text
stringlengths
0
6.44k
sustainability of urban coastal system have not been investigated in detail yet and require
more interdisciplinary research combining different branches of science (environmental
and socioeconomic). The effects of the most recent extreme events (2019–2020) on the
ecosystem require the conduction of focused studies, especially over the coastal areas of
South Florida with the highest occurrence frequencies of MHW formation. Our results may
aid policy makers because they highlight that the conservation and restoration efforts of
natural barriers such as coral reefs and mangroves are essential in coastal areas of South
Florida to protect economic activity against tropical cyclones. This is crucial in the context of
climate change, as besides MHWs, tropical storms and hurricanes are expected to increase
in intensity [82], enhancing the potential for catastrophic effects on coastal natural and
urban environments.
Author Contributions: Conceptualization, Y.S.A. and V.K.; methodology, Y.S.A. and V.K.; software, Y.S.A. and V.K.; validation, Y.S.A. and V.K.; formal analysis, Y.S.A. and V.K.; resources, V.K.;
writing—original draft preparation, Y.S.A. and V.K.; writing—review and editing, Y.S.A. and V.K.;
visualization, Y.S.A.; supervision, Y.S.A. and V.K.; project administration, V.K.; funding acquisition,
V.K. All authors have read and agreed to the published version of the manuscript.
Funding: This study was funded by the University of Miami, under a U-LINK award to Vassiliki Kourafalou.
Data Availability Statement: The Sea Surface Temperature (SST) and the ERA-5 meteorological data
are provided by the E.U. Copernicus Marine Service (https://www.copernicus.eu/, accessed on
1 July 2022). The field observations at three buoys of South Florida are provided by the National
Buoy Data Center (NDBC; https://www.ndbc.noaa.gov/, accessed on 1 July 2022) of the National
Oceanic Atmospheric Administration.
Conflicts of Interest: The authors declare no conflict of interest.
References
1. Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.;
Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [CrossRef]
2. Hobday, A.J.; Oliver, E.C.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.;
Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [CrossRef]
3. Kent, E.C.; Taylor, P.K. Toward estimating climatic trends in SST. Part I: Methods of measurement. J. Atmos. Ocean. Technol. 2006,
23, 464–475. [CrossRef]
4. Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Díaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting,
D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob.
Change Biol. 2009, 15, 1090–1103. [CrossRef]
5. Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar.
Syst. 2013, 111, 139–156. [CrossRef]
6. Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; De Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme
climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 2013, 3, 78–82. [CrossRef]
7. Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.S.; Holland, D.S.; Lehuta, S.; Nye, J.A.; Sun, J.C.; Thomas, A.C.; et al.
Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography
2013, 26, 191–195. [CrossRef]
8. Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 2016, 6,
1042–1047. [CrossRef]
9. Oliver, E.C.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 16101. [CrossRef]
10. Darmaraki, S.; Somot, S.; Sevault, F.; Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 2019,
46, 9813–9823. [CrossRef]
Water 2022, 14, 3840 26 of 28
11. Ibrahim, O.; Mohamed, B.; Nagy, H. Spatial variability and trends of marine heat waves in the eastern mediterranean sea over
39 years. J. Mar. Sci. Eng. 2021, 9, 643. [CrossRef]
12. Androulidakis, Y.S.; Krestenitis, Y.N. Sea Surface Temperature Variability and Marine Heat Waves over the Aegean, Ionian, and
Cretan Seas from 2008–2021. J. Mar. Sci. Eng. 2022, 10, 42. [CrossRef]
13. Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [CrossRef]
14. Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.;
Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [CrossRef]
15. Lirman, D.; Ault, J.S.; Fourqurean, J.W.; Lorenz, J.J. The coastal marine ecosystem of south Florida, United States. In World Seas:
An Environmental Evaluation; Academic Press: Cambridge, MA, USA, 2019; pp. 427–444.
16. Kuffner, I.B.; Lidz, B.H.; Hudson, J.H.; Anderson, J.S. A century of ocean warming on Florida Keys coral reefs: Historic in-situ
observations. Estuaries Coasts 2015, 38, 1085–1096. [CrossRef]
17. Carlson, D.F.; Yarbro, L.A.; Scolaro, S.; Poniatowski, M.; McGee-Absten, V.; Carlson, P.R., Jr. Sea surface temperatures and seagrass
mortality in Florida Bay: Spatial and temporal patterns discerned from MODIS and AVHRR data. Remote Sens. Environ. 2018, 208,
171–188. [CrossRef]
18. Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [CrossRef]
