.imp' must be the indices corresponding to the imputations for which distributions are to be displayed.", call. = FALSE)
}
}
else if (is_not_null(which.imp) && !all(is.na(which.imp))) {
warning("'which.imp' was specified but no 'imp' values were supplied. Ignoring 'which.imp'.", call. = FALSE)
}
in.cluster <- rep.int(TRUE, length(X$var))
if (is_not_null(X$cluster)) {
if (is_null(which.cluster)) {
in.cluster <- !is.na(X$cluster)
facet <- c("cluster", facet)
}
else if (!all(is.na(which.cluster))) {
if (is.numeric(which.cluster)) {
if (all(which.cluster %in% seq_len(nlevels(X$cluster)))) {
in.cluster <- !is.na(X$cluster) & X$cluster %in% levels(X$cluster)[which.cluster]
}
else {
stop(paste0("The following inputs to 'which.cluster' do not correspond to given clusters:\n\t", word_list(which.cluster[!which.cluster %in% seq_len(nlevels(X$cluster))])), call. = FALSE)
}
}
else if (is.character(which.cluster)) {
if (all(which.cluster %in% levels(X$cluster))) {
in.cluster <- !is.na(X$cluster) & X$cluster %in% which.cluster
}
else {
stop(paste0("The following inputs to 'which.cluster' do not correspond to given clusters:\n\t", word_list(which.cluster[which.cluster %nin% levels(X$cluster)])), call. = FALSE)
}
}
else stop("The argument to 'which.cluster' must be the names or indices corresponding to the clusters for which distributions are to be displayed.", call. = FALSE)
facet <- c("cluster", facet)
}
}
else if (is_not_null(which.cluster)) {
warning("'which.cluster' was specified but no 'cluster' values were supplied. Ignoring 'which.cluster'.", call. = FALSE)
}
in.time <- rep.int(TRUE, length(X$var))
if (is_not_null(X$time)) {
if (is_null(which.time) || all(is.na(which.time))) {
in.time <- !is.na(X$time)
}
else {
if (is.numeric(which.time)) {
if (all(which.time %in% seq_along(X$covs.list))) {
if (all(which.time %in% seq_along(X$covs.list)[appears.in.time])) {
}
else if (any(which.time %in% seq_along(X$covs.list)[appears.in.time])) {
warning(paste0(var.name, " does not appear in time period ", word_list(which.time[!which.time %in% seq_along(X$covs.list)[appears.in.time]], "or"), "."), call. = FALSE)
which.time <- which.time[which.time %in% seq_along(X$covs.list)[appears.in.time]]
}
else {
stop(paste0(var.name, " does not appear in time period ", word_list(which.time, "or"), "."), call. = FALSE)
}
in.time <- !is.na(X$time) & X$time %in% which.time
}
else {
stop(paste0("The following inputs to 'which.time' do not correspond to given time periods:\n\t", word_list(which.time[!which.time %in% seq_along(X$covs.list)])), call. = FALSE)
}
}
else if (is.character(which.time)) {
if (all(which.time %in% treat.names)) {
if (all(which.time %in% treat.names[appears.in.time])) {
}
else if (any(which.time %in% treat.names[appears.in.time])) {
time.periods <- word_list(which.time[!which.time %in% treat.names[appears.in.time]], "and")
warning(paste0(var.name, " does not appear in the time period", ifelse(attr(time.periods, "plural"), "s ", " "),
"corresponding to treatment", ifelse(attr(time.periods, "plural"), "s ", " "),
time.periods, "."), call. = FALSE)
which.time <- which.time[which.time %in% treat.names[appears.in.time]]
}
else {
time.periods <- word_list(which.time, "and")
stop(paste0(var.name, " does not appear in the time period", ifelse(attr(time.periods, "plural"), "s ", " "),
"corresponding to treatment", ifelse(attr(time.periods, "plural"), "s ", " "),
time.periods, "."), call. = FALSE)
}
in.time <- !is.na(X$time) & treat.names[X$time] %in% which.time
}
else {
stop(paste0("The following inputs to 'which.time' do not correspond to given time periods:\n\t", word_list(which.time[!which.time %in% treat.names])), call. = FALSE)
}
}
else stop("The argument to 'which.time' must be the names or indices corresponding to the time periods for which distributions are to be displayed.", call. = FALSE)
}
facet <- c("time", facet)
}
else if (is_not_null(which.time)) {
warning("'which.time' was specified but a point treatment was supplied. Ignoring 'which.time'.", call. = FALSE)
}
nobs <- sum(in.imp & in.cluster & in.time)
if (nobs == 0) stop("No observations to display.", call. = FALSE)
Q <- make_list(which)
for (i in which) {
Q[[i]] <- make_df(c("treat", "var", "weights", "which"), nobs)
Q[[i]]$treat <- X$treat[in.imp & in.cluster & in.time]
Q[[i]]$var <- X$var[in.imp & in.cluster & in.time]
Q[[i]]$weights <- X$weights[in.imp & in.cluster & in.time, i]
Q[[i]]$which <- i
if ("imp" %in% facet) Q[[i]]$imp <- factor(paste("Imputation", X$imp[in.imp & in.cluster & in.time]))
if ("cluster" %in% facet) Q[[i]]$cluster <- factor(X$cluster[in.imp & in.cluster & in.time])
if ("time" %in% facet) Q[[i]]$time <- factor(paste("Time", X$time[in.imp & in.cluster & in.time]))
}
D <- do.call(rbind, Q)
D$which <- factor(D$which, levels = which)
if (is_not_null(sample.names)) {
if (length(sample.names) == nadj) {
levels(D$which)[levels(D$which) != "Unadjusted Sample"] <- sample.names
}
else if (length(sample.names) == ntypes) {
levels(D$which) <- sample.names
}
}
}
else {
if (is_not_null(X$cluster)) stop("Subclasses are not supported with clusters.", call. = FALSE)
if (is_not_null(X$imp)) stop("Subclasses are not supported with multiple imputations.", call. = FALSE)
if (!missing(sample.names)) {
if (which %nin% c("both", "unadjusted")) {
warning("'sample.names' can only be used with which = \"both\" or \"unadjusted\" to rename the unadjusted sample when called with subclasses. Ignoring 'sample.names'.", call. = FALSE)
sample.names <- NULL
}
else if (!is.vector(sample.names, "character")) {
warning("The argument to 'sample.names' must be a character vector. Ignoring 'sample.names'.", call. = FALSE)
sample.names <- NULL
}
else if (length(sample.names) != 1) {
warning("The argument to 'sample.names' must be of length 1 when called with subclasses. Ignoring 'sample.names'.", call. = FALSE)
sample.names <- NULL
}
}
else sample.names <- NULL
sub.names <- levels(X$subclass)
if (is_null(which.sub)) {
which.sub <- sub.names
}
else {
which.sub.original <- which.sub
if (anyNA(which.sub)) which.sub <- which.sub[!is.na(which.sub)]
if (is_null(which.sub)) {
stop(paste0("The argument to 'which.sub' cannot be .none or NA when which = \"", which, "\"."), call. = FALSE)
}
else if (is.character(which.sub)) {
which.sub <- which.sub[which.sub %in% sub.names]
}
else if (is.numeric(which.sub)) {
which.sub <- sub.names[which.sub[which.sub %in% seq_along(sub.names)]]
}
if (is_null(which.sub)) {
stop("The argument to 'which.sub' must be .none, .all, or the valid names or indices of subclasses.", call. = FALSE)
}
else if (any(which.sub.original %nin% which.sub)) {
w.l <- word_list(which.sub.original[which.sub.original %nin% which.sub])
warning(paste(w.l, ifelse(attr(w.l, "plural"), "do", "does"), "not correspond to any subclass in the object and will be ignored."), call. = FALSE)
}
}
in.sub <- !is.na(X$subclass) & X$subclass %in% which.sub
D <- make_df(c("weights", "treat", "var", "subclass"), sum(in.sub))
D$weights <- 1
D$treat <- X$treat[in.sub]
D$var <- X$var[in.sub]
D$subclass <- paste("Subclass", X$subclass[in.sub])
if (which == "both") {
D2 <- make_df(c("weights", "treat", "var", "subclass"), length(X$treat))
D2$weights <- 1
D2$treat <- X$treat
D2$var <- X$var
D2$subclass <- rep("Unadjusted Sample", length(X$treat))
D <- rbind(D2, D, stringsAsFactors = TRUE)
D$subclass <- relevel(factor(D$subclass), "Unadjusted Sample")
}
facet <- "subclass"
if (is_not_null(sample.names)) {
levels(D$subclass)[levels(D$subclass) == "Unadjusted Sample"] <- sample.names
}
}
treat.type <- get.treat.type(assign.treat.type(D$treat))
D <- na.omit(D[order(D$var),])
D <- D[D$weights > 0,]
if (treat.type == "continuous") {
if (is.categorical.var) {
D$weights <- ave(D[["weights"]],
D[c("var", facet)],
FUN = function(x) x/sum(x))
}
D$treat <- as.numeric(D$treat)
if (is.categorical.var) {
bw <- if_null_then(args$bw, "nrd0")
adjust <- if_null_then(args$adjust, 1)
kernel <- if_null_then(args$kernel, "gaussian")
n <- if_null_then(args$n, 512)
D$var <- factor(D$var)
cat.sizes <- tapply(rep(1, NROW(D)), D$var, sum)
smallest.cat <- names(cat.sizes)[which.min(cat.sizes)]
if (is.character(bw)) {
if (is.function(get0(paste0("bw.", bw)))) {
bw <- get0(paste0("bw.", bw))(D$treat[D$var == smallest.cat])
}
else {
stop(paste(bw, "is not an acceptable entry to 'bw'. See ?stats::density for allowable options."), call. = FALSE)
}
}
ntypes <- length(cat.sizes)
if (is_not_null(args$colours)) colors <- args$colours
if (is_null(colors)) {
colors <- gg_color_hue(ntypes)
}
else {
if (length(colors) > ntypes) {
colors <- colors[seq_len(ntypes)]
warning(paste("Only using first", ntypes, "values in 'colors'."), call. = FALSE)
}
else if (length(colors) < ntypes) {
warning("Not enough colors were specified. Using default colors instead.", call. = FALSE)
colors <- gg_color_hue(ntypes)
}
if (!all(vapply(colors, isColor, logical(1L)))) {
warning("The argument to 'colors' contains at least one value that is not a recognized color. Using default colors instead.", call. = FALSE)
colors <- gg_color_hue(ntypes)
}
}
bp <- ggplot2::ggplot(D, mapping = aes(x = .data$treat, fill = .data$var, weight = .data$weights)) +
ggplot2::geom_density(alpha = .4, bw = bw, adjust = adjust, kernel = kernel, n = n, trim = TRUE, outline.type = "full") +
ggplot2::labs(fill = var.name, y = "Density", x = "Treat", title = title, subtitle = subtitle) +
ggplot2::scale_fill_manual(values = colors) +
ggplot2::geom_hline(yintercept = 0) +
ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0, .05)))
}
else {
D$var.mean <- ave(D[["var"]], D[facet], FUN = mean)
D$treat.mean <- ave(D[["treat"]], D[facet], FUN = mean)
bp <- ggplot2::ggplot(D, mapping = aes(x = .data$var, y = .data$treat, weight = .data$weights))
if (identical(which, "Unadjusted Sample") || isFALSE(alpha.weight)) bp <- bp + ggplot2::geom_point(alpha = .9)
else bp <- bp + ggplot2::geom_point(aes(alpha = .data$weights), show.legend = FALSE) +
ggplot2::scale_alpha(range = c(.04, 1))
bp <- bp +
ggplot2::geom_smooth(method = "lm", formula = y ~ x, se = FALSE, color = "firebrick2", alpha = .4, size = 1.5) +
{
if (nrow(D) <= 1000)
ggplot2::geom_smooth(method = "loess", formula = y ~ x, se = FALSE, color = "royalblue1", alpha = .1, size = 1.5)
else
ggplot2::geom_smooth(method = "gam", formula = y ~ s(x, bs = "cs"), se = FALSE, color = "royalblue1", alpha = .1, size = 1.5)
} +
ggplot2::geom_hline(aes(yintercept = .data$treat.mean), linetype = 1, alpha = .9) +
ggplot2::geom_vline(aes(xintercept = .data$var.mean), linetype = 1, alpha = .8) +
ggplot2::labs(y = "Treat", x = var.name, title = title, subtitle = subtitle)
}
}
else {
D$treat <- factor(D$treat)
if (is_null(which.treat))
which.treat <- character(0)
else if (is.numeric(which.treat)) {
which.treat <- levels(D$treat)[seq_along(levels(D$treat)) %in% which.treat]
if (is_null(which.treat)) {
warning("No numbers in 'which.treat' correspond to treatment values. All treatment groups will be displayed.", call. = FALSE)
which.treat <- character(0)
}
}
else if (is.character(which.treat)) {
which.treat <- levels(D$treat)[levels(D$treat) %in% which.treat]
if (is_null(which.treat)) {
warning("No names in 'which.treat' correspond to treatment values. All treatment groups will be displayed.", call. = FALSE)
which.treat <- character(0)
}
}
else if (anyNA(which.treat)) {
which.treat <- character(0)
}
else {
warning("The argument to 'which.treat' must be NA, NULL, or a vector of treatment names or indices. All treatment groups will be displayed.", call. = FALSE)
which.treat <- character(0)
}
if (is_not_null(which.treat) && !anyNA(which.treat)) D <- D[D$treat %in% which.treat,]
for (i in names(D)[vapply(D, is.factor, logical(1L))]) D[[i]] <- factor(D[[i]])
D$weights <- ave(D[["weights"]],
D[c("treat", facet)],
FUN = function(x) x/sum(x))
ntypes <- nlevels.treat <- nlevels(D$treat)
if (is_not_null(args$colours)) colors <- args$colours
if (is_null(colors)) {
colors <- gg_color_hue(ntypes)
}
else {
if (length(colors) > ntypes) {
colors <- colors[seq_len(ntypes)]
warning(paste("Only using first", ntypes, "values in 'colors'."), call. = FALSE)
}
else if (length(colors) < ntypes) {
warning("Not enough colors were specified. Using default colors instead.", call. = FALSE)
colors <- gg_color_hue(ntypes)
}
if (!all(vapply(colors, isColor, logical(1L)))) {
warning("The argument to 'colors' contains at least one value that is not a recognized color. Using default colors instead.", call. = FALSE)
colors <- gg_color_hue(ntypes)
}
}
names(colors) <- levels(D$treat)
if (is_binary(D$var) || is.factor(D$var) || is.character(D$var)) {
D$var <- factor(D$var)
bp <- ggplot2::ggplot(D, mapping = aes(x = .data$var, fill = .data$treat, weight = .data$weights)) +
ggplot2::geom_bar(position = "dodge", alpha = .8, color = "black") +
ggplot2::labs(x = var.name, y = "Proportion", fill = "Treatment", title = title, subtitle = subtitle) +
ggplot2::scale_x_discrete(drop=FALSE) +
ggplot2::scale_fill_manual(drop=FALSE, values = colors) +
ggplot2::geom_hline(yintercept = 0) +
ggplot2::scale_y_continuous(expand = ggplot2::expansion(mult = c(0, .05)))
}
else {
type <- match_arg(type, c("histogram", "density", "ecdf"))
if (type %in% c("ecdf")) {
mirror <- FALSE
alpha <- 1
legend.alpha <- alpha
expandScale <- ggplot2::expansion(mult = .005)
}
else if (nlevels.treat <= 2 && isTRUE(mirror)) {
posneg <- c(1, -1)
alpha <- .8
legend.alpha <- alpha
expandScale <- ggplot2::expansion(mult = .05)
}
else {
mirror <- FALSE
posneg <- rep(1, nlevels.treat)
alpha <- .4
legend.alpha <- alpha/nlevels.treat
expandScale <- ggplot2::expansion(mult = c(0, .05))
}
if (type == "histogram") {
if (isTRUE(disp.means)) {
D$var.mean <- ave(D[c("var", "weights")], D[c("treat", facet)],
FUN = function(x) w.m(x[[1]], x[[2]]))[[1]]
}
if (!is_(args$bins, "numeric")) args$bins <- 12
geom_fun <- function(t) {
out <- list(ggplot2::geom_histogram(data = D[D$treat == levels(D$treat)[t],],
mapping = aes(x = .data$var, y = posneg[t]*ggplot2::after_stat(!!sym("count")),
weight = .data$weights,
fill = names(colors)[t]),
alpha = alpha, bins = args$bins, color = "black"),
NULL)
if (isTRUE(disp.means)) out[[2]] <-
ggplot2::geom_segment(data = unique(D[D$treat == levels(D$treat)[t], c("var.mean", facet), drop = FALSE]),
mapping = aes(x = .data$var.mean, xend = .data$var.mean, y = 0, yend = posneg[t]*Inf),
color = if (isTRUE(mirror)) "black" else colors[[t]])
return(clear_null(out))
}
ylab <- "Proportion"
}
else if (type %in% c("ecdf")) {
D$cum.pt <- ave(D[["weights"]],
D[c("treat", facet)],
FUN = function(x) cumsum(x)/sum(x))
extra <- setNames(do.call(expand.grid, c(list(c("top", "bottom")),
lapply(c("treat", facet), function(i) levels(D[[i]])))),
c("pos_", "treat", facet))
merge.extra <- data.frame(pos_ = c("top", "bottom"),
var = c(-Inf, Inf),
cum.pt = c(0, 1))
extra <- merge(extra, merge.extra)
extra[["pos_"]] <- NULL
D[names(D) %nin% names(extra)] <- NULL
D <- rbind(extra[names(D)], D)
geom_fun <- function(t) {
ggplot2::geom_step(data = D[D$treat == levels(D$treat)[t],],
mapping = aes(x = .data$var, y = .data$cum.pt, color = names(colors)[t]))
}
ylab <- "Cumulative Proportion"
}
else {
bw <- if_null_then(args$bw, "nrd0")
adjust <- if_null_then(args$adjust, 1)
kernel <- if_null_then(args$kernel, "gaussian")
n <- if_null_then(args$n, 512)
if (is.character(bw)) {
t.sizes <- tapply(rep(1, NROW(D)), D$treat, sum)
smallest.t <- names(t.sizes)[which.min(t.sizes)]
if (is.function(get0(paste0("bw.", bw)))) {
bw <- get0(paste0("bw.", bw))(D$var[D$treat == smallest.t])
}
else {
stop(paste(bw, "is not an acceptable entry to 'bw'. See ?stats::density for allowable options."), call. = FALSE)
}
}
if (isTRUE(disp.means)) {
D$var.mean <- ave(D[c("var", "weights")], D[c("treat", facet)],
FUN = function(x) w.m(x[[1]], x[[2]]))[[1]]
}
geom_fun <- function(t) {
out <- list(
ggplot2::geom_density(data = D[D$treat == levels(D$treat)[t],],
mapping = aes(x = .data$var, y = posneg[t]*ggplot2::after_stat(!!sym("density")),
weight = .data$weights, fill = names(colors)[t]),
alpha = alpha, bw = bw, adjust = adjust,
kernel = kernel, n = n, trim = TRUE,
outline.type = "full"),
NULL)
if (isTRUE(disp.means)) out[[2]] <-
ggplot2::geom_segment(data = unique(D[D$treat == levels(D$treat)[t], c("var.mean", facet), drop = FALSE]),
mapping = aes(x = .data$var.mean, xend = .data$var.mean, y = 0, yend = posneg[t]*Inf),
color = if (isTRUE(mirror)) "black" else colors[[t]])
return(clear_null(out))
}
ylab <- "Density"
}
bp <- Reduce("+", c(list(ggplot2::ggplot()),
lapply(seq_len(nlevels.treat), geom_fun))) +
ggplot2::scale_fill_manual(values = colors, guide = ggplot2::guide_legend(override.aes = list(alpha = legend.alpha, size = .25))) +
ggplot2::scale_color_manual(values = colors) +
ggplot2::labs(x = var.name, y = ylab, title = title, subtitle = subtitle,
fill = "Treatment", color = "Treatment") +
ggplot2::scale_y_continuous(expand = expandScale)
if (isTRUE(mirror)) bp <- bp + ggplot2::geom_hline(yintercept = 0)
}
}
bp <- bp + ggplot2::theme(panel.background = element_rect(fill = "white", color = "black"),
panel.border = element_rect(fill = NA, color = "black"),
plot.background = element_blank(),
legend.position = position,
legend.key=element_rect(fill = "white", color = "black", size = .25))
if (!isTRUE(grid)) {
bp <- bp + ggplot2::theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
}
else {
bp <- bp + ggplot2::theme(panel.grid.major = element_line(color = "gray87"),
panel.grid.minor = element_line(color = "gray90"))
}
if (is_not_null(facet)) {
if (is_not_null(facet.formula)) {
if (!rlang::is_formula(facet.formula)) {
stop("'facet.formula' must be a formula.", call. = FALSE)
}
test.facet <- invisible(ggplot2::facet_grid(facet.formula))
if (any(c(names(test.facet$params$rows), names(test.facet$params$cols)) %nin% facet)) {
stop(paste("Only", word_list(facet, is.are = TRUE, quotes = 2), "allowed in 'facet.formula'."), call. = FALSE)
}
if ("which" %nin% c(names(test.facet$params$rows), names(test.facet$params$cols))) {
if (length(which) > 1) stop("\"which\" must be in the facet formula when the which argument refers to more than one sample.", call. = FALSE)
else message(paste0("Displaying balance for the ", if (which %in% c("Adjusted Sample", "Unadjusted Sample")) tolower(which) else paste(which, "sample"), "."))
}
}
else if (length(facet) >= 2) {
if ("which" %in% facet) {
facet.formula <- f.build(facet[facet %nin% "which"], "which")
}
else if ("imp" %in% facet) {
facet.formula <- f.build("imp", facet[facet %nin% "imp"])
}
else {
facets <- data.frame(facet = facet, length = vapply(facet, function(x) nlevels(D[[x]]), numeric(1L)),
stringsAsFactors = FALSE)
facets <- facets[with(facets, order(length, facet, decreasing = c(FALSE, TRUE))), ]
facet.formula <- formula(facets)
}
}
else facet.formula <- f.build(".", facet)
bp <- bp + ggplot2::facet_grid(facet.formula, drop = FALSE, scales = ifelse("subclass" %in% facet, "free_x", "fixed"))
}
return(bp)
} |
individuals_stats_per_game <- function(df1){
df1 <- df1[-nrow(df1),]
for(i in 4:ncol(df1)){
if(i==7 || i==10 || i==13 || i==16){
df1[i] <- round(df1[i],3)
}
else{
df1[i] <- round(df1[i] / df1[2],2)
}
}
names(df1) <- c("Name","G","GS","MP","FG","FGA","FG%","3P","3PA","3P%","2P","2PA","2P%","FT","FTA","FT%",
"ORB","DRB","TRB","AST","STL","BLK","TOV","PF","PTS","+/-")
df1[is.na(df1)] <- 0
return(df1)
} |
gbt.ksval <- function(object, y, x)
{
error_messages <- c()
error_messages_type <- c(
"object_type" = "Error: object must be a GBTorch ensemble \n",
"model_not_trained" = "Error: GBTorch ensemble must be trained, see function documentation gbt.train \n",
"response_not_vec" = "Error: y must be a vector of type numeric or matrix with dimension 1 \n",
"dmat_not_mat" = "Error: x must be a matrix \n",
"y_x_correspondance" = "Error: length of y must correspond to the number of rows in x \n"
)
if(class(object)!="Rcpp_ENSEMBLE"){
error_messages <- c(error_messages, error_messages_type["object_type"])
}else{
if(object$get_num_trees()==0)
error_messages <- c(error_messages, error_messages_type["model_not_trained"])
}
if(!is.vector(y, mode="numeric")){
if(is.matrix(y) && ncol(y)>1 ){
error_messages <- c(error_messages, error_messages_type["response_not_vec"])
}
}
if(!is.matrix(x))
error_messages <- c(error_messages, error_messages_type["dmat_not_mat"])
if(length(y) != nrow(x))
error_messages <- c(error_messages, error_messages_type["y_x_correspondance"])
if(length(error_messages)>0)
stop(error_messages)
loss_type <- object$get_loss_function()
mu_pred <- predict(object, x)
n <- length(y)
u <- numeric(n)
if(loss_type == "mse")
{
msg1 <- c("Gaussian regression \n")
msg2 <- c("Assuming constant variance \n")
lsigma <- 0.0
lsigma <- stats::nlminb(lsigma, nll_norm, y=y, mu_pred=mu_pred)$par
msg3 <- c("Variance estimate is: ", exp(2*lsigma), "\n")
message(msg1, msg2, msg3)
u <- pnorm(y, mean=mu_pred, sd=exp(lsigma))
}else if(loss_type %in% c("gamma::neginv", "gamma::log"))
{
msg1 <- c("Gamma regression \n")
msg2 <- c("Assuming constant shape \n")
lshape <- 0.0
lshape <- stats::nlminb(lshape, nll_gamma, y=y, mu_pred=mu_pred)$par
msg3 <- c("Shape estimate is: ", exp(lshape), "\n")
message(msg1, msg2, msg3)
u <- pgamma(y, shape=exp(lshape), scale=mu_pred/exp(lshape))
}else if(loss_type == "negbinom")
{
msg1 <- c("Overdispersed count (negative binomial) regression \n")
msg2 <- c("Assuming constant dispersion \n")
ldisp <- 0.0
ldisp <- stats::nlminb(ldisp, nll_nbinom, y=y, mu_pred=mu_pred)$par
msg3 <- c("Dispersion estimate is: ", exp(ldisp), "\n")
message(msg1, msg2, msg3)
u <- unbinom(y, mu=mu_pred, dispersion=exp(ldisp))
}else if(loss_type == "poisson")
{
message("Count (Poisson) regression \n")
u <- upois(y, lambda=mu_pred)
}else if(loss_type == "logloss")
{
message("Classification \n")
u <- ubernoulli(y, p=mu_pred)
}
res <- ks.test(u, "punif")
hist(u, freq=FALSE, oma=c(2, 3, 5, 2)+0.1, main=NULL, xlab="CDF transformed observations")
mytitle="Histogram: Model-CDF transformed observations"
mysubtitle=paste0(res$method, ": ", format(res$p.value))
mtext(side=3, line=2.2, at=-0.07, adj=0, cex=1.1, mytitle)
mtext(side=3, line=1.2, at=-0.07, adj=0, cex=0.8, mysubtitle)
return(res)
}
nll_nbinom <- function(ldisp, y, mu_pred)
{
disp <- exp(ldisp)
-sum(dnbinom(y, size=disp, mu=mu_pred, log=TRUE))
}
nll_norm <- function(lsigma, y, mu_pred)
{
sigma <- exp(lsigma)
-sum(dnorm(y, mean=mu_pred, sd=sigma, log=TRUE))
}
nll_gamma <- function(lshape, y, mu_pred)
{
shape <- exp(lshape)
scale <- mu_pred / shape
-sum(dgamma(y, shape=shape, scale=scale, log=TRUE))
}
unbinom <- function(X, mu, dispersion)
{
n <- length(X)
U <- rep(0,n)
v <- runif(n)
for(i in 1:n){
U[i] <- pnbinom(X[i]-1, size=dispersion, mu=mu[i]) + v[i]*dnbinom(X[i], size=dispersion, mu=mu[i])
}
ind0 <- U==0
U[ind0] <- U[ind0] + 1e-9*runif(1)
ind1 <- U==1
U[ind1] <- U[ind1] - 1e-9*runif(1)
return(U)
}
upois <- function(X, lambda){
n <- length(X)
U <- rep(0, n)
v <- runif(n)
for(i in 1:n)
{
U[i] <- ppois(X[i]-1, lambda[i]) + v[i]*dpois(X[i], lambda[i])
}
ind0 <- U==0
U[ind0] <- U[ind0] + 1e-9*runif(1)
ind1 <- U==1
U[ind1] <- U[ind1] - 1e-9*runif(1)
return(U)
}
ubernoulli <- function(X, p)
{
n <- length(X)
U <- pbinom(X-1, 1, p) + runif(n)*dbinom(X, 1, p)
return(U)
} |
makeMAXdata <- function(x,
data = NULL,
effDuration = NULL,
trace = 0) {
flag <- FALSE
blockNames <- NULL
dataNames <- NULL
if (missing(data)) {
if ( is(x, "Rendata") && !is.null(x$MAXdata) ) {
vn <- x$info$varName
if (trace) cat("using 'MAXdata' within a 'Rendata' object\n")
effDuration <- x$MAXinfo$duration
block <- factor(x$MAXdata$block, levels = 1L:nrow(x$MAXinfo))
data <- tapply(x$MAXdata[ , vn], x$MAXdata$block, list)
if (length(effDuration) != length(data))
stop("in object 'x', elements 'MAXinfo' and 'MAXdata' do not have ",
"the same number of blocks")
flag <- TRUE
if ( !is.null(x$MAXinfo$comment) &&
all(nchar(as.character(x$MAXinfo$comment)) > 0L) ){
blockNames <- as.character(x$MAXinfo$comment)
} else if (!any(is.na(x$MAXinfo$start)) && !any(is.na(x$MAXinfo$end))) {
blockNames <- paste(formatPeriod(start = x$MAXinfo$start,
end = x$MAXinfo$end), "(MAX)")
} else blockNames <- paste("MAX block", 1L:nrow(x$MAXinfo))
if ( !is.null(x$MAXdata$comment) &&
any(nchar(as.character(x$MAXdata$comment)) > 0L) ){
dataNames <- as.character(x$MAXdata$comment)
} else if (!any(is.na(x$MAXdata$date))) {
dataNames <- format(x$MAXdata$date, "%Y-%m-%d")
} else dataNames <- rep("", nrow(x$MAXdata))
} else {
flag <- FALSE
block <- NULL
effDuration <- NULL
threshold <- NULL
r <- NULL
}
} else {
if (is.null(data)) {
flag <- FALSE
block <- NULL
effDuration <- NULL
threshold <- NULL;
r <- NULL
} else if (is.list(data)) {
if (length(data) != length(effDuration))
stop("when 'data' is a list, 'effDuration' must be a numeric ",
"vector of length length(data)")
blockNames <- names(data)
if (is.null(blockNames)) blockNames <- paste("MAX block", 1L:length(data))
r <- unlist(lapply(data, length))
block <- factor(rep(1:length(data), times = r), levels = 1:length(data))
dataNames <- lapply(data, fillNames)
flag <- TRUE
} else {
if (length(effDuration) != 1L)
stop("when 'data' is a vector, 'effDuration' must be a numeric ",
"with length 1")
block <- factor(rep(1L, times = length(data)), levels = 1)
r <- length(data)
dataNames <- fillNames(data)
blockNames <- "MAX block1"
data <- list("MAX block 1" = data)
flag <- TRUE
}
}
if (!flag) {
block <- NULL
effDuration <- NULL
r <- NULL
} else {
r <- unlist(lapply(data, length))
names(effDuration) <- names(r) <- paste("block", 1L:length(effDuration))
}
list(flag = flag,
block = block,
blockNames = blockNames,
effDuration = effDuration,
r = r,
data = data,
dataNames = dataNames)
}
makeOTSdata <- function(x,
data = NULL,
effDuration = NULL,
threshold = NULL,
trace = 0) {
flag <- FALSE
blockNames <- NULL
dataNames <- NULL
if (missing(data)) {
if ( is(x, "Rendata") && !is.null(x$OTSdata) ) {
vn <- x$info$varName
if (trace) cat("using 'OTSdata' within a 'Rendata' object\n")
effDuration <- x$OTSinfo$duration
threshold <- x$OTSinfo$threshold
r <- x$OTSinfo$r
block <- factor(x$OTSdata$block, levels = 1:nrow(x$OTSinfo))
data <- tapply(x$OTSdata[ , vn], block, as.numeric)
data <- lapply(data, function(x) as.numeric(x))
ind <- (table(block) == 0)
if (any(ind)) {
for (i in (1L:length(data))[ind]) data[[i]] <- numeric(0)
}
flag <- TRUE
if ( !is.null(x$OTSinfo$comment) &&
all(nchar(as.character(x$OTSinfo$comment)) > 0L) ){
blockNames <- as.character(x$OTSinfo$comment)
} else if (!any(is.na(x$OTSinfo$start)) && !any(is.na(x$OTSinfo$end))) {
blockNames <- paste(formatPeriod(start = x$OTSinfo$start,
end = x$OTSinfo$end), "(OTS)")
} else blockNames <- paste("OTS block", 1L:nrow(x$OTSinfo))
if ( !is.null(x$OTSdata$comment) &&
any(nchar(as.character(x$OTSdata$comment)) > 0L) ){
dataNames <- as.character(x$OTSdata$comment)
} else if (!any(is.na(x$OTSdata$date))) {
dataNames <- format(x$OTSdata$date, "%Y-%m-%d")
} else dataNames <- rep("", nrow(x$OTSdata))
} else {
if (trace) cat("'x' not of class 'Rendata': ignored\n")
flag <- FALSE
}
} else {
if (is.null(data)) {
flag <- FALSE
block <- NULL;
effDuration <- NULL
threshold <- NULL;
r <- NULL
} else if (is.list(data)) {
if ( (length(data) != length(effDuration)) ||
(length(data) != length(threshold)) )
stop("when 'data' is a list, 'effDuration' and 'threshold' must be a ",
"numeric vector of length length(data)")
blockNames <- names(data)
if (is.null(blockNames)) blockNames <- paste("OTS block", 1L:length(data))
r <- unlist(lapply(data, length))
block <- factor(rep(1L:length(data), times = r), levels = 1L:length(data))
dataNames <- lapply(data, fillNames)
flag <- TRUE
} else {
if ((length(effDuration) != 1) || (length(threshold) != 1L))
stop("when 'data' is a vector, 'effDuration' and 'threshold' must be ",
"numeric with length 1")
r <- length(data)
block <- factor(1L, levels = 1)
dataNames <- fillNames(data)
blockNames <- "OTS block1"
data <- list("OTS block1" = data)
flag <- TRUE
}
}
if (!flag) {
block <- NULL
effDuration <- NULL
threshold <- NULL
r <- NULL
} else {
names(effDuration) <- names(r) <- names(threshold) <-
paste("block", 1:length(effDuration))
}
list(flag = flag,
block = block,
blockNames = blockNames,
effDuration = effDuration,
threshold = threshold,
r = r,
data = data,
dataNames = dataNames)
}
plot.Rendata <- function(x,
textOver = quantile(x$OTdata[, x$info$varName], probs = 0.99),
showHist = TRUE,
...) {
block <- 1
periodsLeg <- c("OTdata", "OTSdata", "MAXdata")
periodsBg <- c("lightcyan", "lightyellow", "DarkOliveGreen1")
names(periodsBg) <- periodsLeg
periodsFg <- c("cyan", "gold", "DarkOliveGreen2")
names(periodsFg) <- periodsLeg
periodsFlag <- c(TRUE, FALSE, FALSE)
names(periodsFlag) <- periodsLeg
y <- x$OTdata[ , x$info$varName]
start <- as.POSIXct(x$OTinfo$start)
end <- as.POSIXct(x$OTinfo$end)
ymin <- x$OTinfo$threshold
ymax <- max(y)
if (showHist) {
if (!is.null(x$OTSinfo)) {
OTSstart <- as.POSIXct(x$OTSinfo$start)
OTSend <- as.POSIXct(x$OTSinfo$start)
start <- min(start, OTSstart)
end <- max(end, OTSend)
if (!is.null(x$OTSdata)) {
ymin <- min(ymin, min(x$OTSdata[ , x$info$varName]))
ymax <- max(ymax, max(x$OTSdata[ , x$info$varName]))
}
}
if (!is.null(x$MAXinfo)) {
MAXstart <- as.POSIXct(x$MAXinfo$start)
MAXend <- as.POSIXct(x$MAXinfo$start)
start <- min(start, MAXstart)
end <- max(end, MAXend)
ymin <- min(ymin, min(x$MAXdata[ , x$info$varName]))
ymax <- max(ymax, max(x$MAXdata[ , x$info$varName]))
}
}
yLab <- x$info$varName
if (!is.null(x$info$varUnit))
yLab <- paste(yLab, " (", x$info$varUnit, ")", sep = "")
plot(x = x$OTdata[ , "date"],
y = x$OTdata[ , x$info$varName],
type ="n",
xlim = c(start, end),
ylim = c(ymin, ymax),
xlab = " ",
ylab = yLab,
main = x$info$longLab,
...)
