modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
alexandrainst/da-hatespeech-classification-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
866
null
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hing-roberta-finetuned-code-mixed-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-roberta-finetuned-code-mixed-DS This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8512 - Accuracy: 0.7706 - Precision: 0.7217 - Recall: 0.7233 - F1: 0.7222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.932923543227153e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0216 | 1.0 | 497 | 1.1363 | 0.5392 | 0.4228 | 0.3512 | 0.2876 | | 0.9085 | 2.0 | 994 | 0.7599 | 0.6761 | 0.6247 | 0.6294 | 0.5902 | | 0.676 | 3.0 | 1491 | 0.7415 | 0.7505 | 0.6946 | 0.7034 | 0.6983 | | 0.4404 | 4.0 | 1988 | 0.8512 | 0.7706 | 0.7217 | 0.7233 | 0.7222 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
alexandrainst/da-hatespeech-detection-base
[ "pytorch", "tf", "safetensors", "bert", "text-classification", "da", "transformers", "license:cc-by-sa-4.0" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1,719
null
--- license: mit --- ### Transmutation Circles on Stable Diffusion This is the `<tcircle>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<tcircle> 0](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/30.jpeg) ![<tcircle> 1](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/24.jpeg) ![<tcircle> 2](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/19.jpeg) ![<tcircle> 3](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/5.jpeg) ![<tcircle> 4](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/6.jpeg) ![<tcircle> 5](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/15.jpeg) ![<tcircle> 6](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/20.jpeg) ![<tcircle> 7](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/14.jpeg) ![<tcircle> 8](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/9.jpeg) ![<tcircle> 9](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/3.jpeg) ![<tcircle> 10](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/0.jpeg) ![<tcircle> 11](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/33.jpeg) ![<tcircle> 12](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/17.jpeg) ![<tcircle> 13](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/12.jpeg) ![<tcircle> 14](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/13.jpeg) ![<tcircle> 15](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/2.jpeg) ![<tcircle> 16](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/16.jpeg) ![<tcircle> 17](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/25.jpeg) ![<tcircle> 18](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/18.jpeg) ![<tcircle> 19](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/22.jpeg) ![<tcircle> 20](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/10.jpeg) ![<tcircle> 21](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/31.jpeg) ![<tcircle> 22](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/7.jpeg) ![<tcircle> 23](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/1.jpeg) ![<tcircle> 24](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/27.jpeg) ![<tcircle> 25](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/32.jpeg) ![<tcircle> 26](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/34.jpeg) ![<tcircle> 27](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/26.jpeg) ![<tcircle> 28](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/21.jpeg) ![<tcircle> 29](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/23.jpeg) ![<tcircle> 30](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/29.jpeg) ![<tcircle> 31](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/11.jpeg) ![<tcircle> 32](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/28.jpeg) ![<tcircle> 33](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/4.jpeg) ![<tcircle> 34](https://huggingface.co/sd-concepts-library/transmutation-circles/resolve/main/concept_images/8.jpeg)
alexandrainst/da-ner-base
[ "pytorch", "tf", "bert", "token-classification", "da", "dataset:dane", "transformers", "license:cc-by-sa-4.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
78
null
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hing-roberta-finetuned-combined-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-roberta-finetuned-combined-DS This model is a fine-tuned version of [l3cube-pune/hing-roberta](https://huggingface.co/l3cube-pune/hing-roberta) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0005 - Accuracy: 0.6840 - Precision: 0.6568 - Recall: 0.6579 - F1: 0.6570 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.927975767245621e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.8684 | 1.0 | 1423 | 0.8762 | 0.6643 | 0.6561 | 0.6209 | 0.6215 | | 0.6545 | 2.0 | 2846 | 0.8043 | 0.6805 | 0.6497 | 0.6522 | 0.6502 | | 0.4267 | 3.0 | 4269 | 1.1337 | 0.6966 | 0.6668 | 0.6699 | 0.6680 | | 0.2762 | 4.0 | 5692 | 1.6520 | 0.6784 | 0.6558 | 0.6571 | 0.6553 | | 0.1535 | 5.0 | 7115 | 2.0005 | 0.6840 | 0.6568 | 0.6579 | 0.6570 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
DavidAMcIntosh/DialoGPT-small-rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Fined-tuned BERT trained on 6500 images with warmup, increased epoch and decreased learning rate
DavidAMcIntosh/small-rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### Riker Doll on Stable Diffusion This is the `<rikerdoll>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<rikerdoll> 0](https://huggingface.co/sd-concepts-library/riker-doll/resolve/main/concept_images/3.jpeg) ![<rikerdoll> 1](https://huggingface.co/sd-concepts-library/riker-doll/resolve/main/concept_images/0.jpeg) ![<rikerdoll> 2](https://huggingface.co/sd-concepts-library/riker-doll/resolve/main/concept_images/2.jpeg) ![<rikerdoll> 3](https://huggingface.co/sd-concepts-library/riker-doll/resolve/main/concept_images/1.jpeg) ![<rikerdoll> 4](https://huggingface.co/sd-concepts-library/riker-doll/resolve/main/concept_images/4.jpeg)
Davlan/bert-base-multilingual-cased-finetuned-amharic
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
109
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-cased-finetuned-basil results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-basil This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.8527 | 1.0 | 800 | 1.4425 | | 1.4878 | 2.0 | 1600 | 1.2740 | | 1.3776 | 3.0 | 2400 | 1.2273 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Tokenizers 0.12.1
Davlan/bert-base-multilingual-cased-finetuned-hausa
[ "pytorch", "tf", "jax", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
151
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
Davlan/bert-base-multilingual-cased-finetuned-luo
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-09-10T13:59:36Z
--- library_name: keras --- ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 0.0010000000474974513 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
Davlan/distilbert-base-multilingual-cased-masakhaner
[ "pytorch", "tf", "distilbert", "token-classification", "arxiv:2103.11811", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- language: en thumbnail: http://www.huggingtweets.com/apesahoy-dril_gpt2-stefgotbooted/1662822110359/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1514451221054173189/BWP3wqQj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1285982491636125701/IW0v36am_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">wint but Al & Humongous Ape MP & Agree to disagree ๐ŸŠ ๐ŸŠ ๐ŸŠ</div> <div style="text-align: center; font-size: 14px;">@apesahoy-dril_gpt2-stefgotbooted</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from wint but Al & Humongous Ape MP & Agree to disagree ๐ŸŠ ๐ŸŠ ๐ŸŠ. | Data | wint but Al | Humongous Ape MP | Agree to disagree ๐ŸŠ ๐ŸŠ ๐ŸŠ | | --- | --- | --- | --- | | Tweets downloaded | 3247 | 3247 | 3194 | | Retweets | 49 | 191 | 1674 | | Short tweets | 57 | 607 | 445 | | Tweets kept | 3141 | 2449 | 1075 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2eu4r1qp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-dril_gpt2-stefgotbooted's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2k50hu4q) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2k50hu4q/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-dril_gpt2-stefgotbooted') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/distilbert-base-multilingual-cased-ner-hrl
[ "pytorch", "tf", "distilbert", "token-classification", "transformers", "autotrain_compatible", "has_space" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
123,856
null
--- language: en thumbnail: http://www.huggingtweets.com/altgazza-apesahoy-stefgotbooted/1662823067384/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1567984237432770561/PVmuvVJj_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1285982491636125701/IW0v36am_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">TONY BELL & Humongous Ape MP & Agree to disagree ๐ŸŠ ๐ŸŠ ๐ŸŠ</div> <div style="text-align: center; font-size: 14px;">@altgazza-apesahoy-stefgotbooted</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from TONY BELL & Humongous Ape MP & Agree to disagree ๐ŸŠ ๐ŸŠ ๐ŸŠ. | Data | TONY BELL | Humongous Ape MP | Agree to disagree ๐ŸŠ ๐ŸŠ ๐ŸŠ | | --- | --- | --- | --- | | Tweets downloaded | 3247 | 3247 | 3194 | | Retweets | 24 | 191 | 1674 | | Short tweets | 287 | 607 | 445 | | Tweets kept | 2936 | 2449 | 1075 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/aiq4cmhm/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @altgazza-apesahoy-stefgotbooted's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/6lf780ul) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/6lf780ul/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/altgazza-apesahoy-stefgotbooted') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/m2m100_418M-eng-yor-mt
[ "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "M2M100ForConditionalGeneration" ], "model_type": "m2m_100", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- title: Daimond Price emoji: ๐Ÿ’ฉ colorFrom: blue colorTo: green sdk: streamlit sdk_version: 1.10.0 app_file: app.py pinned: false license: cc-by-3.0 --- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Davlan/m2m100_418M-yor-eng-mt
[ "pytorch", "m2m_100", "text2text-generation", "arxiv:2103.08647", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "M2M100ForConditionalGeneration" ], "model_type": "m2m_100", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1420389646492635139/alpfnIFD_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1065129059514933248/3hBEw0Rr_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1196519479364268034/5QpniWSP_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mirror Celeb & GroanBot - Daily Dad Jokes & Puns & Humongous Ape MP</div> <div style="text-align: center; font-size: 14px;">@apesahoy-groanbot-mirrorceleb</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mirror Celeb & GroanBot - Daily Dad Jokes & Puns & Humongous Ape MP. | Data | Mirror Celeb | GroanBot - Daily Dad Jokes & Puns | Humongous Ape MP | | --- | --- | --- | --- | | Tweets downloaded | 3250 | 3250 | 3247 | | Retweets | 257 | 1 | 191 | | Short tweets | 23 | 0 | 607 | | Tweets kept | 2970 | 3249 | 2449 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1t25sghh/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @apesahoy-groanbot-mirrorceleb's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/35jtsar3) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/35jtsar3/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/apesahoy-groanbot-mirrorceleb') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Davlan/xlm-roberta-base-finetuned-shona
[ "pytorch", "xlm-roberta", "fill-mask", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "XLMRobertaForMaskedLM" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - autotrain - vision - image-classification datasets: - davanstrien/autotrain-data-encyclopedia_britannica widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 3.1471897890349294 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1423853554 - CO2 Emissions (in grams): 3.1472 ## Validation Metrics - Loss: 0.033 - Accuracy: 0.993 - Precision: 0.993 - Recall: 1.000 - AUC: 0.996 - F1: 0.996
DecafNosebleed/scarabot-model
[ "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: mit tags: - generated_from_keras_callback model-index: - name: turkish-poem-generation results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # turkish-poem-generation This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 7.2815 - Validation Loss: 7.2658 - Epoch: 5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 2660, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.02} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 7.2815 | 7.2657 | 0 | | 7.2815 | 7.2659 | 1 | | 7.2817 | 7.2653 | 2 | | 7.2815 | 7.2657 | 3 | | 7.2816 | 7.2660 | 4 | | 7.2815 | 7.2658 | 5 | ### Framework versions - Transformers 4.20.1 - TensorFlow 2.6.4 - Datasets 2.1.0 - Tokenizers 0.12.1
Declan/Breitbart_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- tags: - image-classification - keras - tf metrics: - accuracy license: cc-by-sa-4.0 --- Model for MNIST on TensorFlow.
Declan/Breitbart_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [๐Ÿค— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results ๐Ÿ“ˆ [TensorBoard logs](https://huggingface.co/surfingdoggo/ddpm-butterflies-128/tensorboard?#scalars)
Declan/Breitbart_model_v7
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit --- ### disquieting muses on Stable Diffusion This is the `<muses>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<muses> 0](https://huggingface.co/sd-concepts-library/disquieting-muses/resolve/main/concept_images/5.jpeg) ![<muses> 1](https://huggingface.co/sd-concepts-library/disquieting-muses/resolve/main/concept_images/3.jpeg) ![<muses> 2](https://huggingface.co/sd-concepts-library/disquieting-muses/resolve/main/concept_images/0.jpeg) ![<muses> 3](https://huggingface.co/sd-concepts-library/disquieting-muses/resolve/main/concept_images/2.jpeg) ![<muses> 4](https://huggingface.co/sd-concepts-library/disquieting-muses/resolve/main/concept_images/1.jpeg) ![<muses> 5](https://huggingface.co/sd-concepts-library/disquieting-muses/resolve/main/concept_images/4.jpeg)
Declan/Breitbart_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit --- ### ned-flanders on Stable Diffusion This is the `<flanders>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<flanders> 0](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/5.jpeg) ![<flanders> 1](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/6.jpeg) ![<flanders> 2](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/9.jpeg) ![<flanders> 3](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/3.jpeg) ![<flanders> 4](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/0.jpeg) ![<flanders> 5](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/12.jpeg) ![<flanders> 6](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/2.jpeg) ![<flanders> 7](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/10.jpeg) ![<flanders> 8](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/7.jpeg) ![<flanders> 9](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/1.jpeg) ![<flanders> 10](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/11.jpeg) ![<flanders> 11](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/4.jpeg) ![<flanders> 12](https://huggingface.co/sd-concepts-library/ned-flanders/resolve/main/concept_images/8.jpeg)
Declan/Breitbart_modelv7
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### Fluid_acrylic_Jellyfish_creatures_style_of_Carl_Ingram_art on Stable Diffusion This is the `<jelly-core>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<jelly-core> 0](https://huggingface.co/sd-concepts-library/fluid-acrylic-jellyfish-creatures-style-of-carl-ingram-art/resolve/main/concept_images/3.jpeg) ![<jelly-core> 1](https://huggingface.co/sd-concepts-library/fluid-acrylic-jellyfish-creatures-style-of-carl-ingram-art/resolve/main/concept_images/0.jpeg) ![<jelly-core> 2](https://huggingface.co/sd-concepts-library/fluid-acrylic-jellyfish-creatures-style-of-carl-ingram-art/resolve/main/concept_images/2.jpeg) ![<jelly-core> 3](https://huggingface.co/sd-concepts-library/fluid-acrylic-jellyfish-creatures-style-of-carl-ingram-art/resolve/main/concept_images/1.jpeg) ![<jelly-core> 4](https://huggingface.co/sd-concepts-library/fluid-acrylic-jellyfish-creatures-style-of-carl-ingram-art/resolve/main/concept_images/4.jpeg)
Declan/CNN_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-09-10T22:07:33Z
--- library_name: stable-baselines3 tags: - HalfCheetahBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - metrics: - type: mean_reward value: 747.07 +/- 1132.58 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: HalfCheetahBulletEnv-v0 type: HalfCheetahBulletEnv-v0 --- # **A2C** Agent playing **HalfCheetahBulletEnv-v0** This is a trained model of a **A2C** agent playing **HalfCheetahBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Declan/ChicagoTribune_model_v1
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- tags: - spacy language: - en model-index: - name: en_stonk_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8565043157 - name: NER Recall type: recall value: 0.8348858173 - name: NER F Score type: f_score value: 0.8455569081 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9726250474 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.9165718428 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.8978441095 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.9038596962 --- pipeline to extract stonk names, need to adjust for general use as some stonk names are very short. Based on the standard spacy pipeline, but added a pipe and wanted to distribute it easily | Feature | Description | | --- | --- | | **Name** | `en_stonk_pipeline` | | **Version** | `0.0.1` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `entity_ruler` | | **Components** | `entity_ruler` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)<br />[ClearNLP Constituent-to-Dependency Conversion](https://github.com/clir/clearnlp-guidelines/blob/master/md/components/dependency_conversion.md) (Emory University)<br />[WordNet 3.0](https://wordnet.princeton.edu/) (Princeton University) | | **License** | n/a | | **Author** | [FriendlyUser](friendlyuser.github.io) | ### Label Scheme <details> <summary>View label scheme (8 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`entity_ruler`** | `COMPANY`, `COUNTRY`, `DIVIDENDS`, `INDEX`, `MAYBE`, `STOCK`, `STOCK_EXCHANGE`, `THINGS` | </details> ### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 99.93 | | `TOKEN_P` | 99.57 | | `TOKEN_R` | 99.58 | | `TOKEN_F` | 99.57 | | `TAG_ACC` | 97.26 | | `SENTS_P` | 91.92 | | `SENTS_R` | 88.90 | | `SENTS_F` | 90.39 | | `DEP_UAS` | 91.66 | | `DEP_LAS` | 89.78 | | `ENTS_P` | 85.65 | | `ENTS_R` | 83.49 | | `ENTS_F` | 84.56 |
Declan/ChicagoTribune_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9215 - name: F1 type: f1 value: 0.9215576355442753 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2166 - Accuracy: 0.9215 - F1: 0.9216 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8299 | 1.0 | 250 | 0.3121 | 0.907 | 0.9043 | | 0.2489 | 2.0 | 500 | 0.2166 | 0.9215 | 0.9216 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.11.0 - Datasets 2.0.0 - Tokenizers 0.11.0
Declan/ChicagoTribune_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit --- ### klance on Stable Diffusion This is the `<klance>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<klance> 0](https://huggingface.co/sd-concepts-library/klance/resolve/main/concept_images/5.jpeg) ![<klance> 1](https://huggingface.co/sd-concepts-library/klance/resolve/main/concept_images/3.jpeg) ![<klance> 2](https://huggingface.co/sd-concepts-library/klance/resolve/main/concept_images/0.jpeg) ![<klance> 3](https://huggingface.co/sd-concepts-library/klance/resolve/main/concept_images/2.jpeg) ![<klance> 4](https://huggingface.co/sd-concepts-library/klance/resolve/main/concept_images/1.jpeg) ![<klance> 5](https://huggingface.co/sd-concepts-library/klance/resolve/main/concept_images/4.jpeg)
Declan/NPR_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.9237981101420746 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2239 - Accuracy: 0.924 - F1: 0.9238 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8525 | 1.0 | 250 | 0.3308 | 0.9045 | 0.9010 | | 0.2601 | 2.0 | 500 | 0.2239 | 0.924 | 0.9238 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Declan/NewYorkTimes_model_v3
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- # Hermione DialoGPT Model
Declan/NewYorkTimes_model_v4
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - metrics: - type: mean_reward value: 200.50 +/- 30.64 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Declan/NewYorkTimes_model_v6
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit --- ### unfinished building on Stable Diffusion This is the `<unfinished-building>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<unfinished-building> 0](https://huggingface.co/sd-concepts-library/unfinished-building/resolve/main/concept_images/0.jpeg) ![<unfinished-building> 1](https://huggingface.co/sd-concepts-library/unfinished-building/resolve/main/concept_images/1.jpeg)
Declan/NewYorkTimes_model_v8
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit --- ### Teelip-IR-Landscape on Stable Diffusion This is the `<teelip-ir-landscape>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<teelip-ir-landscape> 0](https://huggingface.co/sd-concepts-library/teelip-ir-landscape/resolve/main/concept_images/3.jpeg) ![<teelip-ir-landscape> 1](https://huggingface.co/sd-concepts-library/teelip-ir-landscape/resolve/main/concept_images/0.jpeg) ![<teelip-ir-landscape> 2](https://huggingface.co/sd-concepts-library/teelip-ir-landscape/resolve/main/concept_images/2.jpeg) ![<teelip-ir-landscape> 3](https://huggingface.co/sd-concepts-library/teelip-ir-landscape/resolve/main/concept_images/1.jpeg) ![<teelip-ir-landscape> 4](https://huggingface.co/sd-concepts-library/teelip-ir-landscape/resolve/main/concept_images/4.jpeg)
Declan/Politico_model_v2
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="huijian222/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
Declan/Politico_model_v3
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit --- ### Road to Ruin on Stable Diffusion This is the `<RtoR>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<RtoR> 0](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/5.jpeg) ![<RtoR> 1](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/6.jpeg) ![<RtoR> 2](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/3.jpeg) ![<RtoR> 3](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/0.jpeg) ![<RtoR> 4](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/2.jpeg) ![<RtoR> 5](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/7.jpeg) ![<RtoR> 6](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/1.jpeg) ![<RtoR> 7](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/4.jpeg) ![<RtoR> 8](https://huggingface.co/sd-concepts-library/road-to-ruin/resolve/main/concept_images/8.jpeg)
Declan/Politico_model_v4
[ "pytorch", "bert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: mit --- ### Piotr Jablonski on Stable Diffusion This is the `<piotr-jablonski>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<piotr-jablonski> 0](https://huggingface.co/sd-concepts-library/piotr-jablonski/resolve/main/concept_images/5.jpeg) ![<piotr-jablonski> 1](https://huggingface.co/sd-concepts-library/piotr-jablonski/resolve/main/concept_images/6.jpeg) ![<piotr-jablonski> 2](https://huggingface.co/sd-concepts-library/piotr-jablonski/resolve/main/concept_images/3.jpeg) ![<piotr-jablonski> 3](https://huggingface.co/sd-concepts-library/piotr-jablonski/resolve/main/concept_images/0.jpeg) ![<piotr-jablonski> 4](https://huggingface.co/sd-concepts-library/piotr-jablonski/resolve/main/concept_images/2.jpeg) ![<piotr-jablonski> 5](https://huggingface.co/sd-concepts-library/piotr-jablonski/resolve/main/concept_images/1.jpeg) ![<piotr-jablonski> 6](https://huggingface.co/sd-concepts-library/piotr-jablonski/resolve/main/concept_images/4.jpeg)
DeepBasak/Slack
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### nixeu on Stable Diffusion This is the `<nixeu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ![<nixeu> 6](https://cdn.discordapp.com/attachments/1004159122335354970/1018669275361329202/unknown.png) Here is the new concept you will be able to use as a `style`: ![<nixeu> 0](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/5.jpeg) ![<nixeu> 1](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/3.jpeg) ![<nixeu> 2](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/0.jpeg) ![<nixeu> 3](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/2.jpeg) ![<nixeu> 4](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/1.jpeg) ![<nixeu> 5](https://huggingface.co/sd-concepts-library/nixeu/resolve/main/concept_images/4.jpeg)
DeepChem/ChemBERTa-5M-MLM
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
null
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="anechaev/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
DeividasM/wav2vec2-large-xlsr-53-lithuanian
[ "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "lt", "dataset:common_voice", "transformers", "audio", "speech", "xlsr-fine-tuning-week", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- license: mit --- ### leica on Stable Diffusion This is the `<leica>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<leica> 0](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/3.jpeg) ![<leica> 1](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/0.jpeg) ![<leica> 2](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/2.jpeg) ![<leica> 3](https://huggingface.co/sd-concepts-library/leica/resolve/main/concept_images/1.jpeg)
Deniskin/emailer_medium_300
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: full metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [๐Ÿค— Diffusers](https://github.com/huggingface/diffusers) library on the `full` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results ๐Ÿ“ˆ [TensorBoard logs](https://huggingface.co/sbatova/ddpm-butterflies-128/tensorboard?#scalars)
DeskDown/MarianMixFT_en-hi
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-base-roberta-base-finetuned-mbti-0911 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-roberta-base-finetuned-mbti-0911 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 4.1338 - eval_runtime: 25.7058 - eval_samples_per_second: 67.495 - eval_steps_per_second: 8.442 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1
DeskDown/MarianMixFT_en-id
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- language: en pipeline_tag: fill-mask tags: - legal license: mit --- ### InLegalBERT Model and tokenizer files for the InLegalBERT model from the paper [Pre-training Transformers on Indian Legal Text](https://arxiv.org/abs/2209.06049). ### Training Data For building the pre-training corpus of Indian legal text, we collected a large corpus of case documents from the Indian Supreme Court and many High Courts of India. The court cases in our dataset range from 1950 to 2019, and belong to all legal domains, such as Civil, Criminal, Constitutional, and so on. In total, our dataset contains around 5.4 million Indian legal documents (all in the English language). The raw text corpus size is around 27 GB. ### Training Setup This model is initialized with the [LEGAL-BERT-SC model](https://huggingface.co/nlpaueb/legal-bert-base-uncased) from the paper [LEGAL-BERT: The Muppets straight out of Law School](https://aclanthology.org/2020.findings-emnlp.261/). In our work, we refer to this model as LegalBERT, and our re-trained model as InLegalBERT. We further train this model on our data for 300K steps on the Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) tasks. ### Model Overview This model uses the same tokenizer as [LegalBERT](https://huggingface.co/nlpaueb/legal-bert-base-uncased). This model has the same configuration as the [bert-base-uncased model](https://huggingface.co/bert-base-uncased): 12 hidden layers, 768 hidden dimensionality, 12 attention heads, ~110M parameters. ### Usage Using the model to get embeddings/representations for a piece of text ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("law-ai/InLegalBERT") text = "Replace this string with yours" encoded_input = tokenizer(text, return_tensors="pt") model = AutoModel.from_pretrained("law-ai/InLegalBERT") output = model(**encoded_input) last_hidden_state = output.last_hidden_state ``` ### Fine-tuning Results We have fine-tuned all pre-trained models on 3 legal tasks with Indian datasets: * Legal Statute Identification ([ILSI Dataset](https://arxiv.org/abs/2112.14731))[Multi-label Text Classification]: Identifying relevant statutes (law articles) based on the facts of a court case * Semantic Segmentation ([ISS Dataset](https://arxiv.org/abs/1911.05405))[Sentence Tagging]: Segmenting the document into 7 functional parts (semantic segments) such as Facts, Arguments, etc. * Court Judgment Prediction ([ILDC Dataset](https://arxiv.org/abs/2105.13562))[Binary Text Classification]: Predicting whether the claims/petitions of a court case will be accepted/rejected InLegalBERT beats LegalBERT as well as all other baselines/variants we have used, across all three tasks. For details, see our [paper](https://arxiv.org/abs/2209.06049). ### Citation ``` @inproceedings{paul-2022-pretraining, url = {https://arxiv.org/abs/2209.06049}, author = {Paul, Shounak and Mandal, Arpan and Goyal, Pawan and Ghosh, Saptarshi}, title = {Pre-trained Language Models for the Legal Domain: A Case Study on Indian Law}, booktitle = {Proceedings of 19th International Conference on Artificial Intelligence and Law - ICAIL 2023} year = {2023}, } ``` ### About Us We are a group of researchers from the Department of Computer Science and Technology, Indian Insitute of Technology, Kharagpur. Our research interests are primarily ML and NLP applications for the legal domain, with a special focus on the challenges and oppurtunites for the Indian legal scenario. We have, and are currently working on several legal tasks such as: * named entity recognition, summarization of legal documents * semantic segmentation of legal documents * legal statute identification from facts, court judgment prediction * legal document matching You can find our publicly available codes and datasets [here](https://github.com/Law-AI).
DeskDown/MarianMixFT_en-ms
[ "pytorch", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-09-11T12:31:09Z
The ELECTRA-large model, fine-tuned on the CoLA subset of the GLUE benchmark.
