modelId
stringlengths
4
81
tags
list
pipeline_tag
stringclasses
17 values
config
dict
downloads
int64
0
59.7M
first_commit
timestamp[ns, tz=UTC]
card
stringlengths
51
438k
AnonymousSub/specter-emanuals-model
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 duplicated_from: PaddlePaddle/ci-test-ernie-model --- this model is for CI testing in paddlenlp repo. As you can guess, PaddleNLP will play with πŸ€— Huggingface.
AnonymousSub/unsup-consert-base
[ "pytorch", "bert", "feature-extraction", "transformers" ]
feature-extraction
{ "architectures": [ "BertModel" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - bleu model-index: - name: nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nmt-mpst-id-en-lr_0.0001-ep_10-seq_128_bs-32 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.2914 - Bleu: 0.0708 - Meteor: 0.2054 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Meteor | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | No log | 1.0 | 202 | 2.8210 | 0.0313 | 0.1235 | | No log | 2.0 | 404 | 2.6712 | 0.0398 | 0.1478 | | 3.0646 | 3.0 | 606 | 2.5543 | 0.0483 | 0.1661 | | 3.0646 | 4.0 | 808 | 2.4735 | 0.0537 | 0.1751 | | 2.6866 | 5.0 | 1010 | 2.4120 | 0.0591 | 0.1855 | | 2.6866 | 6.0 | 1212 | 2.3663 | 0.0618 | 0.1906 | | 2.6866 | 7.0 | 1414 | 2.3324 | 0.0667 | 0.1993 | | 2.5034 | 8.0 | 1616 | 2.3098 | 0.0684 | 0.2023 | | 2.5034 | 9.0 | 1818 | 2.2969 | 0.0696 | 0.2042 | | 2.4271 | 10.0 | 2020 | 2.2914 | 0.0708 | 0.2054 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Apisate/DialoGPT-small-jordan
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: finetuned_twitter_targeted_insult_LSTM results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_twitter_targeted_insult_LSTM This model is a fine-tuned version of [LYTinn/lstm-finetuning-sentiment-model-3000-samples](https://huggingface.co/LYTinn/lstm-finetuning-sentiment-model-3000-samples) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6314 - Accuracy: 0.6394 - F1: 0.6610 - Precision: 0.6262 - Recall: 0.6998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Apisate/Discord-Ai-Bot
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- language: - en license: creativeml-openrail-m thumbnail: "https://huggingface.co/an303042/Jocelyn_Hobbie_Diffusion/resolve/main/00026-865999057.png" tags: - stable-diffusion - text-to-image - image-to-image - diffusers --- ### Jocelyn Hobbie Diffusion v1 This model was created to celebrate the works of Jocelyn Hobbie - A wonderful contemporary artist. Check out her works @ www.jocelynhobbie.com and @jocelynhobbie **Token to use is "jclnhbe style" ** ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ### Examples ![Example](https://huggingface.co/an303042/Jocelyn_Hobbie_Diffusion/resolve/main/00026-865999057.png) ![Example](https://huggingface.co/an303042/Jocelyn_Hobbie_Diffusion/resolve/main/00030-2232312440.png) ![Example](https://huggingface.co/an303042/Jocelyn_Hobbie_Diffusion/resolve/main/00033-1415196133.png)
ArBert/albert-base-v2-finetuned-ner-agglo-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
27
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: bert-base-uncased-issues-128 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-issues-128 This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2449 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.099 | 1.0 | 291 | 1.6946 | | 1.6396 | 2.0 | 582 | 1.4288 | | 1.4875 | 3.0 | 873 | 1.3893 | | 1.399 | 4.0 | 1164 | 1.3812 | | 1.341 | 5.0 | 1455 | 1.2004 | | 1.2803 | 6.0 | 1746 | 1.2738 | | 1.2397 | 7.0 | 2037 | 1.2645 | | 1.199 | 8.0 | 2328 | 1.2092 | | 1.166 | 9.0 | 2619 | 1.1871 | | 1.1406 | 10.0 | 2910 | 1.2244 | | 1.1293 | 11.0 | 3201 | 1.2061 | | 1.1037 | 12.0 | 3492 | 1.1621 | | 1.0824 | 13.0 | 3783 | 1.2540 | | 1.0738 | 14.0 | 4074 | 1.1703 | | 1.0625 | 15.0 | 4365 | 1.1195 | | 1.0628 | 16.0 | 4656 | 1.2449 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.10.3
ArBert/albert-base-v2-finetuned-ner-agglo
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9255 - name: F1 type: f1 value: 0.9256889016417648 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2222 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7962 | 1.0 | 250 | 0.3167 | 0.903 | 0.8984 | | 0.2475 | 2.0 | 500 | 0.2222 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
ArBert/albert-base-v2-finetuned-ner-gmm-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### noggles9000 on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### Model by alxdfy This your the Stable Diffusion model fine-tuned the noggles9000 concept taught to Stable Diffusion with Dreambooth. It can be used by modifying the `instance_prompt(s)`: **nounfootball.jpg** You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) Sample pictures of this concept: nounfootball.jpg ![nounfootball.jpg 0](https://huggingface.co/alxdfy/noggles9000/resolve/main/concept_images/nounfootball.jpg)
ArBert/albert-base-v2-finetuned-ner-gmm
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - rock-glacier-dataset metrics: - accuracy model-index: - name: hf_train_output results: - task: name: Image Classification type: image-classification dataset: name: rock-glacier-dataset type: rock-glacier-dataset config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9258241758241759 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hf_train_output This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the rock-glacier-dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.3894 - Accuracy: 0.9258 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5619 | 0.55 | 50 | 0.5432 | 0.7692 | | 0.4582 | 1.1 | 100 | 0.4435 | 0.8352 | | 0.3548 | 1.65 | 150 | 0.3739 | 0.8599 | | 0.217 | 2.2 | 200 | 0.2913 | 0.9093 | | 0.1709 | 2.75 | 250 | 0.2619 | 0.9148 | | 0.0919 | 3.3 | 300 | 0.2475 | 0.9148 | | 0.0652 | 3.85 | 350 | 0.3275 | 0.8901 | | 0.0495 | 4.4 | 400 | 0.2515 | 0.9093 | | 0.0321 | 4.95 | 450 | 0.2878 | 0.9066 | | 0.0247 | 5.49 | 500 | 0.2612 | 0.9148 | | 0.017 | 6.04 | 550 | 0.2687 | 0.9176 | | 0.0131 | 6.59 | 600 | 0.3062 | 0.9093 | | 0.0113 | 7.14 | 650 | 0.2587 | 0.9231 | | 0.0099 | 7.69 | 700 | 0.2815 | 0.9203 | | 0.009 | 8.24 | 750 | 0.2675 | 0.9286 | | 0.0084 | 8.79 | 800 | 0.2711 | 0.9286 | | 0.0077 | 9.34 | 850 | 0.2663 | 0.9313 | | 0.0073 | 9.89 | 900 | 0.3003 | 0.9258 | | 0.0069 | 10.44 | 950 | 0.2758 | 0.9313 | | 0.0064 | 10.99 | 1000 | 0.2999 | 0.9258 | | 0.0061 | 11.54 | 1050 | 0.2931 | 0.9313 | | 0.0057 | 12.09 | 1100 | 0.2989 | 0.9313 | | 0.0056 | 12.64 | 1150 | 0.2974 | 0.9313 | | 0.0053 | 13.19 | 1200 | 0.3099 | 0.9258 | | 0.005 | 13.74 | 1250 | 0.3131 | 0.9313 | | 0.0049 | 14.29 | 1300 | 0.3201 | 0.9258 | | 0.0046 | 14.84 | 1350 | 0.3109 | 0.9313 | | 0.0045 | 15.38 | 1400 | 0.3168 | 0.9313 | | 0.0043 | 15.93 | 1450 | 0.3226 | 0.9231 | | 0.0042 | 16.48 | 1500 | 0.3234 | 0.9231 | | 0.0041 | 17.03 | 1550 | 0.3283 | 0.9258 | | 0.0039 | 17.58 | 1600 | 0.3304 | 0.9258 | | 0.0038 | 18.13 | 1650 | 0.3321 | 0.9231 | | 0.0037 | 18.68 | 1700 | 0.3362 | 0.9231 | | 0.0036 | 19.23 | 1750 | 0.3307 | 0.9286 | | 0.0035 | 19.78 | 1800 | 0.3357 | 0.9231 | | 0.0034 | 20.33 | 1850 | 0.3244 | 0.9313 | | 0.0033 | 20.88 | 1900 | 0.3497 | 0.9231 | | 0.0032 | 21.43 | 1950 | 0.3443 | 0.9231 | | 0.0031 | 21.98 | 2000 | 0.3398 | 0.9286 | | 0.003 | 22.53 | 2050 | 0.3388 | 0.9286 | | 0.003 | 23.08 | 2100 | 0.3399 | 0.9286 | | 0.0029 | 23.63 | 2150 | 0.3548 | 0.9231 | | 0.0028 | 24.18 | 2200 | 0.3475 | 0.9286 | | 0.0028 | 24.73 | 2250 | 0.3480 | 0.9286 | | 0.0027 | 25.27 | 2300 | 0.3542 | 0.9231 | | 0.0026 | 25.82 | 2350 | 0.3589 | 0.9231 | | 0.0026 | 26.37 | 2400 | 0.3449 | 0.9286 | | 0.0025 | 26.92 | 2450 | 0.3604 | 0.9231 | | 0.0025 | 27.47 | 2500 | 0.3493 | 0.9286 | | 0.0024 | 28.02 | 2550 | 0.3631 | 0.9258 | | 0.0024 | 28.57 | 2600 | 0.3590 | 0.9258 | | 0.0023 | 29.12 | 2650 | 0.3604 | 0.9258 | | 0.0023 | 29.67 | 2700 | 0.3667 | 0.9258 | | 0.0022 | 30.22 | 2750 | 0.3571 | 0.9286 | | 0.0022 | 30.77 | 2800 | 0.3660 | 0.9258 | | 0.0021 | 31.32 | 2850 | 0.3638 | 0.9286 | | 0.0021 | 31.87 | 2900 | 0.3729 | 0.9258 | | 0.0021 | 32.42 | 2950 | 0.3706 | 0.9258 | | 0.002 | 32.97 | 3000 | 0.3669 | 0.9286 | | 0.002 | 33.52 | 3050 | 0.3740 | 0.9258 | | 0.002 | 34.07 | 3100 | 0.3693 | 0.9286 | | 0.002 | 34.62 | 3150 | 0.3700 | 0.9286 | | 0.0019 | 35.16 | 3200 | 0.3752 | 0.9258 | | 0.0019 | 35.71 | 3250 | 0.3753 | 0.9258 | | 0.0019 | 36.26 | 3300 | 0.3721 | 0.9286 | | 0.0018 | 36.81 | 3350 | 0.3764 | 0.9258 | | 0.0018 | 37.36 | 3400 | 0.3758 | 0.9258 | | 0.0018 | 37.91 | 3450 | 0.3775 | 0.9258 | | 0.0018 | 38.46 | 3500 | 0.3812 | 0.9258 | | 0.0018 | 39.01 | 3550 | 0.3817 | 0.9258 | | 0.0017 | 39.56 | 3600 | 0.3815 | 0.9258 | | 0.0017 | 40.11 | 3650 | 0.3825 | 0.9258 | | 0.0017 | 40.66 | 3700 | 0.3852 | 0.9258 | | 0.0017 | 41.21 | 3750 | 0.3854 | 0.9258 | | 0.0017 | 41.76 | 3800 | 0.3823 | 0.9258 | | 0.0016 | 42.31 | 3850 | 0.3829 | 0.9258 | | 0.0016 | 42.86 | 3900 | 0.3873 | 0.9258 | | 0.0016 | 43.41 | 3950 | 0.3842 | 0.9258 | | 0.0016 | 43.96 | 4000 | 0.3857 | 0.9258 | | 0.0016 | 44.51 | 4050 | 0.3873 | 0.9258 | | 0.0016 | 45.05 | 4100 | 0.3878 | 0.9258 | | 0.0016 | 45.6 | 4150 | 0.3881 | 0.9258 | | 0.0016 | 46.15 | 4200 | 0.3888 | 0.9258 | | 0.0016 | 46.7 | 4250 | 0.3891 | 0.9258 | | 0.0016 | 47.25 | 4300 | 0.3878 | 0.9258 | | 0.0016 | 47.8 | 4350 | 0.3890 | 0.9258 | | 0.0016 | 48.35 | 4400 | 0.3890 | 0.9258 | | 0.0015 | 48.9 | 4450 | 0.3895 | 0.9258 | | 0.0015 | 49.45 | 4500 | 0.3896 | 0.9258 | | 0.0015 | 50.0 | 4550 | 0.3894 | 0.9258 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
ArBert/albert-base-v2-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "albert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "AlbertForTokenClassification" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
--- license: cc-by-sa-4.0 --- # 🌈 Technicolor-50s Diffusion ## Style Description - highly-saturated postcard-like colors, flat high-key lighting, strong rim-lighting, 40s and 50s lifestyle ## Sample Output (Raw Output) ![Asian woman](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00006-1638627547-tchnclr%20style.png) <sub>tchnclr style, a closeup portrait of Brenda Song, happy beaming content, glitter, glittery Negative prompt: b&w, lowres, text, error, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, ugly Steps: 40, Sampler: Euler, CFG scale: 7, Seed: 1638627547, Size: 512x512, Model hash: ed87e89c, Variation seed: 3476746822, Variation seed strength: 0.2</sub> ![White man loves dog](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00001-2257021426-closeup%20portr.png) <sub>Use PNG block tool to view the prompts and settings used to product these images</sub> ![Dapper Japanese man](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00003-706122643-tchnclr%20style%2C.png) ![Black sci-fi woman](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00000-1612917422-a%20closeup%20por.png) ![Man in glittery outfit](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00005-2202944893-tchnclr%20style.png) ![White woman with laptop](https://huggingface.co/mattthew/technicolor-50s-diffusion/resolve/main/00002-117811130-tchnclr%20style%2C.png) ## Recommended Usage - Your prompt must include "tchnclr style" - Use CFG of 7 or 8 for best results - The model was trained with and excels at closeup portraits of men and women - Try including "glitter" in your prompt! - Putting "b&w" as a negative prompt will help ensure color image ## Known Limitations - It strongly tries to insert 40s and 50s hairstyles, clothing, and scenery - As you can see from the examples, you can insert some modernity and blend with other styles. But if your prompt insists on modern elements, the technicolor effect may disappear. - The model tends to turn men into women. It also likes to add hats! ## Training Process 20 images from movies filmed in technicolor, 200 photo-like classifiers, 6000 steps, using the Dreambooth Extension for Automatic1111.