rg <- par()$usr[3:4]
drg <- rg[2]-rg[1]
rg <- rg + c(drg, -drg)/100
rect(xleft = x$OTinfo$start,
xright = x$OTinfo$end,
ybottom = rg[1],
ytop = rg[2],
col = periodsBg["OTdata"], border = periodsFg["OTdata"])
if (!is.null(x$OTmissing)) {
for (i in 1:nrow(x$OTmissing)) {
polygon(x = c(x$OTmissing$start[i], x$OTmissing$end[i],
x$OTmissing$end[i], x$OTmissing$start[i]),
y = rep(rg, each = 2),
border = periodsBg["OTdata"], col = "white")
}
}
lines(x = x$OTdata[ , "date"],
y = x$OTdata[ , x$info$varName],
type ="h",
col = "SteelBlue3")
lines(x = as.POSIXct(c(x$OTinfo$start, x$OTinfo$end)),
y = rep(as.numeric(x$OTinfo$threshold), times = 2),
col = "orange", lwd = 2)
if (!is.na(textOver)){
ind <- (x$OTdata[, x$info$varName] > textOver)
if (any(ind)) {
points(x = x$OTdata[ind, "date"],
y = x$OTdata[ind, x$info$varName],
pch = 21, cex = 0.7,
col = "SteelBlue4")
text(x = x$OTdata[ind, "date"],
y = x$OTdata[ind, x$info$varName],
labels = format(x$OTdata[ind, "date"], "%Y-%m-%d"),
col = "SteelBlue4",
pos = 4, cex = 0.7)
}
}
if (showHist && !is.null(x$OTSinfo)) {
periodsFlag["OTSdata"] <- TRUE
for (i in 1:nrow(x$OTSinfo)) {
rect(xleft = x$OTSinfo$start[i],
xright = x$OTSinfo$end[i],
ybottom = rg[1],
ytop = rg[2],
col = periodsBg["OTSdata"], border = periodsFg["OTSdata"])
lines(x = as.POSIXct(c(x$OTSinfo$start[i], x$OTSinfo$end[i])),
y = rep(x$OTSinfo$threshold[i], times = 2),
col = "orange", lwd = 2)
}
if (!is.null(x$OTSdata)) {
for (i in 1:nrow(x$OTSinfo)) {
datai <- subset(x$OTSdata, block == i)
ind <- !is.na(datai[ , "date"])
if (any(ind)) {
lines(x = datai[ind, "date"],
y = datai[ind, x$info$varName],
type ="h",
col = "red3")
}
if (any(!ind)) {
segments(x0 = rep(x$OTSinfo$start[i], sum(!ind)),
x1 = rep(x$OTSinfo$end[i], sum(!ind)),
y0 = datai[!ind , x$info$varName],
y1 = datai[!ind , x$info$varName],
lty = "dashed",
col = "red3")
}
}
if (!is.na(textOver)){
ind <- (x$OTSdata[ , x$info$varName] > textOver) &
!is.na(x$OTSdata[ , "date"])
if (any(ind)) {
points(x = x$OTSdata[ind, "date"],
y = x$OTSdata[ind, x$info$varName],
pch = 21, cex = 0.7,
col = "red3")
text(x = x$OTSdata[ind, "date"],
y = x$OTSdata[ind, x$info$varName],
labels = format(x$OTSdata[ind, "date"], "%Y-%m-%d"),
col = "red3",
pos = 4, cex = 0.7)
}
}
}
}
if (showHist && !is.null(x$MAXinfo)) {
periodsFlag["MAXdata"] <- TRUE
if (!is.null(x$MAXdata)) {
for (i in 1:nrow(x$MAXinfo)) {
rect(xleft = x$MAXinfo$start[i],
xright = x$MAXinfo$end[i],
ybottom = rg[1],
ytop = rg[2],
col = periodsBg["MAXdata"], border = periodsFg["MAXdata"])
datai <- subset(x$MAXdata, block == i)
ind <- !is.na(datai[ , "date"])
if (any(ind)) {
lines(x = datai[ind, "date"],
y = datai[ind, x$info$varName],
type ="h",
col = "SpringGreen4")
}
if (any(!ind)) {
segments(x0 = rep(x$MAXinfo$start[i], sum(!ind)),
x1 = rep(x$MAXinfo$end[i], sum(!ind)),
y0 = datai[!ind , x$info$varName],
y1 = datai[!ind , x$info$varName],
lty = "dashed",
col = "SpringGreen4")
}
}
if (!is.na(textOver)){
ind <- (x$MAXdata[ , x$info$varName] > textOver) &
!is.na(x$MAXdata[ , "date"])
if (any(ind)) {
points(x = x$MAXdata[ind, "date"],
y = x$MAXdata[ind, x$info$varName],
pch = 21, cex = 0.7,
col = "SpringGreen4")
text(x = x$MAXdata[ind, "date"],
y = x$MAXdata[ind, x$info$varName],
labels = format(x$MAXdata[ind, "date"], "%Y-%m-%d"),
col = "SpringGreen4",
pos = 4, cex = 0.7)
}
}
}
}
legend("topleft",
fill = periodsBg[periodsFlag],
col = periodsFg[periodsFlag],
legend = periodsLeg[periodsFlag])
}
summary.Rendata <- function(object, ...) {
ans <- list(info = object$info,
OTinfo = object$OTinfo,
MAXinfo = object$MAXinfo,
OTSinfo = object$OTSinfo)
ans$info <- paste(sprintf("o Dataset %s", object$info$shortLab),
sprintf(" data '%s', variable '%s' (%s)",
object$info$name, object$info$varName, object$info$varUnit),
sep = "\n")
ans$OTinfo <- paste("o OT data (main sample)",
"from ", format(object$OTinfo$start, "%Y-%m-%d"),
" to ", format(object$OTinfo$end, "%Y-%m-%d"),
sprintf(" (eff. dur. %6.2f years)\n", object$OTinfo$effDuration))
var <- object$OTdata[ , object$info$varName]
ans$OTsummary <- c(n = length(var), summary(var))
if (!is.null(object$OTmissing)) {
dur <- as.numeric(as.POSIXct(object$OTmissing$end) -
as.POSIXct(object$OTmissing$start),
units = "days")
ans$OTmissing <- sprintf("o missing 'OT' periods, total %5.2f years",
sum(dur)/365.25)
ans$OTmissingsummary <- c(n = length(dur), summary(dur/365.25))
} else {
ans$OTmissing <- "o no missing OT periods"
ans$OTmissingsummary <- NULL
}
if (!is.null(object$MAXinfo)) {
ans$MAXinfo <-
sprintf("o 'MAX' historical info: %d blocks, %d obs., total duration = %5.2f years",
nrow(object$MAXinfo), nrow(object$MAXdata), sum(object$MAXinfo$duration))
} else ans$MAXinfo <- "o no 'MAX' historical data"
if (!is.null(object$OTSinfo)) {
ans$OTSinfo <-
sprintf("o 'OTS' historical info: %d blocks, %d obs., total duration = %5.2f years",
nrow(object$OTSinfo), nrow(object$OTSdata), sum(object$OTSinfo$duration))
} else ans$OTSinfo <- "o no 'OTS' historical data"
class(ans) <- "summary.Rendata"
ans
}
print.summary.Rendata <- function(x, ...) {
cat(x$info, "\n")
cat("\n")
cat(x$OTinfo, "\n")
print(x$OTsummary)
cat("\n")
cat(x$OTmissing, "\n\n")
if (!is.null(x$OTmissingsummary)){
print(x$OTmissingsummary)
cat("\n")
}
cat(x$MAXinfo, "\n\n")
cat(x$OTSinfo, "\n\n")
}
print.Rendata <- function(x, ...) {
print(summary(x, ...))
} |
test_that("special characters are escaped", {
out <- rd2html("a & b")
expect_equal(out, "a & b")
})
test_that("simple tags translated to known good values", {
expect_equal(rd2html("\\ldots"), "...")
expect_equal(rd2html("\\dots"), "...")
expect_equal(rd2html("\\R"), "<span style=\"R\">R</span>")
expect_equal(rd2html("\\cr"), "<br />")
"Macros"
expect_equal(rd2html("\\newcommand{\\f}{'f'} \\f{}"), "'f'")
expect_equal(rd2html("\\renewcommand{\\f}{'f'} \\f{}"), "'f'")
})
test_that("comments converted to html", {
expect_equal(rd2html("a\n%b\nc"), c("a", "<!-- %b -->", "c"))
})
test_that("simple wrappers work as expected", {
expect_equal(rd2html("\\strong{x}"), "<strong>x</strong>")
expect_equal(rd2html("\\strong{\\emph{x}}"), "<strong><em>x</em></strong>")
})
test_that("subsection generates h3", {
expect_snapshot(cat_line(rd2html("\\subsection{A}{B}")))
})
test_that("subsection generates h3", {
expect_snapshot(cat_line(rd2html("\\subsection{A}{
p1
p2
}")))
})
test_that("subsection generates generated anchor", {
text <- c("<body>", rd2html("\\subsection{A}{B}"), "</body>")
html <- xml2::read_xml(paste0(text, collapse = "\n"))
tweak_anchors(html)
expect_equal(xpath_attr(html, ".//h3", "id"), "a")
expect_equal(xpath_attr(html, ".//a", "href"), "
})
test_that("nested subsection generates h4", {
expect_snapshot(cat_line(rd2html("\\subsection{H3}{\\subsection{H4}{}}")))
})
test_that("if generates html", {
expect_equal(rd2html("\\if{html}{\\bold{a}}"), "<b>a</b>")
expect_equal(rd2html("\\if{latex}{\\bold{a}}"), character())
})
test_that("ifelse generates html", {
expect_equal(rd2html("\\ifelse{html}{\\bold{a}}{x}"), "<b>a</b>")
expect_equal(rd2html("\\ifelse{latex}{x}{\\bold{a}}"), "<b>a</b>")
})
test_that("out is for raw html", {
expect_equal(rd2html("\\out{<hr />}"), "<hr />")
})
test_that("support platform specific code", {
os_specific <- function(command, os, output) {
rd2html(paste0(
"
output, "\n",
"
))
}
expect_equal(os_specific("ifdef", "windows", "X"), character())
expect_equal(os_specific("ifdef", "unix", "X"), "X")
expect_equal(os_specific("ifndef", "windows", "X"), "X")
expect_equal(os_specific("ifndef", "unix", "X"), character())
})
test_that("tabular genereates complete table html", {
table <- "\\tabular{ll}{a \\tab b \\cr}"
expectation <- c("<table class='table'>", "<tr><td>a</td><td>b</td></tr>", "</table>")
expect_equal(rd2html(table), expectation)
})
test_that("internal \\crs are stripped", {
table <- "\\tabular{l}{a \\cr b \\cr c \\cr}"
expectation <- c("<table class='table'>", "<tr><td>a</td></tr>", "<tr><td>b</td></tr>", "<tr><td>c</td></tr>", "</table>")
expect_equal(rd2html(table), expectation)
})
test_that("can convert single row", {
expect_equal(
rd2html("\\tabular{lll}{A \\tab B \\tab C \\cr}")[[2]],
"<tr><td>A</td><td>B</td><td>C</td></tr>"
)
})
test_that("don't need internal whitespace", {
expect_equal(
rd2html("\\tabular{lll}{\\tab\\tab C\\cr}")[[2]],
"<tr><td></td><td></td><td>C</td></tr>"
)
expect_equal(
rd2html("\\tabular{lll}{\\tab B \\tab\\cr}")[[2]],
"<tr><td></td><td>B</td><td></td></tr>"
)
expect_equal(
rd2html("\\tabular{lll}{A\\tab\\tab\\cr}")[[2]],
"<tr><td>A</td><td></td><td></td></tr>"
)
expect_equal(
rd2html("\\tabular{lll}{\\tab\\tab\\cr}")[[2]],
"<tr><td></td><td></td><td></td></tr>"
)
})
test_that("can skip trailing \\cr", {
expect_equal(
rd2html("\\tabular{lll}{A \\tab B \\tab C}")[[2]],
"<tr><td>A</td><td>B</td><td>C</td></tr>"
)
})
test_that("code blocks in tables render (
expect_equal(
rd2html('\\tabular{ll}{a \\tab \\code{b} \\cr foo \\tab bar}')[[2]],
"<tr><td>a</td><td><code>b</code></td></tr>"
)
})
test_that("tables with tailing \n (
expect_equal(
rd2html('
\\tabular{ll}{
a \\tab \\cr
foo \\tab bar
}
')[[2]],
"<tr><td>a</td><td></td></tr>"
)
})
test_that("code inside Sexpr is evaluated", {
local_context_eval()
expect_equal(rd2html("\\Sexpr{1 + 2}"), "3")
})
test_that("can control \\Sexpr output", {
local_context_eval()
expect_equal(rd2html("\\Sexpr[results=hide]{1}"), character())
expect_equal(rd2html("\\Sexpr[results=text]{1}"), "1")
expect_equal(rd2html("\\Sexpr[results=rd]{\"\\\\\\emph{x}\"}"), "<em>x</em>")
})
test_that("Sexpr can contain multiple expressions", {
local_context_eval()
expect_equal(rd2html("\\Sexpr{a <- 1; a}"), "1")
})
test_that("Sexprs with multiple args are parsed", {
local_context_eval()
expect_equal(rd2html("\\Sexpr[results=hide,stage=build]{1}"), character())
})
test_that("Sexprs with multiple args are parsed", {
local_context_eval()
expect_error(rd2html("\\Sexpr[results=verbatim]{1}"), "not yet supported")
})
test_that("Sexprs in file share environment", {
local_context_eval()
expect_equal(rd2html("\\Sexpr{x <- 1}\\Sexpr{x}"), c("1", "1"))
local_context_eval()
expect_error(rd2html("\\Sexpr{x}"), "not found")
})
test_that("Sexprs run from package root", {
local_context_eval(src_path = test_path("assets/reference"))
expect_equal(
rd2html("\\packageTitle{testpackage}"),
"A test package"
)
})
test_that("DOIs are linked", {
skip_if(getRversion() <= "3.6.0")
local_context_eval(src_path = test_path("assets/reference"))
expect_snapshot(rd2html("\\doi{test}"))
})
test_that("simple links generate <a>", {
expect_equal(
rd2html("\\href{http://bar.com}{BAR}"),
"<a href='http://bar.com'>BAR</a>"
)
expect_equal(
rd2html("\\email{[email protected]}"),
"<a href='mailto:[email protected]'>[email protected]</a>"
)
expect_equal(
rd2html("\\url{http://bar.com}"),
"<a href='http://bar.com'>http://bar.com</a>"
)
})
test_that("can convert cross links to online documentation url", {
expect_equal(
rd2html("\\link[base]{library}"),
a("library", href = "https://rdrr.io/r/base/library.html")
)
})
test_that("can convert cross links to the same package (
withr::local_options(list(
"downlit.package" = "test",
"downlit.topic_index" = c(x = "y", z = "z"),
"downlit.rdname" = "z"
))
expect_equal(rd2html("\\link{x}"), "<a href='y.html'>x</a>")
expect_equal(rd2html("\\link[test]{x}"), "<a href='y.html'>x</a>")
expect_equal(rd2html("\\link[test]{z}"), "z")
})
test_that("can parse local links with topic!=label", {
withr::local_options(list(
"downlit.topic_index" = c(x = "y")
))
expect_equal(rd2html("\\link[=x]{z}"), "<a href='y.html'>z</a>")
})
test_that("functions in other packages generates link to rdrr.io", {
withr::local_options(list(
"downlit.package" = "test",
"downlit.topic_index" = c(x = "y", z = "z")
))
expect_equal(
rd2html("\\link[stats:acf]{xyz}"),
a("xyz", downlit::href_topic("acf", "stats"))
)
expect_equal(rd2html("\\link[test:x]{xyz}"), "<a href='y.html'>xyz</a>")
})
test_that("link to non-existing functions return label", {
expect_equal(rd2html("\\link[xyzxyz:xyzxyz]{abc}"), "abc")
expect_equal(rd2html("\\link[base:xyzxyz]{abc}"), "abc")
})
test_that("code blocks autolinked to vignettes", {
withr::local_options(list(
"downlit.package" = "test",
"downlit.article_index" = c("abc" = "abc.html")
))
expect_equal(
rd2html("\\code{vignette('abc')}"),
"<code><a href='abc.html'>vignette('abc')</a></code>"
)
})
test_that("link to non-existing functions return label", {
withr::local_options(list(
"downlit.package" = "test",
"downlit.topic_index" = c("TEST-class" = "test")
))
expect_equal(rd2html("\\linkS4class{TEST}"), "<a href='test.html'>TEST</a>")
})
test_that("bad specs throw errors", {
expect_snapshot(error = TRUE, {
rd2html("\\url{}")
rd2html("\\url{a\nb}")
rd2html("\\email{}")
rd2html("\\linkS4class{}")
})
})
test_that("empty input gives empty output", {
expect_equal(flatten_para(character()), character())
})
test_that("empty lines break paragraphs", {
expect_equal(
flatten_para(rd_text("a\nb\n\nc")),
"<p>a\nb</p>\n<p>c</p>"
)
})
test_that("indented empty lines break paragraphs", {
expect_equal(
flatten_para(rd_text("a\nb\n \nc")),
"<p>a\nb</p> \n<p>c</p>"
)
})
test_that("block tags break paragraphs", {
out <- flatten_para(rd_text("a\n\\itemize{\\item b}\nc"))
expect_equal(out, "<p>a</p><ul>\n<li><p>b</p></li>\n</ul><p>c</p>")
})
test_that("inline tags + empty line breaks", {
out <- flatten_para(rd_text("a\n\n\\code{b}"))
expect_equal(out, "<p>a</p>\n<p><code>b</code></p>")
})
test_that("single item can have multiple paragraphs", {
out <- flatten_para(rd_text("\\itemize{\\item a\n\nb}"))
expect_equal(out, "<ul>\n<li><p>a</p>\n<p>b</p></li>\n</ul>\n")
})
test_that("nl after tag doesn't trigger paragraphs", {
out <- flatten_para(rd_text("One \\code{}\nTwo"))
expect_equal(out, "<p>One <code></code>\nTwo</p>")
})
test_that("cr generates line break", {
out <- flatten_para(rd_text("a \\cr b"))
expect_equal(out, "<p>a <br /> b</p>")
})
test_that("simple lists work", {
expect_equal(
rd2html("\\itemize{\\item a}"),
c("<ul>", "<li><p>a</p></li>", "</ul>")
)
expect_equal(
rd2html("\\enumerate{\\item a}"),
c("<ol>", "<li><p>a</p></li>", "</ol>")
)
})
test_that("\\describe items can contain multiple paragraphs", {
out <- rd2html("\\describe{
\\item{Label 1}{Contents 1}
\\item{Label 2}{Contents 2}
}")
expect_snapshot_output(cat(out, sep = "\n"))
})
test_that("\\describe items can contain multiple paragraphs", {
out <- rd2html("\\describe{
\\item{Label}{
Paragraph 1
Paragraph 2
}
}")
expect_snapshot_output(cat(out, sep = "\n"))
})
test_that("nested item with whitespace parsed correctly", {
out <- rd2html("
\\describe{
\\item{Label}{
This text is indented in a way pkgdown doesn't like.
}}")
expect_snapshot_output(cat(out, sep = "\n"))
})
test_that("preformatted blocks aren't double escaped", {
out <- flatten_para(rd_text("\\preformatted{\\%>\\%}"))
expect_equal(out, "<pre><code>%>%</code></pre>\n")
})
test_that("newlines are preserved in preformatted blocks", {
out <- flatten_para(rd_text("\\preformatted{^\n\nb\n\nc}"))
expect_equal(out, "<pre><code>^\n\nb\n\nc</code></pre>\n")
})
test_that("spaces are preserved in preformatted blocks", {
out <- flatten_para(rd_text("\\preformatted{^\n\n b\n\n c}"))
expect_equal(out, "<pre><code>^\n\n b\n\n c</code></pre>\n")
})
test_that("S4 methods gets comment", {
out <- rd2html("\\S4method{fun}{class}(x, y)")
expect_equal(out[1], "
expect_equal(out[2], "fun(x, y)")
})
test_that("S3 methods gets comment", {
out <- rd2html("\\S3method{fun}{class}(x, y)")
expect_equal(out[1], "
expect_equal(out[2], "fun(x, y)")
out <- rd2html("\\method{fun}{class}(x, y)")
expect_equal(out[1], "
expect_equal(out[2], "fun(x, y)")
})
test_that("Methods for class function work", {
out <- rd2html("\\S3method{fun}{function}(x, y)")
expect_equal(out[1], "
expect_equal(out[2], "fun(x, y)")
out <- rd2html("\\method{fun}{function}(x, y)")
expect_equal(out[1], "
expect_equal(out[2], "fun(x, y)")
out <- rd2html("\\S4method{fun}{function,function}(x, y)")
expect_equal(out[1], "
expect_equal(out[2], "fun(x, y)")
})
test_that("eqn", {
out <- rd2html(" \\eqn{\\alpha}{alpha}")
expect_equal(out, "\\(\\alpha\\)")
out <- rd2html(" \\eqn{x}")
expect_equal(out, "\\(x\\)")
})
test_that("deqn", {
out <- rd2html(" \\deqn{\\alpha}{alpha}")
expect_equal(out, "$$\\alpha$$")
out <- rd2html(" \\deqn{x}")
expect_equal(out, "$$x$$")
})
test_that("special", {
skip_if_not(getRversion() >= "4.0.0")
out <- rd2html("\\special{( \\dots )}")
expect_equal(out, "( ... )")
})
test_that("figures are converted to img", {
expect_equal(rd2html("\\figure{a}"), "<img src='figures/a' alt='' />")
expect_equal(rd2html("\\figure{a}{b}"), "<img src='figures/a' alt='b' />")
expect_equal(
rd2html("\\figure{a}{options: height=1}"),
"<img src='figures/a' height=1 />"
)
}) |
plotStressStrain <- function(stress, strain,strain_in,stress_in,...){
plot(strain, stress , main="stress-strain", xlab="Strain [-]", ylab ="Stress [Pa]",type="l", col="red",lwd=2)
lines(strain_in,stress_in, col="blue")
legend("topleft",legend=c("raw stress", "reconstructed"),col=c("red", "blue"), lty=1:2, cex=0.6)
abline(h=0, v=0,lty=2)
}
plotStressRate <- function(stress, rate,...){
plot(stress,rate,main="stress-rate",xlab ="Rate [1/s]", ylab="Stress [Pa]",type="l", col="red",lwd=2)
abline(h=0, v=0,lty=2)
}
plotColeCole <- function(Gp_t,Gpp_t,...){
plot(Gp_t,Gpp_t,main="Cole-Cole plot",xlab=expression("G'"[t]*" [Pa]"),ylab=expression("G''"[t]*" [Pa]"),type="l", col="red",lwd=2)
abline(h=0,v=0, lty=2)
abline(a=c(0,0), b=c(1,1),lty=2)
}
plotVGP <- function(G_star_t,delta_t,...){
plot(G_star_t,delta_t,main="VGP plot",xlab=expression("G*"[t]*" [Pa]"),ylab=expression("delta"[t]*" [rad]"),type="l", col="red",lwd=2)
abline(h=0, v=0,lty=2)}
plotGpdot <- function(Gp_t_dot,Gpp_t_dot,...){
plot(Gp_t_dot,Gpp_t_dot,main=expression("dG'"[t]*"/dt-dG''"[t]*"/dt"), xlab=expression("dG'"[t]*"/dt [Pa/s]"),ylab=expression("dG''"[t]*"/dt [Pa/s]"),type="l", col="red",lwd=2 )
}
plotSpeedGp <- function(Gp_t,G_speed,...){
plot(Gp_t,G_speed,main=expression("Speed-G'"[t]*"") ,xlab=expression("G'"[t]*" [Pa]"),ylab=expression("Speed-G''"[t]*" [Pa/s]"),type="l", col="red",lwd=2 )}
plotSpeedGpp <- function(G_speed,Gpp_t,...){
plot(G_speed,Gpp_t,main=expression("Speed-G''"[t]*"") ,xlab=expression("Speed [Pa/s]"),ylab=expression("G''"[t]*" [Pa]"),type="l", col="red",lwd=2 )
}
plotDeltaStrain <- function(strain,delta_t,...){
plot(strain,delta_t,main=expression("delta"[t]*"-strain"),xlab=expression("strain [-]"),ylab=expression("delta"[t]*" [rad]"),type="l", col="red",lwd=2 )}
plotPAV <- function(strain,delta_t_dot,...){
plot(strain,delta_t_dot,main="PAV-strain",xlab=expression("strain [-]"),ylab=expression("PAV [] (time-normalized)"),type="l", col="red", lwd=2)}
plotDisp <- function(strain,disp_stress,...){
plot(strain,disp_stress,main="displacement stress-strain",xlab=expression("strain [-]"),ylab=expression("displacement stress [Pa]"),type="l", col="red", lwd=2 )}
plotStrain <- function(Gp_t,eq_strain_est,...){
plot(Gp_t,eq_strain_est,main="est. eq. strain-tan(delta)",xlab=expression("G'"[t]*" [Pa]"),ylab=expression("esp eq. strain[-]"),type="l", col="red", lwd=2 )}
plotTimeStrain <- function(time_wave,strain,time_wave_in,strain_in, ...){
plot(time_wave,strain,main="Strain-time",xlab=expression("Time [s]"),ylab = expression("Strain [-]"),type="l", col="red",xlim=c(0,3), lwd=2)
lines(time_wave_in,strain_in,lty=2)}
plotTimeRate <- function(time_wave,rate,time_wave_in,strain_rate,...){
plot(time_wave,rate,main="Rate-time",xlab=expression("Time [s]"),ylab = expression("Rate [1/s]"),type="l", col="red",xlim=c(0,3), lwd=2)
lines(time_wave_in,strain_rate,lty=2)}
plotTimeStress <- function(time_wave,stress,time_wave_in,strain_rate,...){
plot(time_wave,stress,main="Stress-time",xlab=expression("Time [s]"),ylab=expression("Stress [Pa]"),type="l", col="red", xlim=c(0,3), lwd=2)
lines(time_wave_in,strain_rate,lty=2)}
plotStressTime <- function(time_wave_in,stress_in,time_wave,stress){
plot(time_wave_in,stress_in,xlab=expression("Time[s]"),ylab=expression("Stress [Pa]"),type="l", col="black",lty=2 )
lines(time_wave,stress,main="Stress-time",type="l", col="red", lwd=2 )}
plotFft <- function(ft_amp,fft_resp,spp_params,...){
plot(ft_amp,fft_resp,main="Fourier spectrum",xlab=expression("Number of harmonics [-]"),ylab=expression(paste(I[n],"/",I[1],"[-]")),log="y")
segments(x0=as.numeric(spp_params[2]), y0=10^-10, x1 = as.numeric(spp_params[2]), y1 = 0.7,col="red",lwd=2)} |
feature.test <- function(x, y, B=100,
type.measure="deviance", s="lambda.min",
keeplambda=FALSE,
olsestimates=TRUE,
penalty.factor = rep(1, nvars),
alpha=1,
control=list(trace=FALSE, maxcores=24), ...) {
warn <- options()$warn
options(warn=-1)
con <- list(trace=FALSE)
con[names(control)] <- control
control <- con
sfixed <- ifelse(is.numeric(s), TRUE, FALSE)
lambda <- NA
nobs <- nrow(x)
nvars <- ncol(x)
x <- scale(x)
y <- y / sd(y)
if (!sfixed) {
o <- glmnet::cv.glmnet(x, y, standardize=FALSE, type.measure=type.measure, penalty.factor=penalty.factor, ..., grouped=FALSE, pmax = min(nobs-1, nvars))
lambda <- as.numeric(o[s])
} else {
lambda <- s
keeplambda <- TRUE
}
o <- glmnet::glmnet(x, y, standardize=FALSE, penalty.factor=penalty.factor, ..., pmax = min(nobs-1, nvars))
o.coef <- coef(o, s=lambda)[-1]
o.select <- which(o.coef != 0)
o.non.zero <- o.coef[o.select]
o.nselected <- length(o.non.zero)
o.sigmalasso <- sqrt(sum( (y - predict(o, newx=x, s=lambda))^2)/(nobs - o.nselected -1))
o.coef.lasso <- o.non.zero
names(o.coef.lasso) <- o.select
if (o.nselected>0) {
o.lm <- lm(y ~ x[,o.select])
o.summarylm <- summary(o.lm)
o.fullp <- -pf(o.summarylm$fstatistic[1], o.summarylm$fstatistic[2], o.summarylm$fstatistic[3], lower.tail=FALSE, log.p=TRUE)
o.tstat <- coef(o.summarylm)[-1,3]
o.betacoef <- coef(o.summarylm)[-1,1]
names(o.tstat) <- o.select
o.sigmaols <- o.summarylm$sigma
}
else {
o.betacoef <- 0
o.sigmalasso <- 0
o.sigmaols <- 0
o.coef.lasso <- 0
o.ols.order <- NA
o.fullp <- 0
o.tstat <- 0
}
scaling.factor <- o.coef.lasso * o.sigmaols / (abs(o.betacoef) * o.sigmalasso )
o.lasso.teststat <- scaling.factor*o.tstat
o.lasso.torder <- order(abs(o.lasso.teststat), decreasing=TRUE)
o.lasso.max <- max(c(0, abs(o.lasso.teststat)))
o.ols.max <- max(c(0, abs(o.tstat)))
if (o.nselected > 0) {
simnull <- parallel::mclapply(1:B, function(iii) {
py <- sample(y)
cat(".")