Despin89/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.de metrics: - name: F1 type: f1 value: 0.8648740833380706 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - F1: 0.8649 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2553 | 1.0 | 525 | 0.1575 | 0.8279 | | 0.1284 | 2.0 | 1050 | 0.1386 | 0.8463 | | 0.0813 | 3.0 | 1575 | 0.1365 | 0.8649 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
Dev-DGT/food-dbert-multiling
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- language: - uk tags: - automatic-speech-recognition - audio license: cc-by-nc-sa-4.0 datasets: - https://github.com/egorsmkv/speech-recognition-uk - mozilla-foundation/common_voice_6_1 metrics: - wer model-index: - name: Ukrainian pruned_transducer_stateless5 v1.0.0 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice uk type: mozilla-foundation/common_voice_6_1 split: test args: uk metrics: - name: Validation WER type: wer value: 13.37 --- `pruned_transducer_stateless5` with Conformer encoder for Ukrainian: https://github.com/proger/icefall/tree/uk [Data Filtering](https://github.com/proger/uk) [Tensorboard run](https://tensorboard.dev/experiment/8WizOEvHR8CqmQAOsr4ALg/) ``` ./pruned_transducer_stateless5/train.py \ --world-size 2 \ --num-epochs 30 \ --start-epoch 1 \ --full-libri 1 \ --exp-dir pruned_transducer_stateless5/exp-uk-shuf \ --max-duration 500 \ --use-fp16 1 \ --num-encoder-layers 18 \ --dim-feedforward 1024 \ --nhead 4 \ --encoder-dim 256 \ --decoder-dim 512 \ --joiner-dim 512 \ --bpe-model uk/data/lang_bpe_250/bpe.model ``` ``` ./pruned_transducer_stateless5/decode.py \ --epoch 27 \ --avg 15 \ --use-averaged-model True \ --exp-dir pruned_transducer_stateless5/exp-uk-shuf \ --decoding-method fast_beam_search \ --num-encoder-layers 18 \ --dim-feedforward 1024 \ --nhead 4 \ --encoder-dim 256 \ --decoder-dim 512 \ --joiner-dim 512 \ --bpe-model uk/data/lang_bpe_250/bpe.model \ --lang-dir uk/data/lang_bpe_250 ```
Devmapall/paraphrase-quora
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
3
null
--- license: apache-2.0 tags: - translation - generated_from_trainer datasets: - kde4 metrics: - bleu model-index: - name: marian-finetuned-kde4-en-to-vi results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: kde4 type: kde4 config: en-vi split: train args: en-vi metrics: - name: Bleu type: bleu value: 51.20851369397996 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-vi This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-vi](https://huggingface.co/Helsinki-NLP/opus-mt-en-vi) on the kde4 dataset. It achieves the following results on the evaluation set: - Loss: 1.2134 - Bleu: 51.2085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Dilmk2/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2022-09-11T14:51:35Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-CartPole-v1 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 463.35 +/- 98.40 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
DimaOrekhov/transformer-method-name
[ "pytorch", "encoder-decoder", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: mit --- ### cornell box on Stable Diffusion This is the `<cornell-box>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<cornell-box> 0](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/0.jpeg) ![<cornell-box> 1](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/1.jpeg) ![<cornell-box> 2](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/2.jpeg) ![<cornell-box> 3](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/3.jpeg) ![<cornell-box> 4](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/4.jpeg) ![<cornell-box> 5](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/5.jpeg) ![<cornell-box> 6](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/6.jpeg) ![<cornell-box> 7](https://huggingface.co/sd-concepts-library/cornell-box/resolve/main/concept_images/7.jpeg)
DingleyMaillotUrgell/homer-bot
[ "pytorch", "gpt2", "text-generation", "en", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- pipeline_tag: token-classification datasets: - conll2003 metrics: - overall_precision - overall_recall - overall_f1 - overall_accuracy - total_time_in_seconds - samples_per_second - latency_in_seconds tags: - distilbert --- **task**: `token-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **dataset**: [{'path': 'conll2003', 'eval_split': 'validation', 'data_keys': {'primary': 'tokens'}, 'ref_keys': ['ner_tags'], 'name': None, 'calibration_split': 'train'}] * **name_or_path**: `elastic/distilbert-base-uncased-finetuned-conll03-english` * **from_transformers**: `True` * **operators_to_quantize**: `['Add', 'MatMul']` * **calibration**: * **method**: `percentile` * **num_calibration_samples**: `128` * **calibration_histogram_percentile**: `99.999` Benchmarked parameters: * **framework**: `onnxruntime`, `pytorch` * **quantization_approach**: `dynamic`, `static` * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` * **per_channel**: `False`, `True` * **framework_args**: `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}`, `{}` * **reduce_range**: `True`, `False` * **apply_quantization**: `True`, `False` # Evaluation ## Non-time metrics | framework | quantization_approach | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | overall_precision | | overall_recall | | overall_f1 | | overall_accuracy | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :------------: | :-: | :--------: | :-: | :--------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 0.936 | \| | 0.944 | \| | 0.940 | \| | 0.988 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.935 | \| | 0.943 | \| | 0.939 | \| | 0.988 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.926 | \| | 0.931 | \| | 0.929 | \| | 0.987 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.000 | \| | 0.000 | \| | 0.000 | \| | 0.833 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.934 | \| | 0.944 | \| | 0.939 | \| | 0.988 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.935 | \| | 0.943 | \| | 0.939 | \| | 0.988 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.926 | \| | 0.931 | \| | 0.929 | \| | 0.987 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.000 | \| | 0.000 | \| | 0.000 | \| | 0.833 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.934 | \| | 0.944 | \| | 0.939 | \| | 0.988 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.913 | \| | 0.792 | \| | 0.848 | \| | 0.969 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.913 | \| | 0.792 | \| | 0.848 | \| | 0.969 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.000 | \| | 0.000 | \| | 0.000 | \| | 0.833 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.896 | \| | 0.783 | \| | 0.836 | \| | 0.968 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.925 | \| | 0.844 | \| | 0.883 | \| | 0.975 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.925 | \| | 0.844 | \| | 0.883 | \| | 0.975 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.045 | \| | 0.004 | \| | 0.008 | \| | 0.825 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.922 | \| | 0.839 | \| | 0.879 | \| | 0.975 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 0.936 | \| | 0.944 | \| | 0.940 | \| | 0.988 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | framework | quantization_approach | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 14.22 | \| | 70.33 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.22 | \| | 97.87 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.16 | \| | 98.47 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.52 | \| | 95.07 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.70 | \| | 93.47 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.22 | \| | 97.87 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.24 | \| | 97.67 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.36 | \| | 96.53 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.50 | \| | 95.27 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.98 | \| | 91.07 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.31 | \| | 88.47 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 11.23 | \| | 89.07 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.48 | \| | 87.20 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 13.54 | \| | 73.87 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 13.74 | \| | 72.80 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 13.80 | \| | 72.53 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.08 | \| | 71.07 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 31.23 | \| | 32.07 | Below, time metrics for batch size = 1, input length = 64. | framework | quantization_approach | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 24.52 | \| | 40.80 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.47 | \| | 54.20 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.53 | \| | 54.00 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.85 | \| | 53.07 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.14 | \| | 52.27 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.50 | \| | 54.07 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.50 | \| | 54.07 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.69 | \| | 53.53 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.46 | \| | 51.40 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.42 | \| | 49.00 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.91 | \| | 50.27 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.20 | \| | 49.53 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 20.74 | \| | 48.27 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.91 | \| | 40.20 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.35 | \| | 41.13 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.99 | \| | 40.07 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.95 | \| | 40.13 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 41.31 | \| | 24.27 | Below, time metrics for batch size = 1, input length = 128. | framework | quantization_approach | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 46.79 | \| | 21.40 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.84 | \| | 27.93 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.07 | \| | 28.53 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.71 | \| | 28.00 | | `onnxruntime` | `dynamic` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.91 | \| | 27.87 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.42 | \| | 28.27 | | `onnxruntime` | `dynamic` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.22 | \| | 28.40 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.51 | \| | 28.20 | | `onnxruntime` | `dynamic` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.90 | \| | 27.87 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.88 | \| | 25.13 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 39.27 | \| | 25.47 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.37 | \| | 25.40 | | `onnxruntime` | `static` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 39.16 | \| | 25.60 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 44.43 | \| | 22.53 | | `onnxruntime` | `static` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 46.13 | \| | 21.73 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 45.48 | \| | 22.00 | | `onnxruntime` | `static` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 45.82 | \| | 21.87 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 53.93 | \| | 18.60 |
DivyanshuSheth/T5-Seq2Seq-Final
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - conversational --- #My discord server DialoGPT
Dizoid/Lll
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit --- ### sculptural style on Stable Diffusion This is the `<diaosu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<diaosu> 0](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/5.jpeg) ![<diaosu> 1](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/3.jpeg) ![<diaosu> 2](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/0.jpeg) ![<diaosu> 3](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/2.jpeg) ![<diaosu> 4](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/1.jpeg) ![<diaosu> 5](https://huggingface.co/sd-concepts-library/sculptural-style/resolve/main/concept_images/4.jpeg)
Dkwkk/W
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - autotrain - vision - image-classification datasets: - nuts/autotrain-data-human_art_or_not widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace co2_eq_emissions: emissions: 1.7172622019575956 --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 1432453604 - CO2 Emissions (in grams): 1.7173 ## Validation Metrics - Loss: 0.000 - Accuracy: 1.000 - Precision: 1.000 - Recall: 1.000 - AUC: 1.000 - F1: 1.000
Dmitry12/sber
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit pipeline_tag: question-answering widget: - context: "ะŸัƒัˆะบะธะฝ ั€ะพะดะธะปัั 6 ะธัŽะปั 1799 ะณะพะดะฐ" - text: "ะšะพะณะดะฐ ั€ะพะดะธะปัั ะŸัƒัˆะบะธะฝ?" example_title: "test" --- ะพะฑัƒั‡ะตะฝะฝั‹ะน rubert ะพั‚ cointegrated/rubert-tiny2. ั€ะฐะทะผะตั€ ะฒั‹ะฑะพั€ะบะธ - 4. ะญะฟะพั…ะธ - 16. ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="Den4ikAI/rubert-tiny-squad", tokenizer="Den4ikAI/rubert-tiny-squad" ) predictions = qa_pipeline({ 'context': "ะŸัƒัˆะบะธะฝ ั€ะพะดะธะปัั 6 ะธัŽะปั 1799 ะณะพะดะฐ", 'question': "ะšะพะณะดะฐ ั€ะพะดะธะปัั ะŸัƒัˆะบะธะฝ?" }) print(predictions) # output: #{'score': 0.9413797664642334, 'start': 15, 'end': 31, 'answer': '6 ะธัŽะปั 1799 ะณะพะดะฐ'} ```
DongHai/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- pipeline_tag: text-classification datasets: - glue metrics: - accuracy - total_time_in_seconds - samples_per_second - latency_in_seconds tags: - distilbert --- **task**: `text-classification` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **dataset**: [{'path': 'glue', 'eval_split': 'validation', 'data_keys': {'primary': 'sentence'}, 'ref_keys': ['label'], 'name': 'sst2', 'calibration_split': 'train'}] * **name_or_path**: `distilbert-base-uncased-finetuned-sst-2-english` * **from_transformers**: `True` * **calibration**: * **method**: `percentile` * **num_calibration_samples**: `128` * **calibration_histogram_percentile**: `99.999` Benchmarked parameters: * **framework**: `onnxruntime`, `pytorch` * **quantization_approach**: `dynamic`, `static` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` * **per_channel**: `False`, `True` * **framework_args**: `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}`, `{}` * **reduce_range**: `True`, `False` * **apply_quantization**: `True`, `False` # Evaluation ## Non-time metrics | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | accuracy | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.898 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.893 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.490 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.898 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.893 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.490 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.911 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.911 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.491 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.908 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.899 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.499 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.900 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.906 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.901 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.901 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 0.901 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 0.911 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 14.50 | \| | 69.00 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.19 | \| | 98.13 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.66 | \| | 93.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.45 | \| | 95.67 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.72 | \| | 93.33 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.40 | \| | 96.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.16 | \| | 98.40 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.40 | \| | 96.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.86 | \| | 92.07 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.43 | \| | 69.33 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.68 | \| | 68.13 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.40 | \| | 69.47 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.79 | \| | 67.60 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.80 | \| | 67.60 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.13 | \| | 70.80 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.54 | \| | 68.80 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.60 | \| | 68.53 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 11.23 | \| | 89.13 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.18 | \| | 89.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 11.39 | \| | 87.87 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 11.31 | \| | 88.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 13.73 | \| | 72.87 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.42 | \| | 69.40 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.09 | \| | 71.00 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 13.78 | \| | 72.60 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 16.11 | \| | 62.13 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 15.97 | \| | 62.67 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 15.82 | \| | 63.27 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 15.94 | \| | 62.73 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.03 | \| | 52.60 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.99 | \| | 52.67 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.93 | \| | 52.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.65 | \| | 53.67 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 31.28 | \| | 32.00 | Below, time metrics for batch size = 1, input length = 64. | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 24.59 | \| | 40.67 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.67 | \| | 53.60 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.16 | \| | 52.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.97 | \| | 52.73 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.29 | \| | 51.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.13 | \| | 52.33 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.64 | \| | 53.67 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.01 | \| | 52.60 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.96 | \| | 52.80 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.63 | \| | 40.67 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.28 | \| | 39.60 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.75 | \| | 40.47 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.97 | \| | 40.07 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 25.16 | \| | 39.80 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.49 | \| | 40.87 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.88 | \| | 40.20 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.17 | \| | 39.73 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.05 | \| | 49.93 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 20.76 | \| | 48.20 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 20.75 | \| | 48.20 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 20.23 | \| | 49.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.79 | \| | 40.40 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.17 | \| | 39.73 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.14 | \| | 41.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.27 | \| | 39.60 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 27.97 | \| | 35.80 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 27.43 | \| | 36.47 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 28.17 | \| | 35.53 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 28.16 | \| | 35.53 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 33.24 | \| | 30.13 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 32.46 | \| | 30.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 32.39 | \| | 30.93 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 32.75 | \| | 30.53 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 41.25 | \| | 24.27 | Below, time metrics for batch size = 1, input length = 128. | framework | quantization_approach | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 46.51 | \| | 21.53 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.33 | \| | 28.33 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.92 | \| | 27.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.56 | \| | 28.13 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.32 | \| | 27.53 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.53 | \| | 28.20 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.96 | \| | 27.87 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 35.42 | \| | 28.27 | | `onnxruntime` | `dynamic` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.06 | \| | 27.80 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.40 | \| | 21.13 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.14 | \| | 21.27 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.46 | \| | 21.13 | | `onnxruntime` | `dynamic` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.26 | \| | 21.20 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.48 | \| | 21.07 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.08 | \| | 21.27 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.02 | \| | 21.33 | | `onnxruntime` | `dynamic` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.05 | \| | 21.27 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.63 | \| | 25.27 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 39.52 | \| | 25.33 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 39.78 | \| | 25.20 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 40.01 | \| | 25.00 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 44.24 | \| | 22.67 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 44.55 | \| | 22.47 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 45.74 | \| | 21.87 | | `onnxruntime` | `static` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 44.12 | \| | 22.67 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 51.41 | \| | 19.47 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 52.52 | \| | 19.07 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 51.25 | \| | 19.53 | | `onnxruntime` | `static` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 51.51 | \| | 19.47 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 59.37 | \| | 16.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 58.28 | \| | 17.20 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 59.37 | \| | 16.87 | | `onnxruntime` | `static` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 58.28 | \| | 17.20 | | `pytorch` | `None` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 53.72 | \| | 18.67 |
Waynehillsdev/wav2vec2-base-timit-demo-colab
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers", "generated_from_trainer", "license:apache-2.0" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- license: mit --- ### swamp-choe-2 on Stable Diffusion This is the `<cat-toy>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<cat-toy> 0](https://huggingface.co/sd-concepts-library/swamp-choe-2/resolve/main/concept_images/0.jpeg) ![<cat-toy> 1](https://huggingface.co/sd-concepts-library/swamp-choe-2/resolve/main/concept_images/2.jpeg) ![<cat-toy> 2](https://huggingface.co/sd-concepts-library/swamp-choe-2/resolve/main/concept_images/1.jpeg)
DoyyingFace/bert-asian-hate-tweets-asian-unclean-warmup-25
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- library_name: sklearn tags: - sklearn - skops - tabular-classification model_file: skops-ken4gzoq.pkl widget: structuredData: area error: - 30.29 - 96.05 - 48.31 compactness error: - 0.01911 - 0.01652 - 0.01484 concave points error: - 0.01037 - 0.0137 - 0.01093 concavity error: - 0.02701 - 0.02269 - 0.02813 fractal dimension error: - 0.003586 - 0.001698 - 0.002461 mean area: - 481.9 - 1130.0 - 748.9 mean compactness: - 0.1058 - 0.1029 - 0.1223 mean concave points: - 0.03821 - 0.07951 - 0.08087 mean concavity: - 0.08005 - 0.108 - 0.1466 mean fractal dimension: - 0.06373 - 0.05461 - 0.05796 mean perimeter: - 81.09 - 123.6 - 101.7 mean radius: - 12.47 - 18.94 - 15.46 mean smoothness: - 0.09965 - 0.09009 - 0.1092 mean symmetry: - 0.1925 - 0.1582 - 0.1931 mean texture: - 18.6 - 21.31 - 19.48 perimeter error: - 2.497 - 5.486 - 3.094 radius error: - 0.3961 - 0.7888 - 0.4743 smoothness error: - 0.006953 - 0.004444 - 0.00624 symmetry error: - 0.01782 - 0.01386 - 0.01397 texture error: - 1.044 - 0.7975 - 0.7859 worst area: - 677.9 - 1866.0 - 1156.0 worst compactness: - 0.2378 - 0.2336 - 0.2394 worst concave points: - 0.1015 - 0.1789 - 0.1514 worst concavity: - 0.2671 - 0.2687 - 0.3791 worst fractal dimension: - 0.0875 - 0.06589 - 0.08019 worst perimeter: - 96.05 - 165.9 - 124.9 worst radius: - 14.97 - 24.86 - 19.26 worst smoothness: - 0.1426 - 0.1193 - 0.1546 worst symmetry: - 0.3014 - 0.2551 - 0.2837 worst texture: - 24.64 - 26.58 - 26.0 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |---------------------------------|----------------------------------------------------------| | aggressive_elimination | False | | cv | 5 | | error_score | nan | | estimator__categorical_features | | | estimator__early_stopping | auto | | estimator__l2_regularization | 0.0 | | estimator__learning_rate | 0.1 | | estimator__loss | auto | | estimator__max_bins | 255 | | estimator__max_depth | | | estimator__max_iter | 100 | | estimator__max_leaf_nodes | 31 | | estimator__min_samples_leaf | 20 | | estimator__monotonic_cst | | | estimator__n_iter_no_change | 10 | | estimator__random_state | | | estimator__scoring | loss | | estimator__tol | 1e-07 | | estimator__validation_fraction | 0.1 | | estimator__verbose | 0 | | estimator__warm_start | False | | estimator | HistGradientBoostingClassifier() | | factor | 3 | | max_resources | auto | | min_resources | exhaust | | n_jobs | -1 | | param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} | | random_state | 42 | | refit | True | | resource | n_samples | | return_train_score | True | | scoring | | | verbose | 0 | </details> ### Model Plot The model plot is below. <style>#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e {color: black;background-color: white;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e pre{padding: 0;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-toggleable {background-color: white;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e label.sk-toggleable__label-arrow:before {content: "โ–ธ";float: left;margin-right: 0.25em;color: #696969;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "โ–พ";}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-estimator:hover {background-color: #d4ebff;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-item {z-index: 1;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-parallel-item:only-child::after {width: 0;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e div.sk-text-repr-fallback {display: none;}</style><div id="sk-a56a31ee-d6fa-4e3b-b7da-4835fa20bf9e" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="a9c150d5-aef9-43be-9f02-909eb6c63123" type="checkbox" ><label for="a9c150d5-aef9-43be-9f02-909eb6c63123" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="603ed55f-2612-454e-af85-0d0849361966" type="checkbox" ><label for="603ed55f-2612-454e-af85-0d0849361966" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div> ##ย Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. ```python import joblib import json import pandas as pd clf = joblib.load(skops-ken4gzoq.pkl) with open("config.json") as f: config = json.load(f) clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"])) ``` # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
albert-base-v1
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
38,156
2022-09-11T19:39:08Z
--- datasets: - relbert/semeval2012_relational_similarity model-index: - name: relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.7637698412698413 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5133689839572193 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.516320474777448 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5958866036687048 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.748 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4605263157894737 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.5231481481481481 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9025161970769926 - name: F1 (macro) type: f1_macro value: 0.8979165451427438 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8328638497652581 - name: F1 (macro) type: f1_macro value: 0.6469572777603673 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6630552546045504 - name: F1 (macro) type: f1_macro value: 0.6493250582245075 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9562495652778744 - name: F1 (macro) type: f1_macro value: 0.8695137253747418 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8906298965841429 - name: F1 (macro) type: f1_macro value: 0.8885946595123109 --- # relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/analogy.json)): - Accuracy on SAT (full): 0.5133689839572193 - Accuracy on SAT: 0.516320474777448 - Accuracy on BATS: 0.5958866036687048 - Accuracy on U2: 0.4605263157894737 - Accuracy on U4: 0.5231481481481481 - Accuracy on Google: 0.748 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9025161970769926 - Micro F1 score on CogALexV: 0.8328638497652581 - Micro F1 score on EVALution: 0.6630552546045504 - Micro F1 score on K&H+N: 0.9562495652778744 - Micro F1 score on ROOT09: 0.8906298965841429 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.7637698412698413 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-large - max_length: 64 - mode: average_no_mask - data: relbert/semeval2012_relational_similarity - split: train - data_eval: relbert/conceptnet_high_confidence - split_eval: full - template_mode: manual - template: I wasnโ€™t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>โ€™s <mask> - loss_function: nce_logout - classification_loss: True - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 30 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - exclude_relation_eval: None - n_sample: 640 - gradient_accumulation: 8 The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-average-no-mask-prompt-e-nce-classification-conceptnet-validated/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
albert-large-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
687
2022-09-11T19:53:37Z
--- license: mit --- ### Eye of Agamotto on Stable Diffusion This is the `<eye-aga>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<eye-aga> 0](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/30.jpeg) ![<eye-aga> 1](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/24.jpeg) ![<eye-aga> 2](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/19.jpeg) ![<eye-aga> 3](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/5.jpeg) ![<eye-aga> 4](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/6.jpeg) ![<eye-aga> 5](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/15.jpeg) ![<eye-aga> 6](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/20.jpeg) ![<eye-aga> 7](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/14.jpeg) ![<eye-aga> 8](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/9.jpeg) ![<eye-aga> 9](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/3.jpeg) ![<eye-aga> 10](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/0.jpeg) ![<eye-aga> 11](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/33.jpeg) ![<eye-aga> 12](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/17.jpeg) ![<eye-aga> 13](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/12.jpeg) ![<eye-aga> 14](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/13.jpeg) ![<eye-aga> 15](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/2.jpeg) ![<eye-aga> 16](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/16.jpeg) ![<eye-aga> 17](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/25.jpeg) ![<eye-aga> 18](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/18.jpeg) ![<eye-aga> 19](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/22.jpeg) ![<eye-aga> 20](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/10.jpeg) ![<eye-aga> 21](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/31.jpeg) ![<eye-aga> 22](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/7.jpeg) ![<eye-aga> 23](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/1.jpeg) ![<eye-aga> 24](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/27.jpeg) ![<eye-aga> 25](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/32.jpeg) ![<eye-aga> 26](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/26.jpeg) ![<eye-aga> 27](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/21.jpeg) ![<eye-aga> 28](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/23.jpeg) ![<eye-aga> 29](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/29.jpeg) ![<eye-aga> 30](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/11.jpeg) ![<eye-aga> 31](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/28.jpeg) ![<eye-aga> 32](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/4.jpeg) ![<eye-aga> 33](https://huggingface.co/sd-concepts-library/eye-of-agamotto/resolve/main/concept_images/8.jpeg)