ArBert/bert-base-uncased-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - lst20 model-index: - name: premodel results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # premodel This model is a fine-tuned version of [Geotrend/bert-base-th-cased](https://huggingface.co/Geotrend/bert-base-th-cased) on the lst20 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
ArBert/bert-base-uncased-finetuned-ner
[ "pytorch", "tensorboard", "bert", "token-classification", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2021-08-03T13:49:01Z
--- tags: - text-to-image library_name: generic --- # Text To Image repository template This is a template repository for text to image to support generic inference with Hugging Face Hub generic Inference API. There are two required steps 1. Specify the requirements by defining a `requirements.txt` file. 2. Implement the `pipeline.py` `__init__` and `__call__` methods. These methods are called by the Inference API. The `__init__` method should load the model and preload all the elements needed for inference (model, processors, tokenizers, etc.). This is only called once. The `__call__` method performs the actual inference. Make sure to follow the same input/output specifications defined in the template for the pipeline to work. Example repos * https://huggingface.co/osanseviero/BigGAN-deep-128/blob/main/pipeline.py ## How to start First create a repo in https://hf.co/new. Then clone this template and push it to your repo. ``` git clone https://huggingface.co/templates/text-to-image cd text-to-image git remote set-url origin https://huggingface.co/$YOUR_USER/$YOUR_REPO_NAME git push --force ```
ArBert/roberta-base-finetuned-ner-gmm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-19T08:52:06Z
--- license: odbl datasets: gojiteji/QRsst2 --- This is a diffusion model fine-tuned with [QRsst2](https://huggingface.co/datasets/gojiteji/QRsst2). This model generates a QR code from text. Please clone this repository and replace [LambdaLabsML's example's inference code ](https://github.com/LambdaLabsML/examples/blob/767e1101b0125202871812ec7e1b5c46aa9c8d95/stable-diffusion-finetuning/pokemon_finetune.ipynb). checkpoint filename check pint name with `main.ckpt`. The below images are examples of an input :`The way to get started is to quit talking and begin doing.` ![example QR codes](example.png) sample code is here:https://github.com/gojiteji/text2QR/blob/main/samplecode.ipynb
ArBert/roberta-base-finetuned-ner-kmeans-twitter
[ "pytorch", "tensorboard", "roberta", "token-classification", "transformers", "generated_from_trainer", "license:mit", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
Access to model CosmicAvatar/cosmic_avatar_stable_diffusion_v_1_5 is restricted and you are not in the authorized list. Visit https://huggingface.co/CosmicAvatar/cosmic_avatar_stable_diffusion_v_1_5 to ask for access.
ArBert/roberta-base-finetuned-ner-kmeans
[ "pytorch", "tensorboard", "roberta", "token-classification", "dataset:conll2003", "transformers", "generated_from_trainer", "license:mit", "model-index", "autotrain_compatible" ]
token-classification
{ "architectures": [ "RobertaForTokenClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m --- ### anglaLudicMindTwo on Stable Diffusion via Dreambooth trained on the [fast-DreamBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook #### Model by Cacau s your the Stable Diffusion model fine-tuned the anglaLudicMindTwo concept taught to Stable Diffusion with Dreambooth. You can also train your own concepts and upload them to the library by using [the fast-DremaBooth.ipynb by TheLastBen](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb). You can run your new concept via A1111 Colab :[Fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers`: [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb), [Spaces with the Public Concepts loaded](https://huggingface.co/spaces/sd-dreambooth-library/stable-diffusion-dreambooth-concepts) sample_pictures.png. ![sample_pictures.png._0](https://huggingface.co/Cacau/anglaludicmindtwo/raw/main/concept_images/sample_pictures.png)
ArJakusz/DialoGPT-small-stark
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: KubiakJakub01/finetuned-distilbert-base-uncased results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # KubiakJakub01/finetuned-distilbert-base-uncased This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2767 - Validation Loss: 0.4326 - Train Accuracy: 0.8319 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1140, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.4680 | 0.4008 | 0.8378 | 0 | | 0.3475 | 0.4017 | 0.8385 | 1 | | 0.2767 | 0.4326 | 0.8319 | 2 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.9.1 - Datasets 2.4.0 - Tokenizers 0.12.1
Arcktosh/DialoGPT-small-rick
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: raisvaza/distilbert-base-uncased-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # raisvaza/distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0352 - Validation Loss: 0.0607 - Train Precision: 0.9246 - Train Recall: 0.9330 - Train F1: 0.9288 - Train Accuracy: 0.9832 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2631, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.1955 | 0.0720 | 0.8998 | 0.9157 | 0.9077 | 0.9792 | 0 | | 0.0557 | 0.0620 | 0.9200 | 0.9271 | 0.9235 | 0.9822 | 1 | | 0.0352 | 0.0607 | 0.9246 | 0.9330 | 0.9288 | 0.9832 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
AriakimTaiyo/DialoGPT-cultured-Kumiko
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/vicky10011001/ddpm-butterflies-128/tensorboard?#scalars)
AriakimTaiyo/DialoGPT-medium-Kumiko
[ "conversational" ]
conversational
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="LidoHon/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
AriakimTaiyo/DialoGPT-revised-Kumiko
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- library_name: sklearn tags: - sklearn - skops - tabular-classification widget: structuredData: x0: - 5.8 - 6.0 - 5.5 x1: - 2.8 - 2.2 - 4.2 x2: - 5.1 - 4.0 - 1.4 x3: - 2.4 - 1.0 - 0.2 --- # Model description [More Information Needed] ## Intended uses & limitations [More Information Needed] ## Training Procedure ### Hyperparameters The model is trained with below hyperparameters. <details> <summary> Click to expand </summary> | Hyperparameter | Value | |--------------------------|---------| | bootstrap | True | | ccp_alpha | 0.0 | | class_weight | | | criterion | gini | | max_depth | | | max_features | sqrt | | max_leaf_nodes | | | max_samples | | | min_impurity_decrease | 0.0 | | min_samples_leaf | 1 | | min_samples_split | 2 | | min_weight_fraction_leaf | 0.0 | | n_estimators | 100 | | n_jobs | | | oob_score | False | | random_state | | | verbose | 0 | | warm_start | False | </details> ### Model Plot The model plot is below. <style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "β–Έ";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "β–Ύ";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>RandomForestClassifier()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">RandomForestClassifier</label><div class="sk-toggleable__content"><pre>RandomForestClassifier()</pre></div></div></div></div></div> ##Β Evaluation Results You can find the details about evaluation process and the evaluation results. | Metric | Value | |----------|---------| # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python [More Information Needed] ``` </details> # Model Card Authors This model card is written by following authors: [More Information Needed] # Model Card Contact You can contact the model card authors through following channels: [More Information Needed] # Citation Below you can find information related to citation. **BibTeX:** ``` [More Information Needed] ```
Aries/T5_question_generation
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
13
null
--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: bert-indo-base-stance-cls results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-indo-base-stance-cls This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0156 - Accuracy: 0.6892 - Precision: 0.6848 - Recall: 0.6892 - F1: 0.6859 - Against: {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216} - For: {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Against | For | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 137 | 0.6423 | 0.6581 | 0.6894 | 0.6581 | 0.5917 | {'precision': 0.7543859649122807, 'recall': 0.19907407407407407, 'f1-score': 0.31501831501831506, 'support': 216} | {'precision': 0.6469387755102041, 'recall': 0.9577039274924471, 'f1-score': 0.7722289890377587, 'support': 331} | | No log | 2.0 | 274 | 0.6146 | 0.6600 | 0.6691 | 0.6600 | 0.6628 | {'precision': 0.5614754098360656, 'recall': 0.6342592592592593, 'f1-score': 0.5956521739130436, 'support': 216} | {'precision': 0.7392739273927392, 'recall': 0.676737160120846, 'f1-score': 0.7066246056782334, 'support': 331} | | No log | 3.0 | 411 | 0.7572 | 0.6545 | 0.6734 | 0.6545 | 0.6583 | {'precision': 0.550561797752809, 'recall': 0.6805555555555556, 'f1-score': 0.608695652173913, 'support': 216} | {'precision': 0.7535714285714286, 'recall': 0.6374622356495468, 'f1-score': 0.6906710310965631, 'support': 331} | | 0.4855 | 4.0 | 548 | 0.7405 | 0.6892 | 0.6842 | 0.6892 | 0.6851 | {'precision': 0.6210526315789474, 'recall': 0.5462962962962963, 'f1-score': 0.5812807881773399, 'support': 216} | {'precision': 0.7254901960784313, 'recall': 0.7824773413897281, 'f1-score': 0.7529069767441859, 'support': 331} | | 0.4855 | 5.0 | 685 | 1.1222 | 0.6856 | 0.6828 | 0.6856 | 0.6839 | {'precision': 0.6078431372549019, 'recall': 0.5740740740740741, 'f1-score': 0.5904761904761905, 'support': 216} | {'precision': 0.7317784256559767, 'recall': 0.7583081570996979, 'f1-score': 0.7448071216617211, 'support': 331} | | 0.4855 | 6.0 | 822 | 1.4960 | 0.6892 | 0.6830 | 0.6892 | 0.6827 | {'precision': 0.6292134831460674, 'recall': 0.5185185185185185, 'f1-score': 0.5685279187817258, 'support': 216} | {'precision': 0.7181571815718157, 'recall': 0.8006042296072508, 'f1-score': 0.7571428571428572, 'support': 331} | | 0.4855 | 7.0 | 959 | 1.6304 | 0.6801 | 0.6886 | 0.6801 | 0.6827 | {'precision': 0.5843621399176955, 'recall': 0.6574074074074074, 'f1-score': 0.6187363834422658, 'support': 216} | {'precision': 0.756578947368421, 'recall': 0.6948640483383686, 'f1-score': 0.7244094488188976, 'support': 331} | | 0.1029 | 8.0 | 1096 | 1.8381 | 0.6673 | 0.6727 | 0.6673 | 0.6693 | {'precision': 0.5726495726495726, 'recall': 0.6203703703703703, 'f1-score': 0.5955555555555555, 'support': 216} | {'precision': 0.7380191693290735, 'recall': 0.6978851963746223, 'f1-score': 0.717391304347826, 'support': 331} | | 0.1029 | 9.0 | 1233 | 1.9474 | 0.6929 | 0.6876 | 0.6929 | 0.6881 | {'precision': 0.6290322580645161, 'recall': 0.5416666666666666, 'f1-score': 0.582089552238806, 'support': 216} | {'precision': 0.7257617728531855, 'recall': 0.7915407854984894, 'f1-score': 0.7572254335260115, 'support': 331} | | 0.1029 | 10.0 | 1370 | 2.0156 | 0.6892 | 0.6848 | 0.6892 | 0.6859 | {'precision': 0.6185567010309279, 'recall': 0.5555555555555556, 'f1-score': 0.5853658536585366, 'support': 216} | {'precision': 0.7280453257790368, 'recall': 0.7764350453172205, 'f1-score': 0.7514619883040935, 'support': 331} | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Arnold/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - spacy - token-classification language: - de model-index: - name: de_fnhd_nerdh results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9629324547 - name: NER Recall type: recall value: 0.9504065041 - name: NER F Score type: f_score value: 0.9566284779 --- Deutsche NER-Pipeline fΓΌr frΓΌhneuhochdeutsche Texte (2.Version) | Feature | Description | | --- | --- | | **Name** | `de_fnhd_nerdh` | | **Version** | `0.0.2` | | **spaCy** | `>=3.4.1,<3.5.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 500000 keys, 500000 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [ih]() | ### Label Scheme <details> <summary>View label scheme (5 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `OBJEKT`, `ORGANISATION`, `ORT`, `PERSON`, `ZEIT` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 95.66 | | `ENTS_P` | 96.29 | | `ENTS_R` | 95.04 | | `TOK2VEC_LOSS` | 25311.59 | | `NER_LOSS` | 15478.32 |
Arpita/opus-mt-en-ro-finetuned-syn-to-react
[ "pytorch", "tensorboard", "marian", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
