url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one
[111, 1]
[115, 48]
simp only [Super.potential, a, dif_pos, Super.potential']
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z < 1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c ((f c)^[Nat.find ⋯] z)) ^ (↑d ^ Nat.find ⋯)⁻¹ < 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one
[111, 1]
[115, 48]
refine Real.rpow_lt_one (Complex.abs.nonneg _) ?_ (by bound)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c ((f c)^[Nat.find ⋯] z)) ^ (↑d ^ Nat.find ⋯)⁻¹ < 1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c ((f c)^[Nat.find ⋯] z)) < 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c ((f c)^[Nat.find ⋯] z)) ^ (↑d ^ Nat.find ⋯)⁻¹ < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one
[111, 1]
[115, 48]
exact s.bottcherNear_lt_one (Nat.find_spec a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c ((f c)^[Nat.find ⋯] z)) < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ Complex.abs (s.bottcherNear c ((f c)^[Nat.find ⋯] z)) < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one
[111, 1]
[115, 48]
bound
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 < (↑d ^ Nat.find ⋯)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 < (↑d ^ Nat.find ⋯)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one_iff
[118, 1]
[122, 69]
refine ⟨?_, s.potential_lt_one⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z < 1 ↔ ∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z < 1 → ∃ n, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z < 1 ↔ ∃ n, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one_iff
[118, 1]
[122, 69]
intro h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z < 1 → ∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z < 1 ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z < 1 → ∃ n, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one_iff
[118, 1]
[122, 69]
contrapose h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z < 1 ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ¬s.potential c z < 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z < 1 ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one_iff
[118, 1]
[122, 69]
simp only [not_exists] at h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ¬s.potential c z < 1
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : ∀ (x : ℕ), (c, (f c)^[x] z) ∉ s.near ⊢ ¬s.potential c z < 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ¬s.potential c z < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_lt_one_iff
[118, 1]
[122, 69]
simp only [s.potential_eq_one h, lt_self_iff_false, not_false_iff]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : ∀ (x : ℕ), (c, (f c)^[x] z) ∉ s.near ⊢ ¬s.potential c z < 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : ∀ (x : ℕ), (c, (f c)^[x] z) ∉ s.near ⊢ ¬s.potential c z < 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_le_one
[125, 1]
[128, 56]
by_cases a : ∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z ≤ 1
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1 case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_le_one
[125, 1]
[128, 56]
exact (s.potential_lt_one a).le
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1 case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1 case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_le_one
[125, 1]
[128, 56]
exact le_of_eq (s.potential_eq_one (not_exists.mp a))
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c z ≤ 1 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_nonneg
[131, 10]
[134, 64]
by_cases r : ∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ 0 ≤ s.potential c z
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ 0 ≤ s.potential c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_nonneg
[131, 10]
[134, 64]
rcases r with ⟨n, r⟩
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_nonneg
[131, 10]
[134, 64]
simp only [s.potential_eq r, Super.potential']
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ Complex.abs (s.bottcherNear c ((f c)^[n] z)) ^ (↑d ^ n)⁻¹ case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
Please generate a tactic in lean4 to solve the state. STATE: case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_nonneg
[131, 10]
[134, 64]
bound
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ Complex.abs (s.bottcherNear c ((f c)^[n] z)) ^ (↑d ^ n)⁻¹ case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
Please generate a tactic in lean4 to solve the state. STATE: case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ Complex.abs (s.bottcherNear c ((f c)^[n] z)) ^ (↑d ^ n)⁻¹ case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_nonneg
[131, 10]
[134, 64]
simp only [s.potential_eq_one (not_exists.mp r), zero_le_one]
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ 0 ≤ s.potential c z TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
by_cases a : ∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c (f c z) = s.potential c z ^ d