19. Kendall, M. Rank Correlation Measures; Charles Griffin: London, UK, 1975.
20. Liu, Y.; Weisberg, R.H.; He, R. Sea surface temperature patterns on the West Florida Shelf using growing hierarchical selforganizing maps. J. Atmos. Ocean. Technol. 2006, 23, 325–338. [CrossRef]
21. Soto, I.M.; Muller Karger, F.E.; Hallock, P.; Hu, C. Sea surface temperature variability in the Florida Keys and its relationship to
coral cover. J. Mar. Biol. 2011, 2011, 981723. [CrossRef]
22. Barnes, B.B.; Hu, C.; Muller-Karger, F. An improved high-resolution SST climatology to assess cold water events off Florida. IEEE
Geosci. Remote Sens. Lett. 2011, 8, 769–773. [CrossRef]
23. Colella, M.A.; Ruzicka, R.R.; Kidney, J.A.; Morrison, J.M.; Brinkhuis, V.B. Cold-water event of January 2010 results in catastrophic
benthic mortality on patch reefs in the Florida Keys. Coral Reefs 2012, 31, 621–632. [CrossRef]
24. Stith, B.M.; Slone, D.H.; De Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P. Passive thermal
refugia provided warm water for Florida manatees during the severe winter of 2009–2010. Mar. Ecol. Prog. Ser. 2012, 462, 287–301.
[CrossRef]
25. Johns, W.E.; Schott, F. Meandering and transport variations of the Florida Current. J. Phys. Oceanogr. 1987, 17, 1128–1147.
[CrossRef]
26. Kourafalou, V.H.; Kang, H. Florida Current meandering and evolution of cyclonic eddies along the Florida Keys Reef Tract: Are
they interconnected? J. Geophys. Res. Ocean. 2012, 117. [CrossRef]
27. Kourafalou, V.; Androulidakis, Y.; Le Hénaff, M.; Kang, H. The dynamics of Cuba anticyclones (CubANs) and interaction with
the Loop Current/Florida Current system. J. Geophys. Res. Ocean. 2017, 122, 7897–7923. [CrossRef]
28. Androulidakis, Y.; Kourafalou, V.; Le Hénaff, M.; Kang, H.; Ntaganou, N.; Hu, C. Gulf Stream evolution through the Straits of
Florida: The role of eddies and upwelling near Cuba. Ocean. Dyn. 2020, 70, 1005–1032. [CrossRef]
29. Lee, T.N.; Leaman, K.; Williams, E.; Berger, T.; Atkinson, L. Florida Current meanders and gyre formation in the southern Straits
of Florida. J. Geophys. Res. 1995, 100, 8607–8620. [CrossRef]
30. Kourafalou, V.H.; Androulidakis, Y.S.; Kang, H.; Smith, R.H.; Valle-Levinson, A. Physical connectivity between Pulley Ridge
and Dry Tortugas coral reefs under the influence of the Loop Current/Florida Current system. Prog. Oceanogr. 2018, 165, 75–99.
[CrossRef]
31. Fratantoni, P.S.; Lee, T.N.; Podesta, G.P.; Muller-Karger, F. The influence of Loop Current perturbations on the formation and
evolution of Tortugas eddies in the southern Straits of Florida. J. Geophys. Res. Ocean. 1998, 103, 24759–24779. [CrossRef]
32. Le Hénaff, M.; Kourafalou, V.H.; Morel, Y.; Srinivasan, A. Simulating the dynamics and intensification of cyclonic Loop Current
frontal eddies in the Gulf of Mexico. J. Geophys. Res. 2012, 117, C02034. [CrossRef]
33. Weisberg, R.H.; Li, Z.; Muller-Karger, F. West Florida shelf response to local wind forcing: April 1998. J. Geophys. Res. Ocean. 2001,
106, 31239–31262. [CrossRef]
34. Weisberg, R.H.; He, R. Local and deep-ocean forcing contributions to anomalous water properties on the West Florida Shelf. J.
Geophys. Res. Ocean. 2003, 108. [CrossRef]
35. Weisberg, R.H.; Liu, Y.; Mayer, D.A. West Florida Shelf mean circulation observed with long-term moorings. Geophys. Res. Lett.
2009, 36. [CrossRef]
36. Weisberg, R.H.; Black, B.D.; Li, Z. An upwelling case study on Florida’s west coast. J. Geophys. Res. Ocean. 2000, 105, 11459–11469.
[CrossRef]
37. Weisberg, R.H.; Zheng, L.; Liu, Y. West Florida shelf upwelling: Origins and pathways. J. Geophys. Res. Ocean. 2016, 121,
5672–5681. [CrossRef]
38. Taylor, C.B.; Stewart, H.B., Jr. Summer upwelling along the east coast of Florida. J. Geophys. Res. 1959, 64, 33–40. [CrossRef]
39. Smith, N.P. Temporal and spatial characteristics of summer upwelling along Florida’s Atlantic shelf. J. Phys. Oceanogr. 1983, 13,