--- license: wtfpl --- это Ρ„Π°ΠΉΠ½Ρ‚ΡŽΠ½ sberai ruGPT3 small (125 ΠΌΠ»Π½ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²) Π½Π° ΠΎΡ‚Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΏΡƒΠΏΠ°Ρ…, сдСланных ΠΈΠ· Π½ΡƒΠΆΠ΄ΠΈΠΊΠΎΠ² (Ρ„ΠΈΡ‚ΡŒ Ρ…Π°Ρ…, Π΄ΠΆΡƒΠ½Π³Π»ΠΈ, ΠΆΡƒΠΆΠ΄ΠΈΠΊΠΈ; всСго ΠΎΠΊΠΎΠ»ΠΎ 30 ΠΌΠΈΠ½ΡƒΡ‚, транскрибированныС Ρ‡Π΅Ρ€Π΅Π· openai whisper large). Ρ€Π°Π·ΠΌΠ΅Ρ€ Π±Π»ΠΎΠΊΠ° ΠΏΡ€ΠΈ Ρ„Π°ΠΉΠ½Ρ‚ΡŽΠ½Π΅ 1024, 25 эпох. всС скрипты ΠΏΠΎ инфСрСнсу ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ‚ΡƒΡ‚ https://github.com/ai-forever/ru-gpts, Ρ‡Π΅Ρ€Π΅Π· transformers Π²ΠΏΠΎΠ»Π½Π΅ сСбС Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π½Π° 4 Π³Π± видСопамяти, Π½Π° 2 Π΄ΡƒΠΌΠ°ΡŽ Ρ‚ΠΎΠΆΠ΅ Π·Π°Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚. -ΠΊΠ°ΠΊ Π·Π°ΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ Ρ‡Π΅Ρ€Π΅Π· transformers? запускаСм строки Π½ΠΈΠΆΠ΅ Π² jupyterΠ΅ from transformers import pipeline, set_seed set_seed(32) generator = pipeline('text-generation', model="4eJIoBek/ruGPT3_small_nujdiki_fithah", do_sample=True, max_length=350) generator("АлСксандр Π‘Π΅Ρ€Π³Π΅Π΅Π²ΠΈΡ‡ ΠŸΡƒΡˆΠΊΠΈΠ½ извСстСн Ρ‚Π°ΠΊΠΆΠ΅ благодаря своим сказкам, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ Π² сСбя: ") ΠΈ всё Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ Π½ΠΈΡ…ΡƒΡ‘Π²ΠΎ Π§Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, эта модСль ΠΈΠ½ΠΎΠ³Π΄Π° Π²Ρ‹Π΄Π°Ρ‘Ρ‚ Ρ‚Π°ΠΊΠΈΠ΅ пСрформансы, Ρ‡Ρ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈΠ½ΠΎΠ³Π΄Π° Π΄Π°ΠΆΠ΅ пррСвосходят ΠΏΠΎ саркастичности ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½Ρ‹Π΅ Π½ΡƒΠΆΠ΄ΠΈΠΊΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€: ΠŸΡΠΈΡ…ΠΈΠΊΠ° ΠΆΠ΅Π½Ρ‰ΠΈΠ½Ρ‹ состоит ΠΈΠ· Π΄Π²ΡƒΡ… элСмСнтов: возбуТдСния Π°ΠΏΠΏΠ΅Ρ‚ΠΈΡ‚Π° (Ρ…ΠΎΡ‡Ρƒ Π΅ΡΡ‚ΡŒ)ΠΈ страха смСрти(ΠΏΡ‹Ρ‚Π°ΡŽΡΡŒ Π·Π°ΠΏΠΈΡ…Π½ΡƒΡ‚ΡŒ сСбя Π² ΡˆΠΊΠ°Ρ„Ρ‡ΠΈΠΊ). Если Π²Ρ‹ Π±ΠΎΠΈΡ‚Π΅ΡΡŒ ΡƒΠΌΠ΅Ρ€Π΅Ρ‚ΡŒ ΠΎΡ‚ пСрСохлаТдСния ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π²Π° Ρ‚Π΅Π»Π° СстСствСнным ΠΏΡƒΡ‚Π΅ΠΌ ΠΏΡ€ΠΈ ΠΊΡƒΠΏΠ°Π½ΠΈΠΈ Π½Π° пляТС Ρ‚ΠΎ Π»ΡƒΡ‡ΡˆΠ΅ Π½Π΅ Π½Π°Π΄ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ этого ΠΈΠ±ΠΎ ΠΏΠΎΡ‚ΠΎΠΌ ΡΠ³ΠΎΡ€ΠΈΡˆΡŒ Π·Π°ΠΆΠΈΠ²ΠΎ вмСстС со стулом ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ рядом Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ Ρ‚Π°ΠΊ Ρ‡Ρ‚ΠΎΠ± ΠΎΠ½ касался Π²Π°ΡˆΠΈΡ… ступнСй Π½ΠΎΠ³ Π½ΠΎ это Π±ΡƒΠ΄Π΅Ρ‚ совсСм другая история Ρ‡Π΅ΠΌ ваши стоны ΠΏΠΎ Ρ‚Π΅Π»Π΅Ρ„ΠΎΠ½Ρƒ зная Ρ‡Ρ‚ΠΎ Ρƒ вас Π΄Ρ€ΠΎΠΆΠ°Ρ‚ Ρ€ΡƒΠΊΠΈ Π±Π΅Ρ€ΠΈΡ‚Π΅ Ρ‚ΠΎΠΏΠΎΡ€ остриСм Π²Π½ΠΈΠ· ΠΏΠ°Π΄Π°ΠΉΡ‚Π΅ свСрху Π±Π»ΠΈΠ½ Π½Ρƒ Ссли ΡƒΠΆ ΠΎΡ‡Π΅Π½ΡŒ хочСтся мяса Π½Π°Π»Π΅ΠΉΡ‚Π΅ кипятка ΠΏΠΎΠ΄ ΠΊΡ€Ρ‹ΡˆΠΊΡƒ ΠΊΠ°ΡΡ‚Ρ€ΡŽΠ»ΠΈ Π·Π°Π»Π΅ΠΉΡ‚Π΅ ΠΊΠ°ΡΡ‚Ρ€ΡŽΠ»ΡŽ ΠΊΡ€Ρ‹ΡˆΠΊΠΎΠΉ ΠΏΠ΅Ρ€Π΅Π²Π΅Ρ€Π½ΠΈΡ‚Π΅ Π²Π°Ρ€Π΅Π½ΡŒΠ΅ ΡΡ‚Π°Π²ΡŒΡ‚Π΅ Ρ‘Π»ΠΊΡƒ поставитС Π±ΡƒΡ‚Ρ‹Π»ΠΊΡƒ Π²ΠΎΠ΄ΠΊΠΈ Π½Π°ΠΊΡ€ΠΎΠΉΡ‚Π΅ всё ΠΊΡ€Ρ‹ΡˆΠΊΠ°ΠΌΠΈ Π·Π°ΠΊΡ€ΠΎΠΉ Π΄Π²Π΅Ρ€ΡŒ ΠΏΠΎΠ»ΠΎΡ‚Π΅Π½Ρ†Π΅ΠΌ Π»Ρ‘Π³ ΡΠΏΠ°Ρ‚ΡŒ сСйчас принСсу вСлосипСд Ρ‚Ρ‘ΠΏΠ»Ρ‹ΠΉ снился ΠΌΠ½Π΅ сСгодня приснился ΡƒΠΌΠ΅Ρ€ Π΄Π΅Π΄ΡƒΡˆΠΊΠ° я родился 25 июня Π±Ρ‹Π» ΡƒΠ±ΠΈΡ‚Ρ‹ΠΉ Π½ΠΎΠΆΠΎΠΌ ΠΎΡ‚Ρ†Π° ΠΌΠΎΠ΅Π³ΠΎ Π±Ρ€Π°Ρ‚Π° Π΄Π΅Π΄Π° Π²Π°Π·Π΅Π»ΠΈΠ½Π° красная ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚ΡŒ застыла
ArthurcJP/DialoGPT-small-YODA
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: cc0-1.0 inference: false language: - en tags: - stable-diffusion - text-to-image --- # Stable Diffusion fine tuned on art by [Nekro](https://www.artstation.com/nekro) ### Usage Use by adding the keyword "nekrofaerie" to the prompt. The model was trained with the "faerie" classname, which can also be added to the prompt. ## Samples The top 2 images are "pure", the rest could be mixed with other artists or modifiers. I hope it still gives you an idea of what kind of styles can be created with this model. <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/index.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/index2.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmp04o1t4b_.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmp41igywg4.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmpbkj8sqmh.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/tmphk34pib0.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/dog_octane.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/dog_octane2.png" width="256px"/> <img src="https://huggingface.co/Froddan/nekrofaerie/resolve/main/greg_mucha2.png" width="256px"/> ### 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
Ateeb/QA
[ "pytorch", "distilbert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "DistilBertForQuestionAnswering" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### mPred Dreambooth model trained by CiroN2022 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: mPred ![mPred 0](https://huggingface.co/CiroN2022/mpred/resolve/main/sample_images/mPred_(10).jpg)
Augustvember/WokkaBot99
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - text-generation library_name: transformers --- ## Model description Based on Jellywibble/dalio-pretrained-book-bs4-seed1 which was pre-trained on the Dalio Principles Book Finetuned on handwritten conversations Jellywibble/dalio_handwritten-conversations ## Dataset Used Jellywibble/dalio_handwritten-conversations ## Training Parameters - Deepspeed on 4xA40 GPUs - Ensuring EOS token `<s>` appears only at the beginning of each 'This is a conversation where Ray ...' - Gradient Accumulation steps = 1 (Effective batch size of 4) - 2e-6 Learning Rate, AdamW optimizer - Block size of 1000 - Trained for 1 Epoch (additional epochs yielded worse Hellaswag result) ## Metrics - Hellaswag Perplexity: 29.83 - Eval accuracy: 58.1% - Eval loss: 1.883 - Checkpoint 9 uploaded - Wandb run: https://wandb.ai/jellywibble/huggingface/runs/157eehn9?workspace=user-jellywibble
Augustvember/your-model-name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: unknown --- # Silvery Trait finetuned style Model Produced from publicly available pictures in landscape, portrait and square format. Using words found in `prompt_words.md` within your prompt will produce better results. Other words can be used also but will tend to produce "weaker" results. Combining the use of the Aesthetic Gradient file provided in the `easthetic_embeddings` folder can greatly enhance the results. ## Model info The models included was trained on "multi-resolution" images. ## Using the model * common subject prompt tokens: `<wathever>, by asd artstyle` ## Example prompts `a sheep, symmetry, by asd artstyle`: * without easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/1.jpg" alt="Picture." width="500"/> * with easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/2.jpg" alt="Picture." width="500"/> `crow, skull, symmetry, flower, feather, circle, by asd artstyle` * without easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/3.jpg" alt="Picture." width="500"/> * with easthetic_embeddings <img src="https://huggingface.co/cyburn/silvery_trait/resolve/main/4.jpg" alt="Picture." width="500"/>
Axon/resnet34-v1
[ "dataset:ImageNet", "arxiv:1512.03385", "Axon", "Elixir", "license:apache-2.0" ]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - rotten_tomatoes metrics: - accuracy model-index: - name: distilbert-imdb results: - task: name: Text Classification type: text-classification dataset: name: rotten_tomatoes type: rotten_tomatoes config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8405253283302064 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the rotten_tomatoes dataset. It achieves the following results on the evaluation set: - Loss: 0.3716 - Accuracy: 0.8405 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4034 | 1.0 | 534 | 0.3716 | 0.8405 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Ayah/GPT2-DBpedia
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: creativeml-openrail-m --- This is a Dreambooth Stable Diffusion model, trained on grey shaded images from 3d modeling programs like Zbrush, Mudbox, Sculptris, etc. The token prompt is: **zsculptport** The (optional) class prompt is: **sculpture** Example prompt: spectacular realistic detailed (zsculptport) sculpture of beautiful alien elf woman creature. ultra detailed, cinematic. sepia [by artist todd mcfarlane] Negative prompt: lumpy, smeared, noisy, messy, ugly, distorted, colour, painting, ((watercolour)), blurry, (high contrast) Steps: 45, Sampler: DPM++ 2S a Karras, CFG scale: 10, Size: 768x960, Denoising strength: 0.32, First pass size: 512x640 some cherrypicked sample results: ![Samples](https://huggingface.co/gjpetch/zbrush_style/resolve/main/zsculptport_example_01.png)
Aybars/XLM_Turkish
[ "pytorch", "xlm-roberta", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "XLMRobertaForQuestionAnswering" ], "model_type": "xlm-roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: apache-2.0 tags: - text generation - judge - jury - executioner datasets: - biglam/old_bailey_proceedings model-index: - name: distilgpt2_jje results: [] widget: - text: "HAROLD KUMAR" example_title: "morning sun" - text: "Obama, he of no first name," example_title: "Obama" - text: "John Smith," example_title: "generic" parameters: min_length: 16 max_length: 96 no_repeat_ngram_size: 1 do_sample: True --- # distilgpt2_jje (judge, jury, executioner) `distilgpt2` fine-tuned on the `biglam/old_bailey_proceedings` dataset for two epochs.
Ayham/bert_gpt2_summarization_cnndm_new
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### elonmusk01 Dreambooth model trained by cormacncheese with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
Ayham/bert_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
3
null
--- license: apache-2.0 tags: - summarization - generated_from_trainer datasets: - cnn_dailymail model-index: - name: t5-small-finetuned-summarization-cnn-ver2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-summarization-cnn-ver2 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.0084 - Bertscore-mean-precision: 0.8859 - Bertscore-mean-recall: 0.8592 - Bertscore-mean-f1: 0.8721 - Bertscore-median-precision: 0.8855 - Bertscore-median-recall: 0.8578 - Bertscore-median-f1: 0.8718 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bertscore-mean-precision | Bertscore-mean-recall | Bertscore-mean-f1 | Bertscore-median-precision | Bertscore-median-recall | Bertscore-median-f1 | |:-------------:|:-----:|:----:|:---------------:|:------------------------:|:---------------------:|:-----------------:|:--------------------------:|:-----------------------:|:-------------------:| | 2.0422 | 1.0 | 718 | 2.0139 | 0.8853 | 0.8589 | 0.8717 | 0.8857 | 0.8564 | 0.8715 | | 1.9481 | 2.0 | 1436 | 2.0085 | 0.8863 | 0.8591 | 0.8723 | 0.8858 | 0.8577 | 0.8718 | | 1.9231 | 3.0 | 2154 | 2.0084 | 0.8859 | 0.8592 | 0.8721 | 0.8855 | 0.8578 | 0.8718 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Ayham/distilbert_gpt2_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
6
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5658 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 1 | 2.8381 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 2.0 | 2 | 2.6555 | 1.0 | 1.0 | 1.0 | 1.0 | | No log | 3.0 | 3 | 2.5658 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
Ayham/distilbert_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
14
2022-11-20T02:22:58Z
--- license: creativeml-openrail-m --- Trained on "kobold", "lizardfolk", and "dragonborn". Using Dreambooth, trained for 6000, 10000, or 14000 steps. I recommend using the 14000 step model with a CFG 4-8. You may need to use the models that were trained for fewer steps if you're having difficulty getting certain elements in the image (e.g. hats). ![example images](https://i.imgur.com/YGgdHE2.jpg) You can also use a higher CFG if attempting to generate inked images. E.g: CFG 9 and "photo octane 3d render" in the negative prompt: ![example of high CFG image](https://i.imgur.com/2bI6yX3.png)
Ayham/roberta_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - text-generation library_name: transformers --- ## Model description Dalio Bot Pre-trained on Principles, fine-tuned on handwritten examples. Pre-trained model: Jellywibble/dalio-pretrained-book-bs4-seed1 (based-off OPT30B) Fine-tuning dataset: Jellywibble/dalio_handwritten-conversations ## Model Parameters - 4xA40 (eff. batch size = 4) - base_mode_name Jellywibble/dalio-pretrained-book-bs4-seed1 - dataset_name Jellywibble/dalio_handwritten-conversations - block size 500 - per_device_train_batch_size 1 - gradient_accumulation steps 1 - learning_rate 2e-6 - seed 28 - validation split percentage 20 - hellaswag_sample_size 100 ## Metrics - Hellaswag Perplexity: 29.9 - Eval acc: 57.1% - Eval loss: 1.971 - wandb: https://wandb.ai/jellywibble/huggingface/runs/12lgyt20?workspace=user-jellywibble - Checkpoint 10 selected and uploaded
Ayham/roberta_gpt2_new_max64_summarization_cnndm
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-11-20T02:51:48Z
--- license: openrail library_name: diffusers tags: - TPU - JAX - Flax - stable-diffusion - text-to-image language: - en ---
Ayham/robertagpt2_cnn
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
null
--- license: mit tags: - generated_from_trainer model-index: - name: deberta-classifier-feedback-1024 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-classifier-feedback-1024 This model is a fine-tuned version of [TTian/deberta-mlm-feedback-1024](https://huggingface.co/TTian/deberta-mlm-feedback-1024) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6246 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.038 | 0.04 | 10 | 0.8470 | | 0.8858 | 0.08 | 20 | 0.7317 | | 0.8166 | 0.13 | 30 | 0.8127 | | 0.7791 | 0.17 | 40 | 0.8111 | | 0.7977 | 0.21 | 50 | 0.7540 | | 0.7815 | 0.25 | 60 | 0.7204 | | 0.7467 | 0.3 | 70 | 0.7446 | | 0.7525 | 0.34 | 80 | 0.7522 | | 0.716 | 0.38 | 90 | 0.7542 | | 0.7617 | 0.42 | 100 | 0.7095 | | 0.7618 | 0.47 | 110 | 0.7147 | | 0.7297 | 0.51 | 120 | 0.8648 | | 0.7797 | 0.55 | 130 | 0.7150 | | 0.7466 | 0.59 | 140 | 0.7360 | | 0.745 | 0.64 | 150 | 0.6842 | | 0.718 | 0.68 | 160 | 0.7408 | | 0.7455 | 0.72 | 170 | 0.7029 | | 0.7476 | 0.76 | 180 | 0.7106 | | 0.695 | 0.81 | 190 | 0.6781 | | 0.6603 | 0.85 | 200 | 0.7713 | | 0.7763 | 0.89 | 210 | 0.7619 | | 0.6858 | 0.93 | 220 | 0.7252 | | 0.6567 | 0.97 | 230 | 0.7017 | | 0.6529 | 1.02 | 240 | 0.7030 | | 0.6752 | 1.06 | 250 | 0.6717 | | 0.7078 | 1.1 | 260 | 0.6868 | | 0.6428 | 1.14 | 270 | 0.6694 | | 0.6173 | 1.19 | 280 | 0.7137 | | 0.6753 | 1.23 | 290 | 0.7363 | | 0.6326 | 1.27 | 300 | 0.6808 | | 0.6241 | 1.31 | 310 | 0.6855 | | 0.6717 | 1.36 | 320 | 0.6627 | | 0.633 | 1.4 | 330 | 0.7079 | | 0.6541 | 1.44 | 340 | 0.6475 | | 0.5998 | 1.48 | 350 | 0.7008 | | 0.7088 | 1.53 | 360 | 0.6558 | | 0.6209 | 1.57 | 370 | 0.6536 | | 0.6159 | 1.61 | 380 | 0.6805 | | 0.6297 | 1.65 | 390 | 0.6617 | | 0.6506 | 1.69 | 400 | 0.6459 | | 0.6397 | 1.74 | 410 | 0.6450 | | 0.6181 | 1.78 | 420 | 0.7158 | | 0.6609 | 1.82 | 430 | 0.6336 | | 0.6066 | 1.86 | 440 | 0.6232 | | 0.6418 | 1.91 | 450 | 0.6272 | | 0.6499 | 1.95 | 460 | 0.6268 | | 0.6021 | 1.99 | 470 | 0.6431 | | 0.5899 | 2.03 | 480 | 0.6395 | | 0.5524 | 2.08 | 490 | 0.6278 | | 0.5182 | 2.12 | 500 | 0.6690 | | 0.5768 | 2.16 | 510 | 0.6400 | | 0.5326 | 2.2 | 520 | 0.6386 | | 0.5641 | 2.25 | 530 | 0.6759 | | 0.5794 | 2.29 | 540 | 0.6483 | | 0.5341 | 2.33 | 550 | 0.6273 | | 0.5604 | 2.37 | 560 | 0.6393 | | 0.529 | 2.42 | 570 | 0.6389 | | 0.5433 | 2.46 | 580 | 0.6272 | | 0.5574 | 2.5 | 590 | 0.6387 | | 0.5279 | 2.54 | 600 | 0.6613 | | 0.5066 | 2.58 | 610 | 0.6376 | | 0.5235 | 2.63 | 620 | 0.6449 | | 0.516 | 2.67 | 630 | 0.6285 | | 0.5888 | 2.71 | 640 | 0.6391 | | 0.5326 | 2.75 | 650 | 0.6226 | | 0.5486 | 2.8 | 660 | 0.6373 | | 0.5176 | 2.84 | 670 | 0.6272 | | 0.5038 | 2.88 | 680 | 0.6235 | | 0.5335 | 2.92 | 690 | 0.6266 | | 0.557 | 2.97 | 700 | 0.6246 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Ayham/xlmroberta_gpt2_summarization_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:xsum", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-11-20T03:56:10Z