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c (f c z) = s.potential c z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
rcases a with ⟨n, a⟩
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
have a' : (c, (f c)^[n] (f c z)) ∈ s.near := by simp only [← Function.iterate_succ_apply, Function.iterate_succ', s.stays_near a, Function.comp]
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : (c, (f c)^[n] (f c z)) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
Please generate a tactic in lean4 to solve the state. STATE: case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
simp only [s.potential_eq a, s.potential_eq a', Super.potential', ← Function.iterate_succ_apply, Function.iterate_succ', s.bottcherNear_eqn a, Complex.abs.map_pow, ← Real.rpow_natCast, ← Real.rpow_mul (Complex.abs.nonneg _), mul_comm, Function.comp]
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : (c, (f c)^[n] (f c z)) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : (c, (f c)^[n] (f c z)) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
simp only [← Function.iterate_succ_apply, Function.iterate_succ', s.stays_near a, Function.comp]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n] (f c z)) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ (c, (f c)^[n] (f c z)) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
have a' : ∀ n, (c, (f c)^[n] (f c z)) ∉ s.near := by contrapose a; simp only [not_forall, not_not, ← Function.iterate_succ_apply] at a ⊢ rcases a with ⟨n, a⟩; exact ⟨n + 1, a⟩
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near a' : ∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
simp only [s.potential_eq_one (not_exists.mp a), s.potential_eq_one a', one_pow]
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near a' : ∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near a' : ∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near ⊢ s.potential c (f c z) = s.potential c z ^ d TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
contrapose a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near ⊢ ¬¬∃ n, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
simp only [not_forall, not_not, ← Function.iterate_succ_apply] at a ⊢
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near ⊢ ¬¬∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ x, (c, (f c)^[x.succ] z) ∈ s.near ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ¬∀ (n : ℕ), (c, (f c)^[n] (f c z)) ∉ s.near ⊢ ¬¬∃ n, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
rcases a with ⟨n, a⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ x, (c, (f c)^[x.succ] z) ∈ s.near ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n.succ] z) ∈ s.near ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ x, (c, (f c)^[x.succ] z) ∈ s.near ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn
[137, 1]
[149, 85]
exact ⟨n + 1, a⟩
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n.succ] z) ∈ s.near ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n.succ] z) ∈ s.near ⊢ ∃ n, (c, (f c)^[n] z) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn_iter
[152, 1]
[157, 21]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ s.potential c ((f c)^[n] z) = s.potential c z ^ d ^ n
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c ((f c)^[0] z) = s.potential c z ^ d ^ 0 case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : s.potential c ((f c)^[n] z) = s.potential c z ^ d ^ n ⊢ s.potential c ((f c)^[n + 1] z) = s.potential c z ^ d ^ (n + 1)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ s.potential c ((f c)^[n] z) = s.potential c z ^ d ^ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn_iter
[152, 1]
[157, 21]
simp only [Function.iterate_zero, id, pow_zero, pow_one]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c ((f c)^[0] z) = s.potential c z ^ d ^ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c ((f c)^[0] z) = s.potential c z ^ d ^ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eqn_iter
[152, 1]
[157, 21]
simp only [Function.iterate_succ', Super.potential_eqn, h, ← pow_mul, ← pow_succ, Function.comp]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : s.potential c ((f c)^[n] z) = s.potential c z ^ d ^ n ⊢ s.potential c ((f c)^[n + 1] z) = s.potential c z ^ d ^ (n + 1)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ h : s.potential c ((f c)^[n] z) = s.potential c z ^ d ^ n ⊢ s.potential c ((f c)^[n + 1] z) = s.potential c z ^ d ^ (n + 1) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic'
[160, 1]
[164, 43]
intro p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ Holomorphic (I.prod I) I fun p => (f p.1)^[n] p.2
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ Holomorphic (I.prod I) I fun p => (f p.1)^[n] p.2 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic'
[160, 1]
[164, 43]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[0] p.2) p case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n + 1] p.2) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic'
[160, 1]
