text
stringlengths 0
6.44k
|
---|
sustainability of urban coastal system have not been investigated in detail yet and require |
more interdisciplinary research combining different branches of science (environmental |
and socioeconomic). The effects of the most recent extreme events (2019–2020) on the |
ecosystem require the conduction of focused studies, especially over the coastal areas of |
South Florida with the highest occurrence frequencies of MHW formation. Our results may |
aid policy makers because they highlight that the conservation and restoration efforts of |
natural barriers such as coral reefs and mangroves are essential in coastal areas of South |
Florida to protect economic activity against tropical cyclones. This is crucial in the context of |
climate change, as besides MHWs, tropical storms and hurricanes are expected to increase |
in intensity [82], enhancing the potential for catastrophic effects on coastal natural and |
urban environments. |
Author Contributions: Conceptualization, Y.S.A. and V.K.; methodology, Y.S.A. and V.K.; software, Y.S.A. and V.K.; validation, Y.S.A. and V.K.; formal analysis, Y.S.A. and V.K.; resources, V.K.; |
writing—original draft preparation, Y.S.A. and V.K.; writing—review and editing, Y.S.A. and V.K.; |
visualization, Y.S.A.; supervision, Y.S.A. and V.K.; project administration, V.K.; funding acquisition, |
V.K. All authors have read and agreed to the published version of the manuscript. |
Funding: This study was funded by the University of Miami, under a U-LINK award to Vassiliki Kourafalou. |
Data Availability Statement: The Sea Surface Temperature (SST) and the ERA-5 meteorological data |
are provided by the E.U. Copernicus Marine Service (https://www.copernicus.eu/, accessed on |
1 July 2022). The field observations at three buoys of South Florida are provided by the National |
Buoy Data Center (NDBC; https://www.ndbc.noaa.gov/, accessed on 1 July 2022) of the National |
Oceanic Atmospheric Administration. |
Conflicts of Interest: The authors declare no conflict of interest. |
References |
1. Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; |
Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [CrossRef] |
2. Hobday, A.J.; Oliver, E.C.; Gupta, A.S.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Holbrook, N.J.; Moore, P.J.; Thomsen, M.S.; |
Wernberg, T.; et al. Categorizing and naming marine heatwaves. Oceanography 2018, 31, 162–173. [CrossRef] |
3. Kent, E.C.; Taylor, P.K. Toward estimating climatic trends in SST. Part I: Methods of measurement. J. Atmos. Ocean. Technol. 2006, |
23, 464–475. [CrossRef] |
4. Garrabou, J.; Coma, R.; Bensoussan, N.; Bally, M.; Chevaldonné, P.; Cigliano, M.; Díaz, D.; Harmelin, J.G.; Gambi, M.C.; Kersting, |
D.K.; et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. |
Change Biol. 2009, 15, 1090–1103. [CrossRef] |
5. Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. |
Syst. 2013, 111, 139–156. [CrossRef] |
6. Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; De Bettignies, T.; Bennett, S.; Rousseaux, C.S. An extreme |
climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 2013, 3, 78–82. [CrossRef] |
7. Mills, K.E.; Pershing, A.J.; Brown, C.J.; Chen, Y.; Chiang, F.S.; Holland, D.S.; Lehuta, S.; Nye, J.A.; Sun, J.C.; Thomas, A.C.; et al. |
Fisheries management in a changing climate: Lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography |
2013, 26, 191–195. [CrossRef] |
8. Di Lorenzo, E.; Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 2016, 6, |
1042–1047. [CrossRef] |
9. Oliver, E.C.; Benthuysen, J.A.; Bindoff, N.L.; Hobday, A.J.; Holbrook, N.J.; Mundy, C.N.; Perkins-Kirkpatrick, S.E. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 2017, 8, 16101. [CrossRef] |
10. Darmaraki, S.; Somot, S.; Sevault, F.; Nabat, P. Past variability of Mediterranean Sea marine heatwaves. Geophys. Res. Lett. 2019, |
46, 9813–9823. [CrossRef] |
Water 2022, 14, 3840 26 of 28 |
11. Ibrahim, O.; Mohamed, B.; Nagy, H. Spatial variability and trends of marine heat waves in the eastern mediterranean sea over |
39 years. J. Mar. Sci. Eng. 2021, 9, 643. [CrossRef] |
12. Androulidakis, Y.S.; Krestenitis, Y.N. Sea Surface Temperature Variability and Marine Heat Waves over the Aegean, Ionian, and |
Cretan Seas from 2008–2021. J. Mar. Sci. Eng. 2022, 10, 42. [CrossRef] |
13. Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [CrossRef] |
14. Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; |
Hobday, A.J.; et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [CrossRef] |
15. Lirman, D.; Ault, J.S.; Fourqurean, J.W.; Lorenz, J.J. The coastal marine ecosystem of south Florida, United States. In World Seas: |
An Environmental Evaluation; Academic Press: Cambridge, MA, USA, 2019; pp. 427–444. |
16. Kuffner, I.B.; Lidz, B.H.; Hudson, J.H.; Anderson, J.S. A century of ocean warming on Florida Keys coral reefs: Historic in-situ |
observations. Estuaries Coasts 2015, 38, 1085–1096. [CrossRef] |
17. Carlson, D.F.; Yarbro, L.A.; Scolaro, S.; Poniatowski, M.; McGee-Absten, V.; Carlson, P.R., Jr. Sea surface temperatures and seagrass |
mortality in Florida Bay: Spatial and temporal patterns discerned from MODIS and AVHRR data. Remote Sens. Environ. 2018, 208, |
171–188. [CrossRef] |
18. Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [CrossRef] |
19. Kendall, M. Rank Correlation Measures; Charles Griffin: London, UK, 1975. |
20. Liu, Y.; Weisberg, R.H.; He, R. Sea surface temperature patterns on the West Florida Shelf using growing hierarchical selforganizing maps. J. Atmos. Ocean. Technol. 2006, 23, 325–338. [CrossRef] |
21. Soto, I.M.; Muller Karger, F.E.; Hallock, P.; Hu, C. Sea surface temperature variability in the Florida Keys and its relationship to |
coral cover. J. Mar. Biol. 2011, 2011, 981723. [CrossRef] |
22. Barnes, B.B.; Hu, C.; Muller-Karger, F. An improved high-resolution SST climatology to assess cold water events off Florida. IEEE |
Geosci. Remote Sens. Lett. 2011, 8, 769–773. [CrossRef] |
23. Colella, M.A.; Ruzicka, R.R.; Kidney, J.A.; Morrison, J.M.; Brinkhuis, V.B. Cold-water event of January 2010 results in catastrophic |
benthic mortality on patch reefs in the Florida Keys. Coral Reefs 2012, 31, 621–632. [CrossRef] |
24. Stith, B.M.; Slone, D.H.; De Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P. Passive thermal |
refugia provided warm water for Florida manatees during the severe winter of 2009–2010. Mar. Ecol. Prog. Ser. 2012, 462, 287–301. |
[CrossRef] |
25. Johns, W.E.; Schott, F. Meandering and transport variations of the Florida Current. J. Phys. Oceanogr. 1987, 17, 1128–1147. |
[CrossRef] |
26. Kourafalou, V.H.; Kang, H. Florida Current meandering and evolution of cyclonic eddies along the Florida Keys Reef Tract: Are |
they interconnected? J. Geophys. Res. Ocean. 2012, 117. [CrossRef] |
27. Kourafalou, V.; Androulidakis, Y.; Le Hénaff, M.; Kang, H. The dynamics of Cuba anticyclones (CubANs) and interaction with |
the Loop Current/Florida Current system. J. Geophys. Res. Ocean. 2017, 122, 7897–7923. [CrossRef] |
28. Androulidakis, Y.; Kourafalou, V.; Le Hénaff, M.; Kang, H.; Ntaganou, N.; Hu, C. Gulf Stream evolution through the Straits of |
Florida: The role of eddies and upwelling near Cuba. Ocean. Dyn. 2020, 70, 1005–1032. [CrossRef] |
29. Lee, T.N.; Leaman, K.; Williams, E.; Berger, T.; Atkinson, L. Florida Current meanders and gyre formation in the southern Straits |
of Florida. J. Geophys. Res. 1995, 100, 8607–8620. [CrossRef] |
30. Kourafalou, V.H.; Androulidakis, Y.S.; Kang, H.; Smith, R.H.; Valle-Levinson, A. Physical connectivity between Pulley Ridge |
and Dry Tortugas coral reefs under the influence of the Loop Current/Florida Current system. Prog. Oceanogr. 2018, 165, 75–99. |
[CrossRef] |
31. Fratantoni, P.S.; Lee, T.N.; Podesta, G.P.; Muller-Karger, F. The influence of Loop Current perturbations on the formation and |
evolution of Tortugas eddies in the southern Straits of Florida. J. Geophys. Res. Ocean. 1998, 103, 24759–24779. [CrossRef] |
32. Le Hénaff, M.; Kourafalou, V.H.; Morel, Y.; Srinivasan, A. Simulating the dynamics and intensification of cyclonic Loop Current |
frontal eddies in the Gulf of Mexico. J. Geophys. Res. 2012, 117, C02034. [CrossRef] |
33. Weisberg, R.H.; Li, Z.; Muller-Karger, F. West Florida shelf response to local wind forcing: April 1998. J. Geophys. Res. Ocean. 2001, |
106, 31239–31262. [CrossRef] |
34. Weisberg, R.H.; He, R. Local and deep-ocean forcing contributions to anomalous water properties on the West Florida Shelf. J. |
Geophys. Res. Ocean. 2003, 108. [CrossRef] |
35. Weisberg, R.H.; Liu, Y.; Mayer, D.A. West Florida Shelf mean circulation observed with long-term moorings. Geophys. Res. Lett. |
2009, 36. [CrossRef] |
36. Weisberg, R.H.; Black, B.D.; Li, Z. An upwelling case study on Florida’s west coast. J. Geophys. Res. Ocean. 2000, 105, 11459–11469. |
[CrossRef] |
37. Weisberg, R.H.; Zheng, L.; Liu, Y. West Florida shelf upwelling: Origins and pathways. J. Geophys. Res. Ocean. 2016, 121, |
5672–5681. [CrossRef] |
38. Taylor, C.B.; Stewart, H.B., Jr. Summer upwelling along the east coast of Florida. J. Geophys. Res. 1959, 64, 33–40. [CrossRef] |
39. Smith, N.P. Temporal and spatial characteristics of summer upwelling along Florida’s Atlantic shelf. J. Phys. Oceanogr. 1983, 13, |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.