--- language: - en tags: - pytorch - causal-lm - pythia - pythia_v0 license: apache-2.0 datasets: - the_pile --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research. It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. All Pythia models are available [on Hugging Face](https://huggingface.co/models?other=pythia). The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. ## Pythia-2.8B ### Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:[email protected]). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | β€” | | 160M | 85,056,000 | 12 | 768 | 12 | 4M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 4M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | β€” | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 4M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | β€” | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. β€œEquivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ### Uses and Limitations #### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. To enable the study of how language models change over the course of training, we provide 143 evenly spaced intermediate checkpoints per model. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-2.8B for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-2.8B as a basis for your fine-tuned model, please conduct your own risk and bias assessment. #### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-2.8B has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-2.8B will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better β€œunderstand” human instructions. #### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token deemed statistically most likely by the model need not produce the most β€œaccurate” text. Never rely on Pythia-2.8B to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-2.8B may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-2.8B. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ### Training #### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-2.8B. #### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for the equivalent of 143000 steps at a batch size of 2,097,152 tokens. Two batch sizes were used: 2M and 4M. Models with a batch size of 4M tokens listed were originally trained for 71500 steps instead, with checkpoints every 500 steps. The checkpoints on Hugging Face are renamed for consistency with all 2M batch models, so `step1000` is the first checkpoint for `pythia-1.4b` that was saved (corresponding to step 500 in training), and `step1000` is likewise the first `pythia-6.9b` checkpoint that was saved (corresponding to 1000 β€œactual” steps).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ### Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challengeβ€”Challenge Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_challenge.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq.png" style="width:auto"/> </details> ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
Ayham/xlnet_bert_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
null
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 244.69 +/- 29.72 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Ayham/xlnet_gpt2_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- license: creativeml-openrail-m tags: - text-to-image --- ### seraphm Dreambooth model trained by mint designer at alvdansen with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook trained on 1500 steps and 12 images. Aesthetic diverse dataset which should allow the character to be used seamlessly in a multitude of aesthetics. Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: prompt (credit Astria.ai) serphm prince :: by Martine Johanna and Simon StΓ₯lenhag and Chie Yoshii and Casey Weldon and wlop :: ornate, dynamic, particulate, rich colors, intricate, elegant, highly detailed, centered, artstation, smooth, sharp focus, octane render, 3d 00170.jpg 00169.jpg ![00169.jpg 0](https://huggingface.co/sd-dreambooth-library/seraphm/resolve/main/concept_images/00169.jpg) ![00170.jpg 1](https://huggingface.co/sd-dreambooth-library/seraphm/resolve/main/concept_images/00170.jpg) Follow our other work, and additional style drops: http://alvdansen.com
Ayham/xlnet_gpt_xsum
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
11
null
--- tags: - generated_from_keras_callback model-index: - name: amitjohn007/mpnet-finetuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # amitjohn007/mpnet-finetuned This model is a fine-tuned version of [shaina/covid_qa_mpnet](https://huggingface.co/shaina/covid_qa_mpnet) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.5882 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 16602, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Epoch | |:----------:|:-----:| | 1.0499 | 0 | | 0.7289 | 1 | | 0.5882 | 2 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
Ayham/xlnet_roberta_summarization_cnn_dailymail
[ "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "dataset:cnn_dailymail", "transformers", "generated_from_trainer", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "EncoderDecoderModel" ], "model_type": "encoder-decoder", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
10
null
# FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR (ICASSP 2022) This is the official implementation of our neural-network-based fast diffuse room impulse response generator ([**FAST-RIR**](https://arxiv.org/pdf/2110.04057.pdf)) for generating room impulse responses (RIRs) for a given rectangular acoustic environment. Our model is inspired by [**StackGAN**](https://github.com/hanzhanggit/StackGAN-Pytorch) architecture. The audio examples and spectrograms of the generated RIRs are available [here](https://anton-jeran.github.io/FRIR/). **NEWS : We have genaralized our FAST-RIR to generate RIRs for any 3D indoor scenes represented using meshes. Official code of our network [**MESH2IR**](https://anton-jeran.github.io/M2IR/) is available.** ## Requirements ``` Python3.6 Pytorch python-dateutil easydict pandas torchfile gdown librosa soundfile acoustics wavefile wavfile pyyaml==5.4.1 pickle ``` ## Embedding Each normalized embedding is created as follows: If you are using our trained model, you may need to use extra parameter Correction(CRR). ``` Listener Position = LP Source Position = SP Room Dimension = RD Reverberation Time = T60 Correction = CRR CRR = 0.1 if 0.5<T60<0.6 CRR = 0.2 if T60>0.6 CRR = 0 otherwise Embedding = ([LP_X,LP_Y,LP_Z,SP_X,SP_Y,SP_Z,RD_X,RD_Y,RD_Z,(T60+CRR)] /5) - 1 ``` ## Generete RIRs using trained model Download the trained model using this command ``` source download_generate.sh ``` Create normalized embeddings list in pickle format. You can run following command to generate an example embedding list ``` python3 example1.py ``` Run the following command inside **code_new** to generate RIRs corresponding to the normalized embeddings list. You can find generated RIRs inside **code_new/Generated_RIRs** ``` python3 main.py --cfg cfg/RIR_eval.yml --gpu 0 ``` ## Range Our trained NN-DAS is capable of generating RIRs with the following range accurately. ``` Room Dimension X --> 8m to 11m Room Dimesnion Y --> 6m to 8m Room Dimension Z --> 2.5m to 3.5m Listener Position --> Any position within the room Speaker Position --> Any position within the room Reverberation time --> 0.2s to 0.7s ``` ## Training the Model Run the following command to download the training dataset we created using a [**Diffuse Acoustic Simulator**](https://github.com/GAMMA-UMD/pygsound). You also can train the model using your dataset. ``` source download_data.sh ``` Run the following command to train the model. You can pass what GPUs to be used for training as an input argument. In this example, I am using 2 GPUs. ``` python3 main.py --cfg cfg/RIR_s1.yml --gpu 0,1 ``` ## Related Works 1) [**IR-GAN: Room Impulse Response Generator for Far-field Speech Recognition (INTERSPEECH2021)**](https://github.com/anton-jeran/IR-GAN) 2) [**TS-RIR: Translated synthetic room impulse responses for speech augmentation (IEEE ASRU 2021)**](https://github.com/GAMMA-UMD/TS-RIR) ## Citations If you use our **FAST-RIR** for your research, please consider citing ``` @INPROCEEDINGS{9747846, author={Ratnarajah, Anton and Zhang, Shi-Xiong and Yu, Meng and Tang, Zhenyu and Manocha, Dinesh and Yu, Dong}, booktitle={ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, title={Fast-Rir: Fast Neural Diffuse Room Impulse Response Generator}, year={2022}, volume={}, number={}, pages={571-575}, doi={10.1109/ICASSP43922.2022.9747846}} ``` Our work is inspired by ``` @inproceedings{han2017stackgan, Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas}, Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks}, Year = {2017}, booktitle = {{ICCV}}, } ``` If you use our training dataset generated using [**Diffuse Acoustic Simulator**](https://github.com/GAMMA-UMD/pygsound) in your research, please consider citing ``` @inproceedings{9052932, author={Z. {Tang} and L. {Chen} and B. {Wu} and D. {Yu} and D. {Manocha}}, booktitle={ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, title={Improving Reverberant Speech Training Using Diffuse Acoustic Simulation}, year={2020}, volume={}, number={}, pages={6969-6973}, } ```
Ayjayo/DialoGPT-medium-AyjayoAI
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
--- tags: - text-to-image --- Stable diffusion model for Sanrio and Sanrio characters. Includes Hello Kitty, My Melody, Kuromi, Cinnamoroll, Badtz-Maru, Pompompurin, and Keroppi. Tags are "Sanrio" and the character's name respectively. To use, just download the ckpt file. Download it [here.](https://huggingface.co/Kafke/sanrio/resolve/main/sanrio.ckpt) Examples: ``` hello kitty Steps: 20, Sampler: Euler a, CFG scale: 9, Seed: 207838508, Size: 512x512, ENSD: 31337 ``` <img src="https://huggingface.co/Kafke/sanrio/resolve/main/hellokitty.png" width="512px"/> ``` my melody in a field of flowers, picking flowers, sanrio Steps: 20, Sampler: Euler a, CFG scale: 10, Seed: 1003504798, Size: 512x512, ENSD: 31337 ``` <img src="https://huggingface.co/Kafke/sanrio/resolve/main/mymelody.png" width="512px"/> ``` plushie of cinnamoroll Steps: 20, Sampler: Euler a, CFG scale: 12, Seed: 4279840297, Size: 512x512, ENSD: 31337 ``` <img src="https://huggingface.co/Kafke/sanrio/resolve/main/cinnamoroll.png" width="512px"/> ``` badtz-maru Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 3378087276, Size: 512x512, ENSD: 31337 ``` <img src="https://huggingface.co/Kafke/sanrio/resolve/main/badtz.png" width="512px"/> ``` totoro sanrio Steps: 20, Sampler: Euler a, CFG scale: 8, Seed: 3046772456, Size: 512x512, ENSD: 31337 ``` <img src="https://huggingface.co/Kafke/sanrio/resolve/main/totoro.png" width="512px"/>
Ayran/DialoGPT-medium-harry-potter-1-through-4-plus-6-e18
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
null
Access to model CosmicAvatar/cosmic_avatar_waifu_diffusion_v1_3 is restricted and you are not in the authorized list. Visit https://huggingface.co/CosmicAvatar/cosmic_avatar_waifu_diffusion_v1_3 to ask for access.
Ayta/Haha
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-20T07:45:13Z
--- license: cc-by-4.0 language: ta --- ## TamilBERT TamilBERT is a Tamil BERT model trained on publicly available Tamil monolingual datasets. Preliminary details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] . Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
AyushPJ/ai-club-inductions-21-nlp-ELECTRA-base-squad
[ "pytorch", "electra", "question-answering", "transformers", "generated_from_trainer", "autotrain_compatible" ]
question-answering
{ "architectures": [ "ElectraForQuestionAnswering" ], "model_type": "electra", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2022-11-20T08:12:25Z
--- license: cc-by-4.0 language: as --- ## AssameseBERT AssameseBERT is an Assamese BERT model trained on publicly available Assamese monolingual datasets. Preliminary details on the dataset, models, and baseline results can be found in our [<a href='https://arxiv.org/abs/2211.11418'> paper </a>] . Citing: ``` @article{joshi2022l3cubehind, title={L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages}, author={Joshi, Raviraj}, journal={arXiv preprint arXiv:2211.11418}, year={2022} } ```
Bala/model_name
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - it tags: - mbart-50 license: apache-2.0 datasets: - PortMEDIA-Lang metrics: - cer - cver --- This model is `mbart-large-50-many-to-many-mmt` model fine-tuned on the text part of [PortMEDIA-Lang](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0371/) spoken language understanding dataset. The scores on the test set are 40.76% and 43.93% for CER and CVER respectively.