[164, 43]
simp [Function.iterate_zero, holomorphicAt_snd]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[0] p.2) p case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n + 1] p.2) p
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n + 1] p.2) p
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[0] p.2) p case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n + 1] p.2) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic'
[160, 1]
[164, 43]
simp only [Function.iterate_succ', Function.comp]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n + 1] p.2) p
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => f p.1 ((f p.1)^[n] p.2)) p
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n + 1] p.2) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic'
[160, 1]
[164, 43]
exact (s.fa _).comp₂ holomorphicAt_fst h
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => f p.1 ((f p.1)^[n] p.2)) p
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a p : ℂ × S n : ℕ h : HolomorphicAt (I.prod I) I (fun p => (f p.1)^[n] p.2) p ⊢ HolomorphicAt (I.prod I) I (fun p => f p.1 ((f p.1)^[n] p.2)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic
[166, 1]
[168, 67]
intro p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ Holomorphic (I.prod I) (I.prod I) fun p => (p.1, (f p.1)^[n] p.2)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, (f p.1)^[n] p.2)) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ ⊢ Holomorphic (I.prod I) (I.prod I) fun p => (p.1, (f p.1)^[n] p.2) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic
[166, 1]
[168, 67]
apply holomorphicAt_fst.prod
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, (f p.1)^[n] p.2)) p
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1)^[n] x.2) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) (I.prod I) (fun p => (p.1, (f p.1)^[n] p.2)) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.iter_holomorphic
[166, 1]
[168, 67]
apply s.iter_holomorphic'
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1)^[n] x.2) p
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : ℂ × S ⊢ HolomorphicAt (I.prod I) I (fun x => (f x.1)^[n] x.2) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
rcases a with ⟨n, a⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ContinuousAt (uncurry s.potential) (c, z)
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ ContinuousAt (uncurry s.potential) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n : ℕ s : Super f d a✝ a : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ContinuousAt (uncurry s.potential) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
have e : uncurry s.potential =ᶠ[𝓝 (c, z)] fun p : ℂ × S ↦ s.potential' p.1 p.2 n := by have a' : ∀ᶠ p : ℂ × S in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near := (s.iter_holomorphic n _).continuousAt.eventually_mem (s.isOpen_near.mem_nhds a) refine a'.mp (eventually_of_forall fun p h ↦ ?_) simp only [uncurry, s.potential_eq h]
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ ContinuousAt (uncurry s.potential) (c, z)
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (uncurry s.potential) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ ContinuousAt (uncurry s.potential) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
simp only [continuousAt_congr e, Super.potential']
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (uncurry s.potential) (c, z)
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => Complex.abs (s.bottcherNear p.1 ((f p.1)^[n] p.2)) ^ (↑d ^ n)⁻¹) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (uncurry s.potential) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
refine ContinuousAt.rpow ?_ continuousAt_const ?_
case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => Complex.abs (s.bottcherNear p.1 ((f p.1)^[n] p.2)) ^ (↑d ^ n)⁻¹) (c, z)
case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => Complex.abs (s.bottcherNear p.1 ((f p.1)^[n] p.2))) (c, z) case intro.refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ Complex.abs (s.bottcherNear (c, z).1 ((f (c, z).1)^[n] (c, z).2)) ≠ 0 ∨ 0 < (↑d ^ n)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => Complex.abs (s.bottcherNear p.1 ((f p.1)^[n] p.2)) ^ (↑d ^ n)⁻¹) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
have a' : ∀ᶠ p : ℂ × S in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near := (s.iter_holomorphic n _).continuousAt.eventually_mem (s.isOpen_near.mem_nhds a)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near ⊢ (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near ⊢ (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
refine a'.mp (eventually_of_forall fun p h ↦ ?_)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near ⊢ (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near p : ℂ × S h : (p.1, (f p.1)^[n] p.2) ∈ s.near ⊢ uncurry s.potential p = (fun p => s.potential' p.1 p.2 n) p
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near ⊢ (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