albert-large-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
26,792
2022-09-11T20:03:41Z
--- license: bigscience-bloom-rail-1.0 --- # Yelpy BERT A bert-base-uncased fine-tuned on yelp reviews (https://www.yelp.com/dataset)
albert-xlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
341
2022-09-11T20:03:46Z
--- license: mit --- ### Freddy Fazbear on Stable Diffusion This is the `<freddy-fazbear>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<freddy-fazbear> 0](https://huggingface.co/sd-concepts-library/freddy-fazbear/resolve/main/concept_images/3.jpeg) ![<freddy-fazbear> 1](https://huggingface.co/sd-concepts-library/freddy-fazbear/resolve/main/concept_images/0.jpeg) ![<freddy-fazbear> 2](https://huggingface.co/sd-concepts-library/freddy-fazbear/resolve/main/concept_images/2.jpeg) ![<freddy-fazbear> 3](https://huggingface.co/sd-concepts-library/freddy-fazbear/resolve/main/concept_images/1.jpeg) ![<freddy-fazbear> 4](https://huggingface.co/sd-concepts-library/freddy-fazbear/resolve/main/concept_images/4.jpeg)
albert-xxlarge-v1
[ "pytorch", "tf", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7,091
2022-09-11T20:14:06Z
--- license: mit --- ### glass pipe on Stable Diffusion This is the `<glass-sherlock>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<glass-sherlock> 0](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/5.jpeg) ![<glass-sherlock> 1](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/6.jpeg) ![<glass-sherlock> 2](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/3.jpeg) ![<glass-sherlock> 3](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/0.jpeg) ![<glass-sherlock> 4](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/2.jpeg) ![<glass-sherlock> 5](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/1.jpeg) ![<glass-sherlock> 6](https://huggingface.co/sd-concepts-library/glass-pipe/resolve/main/concept_images/4.jpeg)
albert-xxlarge-v2
[ "pytorch", "tf", "safetensors", "albert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "AlbertForMaskedLM" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
42,640
2022-09-11T20:19:23Z
--- license: bigscience-bloom-rail-1.0 --- # Senty BERT A yelpy-bert fine-tuned as a ternary classification task (positive, negative, neutral labels) on: - yelp reviews (https://yelp.com/dataset) - the SST-3 dataset
bert-base-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,621,271
null
--- datasets: - coscan-speech2 license: apache-2.0 metrics: - accuracy model-index: - name: wav2vec2-base-coscan-no-region results: - dataset: name: Coscan Speech type: NbAiLab/coscan-speech metrics: - name: Test Accuracy type: accuracy value: 0.5449342464872512 - name: Validation Accuracy type: accuracy value: 0.8175417762320808 task: name: Audio Classification type: audio-classification tags: - generated_from_trainer --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-coscan-no-region This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the coscan-speech2 dataset. It achieves the following results on the evaluation set: - Loss: 0.9216 - Accuracy: 0.8175 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1512 | 1.0 | 6468 | 0.9216 | 0.8175 | ### Framework versions - Transformers 4.22.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 2.4.1.dev0 - Tokenizers 0.12.1
bert-base-chinese
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "zh", "arxiv:1810.04805", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3,377,486
2022-09-11T21:44:48Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.5110 - Wer: 0.1852 - Mer: 0.1786 - Wil: 0.2694 - Wip: 0.7306 - Hits: 55023 - Substitutions: 6739 - Deletions: 2825 - Insertions: 2397 - Cer: 0.1459 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6898 | 1.0 | 1457 | 0.5259 | 0.2378 | 0.2201 | 0.3112 | 0.6888 | 54412 | 6955 | 3220 | 5183 | 0.2118 | | 0.5915 | 2.0 | 2914 | 0.4905 | 0.1893 | 0.1824 | 0.2734 | 0.7266 | 54815 | 6756 | 3016 | 2455 | 0.1588 | | 0.5414 | 3.0 | 4371 | 0.4812 | 0.1933 | 0.1850 | 0.2748 | 0.7252 | 54989 | 6684 | 2914 | 2885 | 0.1605 | | 0.4633 | 4.0 | 5828 | 0.4820 | 0.1847 | 0.1782 | 0.2685 | 0.7315 | 54999 | 6685 | 2903 | 2342 | 0.1451 | | 0.4275 | 5.0 | 7285 | 0.4831 | 0.1851 | 0.1785 | 0.2681 | 0.7319 | 55034 | 6630 | 2923 | 2405 | 0.1491 | | 0.3977 | 6.0 | 8742 | 0.4903 | 0.1836 | 0.1773 | 0.2676 | 0.7324 | 54996 | 6681 | 2910 | 2264 | 0.1451 | | 0.4236 | 7.0 | 10199 | 0.4941 | 0.1853 | 0.1788 | 0.2693 | 0.7307 | 54964 | 6706 | 2917 | 2343 | 0.1451 | | 0.3496 | 8.0 | 11656 | 0.5022 | 0.1861 | 0.1794 | 0.2693 | 0.7307 | 54979 | 6661 | 2947 | 2409 | 0.1516 | | 0.3439 | 9.0 | 13113 | 0.5081 | 0.1872 | 0.1802 | 0.2709 | 0.7291 | 55016 | 6738 | 2833 | 2519 | 0.1606 | | 0.3505 | 10.0 | 14570 | 0.5110 | 0.1852 | 0.1786 | 0.2694 | 0.7306 | 55023 | 6739 | 2825 | 2397 | 0.1459 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
bert-base-german-dbmdz-uncased
[ "pytorch", "jax", "safetensors", "bert", "fill-mask", "de", "transformers", "license:mit", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
68,305
2022-09-11T20:52:46Z
--- license: cc-by-nc-sa-4.0 --- This repository contains KenLM models for the Ukrainian language Metrics for the NEWS models (tested with an acoustic model of [wav2vec2-xls-r-300m model](https://huggingface.co/Yehor/wav2vec2-xls-r-300m-uk-with-small-lm)): | Model | CER | WER | |-|-|-| | no LM | 0.0412 | 0.2206 | | lm-3gram-10k (alpha=0.1) | 0.0398 | 0.2191 | | lm-4gram-10k (alpha=0.1) | 0.0398 | 0.219 | | lm-5gram-10k (alpha=0.1) | 0.0398 | 0.219 | | lm-3gram-30k | 0.038 | 0.2023 | | lm-4gram-30k | 0.0379 | 0.2018 | | lm-5gram-30k | 0.0379 | 0.202 | | lm-3gram-50k | 0.0348 | 0.1826 | | lm-4gram-50k | 0.0347 | 0.1818 | | lm-5gram-50k | 0.0347 | 0.1821 | | lm-3gram-100k | 0.031 | 0.1588 | | lm-4gram-100k | 0.0308 | 0.1579 | | lm-5gram-100k | 0.0308 | 0.1579 | | lm-3gram-300k | 0.0261 | 0.1294 | | lm-4gram-300k | 0.0261 | 0.1293 | | lm-5gram-300k | 0.0261 | 0.1293 | | lm-3gram-500k | 0.0248 | 0.1209 | | lm-4gram-500k | 0.0247 | 0.1207 | | lm-5gram-500k | 0.0247 | 0.1209 | Files of the models are under the Files and versions section. Attribution to the NEWS models: - Chaplynskyi, D. et al. (2021) lang-uk Ukrainian Ubercorpus [Data set]. https://lang.org.ua/uk/corpora/#anchor4
bert-base-multilingual-cased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4,749,504
2022-09-11T22:39:14Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-5front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-5front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4633 - Wer: 0.1756 - Mer: 0.1693 - Wil: 0.2562 - Wip: 0.7438 - Hits: 55657 - Substitutions: 6415 - Deletions: 2515 - Insertions: 2414 - Cer: 0.1382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6441 | 1.0 | 1457 | 0.4872 | 0.2061 | 0.1954 | 0.2850 | 0.7150 | 54813 | 6709 | 3065 | 3540 | 0.1823 | | 0.543 | 2.0 | 2914 | 0.4422 | 0.1832 | 0.1765 | 0.2641 | 0.7359 | 55188 | 6458 | 2941 | 2432 | 0.1491 | | 0.4896 | 3.0 | 4371 | 0.4373 | 0.1811 | 0.1739 | 0.2612 | 0.7388 | 55568 | 6464 | 2555 | 2679 | 0.1450 | | 0.4299 | 4.0 | 5828 | 0.4326 | 0.1745 | 0.1685 | 0.2553 | 0.7447 | 55604 | 6391 | 2592 | 2288 | 0.1367 | | 0.3853 | 5.0 | 7285 | 0.4390 | 0.1758 | 0.1693 | 0.2561 | 0.7439 | 55696 | 6406 | 2485 | 2462 | 0.1375 | | 0.357 | 6.0 | 8742 | 0.4433 | 0.1835 | 0.1757 | 0.2619 | 0.7381 | 55609 | 6386 | 2592 | 2871 | 0.1438 | | 0.3735 | 7.0 | 10199 | 0.4479 | 0.1799 | 0.1729 | 0.2598 | 0.7402 | 55582 | 6425 | 2580 | 2617 | 0.1411 | | 0.302 | 8.0 | 11656 | 0.4554 | 0.1770 | 0.1702 | 0.2569 | 0.7431 | 55725 | 6408 | 2454 | 2568 | 0.1386 | | 0.2992 | 9.0 | 13113 | 0.4614 | 0.1784 | 0.1715 | 0.2581 | 0.7419 | 55672 | 6405 | 2510 | 2606 | 0.1404 | | 0.2972 | 10.0 | 14570 | 0.4633 | 0.1756 | 0.1693 | 0.2562 | 0.7438 | 55657 | 6415 | 2515 | 2414 | 0.1382 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
bert-base-multilingual-uncased
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
328,585
2022-09-11T23:09:56Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-10front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-10front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4586 - Wer: 0.1729 - Mer: 0.1671 - Wil: 0.2545 - Wip: 0.7455 - Hits: 55669 - Substitutions: 6448 - Deletions: 2470 - Insertions: 2249 - Cer: 0.1350 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6477 | 1.0 | 1457 | 0.4829 | 0.2234 | 0.2082 | 0.2973 | 0.7027 | 54891 | 6766 | 2930 | 4734 | 0.2060 | | 0.5306 | 2.0 | 2914 | 0.4366 | 0.1808 | 0.1743 | 0.2615 | 0.7385 | 55312 | 6431 | 2844 | 2402 | 0.1439 | | 0.4743 | 3.0 | 4371 | 0.4311 | 0.1827 | 0.1752 | 0.2623 | 0.7377 | 55558 | 6456 | 2573 | 2771 | 0.1483 | | 0.4299 | 4.0 | 5828 | 0.4286 | 0.1778 | 0.1711 | 0.2580 | 0.7420 | 55641 | 6422 | 2524 | 2540 | 0.1419 | | 0.3815 | 5.0 | 7285 | 0.4321 | 0.1741 | 0.1680 | 0.2554 | 0.7446 | 55673 | 6448 | 2466 | 2330 | 0.1379 | | 0.3508 | 6.0 | 8742 | 0.4392 | 0.1737 | 0.1677 | 0.2547 | 0.7453 | 55683 | 6417 | 2487 | 2312 | 0.1373 | | 0.3594 | 7.0 | 10199 | 0.4477 | 0.1726 | 0.1666 | 0.2528 | 0.7472 | 55757 | 6344 | 2486 | 2319 | 0.1349 | | 0.2975 | 8.0 | 11656 | 0.4509 | 0.1726 | 0.1668 | 0.2537 | 0.7463 | 55691 | 6401 | 2495 | 2251 | 0.1349 | | 0.2947 | 9.0 | 13113 | 0.4550 | 0.1725 | 0.1667 | 0.2539 | 0.7461 | 55700 | 6426 | 2461 | 2257 | 0.1347 | | 0.2892 | 10.0 | 14570 | 0.4586 | 0.1729 | 0.1671 | 0.2545 | 0.7455 | 55669 | 6448 | 2470 | 2249 | 0.1350 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
bert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
59,663,489
2022-09-11T22:27:22Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-3front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-3front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4641 - Wer: 0.1743 - Mer: 0.1684 - Wil: 0.2557 - Wip: 0.7443 - Hits: 55594 - Substitutions: 6428 - Deletions: 2565 - Insertions: 2267 - Cer: 0.1368 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6567 | 1.0 | 1457 | 0.4959 | 0.2072 | 0.1966 | 0.2877 | 0.7123 | 54688 | 6836 | 3063 | 3486 | 0.1936 | | 0.5486 | 2.0 | 2914 | 0.4504 | 0.1870 | 0.1796 | 0.2677 | 0.7323 | 55158 | 6518 | 2911 | 2647 | 0.1528 | | 0.4957 | 3.0 | 4371 | 0.4410 | 0.1764 | 0.1705 | 0.2578 | 0.7422 | 55412 | 6429 | 2746 | 2216 | 0.1375 | | 0.4371 | 4.0 | 5828 | 0.4379 | 0.1761 | 0.1702 | 0.2572 | 0.7428 | 55447 | 6407 | 2733 | 2232 | 0.1377 | | 0.387 | 5.0 | 7285 | 0.4408 | 0.1756 | 0.1696 | 0.2562 | 0.7438 | 55510 | 6372 | 2705 | 2263 | 0.1399 | | 0.3589 | 6.0 | 8742 | 0.4466 | 0.1737 | 0.1681 | 0.2552 | 0.7448 | 55532 | 6406 | 2649 | 2165 | 0.1359 | | 0.3876 | 7.0 | 10199 | 0.4532 | 0.1746 | 0.1689 | 0.2563 | 0.7437 | 55491 | 6436 | 2660 | 2179 | 0.1363 | | 0.3199 | 8.0 | 11656 | 0.4591 | 0.1738 | 0.1681 | 0.2554 | 0.7446 | 55568 | 6431 | 2588 | 2208 | 0.1362 | | 0.3079 | 9.0 | 13113 | 0.4625 | 0.1743 | 0.1685 | 0.2557 | 0.7443 | 55579 | 6425 | 2583 | 2252 | 0.1366 | | 0.3124 | 10.0 | 14570 | 0.4641 | 0.1743 | 0.1684 | 0.2557 | 0.7443 | 55594 | 6428 | 2565 | 2267 | 0.1368 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
bert-large-cased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "rust", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,214
null
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-8front-1body-0rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-8front-1body-0rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4589 - Wer: 0.1739 - Mer: 0.1679 - Wil: 0.2545 - Wip: 0.7455 - Hits: 55667 - Substitutions: 6385 - Deletions: 2535 - Insertions: 2309 - Cer: 0.1363 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6586 | 1.0 | 1457 | 0.4812 | 0.2110 | 0.1994 | 0.2888 | 0.7112 | 54745 | 6712 | 3130 | 3789 | 0.1784 | | 0.5246 | 2.0 | 2914 | 0.4383 | 0.1839 | 0.1770 | 0.2641 | 0.7359 | 55251 | 6428 | 2908 | 2544 | 0.1481 | | 0.4795 | 3.0 | 4371 | 0.4327 | 0.1811 | 0.1740 | 0.2610 | 0.7390 | 55523 | 6438 | 2626 | 2631 | 0.1458 | | 0.4224 | 4.0 | 5828 | 0.4328 | 0.1754 | 0.1693 | 0.2555 | 0.7445 | 55577 | 6338 | 2672 | 2318 | 0.1397 | | 0.3755 | 5.0 | 7285 | 0.4351 | 0.1723 | 0.1668 | 0.2529 | 0.7471 | 55607 | 6326 | 2654 | 2150 | 0.1362 | | 0.3538 | 6.0 | 8742 | 0.4413 | 0.1728 | 0.1670 | 0.2531 | 0.7469 | 55696 | 6341 | 2550 | 2271 | 0.1372 | | 0.3686 | 7.0 | 10199 | 0.4455 | 0.1715 | 0.1659 | 0.2519 | 0.7481 | 55692 | 6319 | 2576 | 2180 | 0.1354 | | 0.3004 | 8.0 | 11656 | 0.4518 | 0.1727 | 0.1668 | 0.2537 | 0.7463 | 55712 | 6400 | 2475 | 2281 | 0.1371 | | 0.2914 | 9.0 | 13113 | 0.4564 | 0.1739 | 0.1678 | 0.2544 | 0.7456 | 55681 | 6378 | 2528 | 2323 | 0.1370 | | 0.297 | 10.0 | 14570 | 0.4589 | 0.1739 | 0.1679 | 0.2545 | 0.7455 | 55667 | 6385 | 2535 | 2309 | 0.1363 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
bert-large-uncased-whole-word-masking-finetuned-squad
[ "pytorch", "tf", "jax", "safetensors", "bert", "question-answering", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
480,510
2022-09-11T21:20:31Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.9295 - name: F1 type: f1 value: 0.929332697530698 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2116 - Accuracy: 0.9295 - F1: 0.9293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8487 | 1.0 | 250 | 0.3135 | 0.909 | 0.9051 | | 0.2515 | 2.0 | 500 | 0.2116 | 0.9295 | 0.9293 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
bert-large-uncased-whole-word-masking
[ "pytorch", "tf", "jax", "safetensors", "bert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76,685
2022-09-11T21:20:42Z
--- license: mit --- ### black-waifu on Stable Diffusion This is the `<black-waifu>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<black-waifu> 0](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/5.jpeg) ![<black-waifu> 1](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/6.jpeg) ![<black-waifu> 2](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/15.jpeg) ![<black-waifu> 3](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/14.jpeg) ![<black-waifu> 4](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/9.jpeg) ![<black-waifu> 5](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/3.jpeg) ![<black-waifu> 6](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/0.jpeg) ![<black-waifu> 7](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/12.jpeg) ![<black-waifu> 8](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/13.jpeg) ![<black-waifu> 9](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/2.jpeg) ![<black-waifu> 10](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/10.jpeg) ![<black-waifu> 11](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/7.jpeg) ![<black-waifu> 12](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/1.jpeg) ![<black-waifu> 13](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/11.jpeg) ![<black-waifu> 14](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/4.jpeg) ![<black-waifu> 15](https://huggingface.co/sd-concepts-library/black-waifu/resolve/main/concept_images/8.jpeg)
distilbert-base-cased
[ "pytorch", "tf", "onnx", "distilbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "license:apache-2.0", "has_space" ]
null
{ "architectures": null, "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
574,859
2022-09-11T21:34:13Z
--- license: mit --- ### roy-lichtenstein on Stable Diffusion This is the `<roy-lichtenstein>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<roy-lichtenstein> 0](https://huggingface.co/sd-concepts-library/roy-lichtenstein/resolve/main/concept_images/3.jpeg) ![<roy-lichtenstein> 1](https://huggingface.co/sd-concepts-library/roy-lichtenstein/resolve/main/concept_images/0.jpeg) ![<roy-lichtenstein> 2](https://huggingface.co/sd-concepts-library/roy-lichtenstein/resolve/main/concept_images/2.jpeg) ![<roy-lichtenstein> 3](https://huggingface.co/sd-concepts-library/roy-lichtenstein/resolve/main/concept_images/1.jpeg)
distilbert-base-multilingual-cased
[ "pytorch", "tf", "onnx", "safetensors", "distilbert", "fill-mask", "multilingual", "af", "sq", "ar", "an", "hy", "ast", "az", "ba", "eu", "bar", "be", "bn", "inc", "bs", "br", "bg", "my", "ca", "ceb", "ce", "zh", "cv", "hr", "cs", "da", "nl", "en", "et", "fi", "fr", "gl", "ka", "de", "el", "gu", "ht", "he", "hi", "hu", "is", "io", "id", "ga", "it", "ja", "jv", "kn", "kk", "ky", "ko", "la", "lv", "lt", "roa", "nds", "lm", "mk", "mg", "ms", "ml", "mr", "mn", "min", "ne", "new", "nb", "nn", "oc", "fa", "pms", "pl", "pt", "pa", "ro", "ru", "sco", "sr", "scn", "sk", "sl", "aze", "es", "su", "sw", "sv", "tl", "tg", "th", "ta", "tt", "te", "tr", "uk", "ud", "uz", "vi", "vo", "war", "cy", "fry", "pnb", "yo", "dataset:wikipedia", "arxiv:1910.01108", "arxiv:1910.09700", "transformers", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8,339,633
2022-09-11T21:57:43Z
--- license: cc-by-4.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: hing-mbert-finetuned-ours-DS results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hing-mbert-finetuned-ours-DS This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1569 - Accuracy: 0.71 - Precision: 0.6665 - Recall: 0.6668 - F1: 0.6658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.824279936868144e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7704 | 1.99 | 199 | 0.7093 | 0.68 | 0.6679 | 0.6463 | 0.6309 | | 0.2597 | 3.98 | 398 | 1.1569 | 0.71 | 0.6665 | 0.6668 | 0.6658 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1
distilbert-base-uncased
[ "pytorch", "tf", "jax", "rust", "safetensors", "distilbert", "fill-mask", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1910.01108", "transformers", "exbert", "license:apache-2.0", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10,887,471
2022-09-11T22:20:48Z
--- pipeline_tag: question-answering datasets: - squad metrics: - exact_match - f1 - total_time_in_seconds - samples_per_second - latency_in_seconds tags: - distilbert --- **task**: `question-answering` **Backend:** `sagemaker-training` **Backend args:** `{'instance_type': 'ml.m5.2xlarge', 'supported_instructions': 'avx512'}` **Number of evaluation samples:** `All dataset` Fixed parameters: * **dataset**: [{'path': 'squad', 'eval_split': 'validation', 'data_keys': {'question': 'question', 'context': 'context'}, 'ref_keys': ['answers'], 'name': None, 'calibration_split': None}] * **name_or_path**: `distilbert-base-uncased-distilled-squad` * **from_transformers**: `True` * **quantization_approach**: `dynamic` Benchmarked parameters: * **framework**: `onnxruntime`, `pytorch` * **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` * **node_exclusion**: `[]`, `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` * **per_channel**: `False`, `True` * **framework_args**: `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}`, `{}` * **reduce_range**: `True`, `False` * **apply_quantization**: `True`, `False` # Evaluation ## Non-time metrics | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | exact_match | | f1 | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------: | :-: | :----: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 76.764 | \| | 85.053 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 69.622 | \| | 79.914 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.435 | \| | 5.887 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.165 | \| | 85.973 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 76.764 | \| | 85.053 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 69.622 | \| | 79.914 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 0.435 | \| | 5.887 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.165 | \| | 85.973 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 78.884 | \| | 86.690 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 78.884 | \| | 86.690 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 78.884 | \| | 86.690 | ## Time metrics Time benchmarks were run for 15 seconds per config. Below, time metrics for batch size = 1, input length = 32. | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 14.26 | \| | 70.13 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.08 | \| | 99.20 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.60 | \| | 94.33 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.88 | \| | 91.93 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.84 | \| | 92.27 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.34 | \| | 96.73 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.41 | \| | 96.07 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 10.96 | \| | 91.27 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 10.69 | \| | 93.53 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.43 | \| | 69.33 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.52 | \| | 68.87 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.35 | \| | 69.73 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.50 | \| | 69.00 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.20 | \| | 70.47 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.24 | \| | 70.27 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 14.58 | \| | 68.67 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 14.73 | \| | 67.87 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 31.49 | \| | 31.80 | Below, time metrics for batch size = 1, input length = 64. | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 24.83 | \| | 40.33 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 18.49 | \| | 54.13 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.87 | \| | 53.00 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.17 | \| | 52.20 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.92 | \| | 52.87 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.13 | \| | 52.33 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 18.95 | \| | 52.80 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 19.08 | \| | 52.47 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 19.14 | \| | 52.27 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.83 | \| | 40.33 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.84 | \| | 40.27 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.66 | \| | 40.60 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.76 | \| | 40.40 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 25.07 | \| | 39.93 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 25.27 | \| | 39.60 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 24.76 | \| | 40.40 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 24.70 | \| | 40.53 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 41.26 | \| | 24.27 | Below, time metrics for batch size = 1, input length = 128. | framework | operators_to_quantize | node_exclusion | per_channel | framework_args | reduce_range | apply_quantization | | latency_mean (ms) | | throughput (/s) | | :-----------: | :-------------------: | :------------------------------------------------------: | :---------: | :-----------------------------------------------------------------: | :----------: | :----------------: | :-: | :---------------: | :-: | :-------------: | | `onnxruntime` | `None` | `None` | `None` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `None` | `False` | \| | 46.89 | \| | 21.33 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 34.84 | \| | 28.73 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.88 | \| | 27.93 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 36.92 | \| | 27.13 | | `onnxruntime` | `['Add', 'MatMul']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 36.25 | \| | 27.60 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 36.17 | \| | 27.67 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.59 | \| | 28.13 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 37.36 | \| | 26.80 | | `onnxruntime` | `['Add', 'MatMul']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 35.97 | \| | 27.87 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 46.94 | \| | 21.33 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.19 | \| | 21.20 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.05 | \| | 21.27 | | `onnxruntime` | `['Add']` | `['layernorm', 'gelu', 'residual', 'gather', 'softmax']` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 46.79 | \| | 21.40 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 46.87 | \| | 21.40 | | `onnxruntime` | `['Add']` | `[]` | `False` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.04 | \| | 21.27 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `False` | `True` | \| | 47.08 | \| | 21.27 | | `onnxruntime` | `['Add']` | `[]` | `True` | `{'opset': 13, 'optimization_level': 1, 'intra_op_num_threads': 4}` | `True` | `True` | \| | 47.05 | \| | 21.27 | | `pytorch` | `None` | `None` | `None` | `{}` | `None` | `None` | \| | 54.61 | \| | 18.33 |
IssakaAI/wav2vec2-large-xls-r-300m-turkish-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="santiviquez/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
ATGdev/ai_ironman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-12T19:09:22Z
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-0front-1body-9rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-0front-1body-9rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4673 - Wer: 0.1766 - Mer: 0.1707 - Wil: 0.2594 - Wip: 0.7406 - Hits: 55410 - Substitutions: 6552 - Deletions: 2625 - Insertions: 2229 - Cer: 0.1386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.641 | 1.0 | 1457 | 0.4913 | 0.2084 | 0.1972 | 0.2875 | 0.7125 | 54788 | 6785 | 3014 | 3658 | 0.1743 | | 0.5415 | 2.0 | 2914 | 0.4483 | 0.1818 | 0.1759 | 0.2643 | 0.7357 | 55033 | 6514 | 3040 | 2190 | 0.1447 | | 0.4835 | 3.0 | 4371 | 0.4427 | 0.1785 | 0.1722 | 0.2595 | 0.7405 | 55442 | 6443 | 2702 | 2386 | 0.1402 | | 0.4267 | 4.0 | 5828 | 0.4376 | 0.1769 | 0.1711 | 0.2587 | 0.7413 | 55339 | 6446 | 2802 | 2177 | 0.1399 | | 0.3752 | 5.0 | 7285 | 0.4414 | 0.1756 | 0.1698 | 0.2571 | 0.7429 | 55467 | 6432 | 2688 | 2223 | 0.1374 | | 0.3471 | 6.0 | 8742 | 0.4497 | 0.1761 | 0.1704 | 0.2585 | 0.7415 | 55379 | 6494 | 2714 | 2166 | 0.1380 | | 0.3841 | 7.0 | 10199 | 0.4535 | 0.1769 | 0.1710 | 0.2589 | 0.7411 | 55383 | 6482 | 2722 | 2220 | 0.1394 | | 0.3139 | 8.0 | 11656 | 0.4604 | 0.1753 | 0.1696 | 0.2577 | 0.7423 | 55462 | 6502 | 2623 | 2199 | 0.1367 | | 0.3012 | 9.0 | 13113 | 0.4628 | 0.1766 | 0.1708 | 0.2597 | 0.7403 | 55391 | 6571 | 2625 | 2210 | 0.1388 | | 0.3087 | 10.0 | 14570 | 0.4673 | 0.1766 | 0.1707 | 0.2594 | 0.7406 | 55410 | 6552 | 2625 | 2229 | 0.1386 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Pinwheel/wav2vec2-large-xls-r-1b-hi-v2
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "transformers" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-09-12T19:15:49Z
--- tags: - fastai --- # Amazing! ๐Ÿฅณ Congratulations on hosting your fastai model on the Hugging Face Hub! # Some next steps 1. Fill out this model card with more information (see the template below and the [documentation here](https://huggingface.co/docs/hub/model-repos))! 2. Create a demo in Gradio or Streamlit using ๐Ÿค— Spaces ([documentation here](https://huggingface.co/docs/hub/spaces)). 3. Join the fastai community on the [Fastai Discord](https://discord.com/invite/YKrxeNn)! Greetings fellow fastlearner ๐Ÿค! Don't forget to delete this content from your model card. --- # Model card ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed
Aero/Tsubomi-Haruno
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational", "license:mit" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity datasets: - embedding-data/QQP_triplets --- # tekraj/avodamed-synonym-generator1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('tekraj/avodamed-synonym-generator1') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=tekraj/avodamed-synonym-generator1) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters: ``` {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5} ``` Parameters of the fit()-Method: ``` { "epochs": 10, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Aeroxas/Botroxas-small
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-5front-1body-5rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-5front-1body-5rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4383 - Wer: 0.1697 - Mer: 0.1641 - Wil: 0.2500 - Wip: 0.7500 - Hits: 55852 - Substitutions: 6314 - Deletions: 2421 - Insertions: 2228 - Cer: 0.1328 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6185 | 1.0 | 1457 | 0.4683 | 0.1948 | 0.1863 | 0.2758 | 0.7242 | 54959 | 6658 | 2970 | 2956 | 0.1682 | | 0.5149 | 2.0 | 2914 | 0.4280 | 0.1773 | 0.1713 | 0.2591 | 0.7409 | 55376 | 6468 | 2743 | 2238 | 0.1426 | | 0.4705 | 3.0 | 4371 | 0.4173 | 0.1743 | 0.1682 | 0.2552 | 0.7448 | 55680 | 6418 | 2489 | 2351 | 0.1387 | | 0.4023 | 4.0 | 5828 | 0.4114 | 0.1713 | 0.1656 | 0.2515 | 0.7485 | 55751 | 6313 | 2523 | 2230 | 0.1335 | | 0.3497 | 5.0 | 7285 | 0.4162 | 0.1722 | 0.1662 | 0.2522 | 0.7478 | 55787 | 6331 | 2469 | 2323 | 0.1365 | | 0.3246 | 6.0 | 8742 | 0.4211 | 0.1714 | 0.1655 | 0.2513 | 0.7487 | 55802 | 6310 | 2475 | 2284 | 0.1367 | | 0.3492 | 7.0 | 10199 | 0.4282 | 0.1711 | 0.1652 | 0.2514 | 0.7486 | 55861 | 6350 | 2376 | 2325 | 0.1341 | | 0.2788 | 8.0 | 11656 | 0.4322 | 0.1698 | 0.1641 | 0.2502 | 0.7498 | 55883 | 6342 | 2362 | 2265 | 0.1327 | | 0.2801 | 9.0 | 13113 | 0.4362 | 0.1710 | 0.1652 | 0.2514 | 0.7486 | 55828 | 6351 | 2408 | 2288 | 0.1352 | | 0.2773 | 10.0 | 14570 | 0.4383 | 0.1697 | 0.1641 | 0.2500 | 0.7500 | 55852 | 6314 | 2421 | 2228 | 0.1328 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Aftabhussain/Tomato_Leaf_Classifier
[ "pytorch", "tensorboard", "vit", "image-classification", "transformers", "huggingpics", "model-index", "autotrain_compatible" ]
image-classification
{ "architectures": [ "ViTForImageClassification" ], "model_type": "vit", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
50
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: Bert_Classifier results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.5533333333333333 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_Classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.1067 - Accuracy: 0.5533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 188 | 1.0636 | 0.5 | | No log | 2.0 | 376 | 1.0405 | 0.52 | | 0.9962 | 3.0 | 564 | 1.1067 | 0.5533 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ahda/M
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - yelp_review_full metrics: - accuracy model-index: - name: Bert_Classifier results: - task: name: Text Classification type: text-classification dataset: name: yelp_review_full type: yelp_review_full config: yelp_review_full split: train args: yelp_review_full metrics: - name: Accuracy type: accuracy value: 0.56 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Bert_Classifier This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the yelp_review_full dataset. It achieves the following results on the evaluation set: - Loss: 1.9115 - Accuracy: 0.56 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 188 | 1.4208 | 0.5667 | | No log | 2.0 | 376 | 1.4325 | 0.5733 | | 0.3995 | 3.0 | 564 | 1.9115 | 0.56 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Ahmadvakili/A
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.9243344747597482 - name: Recall type: recall value: 0.9361226087929299 - name: F1 type: f1 value: 0.9301911960871498 - name: Accuracy type: accuracy value: 0.9834781641698572 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0625 - Precision: 0.9243 - Recall: 0.9361 - F1: 0.9302 - Accuracy: 0.9835 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2424 | 1.0 | 878 | 0.0685 | 0.9152 | 0.9235 | 0.9193 | 0.9813 | | 0.0539 | 2.0 | 1756 | 0.0621 | 0.9225 | 0.9333 | 0.9279 | 0.9828 | | 0.0298 | 3.0 | 2634 | 0.0625 | 0.9243 | 0.9361 | 0.9302 | 0.9835 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AimB/mT5-en-kr-aihub-netflix
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc-by-sa-4.0 tags: - generated_from_trainer datasets: - te_dx_jp model-index: - name: t5-base-TEDxJP-1front-1body-1rear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-TEDxJP-1front-1body-1rear This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset. It achieves the following results on the evaluation set: - Loss: 0.4600 - Wer: 0.1742 - Mer: 0.1683 - Wil: 0.2562 - Wip: 0.7438 - Hits: 55625 - Substitutions: 6495 - Deletions: 2467 - Insertions: 2291 - Cer: 0.1364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:------:|:-----:|:-------------:|:---------:|:----------:|:------:| | 0.6478 | 1.0 | 1457 | 0.4880 | 0.2256 | 0.2100 | 0.2999 | 0.7001 | 54825 | 6842 | 2920 | 4808 | 0.2019 | | 0.542 | 2.0 | 2914 | 0.4461 | 0.1886 | 0.1807 | 0.2697 | 0.7303 | 55225 | 6615 | 2747 | 2817 | 0.1577 | | 0.4873 | 3.0 | 4371 | 0.4390 | 0.1764 | 0.1702 | 0.2584 | 0.7416 | 55541 | 6519 | 2527 | 2344 | 0.1392 | | 0.4271 | 4.0 | 5828 | 0.4361 | 0.1750 | 0.1691 | 0.2567 | 0.7433 | 55512 | 6453 | 2622 | 2226 | 0.1381 | | 0.3705 | 5.0 | 7285 | 0.4366 | 0.1741 | 0.1684 | 0.2558 | 0.7442 | 55508 | 6427 | 2652 | 2164 | 0.1358 | | 0.3557 | 6.0 | 8742 | 0.4424 | 0.1738 | 0.1679 | 0.2555 | 0.7445 | 55600 | 6453 | 2534 | 2235 | 0.1369 | | 0.3838 | 7.0 | 10199 | 0.4471 | 0.1741 | 0.1684 | 0.2562 | 0.7438 | 55550 | 6473 | 2564 | 2210 | 0.1362 | | 0.3095 | 8.0 | 11656 | 0.4517 | 0.1746 | 0.1685 | 0.2566 | 0.7434 | 55618 | 6499 | 2470 | 2305 | 0.1367 | | 0.306 | 9.0 | 13113 | 0.4573 | 0.1748 | 0.1688 | 0.2570 | 0.7430 | 55601 | 6517 | 2469 | 2304 | 0.1369 | | 0.3073 | 10.0 | 14570 | 0.4600 | 0.1742 | 0.1683 | 0.2562 | 0.7438 | 55625 | 6495 | 2467 | 2291 | 0.1364 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1
Akash7897/distilbert-base-uncased-finetuned-sst2
[ "pytorch", "tensorboard", "distilbert", "text-classification", "dataset:glue", "transformers", "generated_from_trainer", "license:apache-2.0", "model-index" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2022-09-13T18:24:16Z
--- license: mit --- ### Poutine Dish on Stable Diffusion This is the `<poutine-qc>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<poutine-qc> 0](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/11.jpeg) ![<poutine-qc> 1](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/16.jpeg) ![<poutine-qc> 2](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/8.jpeg) ![<poutine-qc> 3](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/19.jpeg) ![<poutine-qc> 4](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/2.jpeg) ![<poutine-qc> 5](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/13.jpeg) ![<poutine-qc> 6](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/12.jpeg) ![<poutine-qc> 7](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/3.jpeg) ![<poutine-qc> 8](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/6.jpeg) ![<poutine-qc> 9](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/1.jpeg) ![<poutine-qc> 10](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/15.jpeg) ![<poutine-qc> 11](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/17.jpeg) ![<poutine-qc> 12](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/10.jpeg) ![<poutine-qc> 13](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/9.jpeg) ![<poutine-qc> 14](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/5.jpeg) ![<poutine-qc> 15](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/18.jpeg) ![<poutine-qc> 16](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/4.jpeg) ![<poutine-qc> 17](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/7.jpeg) ![<poutine-qc> 18](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/14.jpeg) ![<poutine-qc> 19](https://huggingface.co/sd-concepts-library/poutine-dish/resolve/main/concept_images/0.jpeg)
Akashpb13/Hausa_xlsr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "ha", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index", "has_space" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2022-09-13T18:49:55Z
--- license: mit --- ### grifter on Stable Diffusion This is the `<grifter>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<grifter> 0](https://huggingface.co/sd-concepts-library/grifter/resolve/main/concept_images/2.jpeg) ![<grifter> 1](https://huggingface.co/sd-concepts-library/grifter/resolve/main/concept_images/3.jpeg) ![<grifter> 2](https://huggingface.co/sd-concepts-library/grifter/resolve/main/concept_images/1.jpeg) ![<grifter> 3](https://huggingface.co/sd-concepts-library/grifter/resolve/main/concept_images/4.jpeg) ![<grifter> 4](https://huggingface.co/sd-concepts-library/grifter/resolve/main/concept_images/0.jpeg)
Akashpb13/Swahili_xlsr
[ "pytorch", "wav2vec2", "automatic-speech-recognition", "sw", "dataset:mozilla-foundation/common_voice_8_0", "transformers", "generated_from_trainer", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_8_0", "robust-speech-event", "license:apache-2.0", "model-index" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: mit --- ### Dog on Stable Diffusion This is the `<Winston>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<Winston> 0](https://huggingface.co/sd-concepts-library/dog/resolve/main/concept_images/1.jpeg) ![<Winston> 1](https://huggingface.co/sd-concepts-library/dog/resolve/main/concept_images/0.jpeg) ![<Winston> 2](https://huggingface.co/sd-concepts-library/dog/resolve/main/concept_images/2.jpeg) ![<Winston> 3](https://huggingface.co/sd-concepts-library/dog/resolve/main/concept_images/3.jpeg)
Akira-Yana/distilbert-base-uncased-finetuned-cola
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-13T19:49:11Z
--- tags: - espnet - audio - automatic-speech-recognition language: en datasets: - slurp license: cc-by-4.0 --- ## ESPnet2 ASR model ### `espnet/slurp_slu_2pass_gt` This model was trained by Siddhant using slurp recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 Follow the [ESPnet installation instructions](https://espnet.github.io/espnet/installation.html) if you haven't done that already. ```bash cd espnet git checkout 3b54bfe52a294cdfce668c20d777bfa65f413745 pip install -e . cd egs2/slurp/slu1 ./run.sh --skip_data_prep false --skip_train true --download_model espnet/slurp_slu_2pass_gt ``` <!-- Generated by scripts/utils/show_asr_result.sh --> # RESULTS ## Environments - date: `Sat Aug 20 15:34:30 EDT 2022` - python version: `3.9.5 (default, Jun 4 2021, 12:28:51) [GCC 7.5.0]` - espnet version: `espnet 202207` - pytorch version: `pytorch 1.8.1+cu102` - Git hash: `45e2b13071f3cc4abbc3a7b2484bd6cffedd4d1c` - Commit date: `Mon Aug 15 09:13:31 2022 -0400` ## slu_train_asr_bert_conformer_deliberation_raw_en_word ### WER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_slu_model_valid.acc.ave_10best/devel|8690|108484|90.9|6.2|2.9|2.7|11.8|39.9| |inference_slu_model_valid.acc.ave_10best/test|13078|159666|90.7|6.2|3.1|2.6|11.9|38.7| ### CER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| |inference_slu_model_valid.acc.ave_10best/devel|8690|512732|95.5|2.3|2.2|2.5|7.0|39.9| |inference_slu_model_valid.acc.ave_10best/test|13078|757056|95.3|2.3|2.3|2.5|7.1|38.7| ### TER |dataset|Snt|Wrd|Corr|Sub|Del|Ins|Err|S.Err| |---|---|---|---|---|---|---|---|---| ## ASR config <details><summary>expand</summary> ``` config: conf/tuning/train_asr_bert_conformer_deliberation.yaml print_config: false log_level: INFO dry_run: false iterator_type: sequence output_dir: exp/slu_train_asr_bert_conformer_deliberation_raw_en_word ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 50 patience: null val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 10 nbest_averaging_interval: 0 grad_clip: 5.0 grad_clip_type: 2.0 grad_noise: false accum_grad: 1 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_matplotlib: true use_tensorboard: true create_graph_in_tensorboard: false use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: - encoder - postdecoder.model num_iters_per_epoch: null batch_size: 20 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/slu_stats_raw_en_word/train/speech_shape - exp/slu_stats_raw_en_word/train/text_shape.word - exp/slu_stats_raw_en_word/train/transcript_shape.word valid_shape_file: - exp/slu_stats_raw_en_word/valid/speech_shape - exp/slu_stats_raw_en_word/valid/text_shape.word - exp/slu_stats_raw_en_word/valid/transcript_shape.word batch_type: folded valid_batch_type: null fold_length: - 80000 - 150 - 150 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 500 chunk_shift_ratio: 0.5 num_cache_chunks: 1024 train_data_path_and_name_and_type: - - dump/raw/train/wav.scp - speech - sound - - dump/raw/train/text - text - text - - dump/raw/train/transcript - transcript - text valid_data_path_and_name_and_type: - - dump/raw/devel/wav.scp - speech - sound - - dump/raw/devel/text - text - text - - dump/raw/devel/transcript - transcript - text allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.0002 scheduler: warmuplr scheduler_conf: warmup_steps: 25000 token_list: - <blank> - <unk> - โ–the - s - โ–to - โ–i - โ–me - โ–you - โ–what - โ–a - โ–is - โ–my - โ–please - a - '''' - y - โ–in - ing - โ–s - e - โ–for - i - โ–on - d - t - o - u - er - p - โ–of - es - re - l - โ–it - โ–p - le - โ–f - โ–m - โ–email - โ–d - m - โ–c - st - r - n - ar - โ–h - b - โ–that - c - โ–this - h - an - email_query - โ–play - โ–re - โ–b - โ–do - โ–can - at - โ–have - g - โ–from - โ–and - en - email_sendemail - โ–olly - 'on' - โ–new - it - qa_factoid - calendar_set - โ–any - or - โ–g - โ–how - โ–t - โ–tell - ch - โ–not - โ–about - โ–at - ate - general_negate - f - โ–today - โ–e - ed - โ–list - โ–r - in - k - ic - social_post - โ–are - play_music - general_quirky - โ–l - al - v - ent - โ–n - โ–be - โ–an - โ–st - et - โ–am - general_praise - โ–time - weather_query - โ–up - โ–check - calendar_query - โ–w - om - ur - โ–send - โ–with - ly - w - general_explain - ad - โ–th - news_query - โ–one - โ–emails - day - โ–sh - ce - โ–last - ve - โ–he - z - โ–ch - โ–will - โ–set - โ–would - โ–was - x - general_repeat - โ–add - ou - โ–again - โ–ex - is - ct - general_affirm - general_confirm - โ–song - โ–next - โ–j - โ–meeting - um - ation - โ–turn - โ–did - if - โ–alarm - am - โ–like - datetime_query - ter - โ–remind - โ–o - qa_definition - โ–said - โ–calendar - ll - se - ers - th - โ–get - our - โ–need - โ–all - ot - โ–want - โ–off - and - โ–right - โ–de - โ–tr - ut - general_dontcare - โ– - โ–week - as - โ–tweet - ight - ir - โ–your - โ–event - โ–news - โ–se - ay - ion - โ–com - โ–there - โ–ye - โ–weather - un - โ–confirm - ld - calendar_remove - โ–y - โ–lights - โ–more - โ–v - play_radio - โ–does - โ–po - โ–now - id - email_querycontact - โ–show - โ–could - ery - op - โ–day - โ–pm - โ–music - โ–tomorrow - โ–train - โ–u - ine - โ–or - ange - qa_currency - ice - โ–contact - โ–just - โ–jo - โ–think - qa_stock - end - ss - ber - โ–tw - โ–command - โ–make - โ–no - โ–mo - pe - โ–find - general_commandstop - โ–when - social_query - โ–so - ong - โ–co - ant - ow - โ–much - โ–where - ul - ue - ri - ap - โ–start - โ–mar - โ–by - one - โ–know - โ–wor - oo - โ–give - โ–let - โ–events - der - โ–ro - โ–pr - โ–pl - play_podcasts - art - us - โ–work - โ–current - ol - cooking_recipe - nt - โ–correct - transport_query - ia - โ–stock - โ–br - ive - โ–app - โ–two - โ–latest - lists_query - โ–some - recommendation_events - ab - โ–go - โ–but - ook - ke - alarm_set - play_audiobook - โ–k - โ–response - โ–wr - cast - โ–open - โ–cle - โ–done - โ–got - โ–ca - ite - ase - โ–thank - iv - ah - ag - โ–answer - ie - โ–five - โ–book - ist - โ–rec - ore - โ–john - ment - โ–appreci - โ–fri - ack - โ–remove - ated - ock - ree - j - โ–good - โ–many - orn - fe - โ–radio - โ–we - int - โ–facebook - โ–cl - โ–sev - โ–schedule - ard - โ–per - โ–li - โ–going - nd - ain - recommendation_locations - โ–post - lists_createoradd - ff - โ–su - red - iot_hue_lightoff - lists_remove - โ–ar - een - โ–say - ro - โ–volume - โ–le - โ–reply - โ–complaint - โ–out - โ–delete - โ–ne - ame - โ–detail - โ–if - im - โ–happ - orr - ich - em - โ–ev - ction - โ–dollar - โ–as - alarm_query - audio_volume_mute - ac - music_query - โ–mon - ther - โ–thanks - cel - โ–who - ave - โ–service - โ–mail - ty - โ–hear - de - โ–si - โ–wh - ood - ell - โ–con - โ–once - ound - โ–don - โ–loc - โ–light - โ–birthday - โ–inf - ort - ffe - โ–playlist - el - ening - โ–us - โ–un - โ–has - own - โ–inc - ai - โ–speak - age - โ–mess - ast - ci - ver - โ–ten - โ–underst - โ–pro - โ–q - enty - โ–ticket - gh - audio_volume_up - โ–take - โ–bo - ally - ome - transport_ticket - ind - iot_hue_lightchange - pp - iot_coffee - โ–res - plain - io - lar - takeaway_query - ge - takeaway_order - email_addcontact - play_game - ak - โ–fa - transport_traffic - music_likeness - โ–rep - act - ust - transport_taxi - iot_hue_lightdim - โ–mu - โ–ti - ick - โ–ha - ould - general_joke - '1' - qa_maths - โ–lo - iot_cleaning - q - ake - ill - her - iot_hue_lightup - pl - '2' - alarm_remove - orrect - โ–cont - mail - out - audio_volume_down - book - ail - recommendation_movies - ck - โ–man - โ–mus - โ–che - me - ume - โ–answ - datetime_convert - โ–late - iot_wemo_on - โ–twe - music_settings - iot_wemo_off - orre - ith - โ–tom - โ–fr - ere - โ–ad - xt - โ–ab - ank - general_greet - now - โ–meet - โ–curre - โ–respon - โ–ag - ght - audio_volume_other - ink - โ–spe - iot_hue_lighton - โ–rem - lly - '?' - urn - โ–op - โ–complain - โ–comm - let - music_dislikeness - ove - โ–sch - ather - โ–rad - edule - โ–under - icket - lease - โ–bir - erv - โ–birth - โ–face - โ–cur - sw - โ–serv - ek - aid - '9' - โ–vol - edu - '5' - cooking_query - lete - โ–joh - โ–det - firm - nder - '0' - irm - '8' - '&' - _ - list - pon - qa_query - '7' - '3' - '-' - reci - โ–doll - <sos/eos> transcript_token_list: - <blank> - <unk> - the - to - i - me - you - is - what - please - my - a - for - 'on' - in - of - email - this - it - have - from - and - play - olly - that - new - can - do - how - tell - about - at - any - today - not - time - are - check - list - send - with - an - one - emails - last - will - am - again - set - next - would - was - up - like - turn - said - calendar - meeting - get - what's - right - all - did - be - need - want - song - tweet - add - event - your - news - 'off' - weather - there - lights - more - now - alarm - pm - music - show - confirm - train - could - think - does - make - command - just - find - when - tomorrow - much - where - week - by - give - events - know - day - start - two - latest - response - that's - remind - done - but - thank - stock - some - you've - answer - five - open - current - many - remove - radio - good - book - 'no' - facebook - going - it's - volume - reply - work - delete - go - complaint - contact - if - service - let - thanks - so - hear - once - correct - john - playlist - birthday - got - post - ten - order - sorry - has - date - hey - coffee - who - rate - three - exchange - further - light - twenty - price - mail - reminder - explain - podcast - ticket - down - really - clear - seven - schedule - alarms - say - morning - change - twitter - cancel - number - dollar - stop - out - appreciated - hundred - wrong - don't - information - address - contacts - read - york - us - which - should - 'yes' - details - songs - between - nine - anything - s1 - received - playing - shut - dot - mind - com - google - most - put - job - traffic - four - best - six - create - recent - yeah - happening - friday - name - very - area - mom - or - take - appointment - yeap - room - world - home - hour - message - eight - clarify - s2 - party - episode - here - elaborate - alexa - appreciate - customer - i'd - sent - thing - march - look - tonight - place - try - after - definition - call - well - times - rock - phone - speak - today's - whats - food - thirty - see - joke - every - pizza - write - lists - game - shopping - weekend - rephrase - month - matter - s - update - station - vacuum - great - detail - long - gmail - old - repeat - city - audiobook - perfectly - status - inbox - mute - local - near - restaurant - thousand - tuesday - year - we - media - before - around - resume - musch - her - house - taxi - hours - didn't - describe - answers - understand - incorrect - word - listen - first - item - d - trump - save - days - socket - recipe - nice - u - reminders - social - search - as - monday - subject - location - movie - saturday - euro - dinner - them - ask - let's - scheduled - plug - i'm - gotten - question - minutes - friend - favorite - meetings - define - instructions - exactly - cook - understood - sentence - thursday - grocery - correcly - their - words - temperature - person - amazon - catch - company - mean - something - correctly - living - fantastic - help - following - dollars - rain - speakers - instruction - helpful - increase - consumer - evening - family - upcoming - jazz - saying - way - switch - forecast - task - cleaner - love - late - boss - wednesday - yesterday - updates - lower - people - cool - wonderful - twelve - afternoon - color - wake - oh - lunch - perfect - back - understanding - useful - amazing - his - dim - movies - chicago - things - takeaway - fifty - unread - happy - available - noon - wouldn't - night - had - appointments - idea - michael - doing - over - doesn't - select - hi - shit - may - they - delivery - nearest - buy - apple - car - left - confirmed - report - worth - robot - uber - wemo - sunday - excellent - outside - blue - looking - messages - top - wear - point - too - i've - country - prices - bring - store - awesome - unclear - ok - mark - speaker - app - sound - hot - live - jackson - bad - recently - currently - smith - pull - whatever - india - messed - kitchen - ninety - percent - him - use - office - brightness - care - gave - description - tom - regarding - meaning - meet - siri - bob - joe - hmm - leave - sarah - smart - come - chicken - seventeen - walmart - bill - enough - choose - louder - our - trending - born - london - zone - account - cnn - audio - president - isn't - compose - coming - second - manner - pick - album - uhh - plus - provide - erase - notification - played - channel - donald - pound - instagram - made - bbc - recommend - happened - united - replay - shop - free - dammit - nope - b - nearby - pop - shops - california - highest - notifications - shuffle - fm - chinese - currency - uh - restaurants - jack - april - robert - only - been - why - states - friends - skip - important - he - samsung - later - notify - bedroom - john's - mails - eleven - red - exact - cold - cup - rates - incorrectly - fifth - money - boston - spoke - tomorrow's - forward - respond - funny - wait - business - market - star - headlines - third - favorites - bother - retry - stocks - high - g - favourite - george - umbrella - directions - wedding - content - m - close - spoken - concert - run - alert - searching - mary - into - artist - located - mike - anyone - snow - tickets - then - reset - garden - route - hello - tall - likes - talk - forty - share - feed - were - indian - washington - difference - remember - convert - receive - tune - level - asking - capital - life - dad - yen - street - raining - mistake - correctly? - quite - pandora - jane - town - yet - player - park - san - american - far - sports - raise - popular - display - these - couldn't - mountain - dentist - importance - unimportant - complain - clean - continue - euros - los - ready - yahoo - can't - classical - politics - newest - lighting - miami - trip - horrible - info - added - prepare - iphone - machine - mother - miles - via - chris - tv - since - bathroom - state - cheese - request - items - oops - ah - closest - warm - microsoft - settings - value - keep - brighter - note - everything - wife - decrease - okay - using - rap - election - sunny - eat - usa - eighty - fifteen - until - wanted - wrongly - dog - obama - years - coat - week's - japan - quiet - paris - angeles - comcast - target - emailed - airport - interesting - mcdonalds - mr - married - green - product - past - little - other - t - listening - cooking - activate - earth - dance - title - florida - rupee - travel - kids - takeout - pending - america - making - its - than - doctor - population - bar - plans - power - fourth - silent - ride - milk - how's - seventy - sure - fine - jennifer - july - sister - brighten - picture - deliver - singer - clock - inform - brad - burger - never - pesos - object - hero - arrive - classic - olive - games - group - watch - line - justin - cost - project - called - lets - track - still - starbucks - form - repeating - christmas - breaking - due - cheapest - forget - posted - james - posts - central - lot - stories - whole - small - ever - steak - review - requested - wish - david - workout - alex - seems - given - gym - largest - la - average - compare - china - fifteenth - having - rupees - band - background - meal - online - reserve - file - lamp - laugh - sun - anniversary - eastern - busy - mobile - bit - jokes - places - geographic - else - chess - meant - working - p - planned - program - seconds - rated - large - issues - road - pay - big - holiday - daily - 'true' - celebrity - better - hut - being - sixty - away - helped - peter - god - cab - someone - internet - page - anna - feel - video - steve - opening - lately - sandy - bank - weeks - id - sam - pitt - river - february - i'll - saved - soup - phrase - distance - economy - hits - sony - eggs - low - water - text - topic - co - begin - attend - groceries - adele - reach - within - pause - half - yourself - kind - dark - replied - enter - must - asked - beatles - fun - ingredients - against - invite - soon - colour - different - jacket - updated - seattle - denver - canada - vegas - mode - pasta - january - doe - listed - refresh - listened - team - longest - spotify - remainder - telling - mumbai - you're - orlando - card - rice - during - reduce - locate - future - starting - boil - genre - class - slow - famous - named - allen - youtube - works - olly's - dc - brew - through - pounds - football - pacific - white - sings - egg - oil - festival - clothes - moment - die - orange - school - kim - las - divided - whether - photo - everyday - ryan - bills - headline - fix - square - npr - jake - brother - todays - terrible - weekly - type - topics - months - chat - yoga - reading - products - extra - cut - adjust - king - personal - client - jan - data - doctor's - computer - rohit - johns - o'clock - canadian - mistakes - rid - names - control - sunscreen - per - lady - head - taylor - always - budget - pink - bought - x - side - ahead - articles - english - ny - able - reschedule - fast - hashtag - tweets - countries - numbers - running - alabama - blank - madonna - bright - yellow - west - went - options - story - october - russia - together - n - basketball - joe's - dominos - tomorrows - less - situation - colors - mom's - end - payment - drop - downtown - provider - joes - means - helping - mexican - friday's - cricket - return - needed - death - tech - charlotte - heavy - draft - sea - paul - r - condition - seventh - dallas - hip - related - article - heard - war - elvis - everest - problem - stating - bieber - system - sales - shoes - hard - become - based - kevin - age - she - quality - mile - hair - gas - biggest - inr - climate - hate - twentieth - sucks - dean - angelina - turkey - harry - cake - national - record - longer - dave - subjects - brown - supposed - ocean - church - drive - gandhi - needs - above - theatre - cookies - abraham - gone - map - television - such - face - sale - jim - francisco - sean - june - romantic - compared - curry - ball - jeff - subway - lincoln - bed - lagos - turned - south - won - trains - girlfriend - mahatma - nsa - hop - amy - commute - solve - came - created - dont - history - math - telephone - says - laptop - pawel - offer - fox - single - sixth - midnight - missed - potter - loud - richard - chuck - looks - practice - body - dan - husband - waiting - birth - stuff - adam - sender - gaga - truck - france - texas - restart - intel - colours - statue - liberty - intensity - previous - problems - outlook - visit - wine - peso - continent - utterance - helps - asssistance - each - north - grand - patrick - match - opinion - plan - trump's - papa - instead - martin - root - purchase - perry - richards - closing - cloudy - eddie - senders - move - susan - tesco - size - shows - folder - spaghetti - doctors - stores - presidential - dates - theater - menu - agenda - ann - code - animal - frequency - kansas - roomba - technology - tasks - without - flight - who's - beach - empty - tired - driving - entire - carry - british - dr - asia - rccg - uncle - vacation - pepperoni - programme - standard - reminding - maximum - starts - tallest - gonna - fourteenth - playback - medium - nike - cruise - changed - diego - arrange - bowie - learn - mount - particular - costumer - sundays - fire - calls - silence - podcasts - spain - dominoes - website - italy - strongly - agree - agreed - suggest - mood - fourteen - result - metallica - thinking - session - profile - england - active - ohio - grid - fall - pot - marriage - queue - told - narendra - jerry - mt - frank - tenth - wishes - recording - finished - international - calculate - hit - towers - ninth - site - feeling - macy's - tag - actually - black - birthdays - hottest - mary's - expect - snapchat - jay - smith's - mountains - building - setting - cleaning - height - initiate - hall - breakfast - martha - conference - aol - win - steps - fancy - smartphone - led - zeppelin - houses - holy - currencies - club - children - atlanta - einstein - happen - cell - landline - coworker - objects - negative - modi - soft - haven't - mention - radius - books - daughter - results - earlier - bruce - butter - stars - remaining - delivers - device - domino's - unmute - joy - twelfth - voice - taking - snowing - sick - boots - cleveland - journey - destination - worker - poker - lee - katy - australia - incoming - least - lisa - experience - million - recurring - scenario - sacramento - geography - library - brief - jolie - monthly - elton - sirius - alaska - lyrics - oven - log - random - moscow - barack - disney - alive - measurements - maker - poor - error - stone - versus - hotmail - interpret - sarah's - memorial - goes - stay - delhi - health - special - speed - thirteen - test - edinburgh - credit - facts - cat - neighborhood - sometime - empire - entry - financial - comment - link - hockey - circuit - holidays - singh - jodhpur - rockville - ones - features - bread - eye - mall - directv - contain - seacrest - chance - under - table - few - hotel - rude - services - yesterday's - certain - fb - abc - netflix - linda - notes - length - reminded - shoe - wild - employees - beef - sushi - fastest - thirteenth - recommendations - fish - tennis - main - jersey - jones - break - concerts - gomez - angry - uk - replies - emily - kickball - released - upload - effects - quickest - italian - caroline - emma - real - human - minute - took - activity - jeff's - staff - handler - touch - hold - joanne - range - moon - submit - ends - tomato - lost - prime - twelveth - phones - amd - hectic - bobburgers - screwed - porch - reviews - vegan - rihanna - houston - ham - mondays - general - engaged - walk - melody - electronic - held - selected - equal - getting - tata - wall - clothing - round - leaving - nasdaq - total - pressure - expensive - border - exhibition - trash - november - handle - halloween - attachment - kardashian - shoot - rewind - rating - toronto - department - procedure - member - ray - chelsea - rohan - arrow - checked - modify - wasn't - chances - protest - lottery - prince - include - jo - net - pie - sleep - enjoy - nineties - taco - banana - source - quieter - bored - desert - guys - gary - activities - already - contract - st - minister - disable - woman - europe - arijit - audible - presentation - cad - records - trips - booking - tacos - sally - non - centre - direct - advance - selena - policy - orders - stefan - arrival - divide - chocolate - dish - teeth - hdfc - silvia - stove - coast - defined - digest - snafu - manager - pinterest - tim - conversation - bulldog - titanic - brunch - heat - canyon - dial - earliest - region - stopped - foreign - folk - watching - brexit - albert - joejoe - early - cities - manchester - december - biloxi - often - questions - garage - tunes - possible - ms - ar - kiss - shares - bangalore - heading - derek's - desk - cheers - tomasz - terms - companyname - sara - asap - super - meryl - streep - rent - dress - cinema - usually - trend - conversion - friendly - ties - ordered - electricity - marked - migration - choice - journal - norris - aniston - mailbox - minus - fried - miley - cyrus - newly - theory - rest - swift - windy - dan's - mass - comes - selfie - wings - julie - masti - celine - plays - pack - including - responded - jason's - ale - apples - dolly - oranges - lg - washer - substitute - global - feedback - grandma - ben - drainage - invoice - sunset - takeaways - man - art - universe - suitable - antonio - full - delivered - laundry - wrote - min - register - snap - nixon - bird - spend - rome - jesse - calories - cappuccino - quickly - buying - britney - spears - spacey - jobs - arriving - jean - potholes - janet - pictures - ashwin - morgan - freeman - baby - microwave - yellowstone - francis - dubai - invitation - hope - melbourne - rocky - kroger - rivers - charles - jim's - rectify - statement - carpet - baked - jessica - meatballs - mushrooms - amount - switzerland - relating - zero - front - phonebook - hows - cheesecake - carryout - magic - ola - replace - recorded - access - land - where's - elephant - removed - liz - load - metal - package - diner - goog - bob's - k - year's - mars - guy - assistant - rahman - eagle - part - burn - aran - stevens - daughter's - eighteen - chemistry - action - selling - thats - koc - lines - sugar - major - chair - easter - departing - africa - nigeria - requests - conditions - you'll - manhattan - roll - cracow - candy - crush - bell - massive - gold - happens - usual - andrew - equals - dead - plane - graduation - warned - shaun - triangle - wyatt's - pass - function - max - space - programmes - awful - parton - exciting - battery - hwu - recipes - dirham - rushmore - johndoe - button - express - pontificate - easiest - magda - selection - reservations - guess - copy - classes - supplies - schedules - winning - berkeley - notice - headed - outgoing - mi - rainy - wikipedia - entertainment - dow - everyone - aunt - furniture - oceans - softer - heart - newmail - while - baseball - easy - stations - philadelphia - alice - swat - yearly - poem - soccer - president's - milan - paper - kardashian's - loop - shown - sandals - yo - scan - nevada - apahelp - coldplay - french - bay - higher - rumplestiltskin - airlines - fresh - standing - cream - hamburger - broadway - oscars - tokyo - cable - shipment - formula - teacher - sweet - golden - newsfeed - confirmation - shirt - austin - own - canon - wanna - gods - spanish - count - seat - ideas - study - tara - mutual - jennifer's - because - edit - denmark - direction - timer - growth - luther - marketing - cd - mine - public - peter's - bolshoi - flat - crazy - others - dry - pub - theatres - bro - fashion - teams - cycle - pickup - dion - teach - series - checkout - male - noise - solitaire - pf - cassie - travelling - davis - naty - income - disco - dropping - donna - follow - shelly - accidents - plot - irene - download - circle - law - tea - organize - principal - weekends - camera - solution - bombay - wuthering - heights - charged - colorado - kong - keys - race - mona - entries - j - nyc - potatoes - gospel - raju - trivia - bike - dating - oregon - event's - prefers - rush - percentages - peking - cooker - husbands - won't - tower - heaven - hugh - june's - fake - figure - purple - takes - l - howard - stern - nineteen - percentage - motorola - doe's - outstanding - tesla - laura - dale - warning - eighteenth - golf - island - career - bieber's - vacuuming - pizzas - refund - weekday - s's - derek - thanksgiving - delayed - query - buffet - rachel - pants - wash - survey - photos - except - topography - door - jen - queen - depart - cheap - theaters - web - jesse's - multiply - workhouse - press - click - loss - recipient - verizon - volcano - rolls - royce - pixel - affirmative - completing - thai - walking - bananas - hollywood - equation - dirty - scores - katrina - exam - creating - letter - sing - construction - broadcast - tom's - rupies - management - permanently - converting - ist - iron - religion - kings - tucson - standup - tic - tac - toe - headset - sex - diapers - purpose - seventeenth - eighth - dylan - temple - refer - gift - fact - drink - inches - air - carpets - newcastle - clients - private - tasting - sams - nj - chili - cultural - swimming - they're - iowa - jordan - period - accept - cincinnati - college - rainbow - myself - deep - deepest - warming - sky - vp - seeing - indianapolis - kmart - nikesupport - image - suck - broiler - timeline - dell - parisa - brandon - example - y - filter - sad - shine - sixteen - christian - pic - pdr - fry - another - network - omelette - kilometers - municipality - giving - leo - cups - earthquake - susan's - application - cross - across - carl - pawel's - sauce - relativity - rail - sisters - letting - shorts - vs - rajesh - swift's - starving - discussing - block - written - n9ne - women - celebrities - bake - cookie - continents - workers - leonardo - mel - gibson - shall - beauty - sum - fair - deli - middle - same - nile - sell - role - boat - sandwich - parts - hearing - knows - sand - manoj - delivering - rahul - neil - australian - kindly - properly - assist - esurance - emilia - breach - loudly - harvard - marc - nintendo - scrabble - farm - lie - patio - greg - screen - degrees - yesterdays - carrots - receipt - lasagna - clooney - there's - degree - preferences - hallway - latin - nicest - lauren - worst - also - checkers - input - boyfriend - masala - tournament - monet's - burmuda - section - eric - japanese - supervisor - junk - performance - effective - urgent - oldest - tone - sweater - goa - bag - lowest - aus - peace - julia - summer - fan - hurricane - colder - steven - sachin - tendulkar - watson - exorbitant - bags - macs - yulia - matthew - pole - toby - pennsylvania - carmen - tiffany - complete - electric - wallet - albums - maths - distribution - eminem - familiar - regard - upwards - ron - couple - acme - angel - zoo - nineteenth - shazam - inflation - offers - devotional - jackie - tony - artificial - intelligence - grill - father - predictions - repeats - manila - cooked - reason - learning - nowadays - cheer - jingle - bells - anxiety - hoizer - girl - pondichery - position - teachers - dictionary - nap - cafe - m's - meting - crime - eve - horn - bristol - pubs - companies - johnson - resolve - waterfall - female - biriyani - drama - nothappy - haircut - remote - colleagues - bones - saturdays - cambridge - jam - maine - category - invented - chang's - boy - planning - chen - assignment - publish - hunt - alerts - dad's - deal - leading - trail - follows - young - jay's - summary - ko - beyonce - vergara - mexico - whishes - arrived - placid - specific - depot - tikka - expire - markets - problematic - highly - blues - thirtieth - brooklyn - tatum - argentinian - redso - des - moines - women's - richard's - cellphone - division - hong - political - charley's - steakhouse - accident - normal - wakeup - satellite - freezing - forex - jimmy - chores - snooze - design - museum - guide - speech - ran - shift - inferior - mashed - jcpenney - environment - raw - disturbed - sia - chips - anybody - present - reynolds - limbaugh - weekdays - islands - viral - asian - streets - inception - meatloaf - alternative - compliant - sensex - phil - est - hand - switched - recap - ferrari - nandy - promotion - kate - brothers - ma - followers - closer - deleted - gloves - bands - platter - boland - corner - strong - chipotle - eu - amtrak - son - charges - version - rajdhani - chart - manage - musical - hat - den - tonight's - syria - stronger - homelessness - nails - support - ally - sentences - penn - ago - turning - center - hungry - actress - keywords - usain - bolt - ongoing - cancelled - idol - julia's - wells - fargo - ri - sarahs - computers - devices - toms - regards - quote - production - brother's - inch - shell - marathon - directory - dictate - huey - lewis - elections - alone - marry - apart - danielle - jane's - mankind - singularity - nye - feynman - whom - inventory - makes - dept - apple's - education - bugs - settle - when's - geographical - jason - exchanges - mcdonald's - tgi - ship - hershey - facing - faulty - zita - jeremy - irons - wallmart - sphere - hp - gottten - pardon - engagement - showing - format - absolute - interest - messenger - gate - enable - columbus - hips - tour - sterling - thumbs - priced - tablet - amc - bible - safeway - organism - undertake - freedom - charger - documents - jars - clay - members - o - vegetables - delicious - beaumont - tx - finance - exhibitions - trumps - month's - v - applebee - dakota - bus - brighton - pa - darken - promoted - liverpool - utah - suggestions - micheal - complaints - pencil - keith - fridays - temperatures - hardware - exercise - jpearsonjessica - release - hoover - goshen - chester - wood - woodchuck - healthcare - borges - calculator - dune - reality - jobe - gossip - piece - convenient - titled - pork - belongs - hongbin - wreck - tool - started - gather - bruno - costa - patel - daniel - corporate - controversy - wendy's - texans - biography - flowers - investing - arrives - finish - spot - crop - culture - enjoying - fetch - kill - auto - washing - buffalo - he's - titles - ross - whose - types - pleasant - erin - madison - tuesday's - lif - khan - affordable - season - policies - c - expected - hypothesis - seth - kicked - unhappy - gallery - xorg - used - monali - thakur - noodles - cher - sally's - tracks - mid - launch - glasgow - bridge - releases - pitt's - server - clarity - yens - motivational - scratch - blanket - aib - reads - singing - monas - tuesdays - winter - rocket - lands - chan - economic - sister's - aa - film - pb - indiana - departure - pipeline - stitch - sleeved - hail - logan - style - quantum - physics - labeled - delia - began - rrcg - shape - awards - improve - pertaining - trance - lives - weight - met - brian - sinatra - sunglasses - attending - falls - requesting - sunday's - overhead - greg's - rom - historic - georgia - guest - jaipur - iroomba - alfredo - pride - prejudice - fill - interview - daddy - wangs - manchow - university - locally - lowes - tiring - east - medical - metro - bach - schubert - rooster - czk - channing - pad's - identify - yelp - scandal - affect - suffering - enabled - arby's - saw - mango - itunes - highlights - brings - sixteenth - tourist - wendys - presley - sold - intern - affairs - fries - buttermilk - panda - wants - floor - clint - eastwood - moe's - planets - equivalent - morrocco - gravity - uploaded - someplace - availability - issue - fly - jpy - natural - delta - disappointed - files - q - cindy - shortest - simple - ring - lotion - maroon - fort - died - bonus - repetitive - icecream - statistics - rebel - lawn - leith - measure - daytime - september - pilots - pda's - shade - sil - cap - punjab - gwalior - ashley - juice - nagar - ellen - programs - fairs - invest - suits - ingredient - launches - leaves - bjork - crater - elevation - stewart - hotels - spices - bubbles - grass - broccoli - capricious - philosophy - anthony's - apply - pings - gps - thomas - koontz - acdc - beijing - ratings - union - prayer - todo - angles - scissors - stashable - cinch - bacon - passive - que - occurred - lakeland - tulsa - advise - singapore - risotto - invested - model - helmsworth - bench - julian - buddy - rogers - brains - chap - badminton - dick - lopez - apartment - points - germany - unknown - thugs - healthy - rash - casey - oriam - ps - plants - mailed - ikoyi - grassmarket - marleen's - locations - bush - mac - reaching - allan - till - cheering - guitar - oxford - densely - populated - son's - hubby - comparison - putin - barcelona - gss - energy - pan - nyack - worked - unavailable - bryan - adams - miss - checkbook - jared's - enrique - iglesias - forms - jeans - voices - alan - tudek - animals - olx - mts - freed - jenn's - coordinates - humid - demographic - otherwise - tiffany's - outdoor - sheila - lincon - dust - serve - conduct - estimated - gaana - funds - downloaded - indignation - meijer - necessary - grubhub - pancakes - mario - bars - birmingham - sites - donuts - chopra - textual - rapids - cant - prefix - sounds - provides - amy's - benton - leeds - dsw - returning - defective - digital - bhaji - carlos - linux - upgrade - shark - attacks - screening - exposure - souffle - tracking - od - progress - paused - gilmore - hour's - imdb - orleans - european - gdp - surfers - theme - ash - ikea - klm - marilia - cars - robin - williams - surfin - ottawa - trade - contains - field - someone's - prague - brno - rene - interests - radiolab - harris - strive - accommodating - fell - relationship - pharmacy - memo - nancy - paid - expressing - disapproval - yard - royale - hide - amber - cheeseburger - coca - cola - al - matrimony - scott - potato - funniest - polling - mother's - chase - xmtune - matt - murphy - detroit - taiwan - organic - secrets - domino - ac - assistants - z - fred - owner - required - saga - hanks - trading - erosser - rosser - vikki - dhaka - notepad - oldies - alison - recur - w - mentioning - languages - lavender - toned - videos - stein - chennai - resuming - moms - foke - beep - discussion - woodland - lowry - meetups - powerball - toyota - focus - concentrate - nbc - roosendaal - deactivate - shrimp - parmigiana - bumper - spouses - lucknow - paying - hurry - served - rhythm - enquiry - hartford - plaza - hyundai - wishing - websites - briefing - complex - calculations - jarvis - highway - fired - dissatisfied - sandra - bullock - ratio - haskell - sharon - horse - mum's - dillinger - sunblock - sub - tab - crude - software - stadium - step - short - reddit - appoints - agra - sheet - keyboard - kfi - district - connery - carnival - wok - shutting - phoenix - cloth - rehan - lego - alphabetical - mexco - charles's - foodpoisoning - ultra - madonna's - harley - davidson - daylight - afi - infy - launched - inboxes - secretary - increased - resolving - fuel - injector - multiple - interval - mike's - espresso - sasha - susie - salesperson - country's - cylinder - specifications - ivory - pst - zoella's - jackman - reacting - potential - frying - boise - wendy - divisible - automated - katherine - pre - gaming - containing - decade - industry - foot - chemical - cause - taste - bra - julianne - hough - addresses - vonstaragrabber - lion - restroom - kohl's - mentioned - hz - royal - bloodline - relationships - billings - levin - quarter - lori's - lori - exclamation - definitions - birds - raj - priya - allows - worlds - kelly - clarkson - garam - scarlet - found - cub - dmv - excessively - lake - dried - reporting - smile - changes - charmin - eternal - smoked - meat - beanos - processing - chip - logic - insightbb - highland - terrace - child - peck - midwest - cardinal - anthony - barrack - jancy - thompson - cassy - gulls - alternate - sin - dragons - msnbc - residential - leader - siblings - pedro - serendipitous - bestbuy - targets - wawa - mentions - engagements - hawaii - jr - applied - halifax - ahmedabad - monty - python - stronomy - blahblah - blah - arrivals - subtract - payoneer - formal - connors - indranagar - transform - marcia - perpetual - arranging - cvs - callum - steffi - attention - kanye - mommy - chucky - forest - polarized - proposal - conrad - coldest - hue - dictator - clancy - geranium - delays - build - lense - rai - transistor - dildo - warren - exercises - forman - kinley - bottle - retail - yan - regal - unprofessional - annual - payday - tricep - arts - ripped - vietnam - trends - chaise - preparation - nestle - paula - deen's - bmw - microsoft's - bookstore - below - moving - pretty - lock - administrator - edition - airways - marvel - garner's - rubix - cube - kfc - milwaukee - pager - alexander - gilchrist - goods - performing - unopened - security - chain - probiotic - colleague - knowing - novel - fiesta - comcasts - acer - farmers - fraud - weighing - india's - gotse - grapefruit - similar - tmobile - nifty - sessions - recital - greatest - openings - zip - demento - fatigued - disease - prevention - overcharged - unquote - cotton - tweeter - railways - flipkart - fist - renee - nutritional - starred - calculated - mattress - hillstead - paul's - jill's - disregard - pesto - stinks - nobody - behind - kid - nature - ounces - ted - boiled - dancom - wars - fmod - span - along - malls - joining - frequently - realdonaldtrump - bobby - mcgee - pwd - obamacare - clicked - falling - pampers - virgin - hayden - pat - amie - infosys - technologies - roads - aerosmith - airtel - dairy - sends - dues - tobytoday - ileana - d'cruz - rended - taj - ashok - typhoon - rama - final - missouri - virginia - announce - haughty - salmon - joking - goodnight - rebecca - believe - vowels - ban - haze - insight - cable's - fellow - tweeters - canoe - warriors - assassinated - acceleration - detailed - wife's - robert's - angus - interested - jen's - sjobs - cdn - ruth - simran - aapa - kadai - armor - sms - indefatigable - indicate - fra - floors - modcloth - honor - weigh - priority - hiking - smoky - judawa - expense - deals - plethora - sam's - august - elain - bbq - leap - congressional - representatives - voting - reproductive - ge - bbb - contacted - assigned - jill - drafts - scoring - touches - relevance - goggins - medvesek - philippiness - booked - board - locality - beth - katey - fans - approximately - charitable - rae - darker - anymore - printing - significance - fondle - mate - larry's - larrylarry - faripir - gurpur - seasons - softball - refreshments - jamie - carrie - underwood - abdul - kalam - subterranean - colombo - sri - lanka - quit - dollar's - award - among - spouse - forgot - ass - millionaire - indians - americas - julie's - transcribe - garbage - geographics - tree - criticize - tanzania - heather's - answering - spam - phishing - reseda - axel - kailey - prettiest - century - mattel - toys - grateful - fixing - maidan - sophia - betty - reasons - russian - applicable - loving - claire - crashed - batteries - philips - person's - compile - ali - matthews - apologize - comcastcom - luke - jean's - carefully - beg - trying - flooringco - seams - baking - skiing - calming - continuously - tale - roraima - innova - bowling - beginning - identifier - diverse - santa - continuous - hangman - vegetarian - roast - rewards - allow - immediately - shelley - hennessey - waking - dicaprio - ways - immigration - raised - lose - digger - cosmetic - perth - feet - chick - tornadoes - upstairs - badly - timings - lobster - runner - forum - thunderstorms - powered - plugged - rod - mgccc - bleed - ga - pune - mixed - dishes - radisson - cheetah - what'sapp - cm - father's - skill - graham - eggless - collect - favorited - flag - ssmith - virtual - bryant - spots - scapingyards - washed - springfield - draw - insurance - quantity - brightener - cuba - stream - raincoat - maiden - soundtracks - deliveroo - humidity - crowded - built - mesa - rosenstock - workpdf - occurring - environmental - dbell - converse - radia - logged - scabble - loads - jacob - hasbro - aldi - piramid - completely - method - hems - loose - connect - snapchats - arizona - festivals - hospital - peppers - bowl - korn - lupe - eurostar - umf - unchecked - berlin - lane - synonyms - hampshire - shakira - brads - keanu - reeves - johns's - increasing - burgers - stan - falklands - valley - maria - hangin - glow - we're - newsource - clark - carrey - jams - crashing - outback - sugars - defines - joel - venue - huffington - images - elizabeth - case - agnes - randomly - mecky - incredible - even - decreased - vacations - honey - akon - barbara - handsome - forensic - spielberg - korea - coding - achievements - albert's - clerk - hopes - zimbabwe - buble - research - excel - gun - rogen - resin - tooth - filling - mody - marinara - vicki's - mardi - gras - monika - relatives - chillin - lol - levis - tricounty - messy - disgusted - emoteck - foroogh - quick - decline - emailstudy - atdfd - giant - trey - kalka - mcdo - timestamp - operate - watched - infinity - tactics - upbeat - synonym - racing - towards - fog - muted - coke - eighties - tvs - theresa - brent - kamycka - dejvicka - tap - peanut - circumference - saskatoon - sync - sofa - mcdonald - silenced - catalogue - algorithm - sanctimonious - talked - realize - reveca - paok - wipe - bisque - br - rather - silly - stat - tar - vitamins - gain - xm - fongs - anywhere - zanes - se - chronicles - weber - commence - causes - sangli - german - hedges - truthdig - coffees - commuter - plain - mimo's - oscar - restrictions - treasure - louis - stevenson - fifa - beast - pav - prambors - hannah - ringcast - vegetable - episodes - overnight - apps - nathan - dismiss - karl - hourly - eyes - breeds - inside - tribune - join - crabmeat - shakira's - yankee - greenwich - gala - jump - recall - johnny - cash - pod - cast - rare - suppose - enjoyment - emo - nayagara - passion - pit - marckel - bohemian - emma's - arijit's - pet - prize - receptionist's - beat - freds - probles - patagonia - quart - '?' - zach - duration - jlo - alphabetic - phohouse - badpho - daybreak - biryani - battle - divergent - moby - jungle - jaiho - casserole - shooter - columbine - wednesdays - soul - accumulation - squash - calm - debate - schools - amd's - lee's - managers - myspace - relaxing - bahar - antarctica - atmosphere - pinpoint - payments - illinois - louisiana - cfo - pool - vyas - morel - mysore - rise - sdfa - newspaper - calorie - dangerous - sunrise - mostly - dining - shake - flood - prescription - mix - view - jana - spa - comments - pear - factor - clearance - northern - language - arnold - exxon - mobil - dragon - fruit - differences - seashells - seashore - velocity - motorolla - haggis - fiji - irwin - similarities - hypertrophy - sharukh - implement - kazakhstan - mediterranean - roman - grigorean - hardword - quead - amphibious - roberts - climatic - tornado - prone - rising - declining - megatel - denzel - washington's - citizens - arm - persos - belarus - gyllenhal - geology - helicopter - iphone's - drained - manger - navy - daikin - jerk - nexus - interaction - platform - tweeting - at&t - mahaboobsayyad - kellogg - ashmit - ismail - listing - enalen - projects - clara - clinic - exams - ammunition - mark's - divya - jjnzt - activation - andy - terry's - brenden - jeffrey - burnette - protests - joshua - pianist - whiz - schadenfraude - rials - storage - bot - provided - massachusetts - channin - store's - rump - prior - re - intelligent - recognise - irobot - areas - lighter - yell - uses - cn - gadgets - skynet - marie - lamb - balcony - nyt - bennett - ralph - pda - balloon - maps - degeneres - character - evans - actor - fitbit - malika - shivaji - attitude - lily's - concerned - upon - startup - stuffs - tawa - relative - legacy - cst - leah - remini - mortgage - amed - cleaners - seal - abita - grammar - backdoor - minimize - leisure - billie - spicy - training - comfortably - sunburn - minneapolis - habits - braking - notifier - swan - thoughts - pleasure - those - kashmirstart - sells - i'dl - kettle - 'false' - rta - valia's - visiting - techno - mornings - mow - cbs - slightly - francine - vice - postpone - mins - xyz - hwood - kept - spider - reopen - billy - connery's - eiffel - itinerary - crash - valentine's - likexchange - divorce - danville - il - government - menus - capabara - origin - assistance - vicinity - chit - drinks - flabbergasted - xy - self - double - castle - refrigerator - bakery - spray - pyramids - bio - basic - humans - schwarzenegger - inchoate - rules - caftan - raleigh - hobby - ajay - devgn - corden - aud - prevailing - kenny's - crew - aww - spying - employer - thier - juanpedro - craig - leon's - looked - players - costs - providers - sydney - documentary - hyphen - represent - strings - pianos - acoustical - celeb - pong - linear - turn_down - reaches - strength - routine - billboard - piano - ed - sheeran - diet - vietnamese - yams - grandmother's - rihana - require - stressed - option - affected - acquire - retrieve - clarion - congress - turiellos - mates - solar - dice - jalapenos - wished - painting - therapy - warehouse - mop - neighbor - flappy - returns - someones - spring - wonton - moves - jagger - fishing - hiphop - dunkin - donut - atlantic - daughters - hula - hoop - lessons - scrote's - indie - grief - lebron - naughty - preprogrammed - alt - needy - sharpen - butcher - knife - pulled - starbuck's - backward - terrorist - invaders - parent - crescent - brewhouse - prado - science - playlists - debbie's - sleeping - searched - lindsey - lohan - competitions - subtracting - challenge - beer - gainers - chili's - frubs - police - softly - practical - assessment - bonefish - rotating - placed - lakers - barenaked - ladies - lord - rings - mar - sneakers - artists - sanantha - shuffles - shuffled - bardonia - county - analyze - pattern - girls - league - fjords - nothing - brewing - smurfs - tommy's - lovin - cottage - ming - photosynthesis - danny's - repeated - peaceful - migrations - zydeco - inkheart - seller - occurence - telegraph - invited - wifi - levels - willie - nelson - dolores - alter - retirement - professional - development - sainsburys - byron's - floyd - raingear - notorious - bone - explanation - database - likely - lucky - irish - sshow - ramsey - aired - sprint - preparing - academy - yeshudas - angels - dancing - aretha - franklin's - layers - glass - kuch - hai - wakey - knitting - mujhe - feb - king's - malinda - parents - mirchi - gallon - seen - parks - safest - evacuation - beautiful - sofia - francs - consequences - various - dicaprio's - networth - phelps - disk - constructed - concern - effectively - lawrence - zac - galifrankas - wheat - prediction - schemes - mega - capricorns - dinky - lanegan's - princess - pregnant - smallest - americans - retweet - insta - sonys - bk - alzacz - kohls - cleanliness - pizzahut - delay - lpg - satisfied - choke - suqcom - repairs - killing - miller - budgets - iamironman - gbaby - gma - loves - kate's - margaret - ben's - brady - palmer - homework - tax - regional - archive - fitness - vault - footloose - child's - damage - petco - canceled - passing - pikes - peak - avatar - diverge - maron - fault - sword - eventual - contest - dangal - mauritania - abs - wondering - southampton - resources - soy - lexmark's - hilly - lyon - beirut - tribute - madrid - ate - sweat - charlize - theron - atif - aslam - capture - actual - shane - dawson - zedd - snooker - loquaciousness - sholay - tofu - nightmare - avenged - sevenfold - matters - prompt - panic - brilliant - boston's - mckinleyville - astrology - strait - countdown - cats - fruits - embassy - pita - gyros - negotiations - hairdresser - courteous - enthusiastic - funk - sense - heathens - cabinet - irctc - stored - shutoff - glasses - ella - fitzgerald - rover's - vet - polar - bears - oceanside - medicine - anita - barrow - burrito - oliver - covering - ground - zucchini - textile - antebellum - chimes - covington - species - bees - cranston - kilometer - behaved - rudely - jimi - hendrix - calms - outwards - califonia - composed - hint - shipping - frosting - sport - napoleon - hill - athens - middletown - shirts - sample - politician - investigated - rapper - con - cuisine - wizard - brick - conroe - iterate - architect - salon - babaji - passed - maryland - surya - monopoly - avenue - considering - celebration - brewed - galoshes - tutorials - workouts - millenium - toward - neighbourhood - bannon - storming - reoccurring - longtime - sweetheart - memos - starfish - centaur - philippines - oar - departs - preferably - latte - sides - pentagon - fashioned - rescheduled - transportation - twins - duker - deadline - samurai - obaba - bp - ambiance - automatically - object's - boost - morale - jogging - spell - firefly - mura - masa - checklist - biographies - sucked - congested - avinash - commando - jolie's - instrumentals - clarksville - tablespoons - surveys - flour - acela - calone - bucket - fulls - valid - references - critical - perpetuate - luncheon - ohm's - values - plying - expectations - musician - mindsweper - throughout - noontime - included - tour's - voted - walgreens - chickens - monday's - crankshaft - surfer - lunchtime - skramz - compounds - diabetes - might - reservation - homosapien - engadget - boeing - brisbane - ear - headphones - minimum - worry - snowplows - burying - driveway - adapt - destroy - impanema - equipment - turnt - attractive - conducted - cinnamon - freshener - watsapp - bean - awfully - entitled - murderer - ford - forties - scenery - morocco - sf - blokus - preacher - taken - stormy - centers - ethics - popup - mysterious - puts - stage - considerations - lourie - artic - scoop - carion - merced - bypass - passwords - quantico - grade - examples - cuisines - hibernate - bear - published - authors - tempo - keidis - tidal - cookoff - zones - probable - summerfest - dogs - aren't - necessarily - carolina - eleventh - chilling - sleeve - invoking - term - herald - maria's - poltergeist - imagine - uv - index - johncena - instruct - oscillate - liter - nelly - shawarma - baster - pali - vilnius - tabs - debates - singers - activated - ozzy - osbourne - danish - happypeoplecom - accounting - backpack - im - puttanesca - keeps - worse - wrigley - braise - loin - carnatic - bases - nick - swisher - stolen - clouds - cleared - bola's - norman - reedus - screwdriver - window - volcanoes - rowan - atkinson - minneapoliscity - delicacies - monitor - overall - gymnastics - channels - kxly - botswana - enjoyable - spectre - chane - decentralized - men's - freeze - postal - becomes - ccn - berth - michigan - composition - shahi - panner - dakar - jakarta - equalizer - weird - barely - rodriguez - oklahoma - giraffes - margarita - difficult - crabs - firework - probability - tools - emigration - legislation - pdf - cheeseburgers - applications - adopters - priest - walks - mechanic - h - showers - signs - contrast - recollect - gm's - duck - beavers - tail - lucking - horkersd - wo - myrtle - hr - steam - entirety - anirudh - colored - tropical - bedrooms - yellowish - elephants - expenses - contents - warmer - royksopp - etc - progressives - peoples - cultures - unset - iceland - mp - mangalore - tanya - quad - particulars - insert - tvf - formidable - origins - eden - depressed - mc - donalds - rub - regrets - judgments - scope - intellectual - capacity - ahmadabad - stethoscope - superstitions - rl - stine - quinoa - martial - smooth - damn - speeding - stephen - halley - barry - jealous - siri's - java - scenarios - pc - transfer - tw - agent - nightime - creamy - mirch - dil - cannon - cameras - process - merriam - webster - dubstep - rangoon - wines - older - navigate - chandelier - egs - recognize - subscriptions - mileage - studies - microphone - immigrant - electronics - careful - paint - fund - success - resolved - bola - eva's - roller - augusta - midtown - surprise - children's - dongle - seashell - bots - fallen - centimeters - poisoning - sci - fi - outcome - reform - sleepy - moderate - chrome - ultraviolet - george's - geek - courses - rundown - legend - equipments - usher - manor - advertisers - clue - depending - strongest - outstation - fallout - shoal - lastfm - relocate - pollution - awareness - bryce - jessie - carol - nsnbc - vacuumed - chives - splits - arbor - receiving - toast - futures - brokers - routes - fixed - additional - switches - church's - governor - enacted - grams - guitarists - android - babe - sonny - sear - eliminate - remain - uc - polk - pakistani - bedside - reshuffle - frida - devil's - rusk - actors - pakistan - happenings - sit - montauk - beethoven - legends - sunshine - mothers - smoke - feels - rockies - miamy - operations - addition - subtraction - incite - annoying - cristiano - ronaldo - spin - cows - jenny - spread - wallstreet - selections - nashik - ipl - oswald - chambers - horoscope - mgk - dog's - residing - cricketer - dhoni - byron - fluctuations - talks - palermo - shallowest - bbcnews - nsdl - flights - lineup - stick - ribs - jeopardy - timetables - emi - maya - mackensie - osteen - jimmie's - adjustments - precocious - fork - husband's - audi - hibachi - disputed - crack - visible - boiling - rogan - karachi - babysitter - kidnapping - hamburgers - madonnas - lessen - ipo - greenville - carries - creamed - pickled - herring - tackle - brush - geyser - savings - torey - hurt - subscribe - picks - birthdate - goals - cairo - projected - patrick's - capita - honda - intended - hurriedly - activates - it'll - wsj - spy - broods - grommet - steven's - underground - seahawks - participants - workday - ammi - nightlife - donner - summit - ukraine's - ended - arrangements - altucher's - writer - fortune - brisket - grant - audiobooks - twilight - bass - hunger - roses - barbecue - tuna - deadly - killers - finally - trilogy - grisham - goblet - roadblocks - birthday's - biscuits - lawyers - steve's - kari - labyrinth - commonwealth - sharma - gulf - petrol - earthly - ultimate - ending - allison - canberra - honolulu - flash - salman - gresham - hindustani - stroganoff - sock - creates - geo - traits - moral - rein - blood - slayer - pro - bono - succinct - dalls - somethings - sharp - izzo - whiny - bitch - macaroni - nights - jumper - blind - cure - cancer - vibrant - sloth - transition - recycling - bbc's - columbia - kentucky - hire - opera - prefer - avoid - sort - comedy - compassionate - nc - va - riddles - segment - youth - charity - surrounding - punjabi - sharply - lovett - barber - label - hypocrisy - subscriber - captain - disillusion - hyderabad - dashboard - storm - barrel - panasonic - clinton - canasta - mittens - badra - amit - trivedi - crystal - lewis's - everywhere - rue - evaporated - mma - offered - tutoring - peas - dream - cafes - lauderdale - deletion - precise - parliamentary - remotely - connection - calendars - stupidest - shovel - western - cutting - ll - rapping - spelling - mama - tatum's - fulton - universal - garner - chill - icebo - college's - rehman - soundcloud - scorecards - ketchup - jimmy's - crate - lexmark - preference - females - federal - andreas - sportsnet - favourites - janice - bins - pamela - covered - rhapsody - italian's - ke - panera - remainders - tandoori - sukhwinder - sunidhi - etymology - googleplex - slide - wearing - trivial - pursuit - cancels - martina - mcbride - finances - vocab - zipcode - compaq - composer - margarine - jonathan - entrepreneur - extended - combo - memories - tupac - affects - drunks - ford's - liked - dealership - olky - realtor - thighs - ourselves - economics - medication - gross - domestic - donaldson - prostate - wicker - rooms - instrumental - savannah - outing - affleck - quotes - tire - montana - exhausted - acoustic - commercials - convenience - consciousness - serge - gainsbourg - windows - turks - generate - pedicures - btaxes - departures - frasier - amazon's - bluetooth - verus - neat - forecasted - bing's - dropped - recurrent - candidate - aware - blackeyed - pees - prince's - perimeter - rectangle - aaron - carter - involve - drugs - lighten - slicker - rains - cloud - carrot - popcorn - carmike - cinemas - greater - minestart - frog - lenon - unique - hanging - hung - sporty - seldom - jocko's - kid's - viewers - cantonese - usage - specs - bugatti - veyron - chief - blockbuster - krishnarajpuram - interstate - hammers - obligatory - wonder - southeast - marlon - brando - ferrel - tal - obidallah - manoeuvres - merita - rotate - changs - pepsi - shanghai - branden - wind - landmarks - dvr - congestion - valentines - eastwind - lomaine - geneva - officially - hopkins - takjistan - dimmer - karo - apne - aur - karna - chahta - hu - purchased - otherplace - giraffe - ute - requirement - watts - powerful - bulb - oclock - nba - hulu - composing - melissas - millilitres - spoons - goulash - thor - harischand - mg - i95 - sb - kilo - diana - llyod - webber - wool - penultimate - bang - philosophers - nietzche - focault - profession - kilograms - turkeys - bibulous - angeline - atm - narwhal - kilamanjaro - captia - volkswagen - onkyo - av - receiver - ipad - aniston's - summarize - ice - jindel - pump - nikki - minaj - nationality - snoodle - yemen - sudan - unprompted - organization - megan - fares - engage - functioning - dinar - conservative - korean - sahara - kingdom - antartica - telugu - tamil - tsunami - rajani - khanth - venture - goalkeeper - dushambe - abrupt - hbo - sopranos - parana - cave - anime - posters - johny - depp - invisible - graphical - joli - pricing - beech - nuclear - triad - hilton - borders - lucille - redhead - geraldine - ferraro - bde - lowered - phrases - nicole - mcgoat's - manipulate - roip - nasa - google's - davy - crockett - springsteen's - richest - costliest - easily - gm - psso - kroner - maple - trees - christie - brinkley - libraries - gmb - key - mongolia - anastasia - telekenesis - promise - stray - cruise's - starring - odyssey - polish - zloty - hook - ups - integral - exponential - berkshire - hathaway - tables - pink's - alligator - porto - tommy - hilfiger - print - networks - snaps - celebrate - bina - yay - smiley - emoticon - commented - folgers - hathway - huge - lfi - tagged - treated - hersheys - aircel - nastyburger - linkedin - tracy - waiter - drain - charge - neptunal - poorly - waited - inappropriate - potus - accounts - vodafone - complaining - spoiled - positive - tumblr - unpleasant - overpricing - cheating - connected - else's - greetings - thought - waste - excess - micro - lodge - snapdeal - sonic - hole - sole - patel's - insect - packet - elsewhere - moan - easyjet - snotty - expired - xl - sizes - filing - applebee's - angela - merkel - swagging - moto - sluggish - flavia - mum - jacob's - existing - cannot - pleas - mahmoud - ebay - smsayyad1985 - kishore17051985 - fedex - truette - petey's - tessa - gaurav - karen - mongomery - llc - joseph - turnpike - accumulated - deadlines - fees - ppt - emergency - missing - carl's - attach - physical - drill - marilyn - jugal - here's - bug - sarasigmon123 - lindafancy55 - markpolomm - gary's - mailing - bill's - erins - beth's - wont - stacy - cadwell - tori - aloud - brenda - thisome - smurfette - smithjoe - hwacuk - chong - giselle - bosses - havent - frieda's - jjjindia - exists - batch - samuelwaters - joose - hellen - builders - accepted - victor - taxi's - terry - macdonald - yahoocom - metion - rodger - christy's - otp - jayesh - tried - morgan's - office's - rob - qerwerq - secured - gerry - raj's - junable - shopyourway - reference - jhonny's - marissa - rosa - bert - ana - goddammit - pronounce - serious - recheck - slowly - failed - fuck - executed - clearly - errors - showed - races - thursdays - funky - handmaid's - beam - scotty - debit - wiki - editor's - automobiles - promo - discount - director - act - bejeweled - aside - snakes - ladders - marsala - influx - bayou - reasonably - tapas - az - ddlj - meatball - newscast - bibber - tmz - devon - applebees - hihop - doggie - feelings - radios - litle - tsos - congratulate - links - treble - flame - eta - encourage - students - choices - lobby - vf - chore - butterfly - clips - urban - regular - bi-weekly - baltimore - sport's - breakups - dale's - brea - douglasville - fundraiser - dolphines - maradona - pe - becky - appointed - deputy - utar - pradesh - anniston - handy - sainsbury's - attenuate - parcel - jakes - bristo - stressful - deposit - mathematical - superstar - survivor - destiny's - westcombe - facility - oboe - mcnamara - abolish - swim - repair - grub - hub - ill - dec - dreams - wyatts - obstacle - poach - dental - rose - davinci - trevor - noah - ncaa - entrapreneur - sanam - differs - ave - hopsin - enya - wbc - accordingly - remarks - sufi - beibers - arrested - sensor - music's - author - antwerp - cnn's - foodnetworkcom - customize - preferred - unable - duct - tape - gooseto - apig - ringer - secure - passage - tomatoes - wan - senelena - americano - makeup - robotics - teleconference - robotic - poughkeepsie - steel - day's - soundtrack - tobymac - transit - gloria - furious - nazi - hunting - effect - marvin - gaye - pasadena - ca - constrain - singles - outer - nowhereville - comfortable - erica - grebe - wooly - trigonametry - obsessed - graphics - undone - tough - treasury - toledo - munich - obtain - nutritionally - balanced - internal - locks - exit - mocking - lyft - transaction - tasty - mixture - according - hands - supports - canceling - congressman's - lenin - spagetti - controversial - statements - walker - humor - nkotb - jon - snow's - possibility - wellington - nz - advantages - disadvantages - driver - towels - stretch - gear - joey - crimson - chose - pineapple - asparagus - teaspoons - bling - medieval - engines - foods - hurts - cannibal - tonic - bitcoin - collection - hidden - figures - brasil - politic - superb - dalida - capuccino - analysts - thankama - kodaikanal - vote - burritto - chipolte - abut - sedaka - chamber - rfi - knock - cnncom - remchi - fl - ortcars - flip - wire - thriller - fiasco - breaks - dam - paradise - presidency - sigur - ros - socks - van - halen - wayne - spare - lightness - appropriately - both - musics - coastal - cry - friend's - wore - veganism - picnic - regent - visited - therapist - inauguration - swatishs - dorothy - known - supervision - superbowl - eric's - bday - kar - abhi - achche - ache - rahe - honge - mhz - sponge - bistros - brownies - tenderloin - enchiladas - gluten - hotdog - row - bing - notebook - pulldown - clearer - medford - drivers - waverley - canal - connecting - summers - gibraltar - monoprice - mxblue - mechanical - turbulence - carey - blunder - factorial - depends - commands - stand - draymond - susumu - hirasawa - yosemite - '200' - baguette - stonehenge - douriff - ivf - ivr - litt - runs - hesitant - crock - guetta - malaysia - whelers - sadness - william - coral - daft - punk - sandle - santha - ingerman - calc - shibaru - alcohols - nano - gina - desta - mgmt - bana - talking - garvin - trilly - nytimes - chhana - mereya - favor - strained - cooler - films - einstein's - aroma - ska - raphsody - trebuchet - forth - relate - qualifications - kirk - franklin - arithmetic - skyfall - bathrooms - raghu - dixit - reports - availables - haddock - odd - cape - cod - noisy - dull - hackernews - porn - pad - fight - fighter - nzd - melodious - burton - helena - campaign - mcclanahan - mummy's - motown - rasgulla - janta - pvt - ltd - heartthrob - justin's - velociraptor - hippo - senatra - giggle - peru - nirvana - anirudh's - retro - mf - doom - summarise - ariana - grande - predicted - creed - user - desire - kenny - roger - sia's - thrills - wapo - stockholm - okinawa - occasionally - shuffling - veggie - mukkala - mukkabilla - guardian - anytime - themes - horror - ennema - eatha - homestead - forever - mayor's - stance - council - master - louies - keane's - fears - noe - reggae - largo - swiftm - afi's - xinhua - dedicated - bottom - franks - yelawolf - ucl - flop - grammys - espn - joni - mitchell - shot - tequila - sleepyhead - aces - redder - edms - lamp's - loudest - brolly - thao - nguyen - interior - dine - dogwalking - nytimescom - overcast - deactive - foo - disasters - opacity - dea - guam - drug - abuse - itzhak - perlman - drawing - sweden - bombing - ireland - poll - hotha - defrosting - salt - toggle - spb - weatherit - either - forecasts - intellicast - weathercom - orevena - recorder - pizzahouse - reorganize - sticky - umbrellas - opened - cleaned - shakin - bakey - tips - hypoallergenic - sarcastic - cheat - ii - developers - edg - yaad - dilana - kahin - samantha's - rita's - adding - bro's - attendees - maggie - valet - groomer - timeframe - pete - faculty - parade - greens - jack's - walter - gemma - nail - arora's - namkeen - tonights - ggg - tie - iheartradio - rov - javan - wfrn - kicks - osteen's - wgrr - lite - prairie - companion - palhunik - pudding - tutorial - welsh - rarebit - oatmeal - pathia - achieve - veg - pulav - crockpot - prepared - keno - pinball - fishdom - nfs - harvest - crops - farmvile - millionaires - vodka - depend - pon - stationary - mad - errands - paav - queried - pepper - rowling - shadi - viewed - mlb - heavyweight - citadel - scene - circus - trolls - grab - kung - fu - bowery - railway - coach - fare - metrolink - navigation - westwood - layfayette - inconvenience - emotions - arrahman - cosmos - multiplied - abouts - hitting - eliot's - el - ribbons - sperm - whale - eaten - lbs - pinhead - timeliness - defining - thesaurus - penalty - approval - poetry - ambulance - jello - shots - ferrell - stassi - schroedder's - tacobell - hierophant - zealand - stockton - emissions - blowing - kennedy - ziggurat - gagas - gretszky - hemingway - pages - earn - nobel - actions - sloths - parton's - madagascar - acting - tiangle - trebuchets - googs - gandhiji - amal - brazil - adviser - rich - acted - rihanas - stamp - mugy - msn - busdriver - fergie - flick - ribons - nakumuka - postmates - complaintum - glinder - gta - rcg - outlet - hadock - mclanahan - coal - mumy's - piza - wheelers - guarante - debugging - debuging - proper - sung - bilando - terrorism - cover - dimmed - vanilli - marauthr - wooo - michael's - shutdown - pittsburgh - precipitation - riff - portland - muggy - giants - banks - steelz - ensure - ricky - matin - tyres - plant - chased - advice - gossiping - society - mitushree - hairdresser's - biology - fsu - reflect - yashas - vinay - vally - closed - shoutcast - pilkington - soda - powder - sambar - cookingforu - thermonuclear - battleship - cereal - wishlist - wrist - hipsterhood - duncan - trussel's - simmons - wide - cisco - crafts - sporting - presently - sheffield - septa - lead - fransisco - washingdon - evolution - mariah - kya - tum - mere - karne - karoge - acts - assembly - idle - brand - meridian - terranova - guarantee - marian - fields - farthest - philippine - cambodia - situated - foruget - monopricechanical - peenth - moroco - piz - tre - supplwn - viki - shivle - loged - applebe - acess - madagar - anp - socer - subcribe - pluged - imigration - audiowan - debie's - imediately - f - locar - duark - rebeca - talle - banas - ragh - acordingly - wakely - en - bress - acording - stefanan - puding - vegie - vius - edie - domizza - eg - cheeseiza - ocurred - brightnes - alaba - memory - fransico - sunderland - boogie - butt - leviathan - shinning - premier - cleanup - wacky - aman - cherry - bomb - solstice - silently - closet - nakumukka - shed - responses - yankees - investigation - dooa - pieces - imogen - heap - stole - dynamite - cease - operating - rained - uptown - suggestion - finlee's - bedtime - sockets - sanfranscio - abbas - cn's - vibrate - cooling - sheriffs - hike - ilayaraja - speaking - un - storms - roof - tube - jackpot - classmates - extremely - somewhere - drenched - sentient - budy - heating - apt - parenting - concerning - seo - searches - sticking - patterns - numbered - impression - reunion - presents - mehta - willing - discuss - evan - parker - violin - lesson - musicworkz - registration - opens - evening's - thursday's - nineteenth's - hayathis - shower - corresponding - showcase - famosa - kamp - neal - brenan - gx - nonstop - rm - giver - traveller - knowledge - crispy - supper - broil - noodle - stuffed - maccoroni - almond - clash - clans - ping - keeper - enemy - coc - detergent - corn - dill - pickles - ranch - dressing - lentils - translate - toothpaste - rearrange - groups - santana - pritzker - winners - libertarian - mc's - vitaly - nfl - mythical - oriented - provisional - experiences - safely - themselves - mia - reducing - learly - court - vin - diesel - netbooks - chinatown - aberdeen - queens - luni - purchasing - timing - bagmati - narrow - egypt - represented - revelation - britain - aamir - priyanka - middleton - base - original - nhl - goal - scorers - osteoperosis - laws - correlation - motivation - ncaaa - tense - touring - framework - adel - diamond - schwarzenegger's - stomachs - cow - chairs - steph - subjegant - pategonia - michelle - todlers - stakes - tinder - matches - fjord - equator - triumph - hell - moldova - presley's - wa - rajinikanth - basalt - bali - airplane - hash - lit - <sos/eos> two_pass: false pre_postencoder_norm: false init: null input_size: null ctc_conf: dropout_rate: 0.0 ctc_type: builtin reduce: true ignore_nan_grad: null zero_infinity: true joint_net_conf: null use_preprocessor: true token_type: word bpemodel: null non_linguistic_symbols: null cleaner: null g2p: null speech_volume_normalize: null rir_scp: null rir_apply_prob: 1.0 noise_scp: null noise_apply_prob: 1.0 noise_db_range: '13_15' short_noise_thres: 0.5 frontend: default frontend_conf: fs: 16k specaug: specaug specaug_conf: apply_time_warp: true time_warp_window: 5 time_warp_mode: bicubic apply_freq_mask: true freq_mask_width_range: - 0 - 30 num_freq_mask: 2 apply_time_mask: true time_mask_width_range: - 0 - 40 num_time_mask: 2 normalize: utterance_mvn normalize_conf: {} model: espnet model_conf: ctc_weight: 0.3 lsm_weight: 0.1 length_normalized_loss: false extract_feats_in_collect_stats: false transcript_token_list: - <blank> - <unk> - the - to - i - me - you - is - what - please - my - a - for - 'on' - in - of - email - this - it - have - from - and - play - olly - that - new - can - do - how - tell - about - at - any - today - not - time - are - check - list - send - with - an - one - emails - last - will - am - again - set - next - would - was - up - like - turn - said - calendar - meeting - get - what's - right - all - did - be - need - want - song - tweet - add - event - your - news - 'off' - weather - there - lights - more - now - alarm - pm - music - show - confirm - train - could - think - does - make - command - just - find - when - tomorrow - much - where - week - by - give - events - know - day - start - two - latest - response - that's - remind - done - but - thank - stock - some - you've - answer - five - open - current - many - remove - radio - good - book - 'no' - facebook - going - it's - volume - reply - work - delete - go - complaint - contact - if - service - let - thanks - so - hear - once - correct - john - playlist - birthday - got - post - ten - order - sorry - has - date - hey - coffee - who - rate - three - exchange - further - light - twenty - price - mail - reminder - explain - podcast - ticket - down - really - clear - seven - schedule - alarms - say - morning - change - twitter - cancel - number - dollar - stop - out - appreciated - hundred - wrong - don't - information - address - contacts - read - york - us - which - should - 'yes' - details - songs - between - nine - anything - s1 - received - playing - shut - dot - mind - com - google - most - put - job - traffic - four - best - six - create - recent - yeah - happening - friday - name - very - area - mom - or - take - appointment - yeap - room - world - home - hour - message - eight - clarify - s2 - party - episode - here - elaborate - alexa - appreciate - customer - i'd - sent - thing - march - look - tonight - place - try - after - definition - call - well - times - rock - phone - speak - today's - whats - food - thirty - see - joke - every - pizza - write - lists - game - shopping - weekend - rephrase - month - matter - s - update - station - vacuum - great - detail - long - gmail - old - repeat - city - audiobook - perfectly - status - inbox - mute - local - near - restaurant - thousand - tuesday - year - we - media - before - around - resume - musch - her - house - taxi - hours - didn't - describe - answers - understand - incorrect - word - listen - first - item - d - trump - save - days - socket - recipe - nice - u - reminders - social - search - as - monday - subject - location - movie - saturday - euro - dinner - them - ask - let's - scheduled - plug - i'm - gotten - question - minutes - friend - favorite - meetings - define - instructions - exactly - cook - understood - sentence - thursday - grocery - correcly - their - words - temperature - person - amazon - catch - company - mean - something - correctly - living - fantastic - help - following - dollars - rain - speakers - instruction - helpful - increase - consumer - evening - family - upcoming - jazz - saying - way - switch - forecast - task - cleaner - love - late - boss - wednesday - yesterday - updates - lower - people - cool - wonderful - twelve - afternoon - color - wake - oh - lunch - perfect - back - understanding - useful - amazing - his - dim - movies - chicago - things - takeaway - fifty - unread - happy - available - noon - wouldn't - night - had - appointments - idea - michael - doing - over - doesn't - select - hi - shit - may - they - delivery - nearest - buy - apple - car - left - confirmed - report - worth - robot - uber - wemo - sunday - excellent - outside - blue - looking - messages - top - wear - point - too - i've - country - prices - bring - store - awesome - unclear - ok - mark - speaker - app - sound - hot - live - jackson - bad - recently - currently - smith - pull - whatever - india - messed - kitchen - ninety - percent - him - use - office - brightness - care - gave - description - tom - regarding - meaning - meet - siri - bob - joe - hmm - leave - sarah - smart - come - chicken - seventeen - walmart - bill - enough - choose - louder - our - trending - born - london - zone - account - cnn - audio - president - isn't - compose - coming - second - manner - pick - album - uhh - plus - provide - erase - notification - played - channel - donald - pound - instagram - made - bbc - recommend - happened - united - replay - shop - free - dammit - nope - b - nearby - pop - shops - california - highest - notifications - shuffle - fm - chinese - currency - uh - restaurants - jack - april - robert - only - been - why - states - friends - skip - important - he - samsung - later - notify - bedroom - john's - mails - eleven - red - exact - cold - cup - rates - incorrectly - fifth - money - boston - spoke - tomorrow's - forward - respond - funny - wait - business - market - star - headlines - third - favorites - bother - retry - stocks - high - g - favourite - george - umbrella - directions - wedding - content - m - close - spoken - concert - run - alert - searching - mary - into - artist - located - mike - anyone - snow - tickets - then - reset - garden - route - hello - tall - likes - talk - forty - share - feed - were - indian - washington - difference - remember - convert - receive - tune - level - asking - capital - life - dad - yen - street - raining - mistake - correctly? - quite - pandora - jane - town - yet - player - park - san - american - far - sports - raise - popular - display - these - couldn't - mountain - dentist - importance - unimportant - complain - clean - continue - euros - los - ready - yahoo - can't - classical - politics - newest - lighting - miami - trip - horrible - info - added - prepare - iphone - machine - mother - miles - via - chris - tv - since - bathroom - state - cheese - request - items - oops - ah - closest - warm - microsoft - settings - value - keep - brighter - note - everything - wife - decrease - okay - using - rap - election - sunny - eat - usa - eighty - fifteen - until - wanted - wrongly - dog - obama - years - coat - week's - japan - quiet - paris - angeles - comcast - target - emailed - airport - interesting - mcdonalds - mr - married - green - product - past - little - other - t - listening - cooking - activate - earth - dance - title - florida - rupee - travel - kids - takeout - pending - america - making - its - than - doctor - population - bar - plans - power - fourth - silent - ride - milk - how's - seventy - sure - fine - jennifer - july - sister - brighten - picture - deliver - singer - clock - inform - brad - burger - never - pesos - object - hero - arrive - classic - olive - games - group - watch - line - justin - cost - project - called - lets - track - still - starbucks - form - repeating - christmas - breaking - due - cheapest - forget - posted - james - posts - central - lot - stories - whole - small - ever - steak - review - requested - wish - david - workout - alex - seems - given - gym - largest - la - average - compare - china - fifteenth - having - rupees - band - background - meal - online - reserve - file - lamp - laugh - sun - anniversary - eastern - busy - mobile - bit - jokes - places - geographic - else - chess - meant - working - p - planned - program - seconds - rated - large - issues - road - pay - big - holiday - daily - 'true' - celebrity - better - hut - being - sixty - away - helped - peter - god - cab - someone - internet - page - anna - feel - video - steve - opening - lately - sandy - bank - weeks - id - sam - pitt - river - february - i'll - saved - soup - phrase - distance - economy - hits - sony - eggs - low - water - text - topic - co - begin - attend - groceries - adele - reach - within - pause - half - yourself - kind - dark - replied - enter - must - asked - beatles - fun - ingredients - against - invite - soon - colour - different - jacket - updated - seattle - denver - canada - vegas - mode - pasta - january - doe - listed - refresh - listened - team - longest - spotify - remainder - telling - mumbai - you're - orlando - card - rice - during - reduce - locate - future - starting - boil - genre - class - slow - famous - named - allen - youtube - works - olly's - dc - brew - through - pounds - football - pacific - white - sings - egg - oil - festival - clothes - moment - die - orange - school - kim - las - divided - whether - photo - everyday - ryan - bills - headline - fix - square - npr - jake - brother - todays - terrible - weekly - type - topics - months - chat - yoga - reading - products - extra - cut - adjust - king - personal - client - jan - data - doctor's - computer - rohit - johns - o'clock - canadian - mistakes - rid - names - control - sunscreen - per - lady - head - taylor - always - budget - pink - bought - x - side - ahead - articles - english - ny - able - reschedule - fast - hashtag - tweets - countries - numbers - running - alabama - blank - madonna - bright - yellow - west - went - options - story - october - russia - together - n - basketball - joe's - dominos - tomorrows - less - situation - colors - mom's - end - payment - drop - downtown - provider - joes - means - helping - mexican - friday's - cricket - return - needed - death - tech - charlotte - heavy - draft - sea - paul - r - condition - seventh - dallas - hip - related - article - heard - war - elvis - everest - problem - stating - bieber - system - sales - shoes - hard - become - based - kevin - age - she - quality - mile - hair - gas - biggest - inr - climate - hate - twentieth - sucks - dean - angelina - turkey - harry - cake - national - record - longer - dave - subjects - brown - supposed - ocean - church - drive - gandhi - needs - above - theatre - cookies - abraham - gone - map - television - such - face - sale - jim - francisco - sean - june - romantic - compared - curry - ball - jeff - subway - lincoln - bed - lagos - turned - south - won - trains - girlfriend - mahatma - nsa - hop - amy - commute - solve - came - created - dont - history - math - telephone - says - laptop - pawel - offer - fox - single - sixth - midnight - missed - potter - loud - richard - chuck - looks - practice - body - dan - husband - waiting - birth - stuff - adam - sender - gaga - truck - france - texas - restart - intel - colours - statue - liberty - intensity - previous - problems - outlook - visit - wine - peso - continent - utterance - helps - asssistance - each - north - grand - patrick - match - opinion - plan - trump's - papa - instead - martin - root - purchase - perry - richards - closing - cloudy - eddie - senders - move - susan - tesco - size - shows - folder - spaghetti - doctors - stores - presidential - dates - theater - menu - agenda - ann - code - animal - frequency - kansas - roomba - technology - tasks - without - flight - who's - beach - empty - tired - driving - entire - carry - british - dr - asia - rccg - uncle - vacation - pepperoni - programme - standard - reminding - maximum - starts - tallest - gonna - fourteenth - playback - medium - nike - cruise - changed - diego - arrange - bowie - learn - mount - particular - costumer - sundays - fire - calls - silence - podcasts - spain - dominoes - website - italy - strongly - agree - agreed - suggest - mood - fourteen - result - metallica - thinking - session - profile - england - active - ohio - grid - fall - pot - marriage - queue - told - narendra - jerry - mt - frank - tenth - wishes - recording - finished - international - calculate - hit - towers - ninth - site - feeling - macy's - tag - actually - black - birthdays - hottest - mary's - expect - snapchat - jay - smith's - mountains - building - setting - cleaning - height - initiate - hall - breakfast - martha - conference - aol - win - steps - fancy - smartphone - led - zeppelin - houses - holy - currencies - club - children - atlanta - einstein - happen - cell - landline - coworker - objects - negative - modi - soft - haven't - mention - radius - books - daughter - results - earlier - bruce - butter - stars - remaining - delivers - device - domino's - unmute - joy - twelfth - voice - taking - snowing - sick - boots - cleveland - journey - destination - worker - poker - lee - katy - australia - incoming - least - lisa - experience - million - recurring - scenario - sacramento - geography - library - brief - jolie - monthly - elton - sirius - alaska - lyrics - oven - log - random - moscow - barack - disney - alive - measurements - maker - poor - error - stone - versus - hotmail - interpret - sarah's - memorial - goes - stay - delhi - health - special - speed - thirteen - test - edinburgh - credit - facts - cat - neighborhood - sometime - empire - entry - financial - comment - link - hockey - circuit - holidays - singh - jodhpur - rockville - ones - features - bread - eye - mall - directv - contain - seacrest - chance - under - table - few - hotel - rude - services - yesterday's - certain - fb - abc - netflix - linda - notes - length - reminded - shoe - wild - employees - beef - sushi - fastest - thirteenth - recommendations - fish - tennis - main - jersey - jones - break - concerts - gomez - angry - uk - replies - emily - kickball - released - upload - effects - quickest - italian - caroline - emma - real - human - minute - took - activity - jeff's - staff - handler - touch - hold - joanne - range - moon - submit - ends - tomato - lost - prime - twelveth - phones - amd - hectic - bobburgers - screwed - porch - reviews - vegan - rihanna - houston - ham - mondays - general - engaged - walk - melody - electronic - held - selected - equal - getting - tata - wall - clothing - round - leaving - nasdaq - total - pressure - expensive - border - exhibition - trash - november - handle - halloween - attachment - kardashian - shoot - rewind - rating - toronto - department - procedure - member - ray - chelsea - rohan - arrow - checked - modify - wasn't - chances - protest - lottery - prince - include - jo - net - pie - sleep - enjoy - nineties - taco - banana - source - quieter - bored - desert - guys - gary - activities - already - contract - st - minister - disable - woman - europe - arijit - audible - presentation - cad - records - trips - booking - tacos - sally - non - centre - direct - advance - selena - policy - orders - stefan - arrival - divide - chocolate - dish - teeth - hdfc - silvia - stove - coast - defined - digest - snafu - manager - pinterest - tim - conversation - bulldog - titanic - brunch - heat - canyon - dial - earliest - region - stopped - foreign - folk - watching - brexit - albert - joejoe - early - cities - manchester - december - biloxi - often - questions - garage - tunes - possible - ms - ar - kiss - shares - bangalore - heading - derek's - desk - cheers - tomasz - terms - companyname - sara - asap - super - meryl - streep - rent - dress - cinema - usually - trend - conversion - friendly - ties - ordered - electricity - marked - migration - choice - journal - norris - aniston - mailbox - minus - fried - miley - cyrus - newly - theory - rest - swift - windy - dan's - mass - comes - selfie - wings - julie - masti - celine - plays - pack - including - responded - jason's - ale - apples - dolly - oranges - lg - washer - substitute - global - feedback - grandma - ben - drainage - invoice - sunset - takeaways - man - art - universe - suitable - antonio - full - delivered - laundry - wrote - min - register - snap - nixon - bird - spend - rome - jesse - calories - cappuccino - quickly - buying - britney - spears - spacey - jobs - arriving - jean - potholes - janet - pictures - ashwin - morgan - freeman - baby - microwave - yellowstone - francis - dubai - invitation - hope - melbourne - rocky - kroger - rivers - charles - jim's - rectify - statement - carpet - baked - jessica - meatballs - mushrooms - amount - switzerland - relating - zero - front - phonebook - hows - cheesecake - carryout - magic - ola - replace - recorded - access - land - where's - elephant - removed - liz - load - metal - package - diner - goog - bob's - k - year's - mars - guy - assistant - rahman - eagle - part - burn - aran - stevens - daughter's - eighteen - chemistry - action - selling - thats - koc - lines - sugar - major - chair - easter - departing - africa - nigeria - requests - conditions - you'll - manhattan - roll - cracow - candy - crush - bell - massive - gold - happens - usual - andrew - equals - dead - plane - graduation - warned - shaun - triangle - wyatt's - pass - function - max - space - programmes - awful - parton - exciting - battery - hwu - recipes - dirham - rushmore - johndoe - button - express - pontificate - easiest - magda - selection - reservations - guess - copy - classes - supplies - schedules - winning - berkeley - notice - headed - outgoing - mi - rainy - wikipedia - entertainment - dow - everyone - aunt - furniture - oceans - softer - heart - newmail - while - baseball - easy - stations - philadelphia - alice - swat - yearly - poem - soccer - president's - milan - paper - kardashian's - loop - shown - sandals - yo - scan - nevada - apahelp - coldplay - french - bay - higher - rumplestiltskin - airlines - fresh - standing - cream - hamburger - broadway - oscars - tokyo - cable - shipment - formula - teacher - sweet - golden - newsfeed - confirmation - shirt - austin - own - canon - wanna - gods - spanish - count - seat - ideas - study - tara - mutual - jennifer's - because - edit - denmark - direction - timer - growth - luther - marketing - cd - mine - public - peter's - bolshoi - flat - crazy - others - dry - pub - theatres - bro - fashion - teams - cycle - pickup - dion - teach - series - checkout - male - noise - solitaire - pf - cassie - travelling - davis - naty - income - disco - dropping - donna - follow - shelly - accidents - plot - irene - download - circle - law - tea - organize - principal - weekends - camera - solution - bombay - wuthering - heights - charged - colorado - kong - keys - race - mona - entries - j - nyc - potatoes - gospel - raju - trivia - bike - dating - oregon - event's - prefers - rush - percentages - peking - cooker - husbands - won't - tower - heaven - hugh - june's - fake - figure - purple - takes - l - howard - stern - nineteen - percentage - motorola - doe's - outstanding - tesla - laura - dale - warning - eighteenth - golf - island - career - bieber's - vacuuming - pizzas - refund - weekday - s's - derek - thanksgiving - delayed - query - buffet - rachel - pants - wash - survey - photos - except - topography - door - jen - queen - depart - cheap - theaters - web - jesse's - multiply - workhouse - press - click - loss - recipient - verizon - volcano - rolls - royce - pixel - affirmative - completing - thai - walking - bananas - hollywood - equation - dirty - scores - katrina - exam - creating - letter - sing - construction - broadcast - tom's - rupies - management - permanently - converting - ist - iron - religion - kings - tucson - standup - tic - tac - toe - headset - sex - diapers - purpose - seventeenth - eighth - dylan - temple - refer - gift - fact - drink - inches - air - carpets - newcastle - clients - private - tasting - sams - nj - chili - cultural - swimming - they're - iowa - jordan - period - accept - cincinnati - college - rainbow - myself - deep - deepest - warming - sky - vp - seeing - indianapolis - kmart - nikesupport - image - suck - broiler - timeline - dell - parisa - brandon - example - y - filter - sad - shine - sixteen - christian - pic - pdr - fry - another - network - omelette - kilometers - municipality - giving - leo - cups - earthquake - susan's - application - cross - across - carl - pawel's - sauce - relativity - rail - sisters - letting - shorts - vs - rajesh - swift's - starving - discussing - block - written - n9ne - women - celebrities - bake - cookie - continents - workers - leonardo - mel - gibson - shall - beauty - sum - fair - deli - middle - same - nile - sell - role - boat - sandwich - parts - hearing - knows - sand - manoj - delivering - rahul - neil - australian - kindly - properly - assist - esurance - emilia - breach - loudly - harvard - marc - nintendo - scrabble - farm - lie - patio - greg - screen - degrees - yesterdays - carrots - receipt - lasagna - clooney - there's - degree - preferences - hallway - latin - nicest - lauren - worst - also - checkers - input - boyfriend - masala - tournament - monet's - burmuda - section - eric - japanese - supervisor - junk - performance - effective - urgent - oldest - tone - sweater - goa - bag - lowest - aus - peace - julia - summer - fan - hurricane - colder - steven - sachin - tendulkar - watson - exorbitant - bags - macs - yulia - matthew - pole - toby - pennsylvania - carmen - tiffany - complete - electric - wallet - albums - maths - distribution - eminem - familiar - regard - upwards - ron - couple - acme - angel - zoo - nineteenth - shazam - inflation - offers - devotional - jackie - tony - artificial - intelligence - grill - father - predictions - repeats - manila - cooked - reason - learning - nowadays - cheer - jingle - bells - anxiety - hoizer - girl - pondichery - position - teachers - dictionary - nap - cafe - m's - meting - crime - eve - horn - bristol - pubs - companies - johnson - resolve - waterfall - female - biriyani - drama - nothappy - haircut - remote - colleagues - bones - saturdays - cambridge - jam - maine - category - invented - chang's - boy - planning - chen - assignment - publish - hunt - alerts - dad's - deal - leading - trail - follows - young - jay's - summary - ko - beyonce - vergara - mexico - whishes - arrived - placid - specific - depot - tikka - expire - markets - problematic - highly - blues - thirtieth - brooklyn - tatum - argentinian - redso - des - moines - women's - richard's - cellphone - division - hong - political - charley's - steakhouse - accident - normal - wakeup - satellite - freezing - forex - jimmy - chores - snooze - design - museum - guide - speech - ran - shift - inferior - mashed - jcpenney - environment - raw - disturbed - sia - chips - anybody - present - reynolds - limbaugh - weekdays - islands - viral - asian - streets - inception - meatloaf - alternative - compliant - sensex - phil - est - hand - switched - recap - ferrari - nandy - promotion - kate - brothers - ma - followers - closer - deleted - gloves - bands - platter - boland - corner - strong - chipotle - eu - amtrak - son - charges - version - rajdhani - chart - manage - musical - hat - den - tonight's - syria - stronger - homelessness - nails - support - ally - sentences - penn - ago - turning - center - hungry - actress - keywords - usain - bolt - ongoing - cancelled - idol - julia's - wells - fargo - ri - sarahs - computers - devices - toms - regards - quote - production - brother's - inch - shell - marathon - directory - dictate - huey - lewis - elections - alone - marry - apart - danielle - jane's - mankind - singularity - nye - feynman - whom - inventory - makes - dept - apple's - education - bugs - settle - when's - geographical - jason - exchanges - mcdonald's - tgi - ship - hershey - facing - faulty - zita - jeremy - irons - wallmart - sphere - hp - gottten - pardon - engagement - showing - format - absolute - interest - messenger - gate - enable - columbus - hips - tour - sterling - thumbs - priced - tablet - amc - bible - safeway - organism - undertake - freedom - charger - documents - jars - clay - members - o - vegetables - delicious - beaumont - tx - finance - exhibitions - trumps - month's - v - applebee - dakota - bus - brighton - pa - darken - promoted - liverpool - utah - suggestions - micheal - complaints - pencil - keith - fridays - temperatures - hardware - exercise - jpearsonjessica - release - hoover - goshen - chester - wood - woodchuck - healthcare - borges - calculator - dune - reality - jobe - gossip - piece - convenient - titled - pork - belongs - hongbin - wreck - tool - started - gather - bruno - costa - patel - daniel - corporate - controversy - wendy's - texans - biography - flowers - investing - arrives - finish - spot - crop - culture - enjoying - fetch - kill - auto - washing - buffalo - he's - titles - ross - whose - types - pleasant - erin - madison - tuesday's - lif - khan - affordable - season - policies - c - expected - hypothesis - seth - kicked - unhappy - gallery - xorg - used - monali - thakur - noodles - cher - sally's - tracks - mid - launch - glasgow - bridge - releases - pitt's - server - clarity - yens - motivational - scratch - blanket - aib - reads - singing - monas - tuesdays - winter - rocket - lands - chan - economic - sister's - aa - film - pb - indiana - departure - pipeline - stitch - sleeved - hail - logan - style - quantum - physics - labeled - delia - began - rrcg - shape - awards - improve - pertaining - trance - lives - weight - met - brian - sinatra - sunglasses - attending - falls - requesting - sunday's - overhead - greg's - rom - historic - georgia - guest - jaipur - iroomba - alfredo - pride - prejudice - fill - interview - daddy - wangs - manchow - university - locally - lowes - tiring - east - medical - metro - bach - schubert - rooster - czk - channing - pad's - identify - yelp - scandal - affect - suffering - enabled - arby's - saw - mango - itunes - highlights - brings - sixteenth - tourist - wendys - presley - sold - intern - affairs - fries - buttermilk - panda - wants - floor - clint - eastwood - moe's - planets - equivalent - morrocco - gravity - uploaded - someplace - availability - issue - fly - jpy - natural - delta - disappointed - files - q - cindy - shortest - simple - ring - lotion - maroon - fort - died - bonus - repetitive - icecream - statistics - rebel - lawn - leith - measure - daytime - september - pilots - pda's - shade - sil - cap - punjab - gwalior - ashley - juice - nagar - ellen - programs - fairs - invest - suits - ingredient - launches - leaves - bjork - crater - elevation - stewart - hotels - spices - bubbles - grass - broccoli - capricious - philosophy - anthony's - apply - pings - gps - thomas - koontz - acdc - beijing - ratings - union - prayer - todo - angles - scissors - stashable - cinch - bacon - passive - que - occurred - lakeland - tulsa - advise - singapore - risotto - invested - model - helmsworth - bench - julian - buddy - rogers - brains - chap - badminton - dick - lopez - apartment - points - germany - unknown - thugs - healthy - rash - casey - oriam - ps - plants - mailed - ikoyi - grassmarket - marleen's - locations - bush - mac - reaching - allan - till - cheering - guitar - oxford - densely - populated - son's - hubby - comparison - putin - barcelona - gss - energy - pan - nyack - worked - unavailable - bryan - adams - miss - checkbook - jared's - enrique - iglesias - forms - jeans - voices - alan - tudek - animals - olx - mts - freed - jenn's - coordinates - humid - demographic - otherwise - tiffany's - outdoor - sheila - lincon - dust - serve - conduct - estimated - gaana - funds - downloaded - indignation - meijer - necessary - grubhub - pancakes - mario - bars - birmingham - sites - donuts - chopra - textual - rapids - cant - prefix - sounds - provides - amy's - benton - leeds - dsw - returning - defective - digital - bhaji - carlos - linux - upgrade - shark - attacks - screening - exposure - souffle - tracking - od - progress - paused - gilmore - hour's - imdb - orleans - european - gdp - surfers - theme - ash - ikea - klm - marilia - cars - robin - williams - surfin - ottawa - trade - contains - field - someone's - prague - brno - rene - interests - radiolab - harris - strive - accommodating - fell - relationship - pharmacy - memo - nancy - paid - expressing - disapproval - yard - royale - hide - amber - cheeseburger - coca - cola - al - matrimony - scott - potato - funniest - polling - mother's - chase - xmtune - matt - murphy - detroit - taiwan - organic - secrets - domino - ac - assistants - z - fred - owner - required - saga - hanks - trading - erosser - rosser - vikki - dhaka - notepad - oldies - alison - recur - w - mentioning - languages - lavender - toned - videos - stein - chennai - resuming - moms - foke - beep - discussion - woodland - lowry - meetups - powerball - toyota - focus - concentrate - nbc - roosendaal - deactivate - shrimp - parmigiana - bumper - spouses - lucknow - paying - hurry - served - rhythm - enquiry - hartford - plaza - hyundai - wishing - websites - briefing - complex - calculations - jarvis - highway - fired - dissatisfied - sandra - bullock - ratio - haskell - sharon - horse - mum's - dillinger - sunblock - sub - tab - crude - software - stadium - step - short - reddit - appoints - agra - sheet - keyboard - kfi - district - connery - carnival - wok - shutting - phoenix - cloth - rehan - lego - alphabetical - mexco - charles's - foodpoisoning - ultra - madonna's - harley - davidson - daylight - afi - infy - launched - inboxes - secretary - increased - resolving - fuel - injector - multiple - interval - mike's - espresso - sasha - susie - salesperson - country's - cylinder - specifications - ivory - pst - zoella's - jackman - reacting - potential - frying - boise - wendy - divisible - automated - katherine - pre - gaming - containing - decade - industry - foot - chemical - cause - taste - bra - julianne - hough - addresses - vonstaragrabber - lion - restroom - kohl's - mentioned - hz - royal - bloodline - relationships - billings - levin - quarter - lori's - lori - exclamation - definitions - birds - raj - priya - allows - worlds - kelly - clarkson - garam - scarlet - found - cub - dmv - excessively - lake - dried - reporting - smile - changes - charmin - eternal - smoked - meat - beanos - processing - chip - logic - insightbb - highland - terrace - child - peck - midwest - cardinal - anthony - barrack - jancy - thompson - cassy - gulls - alternate - sin - dragons - msnbc - residential - leader - siblings - pedro - serendipitous - bestbuy - targets - wawa - mentions - engagements - hawaii - jr - applied - halifax - ahmedabad - monty - python - stronomy - blahblah - blah - arrivals - subtract - payoneer - formal - connors - indranagar - transform - marcia - perpetual - arranging - cvs - callum - steffi - attention - kanye - mommy - chucky - forest - polarized - proposal - conrad - coldest - hue - dictator - clancy - geranium - delays - build - lense - rai - transistor - dildo - warren - exercises - forman - kinley - bottle - retail - yan - regal - unprofessional - annual - payday - tricep - arts - ripped - vietnam - trends - chaise - preparation - nestle - paula - deen's - bmw - microsoft's - bookstore - below - moving - pretty - lock - administrator - edition - airways - marvel - garner's - rubix - cube - kfc - milwaukee - pager - alexander - gilchrist - goods - performing - unopened - security - chain - probiotic - colleague - knowing - novel - fiesta - comcasts - acer - farmers - fraud - weighing - india's - gotse - grapefruit - similar - tmobile - nifty - sessions - recital - greatest - openings - zip - demento - fatigued - disease - prevention - overcharged - unquote - cotton - tweeter - railways - flipkart - fist - renee - nutritional - starred - calculated - mattress - hillstead - paul's - jill's - disregard - pesto - stinks - nobody - behind - kid - nature - ounces - ted - boiled - dancom - wars - fmod - span - along - malls - joining - frequently - realdonaldtrump - bobby - mcgee - pwd - obamacare - clicked - falling - pampers - virgin - hayden - pat - amie - infosys - technologies - roads - aerosmith - airtel - dairy - sends - dues - tobytoday - ileana - d'cruz - rended - taj - ashok - typhoon - rama - final - missouri - virginia - announce - haughty - salmon - joking - goodnight - rebecca - believe - vowels - ban - haze - insight - cable's - fellow - tweeters - canoe - warriors - assassinated - acceleration - detailed - wife's - robert's - angus - interested - jen's - sjobs - cdn - ruth - simran - aapa - kadai - armor - sms - indefatigable - indicate - fra - floors - modcloth - honor - weigh - priority - hiking - smoky - judawa - expense - deals - plethora - sam's - august - elain - bbq - leap - congressional - representatives - voting - reproductive - ge - bbb - contacted - assigned - jill - drafts - scoring - touches - relevance - goggins - medvesek - philippiness - booked - board - locality - beth - katey - fans - approximately - charitable - rae - darker - anymore - printing - significance - fondle - mate - larry's - larrylarry - faripir - gurpur - seasons - softball - refreshments - jamie - carrie - underwood - abdul - kalam - subterranean - colombo - sri - lanka - quit - dollar's - award - among - spouse - forgot - ass - millionaire - indians - americas - julie's - transcribe - garbage - geographics - tree - criticize - tanzania - heather's - answering - spam - phishing - reseda - axel - kailey - prettiest - century - mattel - toys - grateful - fixing - maidan - sophia - betty - reasons - russian - applicable - loving - claire - crashed - batteries - philips - person's - compile - ali - matthews - apologize - comcastcom - luke - jean's - carefully - beg - trying - flooringco - seams - baking - skiing - calming - continuously - tale - roraima - innova - bowling - beginning - identifier - diverse - santa - continuous - hangman - vegetarian - roast - rewards - allow - immediately - shelley - hennessey - waking - dicaprio - ways - immigration - raised - lose - digger - cosmetic - perth - feet - chick - tornadoes - upstairs - badly - timings - lobster - runner - forum - thunderstorms - powered - plugged - rod - mgccc - bleed - ga - pune - mixed - dishes - radisson - cheetah - what'sapp - cm - father's - skill - graham - eggless - collect - favorited - flag - ssmith - virtual - bryant - spots - scapingyards - washed - springfield - draw - insurance - quantity - brightener - cuba - stream - raincoat - maiden - soundtracks - deliveroo - humidity - crowded - built - mesa - rosenstock - workpdf - occurring - environmental - dbell - converse - radia - logged - scabble - loads - jacob - hasbro - aldi - piramid - completely - method - hems - loose - connect - snapchats - arizona - festivals - hospital - peppers - bowl - korn - lupe - eurostar - umf - unchecked - berlin - lane - synonyms - hampshire - shakira - brads - keanu - reeves - johns's - increasing - burgers - stan - falklands - valley - maria - hangin - glow - we're - newsource - clark - carrey - jams - crashing - outback - sugars - defines - joel - venue - huffington - images - elizabeth - case - agnes - randomly - mecky - incredible - even - decreased - vacations - honey - akon - barbara - handsome - forensic - spielberg - korea - coding - achievements - albert's - clerk - hopes - zimbabwe - buble - research - excel - gun - rogen - resin - tooth - filling - mody - marinara - vicki's - mardi - gras - monika - relatives - chillin - lol - levis - tricounty - messy - disgusted - emoteck - foroogh - quick - decline - emailstudy - atdfd - giant - trey - kalka - mcdo - timestamp - operate - watched - infinity - tactics - upbeat - synonym - racing - towards - fog - muted - coke - eighties - tvs - theresa - brent - kamycka - dejvicka - tap - peanut - circumference - saskatoon - sync - sofa - mcdonald - silenced - catalogue - algorithm - sanctimonious - talked - realize - reveca - paok - wipe - bisque - br - rather - silly - stat - tar - vitamins - gain - xm - fongs - anywhere - zanes - se - chronicles - weber - commence - causes - sangli - german - hedges - truthdig - coffees - commuter - plain - mimo's - oscar - restrictions - treasure - louis - stevenson - fifa - beast - pav - prambors - hannah - ringcast - vegetable - episodes - overnight - apps - nathan - dismiss - karl - hourly - eyes - breeds - inside - tribune - join - crabmeat - shakira's - yankee - greenwich - gala - jump - recall - johnny - cash - pod - cast - rare - suppose - enjoyment - emo - nayagara - passion - pit - marckel - bohemian - emma's - arijit's - pet - prize - receptionist's - beat - freds - probles - patagonia - quart - '?' - zach - duration - jlo - alphabetic - phohouse - badpho - daybreak - biryani - battle - divergent - moby - jungle - jaiho - casserole - shooter - columbine - wednesdays - soul - accumulation - squash - calm - debate - schools - amd's - lee's - managers - myspace - relaxing - bahar - antarctica - atmosphere - pinpoint - payments - illinois - louisiana - cfo - pool - vyas - morel - mysore - rise - sdfa - newspaper - calorie - dangerous - sunrise - mostly - dining - shake - flood - prescription - mix - view - jana - spa - comments - pear - factor - clearance - northern - language - arnold - exxon - mobil - dragon - fruit - differences - seashells - seashore - velocity - motorolla - haggis - fiji - irwin - similarities - hypertrophy - sharukh - implement - kazakhstan - mediterranean - roman - grigorean - hardword - quead - amphibious - roberts - climatic - tornado - prone - rising - declining - megatel - denzel - washington's - citizens - arm - persos - belarus - gyllenhal - geology - helicopter - iphone's - drained - manger - navy - daikin - jerk - nexus - interaction - platform - tweeting - at&t - mahaboobsayyad - kellogg - ashmit - ismail - listing - enalen - projects - clara - clinic - exams - ammunition - mark's - divya - jjnzt - activation - andy - terry's - brenden - jeffrey - burnette - protests - joshua - pianist - whiz - schadenfraude - rials - storage - bot - provided - massachusetts - channin - store's - rump - prior - re - intelligent - recognise - irobot - areas - lighter - yell - uses - cn - gadgets - skynet - marie - lamb - balcony - nyt - bennett - ralph - pda - balloon - maps - degeneres - character - evans - actor - fitbit - malika - shivaji - attitude - lily's - concerned - upon - startup - stuffs - tawa - relative - legacy - cst - leah - remini - mortgage - amed - cleaners - seal - abita - grammar - backdoor - minimize - leisure - billie - spicy - training - comfortably - sunburn - minneapolis - habits - braking - notifier - swan - thoughts - pleasure - those - kashmirstart - sells - i'dl - kettle - 'false' - rta - valia's - visiting - techno - mornings - mow - cbs - slightly - francine - vice - postpone - mins - xyz - hwood - kept - spider - reopen - billy - connery's - eiffel - itinerary - crash - valentine's - likexchange - divorce - danville - il - government - menus - capabara - origin - assistance - vicinity - chit - drinks - flabbergasted - xy - self - double - castle - refrigerator - bakery - spray - pyramids - bio - basic - humans - schwarzenegger - inchoate - rules - caftan - raleigh - hobby - ajay - devgn - corden - aud - prevailing - kenny's - crew - aww - spying - employer - thier - juanpedro - craig - leon's - looked - players - costs - providers - sydney - documentary - hyphen - represent - strings - pianos - acoustical - celeb - pong - linear - turn_down - reaches - strength - routine - billboard - piano - ed - sheeran - diet - vietnamese - yams - grandmother's - rihana - require - stressed - option - affected - acquire - retrieve - clarion - congress - turiellos - mates - solar - dice - jalapenos - wished - painting - therapy - warehouse - mop - neighbor - flappy - returns - someones - spring - wonton - moves - jagger - fishing - hiphop - dunkin - donut - atlantic - daughters - hula - hoop - lessons - scrote's - indie - grief - lebron - naughty - preprogrammed - alt - needy - sharpen - butcher - knife - pulled - starbuck's - backward - terrorist - invaders - parent - crescent - brewhouse - prado - science - playlists - debbie's - sleeping - searched - lindsey - lohan - competitions - subtracting - challenge - beer - gainers - chili's - frubs - police - softly - practical - assessment - bonefish - rotating - placed - lakers - barenaked - ladies - lord - rings - mar - sneakers - artists - sanantha - shuffles - shuffled - bardonia - county - analyze - pattern - girls - league - fjords - nothing - brewing - smurfs - tommy's - lovin - cottage - ming - photosynthesis - danny's - repeated - peaceful - migrations - zydeco - inkheart - seller - occurence - telegraph - invited - wifi - levels - willie - nelson - dolores - alter - retirement - professional - development - sainsburys - byron's - floyd - raingear - notorious - bone - explanation - database - likely - lucky - irish - sshow - ramsey - aired - sprint - preparing - academy - yeshudas - angels - dancing - aretha - franklin's - layers - glass - kuch - hai - wakey - knitting - mujhe - feb - king's - malinda - parents - mirchi - gallon - seen - parks - safest - evacuation - beautiful - sofia - francs - consequences - various - dicaprio's - networth - phelps - disk - constructed - concern - effectively - lawrence - zac - galifrankas - wheat - prediction - schemes - mega - capricorns - dinky - lanegan's - princess - pregnant - smallest - americans - retweet - insta - sonys - bk - alzacz - kohls - cleanliness - pizzahut - delay - lpg - satisfied - choke - suqcom - repairs - killing - miller - budgets - iamironman - gbaby - gma - loves - kate's - margaret - ben's - brady - palmer - homework - tax - regional - archive - fitness - vault - footloose - child's - damage - petco - canceled - passing - pikes - peak - avatar - diverge - maron - fault - sword - eventual - contest - dangal - mauritania - abs - wondering - southampton - resources - soy - lexmark's - hilly - lyon - beirut - tribute - madrid - ate - sweat - charlize - theron - atif - aslam - capture - actual - shane - dawson - zedd - snooker - loquaciousness - sholay - tofu - nightmare - avenged - sevenfold - matters - prompt - panic - brilliant - boston's - mckinleyville - astrology - strait - countdown - cats - fruits - embassy - pita - gyros - negotiations - hairdresser - courteous - enthusiastic - funk - sense - heathens - cabinet - irctc - stored - shutoff - glasses - ella - fitzgerald - rover's - vet - polar - bears - oceanside - medicine - anita - barrow - burrito - oliver - covering - ground - zucchini - textile - antebellum - chimes - covington - species - bees - cranston - kilometer - behaved - rudely - jimi - hendrix - calms - outwards - califonia - composed - hint - shipping - frosting - sport - napoleon - hill - athens - middletown - shirts - sample - politician - investigated - rapper - con - cuisine - wizard - brick - conroe - iterate - architect - salon - babaji - passed - maryland - surya - monopoly - avenue - considering - celebration - brewed - galoshes - tutorials - workouts - millenium - toward - neighbourhood - bannon - storming - reoccurring - longtime - sweetheart - memos - starfish - centaur - philippines - oar - departs - preferably - latte - sides - pentagon - fashioned - rescheduled - transportation - twins - duker - deadline - samurai - obaba - bp - ambiance - automatically - object's - boost - morale - jogging - spell - firefly - mura - masa - checklist - biographies - sucked - congested - avinash - commando - jolie's - instrumentals - clarksville - tablespoons - surveys - flour - acela - calone - bucket - fulls - valid - references - critical - perpetuate - luncheon - ohm's - values - plying - expectations - musician - mindsweper - throughout - noontime - included - tour's - voted - walgreens - chickens - monday's - crankshaft - surfer - lunchtime - skramz - compounds - diabetes - might - reservation - homosapien - engadget - boeing - brisbane - ear - headphones - minimum - worry - snowplows - burying - driveway - adapt - destroy - impanema - equipment - turnt - attractive - conducted - cinnamon - freshener - watsapp - bean - awfully - entitled - murderer - ford - forties - scenery - morocco - sf - blokus - preacher - taken - stormy - centers - ethics - popup - mysterious - puts - stage - considerations - lourie - artic - scoop - carion - merced - bypass - passwords - quantico - grade - examples - cuisines - hibernate - bear - published - authors - tempo - keidis - tidal - cookoff - zones - probable - summerfest - dogs - aren't - necessarily - carolina - eleventh - chilling - sleeve - invoking - term - herald - maria's - poltergeist - imagine - uv - index - johncena - instruct - oscillate - liter - nelly - shawarma - baster - pali - vilnius - tabs - debates - singers - activated - ozzy - osbourne - danish - happypeoplecom - accounting - backpack - im - puttanesca - keeps - worse - wrigley - braise - loin - carnatic - bases - nick - swisher - stolen - clouds - cleared - bola's - norman - reedus - screwdriver - window - volcanoes - rowan - atkinson - minneapoliscity - delicacies - monitor - overall - gymnastics - channels - kxly - botswana - enjoyable - spectre - chane - decentralized - men's - freeze - postal - becomes - ccn - berth - michigan - composition - shahi - panner - dakar - jakarta - equalizer - weird - barely - rodriguez - oklahoma - giraffes - margarita - difficult - crabs - firework - probability - tools - emigration - legislation - pdf - cheeseburgers - applications - adopters - priest - walks - mechanic - h - showers - signs - contrast - recollect - gm's - duck - beavers - tail - lucking - horkersd - wo - myrtle - hr - steam - entirety - anirudh - colored - tropical - bedrooms - yellowish - elephants - expenses - contents - warmer - royksopp - etc - progressives - peoples - cultures - unset - iceland - mp - mangalore - tanya - quad - particulars - insert - tvf - formidable - origins - eden - depressed - mc - donalds - rub - regrets - judgments - scope - intellectual - capacity - ahmadabad - stethoscope - superstitions - rl - stine - quinoa - martial - smooth - damn - speeding - stephen - halley - barry - jealous - siri's - java - scenarios - pc - transfer - tw - agent - nightime - creamy - mirch - dil - cannon - cameras - process - merriam - webster - dubstep - rangoon - wines - older - navigate - chandelier - egs - recognize - subscriptions - mileage - studies - microphone - immigrant - electronics - careful - paint - fund - success - resolved - bola - eva's - roller - augusta - midtown - surprise - children's - dongle - seashell - bots - fallen - centimeters - poisoning - sci - fi - outcome - reform - sleepy - moderate - chrome - ultraviolet - george's - geek - courses - rundown - legend - equipments - usher - manor - advertisers - clue - depending - strongest - outstation - fallout - shoal - lastfm - relocate - pollution - awareness - bryce - jessie - carol - nsnbc - vacuumed - chives - splits - arbor - receiving - toast - futures - brokers - routes - fixed - additional - switches - church's - governor - enacted - grams - guitarists - android - babe - sonny - sear - eliminate - remain - uc - polk - pakistani - bedside - reshuffle - frida - devil's - rusk - actors - pakistan - happenings - sit - montauk - beethoven - legends - sunshine - mothers - smoke - feels - rockies - miamy - operations - addition - subtraction - incite - annoying - cristiano - ronaldo - spin - cows - jenny - spread - wallstreet - selections - nashik - ipl - oswald - chambers - horoscope - mgk - dog's - residing - cricketer - dhoni - byron - fluctuations - talks - palermo - shallowest - bbcnews - nsdl - flights - lineup - stick - ribs - jeopardy - timetables - emi - maya - mackensie - osteen - jimmie's - adjustments - precocious - fork - husband's - audi - hibachi - disputed - crack - visible - boiling - rogan - karachi - babysitter - kidnapping - hamburgers - madonnas - lessen - ipo - greenville - carries - creamed - pickled - herring - tackle - brush - geyser - savings - torey - hurt - subscribe - picks - birthdate - goals - cairo - projected - patrick's - capita - honda - intended - hurriedly - activates - it'll - wsj - spy - broods - grommet - steven's - underground - seahawks - participants - workday - ammi - nightlife - donner - summit - ukraine's - ended - arrangements - altucher's - writer - fortune - brisket - grant - audiobooks - twilight - bass - hunger - roses - barbecue - tuna - deadly - killers - finally - trilogy - grisham - goblet - roadblocks - birthday's - biscuits - lawyers - steve's - kari - labyrinth - commonwealth - sharma - gulf - petrol - earthly - ultimate - ending - allison - canberra - honolulu - flash - salman - gresham - hindustani - stroganoff - sock - creates - geo - traits - moral - rein - blood - slayer - pro - bono - succinct - dalls - somethings - sharp - izzo - whiny - bitch - macaroni - nights - jumper - blind - cure - cancer - vibrant - sloth - transition - recycling - bbc's - columbia - kentucky - hire - opera - prefer - avoid - sort - comedy - compassionate - nc - va - riddles - segment - youth - charity - surrounding - punjabi - sharply - lovett - barber - label - hypocrisy - subscriber - captain - disillusion - hyderabad - dashboard - storm - barrel - panasonic - clinton - canasta - mittens - badra - amit - trivedi - crystal - lewis's - everywhere - rue - evaporated - mma - offered - tutoring - peas - dream - cafes - lauderdale - deletion - precise - parliamentary - remotely - connection - calendars - stupidest - shovel - western - cutting - ll - rapping - spelling - mama - tatum's - fulton - universal - garner - chill - icebo - college's - rehman - soundcloud - scorecards - ketchup - jimmy's - crate - lexmark - preference - females - federal - andreas - sportsnet - favourites - janice - bins - pamela - covered - rhapsody - italian's - ke - panera - remainders - tandoori - sukhwinder - sunidhi - etymology - googleplex - slide - wearing - trivial - pursuit - cancels - martina - mcbride - finances - vocab - zipcode - compaq - composer - margarine - jonathan - entrepreneur - extended - combo - memories - tupac - affects - drunks - ford's - liked - dealership - olky - realtor - thighs - ourselves - economics - medication - gross - domestic - donaldson - prostate - wicker - rooms - instrumental - savannah - outing - affleck - quotes - tire - montana - exhausted - acoustic - commercials - convenience - consciousness - serge - gainsbourg - windows - turks - generate - pedicures - btaxes - departures - frasier - amazon's - bluetooth - verus - neat - forecasted - bing's - dropped - recurrent - candidate - aware - blackeyed - pees - prince's - perimeter - rectangle - aaron - carter - involve - drugs - lighten - slicker - rains - cloud - carrot - popcorn - carmike - cinemas - greater - minestart - frog - lenon - unique - hanging - hung - sporty - seldom - jocko's - kid's - viewers - cantonese - usage - specs - bugatti - veyron - chief - blockbuster - krishnarajpuram - interstate - hammers - obligatory - wonder - southeast - marlon - brando - ferrel - tal - obidallah - manoeuvres - merita - rotate - changs - pepsi - shanghai - branden - wind - landmarks - dvr - congestion - valentines - eastwind - lomaine - geneva - officially - hopkins - takjistan - dimmer - karo - apne - aur - karna - chahta - hu - purchased - otherplace - giraffe - ute - requirement - watts - powerful - bulb - oclock - nba - hulu - composing - melissas - millilitres - spoons - goulash - thor - harischand - mg - i95 - sb - kilo - diana - llyod - webber - wool - penultimate - bang - philosophers - nietzche - focault - profession - kilograms - turkeys - bibulous - angeline - atm - narwhal - kilamanjaro - captia - volkswagen - onkyo - av - receiver - ipad - aniston's - summarize - ice - jindel - pump - nikki - minaj - nationality - snoodle - yemen - sudan - unprompted - organization - megan - fares - engage - functioning - dinar - conservative - korean - sahara - kingdom - antartica - telugu - tamil - tsunami - rajani - khanth - venture - goalkeeper - dushambe - abrupt - hbo - sopranos - parana - cave - anime - posters - johny - depp - invisible - graphical - joli - pricing - beech - nuclear - triad - hilton - borders - lucille - redhead - geraldine - ferraro - bde - lowered - phrases - nicole - mcgoat's - manipulate - roip - nasa - google's - davy - crockett - springsteen's - richest - costliest - easily - gm - psso - kroner - maple - trees - christie - brinkley - libraries - gmb - key - mongolia - anastasia - telekenesis - promise - stray - cruise's - starring - odyssey - polish - zloty - hook - ups - integral - exponential - berkshire - hathaway - tables - pink's - alligator - porto - tommy - hilfiger - print - networks - snaps - celebrate - bina - yay - smiley - emoticon - commented - folgers - hathway - huge - lfi - tagged - treated - hersheys - aircel - nastyburger - linkedin - tracy - waiter - drain - charge - neptunal - poorly - waited - inappropriate - potus - accounts - vodafone - complaining - spoiled - positive - tumblr - unpleasant - overpricing - cheating - connected - else's - greetings - thought - waste - excess - micro - lodge - snapdeal - sonic - hole - sole - patel's - insect - packet - elsewhere - moan - easyjet - snotty - expired - xl - sizes - filing - applebee's - angela - merkel - swagging - moto - sluggish - flavia - mum - jacob's - existing - cannot - pleas - mahmoud - ebay - smsayyad1985 - kishore17051985 - fedex - truette - petey's - tessa - gaurav - karen - mongomery - llc - joseph - turnpike - accumulated - deadlines - fees - ppt - emergency - missing - carl's - attach - physical - drill - marilyn - jugal - here's - bug - sarasigmon123 - lindafancy55 - markpolomm - gary's - mailing - bill's - erins - beth's - wont - stacy - cadwell - tori - aloud - brenda - thisome - smurfette - smithjoe - hwacuk - chong - giselle - bosses - havent - frieda's - jjjindia - exists - batch - samuelwaters - joose - hellen - builders - accepted - victor - taxi's - terry - macdonald - yahoocom - metion - rodger - christy's - otp - jayesh - tried - morgan's - office's - rob - qerwerq - secured - gerry - raj's - junable - shopyourway - reference - jhonny's - marissa - rosa - bert - ana - goddammit - pronounce - serious - recheck - slowly - failed - fuck - executed - clearly - errors - showed - races - thursdays - funky - handmaid's - beam - scotty - debit - wiki - editor's - automobiles - promo - discount - director - act - bejeweled - aside - snakes - ladders - marsala - influx - bayou - reasonably - tapas - az - ddlj - meatball - newscast - bibber - tmz - devon - applebees - hihop - doggie - feelings - radios - litle - tsos - congratulate - links - treble - flame - eta - encourage - students - choices - lobby - vf - chore - butterfly - clips - urban - regular - bi-weekly - baltimore - sport's - breakups - dale's - brea - douglasville - fundraiser - dolphines - maradona - pe - becky - appointed - deputy - utar - pradesh - anniston - handy - sainsbury's - attenuate - parcel - jakes - bristo - stressful - deposit - mathematical - superstar - survivor - destiny's - westcombe - facility - oboe - mcnamara - abolish - swim - repair - grub - hub - ill - dec - dreams - wyatts - obstacle - poach - dental - rose - davinci - trevor - noah - ncaa - entrapreneur - sanam - differs - ave - hopsin - enya - wbc - accordingly - remarks - sufi - beibers - arrested - sensor - music's - author - antwerp - cnn's - foodnetworkcom - customize - preferred - unable - duct - tape - gooseto - apig - ringer - secure - passage - tomatoes - wan - senelena - americano - makeup - robotics - teleconference - robotic - poughkeepsie - steel - day's - soundtrack - tobymac - transit - gloria - furious - nazi - hunting - effect - marvin - gaye - pasadena - ca - constrain - singles - outer - nowhereville - comfortable - erica - grebe - wooly - trigonametry - obsessed - graphics - undone - tough - treasury - toledo - munich - obtain - nutritionally - balanced - internal - locks - exit - mocking - lyft - transaction - tasty - mixture - according - hands - supports - canceling - congressman's - lenin - spagetti - controversial - statements - walker - humor - nkotb - jon - snow's - possibility - wellington - nz - advantages - disadvantages - driver - towels - stretch - gear - joey - crimson - chose - pineapple - asparagus - teaspoons - bling - medieval - engines - foods - hurts - cannibal - tonic - bitcoin - collection - hidden - figures - brasil - politic - superb - dalida - capuccino - analysts - thankama - kodaikanal - vote - burritto - chipolte - abut - sedaka - chamber - rfi - knock - cnncom - remchi - fl - ortcars - flip - wire - thriller - fiasco - breaks - dam - paradise - presidency - sigur - ros - socks - van - halen - wayne - spare - lightness - appropriately - both - musics - coastal - cry - friend's - wore - veganism - picnic - regent - visited - therapist - inauguration - swatishs - dorothy - known - supervision - superbowl - eric's - bday - kar - abhi - achche - ache - rahe - honge - mhz - sponge - bistros - brownies - tenderloin - enchiladas - gluten - hotdog - row - bing - notebook - pulldown - clearer - medford - drivers - waverley - canal - connecting - summers - gibraltar - monoprice - mxblue - mechanical - turbulence - carey - blunder - factorial - depends - commands - stand - draymond - susumu - hirasawa - yosemite - '200' - baguette - stonehenge - douriff - ivf - ivr - litt - runs - hesitant - crock - guetta - malaysia - whelers - sadness - william - coral - daft - punk - sandle - santha - ingerman - calc - shibaru - alcohols - nano - gina - desta - mgmt - bana - talking - garvin - trilly - nytimes - chhana - mereya - favor - strained - cooler - films - einstein's - aroma - ska - raphsody - trebuchet - forth - relate - qualifications - kirk - franklin - arithmetic - skyfall - bathrooms - raghu - dixit - reports - availables - haddock - odd - cape - cod - noisy - dull - hackernews - porn - pad - fight - fighter - nzd - melodious - burton - helena - campaign - mcclanahan - mummy's - motown - rasgulla - janta - pvt - ltd - heartthrob - justin's - velociraptor - hippo - senatra - giggle - peru - nirvana - anirudh's - retro - mf - doom - summarise - ariana - grande - predicted - creed - user - desire - kenny - roger - sia's - thrills - wapo - stockholm - okinawa - occasionally - shuffling - veggie - mukkala - mukkabilla - guardian - anytime - themes - horror - ennema - eatha - homestead - forever - mayor's - stance - council - master - louies - keane's - fears - noe - reggae - largo - swiftm - afi's - xinhua - dedicated - bottom - franks - yelawolf - ucl - flop - grammys - espn - joni - mitchell - shot - tequila - sleepyhead - aces - redder - edms - lamp's - loudest - brolly - thao - nguyen - interior - dine - dogwalking - nytimescom - overcast - deactive - foo - disasters - opacity - dea - guam - drug - abuse - itzhak - perlman - drawing - sweden - bombing - ireland - poll - hotha - defrosting - salt - toggle - spb - weatherit - either - forecasts - intellicast - weathercom - orevena - recorder - pizzahouse - reorganize - sticky - umbrellas - opened - cleaned - shakin - bakey - tips - hypoallergenic - sarcastic - cheat - ii - developers - edg - yaad - dilana - kahin - samantha's - rita's - adding - bro's - attendees - maggie - valet - groomer - timeframe - pete - faculty - parade - greens - jack's - walter - gemma - nail - arora's - namkeen - tonights - ggg - tie - iheartradio - rov - javan - wfrn - kicks - osteen's - wgrr - lite - prairie - companion - palhunik - pudding - tutorial - welsh - rarebit - oatmeal - pathia - achieve - veg - pulav - crockpot - prepared - keno - pinball - fishdom - nfs - harvest - crops - farmvile - millionaires - vodka - depend - pon - stationary - mad - errands - paav - queried - pepper - rowling - shadi - viewed - mlb - heavyweight - citadel - scene - circus - trolls - grab - kung - fu - bowery - railway - coach - fare - metrolink - navigation - westwood - layfayette - inconvenience - emotions - arrahman - cosmos - multiplied - abouts - hitting - eliot's - el - ribbons - sperm - whale - eaten - lbs - pinhead - timeliness - defining - thesaurus - penalty - approval - poetry - ambulance - jello - shots - ferrell - stassi - schroedder's - tacobell - hierophant - zealand - stockton - emissions - blowing - kennedy - ziggurat - gagas - gretszky - hemingway - pages - earn - nobel - actions - sloths - parton's - madagascar - acting - tiangle - trebuchets - googs - gandhiji - amal - brazil - adviser - rich - acted - rihanas - stamp - mugy - msn - busdriver - fergie - flick - ribons - nakumuka - postmates - complaintum - glinder - gta - rcg - outlet - hadock - mclanahan - coal - mumy's - piza - wheelers - guarante - debugging - debuging - proper - sung - bilando - terrorism - cover - dimmed - vanilli - marauthr - wooo - michael's - shutdown - pittsburgh - precipitation - riff - portland - muggy - giants - banks - steelz - ensure - ricky - matin - tyres - plant - chased - advice - gossiping - society - mitushree - hairdresser's - biology - fsu - reflect - yashas - vinay - vally - closed - shoutcast - pilkington - soda - powder - sambar - cookingforu - thermonuclear - battleship - cereal - wishlist - wrist - hipsterhood - duncan - trussel's - simmons - wide - cisco - crafts - sporting - presently - sheffield - septa - lead - fransisco - washingdon - evolution - mariah - kya - tum - mere - karne - karoge - acts - assembly - idle - brand - meridian - terranova - guarantee - marian - fields - farthest - philippine - cambodia - situated - foruget - monopricechanical - peenth - moroco - piz - tre - supplwn - viki - shivle - loged - applebe - acess - madagar - anp - socer - subcribe - pluged - imigration - audiowan - debie's - imediately - f - locar - duark - rebeca - talle - banas - ragh - acordingly - wakely - en - bress - acording - stefanan - puding - vegie - vius - edie - domizza - eg - cheeseiza - ocurred - brightnes - alaba - memory - fransico - sunderland - boogie - butt - leviathan - shinning - premier - cleanup - wacky - aman - cherry - bomb - solstice - silently - closet - nakumukka - shed - responses - yankees - investigation - dooa - pieces - imogen - heap - stole - dynamite - cease - operating - rained - uptown - suggestion - finlee's - bedtime - sockets - sanfranscio - abbas - cn's - vibrate - cooling - sheriffs - hike - ilayaraja - speaking - un - storms - roof - tube - jackpot - classmates - extremely - somewhere - drenched - sentient - budy - heating - apt - parenting - concerning - seo - searches - sticking - patterns - numbered - impression - reunion - presents - mehta - willing - discuss - evan - parker - violin - lesson - musicworkz - registration - opens - evening's - thursday's - nineteenth's - hayathis - shower - corresponding - showcase - famosa - kamp - neal - brenan - gx - nonstop - rm - giver - traveller - knowledge - crispy - supper - broil - noodle - stuffed - maccoroni - almond - clash - clans - ping - keeper - enemy - coc - detergent - corn - dill - pickles - ranch - dressing - lentils - translate - toothpaste - rearrange - groups - santana - pritzker - winners - libertarian - mc's - vitaly - nfl - mythical - oriented - provisional - experiences - safely - themselves - mia - reducing - learly - court - vin - diesel - netbooks - chinatown - aberdeen - queens - luni - purchasing - timing - bagmati - narrow - egypt - represented - revelation - britain - aamir - priyanka - middleton - base - original - nhl - goal - scorers - osteoperosis - laws - correlation - motivation - ncaaa - tense - touring - framework - adel - diamond - schwarzenegger's - stomachs - cow - chairs - steph - subjegant - pategonia - michelle - todlers - stakes - tinder - matches - fjord - equator - triumph - hell - moldova - presley's - wa - rajinikanth - basalt - bali - airplane - hash - lit - <sos/eos> two_pass: false pre_postencoder_norm: false preencoder: null preencoder_conf: {} encoder: conformer encoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: conv2d normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 postencoder: null postencoder_conf: {} deliberationencoder: conformer deliberationencoder_conf: output_size: 512 attention_heads: 8 linear_units: 2048 num_blocks: 12 dropout_rate: 0.1 positional_dropout_rate: 0.1 attention_dropout_rate: 0.1 input_layer: linear normalize_before: true macaron_style: true pos_enc_layer_type: rel_pos selfattention_layer_type: rel_selfattn activation_type: swish use_cnn_module: true cnn_module_kernel: 31 decoder: transformer decoder_conf: attention_heads: 8 linear_units: 2048 num_blocks: 6 dropout_rate: 0.1 positional_dropout_rate: 0.1 self_attention_dropout_rate: 0.1 src_attention_dropout_rate: 0.1 postdecoder: hugging_face_transformers postdecoder_conf: model_name_or_path: bert-base-cased output_size: 512 required: - output_dir - token_list version: '202207' distributed: false ``` </details> ### Citing ESPnet ```BibTex @inproceedings{watanabe2018espnet, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, title={{ESPnet}: End-to-End Speech Processing Toolkit}, year={2018}, booktitle={Proceedings of Interspeech}, pages={2207--2211}, doi={10.21437/Interspeech.2018-1456}, url={http://dx.doi.org/10.21437/Interspeech.2018-1456} } ``` or arXiv: ```bibtex @misc{watanabe2018espnet, title={ESPnet: End-to-End Speech Processing Toolkit}, author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai}, year={2018}, eprint={1804.00015}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
AkshaySg/LanguageIdentification
[ "multilingual", "dataset:VoxLingua107", "LID", "spoken language recognition", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-13T20:30:22Z
--- license: mit --- ### Chillpill on Stable Diffusion This is the `<Chillpill>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![Chillpill 0](https://huggingface.co/sd-concepts-library/chillpill/resolve/main/concept_images/1.jpeg) ![Chillpill 1](https://huggingface.co/sd-concepts-library/chillpill/resolve/main/concept_images/0.jpeg) ![Chillpill 2](https://huggingface.co/sd-concepts-library/chillpill/resolve/main/concept_images/4.jpeg) ![Chillpill 3](https://huggingface.co/sd-concepts-library/chillpill/resolve/main/concept_images/2.jpeg) ![Chillpill 4](https://huggingface.co/sd-concepts-library/chillpill/resolve/main/concept_images/3.jpeg)
AkshaySg/gramCorrection
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
4
2022-09-13T20:40:21Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-model2-1309 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-model2-1309 This model is a fine-tuned version of [theojolliffe/bart-paraphrase-v4-e1-feedback](https://huggingface.co/theojolliffe/bart-paraphrase-v4-e1-feedback) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1465 - Rouge1: 60.8818 - Rouge2: 53.2203 - Rougel: 60.2427 - Rougelsum: 60.557 - Gen Len: 19.6498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.914 | 1.0 | 867 | 0.1465 | 60.8818 | 53.2203 | 60.2427 | 60.557 | 19.6498 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0 - Datasets 1.18.0 - Tokenizers 0.10.3
AlErysvi/Erys
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-13T21:09:29Z
--- license: mit --- ### looney anime on Stable Diffusion This is the `<looney-anime>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<looney-anime> 0](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/8.jpeg) ![<looney-anime> 1](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/18.jpeg) ![<looney-anime> 2](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/14.jpeg) ![<looney-anime> 3](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/10.jpeg) ![<looney-anime> 4](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/1.jpeg) ![<looney-anime> 5](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/16.jpeg) ![<looney-anime> 6](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/15.jpeg) ![<looney-anime> 7](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/12.jpeg) ![<looney-anime> 8](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/11.jpeg) ![<looney-anime> 9](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/9.jpeg) ![<looney-anime> 10](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/5.jpeg) ![<looney-anime> 11](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/0.jpeg) ![<looney-anime> 12](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/17.jpeg) ![<looney-anime> 13](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/4.jpeg) ![<looney-anime> 14](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/13.jpeg) ![<looney-anime> 15](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/2.jpeg) ![<looney-anime> 16](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/19.jpeg) ![<looney-anime> 17](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/3.jpeg) ![<looney-anime> 18](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/6.jpeg) ![<looney-anime> 19](https://huggingface.co/sd-concepts-library/looney-anime/resolve/main/concept_images/7.jpeg)
Alaeddin/convbert-base-turkish-ner-cased
[ "pytorch", "convbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "ConvBertForTokenClassification" ], "model_type": "convbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-09-13T21:13:56Z
--- library_name: stable-baselines3 tags: - SpaceInvadersNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: 449.00 +/- 109.17 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: SpaceInvadersNoFrameskip-v4 type: SpaceInvadersNoFrameskip-v4 --- # **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> SB3: https://github.com/DLR-RM/stable-baselines3<br/> SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga anechaev -f logs/ python enjoy.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga anechaev ``` ## Hyperparameters ```python OrderedDict([('batch_size', 32), ('buffer_size', 100000), ('env_wrapper', ['stable_baselines3.common.atari_wrappers.AtariWrapper']), ('exploration_final_eps', 0.01), ('exploration_fraction', 0.1), ('frame_stack', 4), ('gradient_steps', 1), ('learning_rate', 0.0001), ('learning_starts', 100000), ('n_timesteps', 1000000.0), ('optimize_memory_usage', False), ('policy', 'CnnPolicy'), ('target_update_interval', 1000), ('train_freq', 4), ('normalize', False)]) ```
AlanDev/DallEMiniButBetter
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-13T21:16:01Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice model-index: - name: wav2vec2-burak-new-300 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-burak-new-300 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5042 - Wer: 0.3803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 41 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 4.7568 | 8.62 | 500 | 2.6689 | 1.0 | | 0.7678 | 17.24 | 1000 | 0.5044 | 0.4656 | | 0.2373 | 25.86 | 1500 | 0.4944 | 0.4047 | | 0.1526 | 34.48 | 2000 | 0.5042 | 0.3803 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
AlbertHSU/ChineseFoodBert
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2022-09-13T21:55:28Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - accuracy model-index: - name: distilbert-legal-chunk results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-legal-chunk This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0699 - Precision: 0.8994 - Recall: 0.8721 - Macro F1: 0.8855 - Micro F1: 0.8855 - Accuracy: 0.9789 - Marker F1: 0.9804 - Marker Precision: 0.9687 - Marker Recall: 0.9925 - Reference F1: 0.9791 - Reference Precision: 0.9804 - Reference Recall: 0.9778 - Term F1: 0.8670 - Term Precision: 0.8844 - Term Recall: 0.8502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Macro F1 | Micro F1 | Accuracy | Marker F1 | Marker Precision | Marker Recall | Reference F1 | Reference Precision | Reference Recall | Term F1 | Term Precision | Term Recall | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|:--------:|:---------:|:----------------:|:-------------:|:------------:|:-------------------:|:----------------:|:-------:|:--------------:|:-----------:| | 0.0857 | 1.0 | 3125 | 0.0966 | 0.8374 | 0.7889 | 0.8124 | 0.8124 | 0.9676 | 0.6143 | 0.5874 | 0.6437 | 0.9628 | 0.9423 | 0.9842 | 0.8291 | 0.8656 | 0.7955 | | 0.058 | 2.0 | 6250 | 0.0606 | 0.8869 | 0.9146 | 0.9006 | 0.9006 | 0.9814 | 0.9405 | 0.9126 | 0.9702 | 0.9689 | 0.9511 | 0.9873 | 0.8923 | 0.8805 | 0.9045 | | 0.0415 | 3.0 | 9375 | 0.0642 | 0.9077 | 0.9131 | 0.9104 | 0.9104 | 0.9823 | 0.9524 | 0.9262 | 0.9801 | 0.9742 | 0.9614 | 0.9873 | 0.9021 | 0.9026 | 0.9016 | | 0.0283 | 4.0 | 12500 | 0.0646 | 0.9066 | 0.9089 | 0.9077 | 0.9077 | 0.9819 | 0.9564 | 0.9326 | 0.9815 | 0.9712 | 0.9555 | 0.9873 | 0.8986 | 0.9008 | 0.8965 | ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
Aleenbo/Arcane
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-13T22:44:47Z
--- license: mit --- ### green-tent on Stable Diffusion This is the `<green-tent>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<green-tent> 0](https://huggingface.co/sd-concepts-library/green-tent/resolve/main/concept_images/1.jpeg) ![<green-tent> 1](https://huggingface.co/sd-concepts-library/green-tent/resolve/main/concept_images/5.jpeg) ![<green-tent> 2](https://huggingface.co/sd-concepts-library/green-tent/resolve/main/concept_images/0.jpeg) ![<green-tent> 3](https://huggingface.co/sd-concepts-library/green-tent/resolve/main/concept_images/4.jpeg) ![<green-tent> 4](https://huggingface.co/sd-concepts-library/green-tent/resolve/main/concept_images/2.jpeg) ![<green-tent> 5](https://huggingface.co/sd-concepts-library/green-tent/resolve/main/concept_images/3.jpeg)
Aleksandar/distilbert-srb-ner-setimes-lr
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-13T23:05:28Z
--- language: en thumbnail: http://www.huggingtweets.com/39daph/1663110357486/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1552662904897343488/9Wjz519m_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">daph</div> <div style="text-align: center; font-size: 14px;">@39daph</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from daph. | Data | daph | | --- | --- | | Tweets downloaded | 3247 | | Retweets | 157 | | Short tweets | 867 | | Tweets kept | 2223 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/2wg7cywr/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @39daph's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1bhgb0ky) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1bhgb0ky/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/39daph') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aleksandar/electra-srb-oscar
[ "pytorch", "electra", "fill-mask", "transformers", "generated_from_trainer", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "ElectraForMaskedLM" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
2022-09-13T23:08:57Z
--- license: mit --- ### dtv-pkmn on Stable Diffusion This is the `<dtv-pkm2>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). ![<dtv-pkm2ex> 292](https://i.ibb.co/X8f3Q1h/image-2022-09-16-212332924.png) `"hyperdetailed fantasy (monster) (dragon-like) character on top of a rock in the style of <dtv-pkm2> . extremely detailed, amazing artwork with depth and realistic CINEMATIC lighting, matte painting"` Here is the new concept you will be able to use as a `style`: ![<dtv-pkm2> 0](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/1.jpeg) ![<dtv-pkm2> 1](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/0.jpeg) ![<dtv-pkm2> 2](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/2.jpeg) ![<dtv-pkm2> 3](https://huggingface.co/sd-concepts-library/dtv-pkmn/resolve/main/concept_images/3.jpeg)
Aleksandar1932/gpt2-country
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2022-09-13T23:12:04Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1478425372438011912/GQujYoYi_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1565550091334828032/flg5WPOb_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1541590121102905345/jxbNo0z0_400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">WUNNA & PnBRock & Cardi B</div> <div style="text-align: center; font-size: 14px;">@1gunnagunna-iamcardib-pnbrock</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from WUNNA & PnBRock & Cardi B. | Data | WUNNA | PnBRock | Cardi B | | --- | --- | --- | --- | | Tweets downloaded | 2827 | 3104 | 3073 | | Retweets | 2216 | 1190 | 1500 | | Short tweets | 125 | 310 | 348 | | Tweets kept | 486 | 1604 | 1225 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3cayvnkn/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @1gunnagunna-iamcardib-pnbrock's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/od188nqh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/od188nqh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/1gunnagunna-iamcardib-pnbrock') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aleksandar1932/gpt2-hip-hop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-09-13T23:12:24Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569700017828397071/A5Wt_ZMK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1463152292006436875/Mrh4Av-C_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Naughtius Maximus & Burger King</div> <div style="text-align: center; font-size: 14px;">@burgerking-elonmusk</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Naughtius Maximus & Burger King. | Data | Naughtius Maximus | Burger King | | --- | --- | --- | | Tweets downloaded | 3200 | 3250 | | Retweets | 122 | 2 | | Short tweets | 979 | 71 | | Tweets kept | 2099 | 3177 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/22ygpzid/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @burgerking-elonmusk's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/zo86uf0y) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/zo86uf0y/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/burgerking-elonmusk') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aleksandar1932/gpt2-pop
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-09-13T23:13:30Z
--- language: en thumbnail: http://www.huggingtweets.com/mariahcarey/1663110896270/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1486066100248981508/AwBY6X2x_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Mariah Carey</div> <div style="text-align: center; font-size: 14px;">@mariahcarey</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Mariah Carey. | Data | Mariah Carey | | --- | --- | | Tweets downloaded | 3225 | | Retweets | 697 | | Short tweets | 388 | | Tweets kept | 2140 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1euvplmf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @mariahcarey's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3lc0u7bu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3lc0u7bu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/mariahcarey') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aleksandar1932/gpt2-rock-124439808
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
2022-09-13T23:13:34Z
--- language: en thumbnail: http://www.huggingtweets.com/sanbenito/1663110946747/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1375293530587820041/kFJTqJSD_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">โ˜€๏ธ๐ŸŒŠโค๏ธ</div> <div style="text-align: center; font-size: 14px;">@sanbenito</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from โ˜€๏ธ๐ŸŒŠโค๏ธ. | Data | โ˜€๏ธ๐ŸŒŠโค๏ธ | | --- | --- | | Tweets downloaded | 1331 | | Retweets | 406 | | Short tweets | 177 | | Tweets kept | 748 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/zjwkhelw/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @sanbenito's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1kdzzute) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1kdzzute/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/sanbenito') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aleksandar1932/gpt2-soul
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
2022-09-13T23:15:06Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1407334956716769288/HFgpsbmW_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Metallica</div> <div style="text-align: center; font-size: 14px;">@metallica</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Metallica. | Data | Metallica | | --- | --- | | Tweets downloaded | 3250 | | Retweets | 390 | | Short tweets | 185 | | Tweets kept | 2675 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/3n6wz64s/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @metallica's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/3ea9ctpp) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/3ea9ctpp/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/metallica') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aleksandar1932/gpt2-spanish-classics
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-09-13T23:17:28Z
--- language: en thumbnail: http://www.huggingtweets.com/burgerking/1663111083258/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1463152292006436875/Mrh4Av-C_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI BOT ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Burger King</div> <div style="text-align: center; font-size: 14px;">@burgerking</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Burger King. | Data | Burger King | | --- | --- | | Tweets downloaded | 3252 | | Retweets | 2 | | Short tweets | 71 | | Tweets kept | 3179 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/34ppslia/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @burgerking's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/1e5tij6u) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/1e5tij6u/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/burgerking') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
Aleksandra/distilbert-base-uncased-finetuned-squad
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-09-13T23:18:07Z
--- license: mit --- ### 8bit on Stable Diffusion This is the `<8bit>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as a `style`: ![<8bit> 0](https://huggingface.co/sd-concepts-library/8bit/resolve/main/concept_images/1.jpeg) ![<8bit> 1](https://huggingface.co/sd-concepts-library/8bit/resolve/main/concept_images/0.jpeg) ![<8bit> 2](https://huggingface.co/sd-concepts-library/8bit/resolve/main/concept_images/2.jpeg) ![<8bit> 3](https://huggingface.co/sd-concepts-library/8bit/resolve/main/concept_images/3.jpeg)
Aleksandra/herbert-base-cased-finetuned-squad
[ "pytorch", "tensorboard", "bert", "question-answering", "transformers", "generated_from_trainer", "license:cc-by-4.0", "autotrain_compatible" ]
question-answering
{ "architectures": [ "BertForQuestionAnswering" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569700017828397071/A5Wt_ZMK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1368062641285992449/G_0qX1jP_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/872980937939857409/0Ze_P2L__400x400.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Naughtius Maximus & Jessica Verrilli & Chad Masters</div> <div style="text-align: center; font-size: 14px;">@elonmusk-heychadmasters-jess</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Naughtius Maximus & Jessica Verrilli & Chad Masters. | Data | Naughtius Maximus | Jessica Verrilli | Chad Masters | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 3240 | 76 | | Retweets | 122 | 1182 | 0 | | Short tweets | 979 | 364 | 5 | | Tweets kept | 2099 | 1694 | 71 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/1xq7vmdk/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-heychadmasters-jess's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/13kzw9xh) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/13kzw9xh/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-heychadmasters-jess') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
adorkin/xlm-roberta-en-ru-emoji
[ "pytorch", "safetensors", "xlm-roberta", "text-classification", "en", "ru", "dataset:tweet_eval", "transformers" ]
text-classification
{ "architectures": [ "XLMRobertaForSequenceClassification" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2022-09-13T23:18:49Z
--- language: en thumbnail: https://github.com/borisdayma/huggingtweets/blob/master/img/logo.png?raw=true tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1569700017828397071/A5Wt_ZMK_400x400.jpg&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1546881052035190786/j0wpQleX_400x400.png&#39;)"> </div> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1293278688465899521/-J-WylRi_400x400.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">๐Ÿค– AI CYBORG ๐Ÿค–</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Naughtius Maximus & McDonald's & Subwayยฎ</div> <div style="text-align: center; font-size: 14px;">@elonmusk-mcdonalds-subway</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from Naughtius Maximus & McDonald's & Subwayยฎ. | Data | Naughtius Maximus | McDonald's | Subwayยฎ | | --- | --- | --- | --- | | Tweets downloaded | 3200 | 3250 | 3250 | | Retweets | 122 | 0 | 4 | | Short tweets | 979 | 17 | 192 | | Tweets kept | 2099 | 3233 | 3054 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/7pt71lc3/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @elonmusk-mcdonalds-subway's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/2l1m0tuq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/2l1m0tuq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/elonmusk-mcdonalds-subway') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)