Baybars/wav2vec2-xls-r-1b-turkish
[ "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "tr", "dataset:common_voice", "transformers", "common_voice", "generated_from_trainer" ]
automatic-speech-recognition
{ "architectures": [ "Wav2Vec2ForCTC" ], "model_type": "wav2vec2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
null
--- tags: - Pixelcopter-PLE-v0 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-Pixelcopter-0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Pixelcopter-PLE-v0 type: Pixelcopter-PLE-v0 metrics: - type: mean_reward value: 15.50 +/- 11.93 name: mean_reward verified: false --- # **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 5 of the Deep Reinforcement Learning Class: https://github.com/huggingface/deep-rl-class/tree/main/unit5
BeIR/query-gen-msmarco-t5-large-v1
[ "pytorch", "jax", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
1,225
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: bert-base-uncased-finetuned-squadv results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-squadv This model is a fine-tuned version of [monakth/bert-base-uncased-finetuned-squad](https://huggingface.co/monakth/bert-base-uncased-finetuned-squad) on the squad_v2 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1
BigSalmon/MrLincoln13
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-11-20T22:46:14Z
--- license: mit --- ### Filename_2 on Stable Diffusion This is the `<filename>` concept taught to Stable Diffusion via Textual Inversion. You can load this concept into the [Stable Conceptualizer](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_conceptualizer_inference.ipynb) notebook. You can also train your own concepts and load them into the concept libraries using [this notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_textual_inversion_training.ipynb). Here is the new concept you will be able to use as an `object`: ![<filename2> 0](https://huggingface.co/sd-concepts-library/filename-2/resolve/main/concept_images/4.jpeg) ![<filename2> 1](https://huggingface.co/sd-concepts-library/filename-2/resolve/main/concept_images/5.jpeg) ![<filename2> 2](https://huggingface.co/sd-concepts-library/filename-2/resolve/main/concept_images/3.jpeg) ![<filename2> 3](https://huggingface.co/sd-concepts-library/filename-2/resolve/main/concept_images/1.jpeg) ![<filename2> 4](https://huggingface.co/sd-concepts-library/filename-2/resolve/main/concept_images/2.jpeg) ![<filename2> 5](https://huggingface.co/sd-concepts-library/filename-2/resolve/main/concept_images/0.jpeg)
BigSalmon/MrLincoln3
[ "pytorch", "tensorboard", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
17
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1060 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5.2895295964701986e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1060, "warmup_steps": 106, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BigSalmon/MrLincolnBerta
[ "pytorch", "roberta", "fill-mask", "transformers", "autotrain_compatible", "has_space" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
null
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="xaeroq/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"]) ```
BigSalmon/Neo
[ "pytorch", "gpt_neo", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPTNeoForCausalLM" ], "model_type": "gpt_neo", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2022-11-21T00:01:52Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 125 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 6.112815904337237e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 125, "warmup_steps": 13, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
BigSalmon/T5F
[ "pytorch", "t5", "text2text-generation", "transformers", "autotrain_compatible" ]
text2text-generation
{ "architectures": [ "T5ForConditionalGeneration" ], "model_type": "t5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": true, "length_penalty": 2, "max_length": 200, "min_length": 30, "no_repeat_ngram_size": 3, "num_beams": 4, "prefix": "summarize: " }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to German: " }, "translation_en_to_fr": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to French: " }, "translation_en_to_ro": { "early_stopping": true, "max_length": 300, "num_beams": 4, "prefix": "translate English to Romanian: " } } }
6
2022-11-21T01:58:47Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/DONG19/ddpm-butterflies-128/tensorboard?#scalars)
Binbin/test
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- tags: - text-generation library_name: transformers widget: - text: "This is a conversation where Ray Dalio is giving advice on being a manager and building a successful team.\nUser: Hi Ray, thanks for talking with me today. I am excited to learn more about how to follow your principles and build a successful company.\nRay: No problem, I am happy to help. What situation are you facing?\nUser: It feels like I keep making decisions without thinking first - I do something without thinking and then I face the consequences afterwards.\nRay:" example_title: "Q&A" - text: "It’s easy to tell an open-minded person from a closed-minded person because they act very differently. Here are some cues to tell you whether you or others are being closed-minded: " example_title: "Principles" --- ## Model Description Pre-training on cleaned version of Principles - removing numeric references to footnotes - removing numeric counts, i.e. 1) ... 2) ... 3) ... - correcting gramma, i.e. full stops must be followed by a space - finetuning OPT-30B model on the dataset above - Dataset location: Jellywibble/dalio-principles-cleaned-v3 ## Metrics - Checkpoint 8 served - Hellaswag Perplexity: 30.65 - 2.289 eval loss wandb link: https://wandb.ai/jellywibble/huggingface/runs/2jqc504o?workspace=user-jellywibble ## Model Parameters Trained on 4xA40, effective batchsize = 8 - base_model_name facebook/opt-30b - dataset_name Jellywibble/dalio-principles-cleaned-v3 - block_size 1024 - gradient_accumulation_steps 2 - per_device_train_batch_size 1 - seed 2 - num_train_epochs 1 - learning_rate 3e-6 ## Notes - It is important for the effective batch size to be at least 8 - Learning rate higher than 3e-6 will result in massive overfitting, i.e. much worse Hellaswag metrics
Blazeolmo/Scrabunzi
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-21T04:02:34Z
--- license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image widget: - text: "A high tech solarpunk utopia in the Amazon rainforest" example_title: Amazon rainforest - text: "A pikachu fine dining with a view to the Eiffel Tower" example_title: Pikachu in Paris - text: "A mecha robot in a favela in expressionist style" example_title: Expressionist robot - text: "an insect robot preparing a delicious meal" example_title: Insect robot - text: "A small cabin on top of a snowy mountain in the style of Disney, artstation" example_title: Snowy disney cabin extra_gated_prompt: |- This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) Please read the full license carefully here: https://huggingface.co/spaces/CompVis/stable-diffusion-license extra_gated_heading: Please read the LICENSE to access this model --- # Stable Diffusion v1-4 Model Card Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. For more information about how Stable Diffusion functions, please have a look at [πŸ€—'s Stable Diffusion with 🧨Diffusers blog](https://huggingface.co/blog/stable_diffusion). The **Stable-Diffusion-v1-4** checkpoint was initialized with the weights of the [Stable-Diffusion-v1-2](https:/steps/huggingface.co/CompVis/stable-diffusion-v1-2) checkpoint and subsequently fine-tuned on 225k steps at resolution 512x512 on "laion-aesthetics v2 5+" and 10% dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). This weights here are intended to be used with the 🧨 Diffusers library. If you are looking for the weights to be loaded into the CompVis Stable Diffusion codebase, [come here](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) ## Model Details - **Developed by:** Robin Rombach, Patrick Esser - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses a fixed, pretrained text encoder ([CLIP ViT-L/14](https://arxiv.org/abs/2103.00020)) as suggested in the [Imagen paper](https://arxiv.org/abs/2205.11487). - **Resources for more information:** [GitHub Repository](https://github.com/CompVis/stable-diffusion), [Paper](https://arxiv.org/abs/2112.10752). - **Cite as:** @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ## Examples We recommend using [πŸ€—'s Diffusers library](https://github.com/huggingface/diffusers) to run Stable Diffusion. ### PyTorch ```bash pip install --upgrade diffusers transformers scipy ``` Run this command to log in with your HF Hub token if you haven't before: ```bash huggingface-cli login ``` Running the pipeline with the default PNDM scheduler: ```python import torch from diffusers import StableDiffusionPipeline model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") pipe = pipe.to(device) prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` **Note**: If you are limited by GPU memory and have less than 4GB of GPU RAM available, please make sure to load the StableDiffusionPipeline in float16 precision instead of the default float32 precision as done above. You can do so by telling diffusers to expect the weights to be in float16 precision: ```py import torch pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16") pipe = pipe.to(device) pipe.enable_attention_slicing() prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` To swap out the noise scheduler, pass it to `from_pretrained`: ```python from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler model_id = "CompVis/stable-diffusion-v1-4" # Use the Euler scheduler here instead scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16, revision="fp16") pipe = pipe.to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt).images[0] image.save("astronaut_rides_horse.png") ``` ### JAX/Flax To use StableDiffusion on TPUs and GPUs for faster inference you can leverage JAX/Flax. Running the pipeline with default PNDMScheduler ```python import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="flax", dtype=jax.numpy.bfloat16 ) prompt = "a photo of an astronaut riding a horse on mars" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, 8) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) ``` **Note**: If you are limited by TPU memory, please make sure to load the `FlaxStableDiffusionPipeline` in `bfloat16` precision instead of the default `float32` precision as done above. You can do so by telling diffusers to load the weights from "bf16" branch. ```python import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline pipeline, params = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", revision="bf16", dtype=jax.numpy.bfloat16 ) prompt = "a photo of an astronaut riding a horse on mars" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # shard inputs and rng params = replicate(params) prng_seed = jax.random.split(prng_seed, 8) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) ``` # Uses ## Direct Use The model is intended for research purposes only. Possible research areas and tasks include - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Generation of artworks and use in design and other artistic processes. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), but applies in the same way to Stable Diffusion v1_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model cannot render legible text - The model does not perform well on more difficult tasks which involve compositionality, such as rendering an image corresponding to β€œA red cube on top of a blue sphere” - Faces and people in general may not be generated properly. - The model was trained mainly with English captions and will not work as well in other languages. - The autoencoding part of the model is lossy - The model was trained on a large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/) which contains adult material and is not fit for product use without additional safety mechanisms and considerations. - No additional measures were used to deduplicate the dataset. As a result, we observe some degree of memorization for images that are duplicated in the training data. The training data can be searched at [https://rom1504.github.io/clip-retrieval/](https://rom1504.github.io/clip-retrieval/) to possibly assist in the detection of memorized images. ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. Stable Diffusion v1 was trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are primarily limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. ### Safety Module The intended use of this model is with the [Safety Checker](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/safety_checker.py) in Diffusers. This checker works by checking model outputs against known hard-coded NSFW concepts. The concepts are intentionally hidden to reduce the likelihood of reverse-engineering this filter. Specifically, the checker compares the class probability of harmful concepts in the embedding space of the `CLIPTextModel` *after generation* of the images. The concepts are passed into the model with the generated image and compared to a hand-engineered weight for each NSFW concept. ## Training **Training Data** The model developers used the following dataset for training the model: - LAION-2B (en) and subsets thereof (see next section) **Training Procedure** Stable Diffusion v1-4 is a latent diffusion model which combines an autoencoder with a diffusion model that is trained in the latent space of the autoencoder. During training, - Images are encoded through an encoder, which turns images into latent representations. The autoencoder uses a relative downsampling factor of 8 and maps images of shape H x W x 3 to latents of shape H/f x W/f x 4 - Text prompts are encoded through a ViT-L/14 text-encoder. - The non-pooled output of the text encoder is fed into the UNet backbone of the latent diffusion model via cross-attention. - The loss is a reconstruction objective between the noise that was added to the latent and the prediction made by the UNet. We currently provide four checkpoints, which were trained as follows. - [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1): 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en). 194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`). - [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2): Resumed from `stable-diffusion-v1-1`. 515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en, filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)). - [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3): Resumed from `stable-diffusion-v1-2`. 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - [`stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4) Resumed from `stable-diffusion-v1-2`.225,000 steps at resolution `512x512` on "laion-aesthetics v2 5+" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598). - **Hardware:** 32 x 8 x A100 GPUs - **Optimizer:** AdamW - **Gradient Accumulations**: 2 - **Batch:** 32 x 8 x 2 x 4 = 2048 - **Learning rate:** warmup to 0.0001 for 10,000 steps and then kept constant ## Evaluation Results Evaluations with different classifier-free guidance scales (1.5, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0) and 50 PLMS sampling steps show the relative improvements of the checkpoints: ![pareto](https://huggingface.co/CompVis/stable-diffusion/resolve/main/v1-variants-scores.jpg) Evaluated using 50 PLMS steps and 10000 random prompts from the COCO2017 validation set, evaluated at 512x512 resolution. Not optimized for FID scores. ## Environmental Impact **Stable Diffusion v1** **Estimated Emissions** Based on that information, we estimate the following CO2 emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact. - **Hardware Type:** A100 PCIe 40GB - **Hours used:** 150000 - **Cloud Provider:** AWS - **Compute Region:** US-east - **Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid):** 11250 kg CO2 eq. ## Citation ```bibtex @InProceedings{Rombach_2022_CVPR, author = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn}, title = {High-Resolution Image Synthesis With Latent Diffusion Models}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2022}, pages = {10684-10695} } ``` *This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*
BritishLibraryLabs/bl-books-genre
[ "pytorch", "distilbert", "text-classification", "multilingual", "dataset:blbooksgenre", "transformers", "genre", "books", "library", "historic", "glam ", "lam", "license:mit", "has_space" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
76
null
the EXACT BERRY mix model, download from the direct source? all we know is... it is here.. good at nsfw
Broadus20/DialoGPT-small-harrypotter
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
null
This amalgamation appears to be a fusion of waifu diffusion v1.3 and Novel AI, though the precise methodology and circumstances of their merger remain unknown. Despite this lack of information, the existence of such a hybrid entity cannot be denied πŸ€“
Buntan/BuntanAI
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- language: - tr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small tr - Kshitiz-Khandelwal results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: tr, split: test' metrics: - name: Wer type: wer value: 22.351594186023945 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Small tr - Kshitiz-Khandelwal This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2475 - Wer: 22.3516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2152 | 0.22 | 500 | 0.2900 | 25.5283 | | 0.1656 | 0.44 | 1000 | 0.2639 | 23.8575 | | 0.1853 | 0.66 | 1500 | 0.2475 | 22.3516 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
CAMeL-Lab/bert-base-arabic-camelbert-ca
[ "pytorch", "tf", "jax", "bert", "fill-mask", "ar", "arxiv:2103.06678", "transformers", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "BertForMaskedLM" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
580
null
--- tags: - tabular-classification - sklearn dataset: - titanic widget: structuredData: PassengerId: - 1191 Pclass: - 1 Name: - Sherlock Holmes Sex: - male SibSp: - 0 Parch: - 0 Ticket: - C.A.29395 Fare: - 12 Cabin: - F44 Embarked: - S --- ## Titanic (Survived/Not Survived) - Binary Classification ### How to use ```python from huggingface_hub import hf_hub_url, cached_download import joblib import pandas as pd import numpy as np from tensorflow.keras.models import load_model REPO_ID = 'danupurnomo/dummy-titanic' PIPELINE_FILENAME = 'final_pipeline.pkl' TF_FILENAME = 'titanic_model.h5' model_pipeline = joblib.load(cached_download( hf_hub_url(REPO_ID, PIPELINE_FILENAME) )) model_seq = load_model(cached_download( hf_hub_url(REPO_ID, TF_FILENAME) )) ``` ### Example A New Data ```python new_data = { 'PassengerId': 1191, 'Pclass': 1, 'Name': 'Sherlock Holmes', 'Sex': 'male', 'Age': 30, 'SibSp': 0, 'Parch': 0, 'Ticket': 'C.A.29395', 'Fare': 12, 'Cabin': 'F44', 'Embarked': 'S' } new_data = pd.DataFrame([new_data]) ``` ### Transform Inference-Set ```python new_data_transform = model_pipeline.transform(new_data) ``` ### Predict using Neural Networks ```python y_pred_inf_single = model_seq.predict(new_data_transform) y_pred_inf_single = np.where(y_pred_inf_single >= 0.5, 1, 0) print('Result : ', y_pred_inf_single) # [[0]] ```
CBreit00/DialoGPT_small_Rick
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-21T10:48:22Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### Zlikwid Dreambooth model trained by Zlikwid with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: 20221120210939 ![20221120210939 0](https://huggingface.co/Zlikwid/zlikwid/resolve/main/sample_images/20221120210939_1300140910_15_0.png)
CLAck/indo-mixed
[ "pytorch", "marian", "text2text-generation", "en", "id", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
15
2022-11-21T11:02:20Z
--- tags: - generated_from_trainer model-index: - name: NEW_OCR_10_8wangchanberta-base-att-spm-uncased results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # NEW_OCR_10_8wangchanberta-base-att-spm-uncased This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:------:|:---------------:| | 0.108 | 1.0 | 10701 | 0.0167 | | 0.0161 | 2.0 | 21402 | 0.0140 | | 0.0126 | 3.0 | 32103 | 0.0130 | | 0.0105 | 4.0 | 42804 | 0.0125 | | 0.009 | 5.0 | 53505 | 0.0135 | | 0.008 | 6.0 | 64206 | 0.0137 | | 0.0074 | 7.0 | 74907 | 0.0139 | | 0.0064 | 8.0 | 85608 | 0.0143 | | 0.0058 | 9.0 | 96309 | 0.0147 | | 0.0054 | 10.0 | 107010 | 0.0147 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.12.1+cu113 - Datasets 1.17.0 - Tokenizers 0.10.3
CLAck/indo-pure
[ "pytorch", "marian", "text2text-generation", "en", "id", "dataset:ALT", "transformers", "translation", "license:apache-2.0", "autotrain_compatible" ]
translation
{ "architectures": [ "MarianMTModel" ], "model_type": "marian", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
4
2022-11-21T11:07:13Z
hey friends welcome in this applied NLP tutorial we're going to learn how to fine tune a text generation model one second how to push the text generated like the fine-tuned model into hugging face model Hub and in this process we are also going to explore the stable diffusion part of it so this is a combination of a lot of different things. the model is uploaded to hugging face model Hub and the model I'm calling it SD prompt generator GPT Neo because this is a prompt generator for stable diffusion so if you want to create something using stable division the AI are generated so you ideally need to give a very detailed prompt. ideally is as you can see from the name it says SD prompt generator GPT Neo so we're going to use GPT Neo model to fine tune our prompts so that we have created a text generation model where we can give a prompt text and that will generate new prompt or a new extended prompt better prompt for us so what are we going to do we are going to take a set of existing stable diffusion prompts and we have got a 124 in 124 million stay GPT Neo model and we are going to fine tune that model based on this data and then we are going to finally save that model and then push the model into hugging phase model Hub
CLS/WubiBERT_models
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-21T11:22:21Z
# Model Details: QuaLA-MiniLM The article discusses the challenge of making transformer-based models efficient enough for practical use, given their size and computational requirements. The authors propose a new approach called **QuaLA-MiniLM**, which combines knowledge distillation, the length-adaptive transformer (LAT) technique, and low-bit quantization. We expand the Dynamic-TinyBERT approach. This approach trains a single model that can adapt to any inference scenario with a given computational budget, achieving a superior accuracy-efficiency trade-off on the SQuAD1.1 dataset. The authors compare their approach to other efficient methods and find that it achieves up to an **x8.8 speedup with less than 1% accuracy loss**. They also provide their code publicly on GitHub. The article also discusses other related work in the field, including dynamic transformers and other knowledge distillation approaches. The model card has been written in combination by Intel. ### QuaLA-MiniLM training process Figure showing QuaLA-MiniLM training process. To run the model with the best accuracy-efficiency tradeoff per a specific computational budget, we set the length configuration to the best setting found by an evolutionary search to match our computational constraint. ![ArchitecureQuaLA-MiniLM.jpg](ArchitecureQuaLA-MiniLM.jpg) ### Model license Licensed under MIT license. | Model Detail | Description | | ---- | --- | | language: | en | | Model Authors Company | Intel | | Date | May 4, 2023 | | Version | 1 | | Type | NLP - Tiny language model| | Architecture | "In this work we expand Dynamic-TinyBERT to generate a much more highly efficient model. First, we use a much smaller MiniLM model which was distilled from a RoBERTa-Large teacher rather than BERT-base. Second, we apply the LAT method to make the model length-adaptive, and finally we further enhance the model’s efficiency by applying 8-bit quantization. The resultant QuaLAMiniLM (Quantized Length-Adaptive MiniLM) model outperforms BERT-base with only 30% of parameters, and demonstrates an accuracy-speedup tradeoff that is superior to any other efficiency approach (up to x8.8 speedup with <1% accuracy loss) on the challenging SQuAD1.1 benchmark. Following the concept presented by LAT, it provides a wide range of accuracy-efficiency tradeoff points while alleviating the need to retrain it for each point along the accuracy-efficiency curve." | | Paper or Other Resources | https://arxiv.org/pdf/2210.17114.pdf | | License | TBD | | Questions or Comments | [Community Tab](https://huggingface.co/Intel/bert-base-uncased-sparse-90-unstructured-pruneofa/discussions) and [Intel Developers Discord](https://discord.gg/rv2Gp55UJQ) | | Intended Use | Description | | --- | --- | | Primary intended uses | TBD | | Primary intended users | Anyone who needs an efficient tiny language model for other downstream tasks.| |Out-of-scope uses|The model should not be used to intentionally create hostile or alienating environments for people.| ### How to use Code examples coming soon! ```python import ... ``` For more code examples, refer to the GitHub Repo. ### Metrics (Model Performance): Inference performance on the SQuAD1.1 evaluation dataset. For all the length-adaptive (LA) models we show the performance both of running the model without token-dropping, and of running the model in a token-dropping configuration according to the optimal length configuration found to meet our accuracy constraint. |Model | Model size (Mb) |Tokens per layer |Accuracy (F1) | Latency (ms) | FLOPs | Speedup| | --- | --- | --- | --- | --- | --- | --- | |BERT-base |415.4723 |(384,384,384,384,384,384) |88.5831 |56.5679 |3.53E+10 |1x| |TinyBERT-ours |253.2077 |(384,384,384,384,384,384) |88.3959 |32.4038 |1.77E+10 |1.74x| |QuaTinyBERT-ours |132.0665 |(384,384,384,384,384,384) |87.6755 |15.5850 1.77E+10 |3.63x| |MiniLMv2-ours |115.0473 |(384,384,384,384,384,384) |88.7016 |18.2312 |4.76E+09 |3.10x| |QuaMiniLMv2-ours |84.8602 |(384,384,384,384,384,384) |88.5463 |9.1466 |4.76E+09 |6.18x| |LA-MiniLM |115.0473 |(384,384,384,384,384,384) |89.2811 |16.9900 |4.76E+09 |3.33x| |LA-MiniLM |115.0473 |(269, 253, 252, 202, 104, 34) |87.7637 |11.4428 |2.49E+09 |4.94x| |QuaLA-MiniLM |84.8596 |(384,384,384,384,384,384) |88.8593 |7.4443 |4.76E+09 |7.6x| |QuaLA-MiniLM |84.8596 |(315,251,242,159,142,33) |87.6828 |6.4146 |2.547E+09 |8.8x| ### Training and Evaluation Data | Training and Evaluation Data | Description | | --- | --- | |Datasets|SQuAD1.1 dataset | |Motivation | To build an efficient and accurate base model for several downstream language tasks. | ### Ethical Considerations |Ethical Considerations|Description| | --- | --- | |Data | SQuAD1.1 dataset | | Human life | The model is not intended to inform decisions central to human life or flourishing. It is an aggregated set of labelled Wikipedia articles. | |Mitigations| No additional risk mitigation strategies were considered during model development. | |Risks and harms| Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al., 2021, and Bender et al., 2021). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. Beyond this, the extent of the risks involved by using the model remain unknown. | ### Caveats and Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. There are no additional caveats or recommendations for this model. ### BibTeX entry and citation info | comments | description | | --- | --- | | comments: | In this version we added reference to the source code in the abstract. arXiv admin note: text overlap with arXiv:2111.09645 | | Subjects: | Computation and Language (cs.CL) | | Cite as: | arXiv:2210.17114 [cs.CL]| | - | (or arXiv:2210.17114v2 [cs.CL] for this version) https://doi.org/10.48550/arXiv.2210.17114|
CLTL/icf-levels-adm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- license: apache-2.0 tags: - vision - depth-estimation - generated_from_trainer model-index: - name: glpn-nyu-finetuned-diode-221121-113853 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # glpn-nyu-finetuned-diode-221121-113853 This model is a fine-tuned version of [vinvino02/glpn-nyu](https://huggingface.co/vinvino02/glpn-nyu) on the diode-subset dataset. It achieves the following results on the evaluation set: - Loss: 0.3384 - Mae: 0.2739 - Rmse: 0.3959 - Abs Rel: 0.3230 - Log Mae: 0.1148 - Log Rmse: 0.1651 - Delta1: 0.5576 - Delta2: 0.8345 - Delta3: 0.9398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 24 - eval_batch_size: 48 - seed: 2022 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | Rmse | Abs Rel | Log Mae | Log Rmse | Delta1 | Delta2 | Delta3 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:-------:|:--------:|:------:|:------:|:------:| | 0.7523 | 1.0 | 72 | 0.5772 | 0.7466 | 0.9116 | 0.9709 | 0.2568 | 0.3040 | 0.1373 | 0.3324 | 0.6328 | | 0.4281 | 2.0 | 144 | 0.3849 | 0.3324 | 0.4673 | 0.3934 | 0.1349 | 0.1874 | 0.4681 | 0.7753 | 0.9142 | | 0.3906 | 3.0 | 216 | 0.3660 | 0.3048 | 0.4418 | 0.3593 | 0.1258 | 0.1800 | 0.5225 | 0.7997 | 0.9195 | | 0.3766 | 4.0 | 288 | 0.3556 | 0.2923 | 0.4275 | 0.3383 | 0.1209 | 0.1741 | 0.5450 | 0.8157 | 0.9259 | | 0.3744 | 5.0 | 360 | 0.3539 | 0.2899 | 0.4171 | 0.3435 | 0.1208 | 0.1724 | 0.5355 | 0.8173 | 0.9307 | | 0.328 | 6.0 | 432 | 0.3498 | 0.2860 | 0.4109 | 0.3418 | 0.1196 | 0.1709 | 0.5402 | 0.8193 | 0.9334 | | 0.3166 | 7.0 | 504 | 0.3451 | 0.2793 | 0.4110 | 0.3203 | 0.1166 | 0.1677 | 0.5583 | 0.8286 | 0.9331 | | 0.2639 | 8.0 | 576 | 0.3475 | 0.2823 | 0.4083 | 0.3341 | 0.1182 | 0.1695 | 0.5469 | 0.8251 | 0.9337 | | 0.2802 | 9.0 | 648 | 0.3422 | 0.2779 | 0.4030 | 0.3249 | 0.1163 | 0.1667 | 0.5524 | 0.8287 | 0.9366 | | 0.2701 | 10.0 | 720 | 0.3411 | 0.2781 | 0.3962 | 0.3316 | 0.1168 | 0.1664 | 0.5446 | 0.8286 | 0.9396 | | 0.2232 | 11.0 | 792 | 0.3408 | 0.2755 | 0.3998 | 0.3259 | 0.1154 | 0.1665 | 0.5578 | 0.8332 | 0.9383 | | 0.2921 | 12.0 | 864 | 0.3391 | 0.2749 | 0.3975 | 0.3220 | 0.1152 | 0.1652 | 0.5553 | 0.8332 | 0.9390 | | 0.2837 | 13.0 | 936 | 0.3400 | 0.2745 | 0.3979 | 0.3251 | 0.1150 | 0.1660 | 0.5587 | 0.8347 | 0.9386 | | 0.2922 | 14.0 | 1008 | 0.3370 | 0.2728 | 0.3965 | 0.3184 | 0.1142 | 0.1644 | 0.5602 | 0.8359 | 0.9401 | | 0.2921 | 15.0 | 1080 | 0.3384 | 0.2739 | 0.3959 | 0.3230 | 0.1148 | 0.1651 | 0.5576 | 0.8345 | 0.9398 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu116 - Tokenizers 0.13.2
CLTL/icf-levels-ber
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
33
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: wispher2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wispher2 This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8125 - Wer: 50.1754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7532 | 1.12 | 100 | 0.8125 | 50.1754 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
CLTL/icf-levels-enr
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- tags: - generated_from_trainer model-index: - name: base-on-torgo0003 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # base-on-torgo0003 This model is a fine-tuned version of [yongjian/wav2vec2-large-a](https://huggingface.co/yongjian/wav2vec2-large-a) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6579 - Wer: 0.7547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 28.1611 | 0.46 | 500 | 3.4550 | 1.0163 | | 3.2238 | 0.92 | 1000 | 2.8781 | 1.0411 | | 2.8617 | 1.39 | 1500 | 2.9896 | 1.0028 | | 2.5841 | 1.85 | 2000 | 2.3744 | 1.2896 | | 2.2029 | 2.31 | 2500 | 1.8598 | 1.2722 | | 1.9976 | 2.77 | 3000 | 1.6505 | 1.2513 | | 1.7817 | 3.23 | 3500 | 1.5291 | 1.2294 | | 1.6484 | 3.69 | 4000 | 1.4635 | 1.2106 | | 1.56 | 4.16 | 4500 | 1.4251 | 1.1989 | | 1.417 | 4.62 | 5000 | 1.4040 | 1.1904 | | 1.2884 | 5.08 | 5500 | 1.2734 | 1.1568 | | 1.2788 | 5.54 | 6000 | 1.2242 | 1.1384 | | 1.2159 | 6.0 | 6500 | 1.0561 | 1.1349 | | 1.1125 | 6.46 | 7000 | 1.1001 | 1.1175 | | 1.1495 | 6.93 | 7500 | 1.0409 | 1.1112 | | 1.0222 | 7.39 | 8000 | 1.0525 | 1.0952 | | 1.0104 | 7.85 | 8500 | 1.0184 | 1.1048 | | 0.9956 | 8.31 | 9000 | 1.0438 | 1.1196 | | 0.8747 | 8.77 | 9500 | 1.0736 | 1.1005 | | 0.8437 | 9.23 | 10000 | 1.0041 | 1.0768 | | 0.861 | 9.7 | 10500 | 0.9407 | 1.0496 | | 0.8238 | 10.16 | 11000 | 0.9237 | 1.0697 | | 0.7806 | 10.62 | 11500 | 0.8706 | 1.0343 | | 0.7475 | 11.08 | 12000 | 0.9576 | 1.0407 | | 0.6963 | 11.54 | 12500 | 0.9195 | 1.0159 | | 0.7624 | 12.0 | 13000 | 0.8102 | 1.0060 | | 0.6311 | 12.47 | 13500 | 0.8208 | 0.9897 | | 0.6649 | 12.93 | 14000 | 0.7699 | 0.9968 | | 0.6025 | 13.39 | 14500 | 0.7834 | 0.9547 | | 0.5691 | 13.85 | 15000 | 0.7414 | 0.9632 | | 0.532 | 14.31 | 15500 | 0.7056 | 0.9473 | | 0.5572 | 14.77 | 16000 | 0.8136 | 0.9929 | | 0.5455 | 15.24 | 16500 | 0.7355 | 0.9264 | | 0.5369 | 15.7 | 17000 | 0.7531 | 0.9352 | | 0.4771 | 16.16 | 17500 | 0.7527 | 0.9228 | | 0.4778 | 16.62 | 18000 | 0.7312 | 0.9218 | | 0.4384 | 17.08 | 18500 | 0.6774 | 0.8913 | | 0.4619 | 17.54 | 19000 | 0.6888 | 0.8896 | | 0.4341 | 18.01 | 19500 | 0.7068 | 0.9030 | | 0.4164 | 18.47 | 20000 | 0.6484 | 0.8754 | | 0.3883 | 18.93 | 20500 | 0.6388 | 0.8676 | | 0.4135 | 19.39 | 21000 | 0.6732 | 0.8683 | | 0.4121 | 19.85 | 21500 | 0.6354 | 0.8591 | | 0.3694 | 20.31 | 22000 | 0.6751 | 0.8581 | | 0.367 | 20.78 | 22500 | 0.6487 | 0.8411 | | 0.3798 | 21.24 | 23000 | 0.5955 | 0.8312 | | 0.3249 | 21.7 | 23500 | 0.6209 | 0.8230 | | 0.3182 | 22.16 | 24000 | 0.7341 | 0.8212 | | 0.3196 | 22.62 | 24500 | 0.6533 | 0.8106 | | 0.297 | 23.08 | 25000 | 0.7163 | 0.8177 | | 0.3021 | 23.55 | 25500 | 0.7209 | 0.8149 | | 0.3248 | 24.01 | 26000 | 0.6268 | 0.8018 | | 0.3013 | 24.47 | 26500 | 0.7014 | 0.7915 | | 0.2986 | 24.93 | 27000 | 0.7306 | 0.8028 | | 0.2913 | 25.39 | 27500 | 0.6866 | 0.7912 | | 0.2706 | 25.85 | 28000 | 0.6860 | 0.7851 | | 0.2572 | 26.32 | 28500 | 0.6478 | 0.7752 | | 0.2794 | 26.78 | 29000 | 0.6308 | 0.7703 | | 0.2796 | 27.24 | 29500 | 0.6302 | 0.7653 | | 0.2604 | 27.7 | 30000 | 0.6638 | 0.7621 | | 0.2367 | 28.16 | 30500 | 0.6492 | 0.7593 | | 0.2383 | 28.62 | 31000 | 0.6560 | 0.7614 | | 0.2495 | 29.09 | 31500 | 0.6577 | 0.7593 | | 0.2513 | 29.55 | 32000 | 0.6579 | 0.7547 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu113 - Datasets 1.18.3 - Tokenizers 0.13.2