simp only [uncurry, s.potential_eq h]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near p : ℂ × S h : (p.1, (f p.1)^[n] p.2) ∈ s.near ⊢ uncurry s.potential p = (fun p => s.potential' p.1 p.2 n) p
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near a' : ∀ᶠ (p : ℂ × S) in 𝓝 (c, z), (p.1, (f p.1)^[n] p.2) ∈ s.near p : ℂ × S h : (p.1, (f p.1)^[n] p.2) ∈ s.near ⊢ uncurry s.potential p = (fun p => s.potential' p.1 p.2 n) p TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
apply Complex.continuous_abs.continuousAt.comp
case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => Complex.abs (s.bottcherNear p.1 ((f p.1)^[n] p.2))) (c, z)
case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => s.bottcherNear p.1 ((f p.1)^[n] p.2)) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => Complex.abs (s.bottcherNear p.1 ((f p.1)^[n] p.2))) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
refine ((s.bottcherNear_holomorphic _ ?_).comp (s.iter_holomorphic n (c, z))).continuousAt
case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => s.bottcherNear p.1 ((f p.1)^[n] p.2)) (c, z)
case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ContinuousAt (fun p => s.bottcherNear p.1 ((f p.1)^[n] p.2)) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
exact a
case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_1 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ ((c, z).1, (f (c, z).1)^[n] (c, z).2) ∈ s.near TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
right
case intro.refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ Complex.abs (s.bottcherNear (c, z).1 ((f (c, z).1)^[n] (c, z).2)) ≠ 0 ∨ 0 < (↑d ^ n)⁻¹
case intro.refine_2.h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ 0 < (↑d ^ n)⁻¹
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2 S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ Complex.abs (s.bottcherNear (c, z).1 ((f (c, z).1)^[n] (c, z).2)) ≠ 0 ∨ 0 < (↑d ^ n)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
ContinuousAt.potential_of_reaches
[171, 1]
[184, 17]
bound
case intro.refine_2.h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ 0 < (↑d ^ n)⁻¹
no goals
Please generate a tactic in lean4 to solve the state. STATE: case intro.refine_2.h S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a✝ z : S d n✝ : ℕ s : Super f d a✝ n : ℕ a : (c, (f c)^[n] z) ∈ s.near e : (𝓝 (c, z)).EventuallyEq (uncurry s.potential) fun p => s.potential' p.1 p.2 n ⊢ 0 < (↑d ^ n)⁻¹ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
constructor
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z = 0 ↔ ∃ n, (f c)^[n] z = a
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z = 0 → ∃ n, (f c)^[n] z = a case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (∃ n, (f c)^[n] z = a) → s.potential c z = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z = 0 ↔ ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
intro h
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z = 0 → ∃ n, (f c)^[n] z = a
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 ⊢ ∃ n, (f c)^[n] z = a
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ s.potential c z = 0 → ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
by_cases r : ∃ n, (c, (f c)^[n] z) ∈ s.near
case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 ⊢ ∃ n, (f c)^[n] z = a
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 ⊢ ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
rcases r with ⟨n, r⟩
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a h : s.potential c z = 0 n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
simp only [s.potential_eq r, Super.potential', Real.rpow_eq_zero_iff_of_nonneg (Complex.abs.nonneg _), Complex.abs.eq_zero, s.bottcherNear_eq_zero r] at h
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a h : s.potential c z = 0 n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near h : (f c)^[n] z = a ∧ (↑d ^ n)⁻¹ ≠ 0 ⊢ ∃ n, (f c)^[n] z = a
Please generate a tactic in lean4 to solve the state. STATE: case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a h : s.potential c z = 0 n : ℕ r : (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
use n, h.1
case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near h : (f c)^[n] z = a ∧ (↑d ^ n)⁻¹ ≠ 0 ⊢ ∃ n, (f c)^[n] z = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ r : (c, (f c)^[n] z) ∈ s.near h : (f c)^[n] z = a ∧ (↑d ^ n)⁻¹ ≠ 0 ⊢ ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
rw [not_exists] at r
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ∀ (x : ℕ), (c, (f c)^[x] z) ∉ s.near ⊢ ∃ n, (f c)^[n] z = a
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
simp only [s.potential_eq_one r, one_ne_zero] at h
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ∀ (x : ℕ), (c, (f c)^[x] z) ∉ s.near ⊢ ∃ n, (f c)^[n] z = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a h : s.potential c z = 0 r : ∀ (x : ℕ), (c, (f c)^[x] z) ∉ s.near ⊢ ∃ n, (f c)^[n] z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
intro p