if (!keeplambda) {
to <- glmnet::cv.glmnet(x, py, standardize=FALSE, type.measure=type.measure, penalty.factor=penalty.factor, ..., pmax = min(nobs-1, nvars), grouped=FALSE)
lambda <- as.numeric(to[s])
}
to <- glmnet::glmnet(x, py, standardize=FALSE, penalty.factor=penalty.factor, ..., pmax = min(nobs-1, nvars))
to.coef <- coef(to, s=lambda)[-1]
to.select <- which(to.coef != 0)
to.non.zero <- to.coef[to.select]
to.nselected <- length(to.non.zero)
to.sigmalasso <- sqrt(sum( (py - predict(to, newx=x, s=lambda))^2)/(nobs - to.nselected -1))
to.coef.lasso <- to.non.zero
names(to.coef.lasso) <- to.select
if (to.nselected>0) {
to.lm <- lm(py ~ x[,to.select])
to.summarylm <- summary(to.lm)
to.fullp <- -pf(to.summarylm$fstatistic[1], to.summarylm$fstatistic[2], to.summarylm$fstatistic[3], lower.tail=FALSE, log.p=TRUE)
to.tstat <- coef(to.summarylm)[-1,3]
to.betacoef <- coef(to.summarylm)[-1,1]
names(to.tstat) <- to.select
to.sigmaols <- to.summarylm$sigma
} else {
to.sigmaols <- 0
to.betacoef <- 0
to.tstat <- 0
to.fullp <- 0
}
scaling.factor <- to.coef.lasso * to.sigmaols / (abs(to.betacoef) * to.sigmalasso )
to.lasso.teststat <- scaling.factor*max(abs(to.tstat))
to.lasso.max <- max(c(0, to.lasso.teststat))
to.ols.max <- max(c(0, abs(to.tstat)))
c(to.lasso.max, to.ols.max, to.fullp)
}, mc.cores=min(parallel::detectCores(), control$maxcores) )
dist.lasso <- sapply(simnull, function(i) {i[[1]]})
dist.ols <- sapply(simnull, function(i) {i[[2]]})
dist.fullp <- sapply(simnull, function(i) {i[[3]]})
p.maxlasso <- sum(dist.lasso >= o.lasso.max)/B
p.maxols <- sum(dist.ols >= o.ols.max)/B
p.full <- sum(dist.fullp >= o.fullp)/B
} else {
p.maxlasso <- NA
p.maxols <- NA
p.full <- NA
}
options(warn=warn)
list(
p.full=p.full,
ols.selected=o.select[o.ols.order],
p.maxols=p.maxols,
lasso.selected=o.select[o.lasso.torder],
p.maxlasso=p.maxlasso,
lambda.orig=lambda,
B=B)
} |
WindowSizeRecog <- function(InputData, COREorder, WScutoff){
ChrSeq <- as.character(unique(InputData[,1]))
OrderSeqAll_Vec <- c()
WindowAll_Vec <- c()
for(chrIter in ChrSeq){
InputData_Start <- InputData[which(InputData[,1] == chrIter),"start"]
InputData_End <- InputData[which(InputData[,1] == chrIter),"end"]
RemInd <- which(duplicated(paste(InputData_Start, InputData_End, sep = "_")))
if(length(RemInd) > 0){
InputData_Start <- InputData_Start[-RemInd]
InputData_End <- InputData_End[-RemInd]
}
InputData_End <- InputData_End[order(InputData_Start, decreasing = F)]
InputData_Start <- InputData_Start[order(InputData_Start, decreasing = F)]
InputData_Center <- 0.5*(InputData_Start + InputData_End)
InputData_StartSeq <- min(InputData_Start)
InputData_EndSeq <- max(InputData_End)
peakNumIter <- COREorder
if(((length(InputData_Start)-(peakNumIter - 1))-1) > 0){
OrderElement_Vec <- rep(0,((length(InputData_Start)-(peakNumIter - 1))-1))
WindowElement_Vec <- rep(0,((length(InputData_Start)-(peakNumIter - 1))-1))
i <- 1
while(i < (length(InputData_Start)-(peakNumIter - 1))){
widthElement <- (InputData_End[(i+(peakNumIter - 1))] - InputData_Start[i])
checkwindow <- max(InputData_Start[(i+1):(i + (peakNumIter - 1))] -
InputData_End[i:(i+ (peakNumIter - 1) - 1)])
OrderElement_Vec[i] <- peakNumIter
WindowElement_Vec[i] <- checkwindow
i <- i + 1
}
OrderSeqAll_Vec <- c(OrderSeqAll_Vec, OrderElement_Vec)
WindowAll_Vec <- c(WindowAll_Vec, WindowElement_Vec)
}
}
i <- COREorder
SortedWindow_Vec <- sort(WindowAll_Vec[which(OrderSeqAll_Vec == i)])
SortedWindowQuan <- quantile(SortedWindow_Vec)
aa <- (as.numeric(SortedWindowQuan[4]) + WScutoff*(as.numeric(SortedWindowQuan[4])-
as.numeric(SortedWindowQuan[2])))
RemovePeaks <- which(SortedWindow_Vec > aa)
if(length(RemovePeaks) > 0){
bb <- log(SortedWindow_Vec[-RemovePeaks])
}else{
bb <- log(SortedWindow_Vec)
}
bb_quan <- quantile(bb)
TightReg <- (as.numeric(bb_quan[2]) - WScutoff*(as.numeric(bb_quan[4]) -
as.numeric(bb_quan[2])))
Outliers <- which(bb < TightReg)
if(length(Outliers) > 0){
WindowSize <- exp(TightReg)
}else{
WindowSize <- 1
}
return(WindowSize)
} |
context("widely")
test_that("widely can widen, operate, and re-tidy", {
skip_if_not_installed("gapminder")
library(gapminder)
ret <- gapminder %>%
widely(cor)(year, country, lifeExp)
expect_is(ret$item1, "character")
expect_is(ret$item2, "character")
expect_true(all(c("Afghanistan", "United States") %in% ret$item1))
expect_true(all(c("Afghanistan", "United States") %in% ret$item2))
expect_true(all(ret$value <= 1))
expect_true(all(ret$value >= -1))
expect_equal(nrow(ret), length(unique(gapminder$country)) ^ 2)
ret2 <- gapminder %>%
widely(cor, sort = TRUE)(year, country, lifeExp)
expect_equal(sort(ret$value, decreasing = TRUE), ret2$value)
})
test_that("widely works within groups", {
skip_if_not_installed("gapminder")
library(gapminder)
ret <- gapminder %>%
group_by(continent) %>%
widely(cor)(year, country, lifeExp)
expect_equal(colnames(ret), c("continent", "item1", "item2", "value"))
expect_is(ret$item1, "character")
expect_is(ret$item2, "character")
expect_true(all(c("Afghanistan", "United States") %in% ret$item1))
expect_true(all(c("Afghanistan", "United States") %in% ret$item2))
expect_true(any("Canada" == ret$item1 & "United States" == ret$item2))
expect_false(any("Afghanistan" == ret$item1 & "United States" == ret$item2))
expect_true(all(ret$value <= 1))
expect_true(all(ret$value >= -1))
})
test_that("widely's maximum size argument works", {
skip_if_not_installed("gapminder")
library(gapminder)
f <- function() {
widely(cor, maximum_size = 1000)(gapminder, year, country, lifeExp)
}
expect_error(f(), "1704.*large")
}) |
intdiv = function(dividend, divisor) {
a = as.integer(dividend)
b = as.integer(divisor)
sign(a) * (abs(a) %/% b)
} |
context("general_MT and general_diagnosis.MT work correctly")
test_that("general_MT", {
iris_versicolor <- iris[61:100, -5]
unit_space <- general_MT(unit_space_data = iris_versicolor,
generates_transform_function =
generates_normalization_function,
calc_A = function(x) solve(cor(x)),
includes_transformed_data = TRUE)
correct_distance <- c(1.351, 0.802, 1.164, 0.643, 1.122, 1.184, 0.910, 1.224,
1.691, 0.547, 1.413, 0.692, 1.151, 1.292, 0.771, 0.982,
1.092, 1.116, 0.487, 0.976, 0.621, 0.776, 0.423, 1.324,
1.188, 1.161, 0.959, 1.136, 0.721, 0.685, 1.094, 0.584,
0.310, 1.109, 0.430, 0.982, 0.488, 0.524, 1.572, 0.297)
expect_equal(round(as.vector(unit_space$distance), 3), correct_distance)
})
test_that("general_diagnosis.MT without passing newdata", {
iris_versicolor <- iris[61:100, -5]
unit_space <- general_MT(unit_space_data = iris_versicolor,
generates_transform_function =
generates_normalization_function,
calc_A = function(x) solve(cor(x)),
includes_transformed_data = TRUE)
diagnosis <- general_diagnosis.MT(unit_space = unit_space,
threshold = 4,
includes_transformed_newdata = TRUE)
correct_distance <- c(1.351, 0.802, 1.164, 0.643, 1.122, 1.184, 0.910, 1.224,
1.691, 0.547, 1.413, 0.692, 1.151, 1.292, 0.771, 0.982,
1.092, 1.116, 0.487, 0.976, 0.621, 0.776, 0.423, 1.324,
1.188, 1.161, 0.959, 1.136, 0.721, 0.685, 1.094, 0.584,
0.310, 1.109, 0.430, 0.982, 0.488, 0.524, 1.572, 0.297)
expect_equal(round(as.vector(diagnosis$distance), 3), correct_distance)
})
test_that("general_diagnosis.MT with passing newdata", {
iris_versicolor <- iris[61:100, -5]
unit_space <- general_MT(unit_space_data = iris_versicolor,
generates_transform_function =
generates_normalization_function,
calc_A = function(x) solve(cor(x)),
includes_transformed_data = TRUE)
correct_distance <- c(1.351, 0.802, 1.164, 0.643, 1.122, 1.184, 0.910, 1.224,
1.691, 0.547, 1.413, 0.692, 1.151, 1.292, 0.771, 0.982,
1.092, 1.116, 0.487, 0.976, 0.621, 0.776, 0.423, 1.324,
1.188, 1.161, 0.959, 1.136, 0.721, 0.685, 1.094, 0.584,
0.310, 1.109, 0.430, 0.982, 0.488, 0.524, 1.572, 0.297)
iris_test <- iris[c(1:10, 51:60, 101:111), -5]
diagnosis <- general_diagnosis.MT(unit_space = unit_space,
newdata = iris_test,
threshold = 4,
includes_transformed_newdata = TRUE)
correct_distance <- c(5.061, 4.270, 4.561, 4.262, 5.186, 5.225, 4.590, 4.806,
4.017, 4.552, 1.483, 0.870, 1.152, 1.027, 0.819, 0.839,
0.925, 1.144, 0.996, 1.129, 3.375, 2.138, 2.268, 1.758,
2.566, 2.745, 2.403, 2.452, 2.254, 3.029, 1.872)
expect_equal(round(as.vector(diagnosis$distance), 3), correct_distance)
}) |
expected <- eval(parse(text="FALSE"));
test(id=0, code={
argv <- eval(parse(text="list(1L, FALSE, TRUE, NA)"));
.Internal(duplicated(argv[[1]], argv[[2]], argv[[3]], argv[[4]]));
}, o=expected); |
eudract_convert <- function(input, output,
xslt=system.file("extdata","simpleToEudraCT.xslt", package="eudract"),
schema_input=system.file("extdata","simple.xsd", package="eudract"),
schema_output=system.file("extdata","adverseEvents.xsd", package="eudract")
){
doc <- xml2::read_xml(input)
style <- xml2::read_xml(xslt)
schema_input <- xml2::read_xml(schema_input)
schema_output <- xml2::read_xml(schema_output)
check_in <- xml2::xml_validate(doc, schema_input)
if( !check_in){ stop(attr(check_in,"errors"))}
output_xml <- xslt::xml_xslt(doc, style)
xml2::write_xml(output_xml, output)
message(paste0("'",output, "' is created or modified\n"))
check_out <- xml2::xml_validate(output_xml, schema_output)
if( !check_out){ warning(attr(check_out,"errors"))}
message("Please email [email protected] to tell us if you have successfully uploaded a study to EudraCT.\nThis is to allow us to measure the impact of this tool.")
invisible(check_out)
} |
to_numeric <- function(x) {
x <- sub("[,.]([0-9]*)$", ";\\1", x)
x <- gsub("[,. ]", "", x)
x <- sub(";", ".", x)
as.numeric(x)
} |
impulseest <- function(x,M=30,K=NULL,regul=F,lambda=1){
N <- dim(x$output)[1]
if(is.null(K))
K <- rep(0,nInputSeries(x)*nOutputSeries(x))
out <- rep(list(0),length(K))
for(i in seq(nOutputSeries(x))){
for(j in seq(nInputSeries(x))){
index <- (i-1)*nInputSeries(x)+j
out[[index]] <- impulsechannel(outputData(x)[,i,drop=F],
inputData(x)[,j,drop=F],N,M,
K[index],regul,lambda)
}
}
out$ninputs <- nInputSeries(x)
out$noutputs <- nOutputSeries(x)
class(out) <- "impulseest"
return(out)
}
impulsechannel <- function(y,u,N,M,K=0,regul=F,lambda=1){
ind <- (M+K+1):N
z_reg <- function(i) u[(i-K):(i-M-K),]
Z <- t(sapply(ind,z_reg))
Y <- y[ind,]
if(regul==F){
fit <- lm(Y~Z-1)
coefficients <- coef(fit); residuals <- resid(fit)
} else{
inner <- t(Z)%*%Z + lambda*diag(dim(Z)[2])
pinv <- solve(inner)%*% t(Z)
coefficients <- pinv%*%Y
residuals <- Y - Z%*%coefficients
}
df <- nrow(Z)-ncol(Z);sigma2 <- sum(residuals^2)/df
vcov <- sigma2 * solve(t(Z)%*%Z)
se <- sqrt(diag(vcov))
out <- list(coefficients=coefficients,residuals=residuals,lags=K:(M+K),
x=colnames(u),y=colnames(y),se = se)
out
}
impulseplot <- function(model,sd=2){
plotseq <- seq(model$noutputs*model$ninputs)
g <- vector("list",model$nin*model$nout)
for(i in plotseq){
z <- model[[i]]
lim <- z$se*sd
yindex <- (i-1)%/%model$nin + 1;uindex <- i-model$nin*(yindex-1)
df <- data.frame(x=z$lags,y=coef(z),lim=lim)
g[[i]] <- with(df,ggplot(df,aes(x,y))+
geom_segment(aes(xend=x,yend=0))+geom_hline(yintercept = 0) +
geom_point(size=2) + ggtitle(paste("From",z$x,"to",z$y))+
geom_line(aes(y=lim),linetype="dashed",colour="steelblue") +
geom_line(aes(y=-lim),linetype="dashed",colour="steelblue") +
ggplot2::theme_bw(14) + ylab(ifelse(uindex==1,"IR Coefficients","")) +
xlab(ifelse(yindex==model$nout,"Lags","")) +
theme(axis.title=element_text(size=12,color = "black",face = "plain"),
title=element_text(size=9,color = "black",face="bold")) +
scale_x_continuous(expand = c(0.01,0.01)))
}
multiplot(plotlist=g,layout=plotseq)
}
step <- function(model){
plotseq <- seq(model$noutputs*model$ninputs)
g <- vector("list",model$nin*model$nout)
for(i in plotseq){
z <- model[[i]]
stepResp <- cumsum(coef(z))
yindex <- (i-1)%/%model$nin + 1;uindex <- i-model$nin*(yindex-1)
df <- data.frame(x=z$lags,y=stepResp)
g[[i]] <- with(df,ggplot(df,aes(x,y))+
geom_step() + ggtitle(paste("From",z$x,"to",z$y)) +
theme_bw(14) + ylab(ifelse(uindex==1,"Step Response","")) +
xlab(ifelse(yindex==model$nout,"Lags","")) +
theme(axis.title=element_text(size=12,color = "black",face = "plain"),
title=element_text(size=9,,color = "black",face="bold")))
}
multiplot(plotlist=g,layout=plotseq)
}
spa <- function(x,winsize=NULL,freq=NULL){
N <- dim(x$out)[1]
nout <- nOutputSeries(x); nin <- nInputSeries(x)
if(is.null(winsize)) winsize <- min(N/10,30)
if(is.null(freq)) freq <- (1:128)/128*pi/deltat(x)
M <- winsize
Ryu <- mult_ccf(x$out,x$input,lag.max = M)
Ruu <- mult_ccf(x$input,x$input,lag.max=M)
Ryy <- mult_ccf(x$out,x$out,lag.max = M)
cov2spec <- function(omega,R,M){
seq1 <- exp(-1i*(-M:M)*omega)
sum(R*signal::hanning(2*M+1)*seq1)
}
G <- array(0,c(nout,nin,length(freq)))
spec <- array(0,c(nout,1,length(freq)))
for(i in 1:nout){
phi_y <- sapply(freq,cov2spec,Ryy[i,i,],M)
temp <- phi_y
for(j in 1:nin){
phi_yu <- sapply(freq,cov2spec,Ryu[i,j,],M)
phi_u <- sapply(freq,cov2spec,Ruu[j,j,],M)
G[i,j,] <- phi_yu/phi_u
temp <- temp - phi_yu*Conj(phi_yu)/phi_u
}
spec[i,1,] <- temp
}
out <- idfrd(G,matrix(freq),deltat(x),spec)
return(out)
}
mult_ccf <- function(X,Y=NULL,lag.max=30){
N <- dim(X)[1]; nx <- dim(X)[2]
ny <- ifelse(is.null(Y),nx,dim(Y)[2])
ccvfij <- function(i,j,lag=30) ccf(X[,i],Y[,j],plot=F,lag.max =lag,
type="covariance")
Xindex <- matrix(sapply(1:nx,rep,nx),ncol=1)[,1]
temp <- mapply(ccvfij,i=Xindex,j=rep(1:ny,ny),
MoreArgs = list(lag=lag.max))
ccfextract <- function(i,l) l[,i]$acf
temp2 <- t(sapply(1:(nx*ny),ccfextract,l=temp))
dim(temp2) <- c(nx,ny,2*lag.max+1)
return(temp2)
}
etfe <- function(data,n=128){
y <- data$output
u <- data$input
N <- dim(data$output)[1]
if(N < n){
n=N
}
v=seq(1,N,length.out = n)
temp <- cbind(data$output[v,],data$input[v,])
tempfft <- mvfft(temp)/dim(temp)[1]
G <- comdiv(tempfft[,1],tempfft[,2])
resp = G[1:ceiling(length(G)/2)]
frequency <- matrix(seq( 1 , ceiling(n/2) ) * pi / floor(n/2) / deltat(data))
out <- idfrd(respData = resp,freq=frequency,Ts=data$Ts)
return(out)
}
comdiv <- function(z1,z2){
mag1 <- Mod(z1);mag2 <- Mod(z2)
phi1 <- Arg(z1); phi2 <- Arg(z2)
complex(modulus=mag1/mag2,argument=signal::unwrap(phi1-phi2))
} |
lmkkmeans_missingData <-
function(Km,
parameters,
missing = NULL,
verbose = FALSE) {
state <- list()
N <- dim(Km)[2]
P <- dim(Km)[3]
if (!is.null(missing)) {
avail <- abs(1 - missing)
} else {
avail <- matrix(1, N, P)
}
Theta <- matrix(NA, N, P)
for (i in 1:N) {
Theta[i, ] <- 1/sum(avail[i, ])
}
Theta <- Theta * avail
K_Theta <- matrix(0, nrow(Km), ncol(Km))
for (m in 1:P) {
avail_m <- avail[, m] > 0
K_Theta[avail_m, avail_m] <- K_Theta[avail_m, avail_m] +
(Theta[avail_m, m, drop = FALSE] %*%
t(Theta[avail_m, m, drop = FALSE])) * Km[avail_m, avail_m, m]
}
objective <- rep(0, parameters$iteration_count)
for (iter in 1:parameters$iteration_count) {
if (verbose)
print(sprintf("running iteration %d...", iter))
H <- eigen(K_Theta,
symmetric = TRUE)$vectors[, 1:parameters$cluster_count]
HHT <- H %*% t(H)
Q <- matrix(0, N * P, N * P)
for (m in 1:P) {
avail_m <- avail[, m] > 0
start_index <- (m - 1) * N + 1
end_index <- m * N
Q[(start_index:end_index)[avail_m],
(start_index:end_index)[avail_m]] <-
diag(1, sum(avail_m), sum(avail_m)) *
Km[avail_m, avail_m, m] - HHT[avail_m, avail_m] *
Km[avail_m, avail_m, m]
}
avail_vec <- as.logical(as.vector(avail))
sum_avail_vec <- sum(avail_vec)
Q <- Q[avail_vec, avail_vec]
problem <- list()
problem$sense <- "min"
problem$c <- rep(0, sum_avail_vec)
A <- Matrix::Matrix(rep(diag(1, N, N), P),
nrow = N,
ncol = N * P,
sparse = TRUE)
problem$A <- A[, avail_vec, drop = F]
problem$bc <- rbind(blc = rep(1, N), buc = rep(1, N))
problem$bx <- rbind(blx = rep(0, sum_avail_vec),
bux = rep(1, sum_avail_vec))
I <-
matrix(1:sum_avail_vec, sum_avail_vec, sum_avail_vec, byrow = FALSE)
J <-
matrix(1:sum_avail_vec, sum_avail_vec, sum_avail_vec, byrow = TRUE)
problem$qobj <-
list(i = I[lower.tri(I, diag = TRUE)],
j = J[lower.tri(J, diag = TRUE)],
v = Q[lower.tri(Q, diag = TRUE)])
opts <- list()
opts$verbose <- 0
result <- Rmosek::mosek(problem, opts)
Theta <- matrix(0, N, P)
count <- 0
for (i in 1:P) {
avail_i <- which(avail[, i] == 1)
startt <- (count + 1)
endt <- count + sum(avail[, i])
Theta[avail_i, i] <- result$sol$itr$xx[startt:endt]
count <- count + sum(avail[, i])
}
K_Theta <- matrix(0, nrow(Km), ncol(Km))
for (m in 1:P) {
avail_m <- avail[, m] > 0
K_Theta[avail_m, avail_m] <-
K_Theta[avail_m, avail_m] +
(Theta[avail_m, m, drop = FALSE] %*%
t(Theta[avail_m, m, drop = FALSE])) *
Km[avail_m, avail_m, m]
}
objective[iter] <-
sum(diag(t(H) %*% K_Theta %*% H)) - sum(diag(K_Theta))
}
normalize <- which(rowSums(H^2, 2) > .Machine$double.eps)
H_normalized <- matrix(0, N, parameters$cluster_count)
H_normalized[normalize, ] <- H[normalize, ]/matrix(sqrt(rowSums(H[normalize,
]^2, 2)), nrow(H[normalize, ]), parameters$cluster_count, byrow = FALSE)
state$clustering <-
stats::kmeans(
H_normalized,
centers = parameters$cluster_count,
iter.max = 1000,
nstart = 10
)$cluster
state$objective <- objective
state$parameters <- parameters
state$Theta <- Theta
state
} |
library(testthat)
library(getSpatialData)
library(raster)
library(sf)
Sys.setenv("R_TESTS" = "") |
mnis_extra <- function(ID, ref_dods = FALSE, addresses = TRUE,
biography_entries = TRUE, committees = TRUE,
constituencies = TRUE, elections_contested = TRUE,
experiences = TRUE, government_posts = TRUE,
honours = TRUE, house_memberships = TRUE,
interests = TRUE, known_as = TRUE,
maiden_speeches = TRUE, opposition_posts = TRUE,
other_parliaments = TRUE, parliamentary_posts = TRUE,
parties = TRUE, preferred_names = TRUE,
staff = TRUE, statuses = TRUE,
tidy = TRUE, tidy_style = "snake_case") {
.Defunct("mnis_additional", msg = "mnis_extra is defunct")
ID <- as.character(ID)
if (is.null(ID) == TRUE) {
stop("ID cannot be null", call. = FALSE)
}
mnis_df <- tibble::tibble(member_id = ID)
if (addresses == TRUE) {
addresses_df <- mnis_addresses(ID = ID, ref_dods = ref_dods,
tidy = TRUE, tidy_style = "snake_case")
suppressMessages(
suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, addresses_df))
)
}
if (biography_entries == TRUE) {
biography_entries_df <- mnis_biography_entries(ID = ID, ref_dods = ref_dods,
tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, biography_entries_df)))
}
if (committees == TRUE) {
committees_df <- mnis_committees(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, committees_df)))
}
if (constituencies == TRUE) {
constituencies_df <- mnis_constituencies(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, constituencies_df)))
}
if (elections_contested == TRUE) {
elections_contested_df <- mnis_elections_contested(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, elections_contested_df)))
addresses_df <- NULL
biography_entries_df <- NULL
committees_df <- NULL
constituencies_df <- NULL
elections_contested_df <- NULL
experiences_df <- NULL
government_posts_df <- NULL
honours_df <- NULL
house_memberships_df <- NULL
interests_df <- NULL
known_as_df <- NULL
maiden_speeches_df <- NULL
opposition_posts_df <- NULL
other_parliaments_df <- NULL
parliamentary_posts_df <- NULL
parties_df <- NULL
preferred_names_df <- NULL
staff_df <- NULL
statuses_df <- NULL
if (addresses == TRUE) {
addresses_df <- mnis_addresses(ID, ref_dods, tidy, tidy_style)
}
if (biography_entries == TRUE) {
biography_entries_df <- mnis_biography_entries(
ID, ref_dods,
tidy, tidy_style
)
}
if (committees == TRUE) {
committees_df <- mnis_committees(ID, ref_dods, tidy, tidy_style)
}
if (constituencies == TRUE) {
constituencies_df <- mnis_constituencies(ID, ref_dods, tidy, tidy_style)
}
if (elections_contested == TRUE) {
elections_contested_df <- mnis_elections_contested(
ID, ref_dods,
tidy, tidy_style
)
}
if (experiences == TRUE) {
experiences_df <- mnis_experiences(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, experiences_df)))
experiences_df <- mnis_experiences(ID, ref_dods, tidy, tidy_style)
}
if (government_posts == TRUE) {
government_posts_df <- mnis_government_posts(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, government_posts_df)))
}
if (honours == TRUE) {
honours_df <- mnis_honours(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, honours_df)))
}
if (house_memberships == TRUE) {
house_memberships_df <- mnis_house_memberships(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, house_memberships_df)))
}
if (interests == TRUE) {
interests_df <- mnis_interests(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, interests_df)))
government_posts_df <- mnis_government_posts(ID, ref_dods, tidy, tidy_style)
}
if (honours == TRUE) {
honours_df <- mnis_honours(ID, ref_dods, tidy, tidy_style)
}
if (house_memberships == TRUE) {
house_memberships_df <- mnis_house_memberships(
ID, ref_dods,
tidy, tidy_style
)
}
if (interests == TRUE) {
interests_df <- mnis_interests(ID, ref_dods, tidy, tidy_style)
}
if (known_as == TRUE) {
known_as_df <- mnis_known_as(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, known_as_df)))
known_as_df <- mnis_known_as(ID, ref_dods, tidy, tidy_style)
}
if (maiden_speeches == TRUE) {
maiden_speeches_df <- mnis_maiden_speeches(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, maiden_speeches_df)))
maiden_speeches_df <- mnis_maiden_speeches(ID, ref_dods, tidy, tidy_style)
}
if (opposition_posts == TRUE) {
opposition_posts_df <- mnis_opposition_posts(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, opposition_posts_df)))
opposition_posts_df <- mnis_opposition_posts(ID, ref_dods, tidy, tidy_style)
}
if (other_parliaments == TRUE) {
other_parliaments_df <- mnis_other_parliaments(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, other_parliaments_df)))
}
if (parliamentary_posts == TRUE) {
parliamentary_posts_df <- mnis_parliamentary_posts(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, parliamentary_posts_df)))
}
if (parties == TRUE) {
parties_df <- mnis_parties(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, parties_df)))
other_parliaments_df <- mnis_other_parliaments(
ID, ref_dods,
tidy, tidy_style
)
}
if (parliamentary_posts == TRUE) {
parliamentary_posts_df <- mnis_parliamentary_posts(
ID, ref_dods,
tidy, tidy_style
)
}
if (parties == TRUE) {
parties_df <- mnis_parties(ID, ref_dods, tidy, tidy_style)
}
if (preferred_names == TRUE) {
preferred_names_df <- mnis_preferred_names(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, preferred_names_df)))
preferred_names_df <- mnis_preferred_names(ID, ref_dods, tidy, tidy_style)
}
if (staff == TRUE) {
staff_df <- mnis_staff(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, staff_df)))
staff_df <- mnis_staff(ID, ref_dods, tidy, tidy_style)
}
if (statuses == TRUE) {
statuses_df <- mnis_statuses(ID = ID, ref_dods = ref_dods, tidy = TRUE, tidy_style = "snake_case")
suppressMessages(suppressWarnings(mnis_df <- dplyr::inner_join(mnis_df, statuses_df)))
}
if (tidy == TRUE) {
mnis_df <- mnis::mnis_tidy(mnis_df, tidy_style)
statuses_df <- mnis_statuses(ID, ref_dods, tidy, tidy_style)
}
mnis_df <- list(
addresses_df,
biography_entries_df,
committees_df,
constituencies_df,
elections_contested_df,
experiences_df,
government_posts_df,
honours_df,
house_memberships_df,
interests_df,
known_as_df,
maiden_speeches_df,
opposition_posts_df,
other_parliaments_df,
parliamentary_posts_df,
parties_df,
preferred_names_df,
staff_df,
statuses_df
)
names(mnis_df) <- c(
"addresses",
"biography_entries",
"committees",
"constituencies",
"elections_contested",
"experiences",
"government_posts",
"honours",
"house_memberships",
"interests",
"known_as",
"maiden_speeches",
"opposition_posts",
"other_parliaments",
"parliamentary_posts",
"parties",
"preferred_names",
"staff",
"statuses"
)
mnis_df
} else {
mnis_df
}
} |
gamKTS <-
function() {
gamKTS1OnOk <- function() {
selTsName <- verifyCharEntry(tcltk::tclvalue(KTSEnv$selTsP))
if (is.na(selTsName)) {
tcltk::tkmessageBox(message = "Choose a time series",
icon = "warning")
} else {
KTSEnv$selTsName <- selTsName
showPANgamKTS2()
}
}
gamKTS2OnOk <- function() {
refreshDataSetsList(outp = FALSE)
tssel <- tsCheckedTF()
predictorTS <- KTSEnv$dSList$TS[which(tssel == TRUE)]
nPredictorTS <- length(predictorTS)
selTs <- get(KTSEnv$selTsName, envir = KTSEnv)
if (any(predictorTS == KTSEnv$selTsName)) {
tcltk::tkmessageBox(message = paste("The time series",
"to fill cannot be",
"one of the predictors"),
icon = "warning")
} else if (nPredictorTS == 0) {
tcltk::tkmessageBox(message = paste("Choose, at least,",
"a predictor time series"),
icon = "warning")
} else if (nPredictorTS > 3) {
tcltk::tkmessageBox(message = paste("The maximum number of",
"predictor time series is 3"),
icon = "warning")
} else {
tmComptibility <- matrix(rep(FALSE, 3 * nPredictorTS), nPredictorTS,
3)
for (i in 1:nPredictorTS) {
tmComptibility[i, ] <- are2TsTimeCompatible(selTs,
get(predictorTS[i],
envir = KTSEnv))
}
if (any(tmComptibility[, 1] == FALSE)) {
tcltk::tkmessageBox(message = paste("The initial date of all the",
"time series must be the same"),
icon = "warning")
} else if (any(tmComptibility[, 2] == FALSE)) {
tcltk::tkmessageBox(message = paste("The sampling period of all",
"the time series must",
"be the same"),
icon = "warning")
} else if (any(tmComptibility[, 3] == FALSE)) {
tcltk::tkmessageBox(message = paste("All time series must",
"have the same length"),
icon = "warning")
} else {
KTSEnv$predictorTS <- predictorTS
showPANgamKTS3()
}
}
}
gamKTS3OnOk <- function() {
fx <- tcltk::tclvalue(KTSEnv$fxE)
bs <- verifyCharEntry(tcltk::tclvalue(KTSEnv$bsE), noValid = NA)
per <- verifyRealEntry(tcltk::tclvalue(KTSEnv$perE), noValid = NA)
selTs <- get(KTSEnv$selTsName, envir = KTSEnv)
gapToUse <- gapForSelMethod(KTSEnv$selTsName, selTs)
selGap <- gapToUse$selGap
selGapName <- gapToUse$selGapName
nasInSelTs <- which(is.na(selTs$value))
tmComptibility <- areTsGapTimeCompatible(selTs, selGap)
if (length(nasInSelTs) == 0) {
tcltk::tkmessageBox(message = paste("The selected time",
"series contains no NAs"),
icon = "warning")
} else if (length(selGap$gaps) == 0) {
tcltk::tkmessageBox(message = "The gap set is empty", icon = "warning")
} else if (length(setdiff(union(selGap$gaps, nasInSelTs),
nasInSelTs)) != 0) {
tcltk::tkmessageBox(message = paste("Some NAs in the gap set",
"do not exist in the time series.",
"Check that the selected gap set",
"comes from the selected",
"time series"),
icon = "warning")
} else if (tmComptibility[1] == FALSE) {
tcltk::tkmessageBox(message = paste("The initial date of the time",
"series and the one stored in",
"the gap set do not match"),
icon = "warning")
} else if (tmComptibility[2] == FALSE) {
tcltk::tkmessageBox(message = paste("The sampling period of the",
"time series and the one stored",
"in the gap set do not match"),
icon = "warning")
} else if (tmComptibility[3] == FALSE) {
tcltk::tkmessageBox(message = paste("The time series is shorter",
"than some indices stored",
"in the set of gaps"),
icon = "warning")
} else {
getPiece <- function(gapLims, per, X, Y) {
if (is.vector(X)) {
X <- as.matrix(X)
}
L <- round(per * (gapLims[2] - gapLims[1] + 1), 0)
P <- (gapLims[1] - L):(gapLims[2] + L)
P <- intersect(P, 1:nrow(X))
lP <- length(P)
if (lP > 0) {
X <- X[P, ]
Y <- Y[P]
} else {
X <- NA
Y <- NA
}
res <- list(X1 = X, Y1 = Y, predLims = P)
}
multSpline <- function(XP, YP, per = 1, bs = "cr", fx = TRUE) {
TI <- 1:length(YP)
if (is.vector(XP)) {
gamMod <- try(mgcv::gam(YP ~ te(XP, TI, bs = bs, fx = fx)),
silent = TRUE)
if (any(class(gamMod) == "try-error")) {
stop("The gam model failed")
} else {
res <- try(stats::predict(gamMod, newdata = data.frame(XP, TI)),
silent = TRUE)
if (class(res) == "try-error") {
stop("The prediction failed")
} else {
res
}
}
} else if (ncol(XP) == 2) {
XP1 <- XP[, 1]
XP2 <- XP[, 2]
gamMod <- try(mgcv::gam(YP ~ te(XP1, XP2, TI, bs = bs, fx = fx)),
silent = TRUE)
if (any(class(gamMod) == "try-error")) {
stop("The gam model failed")
} else {
res <- try(stats::predict(gamMod,
newdata = data.frame(XP1, XP2,TI)),
silent = TRUE)
if (class(res) == "try-error") {
stop("The prediction failed")
} else {
res
}
}
} else if (ncol(XP) == 3) {
XP1 <- XP[, 1]
XP2 <- XP[, 2]
XP3 <- XP[, 3]
gamMod <- try(mgcv::gam(YP ~ te(XP1, XP2, XP3, TI,
bs = bs, fx = fx)),
silent = TRUE)
if (any(class(gamMod) == "try-error")) {
stop("The gam model failed")
} else {
res <- try(stats::predict(gamMod,
newdata = data.frame(XP1, XP2,XP3, TI)),
silent = TRUE)
if (class(res) == "try-error") {
stop("The prediction failed")
} else {
res
}
}
}
}
placePrediction <- function(YTimSer, gapLims, gamPred, predLims) {
predLims1 <- gapLims[1] - predLims[1]
aa <- gapLims[1]:gapLims[2]
YTimSer$value[aa] <- gamPred[predLims1:(predLims1 +
gapLims[2] - gapLims[1])]
YTimSer
}
multSplinInterp <- function(X, YTimSer, gapsInYnotInX, per = 1,
bs = "cr",fx = TRUE) {
gapMatrix <- groupIndices(gapsInYnotInX)
nG <- nrow(gapMatrix)
res <- vector("list", nG)
gamPred <- vector("list", nG)
for (i in 1:nrow(gapMatrix)) {
res[[i]] <- getPiece(gapLims = gapMatrix[i, 1:2], per = per, X = X,
Y = YTimSer$value)
gamPred[[i]] <- try(multSpline(XP = res[[i]]$X1, YP = res[[i]]$Y1,
per = per, bs = bs, fx = fx),
silent = TRUE)
}
YTimSerPred <- YTimSer
for (j in 1:nrow(gapMatrix)) {
if (is.numeric(gamPred[[j]])) {
YTimSerPred <- placePrediction(YTimSerPred,
gapLims = gapMatrix[j,1:2],
gamPred = gamPred[[j]],
predLims = res[[j]]$predLims)
}
}
YTimSerPred
}
if (is.na(bs)) {
bs <- "cr"
tcltk::tkmessageBox(message = paste("The smoothing basis",
"entry was not valied and",
"it defaulted to cr"),
icon = "warning")
}
if (is.na(per)) {
per <- 100
tcltk::tkmessageBox(message = paste("The window was not valid",
"and it defaulted to 100%"),
icon = "warning")
}
if (fx == "df") {
fx <- TRUE
} else {
fx <- FALSE
}
per <- 0.01 * per
lPred <- length(KTSEnv$predictorTS)
if (lPred == 1) {
X <- get(KTSEnv$predictorTS, envir = KTSEnv)$value
} else {
X <- NULL
for (i in 1:lPred) {
X <- cbind(X, get(KTSEnv$predictorTS[i], envir = KTSEnv)$value)
}
}
filledTS <- multSplinInterp(X = X, YTimSer = selTs,
gapsInYnotInX = selGap$gaps,
per = per, bs = bs, fx = fx)
filledTS$value[which(is.nan(filledTS$value))] <- NA
assign(paste0(KTSEnv$selTsName, "_", selGapName, "_mSpl"),
filledTS, envir = KTSEnv)
gapsAfterFill <- getGapsAfterFill(filledTS, selGap,
envir = environment(gamKTS1OnOk))
remainingNAsInGap <- gapsAfterFill$remainingNAsInGap
filledNasTable <- gapsAfterFill$filledNasTable
writeMethodTitle("MULTIVARIATE SPLINE INTERPOLATION")
tcltk::tkinsert(KTSEnv$txtWidget, "end",
"GAM model with tensor product smooth ")
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end",
paste("Filled time series:", KTSEnv$selTsName))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end",
paste("Predictor time series:",
KTSEnv$predictorTS, collapse = ","))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("Regression:", fx))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("Smoothing basis:", bs))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("Window:", 100 * per,
"% gap length"))
tcltk::tkinsert(KTSEnv$txtWidget, "end", paste("\n"))
writeMethodSummary(filledNasTable, remainingNAsInGap, KTSEnv$selTsName,
selGapName, selGap)
endingLines()
cleanEnvir()
refreshDataSetsList(outp = FALSE)
showPANgamKTS1()
}
}
showPANgamKTS1 <- function() {
refreshDataSetsList(outp = FALSE)
createSubPanR4C1()
createTITLE(labTitle = "MULTIVARIATE SPLINES")
createTsRb(labTitle = "Time series to fill")
createOK(labTitle = "NEXT", action = gamKTS1OnOk)
tcltk::tkpack(KTSEnv$subPanR4C1, expand = TRUE, fill = "both")
}
showPANgamKTS2 <- function() {
createSubPanR4C1()
createTITLE(labTitle = "MULTIVARIATE SPLINES")
createTsChb(labTitle = "Predictor time series")
createOK(labTitle = "NEXT", action = gamKTS2OnOk)
tcltk::tkpack(KTSEnv$subPanR4C1, expand = TRUE, fill = "both")
}
showPANgamKTS3 <- function() {
createSubPanR4C1()
createTITLE(labTitle = "MULTIVARIATE SPLINES")
if (is.null(KTSEnv$dSList$gaps) == FALSE) {
createGapRb()
}
createEntry(labTitle = "Window (% gap length)", textVariableName = "perE")
createTitle(labTitle = "Type of regression")
assign("fxE", tcltk::tclVar("df"), envir = KTSEnv)
createRb(variable = KTSEnv$fxE, dataVector = c("df", "penalized"))
createEntry(labTitle = "Smoothing basis", textVariableName = "bsE")
createOK(labTitle = "RUN", action = gamKTS3OnOk)
createNote(labTitle = "The window can be greater than 100%")
createNote(labTitle = "The smoothing basis is usually cr or tp ",
pady = c(5,1))
createNote(labTitle = "cr: cubic regression spline ", pady = c(0, 1))
createNote(labTitle = "tp: plate regression spline ", pady = c(0, 10))
tcltk::tkpack(KTSEnv$subPanR4C1, expand = TRUE, fill = "both")
}
cleanEnvir()
refreshDataSetsList(outp = FALSE)
checkIfAnyTs(action = "showPANgamKTS1",
envirName = environment(showPANgamKTS1))
} |
rarity <- function(x, index = "all", detection = 0.2/100, prevalence = 20/100) {
index <- tolower(index)
accepted <- c("log_modulo_skewness", "low_abundance",
"rare_abundance")
accepted <- tolower(accepted)
if (length(index) == 1 && index == "all") {
index <- accepted
}
if (!is.null(index)) {
index <- intersect(index, accepted)
}
if (!is.null(index) && length(index) == 0) {
return(NULL)
}
tab <- rarity_help(x, index, detection, prevalence)
if (is.vector(tab)) {
tab <- as.matrix(tab, ncol=1)
colnames(tab) <- index
}
as.data.frame(tab)
}
rarity_help <- function(x, index="all", detection, prevalence) {
if ( length(index) > 1 ) {
tab <- NULL
for (idx in index) {
tab <- cbind(tab,
rarity_help(x, index = idx, detection, prevalence))
}
colnames(tab) <- index
return(as.data.frame(tab))
}
otu <- abundances(x)
otuc <- transform(x, "compositional")
otu.relative <- abundances(otuc)
if (index == "log_modulo_skewness") {
r <- log_modulo_skewness(otu, q=0.5, n=50)
} else if (index == "low_abundance") {
r <- apply(otu.relative, 2,
function(x) low_abundance(x, detection=detection))
} else if (index == "rare_abundance") {
r <- rare_abundance(x, detection=detection,
prevalence=prevalence)
}
names(r) <- colnames(otu)
r
} |
"print.splsda" <-
function( x, ... )
{
xmat <- x$x
p <- ncol(xmat)
A <- x$A
xAnames <- colnames(xmat)[A]
q <- length(unique(x$y))
eta <- x$eta
K <- x$K
kappa <- x$kappa
select <- x$select
fit <- x$fit
classifier <- x$classifier
switch( classifier,
logistic = {
if ( q == 2 ) { cname <- "Logistic regression" }
if ( q > 2 ) { cname <- "Multinomial regression" }
},
lda = {
cname <- "Linear Discriminant Analysis (LDA)"
}
)
cat( "\nSparse Partial Least Squares Discriminant Analysis\n" )
cat( "----\n")
if ( q == 2 )
{
cat( paste("Parameters: eta = ",eta,", K = ",K,"\n",sep="") )
}
if ( q > 2 )
{
cat( paste("Parameters: eta = ",eta,", K = ",K,", kappa = ",kappa,"\n",sep="") )
}
cat( paste("Classifier: ",cname,"\n\n",sep="") )
cat( paste("SPLSDA chose ",length(A)," variables among ",p," variables\n\n",sep='') )
cat( "Selected variables: \n" )
if ( !is.null(xAnames) )
{
for (i in 1:length(A))
{
cat( paste(xAnames[i],'\t',sep='') )
if ( i%%5==0 ) { cat('\n') }
}
} else
{
for (i in 1:length(A))
{
cat( paste(A[i],'\t',sep='') )
if ( i%%5==0 ) { cat('\n') }
}
}
cat('\n')
} |
"Lorenz63" |
imputeHeinze <- function(data, pool=TRUE) {
time <- data[,1]
status <- data[,2]
g1 <- data[,3] == 0
g2 <- !g1
data1 <- data[g1,]
data2 <- data[g2,]
tmax <- max(time)
time1 <- data1[,1]
status1 <- data1[,2]
time2 <- data2[,1]
status2 <- data2[,2]
if(pool) {
fitS1 <- survfit(Surv(time, status) ~ 1)
fitS2 <- fitS1
} else {
fitS1 <- survfit(Surv(time1, status1) ~ 1)
fitS2 <- survfit(Surv(time2, status2) ~ 1)
}
fit1 <- survfit(Surv(time1, 1-status1) ~ 1)
fit2 <- survfit(Surv(time2, 1-status2) ~ 1)
if(pool) {
fS1 <- approxfun(fitS1$time, fitS1$surv, method="constant", yleft=1, rule=2, f=0)
fS2 <- fS1
} else {
fS1 <- approxfun(fitS1$time, fitS1$surv, method="constant", yleft=1, rule=2, f=0)
fS2 <- approxfun(fitS2$time, fitS2$surv, method="constant", yleft=1, rule=2, f=0)
}
f1 <- approxfun(fit1$time, fit1$surv, method="constant", yleft=1, rule=2, f=0)
f2 <- approxfun(fit2$time, fit2$surv, method="constant", yleft=1, rule=2, f=0)
list(fS1=fS1, fS2=fS2, f1=f1, f2=f2, fitS1=fitS1, fitS2=fitS2, fit1=fit1, fit2=fit2, tmax=tmax, g1=g1, g2=g2, data=data)
}
permuteHeinze <- function(imp, pp, index=TRUE) {
pdata <- imp$data[pp, ]
T <- pdata[,1]
C <- imp$data[,1]
pdelta <- as.logical(pdata[,2])
vS1 <- !pdelta & imp$g1
vS2 <- !pdelta & imp$g2
if(any(vS1)) {
tmp <- sampleFromCondKM(T[vS1], imp$fitS1, imp$tmax, 1, imp$fS1)
T[vS1] <- tmp[1,]
pdelta[vS1] <- tmp[2,]
}
if(any(vS2)) {
tmp <- sampleFromCondKM(T[vS2], imp$fitS2, imp$tmax, 1, imp$fS2)
T[vS2] <- tmp[1,]
pdelta[vS2] <- tmp[2,]
}
v1 <- imp$data[,2] & imp$g1
v2 <- imp$data[,2] & imp$g2
if(any(v1)) C[v1] <- sampleFromCondKM(C[v1], imp$fit1, imp$tmax, 0, imp$f1)[1,]
if(any(v2)) C[v2] <- sampleFromCondKM(C[v2], imp$fit2, imp$tmax, 0, imp$f2)[1,]
pY <- pmin(T, C)
pdelta <- (T <= C) * pdelta
matrix(c(pY, pdelta, imp$data[,3]), ncol=3, nrow=length(pY))
} |
library(tidyverse)
library(data.table)
library(lubridate)
library(readr)
library(countrycode)
library(ggplot2)
options(scipen=999)
inspect = FALSE
pred_matrix <- readRDS("output-data/pred_matrix.RDS")
export_covariates <- readRDS("output-data/export_covariates.RDS")
pred_matrix <- pred_matrix[nchar(export_covariates$iso3c) == 3, ]
export_covariates <- export_covariates[nchar(export_covariates$iso3c) == 3, ]
pred_matrix <- pred_matrix*export_covariates$population / 100000
export_covariates$week <- round(as.numeric(export_covariates$date)/7, 0)+1-min(round(as.numeric(export_covariates$date)/7, 0))
export_covariates$date[export_covariates$date != max(export_covariates$date)] <- ave(export_covariates$date[export_covariates$date != max(export_covariates$date)], export_covariates$week[export_covariates$date != max(export_covariates$date)],
FUN = function(x) min(x, na.rm = T))
pred_matrix <- pred_matrix[!duplicated(paste0(export_covariates$date, "_", export_covariates$iso3c)), ]
export_covariates <- export_covariates[!duplicated(paste0(export_covariates$date, "_", export_covariates$iso3c)), ]
min(table(export_covariates$date)) == max(table(export_covariates$date))
estimate <- as.numeric(pred_matrix[, 1])
export_covariates$row_order <- 1:nrow(export_covariates)
export_covariates <- merge(export_covariates,
read_csv("source-data/economist_country_names.csv")[, c("Name", "ISOA3", "Regions", "Income group WB", "Economy IMF")],
by.x = "iso3c",
by.y = "ISOA3", all.x = T)
export_covariates <- export_covariates[order(export_covariates$row_order), ]
export_covariates$row_order <- NULL
export_covariates$country <- export_covariates$Name
export_covariates$country[is.na(export_covariates$country)] <- countrycode(
export_covariates$iso3c[is.na(export_covariates$country)], "iso3c", "country.name")
export_covariates$Name <- NULL
export_covariates$continent <- countrycode(export_covariates$iso3c, "iso3c", "continent")
confidence_intervals <- function(new_col_names = "estimated_daily_excess_deaths",
group = "iso3c",
unit = "iso3c",
time = "date",
population = "population",
known_data_column = "daily_excess_deaths",
recorded_data_column = "daily_covid_deaths",
return_cumulative = F,
drop_ci_if_known_data = T,
covars = export_covariates,
bootstrap_predictions = pred_matrix,
model_prediction = estimate,
include_model_prediction_in_ci = T,
include_final_prediction_in_ci = T,
recency_buffer = 0,
return_histogram_data = F
){
if(sum(is.na(covars[, group])) > 0){
stop("Some observations lack a grouping.")
}
if(sum(is.na(bootstrap_predictions)) + sum(is.na(model_prediction)) != 0){
stop("Some predictions are NA.")
}
if(nrow(covars) != nrow(bootstrap_predictions) |
nrow(covars) != length(model_prediction)){
stop("Dimensionality mismatch: check that predictions are 1-1 mapped to covars")
}
if(max(covars[, time]) > Sys.Date()-recency_buffer){
most_recent <- sort(unique(covars[, time]), decreasing = T)[2]
temp_boot <- bootstrap_predictions[covars[, time] == most_recent, ]
temp_estimate <- estimate[covars[, time] == most_recent]
temp_covars <- covars[covars[, time] == most_recent, ]
max_time <- max(covars[, time])
for(i in unique(covars[, unit])){
bootstrap_predictions[covars[, time] == max_time & covars[, unit] == i, ] <- temp_boot[temp_covars[, unit] == i, ]
estimate[covars[, time] == max_time & covars[, unit] == i] <- temp_estimate[temp_covars[, unit] == i]
}
}
recorded_data <- as.numeric(covars[, recorded_data_column])
raw_estimate <- estimate
if(!missing(known_data_column)){
known_data <- covars[, known_data_column]
estimate[!is.na(known_data)] <- known_data[!is.na(known_data)]
} else {
known_data <- rep(NA, nrow(covars))
}
if(drop_ci_if_known_data){
for(i in 1:ncol(bootstrap_predictions)){
bootstrap_predictions[!is.na(known_data), i] <- known_data[!is.na(known_data)]
}
}
covars$id <- paste0(covars[, group], "_", covars[, time])
if(max(table(covars$id)) > 1){
estimate <- ave(estimate, covars$id, FUN = function(x) sum(x))
known_data <- ave(known_data, covars$id, FUN = function(x) sum(x, na.rm = T))
raw_estimate <- ave(known_data, covars$id, FUN = function(x) sum(x, na.rm = T))
recorded_data <- ave(recorded_data, covars$id, FUN = function(x) sum(x, na.rm = T))
for(i in 1:ncol(bootstrap_predictions)){
bootstrap_predictions[, i] <- ave(bootstrap_predictions[, i],
covars$id, FUN = function(x) sum(x))
}
covars$population <- ave(covars$population, covars$id, FUN = function(x) sum(x, na.rm = T))
}
if(return_cumulative){
bootstrap_predictions <- data.frame(bootstrap_predictions)
bootstrap_predictions$row_order <- 1:nrow(bootstrap_predictions)
bootstrap_predictions[, unit] <- covars[, unit]
bootstrap_predictions[, time] <- covars[, time]
bootstrap_predictions$raw_estimate <- raw_estimate
bootstrap_predictions$known_data <- ifelse(is.na(known_data), 0, known_data)
bootstrap_predictions$recorded_data <- ifelse(is.na(recorded_data), 0, recorded_data)
bootstrap_predictions <- bootstrap_predictions[
order(bootstrap_predictions[, time]), ]
week_mult <- rep(7, length(unique(bootstrap_predictions[, time])))
week_mult[length(week_mult)] <- as.numeric(rev(sort(unique(bootstrap_predictions[, time])))[1]-rev(sort(unique(bootstrap_predictions[, time])))[2])
for(i in setdiff(colnames(bootstrap_predictions), c("row_order", unit, time))){
bootstrap_predictions[, i] <- ave(bootstrap_predictions[, i], bootstrap_predictions[, unit], FUN = function(x){
cumsum(x*week_mult)})
}
bootstrap_predictions <- bootstrap_predictions[
order(bootstrap_predictions$row_order), ]
bootstrap_predictions$iso3c <- NULL
bootstrap_predictions$date <- NULL
bootstrap_predictions$row_order <- NULL
raw_estimate <- bootstrap_predictions$raw_estimate
bootstrap_predictions$raw_estimate <- NULL
recorded_data <- bootstrap_predictions$recorded_data
bootstrap_predictions$recorded_data <- NULL
estimate <- bootstrap_predictions[, 1]
known_data <- bootstrap_predictions$known_data
bootstrap_predictions$known_data <- NULL
bootstrap_predictions <- as.matrix(bootstrap_predictions)
}
estimate <- estimate[!duplicated(covars$id)]
raw_estimate <- raw_estimate[!duplicated(covars$id)]
bootstrap_predictions <- bootstrap_predictions[!duplicated(covars$id), ]
known_data <- known_data[!duplicated(covars$id)]
recorded_data <- recorded_data[!duplicated(covars$id)]
covars <- covars[!duplicated(covars$id), ]
for(i in 1:nrow(bootstrap_predictions)){
bootstrap_predictions[i, ] <- sort(bootstrap_predictions[i, ])
}
if(return_histogram_data){
histagram_data <- cbind(covars[, c(group, time, population)], estimate, bootstrap_predictions[, 2:ncol(bootstrap_predictions)])
colnames(histagram_data)[1:4] <- c(colnames(covars[, c(group, time, population)]), "estimate")
return(histagram_data)
}
ci_95_top <- bootstrap_predictions[, round(ncol(bootstrap_predictions)*0.975, 0)]
ci_90_top <- bootstrap_predictions[, round(ncol(bootstrap_predictions)*0.95, 0)]
ci_50_top <- bootstrap_predictions[, round(ncol(bootstrap_predictions)*0.75, 0)]
ci_50_bot <- bootstrap_predictions[, round(ncol(bootstrap_predictions)*0.25, 0)]
ci_90_bot <- bootstrap_predictions[, round(ncol(bootstrap_predictions)*0.05, 0)]
ci_95_bot <- bootstrap_predictions[, round(ncol(bootstrap_predictions)*0.025, 0)]
if(include_model_prediction_in_ci){
ci_95_top <- ifelse(ci_95_top > raw_estimate, ci_95_top, raw_estimate)
ci_90_top <- ifelse(ci_90_top > raw_estimate, ci_90_top, raw_estimate)
ci_50_top <- ifelse(ci_50_top > raw_estimate, ci_50_top, raw_estimate)
ci_50_bot <- ifelse(ci_50_bot < raw_estimate, ci_50_bot, raw_estimate)
ci_90_bot <- ifelse(ci_90_bot < raw_estimate, ci_90_bot, raw_estimate)
ci_95_bot <- ifelse(ci_95_bot < raw_estimate, ci_95_bot, raw_estimate)
}
if(include_final_prediction_in_ci){
ci_95_top <- ifelse(ci_95_top > estimate, ci_95_top, estimate)
ci_90_top <- ifelse(ci_90_top > estimate, ci_90_top, estimate)
ci_50_top <- ifelse(ci_50_top > estimate, ci_50_top, estimate)
ci_50_bot <- ifelse(ci_50_bot < estimate, ci_50_bot, estimate)
ci_90_bot <- ifelse(ci_90_bot < estimate, ci_90_bot, estimate)
ci_95_bot <- ifelse(ci_95_bot < estimate, ci_95_bot, estimate)
}
result <- cbind.data.frame(covars[, c(group, time, population)],
estimate,
ci_95_top,
ci_90_top,
ci_50_top,
ci_50_bot,
ci_90_bot,
ci_95_bot,
raw_estimate,
known_data,
recorded_data)
colnames(result) <- c(colnames(covars[, c(group, time, population)]),
paste0(new_col_names),
paste0(new_col_names, "_ci_95_top"),
paste0(new_col_names, "_ci_90_top"),
paste0(new_col_names, "_ci_50_top"),
paste0(new_col_names, "_ci_50_bot"),
paste0(new_col_names, "_ci_90_bot"),
paste0(new_col_names, "_ci_95_bot"),
paste0(new_col_names, "_raw_estimate"),
"daily_excess_deaths",
"daily_covid_deaths")
if(return_cumulative){
colnames(result)[4:ncol(result)] <- paste0("cumulative_", colnames(result)[4:ncol(result)])
}
result <- unique(result)
return(result)
}
country_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "iso3c",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = F,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = T)
if(inspect){
ggplot(country_export[country_export$iso3c %in% c("IND", "ZAF", "USA", "CHN",
"IDN", "PAK", "BRA", "NGA"), ],
aes(x=date,
y=estimated_daily_excess_deaths,
col = iso3c))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_50_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_50_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
geom_line(aes(y=daily_excess_deaths),
col="black", linetype = "solid")+geom_line(aes(y=daily_covid_deaths), col = "red")+
facet_wrap(.~iso3c)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(country_export, "output-data/export_country.csv")
country_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "iso3c",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = F,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = T)
per_capita_columns <- grep("deaths", colnames(country_export))
for(i in per_capita_columns){
country_export[, i] <- 100000*country_export[, i]/country_export[, "population"]
}
colnames(country_export)[per_capita_columns] <- paste0(colnames(country_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(country_export[country_export$iso3c %in% c("IND", "ZAF", "USA", "CHN",
"IDN", "RUS", "BRA", "NGA", "MEX"), ],
aes(x=date,
y=estimated_daily_excess_deaths_per_100k,
col = iso3c))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
geom_line(aes(y=daily_excess_deaths_per_100k),
col="black", linetype = "solid")+
facet_wrap(.~iso3c)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(country_export, "output-data/export_country_per_100k.csv")
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export,
aes(x=date,
y=estimated_daily_excess_deaths,
col = continent))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(region_export, "output-data/export_regions.csv")
export_covariates$continent_alt <- countrycode(export_covariates$iso3c, "iso3c",
"continent")
export_covariates$continent_alt[export_covariates$continent_alt == "Europe"] <- "Europe, United States, Canada, and Oceania"
export_covariates$continent_alt[export_covariates$iso3c %in% c("USA", "CAN")] <- "Europe, United States, Canada, and Oceania"
export_covariates$continent_alt[export_covariates$continent_alt == "Oceania"] <- "Europe, United States, Canada, and Oceania"
export_covariates$continent_alt[export_covariates$continent_alt == "Americas"] <- "Latin America and Caribbean"
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent_alt",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export,
aes(x=date,
y=estimated_daily_excess_deaths,
col = continent_alt))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
per_capita_columns <- grep("deaths", colnames(region_export))
for(i in per_capita_columns){
region_export[, i] <- 100000*region_export[, i]/region_export[, "population"]
}
colnames(region_export)[per_capita_columns] <- paste0(colnames(region_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(region_export,
aes(x=date,
y=estimated_daily_excess_deaths_per_100k,
col = continent))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(region_export, "output-data/export_regions_per_100k.csv")
export_covariates$world <- "World"
world_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "world",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(world_export,
aes(x=date,
y=estimated_daily_excess_deaths,
col = world))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_50_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_50_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+theme_minimal()+
theme(legend.position = "none")
}
write_csv(world_export, "output-data/export_world.csv")
world_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "world",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
per_capita_columns <- grep("deaths", colnames(world_export))
for(i in per_capita_columns){
world_export[, i] <- 100000*world_export[, i]/world_export[, "population"]
}
colnames(world_export)[per_capita_columns] <- paste0(colnames(world_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(world_export,
aes(x=date,
y=estimated_daily_excess_deaths_per_100k,
col = world))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+theme_minimal()+
theme(legend.position = "none")
}
write_csv(world_export, "output-data/export_world_per_100k.csv")
country_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "iso3c",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(country_export[country_export$iso3c %in% c("IND", "CHN"), ],
aes(x=date,
y=cumulative_estimated_daily_excess_deaths,
col = iso3c))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_50_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_50_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
geom_line(aes(y=cumulative_daily_excess_deaths),
col="black", linetype = "solid")+
geom_line(aes(y=cumulative_daily_covid_deaths), col = "red")+
facet_wrap(.~iso3c)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(country_export, "output-data/export_country_cumulative.csv")
country_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "iso3c",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
per_capita_columns <- grep("deaths", colnames(country_export))
for(i in per_capita_columns){
country_export[, i] <- 100000*country_export[, i]/country_export[, "population"]
}
colnames(country_export)[per_capita_columns] <- paste0(colnames(country_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(country_export[country_export$iso3c %in% c("IND", "USA", "MEX", "PER",
"RUS", "ZAF"), ],
aes(x=date,
y=cumulative_estimated_daily_excess_deaths_per_100k,
col = iso3c))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
geom_line(aes(y=cumulative_daily_excess_deaths_per_100k),
col="black", linetype = "solid")+
facet_wrap(.~iso3c)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(country_export, "output-data/export_country_per_100k_cumulative.csv")
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export,
aes(x=date,
y=cumulative_estimated_daily_excess_deaths,
col = continent))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_50_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_50_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+geom_line(aes(y=cumulative_daily_covid_deaths), col = "red")+
facet_wrap(.~continent)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(region_export, "output-data/export_regions_cumulative.csv")
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
per_capita_columns <- grep("deaths", colnames(region_export))
for(i in per_capita_columns){
region_export[, i] <- 100000*region_export[, i]/region_export[, "population"]
}
colnames(region_export)[per_capita_columns] <- paste0(colnames(region_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(region_export,
aes(x=date,
y=cumulative_estimated_daily_excess_deaths_per_100k,
col = continent))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(region_export, "output-data/export_regions_per_100k_cumulative.csv")
export_covariates$world <- "World"
world_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "world",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
ggplot(world_export,
aes(x=date,
y=cumulative_estimated_daily_excess_deaths,
col = world))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot))+
geom_line(aes(y=cumulative_daily_covid_deaths), col = "blue")+
geom_ribbon(aes(ymin=cumulative_estimated_daily_excess_deaths_ci_95_top,
ymax=cumulative_estimated_daily_excess_deaths_ci_95_bot),
fill = 'darkred', alpha=0.3)+
geom_line(col="black", linetype = "dashed")+theme_minimal()+
theme(legend.position = "none")+xlab("Estimated excess deaths (red), confirmed covid-19 deaths (blue)")+ylab("Total deaths, World")
ggsave('global_mortality.png', width = 8, height = 5)
write_csv(world_export, "output-data/export_world_cumulative.csv")
export_covariates$world <- "World"
world_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "world",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F,
return_histogram_data = T)
write_csv(world_export, "output-data/export_world_cumulative_histogram_data.csv")
world_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "world",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
per_capita_columns <- grep("deaths", colnames(world_export))
for(i in per_capita_columns){
world_export[, i] <- 100000*world_export[, i]/world_export[, "population"]
}
colnames(world_export)[per_capita_columns] <- paste0(colnames(world_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(world_export,
aes(x=date,
y=cumulative_estimated_daily_excess_deaths_per_100k,
col = world))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+theme_minimal()+
theme(legend.position = "none")
}
write_csv(world_export, "output-data/export_world_per_100k_cumulative.csv")
export_covariates$world <- "World"
world_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "world",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
export_covariates_alt <- export_covariates
export_covariates_alt$daily_excess_deaths_alt <- export_covariates$daily_excess_deaths
export_covariates_alt$daily_excess_deaths_alt[is.na(export_covariates_alt$daily_excess_deaths_alt)] <- export_covariates_alt$daily_covid_deaths[is.na(export_covariates_alt$daily_excess_deaths_alt)]
world_export_alt <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "world",
time = "date",
covars = export_covariates_alt,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
recorded_data_column = "daily_excess_deaths_alt",
model_prediction = estimate,
include_model_prediction_in_ci = F)
world_export$cumulative_daily_excess_deaths_alternative <- world_export_alt$cumulative_daily_covid_deaths
if(inspect){
ggplot(world_export,
aes(x=date,
y=cumulative_estimated_daily_excess_deaths,
col = world))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot))+
geom_line(aes(y=cumulative_daily_excess_deaths_alternative, col = "red"))+
geom_line(aes(y=cumulative_daily_covid_deaths), col = "black")+
geom_line(col="black", linetype = "dashed")+theme_minimal()+
theme(legend.position = "none")
}
export_covariates$continent_alt <- countrycode(export_covariates$iso3c, "iso3c",
"continent")
export_covariates$continent_alt[export_covariates$continent_alt == "Europe"] <- "Europe, United States, Canada, and Oceania"
export_covariates$continent_alt[export_covariates$iso3c %in% c("USA", "CAN")] <- "Europe, United States, Canada, and Oceania"
export_covariates$continent_alt[export_covariates$continent_alt == "Oceania"] <- "Europe, United States, Canada, and Oceania"
export_covariates$continent_alt[export_covariates$continent_alt == "Americas"] <- "Latin America and Caribbean"
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent_alt",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export,
aes(x=date,
y=estimated_daily_excess_deaths,
col = continent_alt))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(region_export, "output-data/output-by-alternative-regions/export_regions_EU_NA_Oceania_collapsed.csv")
export_covariates$custom_regions <- countrycode(export_covariates$iso3c, "iso3c", "continent")
export_covariates$custom_regions[export_covariates$iso3c %in% c("USA", "CAN")] <- "North America"
export_covariates$custom_regions[export_covariates$custom_regions == "Americas"] <- "Latin America and Caribbean"
export_covariates$custom_regions[export_covariates$iso3c %in% c("AUT", "BEL", "BGR", "HRV", "CYP", "CZE", "DNK", "EST", "FIN", "FRA", "DEU", "GRC", "HUN", "IRL", "ITA", "LVA", "LTU", "LUX", "MLT", "NLD", "POL", "PRT", "ROU", "SVK", "SVN", "ESP", "SWE")] <- "European Union"
export_covariates$custom_regions[export_covariates$custom_regions == "Europe"] <- "Europe (not EU)"
export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "custom_regions",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
export <- export[export$custom_regions %in% c("Latin America and Caribbean",
"North America",
"European Union", "Asia", "Oceania"), ]
if(inspect){
ggplot(export[, ],
aes(x=date,
y=estimated_daily_excess_deaths,
col = custom_regions))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~custom_regions)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(export, "output-data/output-by-alternative-regions/export_regions_lat_am_na_eu.csv")
per_capita_columns <- grep("deaths", colnames(export))
for(i in per_capita_columns){
export[, i] <- 100000*export[, i]/export[, "population"]
}
colnames(export)[per_capita_columns] <- paste0(colnames(export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(export[, ],
aes(x=date,
y=estimated_daily_excess_deaths_per_100k,
col = custom_regions))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~custom_regions)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(export, "output-data/output-by-alternative-regions/export_regions_lat_am_na_eu_per_100k.csv")
export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "custom_regions",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
export <- export[export$custom_regions %in% c("Latin America and Caribbean",
"North America",
"European Union", "Asia", "Oceania"), ]
if(inspect){
ggplot(export[, ],
aes(x=date,
y=cumulative_estimated_daily_excess_deaths,
col = custom_regions))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~custom_regions)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(export, "output-data/output-by-alternative-regions/export_regions_lat_am_na_eu_cumulative.csv")
per_capita_columns <- grep("deaths", colnames(export))
for(i in per_capita_columns){
export[, i] <- 100000*export[, i]/export[, "population"]
}
colnames(export)[per_capita_columns] <- paste0(colnames(export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(export[, ],
aes(x=date,
y=cumulative_estimated_daily_excess_deaths_per_100k,
col = custom_regions))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~custom_regions)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(export, "output-data/output-by-alternative-regions/export_regions_lat_am_na_eu_per_100k_cumulative.csv")
export_covariates$continent_alt <- countrycode(export_covariates$iso3c, "iso3c",
"continent")
export_covariates$continent_alt[export_covariates$iso3c %in% c("USA", "CAN")] <- "US and Canada"
export_covariates$continent_alt[export_covariates$continent_alt == "Americas"] <- "Latin America and Caribbean"
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent_alt",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export,
aes(x=date,
y=estimated_daily_excess_deaths,
col = continent_alt))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
per_capita_columns <- grep("deaths", colnames(region_export))
for(i in per_capita_columns){
region_export[, i] <- 100000*region_export[, i]/region_export[, "population"]
}
colnames(region_export)[per_capita_columns] <- paste0(colnames(region_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(region_export,
aes(x=date,
y=estimated_daily_excess_deaths_per_100k,
col = continent_alt))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent_alt",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export,
aes(x=date,
y=cumulative_estimated_daily_excess_deaths,
col = continent_alt))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
per_capita_columns <- grep("deaths", colnames(region_export))
for(i in per_capita_columns){
region_export[, i] <- 100000*region_export[, i]/region_export[, "population"]
}
colnames(region_export)[per_capita_columns] <- paste0(colnames(region_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(region_export,
aes(x=date,
y=cumulative_estimated_daily_excess_deaths_per_100k,
col = continent_alt))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
country_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "iso3c",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = F,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = T)
if(inspect){
ggplot(country_export[country_export$iso3c %in% c("EGY"), ],
aes(x=date,
y=estimated_daily_excess_deaths,
col = iso3c))+ geom_line(col="black", linetype = "dashed")+
geom_line(aes(y=daily_excess_deaths),
col="black", linetype = "solid")+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_raw_estimate))+
facet_wrap(.~iso3c)+theme_minimal()+
theme(legend.position = "none")
}
country_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "iso3c",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = F,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = T)
oecd <- country_export[country_export$iso3c %in% c("AUT","AUS","BEL","CAN","CHL","COL","CZE","DNK","EST","FIN","FRA","DEU","GRC","HUN","ISL","IRL","ISR","ITA","JPN","KOR","LVA","LTU","LUX","MEX", "NLD", "NZL","NOR","POL","PRT","SVK","SVN","ESP","SWE","CHE","TUR","GBR","USA") & country_export$date == max(country_export$date), ]
sum(oecd$cumulative_estimated_daily_excess_deaths)/sum(oecd$cumulative_daily_covid_deaths)
export_covariates$region <- countrycode(export_covariates$iso3c, "iso3c", "region")
export_covariates$region[is.na(export_covariates$region)] <- "SHN"
ssa_region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "region",
time = "date",
covars = export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
ssa_region_export <- ssa_region_export[ssa_region_export$region == "Sub-Saharan Africa"
& ssa_region_export$date == max(ssa_region_export$date), ]
sum(ssa_region_export$cumulative_estimated_daily_excess_deaths)/sum(ssa_region_export$cumulative_daily_covid_deaths)
income_groups <- read_csv("source-data/world_bank_income_groups.csv")
income_groups <- income_groups[income_groups$GroupCode%in% c("LIC", "LMC", "UMC", "HIC"), c("CountryCode", "GroupName")]
colnames(income_groups) <- c("iso3c", "World_Bank_income_group")
export_covariates$`Income group WB` <- NULL
export_covariates$row_order <- 1:nrow(export_covariates)
wb_export_covariates <- merge(export_covariates, income_groups, by = "iso3c", all.x = T)
wb_export_covariates$World_Bank_income_group[is.na(wb_export_covariates$World_Bank_income_group)] <- "Unknown income group"
wb_export_covariates <- wb_export_covariates[order(wb_export_covariates$row_order), ]
wb_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "World_Bank_income_group",
time = "date",
covars = wb_export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(wb_export[wb_export$World_Bank_income_group != "Unknown income group", ],
aes(x=date,
y=estimated_daily_excess_deaths,
col = World_Bank_income_group))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~World_Bank_income_group)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(wb_export, "output-data/output-by-world-bank-income-group/wb_income_groups.csv")
per_capita_columns <- grep("deaths", colnames(wb_export))
for(i in per_capita_columns){
wb_export[, i] <- 100000*wb_export[, i]/wb_export[, "population"]
}
colnames(wb_export)[per_capita_columns] <- paste0(colnames(wb_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(wb_export[wb_export$World_Bank_income_group != "Unknown income group", ],
aes(x=date,
y=estimated_daily_excess_deaths_per_100k,
col = World_Bank_income_group))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~World_Bank_income_group)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(wb_export, "output-data/output-by-world-bank-income-group/wb_income_groups_per_100k.csv")
wb_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "World_Bank_income_group",
time = "date",
covars = wb_export_covariates,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(wb_export[wb_export$World_Bank_income_group != "Unknown income group", ],
aes(x=date,
y=cumulative_estimated_daily_excess_deaths,
col = World_Bank_income_group))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~World_Bank_income_group)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(wb_export, "output-data/output-by-world-bank-income-group/wb_income_groups_cumulative.csv")
per_capita_columns <- grep("deaths", colnames(wb_export))
for(i in per_capita_columns){
wb_export[, i] <- 100000*wb_export[, i]/wb_export[, "population"]
}
colnames(wb_export)[per_capita_columns] <- paste0(colnames(wb_export)[per_capita_columns], "_per_100k")
if(inspect){
ggplot(wb_export[wb_export$World_Bank_income_group != "Unknown income group", ],
aes(x=date,
y=cumulative_estimated_daily_excess_deaths_per_100k,
col = World_Bank_income_group))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_top_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_90_bot_per_100k))+
geom_line(aes(y=cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~World_Bank_income_group)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(wb_export, "output-data/output-by-world-bank-income-group/wb_income_groups_per_100k_cumulative.csv")
export_covariates$continent_alt <- "Other"
export_covariates$continent_alt[export_covariates$iso3c %in% c("AUS", "AUT", "BEL", "BGR", "CAN", "CHE", "CHI", "CYP", "CZE", "DEU", "DNK", "ESP", "EST", "FIN", "FRA", "FRO", "GBR", "GIB", "GRC", "GRL", "HRV", "HUN", "IMN", "IRL", "ISL", "ITA", "LIE", "LTU", "LUX", "LVA", "MCO", "MEX", "MLT", "NLD", "NOR", "NZL", "POL", "PRT", "ROU", "SHN", "SMR", "SPM", "SVK", "SVN", "SWE", "USA", "VAT")] <- "W. Europe, NA, and Aus/NZ"
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent_alt",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export[region_export$continent_alt != "Other", ],
aes(x=date,
y=estimated_daily_excess_deaths,
col = continent_alt))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(region_export[region_export$continent_alt != "Other", ], "output-data/output-by-alternative-regions/export_regions_w_europe_aus_nz_north_america.csv")
export_covariates$continent_alt <- "Other"
export_covariates$continent_alt[export_covariates$iso3c %in% c( "AUT", "BEL", "BGR", "CHE", "CHI", "CYP", "CZE", "DEU", "DNK", "ESP", "EST", "FIN", "FRA", "FRO", "GBR", "GIB", "GRC", "GRL", "HRV", "HUN", "IMN", "IRL", "ISL", "ITA", "LIE", "LTU", "LUX", "LVA", "MCO", "MLT", "NLD", "NOR", "POL", "PRT", "ROU", "SHN", "SMR", "SPM", "SVK", "SVN", "SWE", "VAT")] <- "W. Europe"
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "continent_alt",
time = "date",
covars = export_covariates,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = F)
if(inspect){
ggplot(region_export[region_export$continent_alt != "Other", ],
aes(x=date,
y=estimated_daily_excess_deaths,
col = continent_alt))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_top))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_90_bot))+
geom_line(aes(y=estimated_daily_excess_deaths_ci_95_bot))+
geom_line(col="black", linetype = "dashed")+
facet_wrap(.~continent_alt)+theme_minimal()+
theme(legend.position = "none")
}
write_csv(region_export[region_export$continent_alt != "Other", ], "output-data/output-by-alternative-regions/export_regions_western_europe.csv")
custom_region_export <- function(
region,
name = "un_subregion",
data = export_covariates,
folder_prefix = "output-data/output-by-alternative-regions/export_regions_"){
data[, "region"] <- data[, region]
data$region[is.na(data$region)] <- "Other"
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "region",
time = "date",
covars = data,
return_cumulative = F,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = T)
write_csv(region_export, paste0(folder_prefix, name, ".csv"))
per_capita_columns <- grep("deaths", colnames(region_export))
for(i in per_capita_columns){
region_export[, i] <- 100000*region_export[, i]/region_export[, "population"]
}
colnames(region_export)[per_capita_columns] <- paste0(colnames(region_export)[per_capita_columns], "_per_100k")
write_csv(region_export, paste0(folder_prefix, name, "_per_100k.csv"))
region_export <- confidence_intervals(new_col_names = "estimated_daily_excess_deaths",
group = "region",
time = "date",
covars = data,
return_cumulative = T,
drop_ci_if_known_data = T,
bootstrap_predictions = pred_matrix,
known_data_column = "daily_excess_deaths",
model_prediction = estimate,
include_model_prediction_in_ci = T)
write_csv(region_export, paste0(folder_prefix, name, "_cumulative.csv"))
per_capita_columns <- grep("deaths", colnames(region_export))
for(i in per_capita_columns){
region_export[, i] <- 100000*region_export[, i]/region_export[, "population"]
}
colnames(region_export)[per_capita_columns] <- paste0(colnames(region_export)[per_capita_columns], "_per_100k")
write_csv(region_export, paste0(folder_prefix, name, "_per_100k_cumulative.csv"))
}
export_covariates$un_subregion <- countrycode(export_covariates$iso3c, "iso3c", "un.regionsub.name")
custom_region_export(region = "un_subregion",
name = "un_subregion")
export_covariates$wb_region <- countrycode(export_covariates$iso3c, "iso3c", "region")
custom_region_export(region = "wb_region",
name = "wb_region")
if(inspect){
for(name in c("un_subregion", "wb_region")){
pdat <- read_csv(paste0(folder_prefix, name, ".csv"))
ggplot(pdat, aes(x=date, y=estimated_daily_excess_deaths))+facet_wrap(.~region)+geom_line()
pdat <- read_csv(paste0(folder_prefix, name, "_per_100k.csv"))
ggplot(pdat, aes(x=date, y=estimated_daily_excess_deaths_per_100k))+facet_wrap(.~region)+geom_line()
pdat <- read_csv(paste0(folder_prefix, name, "_cumulative.csv"))
ggplot(pdat, aes(x=date, y=cumulative_estimated_daily_excess_deaths))+facet_wrap(.~region)+geom_line()
pdat <- read_csv(paste0(folder_prefix, name, "_per_100k_cumulative.csv"))
ggplot(pdat, aes(x=date, y=cumulative_estimated_daily_excess_deaths_per_100k))+facet_wrap(.~region)+geom_line()
}
} |
shift_to <- function(RIA_data_in, to = -1024, min_value_in = NULL, use_orig = TRUE, write_orig = TRUE, verbose_in = TRUE)
{
data_in <- check_data_in(RIA_data_in, use_type = "single", use_orig = use_orig, verbose_in = verbose_in)
if (!is.null(min_value_in)) {shift <- (-min_value_in + to)
} else {shift <- to}
RIA_data_mod <- data_in + shift
if(any(class(RIA_data_in) == "RIA_image") )
{
if(write_orig) {RIA_data_in$data$orig <- RIA_data_mod
} else {RIA_data_in$data$modif<- RIA_data_mod}
if(!any(class(RIA_data_in$data) == "RIA_data")) class(RIA_data_in$data) <- append(class(RIA_data_in$data), "RIA_data")
RIA_data_in$log$shift <- shift
RIA_data_in$log$events <- append(RIA_data_in$log$events, paste("Shifted_by_", shift, sep = ""))
return(RIA_data_in)
}
else return(RIA_data_mod)
} |
df.col.findId <- function(df, label_name) {
if (!is.character(label_name) & !is.numeric(label_name)) {
stop("Argument label_name is not a character or a numeric vector.")
}
if (is.character(label_name) == TRUE) {
if (all(!is.na(label_name))) {
col.id <- match(label_name, colnames(df))
if(any(is.na(col.id))){
stop(paste("Error in argument label_name. label_name
}
}
else {
stop("Argument label_name doesn't match any column name.")
}
}
else {
if (length(label_name) <= ncol(df)) {
col.id <- label_name
}
else {
stop("Argument label_name is out of bound.")
}
}
return(col.id)
} |
get_DRAC_references <- function(x) {
refs <- DRAC_refs()
refs_names <- names(refs)
used <- list(refs = NULL, desc = NULL)
ref_tmp <- unique(x$`TI:4`)
for (i in 1:length(ref_tmp)) {
if (ref_tmp[i] == "X")
next
used$refs <- c(used$refs, refs[refs_names %in% ref_tmp[i]])
used$desc <- c(used$desc, "Conversion factors")
}
ref_tmp <- unique(x$`TI:13`)
if (any(ref_tmp == "Y")) {
used$refs <- c(used$refs, refs["Mejdahl1987"])
used$desc <- c(used$desc, "External rubidium")
}
ref_tmp <- unique(x$`TI:22`)
if (any(ref_tmp == "Y")) {
used$refs <- c(used$refs, refs["Mejdahl1987"])
used$desc <- c(used$desc, "Internal rubidium")
}
ref_tmp <- unique(x$`TI:31`)
if (any(ref_tmp == "Y")) {
used$refs <- c(used$refs, refs["Aitken1985"])
used$desc <- c(used$desc, "Gamma dose rate scaling")
}
ref_tmp <- unique(x$`TI:34`)
for (i in 1:length(ref_tmp)) {
if (ref_tmp[i] == "X")
next
used$refs <- c(used$refs, refs[refs_names %in% ref_tmp[i]])
used$desc <- c(used$desc, "Alpha grain size attenuation factors")
}
ref_tmp <- unique(x$`TI:35`)
for (i in 1:length(ref_tmp)) {
if (ref_tmp[i] == "X")
next
used$refs <- c(used$refs, refs[refs_names %in% ref_tmp[i]])
used$desc <- c(used$desc, "Beta grain size attenuation factors")
}
ref_tmp <- unique(x$`TI:38`)
for (i in 1:length(ref_tmp)) {
if (ref_tmp[i] == "X")
next
used$refs <- c(used$refs, refs[refs_names %in% ref_tmp[i]])
used$desc <- c(used$desc, "Beta etch attenuation factor")
}
ref_tmp <- unique(x$`TI:50`)
if (any(ref_tmp == "X")) {
used$refs <- c(used$refs, refs[c("PrescottHutton1994", "PrescottStephan1982")])
used$desc <- c(used$desc, c("Cosmic dose rate", "Cosmic dose rate"))
}
return(used)
}
DRAC_refs <- function() {
list(
Aitken1985 = bibentry(
bibtype = "Book",
author = person("M.J.", "Aitken"),
title = "Thermoluminescence Dating",
year = "1985",
publisher = "Academic Press",
adress = "London"
),
AitkenXie1990 = bibentry(
bibtype = "Article",
author = c(
person("M.J.", "Aitken"),
person("J.", "Xie")
),
title = "Moisture correction for annual gamma dose",
year = "1990",
journal = "Ancient TL",
volume = "8",
pages = "6-9"
),
AdamiecAitken1998 = bibentry(
bibtype = "Article",
author = c(
person("G.", "Adamiec"),
person("M.J.", "Aitken")
),
title = "Dose-rate conversion factors: update",
year = "1998",
journal = "Ancient TL",
volume = "16",
pages = "37-46"
),
Guerinetal2011 = bibentry(
bibtype = "Article",
author = c(
person("G.", "Guerin"),
person("N.", "Mercier"),
person("G.", "Adamiec")
),
title = "Dose-rate conversion factors: update",
year = "2011",
journal = "Ancient TL",
volume = "29",
pages = "5-8"
),
Liritzisetal2013 = bibentry(
bibtype = "Article",
author = c(
person("I.", "Liritzis"),
person("K.", "Stamoulis"),
person("C.", "Papachristodoulou"),
person("K.", "Ioannides")
),
title = "A re-evaluation of radiation dose-rate conversion factors. ",
year = "2013",
journal = "Mediterranean Archaeology and Archaeometry",
volume = "13",
pages = "1-15"
),
Bell1979 = bibentry(
bibtype = "Article",
author = c(
person("W.T.", "Bell")
),
title = "Attenuation factors for the absorbed radiation dose in quartz inclusions for thermoluminescence dating",
year = "1979",
journal = "Ancient TL",
volume = "8",
pages = "1-12"
),
Bell1980 = bibentry(
bibtype = "Article",
author = c(
person("W.T.", "Bell")
),
title = "Alpha attenuation in Quartz grains for Thermoluminescence Dating",
year = "1980",
journal = "Ancient TL",
volume = "12",
pages = "4-8"
),
Brennanetal1991 = bibentry(
bibtype = "Article",
author = c(
person("B.J.", "Brennan"),
person("R.G.", "Lyons"),
person("S.W.", "Phillips")
),
title = "Attenuation of alpha particle track dose for spherical grains",
year = "1991",
journal = "International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements",
volume = "18",
pages = "249-253"
),
Mejdahl1979 = bibentry(
bibtype = "Article",
author = c(
person("V.", "Mejdahl")
),
title = "Thermoluminescence Dating: Beta-Dose Attenuation in Quartz Grains",
year = "1979",
journal = "Archaeometry",
volume = "21",
pages = "61-72"
),
Mejdahl1987 = bibentry(
bibtype = "Article",
author = c(
person("V.", "Mejdahl")
),
title = "Internal radioactivity in quartz and feldspar grains",
year = "1987",
journal = "Ancient TL",
volume = "5",
pages = "10-17"
),
Brennan2003 = bibentry(
bibtype = "Article",
author = c(
person("B.J.", "Brennan")
),
title = "Beta doses to spherical grains",
year = "2003",
journal = "Radiation Measurements",
volume = "37",
pages = "299-303"
),
`Guerinetal2012-Q` = bibentry(
bibtype = "Article",
author = c(
person("G.", "Guerin"),
person("N.", "Mercier"),
person("R.", "Nathan"),
person("G.", "Adamiec"),
person("Y.", "Lefrais")
),
title = "On the use of the infinite matrix assumption and associated concepts: A critical review",
year = "2012",
journal = "Radiation Measurements",
volume = "47",
pages = "778-785"
),
`Guerinetal2012-F` = bibentry(
bibtype = "Article",
author = c(
person("G.", "Guerin"),
person("N.", "Mercier"),
person("R.", "Nathan"),
person("G.", "Adamiec"),
person("Y.", "Lefrais")
),
title = "On the use of the infinite matrix assumption and associated concepts: A critical review",
year = "2012",
journal = "Radiation Measurements",
volume = "47",
pages = "778-785"
),
PrescottHutton1994 = bibentry(
bibtype = "Article",
author = c(
person("J.R.", "Prescott"),
person("J.T.", "Hutton")
),
title = "Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations",
year = "1994",
journal = "Radiation Measurements",
volume = "23",
pages = "497-500"
),
PrescottStephan1982 = bibentry(
bibtype = "Article",
author = c(
person("J.R.", "Prescott"),
person("L.G.", "Stephan")
),
title = "The contribution of cosmic radiation to the environmental dose for thermoluminescence dating",
year = "1982",
journal = "PACT",
volume = "6",
pages = "17-25"
),
Readhead2002 = bibentry(
bibtype = "Article",
author = c(
person("M.L.", "ReadHead")
),
title = "Absorbed dose fraction for 87Rb beta particles",
year = "2002",
journal = "Ancient TL",
volume = "20",
pages = "25-29"
)
)
} |
test_that("The `action_levels()` helper function works as expected", {
al <- action_levels()
al %>% expect_is("action_levels")
al %>%
names() %>%
expect_equal(
c(
"warn_fraction", "warn_count", "stop_fraction", "stop_count",
"notify_fraction", "notify_count", "fns")
)
al[[7]] %>% names() %>% expect_equal(c("warn", "stop", "notify"))
al[[1]] %>% expect_null()
al[[2]] %>% expect_null()
al[[3]] %>% expect_null()
al[[4]] %>% expect_null()
al[[5]] %>% expect_null()
al[[6]] %>% expect_null()
al[[7]] %>% expect_is("list")
al[[7]][[1]] %>% expect_null()
al[[7]][[2]] %>% expect_null()
al[[7]][[3]] %>% expect_null()
al %>% length() %>% expect_equal(7)
al[[7]] %>% length() %>% expect_equal(3)
al <- action_levels(warn_at = 0.2, stop_at = 0.8, notify_at = 0.345)
al %>% expect_is("action_levels")
al %>% names() %>%
expect_equal(
c(
"warn_fraction", "warn_count", "stop_fraction", "stop_count",
"notify_fraction", "notify_count", "fns")
)
al[[7]] %>% names() %>% expect_equal(c("warn", "stop", "notify"))
al$warn_fraction %>% expect_equal(0.2)
al$warn_count %>% expect_null()
al$stop_fraction %>% expect_equal(0.8)
al$stop_count %>% expect_null()
al$notify_fraction %>% expect_equal(0.345)
al$notify_count %>% expect_null()
al[[7]] %>% expect_is("list")
al[[7]][[1]] %>% expect_null()
al[[7]][[2]] %>% expect_null()
al[[7]][[3]] %>% expect_null()
al %>% length() %>% expect_equal(7)
al[[7]] %>% length() %>% expect_equal(3)
al <- action_levels(warn_at = 20, stop_at = 80, notify_at = 34.6)
al %>% expect_is("action_levels")
al %>%
names() %>%
expect_equal(
c(
"warn_fraction", "warn_count", "stop_fraction", "stop_count",
"notify_fraction", "notify_count", "fns")
)
al[[7]] %>% names() %>% expect_equal(c("warn", "stop", "notify"))
al$warn_fraction %>% expect_null()
al$warn_count %>% expect_equal(20)
al$stop_fraction %>% expect_null()
al$stop_count %>% expect_equal(80)
al$notify_fraction %>% expect_null()
al$notify_count %>% expect_equal(34)
al[[7]] %>% expect_is("list")
al[[7]][[1]] %>% expect_null()
al[[7]][[2]] %>% expect_null()
al[[7]][[3]] %>% expect_null()
al %>% length() %>% expect_equal(7)
al[[7]] %>% length() %>% expect_equal(3)
expect_error(action_levels(warn_at = "20"))
expect_error(action_levels(warn_at = 0))
expect_error(action_levels(warn_at = -1.5))
al <-
action_levels(
warn_at = 3,
fns = list(warn = ~ my_great_function(vl = .vars_list))
)
al %>% expect_is("action_levels")
al %>%
names() %>%
expect_equal(
c(
"warn_fraction", "warn_count", "stop_fraction", "stop_count",
"notify_fraction", "notify_count", "fns")
)
al[[7]] %>% names() %>% expect_equal("warn")
al[[7]][[1]] %>% expect_is("formula")
al[[7]][[1]] %>%
as.character() %>%
expect_equal(c("~", "my_great_function(vl = .vars_list)"))
al$warn_fraction %>% expect_null()
al$warn_count %>% expect_equal(3)
al$stop_fraction %>% expect_null()
al$stop_count %>% expect_null()
al$notify_fraction %>% expect_null()
al$notify_count %>% expect_null()
al[[7]] %>% expect_is("list")
al %>% length() %>% expect_equal(7)
al[[7]] %>% length() %>% expect_equal(1)
expect_error(action_levels(warn_at = 3, fns = list(warn = "text")))
expect_error(
action_levels(
warn_at = 3,
fns = list(
warn = ~ my_great_function(vl = .vars_list),
~ another_function()
)
)
)
expect_error(
action_levels(
warn_at = 3,
fns = list(
warn = ~ my_great_function(vl = .vars_list),
notable = ~ another_function()
)
)
)
})
test_that("The appropriate actions occur when using `action_levels()`", {
agent <-
create_agent(tbl = small_table, label = "small_table_tests") %>%
col_vals_gt(
vars(d), 1000,
actions = action_levels(warn_at = 3, fns = list(warn = ~"warning")
)
) %>%
col_vals_in_set(
vars(f), c("low", "high"),
actions = action_levels(warn_at = 0.1, fns = list(warn = ~"warning")
)
) %>%
interrogate()
agent_report <- get_agent_report(agent, display_table = FALSE)
agent_report$W %>% expect_equal(rep(TRUE, 2))
agent <-
create_agent(tbl = small_table, label = "small_table_tests") %>%
col_vals_gt(
vars(d), 1000,
actions = action_levels(notify_at = 3, fns = list(notify = ~"notify")
)
) %>%
col_vals_in_set(
vars(f), c("low", "high"),
actions = action_levels(notify_at = 0.1, fns = list(notify = ~"notify")
)
) %>%
interrogate()
agent_report <- get_agent_report(agent, display_table = FALSE)
agent_report$N %>% expect_equal(rep(TRUE, 2))
agent <-
create_agent(tbl = small_table, label = "small_table_tests") %>%
col_vals_gt(
vars(d), 1000,
actions = action_levels(stop_at = 3, fns = list(stop = ~"stop")
)
) %>%
col_vals_in_set(
vars(f), c("low", "high"),
actions = action_levels(stop_at = 0.1, fns = list(stop = ~"stop")
)
) %>%
interrogate()
agent_report <- get_agent_report(agent, display_table = FALSE)
agent_report$S %>% expect_equal(rep(TRUE, 2))
}) |
setSPEC.fn = function(SPEC.name) {
source( system.file("SPEC", SPEC.name, package = "CGManalyzer") )
} |
data(mtcars)
head(mtcars)
dim(mtcars)
y.train <- mtcars[,11]
x.train <- as.matrix(mtcars[,-11])
gbt_mod <- gbt.train(y.train, x.train, loss_function = "poisson", verbose=10)
pred <- predict(gbt_mod, x.train)
plot(pred, y.train) |
ordGEE2 <- function(formula, id, data, corstr="exchangeable",
maxit=50, tol=1e-3) {
ID <- data[, as.character(id)]
N <- length(ID)
n <- length(unique(ID))
clsize.vec <- as.numeric(table(ID))
m <- clsize.vec[1]
Resp <- as.factor(getResp(formula=formula, data=data))
Resp <- as.numeric(levels(Resp))[Resp]
K <- length(unique(Resp))-1
Y.Mat <- matrix(0, nrow=N, ncol=K)
for (k in 1:K) {
Y.Mat[, k] <- Resp==k
}
Y <- as.vector(t(Y.Mat))
Z <- get_Z(Y, n=n, m=m, K=K)
f <- kronecker(ID, rep(1,K))
DM <- getDM(formula=formula, data=data)
DM <- cbind(matrix(rep(diag(K), sum(clsize.vec)),ncol=K, byrow=T),
DM[kronecker(1:sum(clsize.vec),rep(1,K)),-1])
p_b <- ncol(DM)
form.k <- paste("as.numeric(Resp>=K)", as.character(formula)[3], sep="~")
init.glm <- glm(formula=eval(parse(text=form.k)),
family=binomial,data=data)
beta_est.init <- coefficients(init.glm)
if(K>1){
for(k in (K-1):1){
form.k <- paste("as.numeric(Resp>=k)", as.character(formula)[3], sep="~")
init.glm <- glm(formula=eval(parse(text=form.k)),
family=binomial,data=data)
beta_est.init <- c(coefficients(init.glm)[1], beta_est.init)
}
}
j1.indx <- NULL
k1.indx <- NULL
j2.indx <- NULL
k2.indx <- NULL
for(j1 in 1:(m-1)) {
for(j2 in (j1+1):m) {
j1.indx <- c(j1.indx, rep(j1, K^2))
k1.indx <- c(k1.indx, kronecker(1:K, rep(1, K)))
j2.indx <- c(j2.indx, rep(j2,K^2))
k2.indx <- c(k2.indx, kronecker(rep(1,K), 1:K))
}
}
indx.tab <- cbind(j1.indx, k1.indx, j2.indx, k2.indx)
indx.tab.t <- t(indx.tab)
if (corstr=="exchangeable") {
alpha_est.init <- 0.5
p_a <- 1
assocDM <- matrix(rep(1, length(Z)), ncol=p_a)
} else {
if (corstr=="log-linear") {
p_a <- K + K * (K - 1)/2
alpha_est.init <- c(log(3), rep(0, p_a-1))
assocDM_i <- cbind(rep(1, length(j1.indx)),
(as.numeric(k1.indx==2) +
as.numeric(k2.indx==2)),
as.numeric((k1.indx==2)&(k2.indx==2)))
assocDM <- matrix(rep(t(assocDM_i), n), ncol=p_a, byrow=T)
}
}
p_t <- p_b + p_a
theta_est.init <- c(beta_est.init, alpha_est.init)
beta <- beta_est.init
alpha <- alpha_est.init
theta <- theta_est.init
dif <- 1
differ <- c()
iter <- 0
res <- list()
res$beta <- numeric(p_b)
res$alpha <- numeric(p_a)
res$variance <- matrix(0, nrow=p_t, ncol=p_t)
res$convergence <- FALSE
res$iteration = 0
while(iter<maxit & dif >tol) {
beta_est.o <- beta
alpha_est.o <- alpha
theta_est.o <- theta
nrow_DM_i <- m*K
nrow_assocDM_i <- K^2 * (m*(m-1))/2
U = rep(0, p_t)
M = matrix(0, nrow=p_t, ncol=p_t)
Sigma = matrix(0, nrow=p_t, ncol=p_t)
for (i in 1:n) {
U_i <- rep(0, p_t)
M_i <- matrix(0, nrow=p_t, ncol=p_t)
Sigma_i <- matrix(0, nrow=p_t, ncol=p_t)
ordgee2_i <- .C("Cgetordgee2_i",
as.double(DM[(i-1)*nrow_DM_i + 1:nrow_DM_i, ]),
as.double(Y[(i-1)*nrow_DM_i + 1:nrow_DM_i]),
as.double(assocDM[(i-1)*nrow_assocDM_i + 1:nrow_assocDM_i, ]),
as.double(Z[(i-1)*nrow_assocDM_i + 1:nrow_assocDM_i]),
as.integer(m),
as.integer(K),
as.integer(p_b),
as.integer(p_a),
beta = as.double(beta),
alpha = as.double(alpha),
U_i = as.double( U_i ),
M_i = as.double(M_i),
Sigma_i = as.double(Sigma_i)
)
U <- U + ordgee2_i$U_i
M <- M + matrix(ordgee2_i$M_i, nrow=p_t, byrow=FALSE)
Sigma <- Sigma + matrix(ordgee2_i$Sigma_i,
nrow=p_t, byrow=FALSE)
}
U_beta <- 1/n * U[1:p_b]
U_alpha <- 1/n * U[(p_b+1):p_t]
M1 <- 1/n * M[1:p_b, 1:p_b]
M2 <- as.matrix( 1/n * M[(p_b+1):p_t, (p_b+1):p_t] )
if (any(is.na(M1)) | any(is.na(M2))) {
return(res)
} else {
if ((abs(det(M1)) < 1e-15) | (abs(det(M2)) < 1e-15)) {
return (res)
} else {
if (any(eigen(M1)$values<=1e-5) | any(eigen(M2)$values<=1e-5)) {
inv.M1 <- solve(M1)
inv.M2 <- solve(M2)
} else {
inv.M1 <- chol2inv(chol(M1))
inv.M2 <- chol2inv(chol(M2))
}
}
}
beta <- beta_est.o + 0.8 * inv.M1%*%U_beta
alpha <- alpha_est.o + 0.8 * inv.M2%*%U_alpha
theta <- c(beta, alpha)
dif <- max(abs(theta/theta_est.o-1))
differ <- c(differ, dif)
iter <- iter + 1
}
beta_nam <- c(unlist(lapply("Y>=", 1:K, FUN=paste, sep="")),
dimnames(DM)[[2]][-(1:K)])
alpha_nam <- NULL
if (corstr=="exchangeable") {
alpha_nam <- "Delta"
} else {
if (corstr=="log-linear") {
alpha_nam <- c("Delta", "Delta_2", "Delta_22")
}
}
Gamma <- 1/n * M
Sigma <- 1/n * Sigma
res$beta <- as.vector(beta)
res$alpha <- as.vector(alpha)
if (abs(det(Gamma)) < 1e-15) {
res$variance <- ginv(Gamma) %*% Sigma %*% t(ginv(Gamma))/n
} else {
inv.Gamma <- matrix(0, nrow=p_t, ncol=p_t)
inv.Gamma[1:p_b, 1:p_b] <- inv.M1
inv.Gamma[(p_b+1):p_t, (p_b+1):p_t] <- inv.M2
inv.Gamma[(p_b+1):p_t, 1:p_b] <- -( inv.M2%*%
Gamma[(p_b+1):p_t, 1:p_b]%*%inv.M1 )
res$variance <- inv.Gamma%*% Sigma %*% t(inv.Gamma)/n
}
res$convergence <- (iter<maxit & dif < tol)
res$iteration = iter
res$differ <- differ
names(res$beta) <- beta_nam
names(res$alpha) <- alpha_nam
dimnames(res$variance) <- list(c(beta_nam, alpha_nam),
c(beta_nam, alpha_nam))
res$call <- match.call()
class(res) <- "mgee2"
return(res)
} |
test_that(
"test are_disjoint_sets with disjoint sets returns true",
{
x <- 1:5
y <- 6:10
expect_true(are_disjoint_sets(x, y))
}
)
test_that(
"test are_disjoint_sets with intersecting sets returns false",
{
x <- 1:5
expect_false(actual <- are_disjoint_sets(x, 4:8))
expect_match(
cause(actual),
noquote("x and 4:8 have common elements: 4, 5")
)
}
)
test_that(
"test are_intersecting_sets with intersecting sets returns true",
{
x <- 1:5
y <- 5:9
expect_true(are_intersecting_sets(x, y))
}
)
test_that(
"test are_intersecting_sets with disjoint sets returns false",
{
x <- 1:5
expect_false(actual <- are_intersecting_sets(x, 6:10))
expect_match(
cause(actual),
noquote("x and 6:10 have no common elements")
)
}
)
test_that(
"test are_set_equal with equal sets returns true",
{
x <- 1:5
y <- c(1, 3, 5, 4, 2)
expect_true(are_set_equal(x, y))
}
)
test_that(
"test are_set_equal with different size sets returns false",
{
x <- 1:5
y <- c(1:4, 4)
expect_false(actual <- are_set_equal(x, y))
expect_match(
cause(actual),
"1:5 and c\\(1, 2, 3, 4\\) have different numbers of elements \\(5 versus 4\\)"
)
}
)
test_that(
"test are_set_equal with unequal sets returns false",
{
x <- 1:5
y <- c(99, 3, 5, 4, 2)
expect_false(actual <- are_set_equal(x, y))
expect_match(
cause(actual),
noquote("The element .+1.+ in 1:5 is not in c\\(99, 3, 5, 4, 2\\)")
)
}
)
test_that(
"test is_subset with equal sets returns true",
{
x <- 1:5
expect_true(is_subset(x, x))
}
)
test_that(
"test is_subset with equal sets and strictly = TRUE returns false",
{
x <- 1:5
expect_false(is_subset(x, x, strictly = TRUE))
}
)
test_that(
"test is_subset with a subset returns true",
{
x <- 1:5
y <- 6:1
expect_true(is_subset(x, y))
}
)
test_that(
"test is_subset with a non-subset returns false",
{
x <- 1:5
y <- 4:1
expect_false(actual <- is_subset(x, y))
expect_match(
cause(actual),
noquote("The element .+5.+ in x is not in y")
)
}
)
test_that(
"test is_superset with equal sets returns true",
{
x <- 1:5
expect_true(is_superset(x, x))
}
)
test_that(
"test is_superset with equal sets and strictly = TRUE returns false",
{
x <- 1:5
expect_false(is_superset(x, x, strictly = TRUE))
}
)
test_that(
"test is_superset with a superset returns true",
{
x <- 1:6
y <- 5:1
expect_true(is_superset(x, y))
}
)
test_that(
"test is_superset with a non-superset returns false",
{
x <- 1:4
y <- 5:1
expect_false(actual <- is_superset(x, y))
expect_match(
cause(actual),
"The element .+5.+ in y is not in x"
)
}
) |
find.limits <- function(map, mar.min = 2, ...)
{
if(!is.list(map))
stop("argument map must be a list() of matrix polygons!")
n <- length(map)
myrange <- function(x, c.select = 1L, ...) {
return(na.omit(x[, c.select], ...))
}
xlim <- range(unlist(lapply(map, myrange, c.select = 1L, ...)))
ylim <- range(unlist(lapply(map, myrange, c.select = 2L, ...)))
mar <- NULL
asp <- attr(map, "asp")
if(is.null(asp))
asp <- (diff(ylim) / diff(xlim)) / cos((mean(ylim) * pi) / 180)
if(!is.null(height2width <- attr(map, "height2width"))) {
height2width <- height2width * 0.8
if(!is.null(mar.min)) {
if(height2width > 1) {
side <- 17.5 * (1 - 1/height2width) + mar.min / height2width
mar <- c(mar.min, side, mar.min, side)
}
else {
top <- 17.5 * (1 - height2width) + mar.min * height2width
mar <- c(top, mar.min, top, mar.min)
}
}
}
return(list(ylim = ylim, xlim = xlim, mar = mar, asp = asp))
} |
noz = function(x) {
if (!is.list(x)) {
stop("x should be a list with location ids for the regions in the clusters")
}
remain_idx = seq_along(x)
i = 1
u = 1
while (i < length(x)) {
no_inter = sapply(remain_idx, function(j) !any(duplicated(unlist(x[c(i, j)]))))
remain_idx = remain_idx[no_inter]
if (length(remain_idx) > 0) {
i = min(remain_idx)
u = c(u, i)
}
else {
i = length(x) + 1
}
}
return(u)
} |
get_oc_3arm <- function(shape, m0, mA, hr2, hr3, frac, ta, tf, c1, c, diff, n, nsim, seed = 2483)
{
kappa=shape
m2=mA/hr2
m3=mA/hr3
lambda0=log(2)/m0^kappa
rho0=lambda0^(1/kappa)
scale0=1/rho0
H0=function(shape, scale, t){(t/scale)^shape}
lambda1=log(2)/mA^kappa
rho1=lambda1^(1/kappa)
lambda2=log(2)/m2^kappa
rho2=lambda2^(1/kappa)
lambda3=log(2)/m3^kappa
rho3=lambda3^(1/kappa)
scale1=1/rho1
scale2=1/rho2
scale3=1/rho3
scale=c(scale1, scale2, scale3)
s=0
set.seed(seed)
n1=ceiling(n*frac)
n2=ceiling(n*(1-frac))
tau=ta+tf
outcome2<-No.success<-n.Subj<-matrix(999, ncol=3, nrow=nsim)
for (i in 1:nsim)
{
for (a in 1:3){
w=rweibull(n, shape, scale[a])
u=runif(n, 0, ta)
x=pmax(0, pmin(w,tau-u))
delta = as.numeric(w<tau-u)
O1=sum(delta[1:n1])
M1=H0(shape,scale0,x[1:n1])
E1=sum(M1)
Z1=(E1-O1)/sqrt(E1)
O=sum(delta)
M=H0(shape,scale0,x)
E=sum(M)
Z=(E-O)/sqrt(E)
outcome1<-ifelse(Z1>c1, Z, NA)
No.success[i,a]<-Z
outcome2[i,a]<-ifelse(outcome1>c, 1, 0)
n.Subj[i,a] <- ifelse(Z1>c1, n, n1)
}
}
Outcome<-apply(outcome2, 1, sum, na.rm=T)
Outcome[is.na(Outcome)]<-0
Prob.neg <-length(Outcome[Outcome==0])/nsim
Prob.pos <-length(Outcome[Outcome==3])/nsim
Prob.neg2pos1 <-length(Outcome[Outcome==1])/nsim
Prob.neg1pos2 <-length(Outcome[Outcome==2])/nsim
Prob.ArmA<-sum(outcome2[,1], na.rm=TRUE)/nsim
Prob.ArmB<-sum(outcome2[,2], na.rm=TRUE)/nsim
Prob.ArmC<-sum(outcome2[,3], na.rm=TRUE)/nsim
mean.Subj<-apply(n.Subj,2,mean, na.rm=T)
Prob.select.ArmA <- sum(outcome2[,1][(outcome2[, 2] == 0 & outcome2[, 3] == 0) |
(outcome2[, 2] == 0 & is.na(outcome2[, 3])) |
(is.na(outcome2[, 2]) & outcome2[, 3] == 0) |
(is.na(outcome2[, 2]) & is.na(outcome2[, 3]))]/nsim
)
Prob.select.ArmB <- sum(outcome2[,2][(outcome2[, 1] == 0 & outcome2[, 3] == 0) |
(outcome2[, 1] == 0 & is.na(outcome2[, 3])) |
(is.na(outcome2[, 1]) & outcome2[, 3] == 0) |
(is.na(outcome2[, 1]) & is.na(outcome2[, 3]))]/nsim
)
Prob.select.ArmC <- sum(outcome2[,3][(outcome2[, 1] == 0 & outcome2[, 2] == 0) |
(outcome2[, 1] == 0 & is.na(outcome2[, 2])) |
(is.na(outcome2[, 1]) & outcome2[, 2] == 0) |
(is.na(outcome2[, 1]) & is.na(outcome2[, 2]))]/nsim
)
Prob.NoArm<-Prob.neg
No.success.BothArms.select<-No.success[Outcome==2 | Outcome ==3,]
SSD.SelectArm<-function(x, diff, MOD=FALSE)
{
NoArm<-ArmA<-ArmB<-ArmC<-NA
ArmA<-ifelse(x[1]-x[2] > diff & x[1]-x[3] > diff,1,0)
ArmB<-ifelse(x[2]-x[1] > diff & x[2]-x[3] > diff,1,0)
ArmC<-ifelse(x[3]-x[1] > diff & x[3]-x[2] > diff,1,0)
if(abs(x[3]-x[1]) <= diff | abs(x[2]-x[1]) <= diff | abs(x[2]-x[3]) <= diff) {
NoArm <- 1
}
return(list(ArmA, ArmB, ArmC, NoArm))
}
if( length(No.success[Outcome==2|Outcome==3,]) > 1 ) {
SSD.SelectArm.2ndSeg<-matrix(unlist(
apply(No.success[Outcome==2|Outcome==3,],1,SSD.SelectArm, diff)
),ncol=4,byrow=T)} else {SSD.SelectArm.2ndSeg <- matrix(NA,ncol=4) }
ProbArmA.2ndSeg<-sum(SSD.SelectArm.2ndSeg[,1],na.rm=TRUE)/nsim
ProbArmB.2ndSeg<-sum(SSD.SelectArm.2ndSeg[,2],na.rm=TRUE)/nsim
ProbArmC.2ndSeg<-sum(SSD.SelectArm.2ndSeg[,3],na.rm=TRUE)/nsim
ProbNoArm.2ndSeg<-sum(SSD.SelectArm.2ndSeg[,4],na.rm=TRUE)/nsim
Overall.ArmA<-Prob.select.ArmA + ProbArmA.2ndSeg
Overall.ArmB<-Prob.select.ArmB + ProbArmB.2ndSeg
Overall.ArmC<-Prob.select.ArmC + ProbArmC.2ndSeg
Overall.NoArm<-Prob.NoArm + ProbNoArm.2ndSeg
soln<-data.frame("n"=n,
"SSD Arm A"=Overall.ArmA, "SSD Arm B"= Overall.ArmB, "SSD Arm C"= Overall.ArmC,
"SSD No Arm"=Overall.NoArm,
"diff"=diff,"Mean N Arm A"=mean.Subj[1],"Mean N Arm B"=mean.Subj[2],
"Mean N Arm C"=mean.Subj[3])
return(soln)
} |
context("Test fnb.detect_distribution")
test_that("Check distribution detection function", {
x <- matrix(c(2, 3, 2, 1, 2, 5, 3, 4, 2, 4, 0, 1, 1, 1, 0, 3, 4, 4, 3, 5),
nrow = 5, ncol = 4
)
x <- cbind(x, rnorm(5))
col_names <- c("wo", "mo", "bo", "so", "ma")
colnames(x) <- col_names
real_distribution <- list(
bernoulli = c("bo"),
multinomial = c("wo", "mo", "so"),
gaussian = c("ma")
)
expect_equal(real_distribution, fnb.detect_distribution(x))
x <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)
colnames(x) <- c("wo", "mo")
distribution <- fnb.detect_distribution(x)
real_distribution <- list(
multinomial = c("wo", "mo")
)
expect_equal(real_distribution, distribution)
}) |
find_airport <- function(x){
filter(airportCode, grepl(x, origin) | grepl (x, city))
}
findAirport <- function(...){
warning(paste("findAirport is deprecated, use find_airport(), instead."))
do.call(find_airport, list(...))
}
globalVariables(c("airportCode", "origin", "city")) |
comp.simu.test <- function(object, m = 10000, type = "smallprop",
level = 0.05, adjust = TRUE, ncores = NULL, iseed = NULL, pkg = "ICSOutlier", qtype = 7, ...)
{
if (class(object) != "ics2")
stop("'object' must be of class ics2")
S1 <- get(object@S1name)
S2 <- get(object@S2name)
if (!is.function(S1))
stop(paste("S1 in '", S1, ", must be a specified as a function"))
if (!is.function(S2))
stop(paste("S2 in '", S2, ", must be a specified as a function"))
type <- match.arg(type, c("smallprop"))
n <- nrow(object@Scores)
p <- ncol(object@Scores)
MEAN <- rep(0, p)
if(!is.null(ncores) && ncores > 1){
if(is.null(iseed)){
if (exists(".Random.seed", envir=globalenv())){
oldseed <- get(".Random.seed", envir=globalenv())
rm(.Random.seed, envir=globalenv())
on.exit(assign(".Random.seed", oldseed, envir=globalenv()))
}
}
ctype <- "PSOCK"
cl <- makeCluster(ncores, type=ctype)
clusterExport(cl, c("n","m","MEAN","S1","S2","object", "pkg", "iseed"), envir = environment())
clusterEvalQ(cl, lapply(pkg, require,character.only = TRUE))
clusterSetRNGStream(cl = cl, iseed = iseed)
EV <- parSapply(cl, 1:m, function(i,...) {
ics2(rmvnorm(n, MEAN), S1 = S1, S2 = S2,
S1args = object@S1args, S2args = object@S2args)@gKurt } )
stopCluster(cl)
} else {
EV <- replicate(m, ics2(rmvnorm(n, MEAN), S1 = S1, S2 = S2,
S1args = object@S1args, S2args = object@S2args)@gKurt)
}
if (adjust == TRUE) {
levels <- level/1:p
}
else {
levels <- rep(level, p)
}
EV.quantile <- numeric(p)
for (i in 1:p) {
EV.quantile[i] <- quantile(EV[i, ], probs = 1 - levels[i], type = qtype,
...)
}
decisions <- (object@gKurt > EV.quantile)
k <- match(FALSE, decisions) - 1
if (is.na(k)) {
index <- 1:p
}
else {
if (k == 0)
index <- 0
else index <- 1:k
}
RES <- list(index = index, test = "simulation", criterion = EV.quantile,
levels = levels, adjust = adjust, type = type, m = m)
RES
} |
"print.ahazpen" <- function(x, digits = max(3, getOption("digits") - 3), ...)
{
cat("\nCall:\n", deparse(x$call), "\n\n", sep = "")
cat("* No. predictors: ", format(x$nvars, width = 7,digits = digits), "\n")
cat("* No. observations: ", format(x$nobs, width = 7,digits = digits), "\n")
cat("* Max no. predictors in path:", format(max(x$df), width = 7,digits = digits),"\n")
cat("* Penalty parameter lambda:\n")
cat(" -No. grid points:", format(length(x$lambda), width = 7,digits = digits), "\n")
cat(" -Min value: ", format(min(x$lambda), width = 7,digits = digits), "\n")
cat(" -Max value: ", format(max(x$lambda), width = 7,digits = digits))
cat("\n\n")
invisible(x)
} |
knitr::opts_chunk$set(echo = TRUE)
library(PKNCA) |
library("testthat")
library("gratia")
library("mgcv")
`expect_doppelganger` <- function(title, fig, ...) {
testthat::skip_if_not_installed("vdiffr")
vdiffr::expect_doppelganger(title, fig, ...)
}
set.seed(0)
n.samp <- 200
dat <- data_sim("eg1", n = n.samp, dist = "binary", scale = .33, seed = 0)
p <- binomial()$linkinv(dat$f)
n <- sample(c(1, 3), n.samp, replace = TRUE)
dat <- transform(dat, y = rbinom(n, n, p), n = n)
m <- gam(y / n ~ s(x0) + s(x1) + s(x2) + s(x3),
family = binomial, data = dat, weights = n,
method = "REML")
types <- c("deviance", "response", "pearson")
methods <- c("uniform", "simulate", "normal")
test_that("qq_plot() uniform method works", {
skip_if(packageVersion("mgcv") < "1.8.36")
set.seed(42)
plt <- qq_plot(m)
expect_doppelganger("qq_plot uniform randomisation", plt)
})
test_that("qq_plot() uniform method works with response residuals", {
skip_if(packageVersion("mgcv") < "1.8.36")
set.seed(42)
plt <- qq_plot(m, type = "response")
expect_doppelganger("qq_plot uniform randomisation response residuals", plt)
})
test_that("qq_plot() uniform method works with pearson residuals", {
skip_if(packageVersion("mgcv") < "1.8.36")
set.seed(42)
plt <- qq_plot(m, type = "pearson")
expect_doppelganger("qq_plot uniform randomisation pearson residuals", plt)
})
test_that("qq_plot() normal method works", {
plt <- qq_plot(m, method = "normal")
expect_doppelganger("qq_plot normality assumption", plt)
})
test_that("qq_plot() normal method works", {
plt <- qq_plot(m, method = "normal", type = "response")
expect_doppelganger("qq_plot normality assumption response residuals", plt)
})
test_that("qq_plot() normal method works", {
plt <- qq_plot(m, method = "normal", type = "pearson")
expect_doppelganger("qq_plot normality assumption pearson residuals", plt)
})
test_that("qq_plot() simulate method works", {
set.seed(42)
plt <- qq_plot(m, method = "simulate")
expect_doppelganger("qq_plot data simulation", plt)
})
test_that("qq_plot() simulate method works", {
set.seed(42)
plt <- qq_plot(m, method = "simulate", type = "response")
expect_doppelganger("qq_plot data simulation response residuals", plt)
})
test_that("qq_plot() simulate method works", {
set.seed(42)
plt <- qq_plot(m, method = "simulate", type = "pearson")
expect_doppelganger("qq_plot data simulation pearson residuals", plt)
})
test_that("qq_plot() fails if unsupported residuals requested", {
expect_error(qq_plot(m, type = "scaled.pearson"),
paste("'arg' should be one of",
paste(dQuote(types), collapse = ', ')),
fixed = TRUE)
})
test_that("qq_plot() fails if unsupported method requested", {
expect_error(qq_plot(m, method = "foo"),
paste("'arg' should be one of",
paste(dQuote(methods), collapse = ', ')),
fixed = TRUE)
})
test_that("qq_plot() prints message if direct method requested", {
expect_message(qq_plot(m, method = "direct"),
"`method = \"direct\"` is deprecated, use `\"uniform\"`",
fixed = TRUE)
})
test_that("qq_plot.default fails with error", {
expect_error(qq_plot(dat),
"Unable to produce a Q-Q plot for <data.frame>")
})
test_that("pearson_residuals fails if no var_fun available", {
expect_error(pearson_residuals(var_fun = NULL),
"Pearson residuals are not available for this family.",
fixed = TRUE)
}) |
build.q.set <- function(q.concourse, q.sample, q.distribution) {
q.sample <- as.character(q.sample)
if (!is.matrix(q.concourse)) {
stop("The input specified for q.concourse is not a matrix.")
}
if (!is.vector(q.distribution)) {
stop("The input specified for q.distribution is not a matrix.")
}
if (!is.vector(q.sample)) {
stop("The input specified for q.sample is not a vector.")
}
if (length(q.sample) != sum(q.distribution)) {
stop(
paste(
"There are",
length(q.sample),
"items in your q-sample, but",
sum(q.distribution),
"entries expected in the q-distribution",
sep=" "
)
)
}
missing.in.concourse <- !q.sample %in% rownames(q.concourse)
if (any(missing.in.concourse)) {
stop(
paste(
"There are item handles in your sample not defined in the concourse:",
q.sample[missing.in.concourse],
sep=" "
)
)
}
q.set <- q.concourse[q.sample,]
q.set <- as.matrix(q.set)
message(paste("Build a q.set of", nrow(q.set), "items."))
return(q.set)
} |
pphat <- function(q, n, mu=0, sigma=1, type="known", LSL=-3, USL=3, nodes=30) {
if ( n < 1 )
stop("n must be >= 1")
if ( sigma<1e-10 )
stop("sigma much too small")
ctyp <- -1 + pmatch(type, c("known", "estimated"))
if ( is.na(ctyp) )
stop("invalid sigma mode")
if ( LSL >= USL )
stop("wrong relationship between lower and upper specification limits (LSL must be smaller than USL)")
if ( nodes<2 )
stop("far too less nodes")
p.star <- pnorm( LSL/sigma ) + pnorm( -USL/sigma )
if ( type == "estimated" ) p.star <- 0
cdf <- rep(NA, length(q))
for ( i in 1:length(q) ) {
cdf[i] <- 0
if ( q[i] >= 1 ) cdf[i] <- 1
if ( p.star<q[i] && q[i]<1 )
cdf[i] <- .C("phat_cdf",
as.double(q[i]), as.integer(n), as.double(mu), as.double(sigma), as.integer(ctyp),
as.double(LSL), as.double(USL), as.integer(nodes),
ans=double(length=1), PACKAGE="spc")$ans
}
names(cdf) <- NULL
cdf
} |
calculate_n05_using_bisection_from_the_summed_fields <-
function (fsum1or, fsum2or, d)
{
dimx = ncol(fsum1or)
dimy = nrow(fsum1or)
rows = nrow(fsum1or) - 2 * d
cols = ncol(fsum1or) - 2 * d
x1 = 1
x2 = 2 * max(rows, cols) - 1
if (x2 < 5) {
stop("Domain size needs to be at least 2 grid points")
}
FSS1 = calculate_FSS_from_enlarged_summed_fields(fsum1or,
fsum2or, x1, d)
FSS2 = calculate_FSS_from_enlarged_summed_fields(fsum1or,
fsum2or, x2, d)
if (FSS1 > 0.5)
return(1)
if (FSS2 <= 0.5) {
stop("FSS does never reach value 0.5. There is something wrong.")
}
repeat {
xnew = (x1 + x2)/2
if (xnew%%2 == 0) {
xnew = xnew + 1
}
FSSnew = calculate_FSS_from_enlarged_summed_fields(fsum1or,
fsum2or, xnew, d)
if (FSSnew > 0.5) {
x2 = xnew
FSS2 = FSSnew
}
else {
x1 = xnew
FSS1 = FSSnew
}
if (x2 - x1 <= 2) {
break
}
}
return(x2)
} |
if (.Platform$OS.type != "windows" && require(betareg)) {
library(rstanarm)
SEED <- 12345
set.seed(SEED)
ITER <- 10
CHAINS <- 2
REFRESH <- 0
context("stan_betareg")
source(test_path("helpers", "expect_stanreg.R"))
source(test_path("helpers", "SW.R"))
simple_betareg_data <- function(N, draw_z = FALSE) {
x <- rnorm(N, 2, 1)
z <- if (draw_z) rnorm(N, 0, 1) else rep(0, N)
mu <- binomial(link="logit")$linkinv(1 + 0.2 * x)
phi <- 20
y <- rbeta(N, mu * phi, (1 - mu) * phi)
data.frame(y,x,z)
}
dat <- simple_betareg_data(200, draw_z = TRUE)
link1 <- c("logit", "probit", "cloglog", "cauchit", "log", "loglog")
link2 <- c("log", "identity", "sqrt")
test_that("sparse = TRUE errors", {
expect_error(
stan_betareg(y ~ x, link = "logit", seed = SEED, sparse = TRUE, data = dat),
"unknown arguments: sparse"
)
})
test_that("QR errors when number of x and/or z predictors is <= 1", {
expect_error(
stan_betareg(y ~ x, link = "logit", seed = SEED, QR = TRUE, data = dat),
"'QR' can only be specified when there are multiple predictors"
)
expect_error(
stan_betareg(y ~ x | z, link = "logit", seed = SEED, QR = TRUE, data = dat),
"'QR' can only be specified when there are multiple predictors"
)
})
test_that("QR works when number of x and/or z predictors is >= 1", {
SW(fit1 <- stan_betareg(y ~ x + z, link = "logit", seed = SEED, QR = TRUE,
prior = NULL, prior_intercept = NULL, refresh = 0,
data = dat, algorithm = "optimizing"))
expect_stanreg(fit1)
expect_output(print(prior_summary(fit1)), "Q-space")
SW(fit2 <- stan_betareg(y ~ x + z | z, link = "logit", seed = SEED, QR = TRUE,
prior = NULL, prior_intercept = NULL, refresh = 0,
data = dat, algorithm = "optimizing"))
expect_stanreg(fit2)
})
test_that("stan_betareg returns expected result when modeling x and dispersion", {
for (i in 1:length(link1)) {
SW(fit <- stan_betareg(y ~ x, link = link1[i], seed = SEED,
prior = NULL, prior_intercept = NULL,
prior_phi = NULL, refresh = 0,
data = dat, algorithm = "optimizing"))
expect_stanreg(fit)
val <- coef(fit)
ans <- coef(betareg(y ~ x, link = link1[i], data = dat))
expect_equal(val, ans, tol = 0.1, info = link1[i])
}
})
test_that("stan_betareg works with QR = TRUE and algorithm = 'optimizing'", {
SW(fit <- stan_betareg(y ~ x + z, link = "logit", seed = SEED, QR = TRUE,
prior = NULL, prior_intercept = NULL,
prior_phi = NULL, refresh = 0,
data = dat, algorithm = "optimizing"))
expect_stanreg(fit)
val <- coef(fit)
ans <- coef(betareg(y ~ x + z, link = "logit", data = dat))
expect_equal(val, ans, tol = 0.1, info = "logit")
})
test_that("stan_betareg works with QR = TRUE and algorithm = 'sampling'", {
SW(fit <- stan_betareg(y ~ x + z, link = "logit", QR = TRUE,
prior = NULL, prior_intercept = NULL,
prior_phi = NULL, refresh = 0,
iter = 100, chains = 2, data = dat))
expect_stanreg(fit)
val <- coef(fit)
ans <- coef(betareg(y ~ x + z, link = "logit", data = dat))
expect_equal(val, ans, tol = 0.1)
})
test_that("stan_betareg ok when modeling x and z (link.phi = 'log')", {
N <- 200
dat <- data.frame(x = rnorm(N, 2, 1), z = rnorm(N, 2, 1))
mu <- binomial(link="logit")$linkinv(1 + 0.2 * dat$x)
phi <- poisson(link = link2[1])$linkinv(1.5 + 0.4*dat$z)
dat$y <- rbeta(N, mu * phi, (1 - mu) * phi)
for (i in 1:length(link1)) {
SW(fit <- stan_betareg(y ~ x | z, link = link1[i], link.phi = link2[1],
seed = SEED, refresh = 0,
prior = NULL, prior_intercept = NULL,
prior_z = NULL, prior_intercept_z = NULL,
data = dat, algorithm = "optimizing"))
expect_stanreg(fit)
val <- coef(fit)
ans <- coef(betareg(y ~ x | z, link = link1[i], link.phi = link2[1],
data = dat))
expect_equal(val, ans, tol = 0.1, info = c(link1[i], link2[1]))
}
})
test_that("stan_betareg ok when modeling x and z (link.phi = 'identity')", {
N <- 200
dat <- data.frame(x = rnorm(N, 2, 1), z = rnorm(N, 2, 1))
mu <- binomial(link = "logit")$linkinv(1 + 0.2*dat$x)
phi <- dat$z - min(dat$z) + 5.5
dat$y <- rbeta(N, mu * phi, (1 - mu) * phi)
for (i in 1:length(link1)) {
SW(fit <- stan_betareg(y ~ x | z, link = link1[i], link.phi = link2[2],
prior = NULL, prior_intercept = NULL,
prior_z = NULL, prior_intercept_z = NULL,
data = dat, algorithm = "optimizing",
seed = SEED, refresh = 0))
expect_stanreg(fit)
val <- coef(fit)
ans <- coef(betareg(y ~ x | z, link = link1[i], link.phi = link2[2], data = dat))
expect_equal(val, ans, tol = 0.15, info = c(link1[i], link2[2]))
}
})
test_that("stan_betareg ok when modeling x and z (link.phi = 'sqrt')", {
for (i in 1:length(link1)) {
N <- 1000
dat <- data.frame(x = rnorm(N, 2, 1), z = rep(1, N))
mu <- binomial(link = "logit")$linkinv(-0.8 + 0.5*dat$x)
phi <- poisson(link = "sqrt")$linkinv(8 + 2*dat$z)
dat$y <- rbeta(N, mu * phi, (1 - mu) * phi)
SW(fit <- stan_betareg(y ~ x | 1, link = link1[i], link.phi = link2[3],
data = dat, algorithm = "sampling",
chains = 1, iter = 1, refresh = 0))
expect_stanreg(fit)
}
})
test_that("stan_betareg ok when modeling x and dispersion with offset and weights", {
N <- 200
weights <- rbeta(N, 2, 2)
offset <- rep(0.3, N)
dat <- data.frame(x = rnorm(N, 2, 1))
mu <- binomial(link="logit")$linkinv(1+0.2*dat$x)
phi <- 20
dat$y <- rbeta(N, mu * phi, (1 - mu) * phi)
SW(fit <- stan_betareg(y ~ x, link = "logit", seed = SEED,
prior = NULL, prior_intercept = NULL, prior_phi = NULL,
data = dat, weights = weights, offset = offset,
algorithm = "optimizing", iter = 2000, refresh = 0))
expect_stanreg(fit)
val <- coef(fit)
ans <- coef(betareg(y ~ x, link = "logit", weights = weights, offset = offset, data = dat))
expect_equal(val, ans, tol = 0.3, info = "logit")
})
test_that("heavy tailed priors work with stan_betareg", {
expect_stanreg(stan_betareg(y ~ x | z, data = dat,
prior = product_normal(), prior_z = product_normal(),
chains = 1, iter = 1, refresh = 0))
expect_stanreg(stan_betareg(y ~ x | z, data = dat,
prior = laplace(), prior_z = laplace(),
chains = 1, iter = 1, refresh = 0))
expect_stanreg(stan_betareg(y ~ x | z, data = dat,
prior = lasso(), prior_z = lasso(),
chains = 1, iter = 1, refresh = 0))
})
test_that("loo/waic for stan_betareg works", {
source(test_path("helpers", "expect_equivalent_loo.R"))
ll_fun <- rstanarm:::ll_fun
data("GasolineYield", package = "betareg")
SW(fit_logit <- stan_betareg(yield ~ batch + temp | temp, data = GasolineYield,
link = "logit",
chains = CHAINS, iter = ITER,
seed = SEED, refresh = 0))
expect_equivalent_loo(fit_logit)
expect_identical(ll_fun(fit_logit), rstanarm:::.ll_beta_i)
})
source(test_path("helpers", "check_for_error.R"))
source(test_path("helpers", "expect_linpred_equal.R"))
SW <- suppressWarnings
context("posterior_predict (stan_betareg)")
test_that("compatible with stan_betareg with z", {
data("GasolineYield", package = "betareg")
fit <- SW(stan_betareg(yield ~ pressure + temp | temp, data = GasolineYield,
iter = ITER*5, chains = 2*CHAINS, seed = SEED,
refresh = 0))
check_for_error(fit)
})
test_that("compatible with stan_betareg without z", {
data("GasolineYield", package = "betareg")
fit <- SW(stan_betareg(yield ~ temp, data = GasolineYield,
iter = ITER, chains = CHAINS, seed = SEED, refresh = 0))
check_for_error(fit)
})
test_that("compatible with betareg with offset", {
GasolineYield2 <- GasolineYield
GasolineYield2$offs <- runif(nrow(GasolineYield2))
fit <- SW(stan_betareg(yield ~ temp, data = GasolineYield2, offset = offs,
iter = ITER*5, chains = CHAINS, seed = SEED, refresh = 0))
fit2 <- SW(stan_betareg(yield ~ temp + offset(offs), data = GasolineYield2,
iter = ITER*5, chains = CHAINS, seed = SEED, refresh = 0))
expect_warning(posterior_predict(fit, newdata = GasolineYield),
"offset")
check_for_error(fit, data = GasolineYield2, offset = GasolineYield2$offs)
check_for_error(fit2, data = GasolineYield2, offset = GasolineYield2$offs)
expect_linpred_equal(fit)
expect_linpred_equal(fit2)
})
test_that("predict ok for stan_betareg", {
dat <- list()
dat$N <- 200
dat$x <- rnorm(dat$N, 2, 1)
dat$z <- rnorm(dat$N, 2, 1)
dat$mu <- binomial(link = "logit")$linkinv(0.5 + 0.2*dat$x)
dat$phi <- exp(1.5 + 0.4*dat$z)
dat$y <- rbeta(dat$N, dat$mu * dat$phi, (1 - dat$mu) * dat$phi)
dat <- data.frame(dat$y, dat$x, dat$z)
colnames(dat) <- c("y", "x", "z")
betaregfit <- betareg(y ~ x | z, data = dat)
SW(capture.output(
stanfit <- stan_betareg(y ~ x | z, data = dat, chains = CHAINS,
iter = ITER, seed = SEED, refresh = 0)
))
pb <- predict(betaregfit, type = "response")
ps <- predict(stanfit, type = "response")
expect_error(presp(stanfit))
newd <- data.frame(x = c(300,305))
pb <- predict(betaregfit, newdata = newd, type = "link")
ps <- predict(stanfit, newdata = newd, type = "link")
})
} |
"read.pdb2" <-
function (file, maxlines=-1, multi=FALSE,
rm.insert=FALSE, rm.alt=TRUE, ATOM.only = FALSE, verbose=TRUE) {
if(missing(file)) {
stop("read.pdb: please specify a PDB 'file' for reading")
}
if(!is.numeric(maxlines)) {
stop("read.pdb: 'maxlines' must be numeric")
}
if(!is.logical(multi)) {
stop("read.pdb: 'multi' must be logical TRUE/FALSE")
}
toread <- file.exists(file)
if(substr(file,1,4)=="http") { toread <- TRUE }
if(!toread) {
if(nchar(file)==4) {
file <- get.pdb(file, URLonly=TRUE)
cat(" Note: Accessing on-line PDB file\n")
} else {
stop("No input PDB file found: check filename")
}
}
cl <- match.call()
atom.format <- matrix(c(6, 'character', "type",
5, 'numeric', "eleno",
-1, NA, NA,
4, 'character', "elety",
1, 'character', "alt",
4, 'character', "resid",
1, 'character', "chain",
4, 'numeric', "resno",
1, 'character', "insert",
-3, NA, NA,
8, 'numeric', "x",
8, 'numeric', "y",
8, 'numeric', "z",
6, 'numeric', "o",
6, 'numeric', "b",
-6, NA, NA,
4, 'character', "segid",
2, 'character', "elesy",
2, 'character', "charge"
), ncol=3, byrow=TRUE,
dimnames = list(c(1:19), c("widths","what","name")) )
trim <- function(s) {
s <- sub("^ +", "", s)
s <- sub(" +$", "", s)
s[(s=="")]<-""
s
}
split.fields <- function(x) {
x <- trim( substring(x, first, last) )
paste(x,collapse=";")
}
is.character0 <- function(x){length(x)==0 & is.character(x)}
widths <- as.numeric(atom.format[,"widths"])
drop.ind <- (widths < 0)
widths <- abs(widths)
st <- c(1, 1 + cumsum( widths ))
first <- st[-length(st)][!drop.ind]
last <- cumsum( widths )[!drop.ind]
names(first) = na.omit(atom.format[,"name"])
names(last) = names(first)
raw.lines <- readLines(file, n = maxlines)
type <- substring(raw.lines, first["type"], last["type"])
raw.end <- sort(c(which(type == "END"),
which(type == "ENDMDL")))
if (length(raw.end) > 1) {
cat(" PDB has multiple END/ENDMDL records \n")
if (!multi) {
cat(" multi=FALSE: taking first record only \n")
} else {
cat(" multi=TRUE: 'read.dcd/read.ncdf' will be quicker! \n")
raw.lines.multi <- raw.lines
type.multi <- type
}
raw.lines <- raw.lines[ (1:raw.end[1]) ]
type <- type[ (1:raw.end[1]) ]
}
if ( length(raw.end) !=1 ) {
if (length(raw.lines) == maxlines) {
cat(" You may need to increase 'maxlines' \n")
cat(" check you have all data in $atom \n")
}
}
if(ATOM.only) {
raw.lines <- raw.lines[type %in% c("HEADER", "ATOM ", "HETATM")]
type <- substring(raw.lines, first["type"], last["type"])
}
remark <- .parse.pdb.remark350(raw.lines)
raw.header <- raw.lines[type == "HEADER"]
raw.seqres <- raw.lines[type == "SEQRES"]
raw.helix <- raw.lines[type == "HELIX "]
raw.sheet <- raw.lines[type == "SHEET "]
raw.atom <- raw.lines[type %in% c("ATOM ","HETATM")]
if (verbose) {
if (!is.character0(raw.header)) { cat(" ", raw.header, "\n") }
}
seqres <- unlist(strsplit( trim(substring(raw.seqres,19,80))," +"))
if(!is.null(seqres)) {
seqres.ch <- substring(raw.seqres, 12, 12)
seqres.ln <- substring(raw.seqres, 13, 17)
seqres.in <- ( !duplicated(seqres.ch) )
names(seqres) <- rep(seqres.ch[seqres.in], times=seqres.ln[seqres.in])
}
if(length(raw.helix) > 0) {
helix <- list(start = as.numeric(substring(raw.helix,22,25)),
end = as.numeric(substring(raw.helix,34,37)),
chain = trim(substring(raw.helix,20,20)),
type = trim(substring(raw.helix,39,40)))
insert.i <- trim(substring(raw.helix,26,26))
insert.e <- trim(substring(raw.helix,38,38))
names(helix$start) <- insert.i
names(helix$end) <- insert.e
} else {
helix <- NULL
}
if(length(raw.sheet) > 0) {
sheet <- list(start = as.numeric(substring(raw.sheet,23,26)),
end = as.numeric(substring(raw.sheet,34,37)),
chain = trim(substring(raw.sheet,22,22)),
sense = trim(substring(raw.sheet,39,40)))
insert.i <- trim(substring(raw.sheet,27,27))
insert.e <- trim(substring(raw.sheet,38,38))
names(sheet$start) <- insert.i
names(sheet$end) <- insert.e
pa <- paste(sheet$start, insert.i, sheet$chain, sep='_')
keep.inds <- which(!duplicated(pa))
sheet <- lapply(sheet, '[', keep.inds)
} else {
sheet <- NULL
}
atom <- read.table(text=sapply(raw.atom, split.fields),
stringsAsFactors=FALSE, sep=";", quote='',
colClasses=unname(atom.format[!drop.ind,"what"]),
col.names=atom.format[!drop.ind,"name"],
comment.char="", na.strings="")
xyz.models <- matrix(as.numeric(c(t(atom[,c("x","y","z")]))), nrow=1)
if (length(raw.end) > 1 && multi) {
raw.atom <- raw.lines.multi[ type.multi %in% c("ATOM ","HETATM") ]
if( (length(raw.atom)/length(raw.end)) ==nrow(atom) ){
tmp.xyz=( rbind( substr(raw.atom, first["x"],last["x"]),
substr(raw.atom, first["y"],last["y"]),
substr(raw.atom, first["z"],last["z"]) ) )
xyz.models <- matrix( as.numeric(tmp.xyz), ncol=nrow(atom)*3,
nrow=length(raw.end), byrow=TRUE)
rownames(xyz.models) = NULL
} else {
warning(paste("Unequal number of atoms in multi-model records:", file))
}
rm(raw.lines.multi)
}
rm(raw.lines, raw.atom)
if (rm.alt) {
if ( sum( !is.na(atom[,"alt"]) ) > 0 ) {
first.alt <- sort( unique(na.omit(atom[,"alt"])) )[1]
cat(paste(" PDB has ALT records, taking",first.alt,"only, rm.alt=TRUE\n"))
alt.inds <- which( (atom[,"alt"] != first.alt) )
if(length(alt.inds)>0) {
atom <- atom[-alt.inds,]
xyz.models <- xyz.models[ ,-atom2xyz(alt.inds), drop=FALSE ]
}
}
}
if (rm.insert) {
if ( sum( !is.na(atom[,"insert"]) ) > 0 ) {
cat(" PDB has INSERT records, removing, rm.insert=TRUE\n")
insert.inds <- which(!is.na(atom[,"insert"]))
atom <- atom[-insert.inds,]
xyz.models <- xyz.models[ ,-atom2xyz(insert.inds), drop=FALSE ]
}
}
output<-list(atom=atom,
helix=helix,
sheet=sheet,
seqres=seqres,
xyz=as.xyz(xyz.models),
calpha = NULL, remark = remark, call=cl)
class(output) <- c("pdb", "sse")
ca.inds <- atom.select.pdb(output, string="calpha", verbose=FALSE)
output$calpha <- seq(1, nrow(atom)) %in% ca.inds$atom
return(output)
} |
library( "miscTools" )
m <- matrix( 1:9, 3 )
print( insertRow( m, 1, 10:12 ) )
print( insertRow( m, 2, 10:12 ) )
print( insertRow( m, 3, 10:12 ) )
print( insertRow( m, 4, 10:12 ) )
print( insertCol( m, 1, 10:12 ) )
print( insertCol( m, 2, 10:12 ) )
print( insertCol( m, 3, 10:12 ) )
print( insertCol( m, 4, 10:12 ) )
print( insertRow( m, 1, 10:12, "R0" ) )
print( insertRow( m, 2, 10:12, "R1a" ) )
print( insertRow( m, 3, 10:12, "R2a" ) )
print( insertRow( m, 4, 10:12, "R4" ) )
print( insertCol( m, 1, 10:12, "C0" ) )
print( insertCol( m, 2, 10:12, "C1a" ) )
print( insertCol( m, 3, 10:12, "C2a" ) )
print( insertCol( m, 4, 10:12, "C4" ) )
rownames( m ) <- c( "R1", "R2", "R3" )
colnames( m ) <- c( "C1", "C2", "C3" )
print( insertRow( m, 1, 10:12 ) )
print( insertRow( m, 2, 10:12 ) )
print( insertRow( m, 3, 10:12 ) )
print( insertRow( m, 4, 10:12 ) )
print( insertCol( m, 1, 10:12 ) )
print( insertCol( m, 2, 10:12 ) )
print( insertCol( m, 3, 10:12 ) )
print( insertCol( m, 4, 10:12 ) )
print( insertRow( m, 1, 10:12, "R0" ) )
print( insertRow( m, 2, 10:12, "R1a" ) )
print( insertRow( m, 3, 10:12, "R2a" ) )
print( insertRow( m, 4, 10:12, "R4" ) )
print( insertCol( m, 1, 10:12, "C0" ) )
print( insertCol( m, 2, 10:12, "C1a" ) )
print( insertCol( m, 3, 10:12, "C2a" ) )
print( insertCol( m, 4, 10:12, "C4" ) )
insertRow( matrix( 1:3, ncol=1 ), 2, 4 )
insertCol( matrix( 1:3, nrow=1 ), 2, 4 ) |
fill_serie <- function(df, colName, timeStep){
if(is.data.frame(df) == FALSE){
return('df must be a data frame object')
}
if(timeStep != 'day' & timeStep != 'month' & timeStep != '4h' & timeStep != 'day/3' & timeStep != 'hour'){
return('timeStep must be one of the following: day - month - 4h - day/3 - hour')
}
colnames(df) <- c('Date', colName)
N <- length(df[ , 1])
time.min <- df[1, 1]
time.max <- df[N, 1]
if(timeStep == 'day' | timeStep == 'month'){
all.dates <- seq(from = time.min, to = time.max, by = timeStep)
} else if(timeStep == 'hour'){
all.dates <- seq(from = time.min, to = time.max, by = timeStep)
} else if(timeStep == '4h'){
all.dates <- seq(from = as.POSIXct( as.character(time.min), tz = 'ART' ), to = as.POSIXct( as.character(time.max), tz = 'ART' ), by = '4 hour')
} else {
all.dates <- seq(from = as.POSIXct( as.character(time.min), tz = 'ART' ), to = as.POSIXct( as.character(time.max), tz = 'ART' ), by = '6 hour')
aux_index <- which(format(all.dates, '%H') == '03')
all.dates <- all.dates[-aux_index]
rm(aux_index)
}
all.dates.frame <- data.frame(Date = all.dates)
merged.data <- merge(all.dates.frame, df, all = TRUE)
return(merged.data)
} |
bruvo.dist <- function(pop, replen = 1, add = TRUE, loss = TRUE, by_locus = FALSE){
if (pop@type != "codom" || all(is.na(unlist(lapply(alleles(pop), as.numeric))))){
stop(non_ssr_data_warning())
}
if (length(replen) < nLoc(pop)){
replen <- vapply(alleles(pop), function(x) guesslengths(as.numeric(x)), 1)
warning(repeat_length_warning(replen), immediate. = TRUE)
if (interactive()) Sys.sleep(2L)
}
bruvomat <- new('bruvomat', pop, replen)
funk_call <- match.call()
if (length(add) != 1 || !is.logical(add) || length(loss) != 1 || !is.logical(loss)){
stop("add and loss flags must be either TRUE or FALSE. Please check your input.")
}
dist.mat <- bruvos_distance(bruvomat, funk_call = funk_call, add, loss, by_locus)
if (by_locus){
names(dist.mat) <- locNames(pop)
}
return(dist.mat)
}
bruvo.between <- function(query, ref, replen = 1, add = TRUE, loss = TRUE, by_locus = FALSE){
pop <- repool(query, ref)
query_length <- dim(query@tab)[1]
if (pop@type != "codom" || all(is.na(unlist(lapply(alleles(pop), as.numeric))))){
stop(non_ssr_data_warning())
}
if (length(replen) < nLoc(pop)){
replen <- vapply(alleles(pop), function(x) guesslengths(as.numeric(x)), 1)
warning(repeat_length_warning(replen), immediate. = TRUE)
if (interactive()) Sys.sleep(2L)
}
bruvomat <- new('bruvomat', pop, replen)
funk_call <- match.call()
if (length(add) != 1 || !is.logical(add) || length(loss) != 1 || !is.logical(loss)){
stop("add and loss flags must be either TRUE or FALSE. Please check your input.")
}
dist.mat <- bruvos_between(bruvomat, query_length, funk_call = funk_call, add, loss, by_locus)
if (by_locus){
names(dist.mat) <- locNames(pop)
}
return(dist.mat)
}
bruvo.boot <- function(pop, replen = 1, add = TRUE, loss = TRUE, sample = 100,
tree = "upgma", showtree = TRUE, cutoff = NULL,
quiet = FALSE, root = NULL, ...){
if (pop@type != "codom" || all(is.na(unlist(lapply(alleles(pop), as.numeric))))){
stop(non_ssr_data_warning())
}
if (length(replen) < length(locNames(pop))) {
replen <- vapply(alleles(pop), function(x) guesslengths(as.numeric(x)), 1)
warning(repeat_length_warning(replen), immediate. = TRUE)
if (interactive()) Sys.sleep(2L)
}
bootgen <- new('bruvomat', pop, replen)
treechar <- paste(as.character(substitute(tree)), collapse = "")
if ("upgma" %in% treechar){
treefun <- upgma
} else if ("nj" %in% treechar){
treefun <- nj
} else {
treefun <- match.fun(tree)
}
bootfun <- function(x){
treefun(bruvos_distance(x, funk_call = match.call(), add = add,
loss = loss))
}
tre <- bootfun(bootgen)
if (is.null(root)){
root <- ape::is.ultrametric(tre)
}
if (any (tre$edge.length < 0)){
warning(negative_branch_warning(), immediate.=TRUE)
tre <- fix_negative_branch(tre)
}
if (quiet == FALSE){
cat("\nBootstrapping...\n")
cat("(note: calculation of node labels can take a while even after")
cat(" the progress bar is full)\n\n")
}
bp <- boot.phylo(tre, bootgen, FUN = bootfun, B = sample, quiet = quiet,
rooted = root, ...)
tre$node.labels <- round(((bp / sample)*100))
if (!is.null(cutoff)){
if (cutoff < 1 | cutoff > 100){
cat("Cutoff value must be between 0 and 100.\n")
prompt_msg <- "Choose a new cutoff value between 0 and 100:\n"
cutoff <- as.numeric(readline(prompt = prompt_msg))
}
tre$node.labels[tre$node.labels < cutoff] <- NA
}
tre$tip.label <- indNames(pop)
if (showtree){
poppr.plot.phylo(tre, treechar, root)
}
return(tre)
}
bruvo.msn <- function (gid, replen = 1, add = TRUE, loss = TRUE,
mlg.compute = "original",
palette = topo.colors,
sublist = "All", exclude = NULL, blacklist = NULL, vertex.label = "MLG",
gscale = TRUE, glim = c(0,0.8), gadj = 3, gweight = 1,
wscale = TRUE, showplot = TRUE,
include.ties = FALSE, threshold = NULL,
clustering.algorithm = NULL, ...){
if (!inherits(gid, "genind")){
stop("Bruvo's distance only works for microsatellite markers. gid must be a genind/genclone object.")
}
if (!is.genclone(gid)){
gid <- as.genclone(gid)
}
if (!inherits(gid@mlg, "MLG")){
gid@mlg <- new("MLG", gid@mlg)
}
if (!is.null(blacklist)) {
warning(
option_deprecated(
match.call(),
"blacklist",
"exclude",
"2.8.7.",
"Please use `exclude` in the future"
),
immediate. = TRUE
)
exclude <- blacklist
}
visible_mlg <- visible(gid@mlg)
if (visible_mlg == "custom"){
mll(gid) <- mlg.compute
} else if (visible_mlg == "contracted"){
mll(gid) <- "original"
if (is.null(threshold)){
threshold <- cutoff(gid@mlg)["contracted"]
}
if (is.null(clustering.algorithm)){
clustering.algorithm <- distalgo(gid@mlg)
}
}
gadj <- ifelse(gweight == 1, gadj, -gadj)
if (toupper(sublist[1]) != "ALL" | !is.null(exclude)){
gid <- popsub(gid, sublist, exclude)
}
if (!is.null(threshold)){
bruvo_args <- list(replen = replen, add = add, loss = loss)
filtered <- filter_at_threshold(gid,
threshold,
indist = NULL,
clustering.algorithm,
bruvo_args = bruvo_args)
distmat <- filtered$indist
cgid <- filtered$cgid
gid <- filtered$gid
} else {
cgid <- gid[.clonecorrector(gid), ]
distmat <- as.matrix(bruvo.dist(cgid, replen=replen, add = add, loss = loss))
}
poppr_msn_list <- msn_constructor(
gid = gid,
cgid = cgid,
palette = palette,
indist = distmat,
include.ties = include.ties,
mlg.compute = mlg.compute,
vlab = vertex.label,
visible_mlg = visible_mlg,
wscale = wscale,
gscale = gscale,
glim = glim,
gadj = gadj,
showplot = showplot,
...)
return(poppr_msn_list)
}
test_replen <- function(gid, replen){
replen <- cromulent_replen(gid, replen)
alleles <- lapply(alleles(gid), as.numeric)
are_consistent <- vapply(locNames(gid), consistent_replen, logical(1),
alleles, replen)
names(are_consistent) <- locNames(gid)
return(are_consistent)
}
consistent_replen <- function(index, alleles, replen){
!any(duplicated(round(alleles[[index]]/replen[index])))
}
fix_replen <- function(gid, replen, e = 1e-5, fix_some = TRUE){
replen <- cromulent_replen(gid, replen)
consistent_reps <- test_replen(gid, replen)
names(replen) <- locNames(gid)
ADD <- FALSE
SUB <- FALSE
newReps <- replen
while (any(!consistent_reps)){
if (!SUB){
newReps[!consistent_reps] <- newReps[!consistent_reps] - e
SUB <- TRUE
} else {
newReps[!consistent_reps] <- newReps[!consistent_reps] + (2*e)
ADD <- TRUE
}
consistent_reps <- test_replen(gid, newReps)
if (any(!consistent_reps) & ADD & SUB){
inconsistent <- paste(names(replen[!consistent_reps]), collapse = ", ")
msg <- paste("The repeat lengths for", inconsistent,
"are not consistent.\n\n",
"This might be due to inconsistent allele calls or repeat",
"lengths that are too large.\n",
"Check the alleles to make sure there are no duplicated",
"or similar alleles that might end up being the same after",
"division.\n")
if (fix_some){
original <- test_replen(gid, replen)
fixed <- paste(names(replen[!original & consistent_reps]), collapse = ", ")
msg <- paste(msg, "\nRepeat lengths with some modification are",
"being returned:", fixed)
newReps[!consistent_reps] <- replen[!consistent_reps]
} else {
msg <- paste(msg, "\nOriginal repeat lengths are being returned.")
newReps <- replen
}
warning(msg, immediate. = TRUE)
consistent_reps <- TRUE
}
}
return(newReps)
} |
fitOR <- function(dd) {
llikh <- function(ab,d2) {
dz <- d2[,-1,drop=FALSE]
m <- dim(dz)[2]
n <- dim(dz)[1]
a <- ab[1:3]
b <- matrix( ab[-(1:3)],nrow=2,byrow=TRUE)
b <- rbind(b,b[1,]+b[2,])
ll <- 0
for (i in 1:n) {
h <- rep(0,4)
for (j in 1:3) h[j+1] <- a[j] + drop( b[j,] %*% t(dz[i,]))
hh <- sum(exp(h))
ll <- ll + h[d2$xy[i]] - log(hh)
}
ll
}
dllikh <- function(ab,d2) {
dz <- d2[,-1,drop=FALSE]
m <- dim(dz)[2]
n <- dim(dz)[1]
a <- ab[1:3]
b <- matrix(ab[-(1:3)],nrow=2,byrow=TRUE)
b <- rbind(b,b[1,]+b[2,])
dl <- rep(0,3+2*m)
for (i in 1:n) {
h <- rep(0,4)
for (j in 1:3) h[j+1] <- a[j] + drop(b[j,] %*% t(dz[i,]))
hh <- sum(exp(h))
pp <- exp(h)/hh
xy <- d2$xy[i]
for (j in 1:3) dl[j] <- dl[j] + (xy-1==j)*1 - pp[j+1]
for (k in 1:m) {
k1 <- m + k
ix <- ifelse ((xy==2 | xy==4),1,0)
iy <- ifelse ((xy==3 | xy==4),1,0)
dl[3+k] <- dl[3+k] +(ix - pp[4]-pp[2])*dz[i,k]
dl[3+k1] <- dl[3+k1]+(iy - pp[4]-pp[3])*dz[i,k]
}
}
dl
}
m <- dim(dd)[2]-2
covnam <- names(dd)[-(1:2)]
xy <- 1+2*dd$x+dd$y
ddxy <- cbind(xy,dd)
mmu <- paste("xy ~",paste(covnam,collapse="+"),collapse="")
d2 <- ddxy[,c(-2,-3)]
fit0 <- multinom(xy~1, data=ddxy)
sF <- summary(fitF <- multinom(formula(mmu), data=ddxy, Hess=TRUE))
start <- coef(sF)
start <- c(start[1:3,1],start[1,2:(m+1)],start[2,2:(m+1)])
fitH <- optim(start, llikh, dllikh, d2, hessian=TRUE, method="BFGS",
control=list(fnscale=-1,maxit=200,trace=0) )
cH <- matrix(NA,nrow=3,ncol=m+1)
cH[,1] <- fitH$par[1:3]
for (j in 1:m) cH[1:2,1+j] <- fitH$par[-c(1:3)][(2*j-1):(2*j)]
cH[3,2:(m+1)] <- cH[1,2:(m+1)]+cH[2,2:(m+1)]
attributes(cH) <- attributes(fitF$coeff)
fitH$coeff <- cH
return(list(fitH=fitH,fitF=sF,fit0=fit0))
} |
ti_pp <- function(Llim, Ulim, mu, sigma, n=10, n.batch=1, alpha=0.05, coverprob = 0.675, side = 2){
k <- k_factor(n = n, alpha = alpha, P = coverprob, side = side)
Func <- function(V){
(pnorm(q = Ulim-k*sqrt(V), mean = mu, sd = sigma/sqrt(n))-pnorm(q = Llim+k*sqrt(V), mean = mu, sd = sigma/sqrt(n)))*dchisq(x = (n-1)*V/sigma^2, df = n-1)
}
(min(1, integrate(Func, lower = 0, upper = ((Ulim-Llim)/(2*k))^2, rel.tol = 1e-10)$value*(n-1)/sigma^2))^n.batch
} |
str2rect <-
function(grb, fontcol, fill, fontface, fontfamily, inflate.labels, cex_index, align.labels, xmod.labels, ymod.labels, eval.labels) {
if (eval.labels) {
txtWraps <- mapply(function(x,y)list(txt=x, lines=y), grb$name, 1, SIMPLIFY=FALSE)
} else {
txtWraps <- lapply(grb$name, FUN=function(txt) {
txtWrap <- list(txt)
txtWrap[2:5] <- sapply(2:5, FUN=function(x, txt) {
sq <- seq(1,5,by=2)
results <- lapply(sq, FUN=function(pos, x, txt) {
strwrap(txt, width = pos+(nchar(txt)/x))}, x, txt)
lengths <- sapply(seq_along(sq), FUN=function(x)length(results[[x]]))
results <- (results[lengths==x])[1]},txt)
txtWrap <- sapply(txtWrap, FUN=paste, collapse="\n")
strID <- which(txtWrap!="")
nLines <- (1:5)[strID]
txtWrap <- txtWrap[strID]
return(list(txt=txtWrap, lines=nLines))})
}
inchesW <- convertWidth(grb$width, "inches", valueOnly=TRUE)
inchesH <- convertHeight(grb$height, "inches", valueOnly=TRUE)
gp <- get.gpar()
results <- mapply(txtWraps, inchesW, inchesH, FUN=function(wrap, inchesW, inchesH) {
txtH <- convertHeight(unit(1,"lines"), "inches", valueOnly=TRUE) * (wrap$lines-0.25) * gp$lineheight
txtW <- convertWidth(stringWidth(wrap$txt), "inches", valueOnly=TRUE)
incrW <- (inchesW / txtW)
incrH <- (inchesH / txtH)
incr <- pmin.int(incrH, incrW)
if (inflate.labels) {
aspR <- pmax.int(incrH, incrW) / incr
winningStr <- which.min(aspR)
} else {
incr[incr>1] <- 1
winningStr <- which.max(incr)[1]
}
return(list(txt=wrap$txt[winningStr], cex=incr[winningStr], lines=wrap$lines[winningStr]))
})
txt <- unlist(results[1,])
cex <- if (eval.labels) rep(cex_index, length(grb$name)) else unlist(results[2,]) * cex_index
nlines <- unlist(results[3,])
if (align.labels[1]%in%c("center", "centre")) {
x <- grb$x + 0.5*grb$width
xjust <- .5
} else if(align.labels[1]=="left") {
x <- grb$x + unit(.25, "lines")
xjust <- 0
} else if(align.labels[1]=="right") {
x <- grb$x + grb$width - unit(.25, "lines")
xjust <- 1
}
if (align.labels[2]%in%c("center", "centre")) {
y <- grb$y + 0.5*grb$height
yjust <- .5
} else if(align.labels[2]=="top") {
y <- grb$y + grb$height - unit(.25, "lines")
yjust <- 1
} else if(align.labels[2]=="bottom") {
y <- grb$y + unit(.25, "lines")
yjust <- 0
}
if (is.null(names(xmod.labels))) {
xmod.labels <- rep(xmod.labels, length.out = length(x))
} else {
tmp <- rep(0, length.out = length(x))
names(tmp) <- grb$name
sel <- which(names(xmod.labels) %in% names(tmp))
if (!length(sel)==0) tmp[names(xmod.labels)[sel]] <- xmod.labels[sel]
xmod.labels <- unname(tmp)
}
if (is.null(names(ymod.labels))) {
ymod.labels <- rep(ymod.labels, length.out = length(y))
} else {
tmp <- rep(0, length.out = length(y))
names(tmp) <- grb$name
sel <- which(names(ymod.labels) %in% names(tmp))
if (!length(sel)==0) tmp[names(ymod.labels)[sel]] <- ymod.labels[sel]
ymod.labels <- unname(tmp)
}
x <- x + unit(xmod.labels, "inch")
y <- y + unit(ymod.labels, "inch")
if (eval.labels) txt <- sapply(txt, function(tx) {
parse(text=tx)
})
txtGrb <- textGrob(txt, x=x, y=y, just=c(xjust, yjust), gp=gpar(cex=cex, fontface=fontface, fontfamily=fontfamily, col=fontcol))
txtGrbW <- mapply(txt, cex, FUN=function(x,y, fontface){
convertWidth(grobWidth(textGrob(x, gp=gpar(cex=y, fontface=fontface, fontfamily=fontfamily))),"inches", valueOnly=TRUE)}, fontface, USE.NAMES=FALSE)
tooLarge <- (txtGrbW > inchesW)
txtGrb$gp$cex[tooLarge] <- txtGrb$gp$cex[tooLarge] * (inchesW[tooLarge]/txtGrbW[tooLarge]) * 0.9
bckH <- mapply(txt, txtGrb$gp$cex, nlines, FUN=function(x,y,z, fontface){
convertHeight(grobHeight(textGrob(x, gp=gpar(cex=y, fontface=fontface, fontfamily=fontfamily))),"npc", valueOnly=TRUE) * z/(z-0.25)}, fontface, USE.NAMES=FALSE)
bckW <- mapply(txt, txtGrb$gp$cex, FUN=function(x,y, fontface){
convertWidth(grobWidth(textGrob(x, gp=gpar(cex=y, fontface=fontface, fontfamily=fontfamily))),"npc", valueOnly=TRUE)}, fontface, USE.NAMES=FALSE)
rectx <- txtGrb$x
recty <- txtGrb$y
if (align.labels[1]=="left") {
rectx <- rectx + unit(0.5*bckW, "npc")
} else if(align.labels[1]=="right") {
rectx <- rectx - unit(0.5*bckW, "npc")
}
if (align.labels[2]=="bottom") {
recty <- recty + unit(0.5*bckH, "npc")
} else if(align.labels[2]=="top") {
recty <- recty - unit(0.5*bckH, "npc")
}
bckGrb <- rectGrob(x=rectx, y=recty, width=bckW, height=bckH, gp=gpar(fill=fill, col=NA))
return(list(txt=txtGrb, bg=bckGrb))
} |
setClass(Class = "clv.bgnbd.static.cov", contains = "clv.fitted.transactions.static.cov",
slots = c(
cbs = "data.table"),
prototype = list(
cbs = data.table()))
clv.bgnbd.static.cov <- function(cl, clv.data){
dt.cbs.bgnbd <- bgnbd_cbs(clv.data = clv.data)
clv.model <- clv.model.bgnbd.static.cov()
return(new("clv.bgnbd.static.cov",
clv.fitted.transactions.static.cov(cl=cl, clv.model=clv.model, clv.data=clv.data),
cbs = dt.cbs.bgnbd))
} |
get_data_plot_info <- function(ip, theta_range = c(-5, 5),
tif = FALSE) {
ip <- itempool(flatten_itempool_cpp(ip))
item_ids <- ip$resp_id
theta_range <- process_theta_range(theta_range, n_theta = 301)
theta <- theta_range$theta
theta_range <- theta_range$range
info_data <- info(ip = ip, theta = theta, tif = tif)
if (tif) colnames(info_data) <- "info" else
colnames(info_data) <- item_ids
info_data <- data.frame(cbind(theta = theta, info_data))
if (!tif)
info_data <- reshape(data = info_data,
direction = "long",
varying = list(item_ids),
v.names = "info",
timevar = "item_id",
times = item_ids,
idvar = "theta",
new.row.names = sequence(length(theta) * length(ip)))
return(info_data)
}
plot_info <- function(ip, tif = FALSE, theta_range = c(-5,5), focus_item = NULL,
title = "", suppress_plot = FALSE, base_r_graph = FALSE,
...)
{
args <- list(...)
if (!is(ip, "Itempool"))
tryCatch(
{ip <- itempool(ip)},
error = function(cond) {
message("\nip cannot be converted to an 'Itempool' object. \n")
stop(cond)
})
focus_item <- check_focus_item(focus_item, ip = ip, single_value = FALSE)
if (tif && !is.null(focus_item)) {
message("When 'tif = TRUE', focus_item cannot be plotted.")
focus_item <- NULL
}
if (title == "")
title = ifelse(
tif, "Test Information Function",
paste0("Item Information Function",
ifelse(is.null(focus_item), "",
paste0(" for '", paste0(focus_item, collapse = "', '"),
"'")))
)
theta_range <- process_theta_range(theta_range, n_theta = 501)
theta <- theta_range$theta
theta_range <- theta_range$range
info_data <- get_data_plot_info(ip = ip, theta_range = theta, tif = tif)
x_label <- expression("Theta ("*theta*")")
y_label <- ifelse(tif, "Test Information", "Information")
legend_title <- "Item ID"
if (!base_r_graph && requireNamespace("ggplot2", quietly = TRUE)) {
if (is.null(focus_item)) {
if (tif || ip$n$items == 1) {
p <- ggplot2::ggplot(data = info_data,
ggplot2::aes_string(x = 'theta', y = 'info'))
} else
p <- ggplot2::ggplot(data = info_data,
ggplot2::aes_string(x = 'theta', y = 'info',
color = 'item_id'))
p <- p +
ggplot2::geom_line(...) +
ggplot2::labs(x = x_label, y = y_label, title = title,
color = ifelse(tif, NA, legend_title)) +
ggplot2::theme(text = ggplot2::element_text(size = 18))
if (!tif)
p <- p +
ggplot2::guides(colour = ggplot2::guide_legend(
override.aes = list(alpha = 1, size = 4)))
} else {
p <- ggplot2::ggplot() +
ggplot2::geom_line(
data = info_data[!info_data$item_id %in% focus_item, ],
mapping = ggplot2::aes_string(x = "theta", y = "info",
group = "item_id"),
color = ifelse("color" %in% names(args), args$color, "tomato1"),
alpha = ifelse("alpha" %in% names(args), args$alpha, 0.4)) +
ggplot2::geom_line(
data = info_data[info_data$item_id %in% focus_item, ],
mapping = ggplot2::aes_string(x = "theta", y = "info",
group = "item_id")) +
ggplot2::labs(x = x_label, y = y_label, title = title)
}
p <- p + ggplot2::theme_bw()
if (suppress_plot) return(p) else print(p)
} else {
old_par <- graphics::par(no.readonly = TRUE)
y_lim = c(0, max(info_data$info))
if (is.null(focus_item)) {
if (tif) {
plot(x = info_data$theta, y = info_data$info,
xlim = theta_range,
ylab = y_label,
xlab = x_label,
ylim = y_lim,
main = title,
panel.first = graphics::grid(),
type = "l")
} else {
item_ids <- unique(info_data$item_id)
cl <- c("
"
if (ip$n$items > 1)
graphics::par(mar = c(5.1, 4.1, 4.1, 3 + .6 * max(nchar(item_ids))))
plot(0, 0,
xlim = theta_range,
ylim = y_lim,
ylab = y_label,
xlab = x_label,
main = title,
panel.first = graphics::grid(),
type = "n")
for (i in seq_along(item_ids)) {
temp <- info_data[info_data$item_id == item_ids[i], ]
graphics::lines(x = temp$theta, y = temp$info, col = cl[i], lty = 1,
lwd = ifelse(item_ids[i] %in% focus_item, 2, 1))
}
if (ip$n$items > 1)
graphics::legend("topleft", item_ids, col = cl, lty = 1, xpd = TRUE,
inset = c(1, 0), bty = "n", title = legend_title)
}
} else {
item_ids <- unique(info_data$item_id)
plot(0, 0,
xlim = theta_range,
ylim = y_lim,
ylab = y_label,
xlab = x_label,
main = title,
panel.first = graphics::grid(),
type = "n")
for (i in seq_along(item_ids)) {
if (item_ids[i] %in% focus_item) next
temp <- info_data[info_data$item_id == item_ids[i], ]
graphics::lines(x = temp$theta, y = temp$info, lty = 1,
col = ifelse("color" %in% names(args), args$color,
"tomato1"))
}
for (i in seq_along(focus_item)) {
temp <- info_data[info_data$item_id == focus_item[i], ]
graphics::lines(x = temp$theta, y = temp$info, col = "black", lty = 1,
lwd = 2)
}
}
p <- grDevices::recordPlot()
graphics::par(old_par)
return(invisible(p))
}
} |
library('forecast')
bonds <-
structure(c(5.83, 6.06, 6.58, 7.09, 7.31, 7.23, 7.43, 7.37, 7.6,
7.89, 8.12, 7.96, 7.93, 7.61, 7.33, 7.18, 6.74, 6.27, 6.38, 6.6,
6.3, 6.13, 6.02, 5.79, 5.73, 5.89, 6.37, 6.62, 6.85, 7.03, 6.99,
6.75, 6.95, 6.64, 6.3, 6.4, 6.69, 6.52, 6.8, 7.01, 6.82, 6.6,
6.32, 6.4, 6.11, 5.82, 5.87, 5.89, 5.63, 5.65, 5.73, 5.72, 5.73,
5.58, 5.53, 5.41, 4.87, 4.58, 4.89, 4.69, 4.78, 4.99, 5.23, 5.18,
5.54, 5.9, 5.8, 5.94, 5.91, 6.1, 6.03, 6.26, 6.66, 6.52, 6.26,
6, 6.42, 6.1, 6.04, 5.83, 5.8, 5.74, 5.72, 5.23, 5.14, 5.1, 4.89,
5.13, 5.37, 5.26, 5.23, 4.97, 4.76, 4.55, 4.61, 5.07, 5, 4.9,
5.28, 5.21, 5.15, 4.9, 4.62, 4.24, 3.88, 3.91, 4.04, 4.03, 4.02,
3.9, 3.79, 3.94, 3.56, 3.32, 3.93, 4.44, 4.29, 4.27, 4.29, 4.26,
4.13, 4.06, 3.81, 4.32, 4.7), .Tsp = c(1994, 2004.33333333333,
12), class = "ts")
usnetelec <-
structure(c(296.1, 334.1, 375.3, 403.8, 447, 476.3, 550.3, 603.9,
634.6, 648.5, 713.4, 759.2, 797.1, 857.9, 920, 987.2, 1058.4,
1147.5, 1217.8, 1332.8, 1445.5, 1535.1, 1615.9, 1753, 1864.1,
1870.3, 1920.8, 2040.9, 2127.4, 2209.4, 2250.7, 2289.6, 2298,
2244.4, 2313.4, 2419.5, 2473, 2490.5, 2575.3, 2707.4, 2967.3,
3038, 3073.8, 3083.9, 3197.2, 3247.5, 3353.5, 3444.2, 3492.2,
3620.3, 3694.8, 3802.1, 3736.6, 3858.5, 3848), .Tsp = c(1949,
2003, 1), class = "ts")
ukcars <-
structure(c(330.371, 371.051, 270.67, 343.88, 358.491, 362.822,
261.281, 240.355, 325.382, 316.7, 171.153, 257.217, 298.127,
251.464, 181.555, 192.598, 245.652, 245.526, 225.261, 238.211,
257.385, 228.461, 175.371, 226.462, 266.15, 287.251, 225.883,
265.313, 272.759, 234.134, 196.462, 205.551, 291.283, 284.422,
221.571, 250.697, 253.757, 267.016, 220.388, 277.801, 283.233,
302.072, 259.72, 297.658, 306.129, 322.106, 256.723, 341.877,
356.004, 361.54, 270.433, 311.105, 326.688, 327.059, 274.257,
367.606, 346.163, 348.211, 250.008, 292.518, 343.318, 343.429,
275.386, 329.747, 364.521, 378.448, 300.798, 331.757, 362.536,
389.133, 323.322, 391.832, 421.646, 416.823, 311.713, 381.902,
422.982, 427.722, 376.85, 458.58, 436.225, 441.487, 369.566,
450.723, 462.442, 468.232, 403.636, 413.948, 460.496, 448.932,
407.787, 469.408, 494.311, 433.24, 335.106, 378.795, 387.1, 372.395,
335.79, 397.08, 449.755, 402.252, 391.847, 385.89, 424.325, 433.28,
391.213, 408.74, 445.458, 428.202, 379.048, 394.042, 432.796), .Tsp = c(1977,
2005, 4), class = "ts")
visitors <-
structure(c(75.7, 75.4, 83.1, 82.9, 77.3, 105.7, 121.9, 150,
98, 118, 129.5, 110.6, 91.7, 94.8, 109.5, 105.1, 95, 130.3, 156.7,
190.1, 139.7, 147.8, 145.2, 132.7, 120.7, 116.5, 142, 140.4,
128, 165.7, 183.1, 222.8, 161.3, 180.4, 185.2, 160.5, 157.1,
163.8, 203.3, 196.9, 179.6, 207.3, 208, 245.8, 168.9, 191.1,
180, 160.1, 136.6, 142.7, 175.4, 161.4, 149.9, 174.1, 192.7,
247.4, 176.2, 192.8, 189.1, 181.1, 149.9, 157.3, 185.3, 178.2,
162.7, 190.6, 198.6, 253.1, 177.4, 190.6, 189.2, 168, 161.4,
172.2, 208.3, 199.3, 197.4, 216, 223.9, 266.8, 196.1, 238.2,
217.8, 203.8, 175.2, 176.9, 219.3, 199.1, 190, 229.3, 255, 302.4,
242.8, 245.5, 257.9, 226.3, 213.4, 204.6, 244.6, 239.9, 224,
267.2, 285.9, 344, 250.5, 304.3, 307.4, 255.1, 214.9, 230.9,
282.5, 265.4, 254, 301.6, 311, 384, 303.8, 319.1, 313.5, 294.2,
244.8, 261.4, 329.7, 304.9, 268.6, 320.7, 342.9, 422.3, 317.2,
392.7, 365.6, 333.2, 261.5, 306.9, 358.2, 329.2, 309.2, 350.4,
375.6, 465.2, 342.9, 408, 390.9, 325.9, 289.1, 308.2, 397.4,
330.4, 330.9, 366.5, 379.5, 448.3, 346.2, 353.6, 338.6, 341.1,
283.4, 304.2, 372.3, 323.7, 323.9, 354.8, 367.9, 457.6, 351,
398.6, 389, 334.1, 298.1, 317.1, 388.5, 355.6, 353.1, 397, 416.7,
460.8, 360.8, 434.6, 411.9, 405.6, 319.3, 347.9, 429, 372.9,
403, 426.5, 459.9, 559.9, 416.6, 429.2, 428.7, 405.4, 330.2,
370, 446.9, 384.6, 366.3, 378.5, 376.2, 523.2, 379.3, 437.2,
446.5, 360.3, 329.9, 339.4, 418.2, 371.9, 358.6, 428.9, 437,
534, 396.6, 427.5, 392.5, 321.5, 260.9, 308.3, 415.5, 362.2,
385.6, 435.3, 473.3, 566.6, 420.2, 454.8, 432.3, 402.8, 341.3,
367.3, 472, 405.8, 395.6, 449.9, 479.9, 593.1, 462.4, 501.6,
504.7, 409.5), .Tsp = c(1985.33333333333, 2005.25, 12), class = "ts")
par(mfrow = c(2,2))
mod1 <- ets(bonds)
mod2 <- ets(usnetelec)
mod3 <- ets(ukcars)
mod4 <- ets(visitors)
plot(forecast(mod1), main="(a) US 10-year bonds yield", xlab="Year", ylab="Percentage per annum")
plot(forecast(mod2), main="(b) US net electricity generation", xlab="Year", ylab="Billion kwh")
plot(forecast(mod3), main="(c) UK passenger motor vehicle production", xlab="Year", ylab="Thousands of cars")
plot(forecast(mod4), main="(d) Overseas visitors to Australia", xlab="Year", ylab="Thousands of people")
etsnames <- c(mod1$method, mod2$method, mod3$method, mod4$method)
etsnames <- gsub("Ad","A\\\\damped",etsnames)
etsfit <- ets(usnetelec)
etsfit
accuracy(etsfit)
fcast <- forecast(etsfit)
plot(fcast)
fcast
mod1 <- auto.arima(bonds, seasonal=FALSE, approximation=FALSE)
mod2 <- auto.arima(usnetelec)
mod3 <- auto.arima(ukcars)
mod4 <- auto.arima(visitors)
par(mfrow = c(2,2))
plot(forecast(mod1), main="(a) US 10-year bonds yield", xlab="Year", ylab="Percentage per annum")
plot(forecast(mod2), main="(b) US net electricity generation", xlab="Year", ylab="Billion kwh")
plot(forecast(mod3), main="(c) UK passenger motor vehicle production", xlab="Year", ylab="Thousands of cars")
plot(forecast(mod4), main="(d) Overseas visitors to Australia", xlab="Year", ylab="Thousands of people")
arimafit <- auto.arima(usnetelec)
fcast <- forecast(arimafit)
plot(fcast)
arimanames <- c(as.character(mod1),
as.character(mod2),
as.character(mod3),
as.character(mod4))
arimanames <-
gsub("\\[([0-9]*)\\]", "$_{\\1}$", arimanames)
summary(fcast) |
contrast_ratio <- function(col, col2 = "white",
plot = FALSE, border = FALSE, cex = 2, off = 0.05, mar = rep(0.5, 4), digits = 2L, ...)
{
if(length(col) < 1L || length(col2) < 1L) stop("both 'col' and 'col2' need to specify at least one color")
n <- max(c(length(col), length(col2)))
if(!(length(col) == n && length(col2) == n)) {
col <- rep_len(col, n)
col2 <- rep_len(col2, n)
}
ratio <- (relative_luminance(col) + 0.05)/(relative_luminance(col2) + 0.05)
ratio[ratio < 1] <- 1/ratio[ratio < 1]
plot <- rep_len(plot, 2L)
if(any(plot)) {
opar <- par(mar = mar)
on.exit(par(opar))
if(identical(border, FALSE)) border <- "transparent"
if(length(off) == 1L) off <- c(off, 0)
plot(0, 0, xlim = c(0, sum(plot)), ylim = c(0, n), type = "n", axes = FALSE, xlab = "", ylab = "", ...)
if(plot[1L]) {
rect(0L, 1L:n - 1L, 1L - off[2L], 1L:n - off[1L], col = col, border = if(isTRUE(border)) col2 else border)
text((1 - off[2L])/2, 1L:n - (1 - (1 - off[1L])/2), format(round(ratio, digits = digits), nsmall = 2L), cex = cex, col = col2)
}
if(plot[2L]) {
rect(0L + plot[1L], 0L:(n - 1L), 1L - off[2L] + plot[1L], 1L:n - off[1L], col = col2, border = if(isTRUE(border)) col else border)
text((1 - off[2L])/2 + plot[1L], 1L:n - (1 - (1 - off[1L])/2), format(round(ratio, digits = digits), nsmall = 2L), cex = cex, col = col)
}
invisible(ratio)
} else {
return(ratio)
}
}
relative_luminance <- function(col) {
rgb <- t(col2rgb(col))/255
rgb[] <- ifelse(rgb <= 0.03928, rgb/12.92, ((rgb + 0.055)/1.055)^2.4)
as.numeric(rgb %*% c(0.2126, 0.7152, 0.0722))
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.