CLTL/icf-levels-etn
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
31
2022-11-21T11:45:11Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.924 - name: F1 type: f1 value: 0.923935334776563 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2162 - Accuracy: 0.924 - F1: 0.9239 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8203 | 1.0 | 250 | 0.3095 | 0.905 | 0.9019 | | 0.2468 | 2.0 | 500 | 0.2162 | 0.924 | 0.9239 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
CLTL/icf-levels-mbw
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 1000 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 6.468596158458052e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 1000, "warmup_steps": 100, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
CLTL/icf-levels-stm
[ "pytorch", "roberta", "text-classification", "nl", "transformers", "license:mit" ]
text-classification
{ "architectures": [ "RobertaForSequenceClassification" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
32
null
--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base.en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-base.en This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8125 - Wer: 50.1754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7532 | 1.12 | 100 | 0.8125 | 50.1754 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.13.2
CM-CA/Cartman
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-introduction results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.1828 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-introduction This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4784 - Rouge1: 28.1828 - Rouge2: 7.6948 - Rougel: 22.1413 - Rougelsum: 22.1467 - Gen Len: 18.8272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7155 | 1.0 | 12753 | 2.4784 | 28.1828 | 7.6948 | 22.1413 | 22.1467 | 18.8272 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.11.0a0+b6df043 - Datasets 2.6.1 - Tokenizers 0.10.3
CNT-UPenn/Bio_ClinicalBERT_for_seizureFreedom_classification
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
pet = input('whats your pet') if pet == 'pig': print ('you are the pig ')
CTBC/ATS
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: mit tags: - generated_from_trainer datasets: - dutch_social model-index: - name: dutch_threeway_sentiment_classification_v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dutch_threeway_sentiment_classification_v2 This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli) on the dutch_social dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Calamarii/calamari
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: test_trainer3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_trainer3 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 125 | 1.8785 | 0.396 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Tokenizers 0.11.6
CalvinHuang/mt5-small-finetuned-amazon-en-es
[ "pytorch", "tensorboard", "mt5", "text2text-generation", "transformers", "summarization", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
summarization
{ "architectures": [ "MT5ForConditionalGeneration" ], "model_type": "mt5", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
16
null
--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: taozexi/distilgpt2-finetuned-wikitext2 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # taozexi/distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 3.8582 - Validation Loss: 3.6762 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.8582 | 3.6762 | 0 | ### Framework versions - Transformers 4.24.0 - TensorFlow 2.9.2 - Datasets 2.7.0 - Tokenizers 0.13.2
Cameron/BERT-eec-emotion
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
2022-11-21T12:43:55Z
--- title: Hassanblend1.4 emoji: πŸ“š colorFrom: green colorTo: indigo sdk: gradio sdk_version: 3.11.0 app_file: app.py pinned: false thumbnail: "https://i.imgur.com/PVThZvk.png" license: creativeml-openrail-m tags: - stable-diffusion - text-to-image inference: true --- # HassanBlend1.4 - fantasy.ai Fantasy.ai is the official and exclusive hosted AI generation platform that holds a commercial use license for HassanBlend, you can use their service at https://Fantasy.ai/ I am hassan, I created HassansBlend, the latest version currently is 1.4. I continue to iterate and improve on this model over time. Feel free to check out our discord or rentry page for more examples with prompts and outputs generated. I have also some custom created content such as enhancement hypernetworks/embeddings etc for patreons or KoFi subscribers only on my pages below <b> Links </b><br> <b>Patreon</b> <a href="https://www.patreon.com/sd_hassan" target="_blank"><img src="https://i.imgur.com/sR32SqJ.jpg"></img></a> <b>KoFi</b> <a href="https://ko-fi.com/sdhassan" target="_blank"><img src="https://i.imgur.com/0P7CTN4.png"></img></a> <b>Discord</b> <a href="https://discord.gg/sdmodelers" target="_blank"><img src="https://i.imgur.com/HC1iHwg.png"></img></a> ### Quicklinks: * [Latest Setup](https://rentry.org/sdhassan#current-setup) * [HassanBlend Model Finetune Updates](https://rentry.org/sdhassan#hassanblend-finetuning-updates) * [Latest Patreon Posts](https://rentry.org/sdhassan#patreon-posts) * [Models](https://rentry.org/sdhassan#merged-models) * [HassanBlend1.4](https://rentry.org/sdhassan#hassanblend14-downloads) * [Prompts](https://rentry.org/sdhassan#prompts) * [Photorealistic Tips](https://rentry.org/sdhassan#tips-for-photorealistic-images) * [Embeddings](https://rentry.org/sdhassan#embeddings) * [Hypernetworks](https://rentry.org/sdhassan#hypernetworks) * [Wildcards](https://rentry.org/sdhassan#wildcards-i-made) * [MyTools](https://rentry.org/sdhassan#my-tools) * [Settings I use](https://rentry.org/sdhassan#settings) Model details and examples with sample prompts: https://rentry.org/sdhassan # Gradio Demo We support a [Gradio](https://github.com/gradio-app/gradio) Web UI to run hassanblend1.4: [![Open In Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/akhaliq/hassanblend1.4)
Cameron/BERT-mdgender-wizard
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
30
2022-11-21T13:20:21Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 40 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 40, "warmup_steps": 4, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Canadiancaleb/DialoGPT-small-jesse
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
9
2022-11-21T13:29:29Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - rouge model-index: - name: mt5-base-finetuned-liputan6-coba-coba results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mt5-base-finetuned-liputan6-coba-coba This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6428 - Rouge1: 0.37 - Rouge2: 0.2512 - Rougel: 0.3302 - Rougelsum: 0.3479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.6e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| | 10.8402 | 1.0 | 4970 | 0.9818 | 0.2754 | 0.1704 | 0.2475 | 0.2597 | | 1.2001 | 2.0 | 9940 | 0.6614 | 0.3682 | 0.2521 | 0.3291 | 0.3461 | | 0.9427 | 3.0 | 14910 | 0.6428 | 0.37 | 0.2512 | 0.3302 | 0.3479 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Canadiancaleb/DialoGPT-small-walter
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
13
2022-11-21T13:30:57Z
# Prompt Add 'ttp style' in your prompt to activate "This is The Police" style # Samples <img src="https://i.imgur.com/CfszL4y.png"/> <img src="https://i.imgur.com/KaSPTtQ.png"/> <img src="https://i.imgur.com/nO19Oog.png"/> <img src="https://i.imgur.com/IRlwhEC.png"/> <img src="https://i.imgur.com/vmfh4AR.png"/> <img src="https://i.imgur.com/kETfqDj.png"/> This is very early version, model does not understand some things yet.
Canadiancaleb/jessebot
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
the trigger word in automatic is the embedding name eg akudamadrivestyle-500 Its my first attempt, its good looking but nothing spectacular 0.05 training rate, 500 steps, 5 images of average quality
CapitainData/wav2vec2-large-xlsr-turkish-demo-colab
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-21T13:35:21Z
# Dragon diffusion This is a Dreambooth model trained to make better dragons. I plan to make updates with better models in the future. --- license: mit ---
Captain272/lstm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-21T13:56:15Z
just an experimental embedding on a doodle that was put through img2img psychedelic is the prompt trigger, or psy 1000 steps on 3 images, 0.05 training rate
Carlork314/Carlos
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 88 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 6.444852180284075e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 88, "warmup_steps": 9, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Carlork314/Xd
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-21T14:03:57Z
--- library_name: stable-baselines3 tags: - AntBulletEnv-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: AntBulletEnv-v0 type: AntBulletEnv-v0 metrics: - type: mean_reward value: 1596.00 +/- 357.12 name: mean_reward verified: false --- # **A2C** Agent playing **AntBulletEnv-v0** This is a trained model of a **A2C** agent playing **AntBulletEnv-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
Carolhuehuehuehue/Sla
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
null
Nightmare Creature/Human model. Prompt being "NghtmrCrtFrk". It's great making nightmare fuel creatures, humans and other living things. You try non-living things also, but you usually just end up with bizarre creatures still. Steps can be anything. Sometimes 20 does amazing, sometimes 150 does amazing. CFG can be anything also, but again results may vary. The more details you put, the better and more disgusting the prompt. Different samplers give's you various results. thumbnail: ![Model 1.jpg](https://s3.amazonaws.com/moonup/production/uploads/1669052638200-6333e639d58823d613336ee3.jpeg)
dccuchile/albert-large-spanish-finetuned-qa-mlqa
[ "pytorch", "albert", "question-answering", "transformers", "autotrain_compatible" ]
question-answering
{ "architectures": [ "AlbertForQuestionAnswering" ], "model_type": "albert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-11-21T14:52:15Z
--- datasets: - relbert/semeval2012_relational_similarity_v6 model-index: - name: relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0 results: - task: name: Relation Mapping type: sorting-task dataset: name: Relation Mapping args: relbert/relation_mapping type: relation-mapping metrics: - name: Accuracy type: accuracy value: 0.796984126984127 - task: name: Analogy Questions (SAT full) type: multiple-choice-qa dataset: name: SAT full args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4037433155080214 - task: name: Analogy Questions (SAT) type: multiple-choice-qa dataset: name: SAT args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.3916913946587537 - task: name: Analogy Questions (BATS) type: multiple-choice-qa dataset: name: BATS args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.6859366314619233 - task: name: Analogy Questions (Google) type: multiple-choice-qa dataset: name: Google args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.784 - task: name: Analogy Questions (U2) type: multiple-choice-qa dataset: name: U2 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.42105263157894735 - task: name: Analogy Questions (U4) type: multiple-choice-qa dataset: name: U4 args: relbert/analogy_questions type: analogy-questions metrics: - name: Accuracy type: accuracy value: 0.4583333333333333 - task: name: Lexical Relation Classification (BLESS) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9010094922404701 - name: F1 (macro) type: f1_macro value: 0.8947571278975387 - task: name: Lexical Relation Classification (CogALexV) type: classification dataset: name: CogALexV args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8227699530516432 - name: F1 (macro) type: f1_macro value: 0.6007828127513786 - task: name: Lexical Relation Classification (EVALution) type: classification dataset: name: BLESS args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.6164680390032503 - name: F1 (macro) type: f1_macro value: 0.5989494559912151 - task: name: Lexical Relation Classification (K&H+N) type: classification dataset: name: K&H+N args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.9572928983793559 - name: F1 (macro) type: f1_macro value: 0.8821535108627934 - task: name: Lexical Relation Classification (ROOT09) type: classification dataset: name: ROOT09 args: relbert/lexical_relation_classification type: relation-classification metrics: - name: F1 type: f1 value: 0.8743340645565655 - name: F1 (macro) type: f1_macro value: 0.8719695915031801 --- # relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0 RelBERT fine-tuned from [roberta-base](https://huggingface.co/roberta-base) on [relbert/semeval2012_relational_similarity_v6](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity_v6). Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail). It achieves the following results on the relation understanding tasks: - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/analogy.json)): - Accuracy on SAT (full): 0.4037433155080214 - Accuracy on SAT: 0.3916913946587537 - Accuracy on BATS: 0.6859366314619233 - Accuracy on U2: 0.42105263157894735 - Accuracy on U4: 0.4583333333333333 - Accuracy on Google: 0.784 - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/classification.json)): - Micro F1 score on BLESS: 0.9010094922404701 - Micro F1 score on CogALexV: 0.8227699530516432 - Micro F1 score on EVALution: 0.6164680390032503 - Micro F1 score on K&H+N: 0.9572928983793559 - Micro F1 score on ROOT09: 0.8743340645565655 - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/relation_mapping.json)): - Accuracy on Relation Mapping: 0.796984126984127 ### Usage This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip ```shell pip install relbert ``` and activate model as below. ```python from relbert import RelBERT model = RelBERT("relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0") vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, ) ``` ### Training hyperparameters The following hyperparameters were used during training: - model: roberta-base - max_length: 64 - mode: average - data: relbert/semeval2012_relational_similarity_v6 - split: train - split_eval: validation - template_mode: manual - loss_function: nce_logout - classification_loss: False - temperature_nce_constant: 0.05 - temperature_nce_rank: {'min': 0.01, 'max': 0.05, 'type': 'linear'} - epoch: 6 - batch: 128 - lr: 5e-06 - lr_decay: False - lr_warmup: 1 - weight_decay: 0 - random_seed: 0 - exclude_relation: None - n_sample: 320 - gradient_accumulation: 8 - relation_level: None The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/relbert-roberta-base-semeval2012-v6-average-prompt-c-nce-0/raw/main/trainer_config.json). ### Reference If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/). ``` @inproceedings{ushio-etal-2021-distilling-relation-embeddings, title = "{D}istilling {R}elation {E}mbeddings from {P}re-trained {L}anguage {M}odels", author = "Ushio, Asahi and Schockaert, Steven and Camacho-Collados, Jose", booktitle = "EMNLP 2021", year = "2021", address = "Online", publisher = "Association for Computational Linguistics", } ```
dccuchile/bert-base-spanish-wwm-cased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
null
--- license: mit --- ### dapSciBERT DapSciBERT is a BERT-like model trained based on the domain adaptive pretraining method ([Gururangan et al.](https://aclanthology.org/2020.acl-main.740/)) for the patent domain. Allenai/scibert_scivocab_uncased is used as base for the training. The training dataset used consists of a corpus of 10,000,000 patent abstracts that have been filed between 1998-2020 in US and European patent offices as well as the World Intellectual Property Organization.