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (∃ n, (f c)^[n] z = a) → s.potential c z = 0
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ∃ n, (f c)^[n] z = a ⊢ s.potential c z = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ (∃ n, (f c)^[n] z = a) → s.potential c z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
rcases p with ⟨n, p⟩
case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ∃ n, (f c)^[n] z = a ⊢ s.potential c z = 0
case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : (f c)^[n] z = a ⊢ s.potential c z = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a p : ∃ n, (f c)^[n] z = a ⊢ s.potential c z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
have nz : d^n > 0 := pow_pos s.dp _
case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : (f c)^[n] z = a ⊢ s.potential c z = 0
case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : (f c)^[n] z = a nz : d ^ n > 0 ⊢ s.potential c z = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : (f c)^[n] z = a ⊢ s.potential c z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero
[187, 1]
[199, 78]
rw [← pow_eq_zero_iff nz.ne', ← s.potential_eqn_iter n, p, s.potential_a]
case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : (f c)^[n] z = a nz : d ^ n > 0 ⊢ s.potential c z = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr.intro S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a n : ℕ p : (f c)^[n] z = a nz : d ^ n > 0 ⊢ s.potential c z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
UpperSemicontinuous.potential
[202, 1]
[208, 87]
intro ⟨c, z⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ UpperSemicontinuous (uncurry s.potential)
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a ⊢ UpperSemicontinuous (uncurry s.potential) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
UpperSemicontinuous.potential
[202, 1]
[208, 87]
by_cases r : ∃ n, (c, (f c)^[n] z) ∈ s.near
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z)
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z) case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z)
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
UpperSemicontinuous.potential
[202, 1]
[208, 87]
exact (ContinuousAt.potential_of_reaches s r).upperSemicontinuousAt
case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
UpperSemicontinuous.potential
[202, 1]
[208, 87]
simp only [uncurry, UpperSemicontinuousAt, s.potential_eq_one (not_exists.mp r)]
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z)
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ (y : ℝ), 1 < y → ∀ᶠ (x' : ℂ × S) in 𝓝 (c, z), s.potential x'.1 x'.2 < y
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ UpperSemicontinuousAt (uncurry s.potential) (c, z) TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
UpperSemicontinuous.potential
[202, 1]
[208, 87]
exact fun y y1 ↦ eventually_of_forall fun p ↦ lt_of_le_of_lt s.potential_le_one y1
case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ (y : ℝ), 1 < y → ∀ᶠ (x' : ℂ × S) in 𝓝 (c, z), s.potential x'.1 x'.2 < y
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z✝ : S d n : ℕ s : Super f d a c : ℂ z : S r : ¬∃ n, (c, (f c)^[n] z) ∈ s.near ⊢ ∀ (y : ℝ), 1 < y → ∀ᶠ (x' : ℂ × S) in 𝓝 (c, z), s.potential x'.1 x'.2 < y TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.preimage_eq'
[216, 1]
[217, 69]
have e := o.eq_a c z
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s ⊢ f c z = a ↔ z = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e : f c z = a → z = a ⊢ f c z = a ↔ z = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s ⊢ f c z = a ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.preimage_eq'
[216, 1]
[217, 69]
refine ⟨e, ?_⟩
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e : f c z = a → z = a ⊢ f c z = a ↔ z = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e : f c z = a → z = a ⊢ z = a → f c z = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e : f c z = a → z = a ⊢ f c z = a ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.preimage_eq'
[216, 1]
[217, 69]
intro e
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e : f c z = a → z = a ⊢ z = a → f c z = a
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e✝ : f c z = a → z = a e : z = a ⊢ f c z = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e : f c z = a → z = a ⊢ z = a → f c z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.preimage_eq'
[216, 1]
[217, 69]
simp only [e, s.f0]
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e✝ : f c z = a → z = a e : z = a ⊢ f c z = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s e✝ : f c z = a → z = a e : z = a ⊢ f c z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.preimage_eq
[219, 1]
[222, 62]
induction' n with n h
S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ ⊢ (f c)^[n] z = a ↔ z = a
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s ⊢ (f c)^[0] z = a ↔ z = a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ h : (f c)^[n] z = a ↔ z = a ⊢ (f c)^[n + 1] z = a ↔ z = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ ⊢ (f c)^[n] z = a ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.preimage_eq
[219, 1]
[222, 62]
simp only [Function.iterate_zero_apply]
case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s ⊢ (f c)^[0] z = a ↔ z = a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ h : (f c)^[n] z = a ↔ z = a ⊢ (f c)^[n + 1] z = a ↔ z = a
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ h : (f c)^[n] z = a ↔ z = a ⊢ (f c)^[n + 1] z = a ↔ z = a
Please generate a tactic in lean4 to solve the state. STATE: case zero S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n : ℕ s : Super f d a o : OnePreimage s ⊢ (f c)^[0] z = a ↔ z = a case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ h : (f c)^[n] z = a ↔ z = a ⊢ (f c)^[n + 1] z = a ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.preimage_eq
[219, 1]
[222, 62]
simp only [Function.iterate_succ_apply', s.preimage_eq', h]
case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ h : (f c)^[n] z = a ↔ z = a ⊢ (f c)^[n + 1] z = a ↔ z = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case succ S : Type inst✝⁴ : TopologicalSpace S inst✝³ : CompactSpace S inst✝² : T3Space S inst✝¹ : ChartedSpace ℂ S inst✝ : AnalyticManifold I S f : ℂ → S → S c : ℂ a z : S d n✝ : ℕ s : Super f d a o : OnePreimage s n : ℕ h : (f c)^[n] z = a ↔ z = a ⊢ (f c)^[n + 1] z = a ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
constructor
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ s.potential c z = 0 ↔ z = a
case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ s.potential c z = 0 → z = a case mpr S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ z = a → s.potential c z = 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ s.potential c z = 0 ↔ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
intro h
case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ s.potential c z = 0 → z = a
case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : s.potential c z = 0 ⊢ z = a
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ s.potential c z = 0 → z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
rw [s.potential_eq_zero] at h
case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : s.potential c z = 0 ⊢ z = a
case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : ∃ n, (f c)^[n] z = a ⊢ z = a
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : s.potential c z = 0 ⊢ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
rcases h with ⟨n, h⟩
case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : ∃ n, (f c)^[n] z = a ⊢ z = a
case mp.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : ℕ h : (f c)^[n] z = a ⊢ z = a
Please generate a tactic in lean4 to solve the state. STATE: case mp S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : ∃ n, (f c)^[n] z = a ⊢ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
rw [s.preimage_eq] at h
case mp.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : ℕ h : (f c)^[n] z = a ⊢ z = a
case mp.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : ℕ h : z = a ⊢ z = a
Please generate a tactic in lean4 to solve the state. STATE: case mp.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : ℕ h : (f c)^[n] z = a ⊢ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
exact h
case mp.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : ℕ h : z = a ⊢ z = a
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mp.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : ℕ h : z = a ⊢ z = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
intro h
case mpr S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ z = a → s.potential c z = 0
case mpr S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : z = a ⊢ s.potential c z = 0
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ z = a → s.potential c z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_eq_zero_of_onePreimage
[224, 1]
[228, 42]
simp only [h, s.potential_a]
case mpr S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : z = a ⊢ s.potential c z = 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: case mpr S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ h : z = a ⊢ s.potential c z = 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_ne_zero
[230, 1]
[231, 89]
simp only [Ne, s.potential_eq_zero_of_onePreimage]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ s.potential c z ≠ 0 ↔ z ≠ a
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ s.potential c z ≠ 0 ↔ z ≠ a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_pos
[233, 1]
[236, 61]
rw [← s.potential_ne_zero c]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ 0 < s.potential c z ↔ z ≠ a
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ 0 < s.potential c z ↔ s.potential c z ≠ 0
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ 0 < s.potential c z ↔ z ≠ a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.potential_pos
[233, 1]
[236, 61]
use ne_of_gt, fun ne ↦ ne.symm.lt_of_le s.potential_nonneg