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pawsx
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
24
2022-11-21T16:17:48Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### Open Potion Bottle v1 Dreambooth model trained by [piEsposito](https://twitter.com/piesposi_to) with open weights, configs and prompts (as it should be) - Concept: `potionbottle` You can run this concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept: `potionbottle` <img src="https://huggingface.co/piEsposito/openpotionbottle-v1/resolve/main/WhatsApp%20Image%202022-11-21%20at%2011.13.02.jpg" width=256/> <img src="https://huggingface.co/piEsposito/openpotionbottle-v1/resolve/main/WhatsApp%20Image%202022-11-21%20at%2011.25.15.jpg" width=256/> <img src="https://huggingface.co/piEsposito/openpotionbottle-v1/resolve/main/WhatsApp%20Image%202022-11-21%20at%2012.34.18.jpg" width=256/> <img src="https://huggingface.co/piEsposito/openpotionbottle-v1/resolve/main/WhatsApp%20Image%202022-11-21%20at%2011.19.28.jpg" width=256/> ## Usage examples - Prompt: green potionbottle, perfectly ornated, intricate details, 3d render vray, beautiful, trending on artstation - CFG Scale: 10 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 30 <img src="https://huggingface.co/piEsposito/openpotionbottle-v1/resolve/main/green%20potionbottle%2C%20perfectly%20ornated%2C%20intricate%20details%2C%203d%20render%20vray%2C%20beautiful%2C%20trending%20on%20artstation.png" width=512/> - Prompt: fantasy dragon as potionbottle, perfectly ornated, intricate details, 3d render vray, beautiful, trending on artstation - CFG Scale: 10 - Scheduler: `diffusers.EulerAncestralDiscreteScheduler` - Steps: 30 <img src="https://huggingface.co/piEsposito/openpotionbottle-v1/resolve/main/fantasy%20dragon%20as%20potionbottle%2C%20perfectly%20ornated%2C%20intricate%20details%2C%203d%20render%20vray%2C%20beautiful%2C%20trending%20on%20artstation.png" width=512/> #### By https://twitter.com/piesposi_to
dccuchile/bert-base-spanish-wwm-uncased-finetuned-pos
[ "pytorch", "bert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "BertForTokenClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 24 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 6.474612215184842e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 24, "warmup_steps": 3, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
dccuchile/bert-base-spanish-wwm-uncased-finetuned-xnli
[ "pytorch", "bert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "BertForSequenceClassification" ], "model_type": "bert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
36
null
--- license: apache-2.0 tags: - generated_from_trainer datasets: - xsum metrics: - rouge model-index: - name: t5-small-finetuned-xsum-purpose-system results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: xsum type: xsum args: default metrics: - name: Rouge1 type: rouge value: 28.1918 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum-purpose-system This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.4784 - Rouge1: 28.1918 - Rouge2: 7.6941 - Rougel: 22.1356 - Rougelsum: 22.1486 - Gen Len: 18.8272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.7155 | 1.0 | 12753 | 2.4784 | 28.1918 | 7.6941 | 22.1356 | 22.1486 | 18.8272 | ### Framework versions - Transformers 4.11.0 - Pytorch 1.11.0a0+b6df043 - Datasets 2.6.1 - Tokenizers 0.10.3
dccuchile/distilbert-base-spanish-uncased-finetuned-ner
[ "pytorch", "distilbert", "token-classification", "transformers", "autotrain_compatible" ]
token-classification
{ "architectures": [ "DistilBertForTokenClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
28
null
Nightmare Mr. Bean Babys Toilet. Prompt being " NghtmrBbyFrk". This one was requested after my pictures, so I delivered. The results will really just give you Mr. Bean Baby and his toilet. The model is semi-limited. So lets say you put "cat", the baby will likely have some cat features like cat ears. Or you can say things like "blue baby" to make him blue. It's not the greatest model. Steps can be anything, in this case just more detail with more steps as per normal. CFG needs to be between 3-7. Any sampler. thumbnail ![Model 2.png](https://s3.amazonaws.com/moonup/production/uploads/1669052699240-6333e639d58823d613336ee3.png)
dccuchile/distilbert-base-spanish-uncased-finetuned-pawsx
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
{ "architectures": [ "DistilBertForSequenceClassification" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
29
2022-11-21T16:40:51Z
--- language: en license: apache-2.0 library_name: diffusers tags: [] datasets: huggan/smithsonian_butterflies_subset metrics: [] --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # ddpm-butterflies-128 ## Model description This diffusion model is trained with the [πŸ€— Diffusers](https://github.com/huggingface/diffusers) library on the `huggan/smithsonian_butterflies_subset` dataset. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training data [TODO: describe the data used to train the model] ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - gradient_accumulation_steps: 1 - optimizer: AdamW with betas=(None, None), weight_decay=None and epsilon=None - lr_scheduler: None - lr_warmup_steps: 500 - ema_inv_gamma: None - ema_inv_gamma: None - ema_inv_gamma: None - mixed_precision: fp16 ### Training results πŸ“ˆ [TensorBoard logs](https://huggingface.co/wangjksjtu/ddpm-butterflies-128/tensorboard?#scalars)
CennetOguz/distilbert-base-uncased-finetuned-recipe-accelerate-1
[ "pytorch", "distilbert", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
1
2022-11-21T16:58:56Z
--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-large-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv-SE split: train[:1%]+validation[:1%] args: sv-SE metrics: - name: Wer type: wer value: 30.935251798561154 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-sv This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.5259 - Wer: 30.9353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 4.5521 | 0.04 | 5 | 3.5048 | 48.2014 | | 1.8009 | 0.08 | 10 | 1.5259 | 30.9353 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1
CennetOguz/distilbert-base-uncased-finetuned-recipe
[ "pytorch", "tensorboard", "distilbert", "fill-mask", "transformers", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "DistilBertForMaskedLM" ], "model_type": "distilbert", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
2
2022-11-21T17:12:05Z
--- license: creativeml-openrail-m thumbnail: "https://huggingface.co/Linaqruf/hitokomoru/resolve/main/thumbnail.png" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- # Hitokomoru Diffusion **Welcome to Hitokomoru Diffusion** - a latent diffusion model that has been trained on Japanese Artist artwork, [γƒ’γƒˆγ“γ‚‚γ‚‹/Hitokomoru](https://www.pixiv.net/en/users/30837811). The current model has been fine-tuned with a learning rate of `2.0e-6` for `20000 training steps`/`80 Epochs` on `255 images` collected from Danbooru. The model is trained using [NovelAI Aspect Ratio Bucketing Tool](https://github.com/NovelAI/novelai-aspect-ratio-bucketing) so that it can be trained at non-square resolutions. Like other anime-style Stable Diffusion models, it also supports Danbooru tags to generate images. e.g. **_1girl, white hair, golden eyes, beautiful eyes, detail, flower meadow, cumulonimbus clouds, lighting, detailed sky, garden_** There is 4 variations of this model available so far: - `hitokomoru-5000.ckpt for the checkpoint trained on 5,000 steps.` - `hitokomoru-10000.ckpt for the checkpoint trained on 10,000 steps.` - `hitokomoru-15000.ckpt for the checkpoint trained on 15,000 steps.` - `hitokomoru-20000.ckpt for the checkpoint trained on 20,000 steps.` # Dataset You can find `datasets` used to train this model and the `last-state` folder for resume training [here](https://huggingface.co/datasets/Linaqruf/hitokomoru-tag) ## 🧨 Diffusers This model can be used just like any other Stable Diffusion model. For more information, please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion). You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX](). ```python from diffusers import StableDiffusionPipeline import torch model_id = "Linaqruf/hitokomoru-diffusion" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "hatsune_miku" image = pipe(prompt).images[0] image.save("./hatsune_miku.png") ``` ## Examples Below are some examples of images generated using this model: #### Using Hitokomoru-5000-pruned.ckpt **Anime Girl:** ![Anime Girl](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/girl-5000.png) **Anime Boy:** ![Anime Boy](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/boy-5000.png) #### Using Hitokomoru-10000-pruned.ckpt **Anime Girl:** ![Anime Girl](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/girl-10000.png) **Anime Boy:** ![Anime Boy](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/boy-10000.png) #### Using Hitokomoru-15000-pruned.ckpt **Anime Girl:** ![Anime Girl](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/girl-15000.png) **Anime Boy:** ![Anime Boy](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/boy-15000.png) #### Using Hitokomoru-20000-pruned.ckpt **Anime Girl:** ![Anime Girl](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/girl-20000.png) **Anime Boy:** ![Anime Boy](https://huggingface.co/Linaqruf/hitokomoru/resolve/main/example_images/boy-20000.png) ### Prompt and settings for Example Images **Anime Girl:** ``` (masterpiece:1.05),illustration,beautiful detailed,colourful,finely detailed,dramatic light,intricate details,1 girl, 1990, 1980, hatsune miku Negative prompt: nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,missing fingers,bad hands,missing arms, long neck, Humpbacked,shadow,long body, Abnormal fingers, Steps: 32, Sampler: Euler, CFG scale: 10, Seed: 2319346364, Size: 512x768, Model hash: 2700c435, Batch size: 2, Batch pos: 0, Clip skip: 2 ``` **Anime Boy:** ``` Authentic and detailed face(man:1.2763)(boymasterpiece:1.1025), (best quality:1.1025), (ultra-detailed:1.1025), (illustration:1.1025), (tousled hair:1.1025), (frill:0.907) , white cutter shirt, (one boy:1.05), (solo:1.05) chest, detailed wet clothes, empty stare, pants, (flowers:1.05), beautifully detailed sky, beautifully detailed water, leaves, detailed and beautiful sea Negative prompt: (big breasts:1.2763)(breast:1.1025)}(woman:1.2155)} little girl,(3d:1.1576)(girl:1.629), nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,missing fingers,bad hands,missing arms, long neck, Humpbacked Steps: 40, Sampler: DPM++ 2M Karras, CFG scale: 7, Seed: 1870332858, Size: 512x768, Model hash: 2700c435, Batch size: 2, Batch pos: 0, Clip skip: 2 ``` ## License This model is open access and available to all, with a CreativeML OpenRAIL-M license further specifying rights and usage. The CreativeML OpenRAIL License specifies: 1. You can't use the model to deliberately produce nor share illegal or harmful outputs or content 2. The authors claims no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in the license 3. You may re-distribute the weights and use the model commercially and/or as a service. If you do, please be aware you have to include the same use restrictions as the ones in the license and share a copy of the CreativeML OpenRAIL-M to all your users (please read the license entirely and carefully) [Please read the full license here](https://huggingface.co/spaces/CompVis/stable-diffusion-license) ## What's next? - Hitokomoru Diffusion V2 soon, will added scenery datasets from MidJourney I hope it's working, because I'm getting bored the result is always simple background ## Credit - [γƒ’γƒˆγ“γ‚‚γ‚‹/Hitokomoru](https://www.pixiv.net/en/users/30837811) for Datasets - Just for my part ## Big Thanks to - [Kohya](https://twitter.com/kohya_ss) with their [Kohya Trainer](https://note.com/kohya_ss/n/ne17e34dd51bf) - Peeps on SD Training Labs Discord Server - [ptsearch.info](https://www.ptsearch.info/) for prompt references
Chaddmckay/Cdm
[]
null
{ "architectures": null, "model_type": null, "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
0
2022-11-21T17:21:03Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 960 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5.317107976265941e-06 }, "scheduler": "WarmupLinear", "steps_per_epoch": 960, "warmup_steps": 96, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Chae/botman
[ "pytorch", "gpt2", "text-generation", "transformers", "conversational" ]
conversational
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": 1000 }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
null
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 300 with parameters: ``` {'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2.431769382015511e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 300, "warmup_steps": 30, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
Chaewon/mmnt_decoder_en
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
12
2022-11-21T17:25:12Z
--- license: creativeml-openrail-m tags: - text-to-image --- ### cybertruck01 Dreambooth model trained by cormacncheese with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Or you can run your new concept via `diffusers` [Colab Notebook for Inference](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/sd_dreambooth_inference.ipynb) Sample pictures of this concept:
Chaewon/mnmt_decoder_en
[ "pytorch", "gpt2", "text-generation", "transformers" ]
text-generation
{ "architectures": [ "GPT2LMHeadModel" ], "model_type": "gpt2", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": true, "max_length": 50 }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
8
2022-11-21T17:25:41Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93188 - name: F1 type: f1 value: 0.9322889745934556 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2309 - Accuracy: 0.9319 - F1: 0.9323 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2
Chakita/KNUBert
[ "pytorch", "tensorboard", "roberta", "fill-mask", "transformers", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
20
2022-11-21T17:46:49Z
"Nightmare Combined Model" was an attempt at mixing all four of my recent models. Prompt is "NghtmrFrk" It's pretty amazing if you want a bit of all the models in one model instead. It gives you some truly nightmare worthy stuff, be creative with what you type in. Or just have no prompt but NghtmrFrk for random horror! Even though this is a combined model, you may want to try the models I have separately if your are looking for a certain style specifically. CFG keep low, steps can be anything. Same with sampler. ![model 3.png](https://s3.amazonaws.com/moonup/production/uploads/1669092365366-6333e639d58823d613336ee3.png)
Chakita/KROBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
7
2022-11-21T17:53:37Z
--- license: apache-2.0 tags: - Question Answering metrics: - squad model-index: - name: consciousAI/question-answering-roberta-base-s-v2 results: [] --- # Question Answering The model is intended to be used for Q&A task, given the question & context, the model would attempt to infer the answer text, answer span & confidence score.<br> Model is encoder-only (deepset/roberta-base-squad2) with QuestionAnswering LM Head, fine-tuned on SQUADx dataset with **exact_match:** 84.83 & **f1:** 91.80 performance scores. [Live Demo: Question Answering Encoders vs Generative](https://huggingface.co/spaces/consciousAI/question_answering) Please follow this link for [Encoder based Question Answering V1](https://huggingface.co/consciousAI/question-answering-roberta-base-s/) <br>Please follow this link for [Generative Question Answering](https://huggingface.co/consciousAI/question-answering-generative-t5-v1-base-s-q-c/) Example code: ``` from transformers import pipeline model_checkpoint = "consciousAI/question-answering-roberta-base-s-v2" context = """ πŸ€— Transformers is backed by the three most popular deep learning libraries β€” Jax, PyTorch and TensorFlow β€” with a seamless integration between them. It's straightforward to train your models with one before loading them for inference with the other. """ question = "Which deep learning libraries back πŸ€— Transformers?" question_answerer = pipeline("question-answering", model=model_checkpoint) question_answerer(question=question, context=context) ``` ## Training and evaluation data SQUAD Split ## Training procedure Preprocessing: 1. SQUAD Data longer chunks were sub-chunked with input context max-length 384 tokens and stride as 128 tokens. 2. Target answers readjusted for sub-chunks, sub-chunks with no-answers or partial answers were set to target answer span as (0,0) Metrics: 1. Adjusted accordingly to handle sub-chunking. 2. n best = 20 3. skip answers with length zero or higher than max answer length (30) ### Training hyperparameters Custom Training Loop: The following hyperparameters were used during training: - learning_rate: 2e-5 - train_batch_size: 32 - eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results {'exact_match': 84.83443708609272, 'f1': 91.79987545811638} ### Framework versions - Transformers 4.23.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.5.2 - Tokenizers 0.13.0
Chakita/KannadaBERT
[ "pytorch", "roberta", "fill-mask", "transformers", "masked-lm", "fill-in-the-blanks", "autotrain_compatible" ]
fill-mask
{ "architectures": [ "RobertaForMaskedLM" ], "model_type": "roberta", "task_specific_params": { "conversational": { "max_length": null }, "summarization": { "early_stopping": null, "length_penalty": null, "max_length": null, "min_length": null, "no_repeat_ngram_size": null, "num_beams": null, "prefix": null }, "text-generation": { "do_sample": null, "max_length": null }, "translation_en_to_de": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_fr": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null }, "translation_en_to_ro": { "early_stopping": null, "max_length": null, "num_beams": null, "prefix": null } } }
5
2022-11-21T17:58:15Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') model = AutoModel.from_pretrained('{MODEL_NAME}') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 103 with parameters: ``` {'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "epochs": 2, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 3.0969347665304716e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 103, "warmup_steps": 11, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->