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ 0 < s.potential c z ↔ s.potential c z ≠ 0
no goals
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ ⊢ 0 < s.potential c z ↔ s.potential c z ≠ 0 TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
have h : ∀ q : ℂ × S, f q.1 q.2 = a → q.2 = a := fun _ ↦ by simp only [s.preimage_eq', imp_self]
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
contrapose h
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ¬∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a ⊢ ∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
simp only [Filter.not_eventually, not_forall, exists_prop] at h
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ¬∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ¬∀ᶠ (p : ℂ × S) in 𝓝 (c, a), ∀ (q : ℂ × S), p = s.fp q → q ∈ n ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
set t := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ)
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
have tc : IsClosed t := by refine (IsCompact.image ?_ s.fpa.continuous).isClosed exact ((isCompact_closedBall _ _).prod isCompact_univ).inter_right no.isClosed_compl
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
have th : ∃ᶠ p in 𝓝 (c, a), p ∈ t := by have mb : ∀ᶠ p : ℂ × S in 𝓝 (c, a), p.1 ∈ closedBall c 1 := continuousAt_fst.eventually_mem_nhd (Metric.closedBall_mem_nhds _ zero_lt_one) refine (h.and_eventually mb).mp (eventually_of_forall fun p i ↦ ?_) rcases i with ⟨⟨q, qp, m⟩, b⟩ simp only [Prod.ext_iff] at qp; simp only [qp.1] at b simp only [Set.mem_image, Set.mem_compl_iff, Set.mem_inter_iff, Set.mem_prod_eq, Set.mem_univ, and_true_iff, Prod.ext_iff, t] use q, ⟨b, m⟩, qp.1.symm, qp.2.symm
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
have m := th.mem_of_closed tc
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m : (c, a) ∈ t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
rcases(Set.mem_image _ _ _).mp m with ⟨p, m, pa⟩
S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m : (c, a) ∈ t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : s.fp p = (c, a) ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m : (c, a) ∈ t ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
simp only [Super.fp, Prod.mk.inj_iff] at pa
case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : s.fp p = (c, a) ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : s.fp p = (c, a) ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
simp only [not_forall]
case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a
case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ∃ x, ∃ (_ : f x.1 x.2 = a), ¬x.2 = a
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ¬∀ (q : ℂ × S), f q.1 q.2 = a → q.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
use p, pa.2
case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ∃ x, ∃ (_ : f x.1 x.2 = a), ¬x.2 = a
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ¬p.2 = a
Please generate a tactic in lean4 to solve the state. STATE: case intro.intro S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ∃ x, ∃ (_ : f x.1 x.2 = a), ¬x.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
contrapose m
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ¬p.2 = a
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S pa : p.1 = c ∧ f p.1 p.2 = a m : ¬¬p.2 = a ⊢ p ∉ closedBall c 1 ×ˢ univ ∩ nᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S m : p ∈ closedBall c 1 ×ˢ univ ∩ nᶜ pa : p.1 = c ∧ f p.1 p.2 = a ⊢ ¬p.2 = a TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
simp only [not_not, Set.mem_compl_iff] at m ⊢
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S pa : p.1 = c ∧ f p.1 p.2 = a m : ¬¬p.2 = a ⊢ p ∉ closedBall c 1 ×ˢ univ ∩ nᶜ
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S pa : p.1 = c ∧ f p.1 p.2 = a m : p.2 = a ⊢ p ∉ closedBall c 1 ×ˢ univ ∩ nᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S pa : p.1 = c ∧ f p.1 p.2 = a m : ¬¬p.2 = a ⊢ p ∉ closedBall c 1 ×ˢ univ ∩ nᶜ TACTIC:
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Dynamics/Potential.lean
Super.no_jump
[239, 1]
[265, 8]
rw [← @Prod.mk.eta _ _ p, pa.1, m]
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S pa : p.1 = c ∧ f p.1 p.2 = a m : p.2 = a ⊢ p ∉ closedBall c 1 ×ˢ univ ∩ nᶜ
case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S pa : p.1 = c ∧ f p.1 p.2 = a m : p.2 = a ⊢ (c, a) ∉ closedBall c 1 ×ˢ univ ∩ nᶜ
Please generate a tactic in lean4 to solve the state. STATE: case h S : Type inst✝⁵ : TopologicalSpace S inst✝⁴ : CompactSpace S inst✝³ : T3Space S inst✝² : ChartedSpace ℂ S inst✝¹ : AnalyticManifold I S f : ℂ → S → S c✝ : ℂ a z : S d n✝ : ℕ s : Super f d a inst✝ : OnePreimage s c : ℂ n : Set (ℂ × S) no : IsOpen n na : (c, a) ∈ n h : ∃ᶠ (x : ℂ × S) in 𝓝 (c, a), ∃ x_1, x = s.fp x_1 ∧ x_1 ∉ n t : Set (ℂ × S) := s.fp '' (closedBall c 1 ×ˢ univ ∩ nᶜ) tc : IsClosed t th : ∃ᶠ (p : ℂ × S) in 𝓝 (c, a), p ∈ t m✝ : (c, a) ∈ t p : ℂ × S pa : p.1 = c ∧ f p.1 p.2 = a m : p.2 = a ⊢ p ∉ closedBall c 1 ×ˢ univ ∩ nᶜ TACTIC: