exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
51192a5708fb48bea8fb8921d516d468
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0<x_1<x_2<\ldots<x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class MyClass { public static void main(String[] args) { FastReader sc=new FastReader(); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int a=sc.nextInt(); int b=sc.nextInt(); long[] arr=new long[n]; long sum=0; for(int i=0; i<n; i++){ arr[i]=sc.nextLong(); sum+=arr[i]; } long ans=sum*b; long tempsum=0; for(int i=0; i<n; i++){ long kbja=arr[i]*b; long cap=arr[i]*a; tempsum+=arr[i]; long tempans=kbja+cap+(b*((sum-tempsum)-((n-i-1)*arr[i]))); ans=Math.min(ans,tempans); } System.out.println(ans); } } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
0b35c08089a88076f1bb451aa5bed976
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; public class TaskC { public static void main(String[] args) { FastScanner in = new FastScanner(); PrintWriter out = new PrintWriter(System.out); TaskC s = new TaskC(); s.solve(in, out); out.flush(); } void solveOne(FastScanner in, PrintWriter out) { int n = in.nextInt(); long a = in.nextLong(), b = in.nextLong(); long[] x = new long[n+1]; for (int i = 1; i <= n; i++) x[i] = in.nextLong(); long[] conquer = new long[n+1]; long suff = 0; for (int i = n; i >= 1; i--) { suff += x[i]; conquer[i] = b * (suff - x[i-1] * (n-i+1)); } long ans = conquer[1]; long t = 0; for (int i = 1; i <= n-1; i++) { t += (b + a) * (x[i] - x[i-1]); ans = Math.min(ans, t + conquer[i+1]); } out.println(ans); } void solve(FastScanner in, PrintWriter out) { int t = 1; t = in.nextInt(); for (int tc = 1; tc <= t; tc++) { // out.printf("Case #%d: ", tc); solveOne(in, out); } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } float nextFloat() { return Float.parseFloat(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
66810fba15d165ea7f3628165b80e650
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); CLineEmpire solver = new CLineEmpire(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class CLineEmpire { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(), a = in.nextInt(), b = in.nextInt(); int[] arr = in.nextIntArray(n); int last = 0; long[] suff = new long[n]; suff[n - 1] = arr[n - 1]; for (int i = n - 2; i >= 0; i--) suff[i] = suff[i + 1] + arr[i]; long ans = suff[0] * b; for (int i = 0; i < n - 1; i++) { long temp = (long) a * (arr[i]) + (long) b * (arr[i]) + (long) (suff[i + 1] - (long) (n - 1 - i) * arr[i]) * b; ans = Math.min(ans, temp); } out.println(ans); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void close() { writer.close(); } public void println(long i) { writer.println(i); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int[] nextIntArray(int n) { int[] array = new int[n]; for (int i = 0; i < n; ++i) array[i] = nextInt(); return array; } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
781368978600f0d8d887ed7afc35713c
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
// Contest 1659, Problem C // Line Empire import java.io.*; import java.util.*; public class C { static BufferedInputStream bis; public static int readInt() throws IOException { int num = 0; int b = bis.read(); while(b < '0' || b > '9') b = bis.read(); while(b >= '0') { num = num*10 + b - '0'; b = bis.read(); } return num; } public static void main(String[] args) throws IOException { bis = new BufferedInputStream(System.in); StringBuilder sb = new StringBuilder(); int T = readInt(); for(int cN=0; cN<T; cN++) { int N = readInt()+1; long a = readInt(); long b = readInt(); long [] x = new long [N]; for(int i=1; i<N; i++) { x[i] = readInt(); } long c = a+b; long cost = c*x[N-1]; long sum = 0; long past = 1; long min = cost; for(int i=N-2; i>=0; i--) { // where i is the last location capital gets advanced to sum += b*past*(x[i+1] - x[i]); cost = c*x[i] + sum; if(cost < min) min = cost; past++; } sb.append(min).append('\n'); } System.out.print(sb); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
862ef491ba0e788a745d6850138544da
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { static StringBuilder sb; static dsu dsu; static long fact[]; static int mod = (int) (1e9 + 7); static void solve() { int n=i(); long a=l(); long b=l(); long[]arr=new long[n]; for(int i=0;i<n;i++)arr[i]=l(); long[]ps=new long [n]; ps[0]=arr[0]; for(int i=1;i<n;i++){ ps[i]=ps[i-1]+arr[i]; } long ans=b*(ps[n-1]); for(int i=0;i<n;i++){ long c1=a*(arr[i])+b*(arr[i]); long rem=n-(i+1); long s=ps[n-1]-ps[i]; // if(i==1)System.out.println(ps[n-1]+" "+ps[i]); long c2=b*(s-(rem*arr[i])); // if(i==1)System.out.println(c1+" "+c2); ans=Math.min(ans,c1+c2); } sb.append(ans+"\n"); } public static void main(String[] args) { sb = new StringBuilder(); int test = i(); fact=new long[(int)1e6+10]; fact[0]=fact[1]=1; for(int i=2;i<fact.length;i++) { fact[i]=((long)(i%mod)*(long)(fact[i-1]%mod))%mod; } while (test-- > 0) { solve(); } System.out.println(sb); } //**************NCR%P****************** static long ncr(int n, int r) { if (r > n) return (long) 0; long res = fact[n] % mod; // System.out.println(res); res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod; res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod; // System.out.println(res); return res; } static long p(long x, long y)// POWER FXN // { if (y == 0) return 1; long res = 1; while (y > 0) { if (y % 2 == 1) { res = (res * x) % mod; y--; } x = (x * x) % mod; y = y / 2; } return res; } //**************END****************** // *************Disjoint set // union*********// static class dsu { int parent[]; dsu(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = i; } int find(int a) { if (parent[a] ==a) return a; else { int x = find(parent[a]); parent[a] = x; return x; } } void merge(int a, int b) { a = find(a); b = find(b); if (a == b) return; parent[b] = a; } } //**************PRIME FACTORIZE **********************************// static TreeMap<Integer, Integer> prime(long n) { TreeMap<Integer, Integer> h = new TreeMap<>(); long num = n; for (int i = 2; i <= Math.sqrt(num); i++) { if (n % i == 0) { int nt = 0; while (n % i == 0) { n = n / i; nt++; } h.put(i, nt); } } if (n != 1) h.put((int) n, 1); return h; } //****CLASS PAIR ************************************************ static class Pair implements Comparable<Pair> { int x; long y; Pair(int x, long y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return (int) (this.y - o.y); } } //****CLASS PAIR ************************************************** static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } static InputReader in = new InputReader(System.in); static OutputWriter out = new OutputWriter(System.out); public static long[] sort(long[] a2) { int n = a2.length; ArrayList<Long> l = new ArrayList<>(); for (long i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static char[] sort(char[] a2) { int n = a2.length; ArrayList<Character> l = new ArrayList<>(); for (char i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static long pow(long x, long y) { long res = 1; while (y > 0) { if (y % 2 != 0) { res = (res * x);// % modulus; y--; } x = (x * x);// % modulus; y = y / 2; } return res; } //GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } // ******LOWEST COMMON MULTIPLE // ********************************************* public static long lcm(long x, long y) { return (x * (y / gcd(x, y))); } //INPUT PATTERN******************************************************** public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } public static int[] readArrayi(int n) { int A[] = new int[n]; for (int i = 0; i < n; i++) { A[i] = i(); } return A; } public static long[] readArray(long n) { long A[] = new long[(int) n]; for (int i = 0; i < n; i++) { A[i] = l(); } return A; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
552599f41820dec68a4f1ad1438d4673
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class C { public static void main(String[] args)throws IOException { FastReader sc = new FastReader(); StringBuilder sb = new StringBuilder(); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); long[] arr = new long[n+1]; for(int i =1;i<n+1;i++)arr[i]=sc.nextLong(); long[] p = new long[n+1]; for(int i =1;i<=n;i++) { p[i]=p[i-1]+arr[i]; } long ans = Long.MAX_VALUE; for(int i = 0;i<=n;i++) { ans = Math.min(ans, (a*arr[i]+b*(p[n]-p[i]-(n-i-1)*arr[i]))); } sb.append(ans).append("\n"); } System.out.println(sb); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
ed84b7b8540eca815d839bec89e84749
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class Codeforces { public static void main(String args[])throws Exception { BufferedReader bu=new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb=new StringBuilder(); int t=Integer.parseInt(bu.readLine()); while(t-->0) { String s[]=bu.readLine().split(" "); int n=Integer.parseInt(s[0]),a=Integer.parseInt(s[1]),b=Integer.parseInt(s[2]); int c[]=new int[n+1],i; s=bu.readLine().split(" "); for(i=1;i<=n;i++) c[i]=Integer.parseInt(s[i-1]); long sum[]=new long[n+2]; for(i=n;i>=0;i--) sum[i]=sum[i+1]+c[i]; long ans=sum[0]*b; int cap=0; for(i=1;i<=n;i++) { long cur=ans-(sum[i+1]-1l*(n-i)*cap)*b; cur+=(sum[i+1]-1l*(n-i)*c[i])*b; cur+=1l*a*(c[i]-cap); if(cur<ans) { ans=cur; cap=c[i]; } } sb.append(ans+"\n"); } System.out.print(sb); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
8f4ef68f7d194ab067f1d5dd3739186f
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.math.*; import java.security.KeyStore.Entry; import java.util.*; public class code { private static boolean[] vis; private static long[] dist; private static long mod = 1000000000 + 7; public static void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int [n1]; int R[] = new int [n2]; /*Copy data to temp arrays*/ for (int i=0; i<n1; ++i) L[i] = arr[l + i]; for (int j=0; j<n2; ++j) R[j] = arr[m + 1+ j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } public static void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l+r)/2; // Sort first and second halves sort(arr, l, m); sort(arr , m+1, r); // Merge the sorted halves merge(arr, l, m, r); } } private static long gcd(long n, long l) { if (l == 0) return n; return gcd(l, n % l); } private static int gcd(int n, int l) { if (l == 0) return n; return gcd(l, n % l); } public static void dfs(ArrayList<Integer>[] gr,int v) { vis[v]=true; ArrayList<Integer> arr=gr[v]; for(int i=0;i<arr.size();i++) { if(!vis[arr.get(i)]) { dfs(gr,arr.get(i)); } } } private static class Pairs implements Comparable<Pairs>{ String v;int i;int j; public Pairs(String a,int b,int c){ v=a; i=b; j=c; } @Override public int compareTo(Pairs arg0) { if(!this.v.equals(arg0.v)) return this.v.compareTo(arg0.v); else return arg0.i-this.i; } } private static class Pair implements Comparable<Pair>{ int v,i;Pair j; public Pair(int a,int b){ v=a; i=b; } public Pair(int a,Pair b) { v=a; j=b; } @Override public int compareTo(Pair arg0) { { if(this.i!=arg0.i) return this.i-arg0.i; else return arg0.v-this.v; } } } public static long mmi(long a, long m) { long m0 = m; long y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } private static long pow(long a, long b, long c) { if (b == 0) return 1; long p = pow(a, b / 2, c); p = (p * p) % c; return (b % 2 == 0) ? p : (a * p) % c; } public static int ub(ArrayList<Integer> array, int low,int high, int value) { while (low < high) { final int mid = (low + high) / 2; if (value >= array.get(mid)) { low = mid + 1; } else { high = mid; } } return low; } public static void main(String[] args) throws Exception { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); long[] arr = new long[n]; for(int i=0;i<n;i++) arr[i] = sc.nextLong(); long[] pre = new long[n]; pre[0]=arr[0]; for(int i=1;i<n;i++) { pre[i]=pre[i-1]+arr[i]; } // System.out.println(Arrays.toString(pre)); long ans = pre[n-1]*b; for(int i=0;i<n-1;i++) { long makeCapital = arr[i]*(a+b); long concurRemaining = (pre[n-1]-pre[i]-(n-i-1)*arr[i])*b; long tempAns = makeCapital + concurRemaining; // System.out.println(makeCapital +" "+ concurRemaining); if(tempAns<ans) ans = tempAns; } System.out.println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
b12b24dc8a97f81023e05bd488958b6e
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); while (t-->0){ int[] nab = Arrays.stream(br.readLine().split("\\s+")).mapToInt(Integer::parseInt).toArray(); long n = nab[0]; long a = nab[1]; long b = nab[2]; long[] vals = Arrays.stream(br.readLine().split("\\s+")).mapToLong(Integer::parseInt).toArray(); long ans = vals[0]*b; long lastCapital = 0; for(int i=1;i<n;i++){ // System.out.println(ans); long costtoMove = (vals[i-1]-lastCapital)*a; if(costtoMove<(vals[i-1]-lastCapital)*(n-i)*b){ ans+=costtoMove; lastCapital = vals[i-1]; } ans+= (vals[i]-lastCapital)*b; } System.out.println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
7479b62862c0f0a91f4d8816757fe45f
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class C { static class Scan { private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; public Scan() { in=System.in; } public int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } public int scanInt()throws IOException { int integer=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { integer*=10; integer+=n-'0'; n=scan(); } else throw new InputMismatchException(); } return neg*integer; } public double scanDouble()throws IOException { double doub=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)&&n!='.') { if(n>='0'&&n<='9') { doub*=10; doub+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); double temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; doub+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return doub*neg; } public String scanString()throws IOException { StringBuilder sb=new StringBuilder(); int n=scan(); while(isWhiteSpace(n)) n=scan(); while(!isWhiteSpace(n)) { sb.append((char)n); n=scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } } public static void sort(int arr[],int l,int r) { //sort(arr,0,n-1); if(l==r) { return; } int mid=(l+r)/2; sort(arr,l,mid); sort(arr,mid+1,r); merge(arr,l,mid,mid+1,r); } public static void merge(int arr[],int l1,int r1,int l2,int r2) { int tmp[]=new int[r2-l1+1]; int indx1=l1,indx2=l2; //sorting the two halves using a tmp array for(int i=0;i<tmp.length;i++) { if(indx1>r1) { tmp[i]=arr[indx2]; indx2++; continue; } if(indx2>r2) { tmp[i]=arr[indx1]; indx1++; continue; } if(arr[indx1]<arr[indx2]) { tmp[i]=arr[indx1]; indx1++; continue; } tmp[i]=arr[indx2]; indx2++; } //Copying the elements of tmp into the main array for(int i=0,j=l1;i<tmp.length;i++,j++) { arr[j]=tmp[i]; } } public static void sort(long arr[],int l,int r) { //sort(arr,0,n-1); if(l==r) { return; } int mid=(l+r)/2; sort(arr,l,mid); sort(arr,mid+1,r); merge(arr,l,mid,mid+1,r); } public static void merge(long arr[],int l1,int r1,int l2,int r2) { long tmp[]=new long[r2-l1+1]; int indx1=l1,indx2=l2; //sorting the two halves using a tmp array for(int i=0;i<tmp.length;i++) { if(indx1>r1) { tmp[i]=arr[indx2]; indx2++; continue; } if(indx2>r2) { tmp[i]=arr[indx1]; indx1++; continue; } if(arr[indx1]<arr[indx2]) { tmp[i]=arr[indx1]; indx1++; continue; } tmp[i]=arr[indx2]; indx2++; } //Copying the elements of tmp into the main array for(int i=0,j=l1;i<tmp.length;i++,j++) { arr[j]=tmp[i]; } } public static void main(String args[]) throws IOException { Scan input=new Scan(); StringBuilder ans=new StringBuilder(""); int test=input.scanInt(); for(int tt=1;tt<=test;tt++) { int n=input.scanInt(); long a=input.scanInt(); long b=input.scanInt(); long arr[]=new long[n]; for(int i=0;i<n;i++) { arr[i]=input.scanInt(); } long prefix[]=new long[n]; prefix[0]=arr[0]; for(int i=1;i<n;i++) { prefix[i]=arr[i]+prefix[i-1]; } long min=Long.MAX_VALUE; long sum=0; sum+=a*0; sum+=b*0; sum+=b*get(0,n-1,prefix); min=Math.min(min,sum); for(int i=0;i<n;i++) { sum=0; sum+=a*arr[i]; sum+=b*arr[i]; sum+=b*(get(i+1,n-1,prefix)-((n-i-1)*arr[i])); min=Math.min(min,sum); // System.out.println(i+" "+sum); } ans.append(min+"\n"); } System.out.println(ans); } public static long get(int l,int r,long arr[]) { // System.out.println(l+" "+r); return arr[r]-(l==0?0:arr[l-1]); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
9603a6feb21fb3a9f5376dac44387102
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* Rating: 1378 Date: 22-04-2022 Time: 15-25-50 Author: Kartik Papney Linkedin: https://www.linkedin.com/in/kartik-papney-4951161a6/ Leetcode: https://leetcode.com/kartikpapney/ Codechef: https://www.codechef.com/users/kartikpapney ----------------------------Jai Shree Ram---------------------------- */ import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class C_Line_Empire { public static void s() { int n = sc.nextInt(); long a = sc.nextLong(), b = sc.nextLong(); long[] arr = sc.readLongArray(n); long capitalat = 0; long ans = b*arr[0]; // p.writes(ans); for(int i=1; i<n; i++) { boolean check = (a <= (n-i)*b); if(check) { ans += a*(arr[i-1] - capitalat); capitalat = arr[i-1]; } ans += b*(arr[i]-capitalat); // p.writes(ans); } // p.writeln(); p.writeln(ans); } public static void main(String[] args) { int t = 1; t = sc.nextInt(); while (t-- != 0) { s(); } p.print(); } public static boolean debug = false; static void debug(String st) { if(debug) p.writeln(st); } static final Integer MOD = (int) 1e9 + 7; static final FastReader sc = new FastReader(); static final Print p = new Print(); static class Functions { static void sort(int... a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void sort(long... a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static int max(int... a) { int max = Integer.MIN_VALUE; for (int val : a) max = Math.max(val, max); return max; } static int min(int... a) { int min = Integer.MAX_VALUE; for (int val : a) min = Math.min(val, min); return min; } static long min(long... a) { long min = Long.MAX_VALUE; for (long val : a) min = Math.min(val, min); return min; } static long max(long... a) { long max = Long.MIN_VALUE; for (long val : a) max = Math.max(val, max); return max; } static long sum(long... a) { long sum = 0; for (long val : a) sum += val; return sum; } static int sum(int... a) { int sum = 0; for (int val : a) sum += val; return sum; } public static long mod_add(long a, long b) { return (a % MOD + b % MOD + MOD) % MOD; } public static long pow(long a, long b) { long res = 1; while (b > 0) { if ((b & 1) != 0) res = mod_mul(res, a); a = mod_mul(a, a); b >>= 1; } return res; } public static long mod_mul(long a, long b) { long res = 0; a %= MOD; while (b > 0) { if ((b & 1) > 0) { res = mod_add(res, a); } a = (2 * a) % MOD; b >>= 1; } return res; } public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static long factorial(long n) { long res = 1; for (int i = 1; i <= n; i++) { res = (i % MOD * res % MOD) % MOD; } return res; } public static int count(int[] arr, int x) { int count = 0; for (int val : arr) if (val == x) count++; return count; } public static ArrayList<Integer> generatePrimes(int n) { boolean[] primes = new boolean[n]; for (int i = 2; i < primes.length; i++) primes[i] = true; for (int i = 2; i < primes.length; i++) { if (primes[i]) { for (int j = i * i; j < primes.length; j += i) { primes[j] = false; } } } ArrayList<Integer> arr = new ArrayList<>(); for (int i = 0; i < primes.length; i++) { if (primes[i]) arr.add(i); } return arr; } } static class Print { StringBuffer strb = new StringBuffer(); public void write(Object str) { strb.append(str); } public void writes(Object str) { char c = ' '; strb.append(str).append(c); } public void writeln(Object str) { char c = '\n'; strb.append(str).append(c); } public void writeln() { char c = '\n'; strb.append(c); } public void yes() { char c = '\n'; writeln("YES"); } public void no() { writeln("NO"); } public void writes(int... arr) { for (int val : arr) { write(val); write(' '); } } public void writes(long... arr) { for (long val : arr) { write(val); write(' '); } } public void writeln(int... arr) { for (int val : arr) { writeln(val); } } public void print() { System.out.print(strb); } public void println() { System.out.println(strb); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } double[] readArrayDouble(int n) { double[] a = new double[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } String nextLine() { String str = new String(); try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
691a09dbf66db96480e21260e47dc528
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.math.*; import java.util.*; // @author : Dinosparton public class test { static class Pair{ long x; long y; Pair(long x,long y){ this.x = x; this.y = y; } } static class Sort implements Comparator<Pair> { @Override public int compare(Pair a, Pair b) { if(a.x!=b.x) { return (int)(a.x - b.x); } else { return (int)(a.y-b.y); } } } static class Compare { void compare(Pair arr[], int n) { // Comparator to sort the pair according to second element Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { if(p1.x!=p2.x) { return (int)(p1.x - p2.x); } else { return (int)(p1.y - p2.y); } } }); // for (int i = 0; i < n; i++) { // System.out.print(arr[i].x + " " + arr[i].y + " "); // } // System.out.println(); } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String args[]) throws Exception { Scanner sc = new Scanner(); StringBuilder res = new StringBuilder(); int tc = sc.nextInt(); while(tc-->0) { int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); long arr[] = new long[n]; for(int i=0;i<n;i++) { arr[i] = sc.nextLong(); } long cnt = 0; long suff[] = new long[n]; suff[n-1] = arr[n-1]; for(int i=n-2;i>=0;i--) { suff[i] = suff[i+1] + arr[i]; } // for(int i=0;i<n;i++) { // System.out.print(suff[i]+" "); // } // System.out.println(); long last = 0; for(int i=0;i<n;i++) { if((suff[i] - (long)((last)*(n-i)))*b >= a*(arr[i]-last) + (suff[i] - (long)((n-i)*arr[i]))*b + b*(arr[i]-last)) { cnt += a*(arr[i]-last) + b*(arr[i]-last); last = arr[i]; } else { cnt += b*(arr[i]-last); } } res.append(cnt+"\n"); } System.out.println(res); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
6cdd16e3658f9733cda09c07984bacee
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main{ public static FastReader cin; public static PrintWriter out; public static void main(String[] args) throws Exception{ out = new PrintWriter(new BufferedOutputStream(System.out)); cin = new FastReader(); int t=cin.nextInt(); for(int z=0;z<t;z++) { int n=cin.nextInt(); int a=cin.nextInt(); int b=cin.nextInt(); long ans=Long.MAX_VALUE; long []pos=new long [n+1]; long []presum=new long [n+1]; pos[0]=0; for(int i=1;i<=n;i++) { pos[i]=cin.nextLong(); } for(int i=1;i<=n;i++) { presum[i]=presum[i-1]+pos[i]; //System.out.printf("presum[%d]=%d ",i,presum[i]); } for(int k=0;k<=n;k++) {//i为最终capital定址 long cost=(pos[k]-pos[0])*(a+b)+(presum[n]-presum[k]-(n-k)*pos[k])*b;//转移代价 ans=Math.min(ans,cost); } out.println(ans); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer str; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (str == null || !str.hasMoreElements()) { try { str = new StringTokenizer(br.readLine()); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } } return str.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
89e8dd278f5c24547c52f59a6003d2f6
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class Main{ public static void main(String[]args){ long s = System.currentTimeMillis(); new Solver().run(); System.err.println(System.currentTimeMillis()-s+"ms"); } } class Solver{ final long mod = (long)1e9+7l; final boolean DEBUG = true, MULTIPLE_TC = true; FastReader sc; PrintWriter out; final long oo = (long)1e17; int N; long A, B, totalSum, arr[]; void init(){ N = ni(); A = nl(); B = nl(); totalSum = 0l; arr = new long[N + 1]; for(int i = 1; i <= N; i++){ arr[i] = nl(); totalSum += arr[i]; } } void process(int testNumber){ init(); long costOfMovingCapitals = 0l, res = totalSum * B, sumSoFar = 0l; for(int i = 1; i <= N; i++){ sumSoFar += arr[i]; costOfMovingCapitals += ((arr[i] - arr[i - 1]) * B) + ((arr[i] - arr[i - 1]) * A); long op = costOfMovingCapitals + ((totalSum - sumSoFar) - (N - i) * arr[i]) * B; res = Math.min(res, op); } pn(res); } void run(){ sc = new FastReader(); out = new PrintWriter(System.out); int t = MULTIPLE_TC ? ni() : 1; for(int test = 1; test <= t; test++){ process(test); } out.flush(); } void trace(Object... o){ if(!DEBUG) return; System.err.println(Arrays.deepToString(o)); }; void pn(Object o){ out.println(o); } void p(Object o){ out.print(o); } int ni(){ return Integer.parseInt(sc.next()); } long nl(){ return Long.parseLong(sc.next()); } double nd(){ return Double.parseDouble(sc.next()); } String nln(){ return sc.nextLine(); } long gcd(long a, long b){ return (b==0)?a:gcd(b,a%b);} int gcd(int a, int b){ return (b==0)?a:gcd(b,a%b); } class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } class pair implements Comparable<pair> { int first, second; public pair(int first, int second){ this.first = first; this.second = second; } @Override public int compareTo(pair ob){ if(this.first != ob.first) return this.first - ob.first; return this.second - ob.second; } @Override public String toString(){ return this.first + " " + this.second; } static public pair from(int f, int s){ return new pair(f, s); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
1f97054fb10801c747ea56805ebe2063
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; //need to be careful about negative sum resulting negative mod. public class Solution { static long mod = 1000000007; static long inv(long a, long b) {return 1 < a ? b - inv(b % a, a) * b / a : 1;} static long mi(long a) {return inv(a, mod);} static InputReader sc = new InputReader(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) throws IOException { //setUp("input.txt", "output.txt"); //setUp("maxcross.in", "maxcross.out"); int T = 1; T = sc.nextInt(); while(T-- > 0){ int n = sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); int[] A = sc.readArray(n); int capitalPos = 0; int capitalIdx = -1; long cost = 0; for(int i = 0; i < n; i++){ cost = cost + b*(A[i] - capitalPos); while(capitalIdx < i){ long movingCapital = a *(A[capitalIdx + 1] - capitalPos); int cities = i - capitalIdx - 1; long adjustment = b * (cities * (capitalPos - A[capitalIdx + 1])); long newCost = cost + movingCapital + adjustment; if(cost >= newCost){ cost = newCost; capitalIdx++; capitalPos = A[capitalIdx]; }else{ break; } } } out.println(cost); } out.close(); } public static void solve(){ } static void setUp(String input, String output) throws IOException { sc = new InputReader(new FileInputStream(input)); out = new PrintWriter(new BufferedWriter(new FileWriter(output))); } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return str; } int[] readArray(int N){ int[] arr = new int[N]; for(int i = 0 ; i < N; i++){ arr[i] = sc.nextInt(); } return arr; } long[] readLongArray(int N){ long[] arr = new long[N]; for(int i = 0 ; i < N; i++){ arr[i] = sc.nextLong(); } return arr; } } public static void shuffle(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } } public static void shuffle(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } } static class Pair<K,V> { K key; V val; public Pair(K key, V val){ this.key = key; this.val = val; } } public static int gcd(int a, int b){ if(b == 0) return a; return gcd(b, a % b); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
2269e1d5b8d1c1141d2bfc0494571e12
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.IOException; import java.io.InputStream; import java.io.PrintStream; import java.io.PrintWriter; import java.util.NoSuchElementException; import java.util.*; import static java.util.Arrays.*; public class CodeforcesTemp { public static void main(String[] args) throws IOException { Reader scan = new Reader(); FastPrinter out = new FastPrinter(); int t =scan.nextInt(); for (int tc = 1; tc <= t; tc++) { int n= scan.nextInt(); long a= scan.nextLong(); long b= scan.nextLong(); long[] arr= scan.nextLongArray(n); long[] suffix=new long[n]; suffix[n-1]=arr[n-1]; for (int i = n-2; i >=0 ; i--) { suffix[i]=suffix[i+1]+arr[i]; } long ans=arr[0]*b; long cap=0; for (int i = 1; i < n; i++) { long res1=(suffix[i]*b-((n-i)*cap*b)); long res2=(suffix[i]*b-((n-i)*arr[i-1]*b))+(arr[i-1]-cap)*a; if(res2<res1){ ans+=(arr[i-1]-cap)*a; cap=arr[i-1]; } ans+=(arr[i]-cap)*b; } out.println(ans); } out.close(); } static class Reader { private final InputStream in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private static final long LONG_MAX_TENTHS = 922337203685477580L; private static final int LONG_MAX_LAST_DIGIT = 7; private static final int LONG_MIN_LAST_DIGIT = 8; public Reader(InputStream in) { this.in = in; } public Reader() { this(System.in); } private boolean hasNextByte() { if (ptr < buflen) { return true; } else {ptr = 0; try {buflen = in.read(buffer);} catch (IOException e) {e.printStackTrace();} if (buflen <= 0) {return false;} }return true; } private int readByte() {if (hasNextByte()) return buffer[ptr++];else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126; } public boolean hasNext() {while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++; return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); long n = 0; boolean minus = false; int b = readByte(); if (b == '-') { minus = true; b = readByte(); } if (b < '0' || '9' < b) { throw new NumberFormatException(); } while (true) { if ('0' <= b && b <= '9') { int digit = b - '0'; if (n >= LONG_MAX_TENTHS) { if (n == LONG_MAX_TENTHS) { if (minus) { if (digit <= LONG_MIN_LAST_DIGIT) { n = -n * 10 - digit; b = readByte(); if (!isPrintableChar(b)) { return n; } else if (b < '0' || '9' < b) { throw new NumberFormatException( String.format("not number")); } } } else { if (digit <= LONG_MAX_LAST_DIGIT) { n = n * 10 + digit; b = readByte(); if (!isPrintableChar(b)) { return n; } else if (b < '0' || '9' < b) { throw new NumberFormatException( String.format("not number")); } } } } throw new ArithmeticException( String.format(" overflows long.")); } n = n * 10 + digit; } else if (b == -1 || !isPrintableChar(b)) { return minus ? -n : n; } else { throw new NumberFormatException(); } b = readByte(); } } public int nextInt() { long nl = nextLong(); if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE) throw new NumberFormatException(); return (int) nl; } public double nextDouble() { return Double.parseDouble(next()); } public long[] nextLongArray(int length) { long[] array = new long[length]; for (int i = 0; i < length; i++) array[i] = this.nextLong(); return array; } public long[] nextLongArray(int length, java.util.function.LongUnaryOperator map) { long[] array = new long[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsLong(this.nextLong()); return array; } public int[] nextIntArray(int length) { int[] array = new int[length]; for (int i = 0; i < length; i++) array[i] = this.nextInt(); return array; } public int[][] nextIntArrayMulti(int length, int width) { int[][] arrays = new int[width][length]; for (int i = 0; i < length; i++) { for (int j = 0; j < width; j++) arrays[j][i] = this.nextInt(); } return arrays; } public int[] nextIntArray(int length, java.util.function.IntUnaryOperator map) { int[] array = new int[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsInt(this.nextInt()); return array; } public double[] nextDoubleArray(int length) { double[] array = new double[length]; for (int i = 0; i < length; i++) array[i] = this.nextDouble(); return array; } public double[] nextDoubleArray(int length, java.util.function.DoubleUnaryOperator map) { double[] array = new double[length]; for (int i = 0; i < length; i++) array[i] = map.applyAsDouble(this.nextDouble()); return array; } public long[][] nextLongMatrix(int height, int width) { long[][] mat = new long[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextLong(); } return mat; } public int[][] nextIntMatrix(int height, int width) { int[][] mat = new int[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextInt(); } return mat; } public double[][] nextDoubleMatrix(int height, int width) { double[][] mat = new double[height][width]; for (int h = 0; h < height; h++) for (int w = 0; w < width; w++) { mat[h][w] = this.nextDouble(); } return mat; } public char[][] nextCharMatrix(int height, int width) { char[][] mat = new char[height][width]; for (int h = 0; h < height; h++) { String s = this.next(); for (int w = 0; w < width; w++) { mat[h][w] = s.charAt(w); } } return mat; } } static class FastPrinter extends PrintWriter { public FastPrinter(PrintStream stream) { super(stream); } public FastPrinter() { super(System.out); } private static String dtos(double x, int n) { StringBuilder sb = new StringBuilder(); if (x < 0) { sb.append('-'); x = -x; } x += Math.pow(10, -n) / 2; sb.append((long) x); sb.append("."); x -= (long) x; for (int i = 0; i < n; i++) { x *= 10; sb.append((int) x); x -= (int) x; } return sb.toString(); } @Override public void print(float f) { super.print(dtos(f, 20)); } @Override public void println(float f) { super.println(dtos(f, 20)); } @Override public void print(double d) { super.print(dtos(d, 20)); } @Override public void println(double d) { super.println(dtos(d, 20)); } public void printArray(int[] array, String separator) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(array[i]); super.print(separator); } super.println(array[n - 1]); } public void printArray(int[] array) { this.printArray(array, " "); } public void printArray(int[] array, String separator, java.util.function.IntUnaryOperator map) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(map.applyAsInt(array[i])); super.print(separator); } super.println(map.applyAsInt(array[n - 1])); } public void printArray(int[] array, java.util.function.IntUnaryOperator map) { this.printArray(array, " ", map); } public void printArray(long[] array, String separator) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(array[i]); super.print(separator); } super.println(array[n - 1]); } public void printArray(long[] array) { this.printArray(array, " "); } public void printArray(long[] array, String separator, java.util.function.LongUnaryOperator map) { int n = array.length; for (int i = 0; i < n - 1; i++) { super.print(map.applyAsLong(array[i])); super.print(separator); } super.println(map.applyAsLong(array[n - 1])); } public void printArray(long[] array, java.util.function.LongUnaryOperator map) { this.printArray(array, " ", map); } public void printMatrix(int[][] arr) { for (int i = 0; i < arr.length; i++) { this.printArray(arr[i]); } } } static Random __r = new Random(); static int randInt(int min, int max) {return __r.nextInt(max - min + 1) + min;} static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void rsort(int[] a) {shuffle(a); sort(a);} static void rsort(long[] a) {shuffle(a); sort(a);} static void rsort(double[] a) {shuffle(a); sort(a);} static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
952e1e017a5ab2b7f412a0f6badf0b6e
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import javax.sound.midi.Soundbank; import java.awt.*; import java.io.*; import java.util.*; import java.util.zip.InflaterInputStream; public class Main { static int N = 1001; // Array to store inverse of 1 to N static long[] factorialNumInverse = new long[N + 1]; // Array to precompute inverse of 1! to N! static long[] naturalNumInverse = new long[N + 1]; // Array to store factorial of first N numbers static long[] fact = new long[N + 1]; // Function to precompute inverse of numbers public static void InverseofNumber(int p) { naturalNumInverse[0] = naturalNumInverse[1] = 1; for(int i = 2; i <= N; i++) naturalNumInverse[i] = naturalNumInverse[p % i] * (long)(p - p / i) % p; } public static void InverseofFactorial(int p) { factorialNumInverse[0] = factorialNumInverse[1] = 1; // Precompute inverse of natural numbers for(int i = 2; i <= N; i++) factorialNumInverse[i] = (naturalNumInverse[i] * factorialNumInverse[i - 1]) % p; } // Function to calculate factorial of 1 to N public static void factorial(int p) { fact[0] = 1; // Precompute factorials for(int i = 1; i <= N; i++) { fact[i] = (fact[i - 1] * (long)i) % p; } } public static long ncp(int N, int R, int p) { // n C r = n!*inverse(r!)*inverse((n-r)!) long ans = ((fact[N] * factorialNumInverse[R]) % p * factorialNumInverse[N - R]) % p; return ans; } public static void main(String[] args) throws IOException { Reader.init(System.in); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); int t = Reader.nextInt(); while (t > 0){ int n = Reader.nextInt(); int a = Reader.nextInt(); int b = Reader.nextInt(); long [] arr = new long[n+1]; long [] endSum = new long[n+1]; long [] consecutiveSum = new long[n+1]; int i = 1; while ( i <= n){ arr[i] = Reader.nextLong(); endSum[i] = arr[i]*b+endSum[i-1]; consecutiveSum[i] = (arr[i]-arr[i-1])+consecutiveSum[i-1]; i++; } i = 0; long ans = Long.MAX_VALUE; while ( i <= n){ long totalCost = consecutiveSum[i]*a; //System.out.println(totalCost); if ( i != n){ totalCost += consecutiveSum[i+1]*b; if ( i <= n-1){ long diff = endSum[n]-endSum[i+1]; diff-=(b*arr[i]*(n-(i+2)+1)); totalCost+=diff; } } else{ totalCost += consecutiveSum[i]*b; } if ( totalCost < ans){ ans = totalCost; } //System.out.println(i+" "+totalCost); i++; } output.write(ans+"\n"); t--; } output.flush(); } public static boolean help(int m,int r,int b){ boolean ans = true; while ( r > 0 ){ if ( b == 0 && r > m){ ans =false; break; } else{ r-=(int)min(m,r); b--; } } return ans; } public static void primeFactorisation(long n,HashMap<Long,Integer> map){ long i = 2; while ( n%i == 0){ if ( map.containsKey(i)){ map.put(i,map.get(i)+1); } else{ map.put(i,1); } n/=i; } i = 3; long last = (long)Math.pow(n,0.5); while ( i <= last){ while ( n%i == 0){ if ( map.containsKey(i)){ map.put(i,map.get(i)+1); } else{ map.put(i,1); } n/=i; } i++; } if ( n > 2){ map.put(n,1); } } public static boolean prime(int n){ int i = 2; int r = (int)Math.pow(n,0.5); boolean ans = true; while ( i<=r){ if ( n%i == 0){ ans = false; break; } i++; } return ans; } public static long log2(long N) { long result = (long)(Math.log(N) / Math.log(2)); return result; } private static int bs(int low,int high,int [] array,long find){ if ( low <= high ){ int mid = low + (high-low)/2; if ( array[mid] > find){ high = mid -1; return bs(low,high,array,find); } else if ( array[mid] < find){ low = mid+1; return bs(low,high,array,find); } return mid; } return -1; } private static long max(long a, long b) { return Math.max(a,b); } private static long min(long a,long b){ return Math.min(a,b); } public static long modularExponentiation(long a,long b,long mod){ if ( b == 1){ return a; } else{ long ans = modularExponentiation(a,b/2,mod)%mod; if ( b%2 == 1){ return (a*((ans*ans)%mod))%mod; } return ((ans*ans)%mod); } } public static long sum(long n){ return (n*(n+1))/2; } public static long abs(long a){ return a < 0 ? (-1*a) : a; } public static long gcd(long a,long b){ if ( a == 0){ return b; } else{ return gcd(b%a,a); } } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input)); tokenizer = new StringTokenizer(""); } static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } static long nextLong() throws IOException{ return Long.parseLong(next()); } } class NComparator implements Comparator<Node>{ @Override public int compare(Node o1, Node o2) { if ( o2.infected == 1 && o1.infected == 0){ return -1; } else if ( o2.infected == 0 && o1.infected == 1){ return 1; } else{ if ( o2.value > o1.value){ return 1; } else if ( o2.value < o1.value){ return -1; } else{ return 0; } } } } class DComparator implements Comparator<Integer>{ @Override public int compare(Integer o1, Integer o2) { if ( o2 > o1){ return 1; } else if ( o2 < o1){ return -1; } else{ return 0; } } } class Node{ int value; int infected; Node(int A,int B){ value= A; infected = B; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d92f336397eeedff6ac50522b2a13fb1
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { // when can't think of anything -->> // 1. In sorting questions try to think about all possibilities like starting from start, end, middle. // 2. Two pointers, brute force. // 3. In graph query questions try to solve it reversely or try to process all the queries in a single parse. // 4. If order does not matter then just sort the data if constraints allow. It'll never harm. // 5. In greedy problems if you are just overwhelmed by the possibilities and stuck, try to code whatever you come up with. // 6. Try to solve it from back or reversely. // 7. When can't prove something take help of contradiction. public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); PrintWriter writer = new PrintWriter(System.out); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); long arr[] = new long[n]; Arrays.setAll(arr, i->sc.nextLong()); long ans = Long.MAX_VALUE; long presum[] = new long[n]; presum[n-1] = 0; for(int i = n-2; i >= 0; i--) { presum[i] = presum[i+1] + arr[i+1]; } // writer.println(Arrays.toString(presum)); for(int i = 0; i < n; i++) { long one = b*(presum[i] - ((n-i-1)*arr[i])); if(one < 0)one = 0; long sec = b*(arr[i]); long thir = a*(arr[i]); long val = one+sec+thir; ans = Math.min(val, ans); // writer.println(val); } ans = Math.min(ans, b*(presum[0]+arr[0])); writer.println(ans); } writer.flush(); writer.close(); } private static int findVal(String a, String b, int n) { int diff1 = 0; for(int i = 0; i < n; i++) { if(a.charAt(i) != b.charAt(i))diff1++; } return diff1; } private static long power (long a, long n, long p) { long res = 1; while(n!=0) { if(n%2==1) { res=(res*a)%p; n--; }else { a= (a*a)%p; n/=2; } } return res; } private static boolean isPrime(int c) { for (int i = 2; i*i <= c; i++) { if(c%i==0)return false; } return true; } private static int find(int a , int arr[]) { if(arr[a] != a) return arr[a] = find(arr[a], arr); return arr[a]; } private static void union(int a, int b, int arr[]) { int aa = find(a,arr); int bb = find(b, arr); arr[aa] = bb; } private static int gcd(int a, int b) { if(a==0)return b; return gcd(b%a, a); } public static int[] readIntArray(int size, FastReader s) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = s.nextInt(); } return array; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } class Pair implements Comparable<Pair>{ int a; int b; Pair(int a, int b){ this.a = a; this.b = b; } @Override public boolean equals(Object obj) { if(this == obj) return true; if(obj == null || obj.getClass()!= this.getClass()) return false; Pair pair = (Pair) obj; return (pair.a == this.a && pair.b == this.b); } @Override public int hashCode() { return Objects.hash(a,b); } @Override public int compareTo(Pair o) { if(this.a == o.a) { return Integer.compare(this.b, o.b); }else { return Integer.compare(this.a, o.a); } } @Override public String toString() { return this.a + " " + this.b; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
6822d4937d83ed5cd89802f03c210874
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class E { static class Reader { BufferedReader br; StringTokenizer st; public Reader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class Pair<T extends Comparable<T>, U extends Comparable<U>> implements Comparable<Pair<T, U>>{ // note first and second must not change T first; U second; private int hashCode; public Pair(T first, U second) { this.first = first; this.second = second; hashCode = Objects.hash(first, second); } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair p = (Pair) o; return first.equals(p.first) && second.equals(p.second); } public int hashCode() { return hashCode; } public int compareTo(Pair<T, U> o) { return first.compareTo(o.first); } } public static void main(String args[]) { Reader rd = new Reader(); int tcs = rd.nextInt(); for (int tc = 1; tc <= tcs; tc++) { int n = rd.nextInt(); int a = rd.nextInt(); int b = rd.nextInt(); long[] x = new long[n]; long o = 0; for (int i = 0; i < n; i++) { x[i] = rd.nextLong(); o += x[i] * b; } long capital = 0; for (int i = 0; i < n; i++) { long save = (x[i] - capital) * (n - 1 - i) * b; long spend = a * (x[i] - capital); if (spend <= save) { o -= save - spend; capital = x[i]; } } System.out.println(o); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
dc144d3067a3821a506037011ecc4558
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class new1{ static int mod = 998244353; public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } public static void main(String[] args) throws IOException{ BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); FastReader s = new FastReader(); int t = s.nextInt(); for(int z = 1; z <= t; z++) { int n = s.nextInt(); int b = s.nextInt(); int a = s.nextInt(); int[] arr = new int[n + 1]; for(int i = 1; i <= n; i++) arr[i] = s.nextInt(); long[] left = new long[n + 1]; for(int i = 1; i <= n; i++) { left[i] = left[i - 1] + arr[i] - arr[i - 1]; } long[] right = new long[n + 1]; right[n] = arr[n]; for(int i = n - 1; i >= 0; i--) { right[i] = right[i + 1] + arr[i]; } // System.out.println(Arrays.toString(arr)); //System.out.println(Arrays.toString(left)); //System.out.println(Arrays.toString(right)); long ans = Long.MAX_VALUE; for(int i = 0; i <= n; i++) { long aa = (a + b) * (left[i]); long bb = a * (right[i] - (n + 1L - i) * arr[i]); long a1 = aa + bb; // System.out.println(aa + " " + bb + " " + a1); ans = Math.min(ans, a1); } System.out.println(ans); } //output.flush(); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; }}
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
421a2a0c2af8325cbdc8fdc307aea6ea
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/***** ---> :) Vijender Srivastava (: <--- *****/ import java.util.*; import java.lang.*; // import java.lang.reflect.Array; import java.io.*; public class Main { static FastReader sc =new FastReader(); static PrintWriter out=new PrintWriter(System.out); static long mod=(long)32768; static StringBuilder sb = new StringBuilder(); /* start */ public static void main(String [] args) { // int testcases = 1; int testcases = i(); // calc(); while(testcases-->0) { solve(); } out.flush(); out.close(); } static void solve() { int n = i(); long a = l(); long b = l(); long ar[] = inputL(n); long x[] = new long [n]; x[0] = ar[0]; for(int i=1;i<n;i++) x[i]+=(ar[i]+x[i-1]); long cnt[] = new long[n]; cnt[0] = b*ar[0]; for(int i=1;i<n;i++) { cnt[i] = (ar[i]-ar[i-1])*b+cnt[i-1]; } // for(int i=1;i<n;i++) cnt[i]+=cnt[i-1]; // for(int i=0;i<n;i++)p(x[i]+" "); // pl(""); long ans = sum(cnt); for(int i=0;i<n;i++) { long z = ((x[n-1]-x[i])-(ar[i]*(n-i-1)))*b; long z_ = (cnt[i])+ar[i]*a; if(z>0 && z_>0) ans = min(ans,(z+z_)); // pl(z+" "+z_); } pl(ans); } /* end */ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void p(Object o) { out.print(o); } static void pl(Object o) { out.println(o); } static int i() { return sc.nextInt(); } static String s() { return sc.next(); } static long l() { return sc.nextLong(); } static char[] inputC() { String s = sc.nextLine(); return s.toCharArray(); } static int[] input(int n) { int A[]=new int[n]; for(int i=0;i<n;i++) { A[i]=sc.nextInt(); } return A; } static long[] inputL(int n) { long A[]=new long[n]; for(int i=0;i<n;i++) { A[i]=sc.nextLong(); } return A; } static long[] putL(long a[]) { long A[]=new long[a.length]; for(int i=0;i<a.length;i++) { A[i]=a[i]; } return A; } static String[] inputS(int n) { String A[]=new String[n]; for(int i=0;i<n;i++) { A[i]=sc.next(); } return A; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static String reverse(String s) { StringBuffer p=new StringBuffer(s); p.reverse(); return p.toString(); } static int min(int a,int b) { return Math.min(a, b); } static int min(int a,int b,int c) { return Math.min(a, Math.min(b, c)); } static int min(int a,int b,int c,int d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static int max(int a,int b) { return Math.max(a, b); } static int max(int a,int b,int c) { return Math.max(a, Math.max(b, c)); } static int max(int a,int b,int c,int d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long min(long a,long b) { return Math.min(a, b); } static long min(long a,long b,long c) { return Math.min(a, Math.min(b, c)); } static long min(long a,long b,long c,long d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static long max(long a,long b) { return Math.max(a, b); } static long max(long a,long b,long c) { return Math.max(a, Math.max(b, c)); } static long max(long a,long b,long c,long d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long sum(int A[]) { long sum=0; for(int i : A) { sum+=i; } return sum; } static long sum(long A[]) { long sum=0; for(long i : A) { sum+=i; } return sum; } static void print(int A[]) { for(int i : A) { System.out.print(i+" "); } System.out.println(); } static void print(long A[]) { for(long i : A) { System.out.print(i+" "); } System.out.println(); } static long mod(long x) { return ((x%mod + mod)%mod); } static long power(long x, long y) { if(y==0) return 1; if(x==0) return 0; long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x) ; y = y >> 1; x = (x * x); } return res; } static boolean prime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static boolean prime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static long[] sort(long a[]) { ArrayList<Long> arr = new ArrayList<>(); for(long i : a) { arr.add(i); } Collections.sort(arr); for(int i = 0; i < arr.size(); i++) { a[i] = arr.get(i); } return a; } static int[] sort(int a[]) { ArrayList<Integer> arr = new ArrayList<>(); for(Integer i : a) { arr.add(i); } Collections.sort(arr); for(int i = 0; i < arr.size(); i++) { a[i] = arr.get(i); } return a; } //pair class private static class Pair implements Comparable<Pair> { long first, second; public Pair(long f, long s) { first = f; second = s; } @Override public int compareTo(Pair p) { if (first < p.first) return 1; else if (first > p.first) return -1; else { if (second > p.second) return 1; else if (second < p.second) return -1; else return 0; } } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
96dd378e8a66457d30c8c1cb8a3d80e6
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Practice { static boolean multipleTC = true; final static int mod2 = 1000000007; final static int mod = 998244353; final double E = 2.7182818284590452354; final double PI = 3.14159265358979323846; int MAX = 200001; void pre() throws Exception { } // All the best void solve(int TC) throws Exception { int n = ni(); long a = ni(), b = ni(); int arr[] = readArr(n); long cost[] = new long[n]; int diff = 0, prev = 0; for (int i = 0; i < n; i++) { diff += (arr[i] - prev); prev = arr[i]; cost[i] = (long) ((long) arr[i] * (long) a) + (diff * b); } long ans = Long.MAX_VALUE; long mul = 1,payload=0; for(int i=n-2;i>=0;i--) { long dif = arr[i+1]-arr[i]; long cur = payload+ (mul*dif); payload = cur; mul++; ans = min(ans,(cur*b)+cost[i]); } long cur = payload +(mul*arr[0]); ans = min(ans,cur*b); pn(ans); } public static long gcd(long a, long b) { if (a > b) a = (a + b) - (b = a); if (a == 0L) return b; return gcd(b % a, a); } double dist(int x1, int y1, int x2, int y2) { double a = x1 - x2, b = y1 - y2; return Math.sqrt((a * a) + (b * b)); } int[] readArr(int n) throws Exception { int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } void sort(int arr[], int left, int right) { ArrayList<Integer> list = new ArrayList<>(); for (int i = left; i <= right; i++) list.add(arr[i]); Collections.sort(list); for (int i = left; i <= right; i++) arr[i] = list.get(i - left); } void sort(int arr[]) { ArrayList<Integer> list = new ArrayList<>(); for (int i = 0; i < arr.length; i++) list.add(arr[i]); Collections.sort(list); for (int i = 0; i < arr.length; i++) arr[i] = list.get(i); } public long max(long... arr) { long max = arr[0]; for (long itr : arr) max = Math.max(max, itr); return max; } public int max(int... arr) { int max = arr[0]; for (int itr : arr) max = Math.max(max, itr); return max; } public long min(long... arr) { long min = arr[0]; for (long itr : arr) min = Math.min(min, itr); return min; } public int min(int... arr) { int min = arr[0]; for (int itr : arr) min = Math.min(min, itr); return min; } public long sum(long... arr) { long sum = 0; for (long itr : arr) sum += itr; return sum; } public long sum(int... arr) { long sum = 0; for (int itr : arr) sum += itr; return sum; } String bin(long n) { return Long.toBinaryString(n); } String bin(int n) { return Integer.toBinaryString(n); } static int bitCount(int x) { return x == 0 ? 0 : (1 + bitCount(x & (x - 1))); } static void dbg(Object... o) { System.err.println(Arrays.deepToString(o)); } int bit(long n) { return (n == 0) ? 0 : (1 + bit(n & (n - 1))); } int abs(int a) { return (a < 0) ? -a : a; } long abs(long a) { return (a < 0) ? -a : a; } void p(Object o) { out.print(o); } void pn(Object o) { out.println(o); } void pni(Object o) { out.println(o); out.flush(); } void pn(int[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } void pn(long[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } String n() throws Exception { return in.next(); } String nln() throws Exception { return in.nextLine(); } int ni() throws Exception { return Integer.parseInt(in.next()); } long nl() throws Exception { return Long.parseLong(in.next()); } double nd() throws Exception { return Double.parseDouble(in.next()); } public static void main(String[] args) throws Exception { new Practice().run(); } FastReader in; PrintWriter out; void run() throws Exception { in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC) ? ni() : 1; pre(); for (int t = 1; t <= T; t++) solve(t); out.flush(); out.close(); } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception { br = new BufferedReader(new FileReader(s)); } String next() throws Exception { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception { String str = ""; try { str = br.readLine(); } catch (IOException e) { throw new Exception(e.toString()); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
cbe3729fc6b433dfa5760d557032c09c
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.util.Scanner; public class Main { private static int MOD = 1000000007; private static long Inf = (long) 1E15; public static void main(String[] args) throws Exception { InputStream inputStream = System.in; //InputStream inputStream = new FileInputStream(new File("/tmp/input.txt")); OutputStream outputStream = System.out; Scanner in = new Scanner(inputStream); PrintWriter out = new PrintWriter(outputStream); int t = in.nextInt(); for (int i = 0; i < t; i++) { Task solver = new Task(); solver.solve(in, out); } out.close(); } static class Task { public void solve(Scanner in, PrintWriter out) { int n = in.nextInt(); long a = in.nextInt(); long b = in.nextInt(); long[] x = new long[n]; for (int i = 0; i < n; i++) { x[i] = in.nextLong(); } long[] suf = new long[n]; suf[n-1] = x[n-1]; for (int i = n-2; i >= 0; i--) { suf[i] = suf[i+1] + x[i]; } long cost = 0; int capital = -1; long capLoc = 0; for (int i = 0; i < n; i++) { cost += b * Math.abs(x[i] - capLoc); if (capital == i-1) { int k = n-1-i; if (a <= k * b) { capital++; cost += a * (x[capital] - capLoc); capLoc = x[capital]; } } } out.println(cost); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d11470fb24c2b13a892d92557c70e0f3
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class q3 { public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); // public static long mod = 1000000007; public static void solve() throws Exception { String[] parts = br.readLine().split(" "); int n = Integer.parseInt(parts[0]); long a = Integer.parseInt(parts[1]); long b = Integer.parseInt(parts[2]); long[] arr = new long[n + 1]; parts = br.readLine().split(" "); for(int i = 0;i < n;i++){ arr[i + 1] = Integer.parseInt(parts[i]); } long[] dp = new long[n + 1]; long ans = 0; for(int i = 1;i < n + 1;i++) ans += b * (arr[i] - arr[i - 1]); long[] psum = new long[n + 1]; for(int i = 1;i < n + 1;i++) psum[i] = psum[i - 1] + arr[i]; long min = Long.MAX_VALUE; for(int i = 0;i < n;i++){ min = Math.min(min,arr[i] * a + (psum[n - 1] - psum[i] - (arr[i] * (n - 1 - i))) * b); } System.out.println(ans + min); } public static void main(String[] args) throws Exception { int tests = Integer.parseInt(br.readLine()); for (int test = 1; test <= tests; test++) { solve(); } } // public static ArrayList<Integer> primes; // public static void seive(int n){ // primes = new ArrayList<>(); // boolean[] arr = new boolean[n + 1]; // Arrays.fill(arr,true); // // for(int i = 2;i * i <= n;i++){ // if(arr[i]) { // for (int j = i * i; j <= n; j += i) { // arr[j] = false; // } // } // } // for(int i = 2;i <= n;i++) if(arr[i]) primes.add(i); // } // public static void sort(int[] arr){ // ArrayList<Integer> temp = new ArrayList<>(); // for(int val : arr) temp.add(val); // // Collections.sort(temp); // // for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i); // } // public static void sort(long[] arr){ // ArrayList<Long> temp = new ArrayList<>(); // for(long val : arr) temp.add(val); // // Collections.sort(temp); // // for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i); // } // // public static long power(long a,long b,long mod){ // if(b == 0) return 1; // // long p = power(a,b / 2,mod); // p = (p * p) % mod; // // if(b % 2 == 1) return (p * a) % mod; // return p; // } // public static long modDivide(long a,long b,long mod){ // return ((a % mod) * (power(b,mod - 2,mod) % mod)) % mod; // } // // public static int GCD(int a,int b){ // return b == 0 ? a : GCD(b,a % b); // } // public static long GCD(long a,long b){ // return b == 0 ? a : GCD(b,a % b); // } // // public static int LCM(int a,int b){ // return a * b / GCD(a,b); // } // public static long LCM(long a,long b){ // return a * b / GCD(a,b); // } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
79f45ecc58420fa913e9045f1600e0e6
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Question4 { static boolean multipleTC = true; final static int Mod = 1000000007; final static int Mod2 = 998244353; final double PI = 3.14159265358979323846; int MAX = 1000000007; void pre() throws Exception { } long knapSack(long W, long wt[], long val[], int n){ long []dp = new long[(int) (W + 1)]; for (int i = 1; i < n + 1; i++) { for (long w = W; w >= 0; w--) { if (wt[i - 1] <= w) dp[(int) w] = Math.max(dp[(int) w], dp[(int) (w - wt[i - 1])] + val[i - 1]); } } return dp[(int) W]; } void solve(int t) throws Exception { int n = ni(); long a = nl(); long b = nl(); long arr[] = new long[n+1]; for(int i=1;i<=n;i++) arr[i] = nl(); long suffix[] = new long[n+1]; for(int i=n;i>=1;i--) { if(i < n) suffix[i] = (suffix[i+1] + arr[i]); else suffix[i] = arr[i]; } long min = Long.MAX_VALUE; for(int i=0;i<n;i++) { long sum = arr[i]*a + (suffix[i+1] - ((n-i-1)*arr[i]))*b; min = Math.min(min, sum); } pn(min); } double dist(int x1, int y1, int x2, int y2) { double a = x1 - x2, b = y1 - y2; return Math.sqrt((a * a) + (b * b)); } int[] readArr(int n) throws Exception { int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } void sort(int arr[], int left, int right) { ArrayList<Integer> list = new ArrayList<>(); for (int i = left; i <= right; i++) list.add(arr[i]); Collections.sort(list); for (int i = left; i <= right; i++) arr[i] = list.get(i - left); } void sort(int arr[]) { ArrayList<Integer> list = new ArrayList<>(); for (int i = 0; i < arr.length; i++) list.add(arr[i]); Collections.sort(list); for (int i = 0; i < arr.length; i++) arr[i] = list.get(i); } public long max(long... arr) { long max = arr[0]; for (long itr : arr) max = Math.max(max, itr); return max; } public int max(int... arr) { int max = arr[0]; for (int itr : arr) max = Math.max(max, itr); return max; } public long min(long... arr) { long min = arr[0]; for (long itr : arr) min = Math.min(min, itr); return min; } public int min(int... arr) { int min = arr[0]; for (int itr : arr) min = Math.min(min, itr); return min; } public long sum(long... arr) { long sum = 0; for (long itr : arr) sum += itr; return sum; } public long sum(int... arr) { long sum = 0; for (int itr : arr) sum += itr; return sum; } String bin(long n) { return Long.toBinaryString(n); } String bin(int n) { return Integer.toBinaryString(n); } static int bitCount(int x) { return x == 0 ? 0 : (1 + bitCount(x & (x - 1))); } static void dbg(Object... o) { System.err.println(Arrays.deepToString(o)); } int bit(long n) { return (n == 0) ? 0 : (1 + bit(n & (n - 1))); } int abs(int a) { return (a < 0) ? -a : a; } long abs(long a) { return (a < 0) ? -a : a; } void p(Object o) { out.print(o); } void pn(Object o) { out.println(o); } void pni(Object o) { out.println(o); out.flush(); } void pn(int[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } void pn(long[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } String n() throws Exception { return in.next(); } String nln() throws Exception { return in.nextLine(); } int ni() throws Exception { return Integer.parseInt(in.next()); } long nl() throws Exception { return Long.parseLong(in.next()); } double nd() throws Exception { return Double.parseDouble(in.next()); } public static void main(String[] args) throws Exception { new Question4().run(); } FastReader in; PrintWriter out; void run() throws Exception { in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC) ? ni() : 1; pre(); for (int t = 1; t <= T; t++) solve(t); out.flush(); out.close(); } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception { br = new BufferedReader(new FileReader(s)); } String next() throws Exception { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception { String str = ""; try { str = br.readLine(); } catch (IOException e) { throw new Exception(e.toString()); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
2df6af145e109f40ae57d2a040cab91c
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.DataInputStream; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.lang.reflect.Array; import java.util.*; import java.util.function.Consumer; import java.util.stream.Collectors; import static java.lang.Math.min; public class Round782_C { @SuppressWarnings("FieldCanBeLocal") private static Reader in; private static PrintWriter out; private static String YES = "YES"; private static String NO = "NO"; private static void solve() throws IOException{ //Your Code Goes Here; int n = in.nextInt(); long c1 = in.nextLong(), c2 = in.nextLong(); int[] arr = readArray(n); long ans = 0; for(int i = 0; i < n; i++){ int nToRight = n - i; int last = i == 0 ? 0 : arr[i - 1]; long dist = arr[i] - last; ans += dist * min(nToRight * c2, c1 + c2); } System.out.println(ans); } public static void main(String[] args) throws IOException, InterruptedException { in = new Reader(); out = new PrintWriter(new OutputStreamWriter(System.out)); int T = in.nextInt(); while(T --> 0){ solve(); } out.flush(); in.close(); out.close(); } static final Random random = new Random(); static final int mod = 1_000_000_007; private static boolean check(long[] arr, long n){ long ch = arr[0]; for(int i = 0; i < n; i++){ if(ch != arr[i]){ return false; } } return true; } //This function gives the max occuring of any element in an array;(HashMap version) private static long maxFreqHashMap(long[] arr, long n){ Map<Long, Long> hp = new HashMap<Long, Long>(); for(int i = 0; i < n; i++) { long key = arr[i]; if(hp.containsKey(key)) { long freq = hp.get(key); freq++; hp.put(key, freq); } else { hp.put(key, 1L); } } long max_count = 0, res = 1, count = 0; for(Map.Entry<Long, Long> val : hp.entrySet()) { if (max_count < val.getValue()) { res = Math.toIntExact(val.getKey()); max_count = Math.toIntExact(val.getValue()); count = max_count; } } return count; } //This function gives the max occuring of any element in an array; this also known as the "MOORE's Algorithm" private static long maxFreq(long []arr, long n) { // using moore's voting algorithm long res = 0; long count = -1; for(int i = 1; i < n; i++) { if(arr[i] == arr[(int) res]) { count++; } else { count--; } if(count == 0) { res = i; count = 1; } } return arr[(int) res]; /* you've to add below code in the solve() long freq = maxFreq(arr, n); int count = 0; for(int i = 0; i < n; i++){ if(arr[i] == freq){ count++; } } */ } private static int LCSubStr(char[] X, char[] Y, int m, int n) { int[][] LCStuff = new int[m + 1][n + 1]; int result = 0; for (int i = 0; i <= m; i++){ for (int j = 0; j <= n; j++) { if (i == 0 || j == 0) { LCStuff[i][j] = 0; } else if (X[i - 1] == Y[j - 1]) { LCStuff[i][j] = LCStuff[i - 1][j - 1] + 1; result = Integer.max(result, LCStuff[i][j]); } else { LCStuff[i][j] = 0; } } } return result; } private static long longCusBsearch(long[] arr, long n, long h){ long ans = h; long l = 1; long r = h; while(l <= r){ long mid = (l + r) / 2; long ok = 0; for(long i = 0; i < n; i++){ if(i == n - 1) { ok += mid; } else{ long x = arr[(int) (i + 1)] - arr[(int) i]; if(x >= mid) { ok += mid; } else{ ok += x; } } } if(ok >= h){ ans = mid; r = mid - 1; } else{ l = mid + 1; } } return ans; } public static int intCusBsearch(int[] arr, int n, int h){ int ans = h, l = 1, r = h; while(l <= r){ int mid = (l + r) / 2; int ok = 0; for(int i = 0; i < n; i++){ if(i == n - 1){ ok += mid; } else{ int x = arr[i + 1] - arr[i]; if(x >= mid){ ok += mid; } else{ ok += x; } } } if(ok >= h){ ans = mid; r = mid - 1; } else{ l = mid + 1; } } return ans; } /* Method to check if x is power of 2*/ private static boolean isPowerOfTwo (int x) { /* First x in the below expression is for the case when x is 0 */ return x!=0 && ((x&(x-1)) == 0); } //Taken From "Second Thread" static void ruffleSort(int[] a){ int n = a.length;//shuffles, then sort; for(int i=0; i<n; i++){ int oi = random.nextInt(n), temp = a[oi]; a[oi] = a[i]; a[i] = temp; } sort(a); } private static void longRuffleSort(long[] a){ long n = a.length; for(long i = 0;i<n;i++){ long oi = random.nextInt((int) n), temp = a[(int) oi]; a[(int) oi] = a[(int) i]; a[(int) i] = temp; } longSort(a); } private static int gcd(int a, int b){ if(a == 0 || b == 0){ return 0; } while(b != 0){ int temp; temp = a % b; a = b; b = temp; } return a; } private static long gcd(long a, long b){ if(a == 0 || b == 0){ return 0; } while(b != 0){ long temp; temp = a % b; a = b; b = temp; } return a; } private static int lowestCommonMultiple(int a, int b){ return (a / gcd(a, b) * b); } /* The Below func: the for loop runs in sqrt times. The second if is used to if the divisors are equal to print only one of them otherwise we're printing both; */ private static void pDivisors(int n){ for(int i=1;i<Math.sqrt(n);i++){ if(n % i == 0){ if(n / i == i){ System.out.println(i + " "); } else{ System.out.println(i + " " + (n / i) + " "); } } } } private static void returnNothing(){return;} private static int numOfdigitsinN(int a){return (int) (Math.floor(Math.log10(a)) + 1);} //prime Num till N: it takes any number and prints all the prime till that //num; private static boolean isPrime(int n){ if(n <= 1) return false; if(n <= 3) return true; //This is checked so that we can skip middle five number in below loop: if(n % 2 == 0 || n % 3 == 0) return false; for(int i = 5; i * i <= n; i = i + 6){ if(n % i == 0 || n % (i + 2) == 0){ return false; } } return true; } //below func is to print the isPrime func(); private static void printTheIsPrimeFunc(int n){ for(int i=2;i<=n;i++){ if(isPrime(i)) System.out.println(i + " "); } } public static boolean primeFinder(int n){ int m = 0; int flag = 0; m = n / 2; if(n == 0 ||n == 1){ return false; } else{ for(int i=2;i<=m;i++){ if(n % i == 0){ return false; } } return true; } } private static boolean evenOdd(int num){ //System.out.println((num & 1) == 0 ? "EVEN" : "ODD"); return (num & 1) == 0 ? true : false; } private static boolean[] sieveOfEratosthenes(long n) { boolean prime[] = new boolean[(int)n + 1]; for (int i = 0; i <= n; i++) { prime[i] = true; } for (long p = 2; p * p <= n; p++) { if (prime[(int)p] == true) { for (long i = p * p; i <= n; i += p) prime[(int)i] = false; } } return prime; } private static int log2(int n){ int result = (int) (Math.log(n) / Math.log(2)); return result; } private static long add(long a, long b){ return (a + b) % mod; } private static long lcm(long a, long b){ return (a / gcd((int) a, (int) b) * b); } private static void sort(int[] a){ ArrayList<Integer> l = new ArrayList<>(); for(int i:a) l.add(i); Collections.sort(l); for(int i=0;i<a.length;i++)a[i] = l.get(i); } private static void longSort(long[] a){ ArrayList<Long> l = new ArrayList<Long>(); for(long i:a) l.add(i); Collections.sort(l); for(int i=0;i<a.length;i++)a[i] = l.get(i); } public static int[][] prefixsum( int n , int m , int arr[][] ){ int prefixsum[][] = new int[n+1][m+1]; for( int i = 1 ;i <= n ;i++) { for( int j = 1 ; j<= m ; j++) { int toadd = 0; if( arr[i-1][j-1] == 1) { toadd = 1; } prefixsum[i][j] = toadd + prefixsum[i][j-1] + prefixsum[i-1][j] - prefixsum[i-1][j-1]; } } return prefixsum; } //call this method when you want to read an integer array; private static int[] readArray(int len) throws IOException{ int[] a = new int[len]; for(int i=0;i<len;i++)a[i] = in.nextInt(); return a; } //call this method when you want to read an Long array; private static long[] readLongArray(int len) throws IOException{ long[] a = new long[len]; for(int i=0;i<len;i++) a[i] = in.nextLong(); return a; } //call this method to print the integer array; private static void printArray(int[] array){ for(int now : array) out.print(now);out.print(' ');out.close(); } //call this method to print the long array; private static void printLongArray(long[] array){ for(long now:array) out.print(now); out.print(' '); out.close(); } /*Another way of Reading input...collected from a online blog from here => https://codeforces.com/contest/1625/submission/144334744;*/ private static class Reader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; Reader() {//Constructor; din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException {//To take user input for String values; final byte[] buf = new byte[1024]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { break; } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextSign() throws IOException {//For taking the signs like plus or minus ... byte c = read(); while ('+' != c && '-' != c) { c = read(); } return '+' == c ? 0 : 1; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } public int skip() throws IOException { int b; // noinspection ALL while ((b = read()) != -1 && isSpaceChar(b)) { ; } return b; } public char nc() throws IOException { return (char) skip(); } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } /* A class representing a Mutable Multiset (Collectied From TechieDelight)*/ private static class Multiset<E> { /* List to store distinct values */ private List<E> values; /* List to store counts of distinct values */ private List<Integer> frequency; private final String ERROR_MSG = "Count cannot be negative: "; /* Constructor */ public Multiset() { values = new ArrayList<>(); frequency = new ArrayList<>(); } /** * Adds an element to this multiset specified number of times * * @param `element` The element to be added * @param `count` The number of times * @return The previous count of the element */ public int add(E element, int count) { if (count < 0) { throw new IllegalArgumentException(ERROR_MSG + count); } int index = values.indexOf(element); int prevCount = 0; if (index != -1) { prevCount = frequency.get(index); frequency.set(index, prevCount + count); } else if (count != 0) { values.add(element); frequency.add(count); } return prevCount; } /** * Adds specified element to this multiset * * @param `element` The element to be added * @return true always */ public boolean add(E element) { return add(element, 1) >= 0; } /** * Adds all elements in the specified collection to this multiset * * @param `c` Collection containing elements to be added * @return true if all elements are added to this multiset */ boolean addAll(Collection<? extends E> c) { for (E element: c) { add(element, 1); } return true; } /** * Adds all elements in the specified array to this multiset * * @param `arr` An array containing elements to be added */ public void addAll(E... arr) { for (E element: arr) { add(element, 1); } } /** * Performs the given action for each element of the Iterable, * including duplicates * * @param `action` The action to be performed for each element */ public void forEach(Consumer<? super E> action) { List<E> all = new ArrayList<>(); for (int i = 0; i < values.size(); i++) { for (int j = 0; j < frequency.get(i); j++) { all.add(values.get(i)); } all.forEach(action); } } /** * Removes a single occurrence of the specified element from this multiset * * @param `element` The element to removed * @return true if an occurrence was found and removed */ public boolean remove(Object element) { return remove(element, 1) > 0; } /** * Removes a specified number of occurrences of the specified element * from this multiset * * @param `element` The element to removed * @param `count` The number of occurrences to be removed * @return The previous count */ public int remove(Object element, int count) { if (count < 0) { throw new IllegalArgumentException(ERROR_MSG + count); } int index = values.indexOf(element); if (index == -1) { return 0; } int prevCount = frequency.get(index); if (prevCount > count) { frequency.set(index, prevCount - count); } else { values.remove(index); frequency.remove(index); } return prevCount; } /** * Check if this multiset contains at least one occurrence of the * specified element * * @param `element` The element to be checked * @return true if this multiset contains at least one occurrence * of the element */ public boolean contains(Object element) { return values.contains(element); } /** * Check if this multiset contains at least one occurrence of each element * in the specified collection * * @param `c` The collection of elements to be checked * @return true if this multiset contains at least one occurrence * of each element */ public boolean containsAll(Collection<?> c) { return values.containsAll(c); } /** * Update the frequency of an element to the specified count or * add element to this multiset if not present * * @param `element` The element to be updated * @param `count` The new count * @return The previous count */ public int setCount(E element, int count) { if (count < 0) { throw new IllegalArgumentException(ERROR_MSG + count); } if (count == 0) { remove(element); } int index = values.indexOf(element); if (index == -1) { return add(element, count); } int prevCount = frequency.get(index); frequency.set(index, count); return prevCount; } /** * Find the frequency of an element in this multiset * * @param `element` The element to be counted * @return The frequency of the element */ public int count(Object element) { int index = values.indexOf(element); return (index == -1) ? 0 : frequency.get(index); } /** * @return A view of the set of distinct elements in this multiset */ public Set<E> elementSet() { return values.stream().collect(Collectors.toSet()); } /** * @return true if this multiset is empty */ public boolean isEmpty() { return values.size() == 0; } /** * @return Total number of elements in this multiset, including duplicates */ public int size() { int size = 0; for (Integer i: frequency) { size += i; } return size; } @Override public String toString() { StringBuilder sb = new StringBuilder("["); for (int i = 0; i < values.size(); i++) { sb.append(values.get(i)); if (frequency.get(i) > 1) { sb.append(" x ").append(frequency.get(i)); } if (i != values.size() - 1) { sb.append(", "); } } return sb.append("]").toString(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
dc7d930226cce1784cbf57f51a974efe
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.StringTokenizer; public class C { public static void main(String args[]) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine().trim()); StringBuilder sb = new StringBuilder(); while (t-- > 0) { int inp[] = nextIntArray(3, br); int arr[] = nextIntArray(inp[0], br); sb.append(solve(arr, inp[1], inp[2])).append("\n"); } br.close(); System.out.println(sb); } private static long solve(int arr[], int A, int B) { long dp[] = new long[arr.length]; // int capital[] = new int[arr.length]; // Arrays.fill(dp, Integer.MAX_VALUE); // B For attack // A for relocate for (int i = 0; i < dp.length; i++) dp[i] = findCost(arr[i], 0, B); // System.out.println(Arrays.toString(dp)); for (int i = 1; i < dp.length; i++) dp[i] += dp[i - 1]; int prev = 0; long diffSum = 0; for (int i = 0; i < dp.length; i++) { long costRelocate = findCost(arr[i], prev, A); long diff = (dp.length - 1 - i) * 1l * (arr[i] - prev) * B; if (diff > costRelocate) { prev = arr[i]; diffSum += diff; diffSum -= costRelocate; // System.out.println("Change Location at " + arr[i]); } } // System.out.println(Arrays.toString(dp) + " " + diffSum); // System.out.println(Arrays.toString(capital)); return dp[arr.length - 1] - diffSum; } private static long findCost(int C1, int C2, int multiplier) { return 1l * Math.abs(C1 - C2) * multiplier; } private static int[] nextIntArray(int N, BufferedReader br) throws Exception { StringTokenizer st = new StringTokenizer(br.readLine().trim(), " "); int arr[] = new int[N]; for (int i = 0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
4bc23869291951332920758acd999718
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class LineEmpire { public static void main(String[] args) throws Exception { FastIO in = new FastIO(); int t = in.nextInt(); for (int tc=0; tc<t; tc++) { int n = in.nextInt(); long a = in.nextInt(); long b = in.nextInt(); long[] pos = new long[n+1]; for (int i=1; i<=n; i++) { pos[i] = in.nextLong(); pos[i]+=pos[i-1]; } long minAns = pos[n]*b; long currAns = 0; for (int i = 1; i <= n; i++) { long dist = pos[i] - pos[i - 1]; if (i > 1) dist -= (pos[i - 1] - pos[i - 2]); currAns+=a*dist; currAns+=b*dist; minAns = Math.min(minAns, currAns + b * ((pos[n] - pos[i]) - (n - i) * (pos[i] - pos[i - 1]))); } System.out.println(minAns); } } static class FastIO { BufferedReader br; StringTokenizer st; PrintWriter pr; public FastIO() throws IOException { br = new BufferedReader( new InputStreamReader(System.in)); pr = new PrintWriter(System.out); } public String next() throws IOException { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); } public double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } public String nextLine() throws IOException { String str = br.readLine(); return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
8cddeadc6cc0b62cd94897f2e93ee277
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class Main { static int[][] size; static int[][][] parent; static char[][] a; public static void main(String[] args) { MyScanner in = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); int t = in.nextInt(); while(t-- > 0) { int n = in.nextInt(); long a = in.nextLong(); // move long b = in.nextLong(); // conquer long [] x = new long[n]; for(int i = 0; i < n; i++) { x[i] = in.nextLong(); } long[] partSum = new long[n+1]; //partSum[i+1] = x_0 + x2... + xi for(int i = 1; i <= n; i++) { partSum[i] = partSum[i-1] + x[i-1]; } long min = b * partSum[n]; for(int i = 0; i < n; i++) { long val = ( a + b) * x[i]; long dist = n - 1 - i; val += b * (partSum[n] - partSum[i+1] - dist * x[i]); min = Math.min(min, val); } out.println(min); } out.close(); return; } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
5ed9d37957390507fb79af7d393846e0
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class CodeForces { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int tt = Integer.parseInt(in.readLine()); while (tt-- > 0) { String[] tokens = in.readLine().split("\\s+"); long[] cities = Arrays.stream(in.readLine().split("\\s+")).mapToLong(Long::parseLong).toArray(); long n = Long.parseLong(tokens[0]); long a = Long.parseLong(tokens[1]); long b = Long.parseLong(tokens[2]); long res = 0; long currPos = 0; for (int i = 0; i < cities.length; i++){ res += b*(cities[i]-currPos); if (b*(n-i-1)>a){ res += a*(cities[i]-currPos); currPos = cities[i]; } } System.out.println(res); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
6d2b6886262a8b5aece7b117bcfd32f5
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class A4 { static long memo[]; static long arr[]; static int a; static int b; static int n; public static void main(String[] args) throws Exception { int t = sc.nextInt(); while (t-- > 0) { n = sc.nextInt(); a = sc.nextInt(); b = sc.nextInt(); arr = new long[n + 1]; for (int i = 1; i <= n; i++) { arr[i] = sc.nextLong(); } long ans = 0; int j = 0; for (int i = 1; i <= n; i++) { long cost2 = b * Math.abs(arr[j] - arr[i]); ans += cost2; if (b * Math.abs(arr[j] - arr[i]) * (n - i) >= a * Math.abs(arr[j] - arr[i])) { ans += a * Math.abs(arr[j] - arr[i]); j = i; } // j++; } pw.println(ans); } pw.flush(); } public static long dp(int idx1, int idx2) { if (idx2 > n - 1) return 0; boolean f = false; long move1 = Math.abs(arr[idx2] - arr[idx2 - 1]); long move2 = Math.abs(arr[idx2] - arr[idx1]); f = move1 < move2; long conquer = b * Math.abs(arr[idx2 + 1] - arr[idx1]); if (f) return Math.min(conquer + a * move1 + dp(idx2 - 1, idx2 + 1), conquer + dp(idx1, idx2 + 1)); return conquer + dp(idx1, idx2 + 1); } public static long fibo(int n) { if (n == 0) return 0; if (n == 1) return 1; if (memo[n] != -1) return memo[n]; return memo[n] = fibo(n - 1) + fibo(n - 2); } public static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (long i = 5; i * i <= n; i += 6) { if (n % i == 0 || n % (i + 2) == 0) return false; } return true; } public static BigInteger fib(int n) { BigInteger a = BigInteger.valueOf(0); BigInteger b = BigInteger.valueOf(1); for (int i = 0; i < n; i++) { BigInteger c = a.add(b); a = b; b = c; } return b; } // isPrime using BigInteger public static boolean isPrime(BigInteger n) { if (n.compareTo(BigInteger.valueOf(2)) < 0) return false; if (n.compareTo(BigInteger.valueOf(2)) == 0) return true; if (n.mod(BigInteger.valueOf(2)).compareTo(BigInteger.valueOf(0)) == 0) return false; BigInteger d = n.subtract(BigInteger.valueOf(1)); BigInteger s = d.divide(BigInteger.valueOf(2)); while (s.mod(BigInteger.valueOf(2)).compareTo(BigInteger.valueOf(0)) == 0) { s = s.divide(BigInteger.valueOf(2)); } for (BigInteger i = BigInteger.valueOf(2); i.compareTo(s) <= 0; i = i.add(BigInteger.valueOf(1))) { if (n.mod(i).compareTo(BigInteger.valueOf(0)) == 0) return false; } return true; } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } } static long mod = 1000000007; static Random rn = new Random(); static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
753447b6f2a852cbd1e4267cc62ee850
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
//some updates in import stuff import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; //key points learned //max space ever that could be alloted in a program to pass in cf //int[][] prefixSum = new int[201][200_005]; -> not a single array more!!! //never allocate memory again again to such bigg array, it will give memory exceeded for sure //believe in your fucking solution and keep improving it!!! (sometimes) public class Main{ static int mod = (int) (Math.pow(10, 9)+7); static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 }; static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 }; static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 }; static final double eps = 1e-10; static List<Integer> primeNumbers = new ArrayList<>(); public static void main(String[] args) { MyScanner sc = new MyScanner(); //pretty important for sure - out = new PrintWriter(new BufferedOutputStream(System.out)); //dope shit output for sure //code here int test = sc.nextInt(); while(test --> 0){ int n = sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); long[] capital = new long[n]; for(int i= 0; i < n; i++){ capital[i] = sc.nextLong(); //simple as that } long ans = Long.MAX_VALUE; //simply taking this as answer //gotta make a prefix sum for sure long[] prefix = new long[n]; prefix[n-1] = capital[n-1]; for(int i= n-2; i >= 0; i--){ prefix[i] = capital[i] + prefix[i + 1]; } ans = min(prefix[0] * b, ans); // System.out.println(Arrays.toString(prefix)); long last = 0; long add = 0; for(int i= 0; i < n - 1; i++){ add += capital[i] - last; last = capital[i]; long currAns = add * (a + b); long rem = prefix[i+1] - capital[i] * (n-i-1); currAns += rem * b; ans = min(ans, currAns); } System.out.println(ans); } out.close(); } //new stuff to learn (whenever this is need for them, then only) //Lazy Segment Trees //Persistent Segment Trees //Square Root Decomposition //Geometry & Convex Hull //High Level DP -- yk yk //String Matching Algorithms //Heavy light Decomposition //Updation Required //Fenwick Tree - both are done (sum) //Segment Tree - both are done (min, max, sum) //-----CURRENTLY PRESENT-------// //Graph //DSU //powerMODe //power //Segment Tree (work on this one) //Prime Sieve //Count Divisors //Next Permutation //Get NCR //isVowel //Sort (int) //Sort (long) //Binomial Coefficient //Pair //Triplet //lcm (int & long) //gcd (int & long) //gcd (for binomial coefficient) //swap (int & char) //reverse //primeExponentCounts //Fast input and output //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //GRAPH (basic structure) public static class Graph{ public int V; public ArrayList<ArrayList<Integer>> edges; //2 -> [0,1,2] (current) Graph(int V){ this.V = V; edges = new ArrayList<>(V+1); for(int i= 0; i <= V; i++){ edges.add(new ArrayList<>()); } } public void addEdge(int from , int to){ edges.get(from).add(to); edges.get(to).add(from); } } //DSU (path and rank optimised) public static class DisjointUnionSets { int[] rank, parent; int n; public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; Arrays.fill(rank, 1); Arrays.fill(parent,-1); this.n = n; } public int find(int curr){ if(parent[curr] == -1) return curr; //path compression optimisation return parent[curr] = find(parent[curr]); } public void union(int a, int b){ int s1 = find(a); int s2 = find(b); if(s1 != s2){ //union by size if(rank[s1] < rank[s2]){ parent[s1] = s2; rank[s2] += rank[s1]; }else{ parent[s2] = s1; rank[s1] += rank[s2]; } } } } //with mod public static long powerMOD(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ x %= mod; res %= mod; res = (res * x)%mod; } // y must be even now y = y >> 1; // y = y/2 x%= mod; x = (x * x)%mod; // Change x to x^2 } return res%mod; } //without mod public static long power(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ res = (res * x); } // y must be even now y = y >> 1; // y = y/ x = (x * x); } return res; } public static class segmentTree{ //so let's make a constructor function for this bad boi for sure!!! public long[] arr; public long[] tree; //COMPLEXITY (normal segment tree, stuff) //build -> O(n) //query -> O(logn) //update -> O(logn) //update-range -> O(n) (worst case) //simple iteration and stuff for sure public segmentTree(long[] arr){ int n = arr.length; this.arr = new long[n]; for(int i= 0; i < n; i++){ this.arr[i] = arr[i]; } tree = new long[4*n + 1]; } //pretty basic idea if you read the code once //first make child node once //then form the parent node using them public void buildTree(int s, int e, int index){ if(s == e){ tree[index] = arr[s]; return; } //recursive case int mid = (s + e)/2; buildTree(s, mid, 2 * index); buildTree(mid + 1, e, 2*index + 1); //the condition we want from children be like this tree[index] = min(tree[2 * index], tree[2 * index + 1]); return; } //definitely index based 0 query!!! //only int index = 1!! //baaki everything is simple as fuck public long query(int s, int e, int qs , int qe, int index){ //complete overlap if(s >= qs && e <= qe){ return tree[index]; } //no overlap if(qe < s || qs > e){ return Long.MAX_VALUE; } //partial overlap int mid = (s + e)/2; long left = query( s, mid , qs, qe, 2*index); long right = query( mid + 1, e, qs, qe, 2*index + 1); return min(left, right); } //gonna do range updates for sure now!! //let's do this bois!!! (solve this problem for sure) public void updateRange(int s, int e, int l, int r, long increment, int index){ //out of bounds if(l > e || r < s){ return; } //leaf node if(s == e){ tree[index] += increment; return; //behnchoda return tera baap krvayege? } //recursive case int mid = (s + e)/2; updateRange(s, mid, l, r, increment, 2 * index); updateRange(mid + 1, e, l, r, increment, 2 * index + 1); tree[index] = min(tree[2 * index], tree[2 * index + 1]); } } public static class SegmentTreeLazy{ //so let's make a constructor function for this bad boi for sure!!! public long[] arr; public long[] tree; public long[] lazy; //COMPLEXITY (normal segment tree, stuff) //build -> O(n) //query-range -> O(logn) //lazy update-range -> O(logn) (imp) //simple iteration and stuff for sure public SegmentTreeLazy(long[] arr){ int n = arr.length; this.arr = new long[n]; for(int i= 0; i < n; i++){ this.arr[i] = arr[i]; } tree = new long[4*n + 1]; lazy = new long[100000]; //pretty big for no inconvenience (no?) } //pretty basic idea if you read the code once //first make child node once //then form the parent node using them public void buildTree(int s, int e, int index){ if(s == e){ tree[index] = arr[s]; return; } //recursive case int mid = (s + e)/2; buildTree(s, mid, 2 * index); buildTree(mid + 1, e, 2*index + 1); //the condition we want from children be like this tree[index] = min(tree[2 * index], tree[2 * index + 1]); return; } //definitely index based 0 query!!! //only int index = 1!! //baaki everything is simple as fuck public long queryLazy(int s, int e, int qs, int qe, int index){ //before going down resolve if it exist if(lazy[index] != 0){ tree[index] += lazy[index]; //non leaf node if(s != e){ lazy[2*index] += lazy[index]; lazy[2*index + 1] += lazy[index]; } lazy[index] = 0; //clear the lazy value at current node for sure } //no overlap if(s > qe || e < qs){ return Long.MAX_VALUE; } //complete overlap if(s >= qs && e <= qe){ return tree[index]; } //partial overlap int mid = (s + e)/2; long left = queryLazy(s, mid, qs, qe, 2 * index); long right = queryLazy(mid + 1, e, qs, qe, 2 * index + 1); return Math.min(left, right); } //update range in O(logn) -- using lazy array public void updateRangeLazy(int s, int e, int l, int r, int inc, int index){ //before going down resolve if it exist if(lazy[index] != 0){ tree[index] += lazy[index]; //non leaf node if(s != e){ lazy[2*index] += lazy[index]; lazy[2*index + 1] += lazy[index]; } lazy[index] = 0; //clear the lazy value at current node for sure } //no overlap if(s > r || l > e){ return; } //another case if(l <= s && e <= r){ tree[index] += inc; //create a new lazy value for children node if(s != e){ lazy[2*index] += inc; lazy[2*index + 1] += inc; } return; } //recursive case int mid = (s + e)/2; updateRangeLazy(s, mid, l, r, inc, 2*index); updateRangeLazy(mid + 1, e, l, r, inc, 2*index + 1); //update the tree index tree[index] = Math.min(tree[2*index], tree[2*index + 1]); return; } } //prime sieve public static void primeSieve(int n){ BitSet bitset = new BitSet(n+1); for(long i = 0; i < n ; i++){ if (i == 0 || i == 1) { bitset.set((int) i); continue; } if(bitset.get((int) i)) continue; primeNumbers.add((int)i); for(long j = i; j <= n ; j+= i) bitset.set((int)j); } } //number of divisors public static int countDivisors(long number){ if(number == 1) return 1; List<Integer> primeFactors = new ArrayList<>(); int index = 0; long curr = primeNumbers.get(index); while(curr * curr <= number){ while(number % curr == 0){ number = number/curr; primeFactors.add((int) curr); } index++; curr = primeNumbers.get(index); } if(number != 1) primeFactors.add((int) number); int current = primeFactors.get(0); int totalDivisors = 1; int currentCount = 2; for (int i = 1; i < primeFactors.size(); i++) { if (primeFactors.get(i) == current) { currentCount++; } else { totalDivisors *= currentCount; currentCount = 2; current = primeFactors.get(i); } } totalDivisors *= currentCount; return totalDivisors; } //primeExponentCounts public static int primeExponentsCount(int n) { if (n <= 1) return 0; int sqrt = (int) Math.sqrt(n); int remainingNumber = n; int result = 0; for (int i = 2; i <= sqrt; i++) { while (remainingNumber % i == 0) { result++; remainingNumber /= i; } } //in case of prime numbers this would happen if (remainingNumber > 1) { result++; } return result; } //now adding next permutation function to java hehe public static boolean next_permutation(int[] p) { for (int a = p.length - 2; a >= 0; --a) if (p[a] < p[a + 1]) for (int b = p.length - 1;; --b) if (p[b] > p[a]) { int t = p[a]; p[a] = p[b]; p[b] = t; for (++a, b = p.length - 1; a < b; ++a, --b) { t = p[a]; p[a] = p[b]; p[b] = t; } return true; } return false; } //finding the value of NCR in O(RlogN) time and O(1) space public static long getNcR(int n, int r) { long p = 1, k = 1; if (n - r < r) r = n - r; if (r != 0) { while (r > 0) { p *= n; k *= r; long m = __gcd(p, k); p /= m; k /= m; n--; r--; } } else { p = 1; } return p; } //is vowel function public static boolean isVowel(char c) { return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U'); } //to sort the array with better method public static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //sort long public static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //for calculating binomialCoeff public static int binomialCoeff(int n, int k) { int C[] = new int[k + 1]; // nC0 is 1 C[0] = 1; for (int i = 1; i <= n; i++) { // Compute next row of pascal // triangle using the previous row for (int j = Math.min(i, k); j > 0; j--) C[j] = C[j] + C[j - 1]; } return C[k]; } //Pair with int int public static class Pair{ public int a; public int b; public int hashCode; Pair(int a , int b){ this.a = a; this.b = b; this.hashCode = Objects.hash(a, b); } @Override public String toString(){ return a + " -> " + b; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair that = (Pair) o; return a == that.a && b == that.b; } @Override public int hashCode() { return this.hashCode; } } //Triplet with int int int public static class Triplet{ public int a; public int b; public int c; Triplet(int a , int b, int c){ this.a = a; this.b = b; this.c = c; } @Override public String toString(){ return a + " -> " + b; } } //Shortcut function public static long lcm(long a , long b){ return a * (b/gcd(a,b)); } //let's make one for calculating lcm basically public static int lcm(int a , int b){ return (a * b)/gcd(a,b); } //int version for gcd public static int gcd(int a, int b){ if(b == 0) return a; return gcd(b , a%b); } //long version for gcd public static long gcd(long a, long b){ if(b == 0) return a; return gcd(b , a%b); } //for ncr calculator(ignore this code) public static long __gcd(long n1, long n2) { long gcd = 1; for (int i = 1; i <= n1 && i <= n2; ++i) { // Checks if i is factor of both integers if (n1 % i == 0 && n2 % i == 0) { gcd = i; } } return gcd; } //swapping two elements in an array public static void swap(int[] arr, int left , int right){ int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //for char array public static void swap(char[] arr, int left , int right){ char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //reversing an array public static void reverse(int[] arr){ int left = 0; int right = arr.length-1; while(left <= right){ swap(arr, left,right); left++; right--; } } public static long expo(long a, long b, long mod) { long res = 1; while (b > 0) { if ((b & 1) == 1L) res = (res * a) % mod; //think about this one for a second a = (a * a) % mod; b = b >> 1; } return res; } //SOME EXTRA DOPE FUNCTIONS public static long mminvprime(long a, long b) { return expo(a, b - 2, b); } public static long mod_add(long a, long b, long m) { a = a % m; b = b % m; return (((a + b) % m) + m) % m; } public static long mod_sub(long a, long b, long m) { a = a % m; b = b % m; return (((a - b) % m) + m) % m; } public static long mod_mul(long a, long b, long m) { a = a % m; b = b % m; return (((a * b) % m) + m) % m; } public static long mod_div(long a, long b, long m) { a = a % m; b = b % m; return (mod_mul(a, mminvprime(b, m), m) + m) % m; } //O(n) every single time remember that public static long nCr(long N, long K , long mod){ long upper = 1L; long lower = 1L; long lowerr = 1L; for(long i = 1; i <= N; i++){ upper = mod_mul(upper, i, mod); } for(long i = 1; i <= K; i++){ lower = mod_mul(lower, i, mod); } for(long i = 1; i <= (N - K); i++){ lowerr = mod_mul(lowerr, i, mod); } // out.println(upper + " " + lower + " " + lowerr); long answer = mod_mul(lower, lowerr, mod); answer = mod_div(upper, answer, mod); return answer; } // long[] fact = new long[2 * n + 1]; // long[] ifact = new long[2 * n + 1]; // fact[0] = 1; // ifact[0] = 1; // for (long i = 1; i <= 2 * n; i++) // { // fact[(int)i] = mod_mul(fact[(int)i - 1], i, mod); // ifact[(int)i] = mminvprime(fact[(int)i], mod); // } //ifact is basically inverse factorial in here!!!!!(imp) public static long combination(long n, long r, long m, long[] fact, long[] ifact) { long val1 = fact[(int)n]; long val2 = ifact[(int)(n - r)]; long val3 = ifact[(int)r]; return (((val1 * val2) % m) * val3) % m; } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
f19f5f4b98c9705311a6d58ab9285abc
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.StringTokenizer; /** * * @author eslam */ public class IceCave { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader input = new FastReader(); static BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) throws IOException { int t = input.nextInt(); while (t-- > 0) { int n = input.nextInt(); long a = input.nextInt(); long b = input.nextInt(); long ar[] = new long[n + 1]; long br[] = new long[n + 1]; long sum = 0; long ans = Long.MAX_VALUE; long s = 0; for (int i = 1; i < ar.length; i++) { ar[i] = input.nextInt(); sum += ar[i]; } for (int i = 1; i < ar.length; i++) { br[i] = (ar[i] - ar[i - 1]) * b; } for (int i = 1; i < br.length; i++) { br[i] = br[i] + br[i - 1]; } for (int i = 0; i < n; i++) { long c = ((sum - ar[i] * (n - i))); long d = br[i] + c * b; ans = Math.min(ans, d + s); sum -= ar[i + 1]; s += (ar[i + 1] - ar[i]) * a; } log.write(ans + "\n"); } log.flush(); } public static long binaryToDecimal(String w) { long r = 0; long l = 0; for (int i = w.length() - 1; i > -1; i--) { long x = (w.charAt(i) - '0') * (long) Math.pow(2, l); r = r + x; l++; } return r; } public static String decimalToBinary(long n) { String w = ""; while (n > 0) { w = n % 2 + w; n /= 2; } return w; } public static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } public static void print(int a[]) throws IOException { for (int i = 0; i < a.length; i++) { log.write(a[i] + " "); } log.write("\n"); } public static void read(long[] a) { for (int i = 1; i < a.length; i++) { a[i] = input.nextInt(); } } static class pair { int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } } public static long LCM(long x, long y) { return (x * y) / GCD(x, y); } public static long GCD(long x, long y) { if (y == 0) { return x; } return GCD(y, x % y); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
0042ebae1b40b51e7ba3b0ac1823b0cd
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class q3 { public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); // public static long mod = 1000000007; public static void solve() throws Exception { String[] parts = br.readLine().split(" "); int n = Integer.parseInt(parts[0]); long a = Integer.parseInt(parts[1]); long b = Integer.parseInt(parts[2]); long[] arr = new long[n + 1]; parts = br.readLine().split(" "); for(int i = 0;i < n;i++){ arr[i + 1] = Integer.parseInt(parts[i]); } long[] dp = new long[n + 1]; long ans = 0; for(int i = 1;i < n + 1;i++) ans += b * (arr[i] - arr[i - 1]); long[] psum = new long[n + 1]; for(int i = 1;i < n + 1;i++) psum[i] = psum[i - 1] + arr[i]; long min = Long.MAX_VALUE; for(int i = 0;i < n;i++){ min = Math.min(min,arr[i] * a + (psum[n - 1] - psum[i] - (arr[i] * (n - 1 - i))) * b); } System.out.println(ans + min); } public static void main(String[] args) throws Exception { int tests = Integer.parseInt(br.readLine()); for (int test = 1; test <= tests; test++) { solve(); } } // public static ArrayList<Integer> primes; // public static void seive(int n){ // primes = new ArrayList<>(); // boolean[] arr = new boolean[n + 1]; // Arrays.fill(arr,true); // // for(int i = 2;i * i <= n;i++){ // if(arr[i]) { // for (int j = i * i; j <= n; j += i) { // arr[j] = false; // } // } // } // for(int i = 2;i <= n;i++) if(arr[i]) primes.add(i); // } // public static void sort(int[] arr){ // ArrayList<Integer> temp = new ArrayList<>(); // for(int val : arr) temp.add(val); // // Collections.sort(temp); // // for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i); // } // public static void sort(long[] arr){ // ArrayList<Long> temp = new ArrayList<>(); // for(long val : arr) temp.add(val); // // Collections.sort(temp); // // for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i); // } // // public static long power(long a,long b,long mod){ // if(b == 0) return 1; // // long p = power(a,b / 2,mod); // p = (p * p) % mod; // // if(b % 2 == 1) return (p * a) % mod; // return p; // } // public static long modDivide(long a,long b,long mod){ // return ((a % mod) * (power(b,mod - 2,mod) % mod)) % mod; // } // // public static int GCD(int a,int b){ // return b == 0 ? a : GCD(b,a % b); // } // public static long GCD(long a,long b){ // return b == 0 ? a : GCD(b,a % b); // } // // public static int LCM(int a,int b){ // return a * b / GCD(a,b); // } // public static long LCM(long a,long b){ // return a * b / GCD(a,b); // } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
e0e3fb09ed50f294dacb5651a172d2fc
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { // int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); int nota = Integer.parseInt(st.nextToken()) + 1; int a = Integer.parseInt(st.nextToken()); int b = Integer.parseInt(st.nextToken()); st = new StringTokenizer(br.readLine()); int arr[] = new int[nota]; long sumlong = 0; for(int i = 1; i < nota; i++) { arr[i] = Integer.parseInt(st.nextToken()); sumlong+=arr[i]; } // sumlong-=arr[0]; // arr[0] = 0; long res = Long.MAX_VALUE; for(int i = 0; i < nota; i++) { long mkl = a + b; long mkl2 = mkl * (long)arr[i]; sumlong-=arr[i]; long temp3 = ((nota-i-1) * (long)arr[i]); long tempmkl = (sumlong - temp3); long temp2 = tempmkl * b; mkl2+=temp2; res = Math.min(res, mkl2); } output.write(res + "\n"); // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
06b7707ba7969c158185eafe34b09f4f
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class CF1659C extends PrintWriter { CF1659C() { super(System.out); } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1659C o = new CF1659C(); o.main(); o.flush(); } void main() { int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); int[] xx = new int[n + 1]; for (int i = 1; i <= n; i++) xx[i] = sc.nextInt(); long[] qq = new long[n + 2]; for (int i = n; i >= 1; i--) qq[i] = xx[i] + qq[i + 1]; long ans = (long) b * qq[1], p = 0; for (int i = 1; i <= n; i++) { p += (long) (a + b) * (xx[i] - xx[i - 1]); long q = b * (qq[i + 1] - (long) (n - i) * xx[i]); ans = Math.min(ans, p + q); } println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
ea12f0eb7d15b58071893655992a86a6
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
// JAI SHREE RAM, HAR HAR MAHADEV, HARE KRISHNA import java.util.*; import java.util.Map.Entry; import java.util.stream.*; import java.lang.*; import java.math.BigInteger; import java.text.DecimalFormat; import java.io.*; public class CodeForces { static private final String INPUT = "input.txt"; static private final String OUTPUT = "output.txt"; static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); static StringTokenizer st; static PrintWriter out = new PrintWriter(System.out); static DecimalFormat df = new DecimalFormat("0.00000"); final static int mod = (int) (1e9 + 7); final static int MAX = Integer.MAX_VALUE; final static int MIN = Integer.MIN_VALUE; final static long INF = Long.MAX_VALUE; final static long NEG_INF = Long.MIN_VALUE; static Random rand = new Random(); // ======================= MAIN ================================== public static void main(String[] args) throws IOException { long time = System.currentTimeMillis(); boolean oj = System.getProperty("ONLINE_JUDGE") != null; // ==== start ==== input(); preprocess(); int t = 1; t = readInt(); while (t-- > 0) { solve(); } out.flush(); // ==== end ==== if (!oj) System.out.println(Arrays.deepToString(new Object[] { System.currentTimeMillis() - time + " ms" })); } private static void solve() throws IOException { int n = readInt(), a = readInt(), b = readInt(); int[] arr = readIntArray(n); sort(arr); long[] suf = new long[n + 1]; for (int i = n - 1; i >= 0; i--) suf[i] = suf[i + 1] + arr[i]; long ans = suf[0] * b; for (int i = 0; i < n; i++) { long cur = 1L * arr[i] * (a + b) + (suf[i + 1] - 1L * (n - i - 1) * arr[i]) * b; ans = Math.min(ans, cur); } out.println(ans); } private static void preprocess() throws IOException { } // cd C:\Users\Eshan Bhatt\Visual Studio Code\Competitive Programming\CodeForces // javac CodeForces.java // java CodeForces // javac CodeForces.java && java CodeForces // ==================== CUSTOM CLASSES ================================ static class Pair { int first, second; Pair(int f, int s) { first = f; second = s; } public int compareTo(Pair o) { if (this.first == o.first) return this.second - o.second; return this.first - o.first; } @Override public boolean equals(Object obj) { if (obj == this) return true; if (obj == null) return false; if (this.getClass() != obj.getClass()) return false; Pair other = (Pair) (obj); if (this.first != other.first) return false; if (this.second != other.second) return false; return true; } @Override public int hashCode() { return this.first ^ this.second; } @Override public String toString() { return this.first + " " + this.second; } } static class DequeNode { DequeNode prev, next; int val; DequeNode(int val) { this.val = val; } DequeNode(int val, DequeNode prev, DequeNode next) { this.val = val; this.prev = prev; this.next = next; } } // ======================= FOR INPUT ================================== private static void input() { FileInputStream instream = null; PrintStream outstream = null; try { instream = new FileInputStream(INPUT); outstream = new PrintStream(new FileOutputStream(OUTPUT)); System.setIn(instream); System.setOut(outstream); } catch (Exception e) { System.err.println("Error Occurred."); } br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } static String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(readLine()); return st.nextToken(); } static long readLong() throws IOException { return Long.parseLong(next()); } static int readInt() throws IOException { return Integer.parseInt(next()); } static double readDouble() throws IOException { return Double.parseDouble(next()); } static char readCharacter() throws IOException { return next().charAt(0); } static String readString() throws IOException { return next(); } static String readLine() throws IOException { return br.readLine().trim(); } static int[] readIntArray(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = readInt(); return arr; } static int[][] read2DIntArray(int n, int m) throws IOException { int[][] arr = new int[n][m]; for (int i = 0; i < n; i++) arr[i] = readIntArray(m); return arr; } static List<Integer> readIntList(int n) throws IOException { List<Integer> list = new ArrayList<>(n); for (int i = 0; i < n; i++) list.add(readInt()); return list; } static long[] readLongArray(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = readLong(); return arr; } static long[][] read2DLongArray(int n, int m) throws IOException { long[][] arr = new long[n][m]; for (int i = 0; i < n; i++) arr[i] = readLongArray(m); return arr; } static List<Long> readLongList(int n) throws IOException { List<Long> list = new ArrayList<>(n); for (int i = 0; i < n; i++) list.add(readLong()); return list; } static char[] readCharArray(int n) throws IOException { return readString().toCharArray(); } static char[][] readMatrix(int n, int m) throws IOException { char[][] mat = new char[n][m]; for (int i = 0; i < n; i++) mat[i] = readCharArray(m); return mat; } // ========================= FOR OUTPUT ================================== private static void printIList(List<Integer> list) { for (int i = 0; i < list.size(); i++) out.print(list.get(i) + " "); out.println(" "); } private static void printLList(List<Long> list) { for (int i = 0; i < list.size(); i++) out.print(list.get(i) + " "); out.println(" "); } private static void printIArray(int[] arr) { for (int i = 0; i < arr.length; i++) out.print(arr[i] + " "); out.println(" "); } private static void print2DIArray(int[][] arr) { for (int i = 0; i < arr.length; i++) printIArray(arr[i]); } private static void printLArray(long[] arr) { for (int i = 0; i < arr.length; i++) out.print(arr[i] + " "); out.println(" "); } private static void print2DLArray(long[][] arr) { for (int i = 0; i < arr.length; i++) printLArray(arr[i]); } // ====================== TO CHECK IF STRING IS NUMBER ======================== private static boolean isInteger(String s) { try { Integer.parseInt(s); } catch (NumberFormatException e) { return false; } catch (NullPointerException e) { return false; } return true; } private static boolean isLong(String s) { try { Long.parseLong(s); } catch (NumberFormatException e) { return false; } catch (NullPointerException e) { return false; } return true; } // ==================== FASTER SORT ================================ private static void sort(int[] arr) { int n = arr.length; List<Integer> list = new ArrayList<>(n); for (int i = 0; i < n; i++) list.add(arr[i]); Collections.sort(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } private static void reverseSort(int[] arr) { int n = arr.length; List<Integer> list = new ArrayList<>(n); for (int i = 0; i < n; i++) list.add(arr[i]); Collections.sort(list, Collections.reverseOrder()); for (int i = 0; i < n; i++) arr[i] = list.get(i); } private static void sort(long[] arr) { int n = arr.length; List<Long> list = new ArrayList<>(n); for (int i = 0; i < n; i++) list.add(arr[i]); Collections.sort(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } private static void reverseSort(long[] arr) { int n = arr.length; List<Long> list = new ArrayList<>(n); for (int i = 0; i < n; i++) list.add(arr[i]); Collections.sort(list, Collections.reverseOrder()); for (int i = 0; i < n; i++) arr[i] = list.get(i); } // ==================== MATHEMATICAL FUNCTIONS =========================== private static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } private static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } private static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } private static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } private static long power(long a, long b) { if (b == 0) return 1L; long ans = power(a, b >> 1); ans *= ans; if ((b & 1) == 1) ans *= a; return ans; } private static int mod_power(int a, int b, int mod) { if (b == 0) return 1; int temp = mod_power(a, b >> 1, mod); temp %= mod; temp = (int) ((1L * temp * temp) % mod); if ((b & 1) == 1) temp = (int) ((1L * temp * a) % mod); return temp; } private static int multiply(int a, int b) { return (int) ((((1L * a) % mod) * ((1L * b) % mod)) % mod); } private static boolean isPrime(long n) { for (long i = 2; i * i <= n; i++) { if (n % i == 0) return false; } return true; } private static long nCr(long n, long r) { if (n - r > r) r = n - r; long ans = 1L; for (long i = r + 1; i <= n; i++) ans *= i; for (long i = 2; i <= n - r; i++) ans /= i; return ans; } // ==================== Primes using Seive ===================== private static List<Integer> getPrimes(int n) { boolean[] prime = new boolean[n + 1]; Arrays.fill(prime, true); for (int i = 2; i * i <= n; i++) { if (prime[i]) { for (int j = i * i; j <= n; j += i) prime[j] = false; } } // return prime; List<Integer> list = new ArrayList<>(); for (int i = 2; i <= n; i++) if (prime[i]) list.add(i); return list; } private static int[] SeivePrime(int n) { int[] primes = new int[n]; for (int i = 0; i < n; i++) primes[i] = i; for (int i = 2; i * i < n; i++) { if (primes[i] != i) continue; for (int j = i * i; j < n; j += i) { if (primes[j] == j) primes[j] = i; } } return primes; } // ==================== STRING FUNCTIONS ================================ private static boolean isPalindrome(String str) { int i = 0, j = str.length() - 1; while (i < j) if (str.charAt(i++) != str.charAt(j--)) return false; return true; } private static String reverseString(String str) { StringBuilder sb = new StringBuilder(str); return sb.reverse().toString(); } private static String sortString(String str) { int[] arr = new int[256]; for (char ch : str.toCharArray()) arr[ch]++; StringBuilder sb = new StringBuilder(); for (int i = 0; i < 256; i++) while (arr[i]-- > 0) sb.append((char) i); return sb.toString(); } // ==================== LIS & LNDS ================================ private static int LIS(int arr[], int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) { int idx = find1(list, arr[i]); if (idx < list.size()) list.set(idx, arr[i]); else list.add(arr[i]); } return list.size(); } private static int find1(List<Integer> list, int val) { int ret = list.size(), i = 0, j = list.size() - 1; while (i <= j) { int mid = (i + j) / 2; if (list.get(mid) >= val) { ret = mid; j = mid - 1; } else { i = mid + 1; } } return ret; } private static int LNDS(int[] arr, int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) { int idx = find2(list, arr[i]); if (idx < list.size()) list.set(idx, arr[i]); else list.add(arr[i]); } return list.size(); } private static int find2(List<Integer> list, int val) { int ret = list.size(), i = 0, j = list.size() - 1; while (i <= j) { int mid = (i + j) / 2; if (list.get(mid) <= val) { i = mid + 1; } else { ret = mid; j = mid - 1; } } return ret; } // =============== Lower Bound & Upper Bound =========== // less than or equal private static int lower_bound(List<Integer> list, int val) { int ans = -1, lo = 0, hi = list.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } private static int lower_bound(List<Long> list, long val) { int ans = -1, lo = 0, hi = list.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } private static int lower_bound(int[] arr, int val) { int ans = -1, lo = 0, hi = arr.length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } private static int lower_bound(long[] arr, long val) { int ans = -1, lo = 0, hi = arr.length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } // greater than or equal private static int upper_bound(List<Integer> list, int val) { int ans = list.size(), lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } private static int upper_bound(List<Long> list, long val) { int ans = list.size(), lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } private static int upper_bound(int[] arr, int val) { int ans = arr.length, lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } private static int upper_bound(long[] arr, long val) { int ans = arr.length, lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } // ==================== UNION FIND ===================== private static int find(int x, int[] parent) { if (parent[x] == x) return x; return parent[x] = find(parent[x], parent); } private static boolean union(int x, int y, int[] parent, int[] rank) { int lx = find(x, parent), ly = find(y, parent); if (lx == ly) return false; if (rank[lx] > rank[ly]) parent[ly] = lx; else if (rank[lx] < rank[ly]) parent[lx] = ly; else { parent[lx] = ly; rank[ly]++; } return true; } // ================== SEGMENT TREE (RANGE SUM & RANGE UPDATE) ================== public static class SegmentTree { int n; int[] arr, tree, lazy; SegmentTree(int arr[]) { this.arr = arr; this.n = arr.length; this.tree = new int[(n << 2)]; this.lazy = new int[(n << 2)]; build(1, 0, n - 1); } void build(int id, int start, int end) { if (start == end) tree[id] = arr[start]; else { int mid = (start + end) / 2, left = (id << 1), right = left + 1; build(left, start, mid); build(right, mid + 1, end); tree[id] = tree[left] + tree[right]; } } void update(int l, int r, int val) { update(1, 0, n - 1, l, r, val); } void update(int id, int start, int end, int l, int r, int val) { distribute(id, start, end); if (end < l || r < start) return; if (start == end) tree[id] += val; else if (l <= start && end <= r) { lazy[id] += val; distribute(id, start, end); } else { int mid = (start + end) / 2, left = (id << 1), right = left + 1; update(left, start, mid, l, r, val); update(right, mid + 1, end, l, r, val); tree[id] = tree[left] + tree[right]; } } int query(int l, int r) { return query(1, 0, n - 1, l, r); } int query(int id, int start, int end, int l, int r) { if (end < l || r < start) return 0; distribute(id, start, end); if (start == end) return tree[id]; else if (l <= start && end <= r) return tree[id]; else { int mid = (start + end) / 2, left = (id << 1), right = left + 1; return query(left, start, mid, l, r) + query(right, mid + 1, end, l, r); } } void distribute(int id, int start, int end) { if (start == end) tree[id] += lazy[id]; else { tree[id] += lazy[id] * (end - start + 1); lazy[(id << 1)] += lazy[id]; lazy[(id << 1) + 1] += lazy[id]; } lazy[id] = 0; } } // ==================== TRIE ================================ static class Trie { class Node { Node[] children; boolean isEnd; Node() { children = new Node[26]; } } Node root; Trie() { root = new Node(); } void insert(String word) { Node curr = root; for (char ch : word.toCharArray()) { if (curr.children[ch - 'a'] == null) curr.children[ch - 'a'] = new Node(); curr = curr.children[ch - 'a']; } curr.isEnd = true; } boolean find(String word) { Node curr = root; for (char ch : word.toCharArray()) { if (curr.children[ch - 'a'] == null) return false; curr = curr.children[ch - 'a']; } return curr.isEnd; } } // ==================== FENWICK TREE ================================ static class FT { long[] tree; int n; FT(int[] arr, int n) { this.n = n; this.tree = new long[n + 1]; for (int i = 1; i <= n; i++) { update(i, arr[i - 1]); } } void update(int idx, int val) { while (idx <= n) { tree[idx] += val; idx += idx & -idx; } } long query(int l, int r) { return getSum(r) - getSum(l - 1); } long getSum(int idx) { long ans = 0L; while (idx > 0) { ans += tree[idx]; idx -= idx & -idx; } return ans; } } // ==================== BINARY INDEX TREE ================================ static class BIT { long[][] tree; int n, m; BIT(int[][] mat, int n, int m) { this.n = n; this.m = m; tree = new long[n + 1][m + 1]; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { update(i, j, mat[i - 1][j - 1]); } } } void update(int x, int y, int val) { while (x <= n) { int t = y; while (t <= m) { tree[x][t] += val; t += t & -t; } x += x & -x; } } long query(int x1, int y1, int x2, int y2) { return getSum(x2, y2) - getSum(x1 - 1, y2) - getSum(x2, y1 - 1) + getSum(x1 - 1, y1 - 1); } long getSum(int x, int y) { long ans = 0L; while (x > 0) { int t = y; while (t > 0) { ans += tree[x][t]; t -= t & -t; } x -= x & -x; } return ans; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
9b4d874c11583b27a9b45da721585963
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.stream.Stream; public class Problem782C { public static void main(String[] args) throws Exception { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); int T = Integer.parseInt(reader.readLine()); List<Long> outputs = new ArrayList<>(); for (int i = 0; i < T; i++) { int[] nums = Stream.of(reader.readLine().split(" ")).mapToInt(Integer::parseInt).toArray(); long a = nums[1]; long b = nums[2]; long[] l = Stream.of(("0 " + reader.readLine()).split(" ")).mapToLong(Long::parseLong).toArray(); long long_conq = b * (l[l.length - 1] - l[l.length - 2]); if (nums[0] == 1) { outputs.add(b * l[1]); continue; } int j = 0; for (j = l.length - 3; j >= 0; j--) { long diff = l[j + 1] - l[j]; long new_long_conq = b * diff * (l.length - j - 1); long alternate = a * diff + b * diff; if (alternate < new_long_conq) { break; } long_conq = long_conq + new_long_conq; } long score = long_conq; long diff = 0; for (int k = 0; k <= j; k++) { diff = l[k + 1] - l[k]; score += b * diff; score += a * diff; } outputs.add(score); } for (long output : outputs) { System.out.println(output); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
61525e8e3696cc11d179768ae76c6ac7
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.StringTokenizer; public class LineEmpire { private static class Kattio extends PrintWriter { private BufferedReader r; private StringTokenizer st = new StringTokenizer(""); private String token; // standard input public Kattio() { this(System.in,System.out); } public Kattio(InputStream i, OutputStream o) { super(o); r = new BufferedReader(new InputStreamReader(i)); } // USACO-style file input public Kattio(String problemName) throws IOException { super(new FileWriter(problemName+".out")); r = new BufferedReader(new FileReader(problemName+".in")); } private String peek() { if (token == null) try { while (!st.hasMoreTokens()) { String line = r.readLine(); if (line == null) return null; st = new StringTokenizer(line); } token = st.nextToken(); } catch (IOException e) { } return token; } public boolean hasMoreTokens() { return peek() != null; } public String next() { String ans = peek(); token = null; return ans; } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) throws IOException { Kattio scanner = new Kattio(); int tests = scanner.nextInt(); while (tests-- > 0) { int numOfCities = scanner.nextInt(); int move = scanner.nextInt(); int conquer = scanner.nextInt(); long[] cities = new long[numOfCities+1]; cities[0] = 0; for (int i = 1; i <= numOfCities; i++) { cities[i] = scanner.nextLong(); } int curr = 0; long ans = 0; for (int i = 1; i <= numOfCities; i++) { ans += conquer*(cities[i]-cities[curr]); if (move*(cities[i]-cities[curr]) <= conquer*(cities[i]-cities[curr])*(numOfCities-i)) { ans += move*(cities[i]-cities[curr]); curr = i; } // scanner.println(i + " |" + cities[i] +" "+ cities[curr] +"| "+curr + " " + ans); } scanner.println(ans); } scanner.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d166916a08713456d22c989a684300a1
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { private static FS sc = new FS(); private static class FS { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) {} return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } private static class extra { static int[] intArr(int size) { int[] a = new int[size]; for(int i = 0; i < size; i++) a[i] = sc.nextInt(); return a; } static long[] longArr(int size) { Scanner scc = new Scanner(System.in); long[] a = new long[size]; for(int i = 0; i < size; i++) a[i] = sc.nextLong(); return a; } static long intSum(int[] a) { long sum = 0; for(int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } static long longSum(long[] a) { long sum = 0; for(int i = 0; i < a.length; i++) { sum += a[i]; } return sum; } static LinkedList[] graphD(int vertices, int edges) { LinkedList<Integer>[] temp = new LinkedList[vertices+1]; for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>(); for(int i = 0; i < edges; i++) { int x = sc.nextInt(); int y = sc.nextInt(); temp[x].add(y); } return temp; } static LinkedList[] graphUD(int vertices, int edges) { LinkedList<Integer>[] temp = new LinkedList[vertices+1]; for(int i = 0; i <= vertices; i++) temp[i] = new LinkedList<>(); for(int i = 0; i < edges; i++) { int x = sc.nextInt(); int y = sc.nextInt(); temp[x].add(y); temp[y].add(x); } return temp; } static void printG(LinkedList[] temp) { for(LinkedList<Integer> aa:temp) System.out.println(aa); } static long cal(long val, long pow, long mod) { if(pow == 0) return 1; long ans = cal(val, pow / 2, mod); long ret = (ans * ans) % mod; if(pow % 2 == 0) return ret; return (ret * val) % mod; } static long gcd(long a, long b) { return b == 0 ? a:gcd(b, a%b); } } static int mod = 998244353; // static int mod = (int) 1e9 + 7; // static long inf = (long) Long.MAX_VALUE - 1; static LinkedList<Integer>[] temp; public static void main(String[] args) { int t = sc.nextInt(); // int t = 1; StringBuilder ret = new StringBuilder(); while(t-- > 0) { int n = sc.nextInt(), c = sc.nextInt(), p = sc.nextInt(); int[] a = extra.intArr(n); long[] pre = new long[n]; pre[0] = a[0]; for(int i = 1; i < n; i++) pre[i] = pre[i - 1] + a[i]; long ans = p * 1L * pre[n - 1], sumP = 0; // System.out.println(ans); int prevK = 0; for(int i = 0; i < n; i++) { // conquer long val = p * 1L * (a[i] - prevK) + c * 1L * (a[i] - prevK); long temp = val; prevK = a[i]; long tot = pre[n - 1] - pre[i]; val += p * (tot - (n - i - 1) * 1L * prevK); // System.out.println(tot + " " + val + " " + sumP); ans = Math.min(val + sumP, ans); sumP += temp; // placed now } ret.append(ans + "\n"); } System.out.println(ret); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
ad01b0ae33bc4cc519069025b65b71ac
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { static long mod = 1000000007; static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); public static void main(String[] args) throws IOException { FastReader sc = new FastReader(); int t = sc.nextInt(); while( t-- > 0) { int n = sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); long c = 0; long ans= 0; long arr[] = new long[n]; long sum = 0; long presum[] = new long[n+1]; for( int i = 0 ;i < n; i++) { arr[i] = sc.nextLong(); sum+=arr[i]; presum[i+1] =sum; } for( int i = 0 ;i < n ;i++) { ans+=b*(arr[i] - c); // out.println(b*(arr[i] - c)); if( i != n-1) { // presum[n] - pre[i+1] - n-i-1*b + a*( sum = presum[n] - presum[i+1]; long fst = (sum - (n-i-1)*arr[i])*b + a*(arr[i] - c) ; long scnd = (sum - (n-i-1)*c)*b; if( fst < scnd) { ans+=a*(arr[i] - c); c = arr[i] ; } // out.println(fst + " " + scnd + " " + sum); } } out.println(ans); } out.flush(); } /* * time for a change */ public static boolean ifpowof2(long n ) { return ((n&(n-1)) == 0); } static boolean isprime(long x ) { if( x== 2) { return true; } if( x%2 == 0) { return false; } for( long i = 3 ;i*i <= x ;i+=2) { if( x%i == 0) { return false; } } return true; } static boolean[] sieveOfEratosthenes(long n) { boolean prime[] = new boolean[(int)n + 1]; for (int i = 0; i <= n; i++) { prime[i] = true; } for (long p = 2; p * p <= n; p++) { if (prime[(int)p] == true) { for (long i = p * p; i <= n; i += p) prime[(int)i] = false; } } return prime; } public static int[] nextLargerElement(int[] arr, int n) { Stack<Integer> stack = new Stack<>(); int rtrn[] = new int[n]; rtrn[n-1] = -1; stack.push( n-1); for( int i = n-2 ;i >= 0 ; i--){ int temp = arr[i]; int lol = -1; while( !stack.isEmpty() && arr[stack.peek()] <= temp){ if(arr[stack.peek()] == temp ) { lol = stack.peek(); } stack.pop(); } if( stack.isEmpty()){ if( lol != -1) { rtrn[i] = lol; } else { rtrn[i] = -1; } } else{ rtrn[i] = stack.peek(); } stack.push( i); } return rtrn; } static void mysort(int[] arr) { for(int i=0;i<arr.length;i++) { int rand = (int) (Math.random() * arr.length); int loc = arr[rand]; arr[rand] = arr[i]; arr[i] = loc; } Arrays.sort(arr); } static void mySort(long[] arr) { for(int i=0;i<arr.length;i++) { int rand = (int) (Math.random() * arr.length); long loc = arr[rand]; arr[rand] = arr[i]; arr[i] = loc; } Arrays.sort(arr); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return (a / gcd(a, b)) * b; } static long rightmostsetbit(long n) { return n&-n; } static long leftmostsetbit(long n) { long k = (long)(Math.log(n) / Math.log(2)); return k; } static HashMap<Long,Long> primefactor( long n){ HashMap<Long ,Long> hm = new HashMap<>(); long temp = 0; while( n%2 == 0) { temp++; n/=2; } if( temp!= 0) { hm.put( 2L, temp); } long c = (long)Math.sqrt(n); for( long i = 3 ; i <= c ; i+=2) { temp = 0; while( n% i == 0) { temp++; n/=i; } if( temp!= 0) { hm.put( i, temp); } } if( n!= 1) { hm.put( n , 1L); } return hm; } static ArrayList<Long> allfactors(long abs) { HashMap<Long,Integer> hm = new HashMap<>(); ArrayList<Long> rtrn = new ArrayList<>(); for( long i = 2 ;i*i <= abs; i++) { if( abs% i == 0) { hm.put( i , 0); hm.put(abs/i, 0); } } for( long x : hm.keySet()) { rtrn.add(x); } if( abs != 0) { rtrn.add(abs); } return rtrn; } public static int[][] prefixsum( int n , int m , int arr[][] ){ int prefixsum[][] = new int[n+1][m+1]; for( int i = 1 ;i <= n ;i++) { for( int j = 1 ; j<= m ; j++) { int toadd = 0; if( arr[i-1][j-1] == 1) { toadd = 1; } prefixsum[i][j] = toadd + prefixsum[i][j-1] + prefixsum[i-1][j] - prefixsum[i-1][j-1]; } } return prefixsum; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
8e6da757aab767e6b1ccb40d7ad9aa24
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.lang.*; import java.util.*; public class Main { public static int mod = (int)1e9 + 7; // **** -----> Disjoint Set Union(DSU) Start ********** public static int findPar(int node, int[] parent) { if (parent[node] == node) return node; return parent[node] = findPar(parent[node], parent); } public static boolean union(int u, int v, int[] rank, int[] parent) { u = findPar(u, parent); v = findPar(v, parent); if(u == v) return false; if (rank[u] < rank[v]) parent[u] = v; else if (rank[u] > rank[v]) parent[v] = u; else { parent[u] = v; rank[v]++; } return true; } // **** DSU Ends *********** //Pair with int int public static class Pair{ public int a; public int b; Pair(int a , int b){ this.a = a; this.b = b; } @Override public String toString(){ return a + " -> " + b; } } public static String toBinary(int decimal) {StringBuilder sb = new StringBuilder();while (decimal > 0) {sb.append(decimal % 2);decimal = decimal / 2;}return sb.reverse().toString();} public static boolean isPalindrome(String s) {int i = 0, j = s.length() - 1;while (i < j) {if (s.charAt(i) != s.charAt(j))return false;i++;j--;}return true;} public static boolean isPalindrome(int[] arr) {int i = 0, j = arr.length - 1;while (i < j) {if (arr[i] != arr[j])return false;}return true;} public static int pow(int x, int y) {int res = 1;x = x % mod;if (x == 0)return 0;while (y > 0) {if ((y & 1) != 0)res = (res * x) % mod;y = y >> 1;x = (x * x) % mod;}return res;} public static int gcd(int a, int b) {if (b == 0)return a;return gcd(b, a % b);} public static long gcd(long a, long b) {if (b == 0)return a;return gcd(b, a % b);} public static void sort(long[] a) {Random rnd = new Random();for (int i = 0; i < a.length; i++) {int pos = i + rnd.nextInt(a.length - i);long temp = a[i];a[i] = a[pos];a[pos] = temp;}Arrays.sort(a);} public static void reverse(int a[]) {int i, k, t, n = a.length;for (i = 0; i < n / 2; i++) {t = a[i];a[i] = a[n - i - 1];a[n - i - 1] = t;}} public static void sort(int[] a) {Random rnd = new Random();for (int i = 0; i < a.length; i++) {int pos = i + rnd.nextInt(a.length - i);int temp = a[i];a[i] = a[pos];a[pos] = temp;}Arrays.sort(a);} public static void revSort(int[] a) {Random rnd = new Random();for (int i = 0; i < a.length; i++) {int pos = i + rnd.nextInt(a.length - i);int temp = a[i];a[i] = a[pos];a[pos] = temp;}Arrays.sort(a);reverse(a);} public static long LCM(long a, long b) {if (a > b) {long t = a;a = b;b = t;}a /= gcd(a, b);return (a * b);} public static int findMax(int[] a, int left, int right) {int res = left;int max = a[left];for (int i = left + 1; i <= right; i++) {if (a[i] > max) {max = a[i];res = i;}}return res;} public static long findClosest(long arr[], long target) {int n = arr.length;if (target <= arr[0])return arr[0];if (target >= arr[n - 1])return arr[n - 1];int i = 0, j = n, mid = 0;while (i < j) {mid = (i + j) / 2;if (arr[mid] == target)return arr[mid];if (target < arr[mid]) {if (mid > 0 && target > arr[mid - 1])return getClosest(arr[mid - 1], arr[mid], target);j = mid;} else {if (mid < n - 1 && target < arr[mid + 1])return getClosest(arr[mid], arr[mid + 1], target);i = mid + 1;}}return arr[mid];} public static long getClosest(long val1, long val2, long target) {if (target - val1 >= val2 - target)return val2;else return val1;} public static int findClosest(int arr[], int target) { int n = arr.length; if (target <= arr[0]) return arr[0]; if (target >= arr[n - 1]) return arr[n - 1]; int i = 0, j = n, mid = 0; while (i < j) { mid = (i + j) / 2; if (arr[mid] == target) return arr[mid];if (target < arr[mid]) {if (mid > 0 && target > arr[mid - 1])return getClosest(arr[mid - 1], arr[mid], target);j = mid;} else {if (mid < n - 1 && target < arr[mid + 1])return getClosest(arr[mid], arr[mid + 1], target);i = mid + 1;}}return arr[mid];} public static int getClosest(int val1, int val2, int target) {if (target - val1 >= val2 - target)return val2;else return val1;} public static String reverse(String str) {String nstr = "";char ch;for (int i = 0; i < str.length(); i++) {ch = str.charAt(i);nstr = ch + nstr;}return nstr;} public static boolean isPrime(int n){if (n <= 1)return false;if (n <= 3)return true;if (n % 2 == 0 || n % 3 == 0)return false;for (int i = 5; i * i <= n; i = i + 6)if (n % i == 0 || n % (i + 2) == 0)return false;return true;} public static int xorSum(int arr[], int n){int bits = 0;for (int i = 0; i < n; ++i)bits |= arr[i];int ans = bits * (int)Math.pow(2, n-1);return ans;} public static ArrayList<Integer> primeFactors(int n) { ArrayList<Integer> res = new ArrayList<>();while (n%2 == 0) { res.add(2); n = n/2; } for (int i = 3; i <= Math.sqrt(n); i = i+2) { while (n%i == 0) { res.add(i); n = n/i; } } if (n > 2) res.add(n);return res;} public static ArrayList<Long> primeFactors(long n) { ArrayList<Long> res = new ArrayList<>();while (n%2 == 0) { res.add(2L); n = n/2; } for (long i = 3; i <= Math.sqrt(n); i = i+2) { while (n%i == 0) { res.add(i); n = n/i; } } if (n > 2) res.add(n);return res;} static int lower_bound(int array[], int low, int high, int key){ int mid; while (low < high) { mid = low + (high - low) / 2; if (key <= array[mid]) high = mid; else low = mid + 1; } if (low < array.length && array[low] < key) low++; return low; } /********************************* Start Here ***********************************/ // int mod = 1000000007; static HashMap<Character, TreeSet<Integer>> map; public static void main(String[] args) throws java.lang.Exception { if (System.getProperty("ONLINE_JUDGE") == null) { PrintStream ps = new PrintStream(new File("output.txt")); System.setOut(ps); } FastScanner sc = new FastScanner("input.txt"); StringBuilder result = new StringBuilder(); // sieveOfEratosthenes(1000000); int T = sc.nextInt(); // int T = 1; for(int test = 1; test <= T; test++){ int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); long[] arr = new long[n+1]; n++; long sum=0; for(int i=1;i<n;++i){ arr[i] = sc.nextLong(); sum+=arr[i]; } long res = Long.MAX_VALUE; for(int i=0;i<n;++i){ long cur = (a+b)*arr[i]; sum-=arr[i]; cur+=(sum-(n-i-1)*arr[i])*b; res=Math.min(res,cur); } result.append(res+"\n"); } System.out.println(result); System.out.close(); } public static int solve(int n){ // int n = sc.nextInt(); // int r = sc.nextInt(); // int b = sc.nextInt(); // StringBuilder sb = new StringBuilder(); // if(b == 1){ // for(int i = 0; i < n; i++){ // if(i == n/2) sb.append('B'); // else sb.append('R'); // } // result.append(sb+"\n"); // continue; // } // ArrayList<StringBuilder> res = new ArrayList<>(); // for(int i = 0; i <= b; i++){ // res.add(new StringBuilder("")); // } // int i = 0; // while(r > 0){ // res.get(i).append('R'); // i++; // if(i == b+1) i = 0; // r--; // } // for(i = 0; i < res.size()-1; i++) // result.append(res.get(i)+"B"); // result.append(res.get(res.size()-1)); return 1; } // static void sieveOfEratosthenes(int n){ // boolean prime[] = new boolean[n + 1]; // for (int i = 0; i <= n; i++) // prime[i] = true; // for (int p = 2; p * p <= n; p++){ // if (prime[p] == true){ // for (int i = p * p; i <= n; i += p) // prime[i] = false; // } // } // for (int i = 2; i <= n; i++){ // if (prime[i] == true) // set.add(i); // } // } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { br = new BufferedReader(new InputStreamReader(System.in)); } } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } public String nextLine() { if (st == null || !st.hasMoreTokens()) { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken("\n"); } public String[] readStringArray(int n) { String[] a = new String[n]; for (int i = 0; i < n; i++) { a[i] = next(); } return a; } int nextInt() { return Integer.parseInt(nextToken()); } String next() { return nextToken(); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } int[][] read2dArray(int n, int m) { int[][] a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = nextInt(); } } return a; } long[][] read2dlongArray(int n, int m) { long[][] a = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = nextLong(); } } return a; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
bd50383b6d09a123af97d67803c59d02
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { C(); } public static void C(){ Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t-->0) { int n = in.nextInt(), a = in.nextInt(), b = in.nextInt(); int[] kingdoms = new int[n]; long[] changes = new long[n]; for (int i=0;i<n;i++) kingdoms[i] = in.nextInt(); long cost = (long) n * b * kingdoms[0]; changes[0] = (long) kingdoms[0] *a - (long) (n - 1) * b * kingdoms[0]; for (int i=1;i<n;i++) { int dis = kingdoms[i] - kingdoms[i - 1]; changes[i] = (long) a * dis - (long) b *(n-1-i)* dis; cost += (long) b * (n-i) * dis; } long min = 0, cur = 0; for (long change: changes) { cur += change; min = Long.min(cur, min); } System.out.println(cost + min); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
df88bd95e7480a266196163e37d2c2d0
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; public class Solution { public static void main (String[] args) throws java.lang.Exception { Scanner sc=new Scanner(System.in); long t=sc.nextLong(); while(t-->0){ int n=sc.nextInt(); long x=sc.nextLong(); long y=sc.nextLong(); long dp[]=new long[n+1]; long h=0; dp[0]=0; for(int i=1;i<=n;i++){ dp[i]=sc.nextLong(); h+=dp[i]; } long ans=Long.MAX_VALUE; for(int i=0;i<=n;i++){ long k=dp[i]; h-=dp[i]; long b=((h-(n-i)*dp[i])*y); b+=(x+y)*k; ans=Math.min(ans,b); } System.out.println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d1fa844a4e3c09805f96bb7be24edd75
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class C { public static void printArr(int arr[], int n) { StringBuilder s = new StringBuilder(); for (long no : arr) { s.append(no).append(" "); } System.out.println(s.toString()); } public static void main(String[] args) { FastScanner fs=new FastScanner(); PrintWriter out=new PrintWriter(System.out); int T=fs.nextInt(); for (int tt=0; tt<T; tt++) { int n=fs.nextInt(); int a=fs.nextInt(); int b = fs.nextInt(); int[] arr = fs.readArray(n); Arrays.sort(arr); long ans =0; int first = arr[0]; ans += (long) arr[0] * b; int cc = 0, lc=arr[0]; for (int i = 1; i < n; i++) { long moveCost = (long) Math.abs(lc - cc) * a; long conquerCost = (long) Math.abs(lc - cc) * b * (n - i); if (moveCost<conquerCost) { ans += moveCost; cc = lc; } ans += (long) Math.abs(arr[i] - cc) * b; lc = arr[i]; } System.out.println(ans); } } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
dcca1c2c825a05deb163daef3ec21ac5
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { new Main().run(); } void run() { Scanner sc=new Scanner(System.in); PrintWriter pw=new PrintWriter(System.out); int T=sc.nextInt(); while (T-->0) { int N=sc.nextInt(); long A=sc.nextLong();//move long B=sc.nextLong();//conquer long[] x=new long[N+1]; for (int i=0;i<N;++i) x[i+1]=sc.nextLong(); int pre=0; long ans=0; for (int i=1;i<=N;++i) { ans+=(x[i]-x[pre])*B; if ((x[i]-x[pre])*B*(N-i) > (x[i]-x[pre])*A) { ans+=(x[i]-x[pre])*A; pre=i; } } pw.println(ans); } pw.close(); } void tr(Object...o) {System.out.println(Arrays.deepToString(o));} }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
99b40bf56a2f848dc0b74547e883de61
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.Scanner; public class C { static Scanner sc = new Scanner(System.in); public static void main(String[] args) { // TODO Auto-generated method stub int testCases = sc.nextInt(); for (int i = 1; i <= testCases; ++i) { solve(i); } } private static void solve(int t) { int n = sc.nextInt(); long a = sc.nextInt(); long b = sc.nextInt(); int [] arr = new int [n]; for (int i = 0; i < n; ++i) arr[i] = sc.nextInt(); long [] distances = new long [arr.length]; long sum = 0; int prev = 0; for (int i = 0; i < arr.length; ++i) { sum += arr[i]; } long max = sum * b; long current = max; long savings; long left = n; for (int i = 0; i < arr.length - 1; ++i) { --left; savings = left * b* (arr[i] - prev); current -= savings; current += a * (arr[i] - prev); prev = arr[i]; max = Math.min(max, current); } System.out.println(max); } public static void print(int test, long result) { System.out.println("Case #" + test + ": " + result); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
1c052c763f8b2c13bfda754871095936
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; /** * A simple template for competitive programming problems. */ public class Solution { //InputReader in = new InputReader("input.txt"); final InputReader in = new InputReader(System.in); final PrintWriter out = new PrintWriter(System.out); static final int mod = 1000000007; void solve() { int t = in.nextInt(); while(t-->0) { int n = in.nextInt(); long a = in.nextInt(); // change long b = in.nextInt(); // conquer int[] arr = in.nextArray(n); int cap = 0; long[] ps = new long[n]; ps[0] = arr[0]; for(int i=1; i<n; i++) { ps[i] = arr[i] + ps[i-1]; } long ans = ps[n-1]*b; for(int i=0; i<n; i++) { long cand = (b+a)*arr[i]; long sumOfRem = ps[n-1]-ps[i]; cand += b*(sumOfRem-(long)(n-1-i)*arr[i]); ans = Math.min(cand, ans); } out.println(ans); } } public static void main(final String[] args) throws FileNotFoundException { final Solution s = new Solution(); final Long t1 = System.currentTimeMillis(); s.solve(); System.err.println(System.currentTimeMillis() - t1 + " ms"); s.out.close(); } public Solution() throws FileNotFoundException { } private static class InputReader { private final InputStream stream; private final byte[] buf = new byte[1024]; private int curChar; private int numChars; Random r = new Random(); InputReader(final InputStream stream) { this.stream = stream; } InputReader(final String fileName) { InputStream stream = null; try { stream = new FileInputStream(fileName); } catch (final FileNotFoundException e) { e.printStackTrace(); } this.stream = stream; } int[] nextArray(final int n) { final int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } int[][] nextMatrix(final int n, final int m) { final int[][] matrix = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) matrix[i][j] = nextInt(); return matrix; } String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); final StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } String nextString() { int c = read(); while (isSpaceChar(c)) c = read(); final StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } int[] randomArray(int n, int low, int up) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = low + r.nextInt(up - low + 1); } return arr; } double nextDouble() { return Double.parseDouble(nextString()); } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (final IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } private boolean isSpaceChar(final int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(final int c) { return c == '\n' || c == '\r' || c == -1; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
a627b7672d41ab4e215b975f566b9336
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import com.sun.security.jgss.GSSUtil; import java.util.*; import java.lang.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { Reader.init(System.in); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); int t = Reader.nextInt(); // int t = 1; while(t-->0) { int n = Reader.nextInt(); long a = Reader.nextLong(); long b = Reader.nextLong(); long[] arr = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Reader.nextLong(); } long ans = 0; ans += b*(arr[0]); long c = 0; for(int i = 0;i<n-1;i++){ if(a*(arr[i]-c) < b*(n-i-1)*(arr[i]-c)){ ans += a*(arr[i]-c); c = arr[i]; } ans += b*(arr[i+1]-c); } output.write(ans+"\n"); } output.close(); } public static long[] factorial(int n){ long[] factorials = new long[n+1]; factorials[1] = 1; for(int i = 2;i<=n;i++){ factorials[i] = (factorials[i-1]*i)%((int)1e9+7); } return factorials; } public static long numOfBits(long n){ long ans = 0; while(n>0){ n = n & (n-1); ans++; } return ans; } public static long ceilOfFraction(long x, long y){ // ceil using integer division: ceil(x/y) = (x+y-1)/y // using double may go out of range. return (x+y-1)/y; } public static int power(int x, int y, int p) { int res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } // Returns n^(-1) mod p public static int modInverse(int n, int p) { return power(n, p - 2, p); } // Returns nCr % p using Fermat's // little theorem. public static int nCrModPFermat(int n, int r, int p) { if (n<r) return 0; if (r == 0) return 1; // Fill factorial array so that we // can find all factorial of r, n // and n-r int[] fac = new int[n + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[n] * modInverse(fac[r], p) % p * modInverse(fac[n - r], p) % p) % p; } public static long ncr(long n, long r) { long p = 1, k = 1; if (n - r < r) { r = n - r; } if (r != 0) { while (r > 0) { p *= n; k *= r; long m = gcd(p, k); p /= m; k /= m; n--; r--; } } else { p = 1; } return p; } public static boolean isPrime(long n){ if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; (long) i * i <= n; i = i + 6){ if (n % i == 0 || n % (i + 2) == 0) { return false; } } return true; } public static int powOf2JustSmallerThanN(int n) { n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; return n ^ (n >> 1); } public static int mergeSortAndCount(int[] arr, int l, int r) { int count = 0; if (l < r) { int m = (l + r) / 2; count += mergeSortAndCount(arr, l, m); count += mergeSortAndCount(arr, m + 1, r); count += mergeAndCount(arr, l, m, r); } return count; } public static int mergeAndCount(int[] arr, int l, int m, int r) { int[] left = Arrays.copyOfRange(arr, l, m + 1); int[] right = Arrays.copyOfRange(arr, m + 1, r + 1); int i = 0, j = 0, k = l, swaps = 0; while (i < left.length && j < right.length) { if (left[i] <= right[j]) arr[k++] = left[i++]; else { arr[k++] = right[j++]; swaps += (m + 1) - (l + i); } } while (i < left.length) arr[k++] = left[i++]; while (j < right.length) arr[k++] = right[j++]; return swaps; } public static void reverseArray(int[] arr,int start, int end) { int temp; while (start < end) { temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; start++; end--; } } public static long gcd(long a, long b){ if(a==0){ return b; } return gcd(b%a,a); } public static long lcm(long a, long b){ if(a>b) return a/gcd(b,a) * b; return b/gcd(a,b) * a; } public static long largeExponentMod(long x,long y,long mod){ // computing (x^y) % mod x%=mod; long ans = 1; while(y>0){ if((y&1)==1){ ans = (ans*x)%mod; } x = (x*x)%mod; y = y >> 1; } return ans; } public static boolean[] numOfPrimesInRange(long L, long R){ boolean[] isPrime = new boolean[(int) (R-L+1)]; Arrays.fill(isPrime,true); long lim = (long) Math.sqrt(R); for (long i = 2; i <= lim; i++){ for (long j = Math.max(i * i, (L + i - 1) / i * i); j <= R; j += i){ isPrime[(int) (j - L)] = false; } } if (L == 1) isPrime[0] = false; return isPrime; } public static ArrayList<Long> primeFactors(long n){ ArrayList<Long> factorization = new ArrayList<>(); if(n%2==0){ factorization.add(2L); } while(n%2==0){ n/=2; } if(n%3==0){ factorization.add(3L); } while(n%3==0){ n/=3; } if(n%5==0){ factorization.add(5L); } while(n%5==0){ // factorization.add(5L); n/=5; } int[] increments = {4, 2, 4, 2, 4, 6, 2, 6}; int i = 0; for (long d = 7; d * d <= n; d += increments[i++]) { if(n%d==0){ factorization.add(d); } while (n % d == 0) { // factorization.add(d); n /= d; } if (i == 8) i = 0; } if (n > 1) factorization.add(n); return factorization; } } class DSU { int[] size, parent; int n; public DSU(int n){ this.n = n; size = new int[n]; parent = new int[n]; for(int i = 0;i<n;i++){ parent[i] = i; size[i] = 1; } } public int find(int u){ if(parent[u]==u){ return u; } return parent[u] = find(parent[u]); } public void merge(int u, int v){ u = find(u); v = find(v); if(u!=v){ if(size[u]>size[v]){ parent[v] = u; size[u] += size[v]; } else{ parent[u] = v; size[v] += size[u]; } } } } class Reader { static BufferedReader reader; static StringTokenizer tokenizer; /** call this method to initialize reader for InputStream */ static void init(InputStream input) { reader = new BufferedReader( new InputStreamReader(input) ); tokenizer = new StringTokenizer(""); } /** get next word */ static String next() throws IOException { while ( ! tokenizer.hasMoreTokens() ) { //TODO add check for eof if necessary tokenizer = new StringTokenizer( reader.readLine() ); } return tokenizer.nextToken(); } static String nextLine() throws IOException { return reader.readLine(); } static int nextInt() throws IOException { return Integer.parseInt( next() ); } static long nextLong() throws IOException{ return Long.parseLong(next() ); } static double nextDouble() throws IOException { return Double.parseDouble( next() ); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
80562b571f933da458d3e9c367b7af03
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
// package c1659; import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.InputStreamReader; import java.lang.invoke.MethodHandles; import java.util.Random; import java.util.StringTokenizer; // // Codeforces Round #782 (Div. 2) 2022-04-17 07:35 // C. Line Empire // https://codeforces.com/contest/1659/problem/C // time limit per test 1 second; memory limit per test 256 megabytes // public class Pseudo for 'Source should satisfy regex [^{}]*public\s+(final)?\s*class\s+(\w+).*' // // Consider a number axis. The capital of your empire is initially at 0. There are n unconquered // kingdoms at positions 0<x_1<x_2<...<x_n. You want to conquer all other kingdoms. // // There are two actions available to you: // * You can change the location of your capital (let its current position be c_1) to any other // kingdom (let its position be c_2) at a cost of a* |c_1-c_2|. // * From the current capital (let its current position be c_1) you can conquer an unconquered // kingdom (let its position be c_2) at a cost of b* |c_1-c_2|. You conquer a kingdom if there is // an unconquered kingdom between the target and your capital. // // Note that you place the capital at a point without a kingdom. In other words, at any point, your // capital can only be at 0 or one of x_1,x_2,...,x_n. Also note that conquering a kingdom does not // change the position of your capital. // // Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end. // // Input // // The first line contains a single integer t (1 <= t <= 1000) -- the number of test cases. The // description of each test case follows. // // The first line of each test case contains 3 integers n, a, and b (1 <= n <= 2 * 10^5; 1 <= a,b <= // 10^5). // // The second line of each test case contains n integers x_1, x_2, ..., x_n (1 <= x_1 < x_2 < ... < // x_n <= 10^8). // // The sum of n over all test cases does not exceed 2 * 10^5. // // Output // // For each test case, output a single integer -- the minimum cost to conquer all kingdoms. // // Example /* input: 4 5 2 7 3 5 12 13 21 5 6 3 1 5 6 21 30 2 9 3 10 15 11 27182 31415 16 18 33 98 874 989 4848 20458 34365 38117 72030 output: 173 171 75 3298918744 */ // Note // // Here is an optimal sequence of moves for the second test case: // 1. Conquer the kingdom at position 1 with cost 3*(1-0)=3. // 2. Move the capital to the kingdom at position 1 with cost 6*(1-0)=6. // 3. Conquer the kingdom at position 5 with cost 3*(5-1)=12. // 4. Move the capital to the kingdom at position 5 with cost 6*(5-1)=24. // 5. Conquer the kingdom at position 6 with cost 3*(6-5)=3. // 6. Conquer the kingdom at position 21 with cost 3*(21-5)=48. // 7. Conquer the kingdom at position 30 with cost 3*(30-5)=75. // // The total cost is 3+6+12+24+3+48+75=171. You cannot get a lower cost than this. // public class C1659C { static final int MOD = 998244353; static final Random RAND = new Random(); static long solve(int[] x, int a, int b) { int n = x.length; long ans = 0; int xc = 0; for (int i = 0; i < n; i++) { long cc = (long)(x[i] - xc) * b; ans += cc; // relocate capital from xc to x[i]? // There are (n-1-i) kingdom after, relocate will save long rs = (long)(n-1-i) * b * (x[i] - xc); long rc = (long)(x[i] - xc) * a; boolean relocate = rs > rc; if (relocate) { ans += rc; xc = x[i]; } // System.out.format(" i:%d xi:%4d cc:%4d rs:%4d rc:%4d rel:%5b xc:%4d ans:%d\n", // i, x[i], cc, rs, rc, relocate, xc, ans); } return ans; } static boolean test = false; static void doTest() { if (!test) { return; } long t0 = System.currentTimeMillis(); System.out.format("%d msec\n", System.currentTimeMillis() - t0); System.exit(0); } public static void main(String[] args) { doTest(); MyScanner in = new MyScanner(); int T = in.nextInt(); for (int t = 1; t <= T; t++) { int n = in.nextInt(); int a = in.nextInt(); int b = in.nextInt(); int[] x = new int[n]; for (int i = 0; i < n; i++) { x[i] = in.nextInt(); } long ans = solve(x, a, b); System.out.println(ans); } } static void output(int[] a) { if (a == null) { System.out.println("-1"); return; } StringBuilder sb = new StringBuilder(); for (int v : a) { sb.append(v); sb.append(' '); if (sb.length() > 500) { System.out.print(sb.toString()); sb.setLength(0); } } System.out.println(sb.toString()); } static void myAssert(boolean cond) { if (!cond) { throw new RuntimeException("Unexpected"); } } static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { try { final String USERDIR = System.getProperty("user.dir"); String cname = MethodHandles.lookup().lookupClass().getCanonicalName().replace(".MyScanner", ""); cname = cname.lastIndexOf('.') > 0 ? cname.substring(cname.lastIndexOf('.') + 1) : cname; final File fin = new File(USERDIR + "/io/c" + cname.substring(1,5) + "/" + cname + ".in"); br = new BufferedReader(new InputStreamReader(fin.exists() ? new FileInputStream(fin) : System.in)); } catch (Exception e) { br = new BufferedReader(new InputStreamReader(System.in)); } } public String next() { try { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } catch (Exception e) { throw new RuntimeException(e); } } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
a4ff2e60666e57e4877f0c03157b29f9
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class C { static class Scan { private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; public Scan() { in=System.in; } public int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } public int scanInt()throws IOException { int integer=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { integer*=10; integer+=n-'0'; n=scan(); } else throw new InputMismatchException(); } return neg*integer; } public double scanDouble()throws IOException { double doub=0; int n=scan(); while(isWhiteSpace(n)) n=scan(); int neg=1; if(n=='-') { neg=-1; n=scan(); } while(!isWhiteSpace(n)&&n!='.') { if(n>='0'&&n<='9') { doub*=10; doub+=n-'0'; n=scan(); } else throw new InputMismatchException(); } if(n=='.') { n=scan(); double temp=1; while(!isWhiteSpace(n)) { if(n>='0'&&n<='9') { temp/=10; doub+=(n-'0')*temp; n=scan(); } else throw new InputMismatchException(); } } return doub*neg; } public String scanString()throws IOException { StringBuilder sb=new StringBuilder(); int n=scan(); while(isWhiteSpace(n)) n=scan(); while(!isWhiteSpace(n)) { sb.append((char)n); n=scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } } public static void sort(int arr[],int l,int r) { //sort(arr,0,n-1); if(l==r) { return; } int mid=(l+r)/2; sort(arr,l,mid); sort(arr,mid+1,r); merge(arr,l,mid,mid+1,r); } public static void merge(int arr[],int l1,int r1,int l2,int r2) { int tmp[]=new int[r2-l1+1]; int indx1=l1,indx2=l2; //sorting the two halves using a tmp array for(int i=0;i<tmp.length;i++) { if(indx1>r1) { tmp[i]=arr[indx2]; indx2++; continue; } if(indx2>r2) { tmp[i]=arr[indx1]; indx1++; continue; } if(arr[indx1]<arr[indx2]) { tmp[i]=arr[indx1]; indx1++; continue; } tmp[i]=arr[indx2]; indx2++; } //Copying the elements of tmp into the main array for(int i=0,j=l1;i<tmp.length;i++,j++) { arr[j]=tmp[i]; } } public static void sort(long arr[],int l,int r) { //sort(arr,0,n-1); if(l==r) { return; } int mid=(l+r)/2; sort(arr,l,mid); sort(arr,mid+1,r); merge(arr,l,mid,mid+1,r); } public static void merge(long arr[],int l1,int r1,int l2,int r2) { long tmp[]=new long[r2-l1+1]; int indx1=l1,indx2=l2; //sorting the two halves using a tmp array for(int i=0;i<tmp.length;i++) { if(indx1>r1) { tmp[i]=arr[indx2]; indx2++; continue; } if(indx2>r2) { tmp[i]=arr[indx1]; indx1++; continue; } if(arr[indx1]<arr[indx2]) { tmp[i]=arr[indx1]; indx1++; continue; } tmp[i]=arr[indx2]; indx2++; } //Copying the elements of tmp into the main array for(int i=0,j=l1;i<tmp.length;i++,j++) { arr[j]=tmp[i]; } } public static void main(String args[]) throws IOException { Scan input=new Scan(); StringBuilder ans=new StringBuilder(""); int test=input.scanInt(); for(int tt=1;tt<=test;tt++) { int n=input.scanInt(); long a=input.scanInt(); long b=input.scanInt(); long arr[]=new long[n]; for(int i=0;i<n;i++) { arr[i]=input.scanInt(); } long prefix[]=new long[n]; prefix[0]=arr[0]; for(int i=1;i<n;i++) { prefix[i]=arr[i]+prefix[i-1]; } long min=Long.MAX_VALUE; long sum=0; sum+=a*0; sum+=b*0; sum+=b*get(0,n-1,prefix); min=Math.min(min,sum); for(int i=0;i<n;i++) { sum=0; sum+=a*arr[i]; sum+=b*arr[i]; sum+=b*(get(i+1,n-1,prefix)-((n-i-1)*arr[i])); min=Math.min(min,sum); // System.out.println(i+" "+sum); } ans.append(min+"\n"); } System.out.println(ans); } public static long get(int l,int r,long arr[]) { // System.out.println(l+" "+r); return arr[r]-(l==0?0:arr[l-1]); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
caae45bf9a5461f389b5cedef650e6f8
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.Closeable; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.BufferedReader; import java.io.InputStream; import java.io.Flushable; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Cepera */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; Input in = new Input(inputStream); Output out = new Output(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { private void solve(Input in, Output out) throws Exception { int testsTotal = in.readInt(); for (int currentTest = 0; currentTest < testsTotal; currentTest++) { int n = in.readInt(); long a = in.readLong(); long b = in.readLong(); long[] x = new long[n + 1]; x[0] = 0; for (int i = 1; i <= n; i++) { x[i] = in.readInt(); } long[] d = new long[n + 1]; d[n] = 0; for (int i = n - 1; i >= 0; i--) { d[i] = b * (x[i + 1] - x[i]); if ((n - i - 1) * b > a) { d[i] += a * (x[i + 1] - x[i]) + d[i + 1]; } else { d[i] += (n - i - 1) * b * (x[i + 1] - x[i]) + d[i + 1]; } } out.println(d[0]); } } public void solve(int testNumber, Input in, Output out) { try { solve(in, out); out.flush(); } catch (Exception e) { throw new RuntimeException(e); } } } static class Input { public final BufferedReader reader; private String line = ""; private int pos = 0; public Input(InputStream inputStream) { reader = new BufferedReader(new InputStreamReader(inputStream)); } private boolean isSpace(char ch) { return ch <= 32; } public String readWord() throws IOException { skip(); int start = pos; while (pos < line.length() && !isSpace(line.charAt(pos))) { pos++; } return line.substring(start, pos); } public int readInt() throws IOException { return Integer.parseInt(readWord()); } public long readLong() throws IOException { return Long.parseLong(readWord()); } private void skip() throws IOException { while (true) { if (pos >= line.length()) { line = reader.readLine(); pos = 0; } while (pos < line.length() && isSpace(line.charAt(pos))) { pos++; } if (pos < line.length()) { return; } } } } static class Output implements Closeable, Flushable { private final BufferedWriter writer; public Output(OutputStream stream) { this.writer = new BufferedWriter(new OutputStreamWriter(stream), 1 << 18); } public Output(Writer writer) { this.writer = (writer instanceof BufferedWriter) ? (BufferedWriter) writer : new BufferedWriter(writer, 1 << 18); } public void println(Object x) throws IOException { writer.write(String.valueOf(x)); writer.write('\n'); } public void flush() throws IOException { writer.flush(); } public void close() { try { flush(); writer.close(); } catch (IOException e) { throw new RuntimeException(e); } } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 11
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
e5ce6072f6ec690b2c6b6cd5187828c9
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedWriter; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.PriorityQueue; import java.util.Scanner; /** * * @author xpeng */ public class codeforces { static class obj { String s; long l,r; obj(String s,long l,long r){ this.s=s;this.l=l;this.r=r; } } static class Q implements Comparable<Q>{ long at; char ans; public Q(long at) { this.at=at; } public int compareTo(Q o) { return Long.compare(at, o.at); } } static Scanner in = new Scanner(System.in); static BufferedWriter write = new BufferedWriter(new OutputStreamWriter(System.out)); static PrintWriter out = new PrintWriter(write); public static boolean possible(int test,int[] cnt){ long sum=0; for (int i = 0; i < cnt.length; i++) { if (cnt[i]<test) { int num=test-cnt[i]; sum+=(int)(num/2.0); } else if (cnt[i]>test) { sum-=(cnt[i]-test); if (sum<0) { return false; } } } return true; } public static void main(String[] args) { int t = in.nextInt(); for (int k = 0; k < t; k++) { int n = in.nextInt(); long a=in.nextInt(),b=in.nextInt(); int[] arr = new int[n]; int last=0; for (int i = 0; i < n; i++) { arr[i]=in.nextInt(); } long ans=0; //int nright=0; for (int i = 0; i < n; i++) { last=i==0?0:arr[i-1]; ans+=((arr[i]-last)*Math.min(a+b, (n-i)*b)); // if (a+b<=(n-i)*b) { // ans+=(a*Math.abs(arr[i]-last)+b*Math.abs(arr[i]-last)); // }else{ // ans+=((n-i)*(b*Math.abs(arr[i]-last))); // } } System.out.println(ans); } } public static int search(ArrayList<Integer> array, int num) { int low = 0; int high = array.size() - 1; while (low < high) { // low<high when we search for the index that needs to be filled in int mid = (low + high) / 2; if (array.get(mid) < num && array.get(mid + 1) >= num) { return mid + 1; } else if (array.get(mid) < num) { low = mid + 1; } else if (array.get(mid) >= num) { // these inequality signs are specifically catering for the first appearance of the number //2,3,3,3 // if we search for 3, we would get 1 instead of like 4 high = mid; } } return -1; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
2acb0e737b69217986b4d1981e73d674
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import static java.lang.System.out; import java.util.*; import java.io.*; import java.math.*; /* getOrDefault valueOf System.out.println(); */ public class HelloWorld{ public static void main(String []args) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T=Integer.parseInt(st.nextToken()); for(int z=0;z<T;z++){ st = new StringTokenizer(infile.readLine()); long n=Long.parseLong(st.nextToken()); long a=Long.parseLong(st.nextToken()); long b=Long.parseLong(st.nextToken()); st = new StringTokenizer(infile.readLine()); long[] arr=new long[(int)n+1]; build(arr,n,st,1); long ans=b*(arr[1]); long cap=0; for(int i=2;i<=n;i++){ if((n-i+1)*b>=a){ ans+= a*(arr[i-1]-cap); cap=arr[i-1]; } ans+= b*(arr[i]-cap); } System.out.println(ans); } } public static void build(long[] arr, long n, StringTokenizer st,int lo){ for(int i=lo;i<arr.length;i++) arr[i]=Long.parseLong(st.nextToken()); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
72f057d86a0b451277210c7c92e66559
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C_Line_Empire { static Scanner in = new Scanner(); static PrintWriter out = new PrintWriter(System.out); static StringBuilder ans = new StringBuilder(); static int n, testCases; static long a, b; static long arr[]; static long max = Long.MAX_VALUE, mod = (long) (1e9); static long solve(int index, long max, long summation) { if (index >= n) { return max; } long present = /*Long.parseLong(mul(String.valueOf((a + b)), String.valueOf(arr[index])))*/ (a + b) * arr[index]; summation -= arr[index]; long X = /*Long.parseLong(sub(String.valueOf(summation), (mul(String.valueOf((n - index - 1)), String.valueOf(arr[index])))))*/ summation - (n - index - 1) * arr[index]; present += /*Long.parseLong(sum(mul(String.valueOf(X), String.valueOf(b)), String.valueOf(present)))*/ X * b; //present %= mod; max = Math.min(max, present); return solve(index + 1, max, summation); } static void solve(int t) { long sum = detect_sum(0, arr, 0); max = Long.MAX_VALUE; ans.append(solve(0, max, sum)); if (t != testCases) { ans.append("\n"); } } public static void main(String[] priya) throws IOException { testCases = in.nextInt(); for (int t = 0; t < testCases; ++t) { n = in.nextInt() + 1; a = in.nextLong(); b = in.nextLong(); arr = new long[n]; for (int i = 1; i < n; ++i) { arr[i] = in.nextLong(); } solve(t + 1); } out.print(ans.toString()); out.flush(); in.close(); } static boolean isSmaller(String str1, String str2) { // Calculate lengths of both string int n1 = str1.length(), n2 = str2.length(); if (n1 < n2) { return true; } if (n2 < n1) { return false; } for (int i = 0; i < n1; i++) { if (str1.charAt(i) < str2.charAt(i)) { return true; } else if (str1.charAt(i) > str2.charAt(i)) { return false; } } return false; } static String sub(String str1, String str2) { if (isSmaller(str1, str2)) { String t = str1; str1 = str2; str2 = t; } String str = ""; int n1 = str1.length(), n2 = str2.length(); int diff = n1 - n2; int carry = 0; for (int i = n2 - 1; i >= 0; i--) { int sub = (((int) str1.charAt(i + diff) - (int) '0') - ((int) str2.charAt(i) - (int) '0') - carry); if (sub < 0) { sub = sub + 10; carry = 1; } else { carry = 0; } str += String.valueOf(sub); } for (int i = n1 - n2 - 1; i >= 0; i--) { if (str1.charAt(i) == '0' && carry > 0) { str += "9"; continue; } int sub = (((int) str1.charAt(i) - (int) '0') - carry); if (i > 0 || sub > 0) { str += String.valueOf(sub); } carry = 0; } return new StringBuilder(str).reverse().toString(); } static String sum(String str1, String str2) { if (str1.length() > str2.length()) { String t = str1; str1 = str2; str2 = t; } String str = ""; int n1 = str1.length(), n2 = str2.length(); int diff = n2 - n1; int carry = 0; for (int i = n1 - 1; i >= 0; i--) { int sum = ((int) (str1.charAt(i) - '0') + (int) (str2.charAt(i + diff) - '0') + carry); str += (char) (sum % 10 + '0'); carry = sum / 10; } for (int i = n2 - n1 - 1; i >= 0; i--) { int sum = ((int) (str2.charAt(i) - '0') + carry); str += (char) (sum % 10 + '0'); carry = sum / 10; } if (carry > 0) { str += (char) (carry + '0'); } return new StringBuilder(str).reverse().toString(); } static long detect_sum(int i, long a[], long sum) { if (i >= a.length) { return sum; } return detect_sum(i + 1, a, sum + a[i]); } static String mul(String num1, String num2) { int len1 = num1.length(); int len2 = num2.length(); if (len1 == 0 || len2 == 0) { return "0"; } int result[] = new int[len1 + len2]; int i_n1 = 0; int i_n2 = 0; for (int i = len1 - 1; i >= 0; i--) { int carry = 0; int n1 = num1.charAt(i) - '0'; i_n2 = 0; for (int j = len2 - 1; j >= 0; j--) { int n2 = num2.charAt(j) - '0'; int sum = n1 * n2 + result[i_n1 + i_n2] + carry; carry = sum / 10; result[i_n1 + i_n2] = sum % 10; i_n2++; } if (carry > 0) { result[i_n1 + i_n2] += carry; } i_n1++; } int i = result.length - 1; while (i >= 0 && result[i] == 0) { i--; } if (i == -1) { return "0"; } String s = ""; while (i >= 0) { s += (result[i--]); } return s; } static class Node<T> { T data; Node<T> next; public Node() { this.next = null; } public Node(T data) { this.data = data; this.next = null; } public T getData() { return data; } public void setData(T data) { this.data = data; } public Node<T> getNext() { return next; } public void setNext(Node<T> next) { this.next = next; } @Override public String toString() { return this.getData().toString() + " "; } } static class ArrayList<T> { Node<T> head, tail; int len; public ArrayList() { this.head = null; this.tail = null; this.len = 0; } int size() { return len; } boolean isEmpty() { return len == 0; } int indexOf(T data) { if (isEmpty()) { throw new ArrayIndexOutOfBoundsException(); } Node<T> temp = head; int index = -1, i = 0; while (temp != null) { if (temp.getData() == data) { index = i; } i++; temp = temp.getNext(); } return index; } void add(T data) { Node<T> newNode = new Node<>(data); if (isEmpty()) { head = newNode; tail = newNode; len++; } else { tail.setNext(newNode); tail = newNode; len++; } } void see() { if (isEmpty()) { throw new ArrayIndexOutOfBoundsException(); } Node<T> temp = head; while (temp != null) { out.print(temp.getData().toString() + " "); out.flush(); temp = temp.getNext(); } out.println(); out.flush(); } void inserFirst(T data) { Node<T> newNode = new Node<>(data); Node<T> temp = head; if (isEmpty()) { head = newNode; tail = newNode; len++; } else { newNode.setNext(temp); head = newNode; len++; } } T get(int index) { if (isEmpty() || index >= len) { throw new ArrayIndexOutOfBoundsException(); } Node<T> temp = head; int i = 0; T data = null; while (temp != null) { if (i == index) { data = temp.getData(); } i++; temp = temp.getNext(); } return data; } void addAt(T data, int index) { if (index >= len) { throw new ArrayIndexOutOfBoundsException(); } Node<T> newNode = new Node<>(data); int i = 0; Node<T> temp = head; while (temp.next != null) { if (i == index) { newNode.setNext(temp.next); temp.next = newNode; } i++; temp = temp.getNext(); } // temp.setNext(temp); len++; } void popFront() { if (isEmpty()) { throw new ArrayIndexOutOfBoundsException(); } if (head == tail) { head = null; tail = null; } else { head = head.getNext(); } len--; } void removeAt(int index) { if (index >= len) { throw new ArrayIndexOutOfBoundsException(); } if (index == 0) { this.popFront(); return; } Node<T> temp = head; int i = 0; Node<T> n = new Node<>(); while (temp != null) { if (i == index) { n.next = temp.next; temp.next = n; break; } i++; n = temp; temp = temp.getNext(); } tail = n; --len; } void clearAll() { this.head = null; this.tail = null; } } static void merge(long a[], int left, int right, int mid) { int n1 = mid - left + 1, n2 = right - mid; long L[] = new long[n1]; long R[] = new long[n2]; for (int i = 0; i < n1; i++) { L[i] = a[left + i]; } for (int i = 0; i < n2; i++) { R[i] = a[mid + 1 + i]; } int i = 0, j = 0, k1 = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { a[k1] = L[i]; i++; } else { a[k1] = R[j]; j++; } k1++; } while (i < n1) { a[k1] = L[i]; i++; k1++; } while (j < n2) { a[k1] = R[j]; j++; k1++; } } static void sort(long a[], int left, int right) { if (left >= right) { return; } int mid = (left + right) / 2; sort(a, left, mid); sort(a, mid + 1, right); merge(a, left, right, mid); } static class Scanner { BufferedReader in; StringTokenizer st; public Scanner() { in = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } String nextLine() throws IOException { return in.readLine(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } void close() throws IOException { in.close(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
bde11ce82c19ec65f974560e3b1511e8
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
// package faltu; import java.util.*; import java.util.Map.Entry; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { // ***********************MATHS--STARTS************************************************* // private static ArrayList<Long> get_divisor(long x) { ArrayList<Long>a=new ArrayList<Long>(); for(long i=1;i*i<=x;i++) { if(x%i==0) { a.add((long) i); if(x/i!=i)a.add(x/i); } } return a; } static long[] sieve; static long[] smallestPrime; public static void sieve() { int n=4000000+1; sieve=new long[n]; smallestPrime=new long[n]; sieve[0]=1; sieve[1]=1; for(int i=2;i<n;i++){ sieve[i]=i; smallestPrime[i]=i; } for(int i=2;i*i<n;i++){ if(sieve[i]==i){ for(int j=i*i;j<n;j+=i){ if(sieve[j]==j)sieve[j]=1; if(smallestPrime[j]==j||smallestPrime[j]>i)smallestPrime[j]=i; } } } } static long nCr(long n,long r,long MOD) { if(n<r)return 0; if(r==0)return 1; return fact[(int) n]*mod_inv(fact[(int) r],MOD)%MOD*mod_inv(fact[(int) (n-r)],MOD)%MOD; } static long[]fact; static void computeFact(long n,long MOD) { fact=new long[(int)n+1]; fact[0]=1; for(int i=1;i<=n;i++)fact[i]=(fact[i-1]*i%MOD)%MOD; } static long bin_expo(long a,long b,long MOD) { if(b == 0)return 1; long ans = bin_expo(a,b/2,MOD); ans = (ans*ans)%MOD; if(b % 2!=0){ ans = (ans*a)%MOD; } return ans%MOD; } static long mod_add(long a, long b, long m) {a = a % m; b = b % m; return (((a + b) % m) + m) % m;} static long mod_mul(long a, long b, long m) {a = a % m; b = b % m; return (((a * b) % m) + m) % m;} static long mod_sub(long a, long b, long m) {a = a % m; b = b % m; return (((a - b) % m) + m) % m;} static long mod_inv(long n,long p) {return bin_expo(n,p-2,p);} static long gcd(long a, long b){if (a == 0) {return b;}return gcd(b % a, a); } static int gcd(int a, int b){if (a == 0) {return b; }return gcd(b % a, a); } static long lcm(long a,long b){return (a / gcd(a, b)) * b;} static long min(long x,long y) {return Math.min(x, y);}static long max(long x,long y) {return Math.max(x, y);} static int min(int x,int y) {return Math.min(x, y);}static int max(int x,int y) {return Math.max(x, y);} static ArrayList<String>powof2s; static void powof2S() { long i=1; while(i<(long)2e18) { powof2s.add(String.valueOf(i)); i*=2; } } static long power(long a, long b){ a %=MOD;long out = 1; while (b > 0) { if((b&1)!=0)out = out * a % MOD; a = a * a % MOD; b >>= 1; a*=a; } return out; } static boolean coprime(int a, long l){return (gcd(a, l) == 1);} // ****************************MATHS-ENDS***************************************************** // ***********************BINARY-SEARCH STARTS*********************************************** public static int upperBound(long[] arr, long m, int l, int r) { while(l<=r) { int mid=(l+r)/2; if(arr[mid]<=m) l=mid+1; else r=mid-1; } return l; } public static int lowerBound(long[] a, long m, int l, int r) { while(l<=r) { int mid=(l+r)/2; if(a[mid]<m) l=mid+1; else r=mid-1; } return l; } public static int lowerBound(ArrayList<Integer> ar,int k){ int s=0,e=ar.size(); while (s!=e){ int mid = s+e>>1; if (ar.get(mid) <k)s=mid+1; else e=mid; } if(s==ar.size())return -1; return s; } public static int upperBound(ArrayList<Integer> ar,int k){ int s=0,e=ar.size(); while (s!=e){ int mid = s+e>>1; if (ar.get(mid) <=k)s=mid+1; else e=mid; } if(s==ar.size())return -1; return s; } public static long getClosest(long val1, long val2,long target){if (target - val1 >= val2 - target)return val2; else return val1;} static void ruffleSort(long[] a) { int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { long oi=r.nextInt(n), temp=a[i]; a[i]=a[(int)oi]; a[(int)oi]=temp; } Arrays.sort(a); } static void ruffleSort(int[] a){ int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n), temp=a[i]; a[i]=a[oi]; a[oi]=temp; } Arrays.sort(a); } int ceilIndex(int input[], int T[], int end, int s){ int start = 0; int middle; int len = end; while(start <= end){ middle = (start + end)/2; if(middle < len && input[T[middle]] < s && s <= input[T[middle+1]]){ return middle+1; }else if(input[T[middle]] < s){ start = middle+1; }else{ end = middle-1; } } return -1; } static int lowerLimitBinarySearch(ArrayList<Long> v,long k) { int n =v.size(); int first = 0,second = n; while(first <second) { int mid = first + (second-first)/2; if(v.get(mid) > k) { second = mid; }else { first = mid+1; } } if(first < n && v.get(first) < k) { first++; } return first; //1 index } public static int searchindex(long arr[], long t){int index = Arrays.binarySearch(arr, t);return (index < 0) ? -1 : index;} public static long[] sort(long[] a) {ArrayList<Long> al = new ArrayList<>();for(int i=0;i<a.length;i++) al.add(a[i]);Collections.sort(al);for(int i=0;i<a.length;i++) a[i]=al.get(i);return a;} public static int[] sort(int[] a) {ArrayList<Integer> al = new ArrayList<>();for(int i=0;i<a.length;i++) al.add(a[i]);Collections.sort(al);for(int i=0;i<a.length;i++) a[i]=al.get(i);return a;} // *******************************BINARY-SEARCH ENDS*********************************************** // *********************************GRAPHS-STARTS**************************************************** // *******----SEGMENT TREE IMPLEMENT---***** // -------------START--------------- void buildTree (int[] arr,int[] tree,int start,int end,int treeNode){ if(start==end){ tree[treeNode]=arr[start]; return; } buildTree(arr,tree,start,end,2*treeNode); buildTree(arr,tree,start,end,2*treeNode+1); tree[treeNode]=tree[treeNode*2]+tree[2*treeNode+1]; } void updateTree(int[] arr,int[] tree,int start,int end,int treeNode,int idx,int value){ if(start==end){ arr[idx]=value; tree[treeNode]=value; return; } int mid=(start+end)/2; if(idx>mid)updateTree(arr,tree,mid+1,end,2*treeNode+1,idx,value); else updateTree(arr,tree,start,mid,2*treeNode,idx,value); tree[treeNode]=tree[2*treeNode]+tree[2*treeNode+1]; } long query(int[]arr,int[]tree,int start,int end,int treeNode,int qleft,int qright) { if(start>=qleft&&end<=qright)return tree[treeNode]; if(start>qright||end<qleft)return 0; int mid=(start+end)/2; long valLeft=query(arr,tree,start,mid-1,treeNode*2,qleft,qright); long valRight=query(arr,tree,mid+1,end,treeNode*2+1,qleft,qright); return valLeft+valRight; } // -------------ENDS--------------- //***********************DSU IMPLEMENT START************************* static int parent[]; static int rank[]; static int[]Size; static void makeSet(int n){ parent=new int[n]; rank=new int[n]; Size=new int[n]; for(int i=0;i<n;i++){ parent[i]=i; rank[i]=0; Size[i]=1; } } static void union(int u,int v){ u=findpar(u); v=findpar(v); if(rank[u]<rank[v]) { parent[u]=v; Size[v]+=Size[u]; } else if(rank[v]<rank[u]) { parent[v]=u; Size[u]+=Size[v]; } else{ parent[v]=u; rank[u]++; Size[u]+=Size[v]; } } private static int findpar(int node){ if(node==parent[node])return node; return parent[node]=findpar(parent[node]); } // *********************DSU IMPLEMENT ENDS************************* // ****__________PRIMS ALGO______________________**** private static int prim(ArrayList<node>[] adj,int N,int node) { int key[] = new int[N+1]; int parent[] = new int[N+1]; boolean mstSet[] = new boolean[N+1]; for(int i = 0;i<N;i++) { key[i] = 100000000; mstSet[i] = false; } PriorityQueue<node> pq = new PriorityQueue<node>(N, new node()); key[node] = 0; parent[node] = -1; pq.add(new node( node,key[node])); for(int i = 0;i<N-1;i++) { int u = pq.poll().getV(); mstSet[u] = true; for(node it: adj[u]) { if(mstSet[it.getV()] == false && it.getW() < key[it.getV()]) { parent[it.getV()] = u; key[it.getV()] = (int) it.getW(); pq.add(new node(it.getV(), key[it.getV()])); } } } int sum=0; for(int i=1;i<N;i++) { System.out.println(key[i]); sum+=key[i]; } System.out.println(sum); return sum; } // ****____________DIJKSTRAS ALGO___________**** static int[]dist; static int dijkstra(int u,int n,ArrayList<node>adj[]) { dist=new int[n]; Arrays.fill(dist,Integer.MAX_VALUE); dist[u]=0; PriorityQueue<node>pq=new PriorityQueue<node>(new node()); pq.add(new node(u,0)); while(!pq.isEmpty()) { node v=pq.poll(); for(node it:adj[v.getV()]) { if(dist[it.getV()]>it.getW()+dist[v.getV()]) { dist[it.getV()]=(int) (it.getW()+dist[v.getV()]); pq.add(new node(it.getV(),dist[it.getV()])); } } } int sum=0; for(int i=1;i<n;i++){ System.out.println(dist[i]); sum+=dist[i]; } return sum; } private static void setGraph(int n,int m){ vis=new boolean[n+1]; indeg=new int[n+1]; // adj=new ArrayList<ArrayList<Integer>>(); // for(int i=0;i<=n;i++)adj.add(new ArrayList<>()); // for(int i=0;i<m;i++){ // int u=s.nextInt(),v=s.nextInt(); // adj.get(u).add(v); // adj.get(v).add(u); // } adj=new ArrayList[n+1]; // backadj=new ArrayList[n+1]; for(int i=0;i<=n;i++){ adj[i]=new ArrayList<Integer>(); // backadj[i]=new ArrayList<Integer>(); } for(int i=0;i<m;i++){ int u=s.nextInt(),v=s.nextInt(); adj[u].add(v); adj[v].add(u); // backadj[v].add(u); indeg[v]++; indeg[u]++; } // weighted adj // adj=new ArrayList[n+1]; // for(int i=0;i<=n;i++){ // adj[i]=new ArrayList<node>(); // } // for(int i=0;i<m;i++){ // int u=s.nextInt(),v=s.nextInt(); // long w=s.nextInt(); // adj[u].add(new node(v,w)); //// adj[v].add(new node(u,w)); // } } // *********************************GRAPHS-ENDS**************************************************** static int[][] dirs8 = {{1,0},{-1,0},{0,1},{0,-1},{1,1},{1,-1},{-1,1},{-1,-1}}; static int[][] dirs4 = {{1,0},{-1,0},{0,1},{0,-1}}; //d-u-r-l static long MOD=(long) (1e9+7); static int prebitsum[][]; static boolean[] vis; static int[]indeg; // static ArrayList<ArrayList<Integer>>adj; static ArrayList<Integer> adj[]; static ArrayList<Integer> backadj[]; static FastReader s = new FastReader(System.in); public static void main(String[] args) throws IOException { // sieve(); // computeFact((int)1e7+1,MOD); // prebitsum=new int[2147483648][31]; // presumbit(prebitsum); // powof2S(); // // try { int tt = s.nextInt(); // int tt=1; for(int i=1;i<=tt;i++) { solver(); } // catch(Exception e) {return;} } private static void solver() { int n = s.nextInt(); long a=s.nextInt(),b=s.nextInt(); int[] arr = new int[n]; int last=0; for (int i = 0; i < n; i++) { arr[i]=s.nextInt(); } long ans=0; for (int i = 0; i < n; i++) { last=i==0?0:arr[i-1]; ans+=((arr[i]-last)*Math.min(a+b, (n-i)*b)); } System.out.println(ans); } /* *********************BITS && TOOLS &&DEBUG STARTS***********************************************/ static boolean issafe(int i, int j, int r,int c, int sx, int sy, int d,boolean[][]vis){ if (i < 0 || j < 0 || i >= r || j >= c||((Math.abs(i-sx)+Math.abs(j-sy))<=d)||vis[i][j]==true)return false; else return true; } static void presumbit(int[][]prebitsum) { for(int i=1;i<=200000;i++) { int z=i; int j=0; while(z>0) { if((z&1)==1) { prebitsum[i][j]+=(prebitsum[i-1][j]+1); }else { prebitsum[i][j]=prebitsum[i-1][j]; } z=z>>1; j++; } } } static void countOfSetBit(long[]a) { for(int j=30;j>=0;j--) { int cnt=0; for(long i:a) { if((i&1<<j)==1)cnt++; } // printing the current no set bit in all array element System.out.println(cnt); } } public static String revStr(String str){String input = str;StringBuilder input1 = new StringBuilder();input1.append(input);input1.reverse();return input1.toString();} static void printA(int[]a) {for(int i:a)System.out.print(i+" ");System.out.println();} static void pc2d(boolean[][] vis) { int n=vis.length; int m=vis[0].length; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { System.out.print(vis[i][j]+" "); } System.out.println(); } } static void pi2d(char[][] a) { int n=a.length; int m=a[0].length; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { System.out.print(a[i][j]+" "); } System.out.println(); } } static void p1d(int[]a) { for(int i=0;i<a.length;i++)System.out.print(a[i]+" "); System.out.println(); } // *****************BITS && TOOLS &&DEBUG ENDS*********************************************** } // **************************I/O************************* class FastReader { public BufferedReader reader; public StringTokenizer tokenizer; public FastReader(InputStream stream) {reader = new BufferedReader(new InputStreamReader(stream), 32768);tokenizer = null;} public String next() {while (tokenizer == null || !tokenizer.hasMoreTokens()) {try {tokenizer = new StringTokenizer(reader.readLine());} catch (IOException e) {throw new RuntimeException(e);}}return tokenizer.nextToken();} public int nextInt(){ return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() {String str = "";try {str = reader.readLine();}catch (IOException e) {e.printStackTrace();}return str;} } class dsu{ int n; static int parent[]; static int rank[]; static int[]Size; public dsu(int n) {this.n=n;this.parent=new int[n];this.rank=new int[n];this.Size=new int[n]; for(int i=0;i<n;i++){parent[i]=i;rank[i]=0;Size[i]=1;} } static int findpar(int node) {if(node==parent[node])return node;return parent[node]=findpar(parent[node]);} static void union(int u,int v){ u=findpar(u);v=findpar(v); if(u!=v) { if(rank[u]<rank[v]) {parent[u]=v;Size[v]+=Size[u];} else if(rank[v]<rank[u]) {parent[v]=u;Size[u]+=Size[v];} else{parent[v]=u;rank[u]++;Size[u]+=Size[v];} } } } class pair{ int x;int y; long u,v; public pair(int x,int y){this.x=x;this.y=y;} public pair(long u,long v) {this.u=u;this.v=v;} } class node implements Comparator<node>{ private int v; private long w; node(int _v, long _w) { v = _v; w = _w; } node() {} int getV() { return v; } long getW() { return w; } @Override public int compare(node node1, node node2) { if (node1.w < node2.w) return -1; if (node1.w > node2.w) return 1; return 0; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
964c31144d836116de27340838542ca3
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.ArrayList; import java.util.StringTokenizer; public class LineEmpire { static int mod = 1000000007; public static void main(String[] args) throws IOException { FastReader reader = new FastReader(); FastWriter writer = new FastWriter(); int numTests = reader.readSingleInt(); for(int t = 0; t<numTests; t++){ int[] nab = reader.readIntArray(3); long n = nab[0], a = nab[1], b = nab[2]; int[] kingdoms = reader.readIntArray((int)n); long cost = b*(kingdoms[0]-0); //Move to one of the conquered kingdoms ahead and conquer the next kingdom that hasnt. //Conquer the next kingdom that hasn't. int current = 0; for(int i = 1; i<n; i++){ if(a < b){ cost += a*(kingdoms[i-1]-current); current = kingdoms[i-1]; cost += b*(kingdoms[i]-current); } else { long dm = b*(kingdoms[i-1]-current)*(n-i); long m = a*(kingdoms[i-1]-current); if(dm > m){ cost += a*(kingdoms[i-1]-current); current = kingdoms[i-1]; cost += b*(kingdoms[i]-current); } else { cost += b*(kingdoms[i]-current); } } } writer.writeSingleLong(cost); } } public static void mergeSort(int[] a, int n) { if (n < 2) { return; } int mid = n / 2; int[] l = new int[mid]; int[] r = new int[n - mid]; for (int i = 0; i < mid; i++) { l[i] = a[i]; } for (int i = mid; i < n; i++) { r[i - mid] = a[i]; } mergeSort(l, mid); mergeSort(r, n - mid); merge(a, l, r, mid, n - mid); } public static void merge(int[] a, int[] l, int[] r, int left, int right) { int i = 0, j = 0, k = 0; while (i < left && j < right) { if (l[i] <= r[j]) { a[k++] = l[i++]; } else { a[k++] = r[j++]; } } while (i < left) { a[k++] = l[i++]; } while (j < right) { a[k++] = r[j++]; } } public static class FastReader { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tokenizer; public int readSingleInt() throws IOException { return Integer.parseInt(reader.readLine()); } public int[] readIntArray(int numInts) throws IOException { int[] nums = new int[numInts]; tokenizer = new StringTokenizer(reader.readLine()); for(int i = 0; i<numInts; i++){ nums[i] = Integer.parseInt(tokenizer.nextToken()); } return nums; } public String readString() throws IOException { return reader.readLine(); } } public static class FastWriter { BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out)); public void writeSingleInteger(int i) throws IOException { writer.write(Integer.toString(i)); writer.newLine(); writer.flush(); } public void writeSingleLong(long i) throws IOException { writer.write(Long.toString(i)); writer.newLine(); writer.flush(); } public void writeIntArrayWithSpaces(int[] nums) throws IOException { for(int i = 0; i<nums.length; i++){ writer.write(nums[i] + " "); } writer.newLine(); writer.flush(); } public void writeIntArrayListWithSpaces(ArrayList<Integer> nums) throws IOException { for(int i = 0; i<nums.size(); i++){ writer.write(nums.get(i) + " "); } writer.newLine(); writer.flush(); } public void writeIntArrayWithoutSpaces(int[] nums) throws IOException { for(int i = 0; i<nums.length; i++){ writer.write(Integer.toString(nums[i])); } writer.newLine(); writer.flush(); } public void writeString(String s) throws IOException { writer.write(s); writer.newLine(); writer.flush(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
182b9dabd77174c6d461b0c6df86a256
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
// When I wrote this code, only God & I knew what it did. Now only God knows !! import java.util.*; import java.io.*; public class Main { static class FastReader { private InputStream mIs;private byte[] buf = new byte[1024];private int curChar,numChars;public FastReader() { this(System.in); }public FastReader(InputStream is) { mIs = is;} public int read() {if (numChars == -1) throw new InputMismatchException();if (curChar >= numChars) {curChar = 0;try { numChars = mIs.read(buf);} catch (IOException e) { throw new InputMismatchException();}if (numChars <= 0) return -1; }return buf[curChar++];} public String nextLine(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isEndOfLine(c));return res.toString() ;} public String next(){int c = read();while (isSpaceChar(c)) c = read();StringBuilder res = new StringBuilder();do {res.appendCodePoint(c);c = read();}while (!isSpaceChar(c));return res.toString();} public long l(){int c = read();while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }long res = 0; do{ if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read();}while(!isSpaceChar(c));return res * sgn;} public int i(){int c = read() ;while (isSpaceChar(c)) c = read();int sgn = 1;if (c == '-') { sgn = -1 ; c = read() ; }int res = 0;do{if (c < '0' || c > '9') throw new InputMismatchException();res *= 10 ; res += c - '0' ; c = read() ;}while(!isSpaceChar(c));return res * sgn;} public double d() throws IOException {return Double.parseDouble(next()) ;} public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public void scanIntArr(int [] arr){ for(int li=0;li<arr.length;++li){ arr[li]=i();}} public void scanLongArr(long [] arr){for (int i=0;i<arr.length;++i){arr[i]=l();}} public void shuffle(int [] arr){ for(int i=arr.length;i>0;--i) { int r=(int)(Math.random()*i); int temp=arr[i-1]; arr[i-1]=arr[r]; arr[r]=temp; } } } static int mod = (int)(1e9 + 7); public static void main(String[] args) throws IOException { FastReader fr = new FastReader(); PrintWriter pw = new PrintWriter(System.out); /* inputCopy 4 5 2 7 3 5 12 13 21 5 6 3 1 5 6 21 30 2 9 3 10 15 11 27182 31415 16 18 33 98 874 989 4848 20458 34365 38117 72030 outputCopy 173 171 75 3298918744 */ int t = fr.i(); outer: for (int ti = 0; ti < t; ++ti) { int n = fr.i(); long a = fr.l(); // capital change cost long b = fr.l(); long[] arr = new long[n]; fr.scanLongArr(arr); long [] suffixSum = new long[n]; suffixSum[n-1]=arr[n-1]; for(int i = n-2;i>=0;--i) suffixSum[i] =suffixSum[i+1] + arr[i]; long cost = 0; long currCapital = 0; for(int i=0;i<n;++i) { cost += (arr[i] - currCapital) * b; if(i + 1 <n) { long extraCostWhenNotMovingCapital = ((suffixSum[i + 1] - currCapital * (n-i-1)) * b); long extraCostWhenMovingCapital = ((suffixSum[i + 1] - arr[i] * (n-i-1)) * b) + (a * (arr[i]-currCapital)); if(extraCostWhenMovingCapital<extraCostWhenNotMovingCapital) { cost += (a * (arr[i]-currCapital)); currCapital = arr[i]; } } } pw.println(cost); } pw.flush(); pw.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
1ff7a664415b21acaa15b3ca0fb9c450
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class C1659 { // static int[] x = new int[2 * (int)1e5 + 5]; public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); int testCnt = Integer.parseInt(br.readLine()); String[] line; for (int t = 0; t < testCnt; t++) { line = br.readLine().split(" "); int n = Integer.parseInt(line[0]); long a = Integer.parseInt(line[1]); long b = Integer.parseInt(line[2]); line = br.readLine().split(" "); for (int i = 0; i < n; i++) { x[i + 1] = Integer.parseInt(line[i]); } long min = (a + b) * x[n]; long cur = min; for (int i = n - 1; i >= 0; i--) { cur -= a * (x[i + 1] - x[i]); cur += b * (x[i + 1] - x[i]) * (n - i - 1); if (cur < min) min = cur; } bw.write(min + "\n"); } br.close(); bw.close(); } public static void dbug(String s, long ... a) { // /* String[] line = s.split("<>"); for (int i = 0; i < a.length; i++) { System.out.print(line[i] + a[i]); } System.out.println(line[a.length]); // */ } public static void print(int[] a) { // /* for (int i = 0; i < a.length; i++) { System.out.print(a[i] + " "); } System.out.println(); // */ } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
97f76d8574fc15471a105ca7239903da
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Codechef { public static void main (String[] args) throws java.lang.Exception { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-- > 0){ int n = scn.nextInt(), a = scn.nextInt(), b = scn.nextInt(); long x[] = new long[n + 1], sum = 0, min = Long.MAX_VALUE, ssf = 0; for(int i = 1; i <= n; i++){ sum += (x[i] = scn.nextInt()); } for(int i = 0; i <= n; i++){ min = Math.min(min, (a + b) * x[i] + b * (sum - (ssf += x[i]) - (n - i) * x[i])); } System.out.println(min); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
f4d051995ccbd76ee3f70e0ce352e828
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-- > 0){ int n = scn.nextInt(), a = scn.nextInt(), b = scn.nextInt(); long x[] = new long[n + 1], sum = 0; long min = Long.MAX_VALUE; for(int i = 1; i <= n; i++){ x[i] = scn.nextInt(); sum += x[i]; } long ssf = 0; for(int i = 0; i <= n; i++){ ssf += x[i]; min = Math.min(min, (a + b) * x[i] + b * (sum - ssf - (n - i) * x[i])); } System.out.println(min); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
fc51b65bc74ca12b3362197858ebf0cc
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { Scanner scn = new Scanner(System.in); int t = scn.nextInt(); while(t-- > 0){ int n = scn.nextInt(), a = scn.nextInt(), b = scn.nextInt(); long[] x = new long[n + 1], pref = new long[n + 1]; long min = Long.MAX_VALUE; for(int i = 1; i <= n; i++){ x[i] = scn.nextInt(); } for(int i = 1; i <= n; i++){ pref[i] = pref[i - 1] + x[i]; } for(int i = 0; i <= n; i++){ min = Math.min(min, (a + b) * x[i] + b * (pref[n] - pref[i] - (n - i) * x[i])); } System.out.println(min); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
10c2188ab5ea94fce8510892c4c70af0
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* Author _trevorphillips_ */ import java.io.*; import java.util.*; public class C_Line_Empire { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args){ FastReader f=new FastReader(); StringBuilder sb=new StringBuilder(); int t = f.nextInt(); while(t-->0){ int n=f.nextInt(); long a=f.nextLong(); long b=f.nextLong(); long[] arr=new long[n]; for(int i=0;i<n;i++){ arr[i]=f.nextLong(); } long ans=0; for(int i=0;i<n;i++){ long eler=n-i; long last=i==0?0:arr[i-1]; long d=Math.abs(arr[i]-last); ans+=d*Math.min(eler*b,a+b); } sb.append(ans+"\n"); } System.out.println(sb); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
983c3fd03e49cc56a3a4f7154b85e30c
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.StringTokenizer; import java.util.Vector; public class CodeForces { static int mod = (int)1e9+7; public static void main(String[] args) throws InterruptedException { // PrintWriter out = new PrintWriter("output.txt"); // File input = new File("input.txt"); // FastScanner fs = new FastScanner(input); FastScanner fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int testNumber =fs.nextInt(); // thanks UpDownUpDown for (int T =0;T<testNumber;T++){ int n = fs.nextInt(); int a = fs.nextInt(); int b = fs.nextInt(); long finalWhore = (long)1e18; Vector<Long> fuck_Newtech66 = new Vector<>(); long fuck_TimeWarp101 = 0; fuck_Newtech66.add((long)0); for (int i=0;i<n;i++){ long num = fs.nextLong(); fuck_Newtech66.add(num); fuck_TimeWarp101+=num; } for (int i =0;i<n+1;i++){ fuck_TimeWarp101-=fuck_Newtech66.get(i); long littleBitch = (a+b)*fuck_Newtech66.get(i)+(fuck_TimeWarp101-(n-i)*fuck_Newtech66.get(i))*b; finalWhore=Math.min(finalWhore,littleBitch); } out.print(finalWhore+"\n"); } out.flush(); } static long modInverse( long n, long p) { return FastPower(n, p - 2, p); } static int[] factorials(int max,int mod){ int [] ans = new int[max+1]; ans[0]=1; for (int i=1;i<=max;i++){ ans[i]=ans[i-1]*i; ans[i]%=mod; } return ans; } static String toBinary(int num,int bits){ String res =Integer.toBinaryString(bits); while(res.length()<bits)res="0"+res; return res; } static String toBinary(long num,int bits){ String res =Long.toBinaryString(bits); while(res.length()<bits)res="0"+res; return res; } static long LCM(long a,long b){ return a*b/gcd(a,b); } static long FastPower(long x,long p,long mod){ if(p==0)return 1; long ans =FastPower(x, p/2,mod); ans%=mod; ans*=ans; ans%=mod; if(p%2==1)ans*=x; ans%=mod; return ans; } static double FastPower(double x,int p){ if(p==0)return 1.0; double ans =FastPower(x, p/2); ans*=ans; if(p%2==1)ans*=x; return ans; } static int FastPower(int x,int p){ if(p==0)return 1; int ans =FastPower(x, p/2); ans*=ans; if(p%2==1)ans*=x; return ans; } static ArrayList<Vertex> vertices = new ArrayList<>(); static class Vertex { public ArrayList<Integer>edges = new ArrayList<>(); public boolean isEnd=false; public Vertex (){ for(int i=0;i<26;i++){ edges.set(i, -1); } } } static class Trie { private int root=0; public Trie(){ vertices.add(new Vertex()); } public void InsertWord(String s){ int current = root; for(char c:s.toCharArray()){ int pos = c-'a'; if(vertices.get(current).edges.get(pos)==-1){ vertices.add(new Vertex()); Vertex x = vertices.get(current); x.edges.set(pos,vertices.size()-1); vertices.set(current, x); } current=vertices.get(current).edges.get(pos); } } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(){ br=new BufferedReader(new InputStreamReader(System.in)); st=new StringTokenizer(""); } public FastScanner(File f){ try { br=new BufferedReader(new FileReader(f)); st=new StringTokenizer(""); } catch(FileNotFoundException e){ br=new BufferedReader(new InputStreamReader(System.in)); st=new StringTokenizer(""); } } String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] readLongArray(int n) { long[] a =new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } public static long factorial(int n){ if(n==0)return 1; return (long)n*factorial(n-1); } public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } static void sort (int[]a){ ArrayList<Integer> b = new ArrayList<>(); for(int i:a)b.add(i); Collections.sort(b); for(int i=0;i<b.size();i++){ a[i]=b.get(i); } } static void sortReversed (int[]a){ ArrayList<Integer> b = new ArrayList<>(); for(int i:a)b.add(i); Collections.sort(b,new Comparator<Integer>(){ @Override public int compare(Integer o1, Integer o2) { return o2-o1; } }); for(int i=0;i<b.size();i++){ a[i]=b.get(i); } } static void sort (long[]a){ ArrayList<Long> b = new ArrayList<>(); for(long i:a)b.add(i); Collections.sort(b); for(int i=0;i<b.size();i++){ a[i]=b.get(i); } } static ArrayList<Integer> sieveOfEratosthenes(int n) { boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } ArrayList<Integer> ans = new ArrayList<>(); for (int i = 2; i <= n; i++) { if (prime[i] == true) ans.add(i); } return ans; } static int binarySearchSmallerOrEqual(int arr[], int key) { int n = arr.length; int left = 0, right = n; int mid = 0; while (left < right) { mid = (right + left) >> 1; if (arr[mid] == key) { while (mid + 1 < n && arr[mid + 1] == key) mid++; break; } else if (arr[mid] > key) right = mid; else left = mid + 1; } while (mid > -1 && arr[mid] > key) mid--; return mid; } static int binarySearchSmallerOrEqual(long arr[], long key) { int n = arr.length; int left = 0, right = n; int mid = 0; while (left < right) { mid = (right + left) >> 1; if (arr[mid] == key) { while (mid + 1 < n && arr[mid + 1] == key) mid++; break; } else if (arr[mid] > key) right = mid; else left = mid + 1; } while (mid > -1 && arr[mid] > key) mid--; return mid; } public static int binarySearchStrictlySmaller(int[] arr, int target) { int start = 0, end = arr.length-1; if(end == 0) return -1; if (target > arr[end]) return end; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr[mid] >= target) { end = mid - 1; } else { ans = mid; start = mid + 1; } } return ans; } public static int binarySearchStrictlySmaller(long[] arr, long target) { int start = 0, end = arr.length-1; if(end == 0) return -1; if (target > arr[end]) return end; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr[mid] >= target) { end = mid - 1; } else { ans = mid; start = mid + 1; } } return ans; } static int binarySearch(int arr[], int x) { int l = 0, r = arr.length - 1; while (l <= r) { int m = l + (r - l) / 2; if (arr[m] == x) return m; if (arr[m] < x) l = m + 1; else r = m - 1; } return -1; } static int binarySearch(long arr[], long x) { int l = 0, r = arr.length - 1; while (l <= r) { int m = l + (r - l) / 2; if (arr[m] == x) return m; if (arr[m] < x) l = m + 1; else r = m - 1; } return -1; } static void init(int[]arr,int val){ for(int i=0;i<arr.length;i++){ arr[i]=val; } } static void init(int[][]arr,int val){ for(int i=0;i<arr.length;i++){ for(int j=0;j<arr[i].length;j++){ arr[i][j]=val; } } } static void init(long[]arr,long val){ for(int i=0;i<arr.length;i++){ arr[i]=val; } } static<T> void init(ArrayList<ArrayList<T>>arr,int n){ for(int i=0;i<n;i++){ arr.add(new ArrayList()); } } static int binarySearchStrictlySmaller(ArrayList<Pair> arr, int target) { int start = 0, end = arr.size()-1; if(end == 0) return -1; if (target > arr.get(end).y) return end; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr.get(mid).y >= target) { end = mid - 1; } else { ans = mid; start = mid + 1; } } return ans; } static int binarySearchStrictlyGreater(int[] arr, int target) { int start = 0, end = arr.length - 1; int ans = -1; while (start <= end) { int mid = (start + end) / 2; if (arr[mid] <= target) { start = mid + 1; } else { ans = mid; end = mid - 1; } } return ans; } public static long pow(long n, long pow) { if (pow == 0) { return 1; } long retval = n; for (long i = 2; i <= pow; i++) { retval *= n; } return retval; } static String reverse(String s){ StringBuffer b = new StringBuffer(s); b.reverse(); return b.toString(); } static String charToString (char[] arr){ String t=""; for(char c :arr){ t+=c; } return t; } int[] copy (int [] arr , int start){ int[] res = new int[arr.length-start]; for (int i=start;i<arr.length;i++)res[i-start]=arr[i]; return res; } static int[] swap(int [] A,int l,int r){ int[] B=new int[A.length]; for (int i=0;i<l;i++){ B[i]=A[i]; } int k=0; for (int i=r;i>=l;i--){ B[l+k]=A[i]; k++; } for (int i=r+1;i<A.length;i++){ B[i]=A[i]; } return B; } static int mex (int[] d){ int [] a = Arrays.copyOf(d, d.length); sort(a); if(a[0]!=0)return 0; int ans=1; for(int i=1;i<a.length;i++){ if(a[i]==a[i-1])continue; if(a[i]==a[i-1]+1)ans++; else break; } return ans; } static int[] mexes(int[] arr){ int[] freq = new int [100000+7]; for (int i:arr)freq[i]++; int maxMex =0; for (int i=0;i<=100000+7;i++){ if(freq[i]!=0)maxMex++; else break; } int []ans = new int[arr.length]; ans[arr.length-1] = maxMex; for (int i=arr.length-2;i>=0;i--){ freq[arr[i+1]]--; if(freq[arr[i+1]]<=0){ if(arr[i+1]<maxMex) maxMex=arr[i+1]; ans[i]=maxMex; } else { ans[i]=ans[i+1]; } } return ans; } static int [] freq (int[]arr,int max){ int []b = new int[max]; for (int i:arr)b[i]++; return b; } static int[] prefixSum(int[] arr){ int [] a = new int[arr.length]; a[0]=arr[0]; for (int i=1;i<arr.length;i++)a[i]=a[i-1]+arr[i]; return a; } static class Pair { int x; long y; int extra; public Pair(int x,long y){ this.x=x; this.y=y; } public Pair(int x,long y,int extra){ this.x=x; this.y=y; this.extra=extra; } // @Override // public boolean equals(Object o) { // if(o instanceof Pair){ // if(o.hashCode()!=hashCode()){ // return false; // } else { // return x==((Pair)o).x&&y==((Pair)o).y; // } // } // // return false; // // } // // // // // // @Override // public int hashCode() { // return x+(int)y*2; // } // // } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
383b2f804f45c7aaa2565ed00d1a2bc9
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; public class Main{ public static void main(String[] args) { Scanner sc = new Scanner(System.in); int TT = sc.nextInt(); while (TT-- > 0) { int n = sc.nextInt(), a = sc.nextInt(), b = sc.nextInt(); long[] res = new long[n + 1]; for (int i = 1; i <= n; i++) { res[i] = sc.nextInt(); } long[] sum = new long[n + 1]; for (int i = 1; i <= n; i++) { sum[i] = sum[i - 1] + res[i]; } long ans = Long.MAX_VALUE; for (int i = 0; i < n; i++) { long cur = res[i] * a + res[i] * b + (sum[n] - sum[i] - (n - i) * res[i]) * b; ans = Math.min(ans, cur); } System.out.println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
0854d397878218997c78ba5523377e4a
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import javax.management.Query; import java.io.*; public class practice { // static int n,k; //// static String t,s; // static long[]memo; // static int n;// int k=sc.nextInt(); static String s; static HashMap<Long,Integer>hm; public static void main(String[] args) throws Exception { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); int a=sc.nextInt(); int b=sc.nextInt(); int[] x=sc.nextIntArray(n); long[] y=new long[n]; for (int i = 0; i < n; i++) { y[0]+=1l*b*x[i]; } // y[n-1]=Long.MAX_VALUE/2; for (int i = 1; i < n; i++) { if(i==1) { y[i] = y[i - 1] + 1l*a * (x[i - 1] - 0) - 1l*b * (x[i-1] - 0) * (n - i ); // pw.println("yyy="+(a * (x[i - 1] - 0))+" "+(b * (x[i-1] -0) * (n - i ))); } else { y[i] = y[i - 1] + 1l * a * (x[i - 1] - x[i - 2]) - 1l * b * (x[i - 1] - x[i - 2]) * (n - i); // pw.println("yyy=" + (a * (x[i - 1] - x[i - 2])) + " " + (b * (x[i - 1] - x[i - 2]) * (n - i))); } } long min=y[0]; for (int i = 0; i <n ; i++) { if(y[i]<min) min=y[i]; } // pw.println(Long.MAX_VALUE/2); pw.println(min); } pw.close(); } public static void sort(int[] in) { shuffle(in); Arrays.sort(in); } public static void shuffle(int[] in) { for (int i = 0; i < in.length; i++) { int idx = (int) (Math.random() * in.length); int tmp = in[i]; in[i] = in[idx]; in[idx] = tmp; } } static LinkedList getfact(int n){ LinkedList<Integer>ll=new LinkedList<>(); LinkedList<Integer>ll2=new LinkedList<>(); for (int i = 1; i <= Math.sqrt(n); i++) { if(n%i==0) { ll.add(i); if(i!=n/i) ll2.addLast(n/i); } } while (!ll2.isEmpty()){ ll.add(ll2.removeLast()); } return ll; } static void rev(int n){ String s1=s.substring(0,n); s=s.substring(n); for (int i = 0; i <n ; i++) { s=s1.charAt(i)+s; } } static class SegmentTree { // 1-based DS, OOP int N; //the number of elements in the array as a power of 2 (i.e. after padding) long[] array, sTree; Long[]lazy; SegmentTree(long[] in) { array = in; N = in.length - 1; sTree = new long[N<<1]; //no. of nodes = 2*N - 1, we add one to cross out index zero lazy = new Long[N<<1]; build(1,1,N); } void build(int node, int b, int e) // O(n) { if(b == e) sTree[node] = array[b]; else { int mid = b + e >> 1; build(node<<1,b,mid); build(node<<1|1,mid+1,e); sTree[node] = sTree[node<<1]+sTree[node<<1|1]; } } void update_point(int index, int val) // O(log n) { index += N - 1; sTree[index] += val; while(index>1) { index >>= 1; sTree[index] = sTree[index<<1] + sTree[index<<1|1]; } } void update_range(int i, int j, int val) // O(log n) { update_range(1,1,N,i,j,val); } void update_range(int node, int b, int e, int i, int j, int val) { if(i > e || j < b) return; if(b >= i && e <= j) { sTree[node] = (e-b+1)*val; lazy[node] = val*1l; } else { int mid = b + e >> 1; propagate(node, b, mid, e); update_range(node<<1,b,mid,i,j,val); update_range(node<<1|1,mid+1,e,i,j,val); sTree[node] = sTree[node<<1] + sTree[node<<1|1]; } } void propagate(int node, int b, int mid, int e) { if(lazy[node]!=null) { lazy[node << 1] = lazy[node]; lazy[node << 1 | 1] = lazy[node]; sTree[node << 1] = (mid - b + 1) * lazy[node]; sTree[node << 1 | 1] = (e - mid) * lazy[node]; } lazy[node] = null; } long query(int i, int j) { return query(1,1,N,i,j); } long query(int node, int b, int e, int i, int j) // O(log n) { if(i>e || j <b) return 0; if(b>= i && e <= j) return sTree[node]; int mid = b + e >> 1; propagate(node, b, mid, e); long q1 = query(node<<1,b,mid,i,j); long q2 = query(node<<1|1,mid+1,e,i,j); return q1 + q2; } } // public static long dp(int idx) { // if (idx >= n) // return Long.MAX_VALUE/2; // return Math.min(dp(idx+1),memo[idx]+dp(idx+k)); // } // if(num==k) // return dp(0,idx+1); // if(memo[num][idx]!=-1) // return memo[num][idx]; // long ret=0; // if(num==0) { // if(s.charAt(idx)=='a') // ret= dp(1,idx+1); // else if(s.charAt(idx)=='?') { // ret=Math.max(1+dp(1,idx+1),dp(0,idx+1) ); // } // } // else { // if(num%2==0) { // if(s.charAt(idx)=='a') // ret=dp(num+1,idx+1); // else if(s.charAt(idx)=='?') // ret=Math.max(1+dp(num+1,idx+1),dp(0,idx+1)); // } // else { // if(s.charAt(idx)=='b') // ret=dp(num+1,idx+1); // else if(s.charAt(idx)=='?') // ret=Math.max(1+dp(num+1,idx+1),dp(0,idx+1)); // } // } // } static void putorrem(long x){ if(hm.getOrDefault(x,0)==1){ hm.remove(x); } else hm.put(x,hm.getOrDefault(x,0)-1); } public static int max4(int a,int b, int c,int d) { int [] s= {a,b,c,d}; Arrays.sort(s); return s[3]; } public static double logbase2(int k) { return( (Math.log(k)+0.0)/Math.log(2)); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } static class pair implements Comparable<pair> { long x; long y; public pair(long x, long y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair) o; return p.x == x && p.y == y; } return false; } public int hashCode() { return new Long(x).hashCode() * 31 + new Long(y).hashCode(); } public int compareTo(pair other) { if (this.x == other.x) { return Long.compare(this.y, other.y); } return Long.compare(this.x, other.x); } } static class tuble implements Comparable<tuble> { int x; int y; int z; public tuble(int x, int y, int z) { this.x = x; this.y = y; this.z = z; } public String toString() { return x + " " + y + " " + z; } public int compareTo(tuble other) { if (this.x == other.x) { if (this.y == other.y) { return this.z - other.z; } return this.y - other.y; } else { return this.x - other.x; } } public tuble add(tuble t){ return new tuble(this.x+t.x,this.y+t.y,this.z+t.z); } } static long mod = 1000000007; static Random rn = new Random(); static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
e532d5fa4ec53d9d338c9a50177e6f79
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.util.concurrent.LinkedBlockingDeque; import javax.sql.rowset.spi.SyncResolver; import java.io.*; import java.nio.channels.NonReadableChannelException; import java.text.DateFormatSymbols; public class CpTemp { static int a[]; static long count=0l; static long row = 1l; static long col = 1l; static FastScanner fs = null; public static void main(String[] args) { fs = new FastScanner(); PrintWriter out = new PrintWriter(System.out); int t = fs.nextInt(); outer: while (t-- > 0) { int n = fs.nextInt(); long a = fs.nextLong(); long b = fs.nextInt(); long x[] = fs.readlongArray(n); long suff[] = new long[n]; suff[n-1] = 0; for(int i=n-2;i>=0;i--){ suff[i] = x[i+1] + suff[i+1]; } ArrayList<Long> al = new ArrayList<>(); long left = 0; for(int i=0;i<n;i++){ int rem = n-i-1; long val = (suff[i] - rem*(x[i]))*b ; // val += left; left += (i==0?b*x[i]:b*(x[i]-x[i-1])); val += a*(x[i]); val += left; al.add(val); } long val = (suff[0]+x[0])*b; al.add(val); Collections.sort(al); out.println(al.get(0)); } out.close(); } static class Pair implements Comparable<Pair> { int x; int y; Pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return this.y-o.y; } } static long power(long x, long y, long p) { if (y == 0) return 1; if (x == 0) return 0; long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long power(long x, long y) { if (y == 0) return 1; if (x == 0) return 0; long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y = y >> 1; x = (x * x); } return res; } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readlongArray(int n){ long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } static boolean prime[]; static void sieveOfEratosthenes(int n) { prime = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } } public static int log2(int x) { return (int) (Math.log(x) / Math.log(2)); } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static long nCk(int n, int k) { long res = 1; for (int i = n - k + 1; i <= n; ++i) res *= i; for (int i = 2; i <= k; ++i) res /= i; return res; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
08bd611596d4e7d4f7b27eb185b3fc10
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static long[] arr = new long[300000]; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t>0){ sc.nextLine(); long n=sc.nextLong(); long a = sc.nextLong(); long b = sc.nextLong(); sc.nextLine(); long ans=0; long c=0; int cInd=-1; for(int i=0;i<n;i++){ long ele = sc.nextLong(); arr[i]=ele; if(i>0 && cInd==-1 && (n-i)*b>a){ ans = ans + a*(arr[0]); cInd++; c=arr[cInd]; } else if(i>0 && (n-i)*b>a){ ans = ans + a*(arr[cInd+1]-arr[cInd]); cInd++; c=arr[cInd]; } //System.out.println(ans); long diff = ele -c; ans = ans + b*(diff); //System.out.print(ans+" "); } System.out.println(ans); t--; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
344ea0d2253a0b232c3925c909e0144c
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class Main { static int i, j, k, n, m, t, y, x, sum = 0; static long mod = 1000000007; static FastScanner fs = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); static String str; static long ans; public static void main(String[] args){ t = fs.nextInt(); while(t-- > 0){ n = fs.nextInt(); long x = fs.nextInt(); long y = fs.nextInt(); int [] arr = fs.readArray(n); long[] suffix = new long[n]; suffix[n-1] = arr[n-1]; for(i=n-2;i>=0;i--){ suffix[i] = suffix[i+1]+arr[i]; } long ans = Long.MAX_VALUE; long capVal = 0; for(i=0;i<n;i++){ long temp = capVal; if(i==0){ temp += (suffix[i]*y); } else { temp+=(suffix[i] - ((long) arr[i - 1] * (n - i)))*y; } if(i==0){ capVal=arr[i]*(x+y) ; } else{ capVal+=(arr[i]-arr[i-1])*(x+y); } ans = Math.min(ans, temp); } out.println(ans); } out.close(); } /** * Returns the gretaest index of closest element less than x in arr * returns -1 if all elemets are greater * */ public static int lowerBound(int x, List<Integer> arr, int l, int r){ if(arr.get(l)>=x) return -1; if(arr.get(r)<x) return r; int mid = (l+r)/2; if(arr.get(mid)<x && arr.get(mid+1)>x) return mid; if(arr.get(mid)>=x) return lowerBound(x,arr,l,mid-1); return lowerBound(x,arr,mid+1,r); } /** * Returns the lowest index of closest element greater than or equal to x in arr * returns -1 if all elements are lesser * */ public static int upperBound(int x, List<Integer> arr, int l, int r){ if(arr.get(r) <=x) return -1; if(arr.get(l)>x) return l; int mid = (l+r)/2; if(arr.get(mid)>x && arr.get(mid-1)<=x) return mid; if(arr.get(mid)<=x) return upperBound(x,arr,mid+1,r); return upperBound(x,arr,l,mid-1); } /** * Returns the index of element if present else -1. * */ public static int binSearch(int x, List<Integer> arr){ int y = Collections.binarySearch(arr, x); if(y<0) return -1; return y; } /** * Gets prime factorisation of a number in list of pairs. * x is the factor and y is the occurrence. * */ public static List<Pair> primeFactorization(int num){ List<Pair> ans = new ArrayList<>(); for(int i=2;i*i<=num;i++){ if(num % i ==0){ int count = 0; while(num%i==0){ count++; num=num/i; } ans.add(new Pair(i,count)); } } if(num!=1) ans.add(new Pair(num, 1)); return ans; } /*static long nck(int n , int k){ long a = fact[n]; long b = modInv(fact[k]); b*= modInv(fact[n-k]); b%=mod; return (a*b)%mod; } static void populateFact(){ fact[0]=1; fact[1] = 1; for(i=2;i<300005;i++){ fact[i]=i*fact[i-1]; fact[i]%=mod; } } */ static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long exp(long base, long pow) { if (pow == 0) return 1; long half = exp(base, pow / 2); if (pow % 2 == 0) return mul(half, half); return mul(half, mul(half, base)); } static long mul(long a, long b) { return ((a % mod) * (b % mod)) % mod; } static long add(long a, long b) { return ((a % mod) + (b % mod)) % mod; } static long modInv(long x) { return exp(x, mod - 2); } static void ruffleSort(int[] a) { //ruffle int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n), temp = a[i]; a[i] = a[oi]; a[oi] = temp; } //then sort Arrays.sort(a); } static void ruffleSort(long[] a) { //ruffle int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n); long temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } static class Pair implements Comparable<Pair> { public int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { if (x == o.x) return Integer.compare(y, o.y); return Integer.compare(x, o.x); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
757555053291e978cffd47f57a23a43d
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.net.InetAddress; import java.net.ServerSocket; import java.net.Socket; import java.util.*; import static java.lang.System.out; public class app { public static long m; static int mod = 998244353; static int inf = (int) 1e9; public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); //int t=1; long fg[]=new long[40001]; while (t-- > 0) { int ss=sc.nextInt(); long a=sc.nextInt(); long b=sc.nextInt(); long n[]=new long[ss+1]; long as=0; for(int i=1;i<=ss;i++){ n[i]=sc.nextInt(); } int ass=0; long fd=Long.MAX_VALUE; for(int i=ss-1;i>=0;i--){ as += (b*(n[i+1]-n[i])*(ss-i-1)); as -= ((n[i+1]-n[i])*a); if(fd>=as){ fd=as; ass=i; } } as=(n[ass]*(a+b)); for(int i=ass+1;i<=ss;i++){ as+=(n[i]-n[ass])*b; } out.println(as); } } //out.println(Arrays.toString(d).replace(",","").replace("]","").replace("[","")); static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } static long lcm(long a, long b) { return a * b / gcd(a, b); } static void sort(int[] a) { int n = a.length; Integer[] b = new Integer[n]; for (int i = 0; i < n; i++) b[i] = a[i]; Arrays.sort(b); for (int i = 0; i < n; i++) a[i] = b[i]; } static void sort(long[] a) { int n = a.length; Long[] b = new Long[n]; for (int i = 0; i < n; i++) b[i] = a[i]; Arrays.sort(b); for (int i = 0; i < n; i++) a[i] = b[i]; } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public Scanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public Long nextLong() throws IOException { return Long.parseLong(next()); } public int[] nextArrInt(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextArrLong(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextArrIntSorted(int n) throws IOException { int[] a = new int[n]; Integer[] a1 = new Integer[n]; for (int i = 0; i < n; i++) a1[i] = nextInt(); Arrays.sort(a1); for (int i = 0; i < n; i++) a[i] = a1[i].intValue(); return a; } public long[] nextArrLongSorted(int n) throws IOException { long[] a = new long[n]; Long[] a1 = new Long[n]; for (int i = 0; i < n; i++) a1[i] = nextLong(); Arrays.sort(a1); for (int i = 0; i < n; i++) a[i] = a1[i].longValue(); return a; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
2c767ab6ab481fd12d6f6797212f3eeb
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public final class Main { //int 2e9 - long 9e18 static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(0, 1), new Pair(1, 0), new Pair(0, -1)}; static int mod = (int) (1e9 + 7); static int mod2 = 998244353; public static void main(String[] args) { int tt = i(); while (tt-- > 0) { solve(); } out.flush(); } public static void solve() { int n = i(); long a = i(); long b = i(); int[] x = input(n); long ans = (long) x[n - 1] * b; long prev = 0; for (int i = 0; i < n; i++) { long d = x[i] - prev; ans += Math.min((n - 1 - i) * b, a) * d; prev = x[i]; } out.println(ans); } // (10,5) = 2 ,(11,5) = 3 static long upperDiv(long a, long b) { return (a / b) + ((a % b == 0) ? 0 : 1); } static long sum(int[] a) { long sum = 0; for (int x : a) { sum += x; } return sum; } static int[] preint(int[] a) { int[] pre = new int[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static long[] pre(int[] a) { long[] pre = new long[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static long[] post(int[] a) { long[] post = new long[a.length + 1]; post[0] = 0; for (int i = 0; i < a.length; i++) { post[i + 1] = post[i] + a[a.length - 1 - i]; } return post; } static long[] pre(long[] a) { long[] pre = new long[a.length + 1]; pre[0] = 0; for (int i = 0; i < a.length; i++) { pre[i + 1] = pre[i] + a[i]; } return pre; } static void print(char A[]) { for (char c : A) { out.print(c); } out.println(); } static void print(boolean A[]) { for (boolean c : A) { out.print(c + " "); } out.println(); } static void print(int A[]) { for (int c : A) { out.print(c + " "); } out.println(); } static void print(long A[]) { for (long i : A) { out.print(i + " "); } out.println(); } static void print(List<Integer> A) { for (int a : A) { out.print(a + " "); } } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static double d() { return in.nextDouble(); } static String s() { return in.nextLine(); } static String c() { return in.next(); } static int[][] inputWithIdx(int N) { int A[][] = new int[N][2]; for (int i = 0; i < N; i++) { A[i] = new int[]{i, in.nextInt()}; } return A; } static int[] input(int N) { int A[] = new int[N]; for (int i = 0; i < N; i++) { A[i] = in.nextInt(); } return A; } static long[] inputLong(int N) { long A[] = new long[N]; for (int i = 0; i < A.length; i++) { A[i] = in.nextLong(); } return A; } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long GCD(long a, long b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long LCM(int a, int b) { return (long) a / GCD(a, b) * b; } static long LCM(long a, long b) { return a / GCD(a, b) * b; } // find highest i which satisfy a[i]<=x static int lowerbound(int[] a, int x) { int l = 0; int r = a.length - 1; while (l < r) { int m = (l + r + 1) / 2; if (a[m] <= x) { l = m; } else { r = m - 1; } } return l; } static void shuffle(int[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } } static void shuffleAndSort(int[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static void shuffleAndSort(int[][] arr, Comparator<? super int[]> comparator) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); int[] temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr, comparator); } static void shuffleAndSort(long[] arr) { for (int i = 0; i < arr.length; i++) { int rand = (int) (Math.random() * arr.length); long temp = arr[rand]; arr[rand] = arr[i]; arr[i] = temp; } Arrays.sort(arr); } static boolean isPerfectSquare(double number) { double sqrt = Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } static void swap(int A[], int a, int b) { int t = A[a]; A[a] = A[b]; A[b] = t; } static void swap(char A[], int a, int b) { char t = A[a]; A[a] = A[b]; A[b] = t; } static long pow(long a, long b, int mod) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow = (pow * x) % mod; } x = (x * x) % mod; b /= 2; } return pow; } static long pow(long a, long b) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow *= x; } x = x * x; b /= 2; } return pow; } static long modInverse(long x, int mod) { return pow(x, mod - 2, mod); } static boolean isPrime(long N) { if (N <= 1) { return false; } if (N <= 3) { return true; } if (N % 2 == 0 || N % 3 == 0) { return false; } for (int i = 5; i * i <= N; i = i + 6) { if (N % i == 0 || N % (i + 2) == 0) { return false; } } return true; } public static String reverse(String str) { if (str == null) { return null; } return new StringBuilder(str).reverse().toString(); } public static void reverse(int[] arr) { for (int i = 0; i < arr.length / 2; i++) { int tmp = arr[i]; arr[arr.length - 1 - i] = tmp; arr[i] = arr[arr.length - 1 - i]; } } public static String repeat(char ch, int repeat) { if (repeat <= 0) { return ""; } final char[] buf = new char[repeat]; for (int i = repeat - 1; i >= 0; i--) { buf[i] = ch; } return new String(buf); } public static int[] manacher(String s) { char[] chars = s.toCharArray(); int n = s.length(); int[] d1 = new int[n]; for (int i = 0, l = 0, r = -1; i < n; i++) { int k = (i > r) ? 1 : Math.min(d1[l + r - i], r - i + 1); while (0 <= i - k && i + k < n && chars[i - k] == chars[i + k]) { k++; } d1[i] = k--; if (i + k > r) { l = i - k; r = i + k; } } return d1; } public static int[] kmp(String s) { int n = s.length(); int[] res = new int[n]; for (int i = 1; i < n; ++i) { int j = res[i - 1]; while (j > 0 && s.charAt(i) != s.charAt(j)) { j = res[j - 1]; } if (s.charAt(i) == s.charAt(j)) { ++j; } res[i] = j; } return res; } } class Pair { int i; int j; Pair(int i, int j) { this.i = i; this.j = j; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } Pair pair = (Pair) o; return i == pair.i && j == pair.j; } @Override public int hashCode() { return Objects.hash(i, j); } } class ThreePair { int i; int j; int k; ThreePair(int i, int j, int k) { this.i = i; this.j = j; this.k = k; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } ThreePair pair = (ThreePair) o; return i == pair.i && j == pair.j && k == pair.k; } @Override public int hashCode() { return Objects.hash(i, j); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class Node { int val; public Node(int val) { this.val = val; } } class ST { int n; Node[] st; ST(int n) { this.n = n; st = new Node[4 * Integer.highestOneBit(n)]; } void build(Node[] nodes) { build(0, 0, n - 1, nodes); } private void build(int id, int l, int r, Node[] nodes) { if (l == r) { st[id] = nodes[l]; return; } int mid = (l + r) >> 1; build((id << 1) + 1, l, mid, nodes); build((id << 1) + 2, mid + 1, r, nodes); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } void update(int i, Node node) { update(0, 0, n - 1, i, node); } private void update(int id, int l, int r, int i, Node node) { if (i < l || r < i) { return; } if (l == r) { st[id] = node; return; } int mid = (l + r) >> 1; update((id << 1) + 1, l, mid, i, node); update((id << 1) + 2, mid + 1, r, i, node); st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]); } Node get(int x, int y) { return get(0, 0, n - 1, x, y); } private Node get(int id, int l, int r, int x, int y) { if (x > r || y < l) { return new Node(0); } if (x <= l && r <= y) { return st[id]; } int mid = (l + r) >> 1; return comb(get((id << 1) + 1, l, mid, x, y), get((id << 1) + 2, mid + 1, r, x, y)); } Node comb(Node a, Node b) { if (a == null) { return b; } if (b == null) { return a; } return new Node(GCD(a.val, b.val)); } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
792f97e844e2e10dd3c79eaa5c69e8b1
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class codeforces1659C { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int numCases = Integer.parseInt(br.readLine()); for (int rep = 0; rep<numCases;rep++) { StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int a = Integer.parseInt(st.nextToken()); int b = Integer.parseInt(st.nextToken()); long [] kingdoms= new long[n+1]; kingdoms[0] = 0; long [] arr = new long[n]; st = new StringTokenizer(br.readLine()); for (int i = 0; i<n;i++) { arr[i] = Long.parseLong(st.nextToken()); kingdoms[i+1] = arr[i]+kingdoms[i]; } long currCapital = 0; long cost = 0; for (int i = 0;i<n;i++) { cost+=(arr[i]-currCapital)*b; //change the capital if it decreases the cost of adding the rest //System.out.println(((kingdoms[n]-kingdoms[i+1]-((n-i-1)*currCapital))*b)+" "+ (a*(arr[i]-currCapital)+((kingdoms[n]-kingdoms[i+1]-((n-i-1)*arr[i]))*b))); if (((kingdoms[n]-kingdoms[i+1]-((n-i-1)*currCapital))*b)>(a*(arr[i]-currCapital)+((kingdoms[n]-kingdoms[i+1]-((n-i-1)*arr[i]))*b))) { //System.out.println("hit"); cost+=a*(arr[i]-currCapital); currCapital = arr[i]; } //System.out.println(cost+" "+arr[i]+" "+currCapital+" "+b); //just move on because changing the capital isn't optimal } //cost+=b*(arr[n-1]-currCapital); System.out.println(cost); //System.out.println(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
451ee9783551552e2ad7864c5090f732
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static int INF = 0x3f3f3f3f; public static int mod = 1000000007; public static int mod9 = 998244353; public static int[] x = new int[2*(int)1e5+100]; public static void main(String args[]){ try { PrintWriter o = new PrintWriter(System.out); boolean multiTest = true; // init if(multiTest) { int t = fReader.nextInt(), loop = 0; while (loop < t) {loop++;solve(o);} } else solve(o); o.close(); } catch (Exception e) {e.printStackTrace();} } static void solve(PrintWriter o){ try { //5 6 3 //1 5 6 21 30 int n = fReader.nextInt(), a = fReader.nextInt(), b = fReader.nextInt(); for(int i=0;i<n;i++) x[i] = fReader.nextInt(); long[] preSum = new long[n+1]; for(int i=1;i<=n;i++) preSum[i] = preSum[i-1] + x[i-1]; long res = b*preSum[n]; for(int i=0;i<n;i++){ res = Math.min(res, 1l*a*x[i] + 1l*b*x[i] + b*(preSum[n] - preSum[i+1] - 1l*(n-i-1)*x[i])); } o.println(res); } catch (Exception e){e.printStackTrace();} } public static int upper_bound(List<Integer> a, int val){ int l = 0, r = a.size(); while(l < r){ int mid = l + (r - l) / 2; if(a.get(mid) <= val) l = mid + 1; else r = mid; } return l; } public static int lower_bound(List<Integer> a, int val){ int l = 0, r = a.size(); while(l < r){ int mid = l + (r - l) / 2; if(a.get(mid) < val) l = mid + 1; else r = mid; } return l; } public static long gcd(long a, long b){ return b == 0 ? a : gcd(b, a%b); } public static void reverse(int[] array){ reverse(array, 0 , array.length-1); } public static void reverse(int[] array, int left, int right) { if (array != null) { int i = left; for(int j = right; j > i; ++i) { int tmp = array[j]; array[j] = array[i]; array[i] = tmp; --j; } } } public static long qpow(long a, long n){ long ret = 1l; while(n > 0){ if((n & 1) == 1) ret = ret * a % mod; n >>= 1; a = a * a % mod; } return ret; } public static class unionFind { int[] parent; int[] size; int n; public unionFind(int n){ this.n = n; parent = new int[n+1]; size = new int[n+1]; for(int i=1;i<=n;i++){ parent[i] = i; size[i] = 1; } } public int find(int p){ while(p != parent[p]){ parent[p] = parent[parent[p]]; p = parent[p]; } return p; } public void union(int p, int q){ int root_p = find(p); int root_q = find(q); if(root_p == root_q) return; if(size[root_p] >= size[root_q]){ parent[root_q] = root_p; size[root_p] += size[root_q]; size[root_q] = 0; } else{ parent[root_p] = root_q; size[root_q] += size[root_p]; size[root_p] = 0; } n--; } public int getCount(){ return n; } public int[] getSize(){ return size; } } public static class fReader { private static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); private static StringTokenizer tokenizer = new StringTokenizer(""); private static String next() throws IOException{ while(!tokenizer.hasMoreTokens()){tokenizer = new StringTokenizer(reader.readLine());} return tokenizer.nextToken(); } public static int nextInt() throws IOException {return Integer.parseInt(next());} public static Long nextLong() throws IOException {return Long.parseLong(next());} public static double nextDouble() throws IOException {return Double.parseDouble(next());} public static char nextChar() throws IOException {return next().toCharArray()[0];} public static String nextString() throws IOException {return next();} public static String nextLine() throws IOException {return reader.readLine();} } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
ac3bd756c90b9e4348cdf876871d820e
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.lang.*; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.File; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(first - ob.first); } } static class Tuple implements Comparable<Tuple> { long first, second,third; public Tuple(long first, long second, long third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int count = 0; int[] parent; int[] rank; public DSU(int n) { count = n; parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public void union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return; if(rank[a] < rank[b]) { parent[a] = b; } else if(rank[a] > rank[b]) { parent[b] = a; } else { parent[b] = a; rank[a] = 1 + rank[a]; } count--; } public int countConnected() { return count; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long lcm(long a, long b) { return (a / LongGCD(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long powMod(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) { res = (res * x) % p; } y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return powMod(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static boolean isPrime(long n) { if(n == 1) { return false; } //check only for sqrt of the number as the divisors //keep repeating so only half of them are required. So,sqrt. for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Long> SieveList(int n) { boolean prime[] = new boolean[(int)(n+1)]; Arrays.fill(prime, true); List<Long> l = new ArrayList<>(); for (long p = 2; p*p<=n; p++) { if (prime[(int)(p)] == true) { for(long i = p*p; i<=n; i += p) { prime[(int)(i)] = false; } } } for (long p = 2; p<=n; p++) { if (prime[(int)(p)] == true) { l.add(p); } } return l; } public static int countDivisors(int x) { int c = 0; for(int i = 1;i*i<=x;i++) { if(x%i == 0) { if(x/i != i) { c+=2; } else { c++; } } } return c; } public static long log2(long n) { long ans = (long)(log(n)/log(2)); return ans; } public static boolean isPow2(long n) { return (n != 0 && ((n & (n-1))) == 0); } public static boolean isSq(int x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void Sort(long[] a) { List<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); // Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int tt = sc.nextInt(); fr: while(tt-- > 0) { int n = sc.nextInt(); int a = sc.nextInt(), b = sc.nextInt(); long[] arr = sc.longReadArray(n); long ans = 0; for(int i = 0;i<n;i++) { long rightPresent = n - i; long leftPresent = (i == 0) ? 0 : arr[i-1]; long distance = arr[i] - leftPresent; ans += distance * min(rightPresent * b, (a + b)); } fout.println(ans); } fout.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
c893524928a23ca3cdd51558b494e014
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.lang.*; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.File; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class Main { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(first - ob.first); } } static class Tuple implements Comparable<Tuple> { long first, second,third; public Tuple(long first, long second, long third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int count = 0; int[] parent; int[] rank; public DSU(int n) { count = n; parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public void union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return; if(rank[a] < rank[b]) { parent[a] = b; } else if(rank[a] > rank[b]) { parent[b] = a; } else { parent[b] = a; rank[a] = 1 + rank[a]; } count--; } public int countConnected() { return count; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long lcm(long a, long b) { return (a / LongGCD(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long powMod(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) { res = (res * x) % p; } y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return powMod(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static boolean isPrime(long n) { if(n == 1) { return false; } //check only for sqrt of the number as the divisors //keep repeating so only half of them are required. So,sqrt. for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Long> SieveList(int n) { boolean prime[] = new boolean[(int)(n+1)]; Arrays.fill(prime, true); List<Long> l = new ArrayList<>(); for (long p = 2; p*p<=n; p++) { if (prime[(int)(p)] == true) { for(long i = p*p; i<=n; i += p) { prime[(int)(i)] = false; } } } for (long p = 2; p<=n; p++) { if (prime[(int)(p)] == true) { l.add(p); } } return l; } public static int countDivisors(int x) { int c = 0; for(int i = 1;i*i<=x;i++) { if(x%i == 0) { if(x/i != i) { c+=2; } else { c++; } } } return c; } public static long log2(long n) { long ans = (long)(log(n)/log(2)); return ans; } public static boolean isPow2(long n) { return (n != 0 && ((n & (n-1))) == 0); } public static boolean isSq(int x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void Sort(long[] a) { List<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); // Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int tt = sc.nextInt(); fr: while(tt-- > 0) { int n = sc.nextInt(); long a = sc.nextLong(), b = sc.nextLong(); long[] kingdom = new long[n+1]; long ans = 0, nextDest = 0; kingdom[0] = 0; for(int i = 1;i<=n;i++) kingdom[i] = sc.nextLong(); for(int i = 1;i<=n;i++) { ans += (b * (kingdom[i] - nextDest)); if(a <= (n - i) * b) { ans += (a * (kingdom[i] - nextDest)); nextDest = kingdom[i]; } } fout.println(ans); } fout.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
c1635c1824b1dd09bf72777f888aa0fd
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class C { static class Pair { int f;int s; // Pair(){} Pair(int f,int s){ this.f=f;this.s=s;} } static class Fast { BufferedReader br; StringTokenizer st; public Fast() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } int[] readArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readArray1(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } String nextLine() { String str = ""; try { str = br.readLine().trim(); } catch (IOException e) { e.printStackTrace(); } return str; } } /* static long noOfDivisor(long a) { long count=0; long t=a; for(long i=1;i<=(int)Math.sqrt(a);i++) { if(a%i==0) count+=2; } if(a==((long)Math.sqrt(a)*(long)Math.sqrt(a))) { count--; } return count; }*/ static boolean isPrime(long a) { for (long i = 2; i <= (long) Math.sqrt(a); i++) { if (a % i == 0) return false; } return true; } static void primeFact(int n) { int temp = n; HashMap<Integer, Integer> h = new HashMap<>(); for (int i = 2; i * i <= n; i++) { if (temp % i == 0) { int c = 0; while (temp % i == 0) { c++; temp /= i; } h.put(i, c); } } if (temp != 1) h.put(temp, 1); } static void reverseArray(int a[]) { int n = a.length; for (int i = 0; i < n / 2; i++) { a[i] = a[i] ^ a[n - i - 1]; a[n - i - 1] = a[i] ^ a[n - i - 1]; a[i] = a[i] ^ a[n - i - 1]; } } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static void sort(long [] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static long abs(long a) { return a>0?a:-1*a; } static long min(long a,long b) { return a>b?b:a; } static long rec(int capi,long cap,int idx,int a,int b,long x[],int n,int vis[],long dp[][]) { if(idx==n) return 0; if(dp[capi+1][idx]!=-1) return dp[capi+1][idx]; long l=Long.MAX_VALUE; long r = b * abs(cap - x[idx]) + rec(capi,cap, idx + 1, a, b, x, n, vis,dp);//conquer for(int i=capi+1;i<=idx;i++) { // if (vis[idx] != -1) { if(i>=n) break; if(i!=idx) l = min(r,a * abs(cap - x[i]) + rec(i,x[i], idx+1, a, b, x, n, vis,dp));//capital else l = min(r,b * abs(cap - x[idx])+a * abs(cap - x[i]) + rec(i,x[i], idx+1, a, b, x, n, vis,dp));//capital // } } return dp[capi+1][idx]=min(l,r); } public static void main(String args[]) throws IOException { Fast sc = new Fast(); PrintWriter out = new PrintWriter(System.out); int t1 = sc.nextInt(); while (t1-- > 0) { int n=sc.nextInt();int a=sc.nextInt();int b=sc.nextInt(); long x[]=new long[n+1];x[0]=0; for(int i=1;i<n+1;i++) x[i]=sc.nextLong(); long pre[]=new long[n+1]; pre[0]=x[0]; for(int i=1;i<n+1;i++) pre[i]=pre[i-1]+x[i]; long ans=Long.MAX_VALUE; for(int i=0;i<n+1;i++) { long exp=a*x[i]+b*(pre[n]-(((n-i-1)*x[i])+pre[i])); // out.println(exp+" "+i); ans=min(ans,exp); } out.println(ans); } out.close(); } } /* public static void main(String args[]) throws IOException { Fast sc = new Fast(); PrintWriter out = new PrintWriter(System.out); int t1 = sc.nextInt(); while (t1-- > 0) { int n=sc.nextInt();int a=sc.nextInt();int b=sc.nextInt(); long x[]=sc.readArray1(n); int vis[]=new int[n]; Arrays.fill(vis,-1); long dp[][]=new long[n+2][n+2]; for(long row[]:dp) Arrays.fill(row,-1); long ans=rec(-1,0,0,a,b,x,n,vis,dp); out.println(ans); } out.close(); } } */
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
9bb25739c53722574db36acb263f0714
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class Codeforces782{ static long mod = 1000000007L; static MyScanner sc = new MyScanner(); static void solve() { int n = sc.nextInt(); int r = sc.nextInt(); int b = sc.nextInt(); int arr[] = new int[2 * b + 1]; Arrays.fill(arr, 1); r = r - b; r--; while (r > 0) for (int i = 0; i < arr.length&& r > 0; i += 2) { arr[i]++; r--; } for(int i = 0;i<arr.length;i++){ if(i==0 || i%2==0){ for(int j = 0;j<arr[i];j++){ out.print('R'); } }else{ out.print('B'); } } out.println(); } static void solve2(){ int n = sc.nextInt(); int k = sc.nextInt(); char arr[] = sc.nextLine().toCharArray(); if(k%2!=0){ for(int i = 0;i<n;i++){ if(arr[i]=='1') arr[i] = '0'; else arr[i]='1'; } } int ans[] = new int[n]; for(int i = 0;i<n && k>0;i++){ if(arr[i]=='0'){ ans[i]++; k--; arr[i] = '1'; } } if(k>0){ if(k%2!=0){ if(arr[n-1]=='1') arr[n-1] = '0'; else arr[n-1]='1'; } ans[n-1]+=k; } for(int i = 0;i<n;i++){ out.print(arr[i]); } out.println(); for(int i = 0;i<n;i++){ out.print(ans[i]+" "); } out.println(); } static void solve3(){ int n= sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); long arr[] = new long[n+1]; for(int i=1;i<=n;i++) arr[i]=sc.nextLong(); for(int i=1;i<=n;i++) arr[i]+=arr[i-1]; long res=arr[n]*b; for(int i=1;i<n;i++){ long d=arr[i]-arr[i-1]; long rem=n-i; long val=b*((arr[n]-arr[i])-(rem*d))+d*(a+b); //out.println(i+" "+val+" "+res); res=Math.min(res,val); } out.println(res); } static long fun(long dp[][],long arr[],int i,int j,long a,long b){ if(j==arr.length) return 0; if(dp[i][j]!=-1) return dp[i][j]; if(i+1==j){ dp[i][j] = b*(arr[j]-arr[i])+fun(dp,arr,i,j+1,a,b); }else dp[i][j] = Math.min(b*(arr[j]-arr[i])+fun(dp,arr,i,j+1,a,b),(a*(arr[i+1]-arr[i]))+fun(dp,arr,i+1,j,a,b)); return dp[i][j]; } static void solve4(){ } static void reverse(int arr[]){ int i = 0;int j = arr.length-1; while(i<j){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } } static class Pair{ int odd; int even; Pair(int o,int e){ odd = o; even = e; } } static long pow(long a, long b) { if (b == 0) return 1; long res = pow(a, b / 2); res = (res * res) % 1_000_000_007; if (b % 2 == 1) { res = (res * a) % 1_000_000_007; } return res; } static int lis(int arr[],int n){ int lis[] = new int[n]; lis[0] = 1; for(int i = 1;i<n;i++){ lis[i] = 1; for(int j = 0;j<i;j++){ if(arr[i]>arr[j]){ lis[i] = Math.max(lis[i],lis[j]+1); } } } int max = Integer.MIN_VALUE; for(int i = 0;i<n;i++){ max = Math.max(lis[i],max); } return max; } static boolean isPali(String str){ int i = 0; int j = str.length()-1; while(i<j){ if(str.charAt(i)!=str.charAt(j)){ return false; } i++; j--; } return true; } static long gcd(long a,long b){ if(b==0) return a; return gcd(b,a%b); } static String reverse(String str){ char arr[] = str.toCharArray(); int i = 0; int j = arr.length-1; while(i<j){ char temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } String st = new String(arr); return st; } static boolean isprime(int n){ if(n==1) return false; if(n==3 || n==2) return true; if(n%2==0 || n%3==0) return false; for(int i = 5;i*i<=n;i+= 6){ if(n%i== 0 || n%(i+2)==0){ return false; } } return true; } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); // int t= 1; while(t-- >0){ // solve(); // solve2(); solve3(); } // Stop writing your solution here. ------------------------------------- out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int[] readIntArray(int n){ int arr[] = new int[n]; for(int i = 0;i<n;i++){ arr[i] = Integer.parseInt(next()); } return arr; } int[] reverse(int arr[]){ int n= arr.length; int i = 0; int j = n-1; while(i<j){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; j--;i++; } return arr; } long[] readLongArray(int n){ long arr[] = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Long.parseLong(next()); } return arr; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static void sort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } private static void sort(long[] arr) { List<Long> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
da30d5f3c2af03713aab63e6f891b4f9
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class CodeForces { /*-------------------------------------------EDITING CODE STARTS HERE-------------------------------------------*/ public static void solve(int tCase) throws IOException { int n = sc.nextInt(); long a = sc.nextInt(); long b = sc.nextInt(); long[] arr = new long[n+3]; for(int i=1;i<=n;i++)arr[i] = sc.nextInt(); long[] future = new long[n+10]; for(int i=n-1;i>=0;i--){ future[i] = future[i+1]; long del = arr[i+1] - arr[i]; future[i] += b * (n-i)*del; } long[] past = new long[n+10]; for(int i=1;i<=n;i++){ past[i] = past[i-1]; past[i] += (a+b) *(arr[i] - arr[i-1]); } long ans = inf_long; for(int i=0;i<n;i++) ans = Math.min(ans,future[i] + past[i]); out.println(ans); } public static void main(String[] args) throws IOException { openIO(); int testCase = 1; testCase = sc.nextInt(); for (int i = 1; i <= testCase; i++) solve(i); closeIO(); } /*-------------------------------------------EDITING CODE ENDS HERE-------------------------------------------*/ /*--------------------------------------HELPER FUNCTIONS STARTS HERE-----------------------------------------*/ // public static int mod = (int) 1e9 + 7; public static int mod = 998244353; public static int inf_int = (int) 2e9+10; public static long inf_long = (long) 2e18; public static void _sort(int[] arr, boolean isAscending) { int n = arr.length; List<Integer> list = new ArrayList<>(); for (int ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } public static void _sort(long[] arr, boolean isAscending) { int n = arr.length; List<Long> list = new ArrayList<>(); for (long ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } // time : O(1), space : O(1) public static int _digitCount(long num,int base){ // this will give the # of digits needed for a number num in format : base return (int)(1 + Math.log(num)/Math.log(base)); } // time : O(n), space: O(n) public static long _fact(int n){ // simple factorial calculator long ans = 1; for(int i=2;i<=n;i++) ans = ans * i % mod; return ans; } // time for pre-computation of factorial and inverse-factorial table : O(nlog(mod)) public static long[] factorial , inverseFact; public static void _ncr_precompute(int n){ factorial = new long[n+1]; inverseFact = new long[n+1]; factorial[0] = inverseFact[0] = 1; for (int i = 1; i <=n; i++) { factorial[i] = (factorial[i - 1] * i) % mod; inverseFact[i] = _modExpo(factorial[i], mod - 2); } } // time of factorial calculation after pre-computation is O(1) public static int _ncr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[r] % mod * inverseFact[n - r] % mod); } public static int _npr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[n - r] % mod); } // euclidean algorithm time O(max (loga ,logb)) public static long _gcd(long a, long b) { while (a>0){ long x = a; a = b % a; b = x; } return b; // if (a == 0) // return b; // return _gcd(b % a, a); } // lcm(a,b) * gcd(a,b) = a * b public static long _lcm(long a, long b) { return (a / _gcd(a, b)) * b; } // binary exponentiation time O(logn) public static long _modExpo(long x, long n) { long ans = 1; while (n > 0) { if ((n & 1) == 1) { ans *= x; ans %= mod; n--; } else { x *= x; x %= mod; n >>= 1; } } return ans; } // function to find a/b under modulo mod. time : O(logn) public static long _modInv(long a,long b){ return (a * _modExpo(b,mod-2)) % mod; } //sieve or first divisor time : O(mx * log ( log (mx) ) ) public static int[] _seive(int mx){ int[] firstDivisor = new int[mx+1]; for(int i=0;i<=mx;i++)firstDivisor[i] = i; for(int i=2;i*i<=mx;i++) if(firstDivisor[i] == i) for(int j = i*i;j<=mx;j+=i) if(firstDivisor[j]==j)firstDivisor[j] = i; return firstDivisor; } // check if x is a prime # of not. time : O( n ^ 1/2 ) private static boolean _isPrime(long x){ for(long i=2;i*i<=x;i++) if(x%i==0)return false; return true; } static class Pair<K, V>{ K ff; V ss; public Pair(K ff, V ss) { this.ff = ff; this.ss = ss; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || this.getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return ff.equals(pair.ff) && ss.equals(pair.ss); } @Override public int hashCode() { return Objects.hash(ff, ss); } @Override public String toString(){ return ff.toString()+" "+ss.toString(); } } /*--------------------------------------HELPER FUNCTIONS ENDS HERE-----------------------------------------*/ /*-------------------------------------------FAST INPUT STARTS HERE---------------------------------------------*/ static FastestReader sc; static PrintWriter out; private static void openIO() throws IOException { sc = new FastestReader(); out = new PrintWriter(System.out); } public static void closeIO() throws IOException { out.flush(); out.close(); sc.close(); } private static final class FastestReader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public FastestReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastestReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() throws IOException { int b; //noinspection StatementWithEmptyBody while ((b = read()) != -1 && isSpaceChar(b)) {} return b; } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); final boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); return neg?-ret:ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); final boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); return neg?-ret:ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); final boolean neg = c == '-'; if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); return neg?-ret:ret; } public String nextLine() throws IOException { final byte[] buf = new byte[(1<<10)]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { break; } buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } /*---------------------------------------------FAST INPUT ENDS HERE ---------------------------------------------*/ } /** Some points to keep in mind : * 1. don't use Arrays.sort(primitive data type array) * 2. try to make the parameters of a recursive function as less as possible, * more use static variables. * **/
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
c2a3f3e4359f3e0204751ab8e0f21bee
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Codechef { public static void main (String[] args) throws java.lang.Exception { try{ FastReader read=new FastReader(); StringBuilder sb = new StringBuilder(); int t=read.nextInt(); while(t>0) { int n = read.nextInt(); long move = read.nextLong(); long acq = read.nextLong(); long x[] = new long[n+1]; long ans = 0,ans2=Long.MAX_VALUE; for(int i=1;i<=n;i++) { x[i]=read.nextLong(); ans+=x[i]; } for(int i=0;i<=n;i++) { long dono = (long)(move+acq)*(long)(x[i]); ans-=x[i]; dono+=(ans-(n-i)*x[i])*acq; ans2 = Math.min(ans2,dono); } sb.append(ans2); sb.append('\n'); t--; } System.out.println(sb); } catch(Exception e) {return; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void sort(int[] A) { int n = A.length; Random rnd = new Random(); for (int i = 0; i < n; ++i) { int tmp = A[i]; int randomPos = i + rnd.nextInt(n - i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static void sort(long[] A) { int n = A.length; Random rnd = new Random(); for (int i = 0; i < n; ++i) { long tmp = A[i]; int randomPos = i + rnd.nextInt(n - i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static void sort(ArrayList<Long> A,char ch) { int n = A.size(); Random rnd = new Random(); for (int i = 0; i < n; ++i) { long tmp = A.get(i); int randomPos = i + rnd.nextInt(n - i); A.set(i,A.get(randomPos)); A.set(randomPos,tmp); } Collections.sort(A); } static void sort(ArrayList<Integer> A) { int n = A.size(); Random rnd = new Random(); for (int i = 0; i < n; ++i) { int tmp = A.get(i); int randomPos = i + rnd.nextInt(n - i); A.set(i,A.get(randomPos)); A.set(randomPos,tmp); } Collections.sort(A); } static String sort(String s) { Character ch[] = new Character[s.length()]; for (int i = 0; i < s.length(); i++) { ch[i] = s.charAt(i); } Arrays.sort(ch); StringBuffer st = new StringBuffer(""); for (int i = 0; i < s.length(); i++) { st.append(ch[i]); } return st.toString(); } } class pair implements Comparable<pair> { int X,Y,C; pair(int s,int e,int c) { X=s; Y=e; C=c; } public int compareTo(pair p ) { return this.C-p.C; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d3121bbf29ad7c227bba0a4c3f2dc718
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class problemC { public static void main(String[] args)throws IOException { // TODO Auto-generated method stub BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out)); int t = Integer.parseInt(br.readLine()); for(int i=0; i<t; i++) { StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int a = Integer.parseInt(st.nextToken()); int b = Integer.parseInt(st.nextToken()); int[] arr = new int[n+1]; st = new StringTokenizer(br.readLine()); for(int j=1; j<=n; j++) arr[j] = Integer.parseInt(st.nextToken()); long joyce_qu = (long)arr[n-1]*a; joyce_qu += (long)b*(arr[n]); for(int j=n-2; j>-1; j--) { long add = 0; add+=(long)(arr[j+1]-arr[j])*b*(n-2-j+1); add-=(long)(arr[j+1]-arr[j])*a; if(add>0)break; joyce_qu+=add; } out.write(joyce_qu+"\n"); } out.flush(); out.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
ccf8d9c479e476693b472e4f6748de7a
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class C { public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int t = Integer.parseInt(br.readLine()); while(t-->0) { String[] in = br.readLine().split(" "); int n = Integer.parseInt(in[0]); int a = Integer.parseInt(in[1]); int b = Integer.parseInt(in[2]); in = br.readLine().split(" "); long [] arr = new long[in.length]; for(int i=0;i<arr.length;i++) arr[i] = Long.parseLong(in[i]); long ans=0; long cur = 0; for(int i=0;i<arr.length;i++) { long move = arr[i]-cur; long rem = arr.length-i-1; ans += b*(move); if(move*a < move*b*rem) { ans = ans+move*a; cur = arr[i]; } } pw.println(ans); } pw.flush(); pw.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
7dc2ed92a9d409997bfc8b6e768f23c5
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.Map; import java.util.StringTokenizer; import java.util.TreeMap; public class Practice3 { static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } public static void find(int[][] arr,int i,int j,int sum) { System.out.println("sum : "+sum); if(i==0&&j==0) { arr[i][j] -=sum; return; } if(arr[i][j]<=0) return; if(i==0) { arr[i][j] +=sum; int a=Math.min(arr[i][j-1],arr[i][j]); arr[i][j-1]-=a; arr[i][j]-=a+sum; find(arr,i,j-1,sum+a); }else if(j==0) { arr[i][j] +=sum; int a=Math.min(arr[i-1][j],arr[i][j]); arr[i-1][j]-=a; arr[i][j]-=a+sum; find(arr,i-1,j,sum+a); }else { if(arr[i-1][j]!=0) { arr[i][j] +=sum; int a=Math.min( arr[i-1][j],arr[i][j]); arr[i-1][j]-=a; arr[i][j]-=a+sum; find(arr,i-1,j,sum+a); } if(arr[i][j-1]!=0) { arr[i][j] +=sum; int a=Math.min( arr[i][j-1],arr[i][j]); arr[i][j-1]-=a; arr[i][j]-=a+sum; find(arr,i,j-1,sum+a); } } } static long[] sort(long[] arr) { int n=arr.length; ArrayList<Long> al=new ArrayList<>(); for(int i=0;i<n;i++) { al.add(arr[i]); } Collections.sort(al); for(int i=0;i<n;i++) { arr[i]=al.get(i); } return arr; } public static void main (String[] args) { PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); // out.print(); //out.println(); FastReader sc=new FastReader(); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); long a=sc.nextLong(); long b=sc.nextLong(); long[] arr=new long[n]; for(int i=0;i<n;i++) { arr[i]=sc.nextLong(); } long sum=0,val=0; sum +=b*arr[0]; for(int i=0;i<n-1;i++) { if(b*((long)n-(long)i-1l)*(arr[i]-val)>=a*(arr[i]-val)){ sum +=a*Math.abs(val-arr[i])+b*Math.abs(arr[i]-arr[i+1]); val=arr[i]; }else { sum +=b*Math.abs(val-arr[i+1]); } } out.println(sum); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
25ef828a98cefd591b9bc1a3ac1413b1
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.Closeable; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.time.Clock; import java.time.LocalDateTime; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.HashSet; import java.util.Objects; import java.util.Random; import java.util.Set; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.function.Supplier; public class Solution { private void solve() throws IOException { int n = nextInt(); long a = nextLong(); long b = nextLong(); int[] x = new int[n + 1]; for (int i = 0; i < n; i++) { x[i + 1] = nextInt(); } long[] d = new long[n + 1]; for (int i = 1; i < n; i++) { d[i] = d[i - 1] + (a + b) * (x[i] - x[i - 1]); } long res = Long.MAX_VALUE; long dd = 0; for (int i = n - 1; i >= 0; i--) { dd += (n - i) * (long) (x[i+1] - x[i]) * b; res = Math.min(res, d[i] + dd); } out.println(res); } private static final boolean runNTestsInProd = true; private static final boolean printCaseNumber = false; private static final boolean assertInProd = false; private static final boolean logToFile = false; private static final boolean readFromConsoleInDebug = false; private static final boolean writeToConsoleInDebug = true; private static final boolean testTimer = false; private static Boolean isDebug = null; private BufferedReader in; private StringTokenizer line; private PrintWriter out; public static void main(String[] args) throws Exception { isDebug = Arrays.asList(args).contains("DEBUG_MODE"); if (isDebug) { log = logToFile ? new PrintWriter("logs/j_solution_" + System.currentTimeMillis() + ".log") : new PrintWriter(System.out); clock = Clock.systemDefaultZone(); } new Solution().run(); } private void run() throws Exception { in = new BufferedReader(new InputStreamReader(!isDebug || readFromConsoleInDebug ? System.in : new FileInputStream("input.txt"))); out = !isDebug || writeToConsoleInDebug ? new PrintWriter(System.out) : new PrintWriter("output.txt"); try (Timer totalTimer = new Timer("total")) { int t = runNTestsInProd || isDebug ? nextInt() : 1; for (int i = 0; i < t; i++) { if (printCaseNumber) { out.print("Case #" + (i + 1) + ": "); } if (testTimer) { try (Timer testTimer = new Timer("test #" + (i + 1))) { solve(); } } else { solve(); } if (isDebug) { out.flush(); } } } in.close(); out.flush(); out.close(); } private void println(Object... objects) { boolean isFirst = true; for (Object o : objects) { if (!isFirst) { out.print(" "); } else { isFirst = false; } out.print(o.toString()); } out.println(); } private int[] nextIntArray(int n) throws IOException { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt(); } return res; } private long[] nextLongArray(int n) throws IOException { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong(); } return res; } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private char[] nextTokenChars() throws IOException { return nextToken().toCharArray(); } private String nextToken() throws IOException { while (line == null || !line.hasMoreTokens()) { line = new StringTokenizer(in.readLine()); } return line.nextToken(); } private static void assertPredicate(boolean p) { if ((isDebug || assertInProd) && !p) { throw new RuntimeException(); } } private static void assertPredicate(boolean p, String message) { if ((isDebug || assertInProd) && !p) { throw new RuntimeException(message); } } private static <T> void assertNotEqual(T unexpected, T actual) { if ((isDebug || assertInProd) && Objects.equals(actual, unexpected)) { throw new RuntimeException("assertNotEqual: " + unexpected + " == " + actual); } } private static <T> void assertEqual(T expected, T actual) { if ((isDebug || assertInProd) && !Objects.equals(actual, expected)) { throw new RuntimeException("assertEqual: " + expected + " != " + actual); } } private static PrintWriter log = null; private static Clock clock = null; private static void log(Object... objects) { log(true, objects); } private static void logNoDelimiter(Object... objects) { log(false, objects); } private static void log(boolean printDelimiter, Object[] objects) { if (isDebug) { StringBuilder sb = new StringBuilder(); sb.append(LocalDateTime.now(clock)).append(" - "); boolean isFirst = true; for (Object o : objects) { if (!isFirst && printDelimiter) { sb.append(" "); } else { isFirst = false; } sb.append(o.toString()); } log.println(sb); log.flush(); } } private static class Timer implements Closeable { private final String label; private final long startTime = isDebug ? System.nanoTime() : 0; public Timer(String label) { this.label = label; } @Override public void close() throws IOException { if (isDebug) { long executionTime = System.nanoTime() - startTime; String fraction = Long.toString(executionTime / 1000 % 1_000_000); logNoDelimiter("Timer[", label, "]: ", executionTime / 1_000_000_000, '.', "00000".substring(0, 6 - fraction.length()), fraction, 's'); } } } private static <T> T timer(String label, Supplier<T> f) throws Exception { if (isDebug) { try (Timer timer = new Timer(label)) { return f.get(); } } else { return f.get(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
046bdb789e10725528c1be04c7df69b3
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
//package kg.my_algorithms.Codeforces; import java.util.*; import java.io.*; // If you know the reason for your existence, then act on it. public class Solution { private static final FastReader fr = new FastReader(); private static final long mod = 1_000_000_007L; public static void main(String[] args) throws IOException { BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringBuilder sb = new StringBuilder(); int testCases = fr.nextInt(); for(int testCase=1;testCase<=testCases;testCase++){ int n = fr.nextInt(); long a = fr.nextLong(); long b = fr.nextLong(); long sum = 0L; long[] arr = new long[n]; for(int i=0;i<n;i++){ long num = fr.nextLong(); arr[i] = num; sum += num; } long min = b*sum; long[] suffix = new long[n]; for(int i=n-2;i>=0;i--){ suffix[i] = suffix[i+1]+arr[i+1]; } for(int i=0;i<n-1;i++){ int rem = n-i-1; min = Math.min(min,(a+b)*arr[i]+b*(suffix[i]-rem*arr[i])); } sb.append(min).append("\n"); } output.write(sb.toString()); output.flush(); } } //Fast Input class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { if(st.hasMoreTokens()){ str = st.nextToken("\n"); } else{ str = br.readLine(); } } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
10b7f9a98f7b1e7160b73db6adc23254
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; public class LineEmpire { public static void main(String[] args) throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); PrintWriter pr=new PrintWriter(System.out); int t=Integer.parseInt(br.readLine()); while(t!=0){ solve(br,pr); t--; } pr.flush(); pr.close(); } public static void solve(BufferedReader br,PrintWriter pr) throws IOException{ String[] temp=br.readLine().split(" "); int n=Integer.parseInt(temp[0]); long a=Integer.parseInt(temp[1]); long b=Integer.parseInt(temp[2]); temp=br.readLine().split(" "); int[] nums=new int[n]; for(int i=0;i<n;i++){ nums[i]=Integer.parseInt(temp[i]); } long[] preSum=new long[n+1]; for(int i=0;i<n;i++){ preSum[i+1]=preSum[i]+nums[i]; } long res=b*preSum[n]; for(int i=0;i<n;i++){ long x=nums[i]; long rightCount=n-i-1; long tempCost=x*b+x*a+((preSum[n]-preSum[i+1])-rightCount*x)*b; res=Math.min(res,tempCost); } pr.println(res); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
94a5032cc39d669356cccbf5320446b4
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
//package com.example.lib; import java.io.BufferedReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedHashMap; import java.util.List; import java.util.PriorityQueue; import java.util.SortedSet; import java.util.TreeMap; import java.util.TreeSet; public class Algorithm { static int ans =0; static boolean found= false; public static void main(String[] rgs) throws IOException { BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(System.in)); // BufferedReader bufferedReader = new BufferedReader(new FileReader("C:\\Users\\USER\\AndroidStudioProjects\\MyApplication\\lib\\src\\main\\java\\com\\example\\lib\\inpu")); StringBuilder stringBuilder = new StringBuilder(); int t = Integer.parseInt(bufferedReader.readLine()); for (int i = 0; i < t; i++) { String [] in= bufferedReader.readLine().split(" "); long conquer= Long.parseLong(in[2]); long move= Long.parseLong(in[1]); String [] s= bufferedReader.readLine().split(" "); int [] input= new int[s.length]; for (int j = 0; j < s.length; j++) { input[j]= Integer.parseInt(s[j]); } long cost=0; int presentcapital= 0; cost= conquer*input[0]; for (int j = 1; j < input.length; j++) { int cur= input[j]; long costofcapitalmovement= move*(input[j-1]-presentcapital); long othercost= conquer*(input[j-1]-presentcapital)*(input.length-j); if(costofcapitalmovement<othercost){ presentcapital=input[j-1]; cost+=costofcapitalmovement; } cost+=conquer*(cur-presentcapital); } stringBuilder.append(cost); stringBuilder.append("\n"); } System.out.println(stringBuilder); } static int []addcol= {-1,0,1,0}; static int []addrow= {0,1,0,-1}; static int size =0; private static int dfs(int row, int col, int[][] grid, boolean[][] visited) { // if() if(visited[row][col])return 0; visited[row][col]=true; int siz=1; int cur= grid[row][col]; for (int i = 0; i < 4; i++) { int anding = 1 <<i; int andrem= anding & cur; if(andrem == 0){ siz+=dfs(row+addrow[i],col+addcol[i],grid,visited); } } return siz; } private static boolean palpossible(int bigsum, int mid, int k, int lengthofletter) { if(mid%2==0){ return bigsum>=(mid/2)*k; }else { int temp= (mid/2)*k; return bigsum>=temp && lengthofletter - (temp*2) >=k; } } private static void gen(List<Integer> powetrs, List<Integer> comb, int sumSoFar, int pos) { if(pos==powetrs.size()){ if(sumSoFar==0)return; comb.add(sumSoFar); return; } gen(powetrs,comb,sumSoFar+powetrs.get(pos),pos+1); gen(powetrs,comb,sumSoFar,pos+1); } private static int gcd(int fir, int sec) { if(fir==0)return sec; if(fir>sec)return gcd(fir%sec,sec); return gcd(sec%fir,fir); } // private static void rec(List<Integer> primes, int position, int productsofar, HashSet<Integer> divisors) { // if(position==primes.size()){ // divisors.add(productsofar); // return; // } // rec(primes,position+1,productsofar*primes.get(position),divisors); // rec(primes,position+1,productsofar,divisors); // // } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
50241970af3be09cb51ff9b027d22bb3
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* * Author: rickytsung(En Chi Tsung) * Date: 2022/7/30 * Problem: CF Round 782 */ import java.util.*; import java.time.*; import java.io.*; import java.math.*; public class Main { public static BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); public static BufferedWriter bw=new BufferedWriter(new OutputStreamWriter(System.out)); public static long ret,ans=0,x,y; public static int reti,rd; public static boolean neg; public static final int mod=998244353,mod2=1_000_000_007,ma=600005; public static Useful us=new Useful(mod); public static int[] A=new int[ma]; public static int[] Aans=new int[ma]; public static int[] B=new int[ma]; public static int[] Bans=new int[ma]; public static void main(String[] args) throws Exception{ //String [] in=br.readLine().split(" "); final int t=readint(); for(int z=0;z<t;z++) { final int n=readint(); final long a=readint(); final long b=readint(); A[0]=0; for(int i=1;i<=n;i++) { A[i]=readint(); } int r=n,l=0; long ans=0; for(int i=1;i<=n;i++) { ans+=A[i]*b; } long cnt=ans; for(int i=1;i<=n;i++) { cnt-=r*b*(A[i]-A[i-1]); cnt+=b*(A[i]-A[i-1]); r--; l++; cnt+=a*(A[i]-A[i-1]); ans=Math.min(cnt,ans); } bw.write(ans+"\n"); } bw.flush(); } public static int readint() throws Exception{ reti=0; neg=false; while(rd<48||rd>57) { rd=br.read(); if(rd=='-') { neg=true; } } while(rd>47&&rd<58) { reti*=10; reti+=(rd&15); rd=br.read(); } if(neg)reti*=-1; return reti; } public static long readlong() throws Exception{ ret=0; neg=false; while(rd<48||rd>57) { rd=br.read(); if(rd=='-') { neg=true; } } while(rd>47&&rd<58) { ret*=10; ret+=(rd&15); rd=br.read(); } if(neg)ret*=-1; return ret; } } /* */ /* */ class Pii{ int x,y,z; Pii(int a,int b,int c){ x=a; y=b; z=c; } @Override public boolean equals(Object o) { if (this==o) return true; if (!(o instanceof Pii)) return false; Pii key = (Pii) o; return x==key.x&&y==key.y; } @Override public int hashCode() { long result=x; result=31*result+y; return (int)(result%998244353); } } class Pll{ long x,y; Pll(long a,long b){ x=a; y=b; } @Override public boolean equals(Object o) { if (this==o) return true; if (!(o instanceof Pll)) return false; Pll key = (Pll) o; return x==key.x&&y==key.y; } @Override public int hashCode() { long result=x; result=31*result+y; return (int)(result%998244353); } } class Useful{ long mod; Useful(long m){mod=m;} void al(ArrayList<ArrayList<Integer>> a,int n){for(int i=0;i<n;i++) {a.add(new ArrayList<Integer>());}} void arr(int[] a,int init) {for(int i=0;i<a.length;i++) {a[i]=init;}} void arr(long[] a,long init) {for(int i=0;i<a.length;i++) {a[i]=init;}} void arr(int[][] a,int init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {a[i][j]=init;}}} void arr(long[][] a,long init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {a[i][j]=init;}}} void arr(int[][][] a,int init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {a[i][j][k]=init;}}}} void arr(long[][][] a,long init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {a[i][j][k]=init;}}}} void arr(int[][][][] a,int init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {Arrays.fill(a[i][j][k],init);}}}} void arr(long[][][][] a,long init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {Arrays.fill(a[i][j][k],init);}}}} long fast(long x,long pw) { if(pw<=0)return 1; if(pw==1)return x; long h=fast(x,pw>>1); if((pw&1)==0) { return h*h%mod; } return h*h%mod*x%mod; } long[][] mul(long[][] a,long[][] b){ long[][] c=new long[a.length][b[0].length]; for(int i=0;i<a.length;i++) { for(int j=0;j<b[0].length;j++) { for(int k=0;k<a[0].length;k++) { c[i][j]+=a[i][k]*b[k][j]; c[i][j]%=mod; } } } return c; } long[][] fast(long[][] x,int pw){ if(pw==1)return x; long[][] h=fast(x,pw>>1); if((pw&1)==0) { return mul(h,h); } else { return mul(mul(h,h),x); } } int gcd(int a,int b) { if(a==0)return b; if(b==0)return a; return gcd(b,a%b); } long gcd(long a,long b) { if(a==0)return b; if(b==0)return a; return gcd(b,a%b); } long lcm(long a, long b){ return a*(b/gcd(a,b)); } double log2(int x) { return (Math.log(x)/Math.log(2)); } double log2(long x) { return (Math.log(x)/Math.log(2)); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
f7d5407ae4d21c15a978ba6e4cce245d
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.Scanner; public class C1659 { public static void main(String[] args) { Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t=0; t<T; t++) { int N = in.nextInt(); long A = in.nextLong(); long B = in.nextLong(); long sum = 0; int[] X = new int[N]; for (int n=0; n<N; n++) { int x = in.nextInt(); sum += x; X[n] = x; } long min = sum*B; for (int n=0; n<N; n++) { // X[n] is the capital at the end long prev = (n == 0) ? 0 : X[n-1]; sum -= (N-n)*(X[n]-prev); long cand = X[n]*(A+B) + sum*B; min = Math.min(min, cand); } System.out.println(min); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
5d6feb204655f2dd2e5f028c9ab6c098
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class cp{ public static void main(String[] args)throws Exception{ BufferedReader br=new BufferedReader(new BufferedReader(new InputStreamReader(System.in))); PrintWriter pw=new PrintWriter(System.out); int t=Integer.parseInt(br.readLine()); while(t-->0){ String[] str=br.readLine().split(" "); int n=Integer.parseInt(str[0]); long a=Long.parseLong(str[1]); long b=Long.parseLong(str[2]); String[] str1=br.readLine().split(" "); long[] arr=new long[n+1]; long[] prefix=new long[n+1]; long min=Long.MAX_VALUE; for(int i=1;i<=n;i++){ arr[i]=Long.parseLong(str1[i-1]); prefix[i]=prefix[i-1]+arr[i]; } for(int i=0;i<=n;i++){ long val=arr[i]*(a+b)+b*(prefix[n]-prefix[i]-arr[i]*(n-i)); if(val<min)min=val; } pw.println(min); } pw.flush(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
10533cdd6a0bc195f55ddd843a96f6c5
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class amd { static int mod=1000000007; static int n; static int m; static List<List<Integer>> g; public static void main(String[] args){ FastScanner s = new FastScanner(); int t=s.nextInt(); while(t-->0) { n=s.nextInt(); int a=s.nextInt(); int b=s.nextInt(); long arr[]= new long[n]; long cap[]= new long[n]; long wic[]= new long[n]; long pop[]= new long[n]; for(int i=0;i<n;i++) { arr[i]=s.nextLong(); cap[i]=arr[i]*a; wic[i]+=(arr[i])+(i==0?0:wic[i-1]); } long ans=(wic[n-1])*b; // System.out.println(ans); for(int i=0; i<n;i++) { long p=(arr[i]*b)+cap[i]; long k=((wic[n-1]-wic[i])-((n-i-1)*arr[i]))*b; //System.out.println(i+" "+wic[i]+" "+cap[i]+" "+((wic[n-1]-wic[i])-((n-i-1)*arr[i]))); //System.out.println((p+k)); ans=Math.min(ans, (p+k)); } System.out.println(ans); } } // Amd static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
fe38ab4daa1c139e4756e26b5bccd0ee
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class CF1 { static FastReader sc=new FastReader(); // static long dp[][]; // static boolean v[][][]; // static int mod=998244353;; // static int mod=1000000007; static long oset[]; static int oset_p; static long mod=1000000007; // static int max; // static int bit[]; //static long fact[]; //static HashMap<Long,Long> mp; //static StringBuffer sb=new StringBuffer(""); //static HashMap<Integer,Integer> map; //static List<Integer>list; //static int m; //static StringBuffer sb=new StringBuffer(); // static PriorityQueue<Integer>heap; //static int dp[]; static PrintWriter out=new PrintWriter(System.out); static int msg[]; public static void main(String[] args) { // StringBuffer sb=new StringBuffer(""); int ttt=1; ttt =i(); int cccc=1; outer :while (ttt-- > 0) { int n=i(); long a=l(); long b=l(); long arr[]=inputL1(n); long suffix[]=new long[n+1]; for(int i=n-1;i>=0;i--) { suffix[i]=suffix[i+1]+arr[i+1]; } long min=suffix[0]*b; long dp[]=new long[n+1]; for(int i=1;i<=n;i++) { dp[i]=dp[i-1]+b*(arr[i]-arr[i-1]); long term=dp[i]+(a*arr[i])+((suffix[i]*b)-(((long)n-(long)i)*arr[i]*b)); // out.print(term+" "); min=min(term,min); } //out.println(); out.println(min); } out.close(); } static boolean helper(int arr[][],int row,int col,int n,int m,boolean dp[][],int sum) { if(row<0||row>=n||col<0||col>=m) return false; if(row==n-1&&col==m-1) { sum+=arr[row][col]; if(sum==0) return true; return false; } if(dp[row][col]) return false; if(helper(arr,row+1,col,n,m,dp,sum+arr[row][col])) return true; if(helper(arr,row,col+1,n,m,dp,sum+arr[row][col])) return true; dp[row][col]=true; return false; } static int setBit(int n) { // int c=0; for(int i=31;i>=0;i--) { if((n&(1<<i))!=0) { return (i+1); } } return 0; } static int dfs(ArrayList<ArrayList<Integer>>adj,boolean visited[],int i,int dp[]) { int ans=0; for(int it:adj.get(i)) { if(!visited[it]) { visited[it]=true; ans+=dfs(adj,visited,it,dp); } } ans++; dp[i]=ans; return ans; } static int findPar(int par[],int x) { if(par[x]==x) return x; return par[x]=findPar(par,par[x]); } static void union(int rank[],int par[],int cost[],int u,int v) { int x=findPar(par,u); int y=findPar(par,v); // out.println(x+" "+y); if(x==y) return; // out.println("S"); if(rank[x]>rank[y]) { par[y]=x; msg[x]=min(msg[x],cost[y]); } else if(rank[y]>rank[x]) { par[x]=y; msg[y]=min(msg[y],cost[y]); } else { par[y]=x; rank[x]++; msg[x]=min(msg[x],cost[y]); // out.println(msg[x]); } } static class Pair implements Comparable<Pair> { int x; int y; // int z; Pair(int x,int y){ this.x=x; this.y=y; // this.z=z; } @Override public int compareTo(Pair o) { if(this.x>o.x) return 1; else if(this.x<o.x) return -1; else { if(this.y>o.y) return 1; else if(this.y<o.y) return -1; else return 0; } } public int hashCode() { final int temp = 14; int ans = 1; ans =x*31+y*13; return ans; } @Override public boolean equals(Object o) { if (this == o) { return true; } if (o == null) { return false; } if (this.getClass() != o.getClass()) { return false; } Pair other = (Pair)o; if (this.x != other.x || this.y!=other.y) { return false; } return true; } // /* FOR TREE MAP PAIR USE */ // public int compareTo(Pair o) { // if (x > o.x) { // return 1; // } // if (x < o.x) { // return -1; // } // if (y > o.y) { // return 1; // } // if (y < o.y) { // return -1; // } // return 0; // } } static ArrayList<Long> gLL() { return new ArrayList<>(); } static ArrayList<Integer> gL() { return new ArrayList<>(); } static StringBuffer gsb() { return new StringBuffer(); } static int find(int A[],int a) { if(A[a]==a) return a; return A[a]=find(A, A[a]); } //static int find(int A[],int a) { // if(A[a]==a) // return a; // return find(A, A[a]); //} //FENWICK TREE static class BIT{ int bit[]; BIT(int n){ bit=new int[n+1]; } int lowbit(int i){ return i&(-i); } int query(int i){ int res=0; while(i>0){ res+=bit[i]; i-=lowbit(i); } return res; } void update(int i,int val){ while(i<bit.length){ bit[i]+=val; i+=lowbit(i); } } } //END static long summation(long A[],int si,int ei) { long ans=0; for(int i=si;i<=ei;i++) ans+=A[i]; return ans; } static void add(long v,Map<Long,Long>mp) { if(!mp.containsKey(v)) { mp.put(v, (long)1); } else { mp.put(v, mp.get(v)+(long)1); } } static void remove(long v,Map<Long,Long>mp) { if(mp.containsKey(v)) { mp.put(v, mp.get(v)-(long)1); if(mp.get(v)==0) mp.remove(v); } } public static int upper(long A[],long k,int si,int ei) { int l=si; int u=ei; int ans=-1; while(l<=u) { int mid=(l+u)/2; if(A[mid]<=k) { ans=mid; l=mid+1; } else { u=mid-1; } } return ans; } public static int lower(long A[],long k,int si,int ei) { int l=si; int u=ei; int ans=-1; while(l<=u) { int mid=(l+u)/2; if(A[mid]<=k) { l=mid+1; } else { ans=mid; u=mid-1; } } return ans; } static int[] copy(int A[]) { int B[]=new int[A.length]; for(int i=0;i<A.length;i++) { B[i]=A[i]; } return B; } static long[] copy(long A[]) { long B[]=new long[A.length]; for(int i=0;i<A.length;i++) { B[i]=A[i]; } return B; } static int[] input(int n) { int A[]=new int[n]; for(int i=0;i<n;i++) { A[i]=sc.nextInt(); } return A; } static long[] inputL(int n) { long A[]=new long[n]; for(int i=0;i<n;i++) { A[i]=sc.nextLong(); } return A; } static String[] inputS(int n) { String A[]=new String[n]; for(int i=0;i<n;i++) { A[i]=sc.next(); } return A; } static long sum(int A[]) { long sum=0; for(int i : A) { sum+=i; } return sum; } static long sum(long A[]) { long sum=0; for(long i : A) { sum+=i; } return sum; } static void reverse(long A[]) { int n=A.length; long B[]=new long[n]; for(int i=0;i<n;i++) { B[i]=A[n-i-1]; } for(int i=0;i<n;i++) A[i]=B[i]; } static void reverse(int A[]) { int n=A.length; int B[]=new int[n]; for(int i=0;i<n;i++) { B[i]=A[n-i-1]; } for(int i=0;i<n;i++) A[i]=B[i]; } static long[] inputL1(int n) { long arr[]=new long[n+1]; for(int i=1;i<=n;i++) arr[i]=l(); return arr; } static int[] input1(int n) { int arr[]=new int[n+1]; for(int i=1;i<=n;i++) arr[i]=i(); return arr; } static void input(int A[],int B[]) { for(int i=0;i<A.length;i++) { A[i]=sc.nextInt(); B[i]=sc.nextInt(); } } static long[][] inputL(int n,int m){ long A[][]=new long[n][m]; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { A[i][j]=l(); } } return A; } static int[][] input(int n,int m){ int A[][]=new int[n][m]; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { A[i][j]=i(); } } return A; } static char[][] charinput(int n,int m){ char A[][]=new char[n][m]; for(int i=0;i<n;i++) { String s=s(); for(int j=0;j<m;j++) { A[i][j]=s.charAt(j); } } return A; } static int nextPowerOf2(int n) { if(n==0) return 1; n--; n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; n++; return n; } static int highestPowerof2(int x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x ^ (x >> 1); } static long highestPowerof2(long x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x ^ (x >> 1); } static int max(int A[]) { int max=Integer.MIN_VALUE; for(int i=0;i<A.length;i++) { max=Math.max(max, A[i]); } return max; } static int min(int A[]) { int min=Integer.MAX_VALUE; for(int i=0;i<A.length;i++) { min=Math.min(min, A[i]); } return min; } static long max(long A[]) { long max=Long.MIN_VALUE; for(int i=0;i<A.length;i++) { max=Math.max(max, A[i]); } return max; } static long min(long A[]) { long min=Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min=Math.min(min, A[i]); } return min; } static long [] prefix(long A[]) { long p[]=new long[A.length]; p[0]=A[0]; for(int i=1;i<A.length;i++) p[i]=p[i-1]+A[i]; return p; } static long [] prefix(int A[]) { long p[]=new long[A.length]; p[0]=A[0]; for(int i=1;i<A.length;i++) p[i]=p[i-1]+A[i]; return p; } static long [] suffix(long A[]) { long p[]=new long[A.length]; p[A.length-1]=A[A.length-1]; for(int i=A.length-2;i>=0;i--) p[i]=p[i+1]+A[i]; return p; } static long [] suffix(int A[]) { long p[]=new long[A.length]; p[A.length-1]=A[A.length-1]; for(int i=A.length-2;i>=0;i--) p[i]=p[i+1]+A[i]; return p; } static void fill(int dp[]) { Arrays.fill(dp, -1); } static void fill(int dp[][]) { for(int i=0;i<dp.length;i++) Arrays.fill(dp[i], -1); } static void fill(int dp[][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { Arrays.fill(dp[i][j],-1); } } } static void fill(int dp[][][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { for(int k=0;k<dp[0][0].length;k++) { Arrays.fill(dp[i][j][k],-1); } } } } static void fill(long dp[]) { Arrays.fill(dp, -1); } static void fill(long dp[][]) { for(int i=0;i<dp.length;i++) Arrays.fill(dp[i], -1); } static void fill(long dp[][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { Arrays.fill(dp[i][j],-1); } } } static void fill(long dp[][][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { for(int k=0;k<dp[0][0].length;k++) { Arrays.fill(dp[i][j][k],-1); } } } } static int min(int a,int b) { return Math.min(a, b); } static int min(int a,int b,int c) { return Math.min(a, Math.min(b, c)); } static int min(int a,int b,int c,int d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static int max(int a,int b) { return Math.max(a, b); } static int max(int a,int b,int c) { return Math.max(a, Math.max(b, c)); } static int max(int a,int b,int c,int d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long min(long a,long b) { return Math.min(a, b); } static long min(long a,long b,long c) { return Math.min(a, Math.min(b, c)); } static long min(long a,long b,long c,long d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static long max(long a,long b) { return Math.max(a, b); } static long max(long a,long b,long c) { return Math.max(a, Math.max(b, c)); } static long max(long a,long b,long c,long d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long power(long x, long y, long p) { if(y==0) return 1; if(x==0) return 0; long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long power(long x, long y) { if(y==0) return 1; if(x==0) return 0; long res = 1; while (y > 0) { if (y % 2 == 1) res = (res * x); y = y >> 1; x = (x * x); } return res; } static void dln(String s) { out.println(s); } static void d(String s) { out.print(s); } static void print(int A[]) { for(int i : A) { out.print(i+" "); } out.println(); } static void print(long A[]) { for(long i : A) { System.out.print(i+" "); } System.out.println(); } static long mod(long x) { return ((x%mod + mod)%mod); } static String reverse(String s) { StringBuffer p=new StringBuffer(s); p.reverse(); return p.toString(); } static int i() { return sc.nextInt(); } static String s() { return sc.next(); } static long l() { return sc.nextLong(); } static void sort(int[] A){ int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i){ int tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static void sort(long[] A){ int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i){ long tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static String sort(String s) { Character ch[]=new Character[s.length()]; for(int i=0;i<s.length();i++) { ch[i]=s.charAt(i); } Arrays.sort(ch); StringBuffer st=new StringBuffer(""); for(int i=0;i<s.length();i++) { st.append(ch[i]); } return st.toString(); } static HashMap<Integer,Long> hash(int A[]){ HashMap<Integer,Long> map=new HashMap<Integer, Long>(); for(int i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+(long)1); } else { map.put(i, (long)1); } } return map; } static HashMap<Long,Long> hash(long A[]){ HashMap<Long,Long> map=new HashMap<Long, Long>(); for(long i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+(long)1); } else { map.put(i, (long)1); } } return map; } static TreeMap<Integer,Integer> tree(int A[]){ TreeMap<Integer,Integer> map=new TreeMap<Integer, Integer>(); for(int i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static TreeMap<Long,Integer> tree(long A[]){ TreeMap<Long,Integer> map=new TreeMap<Long, Integer>(); for(long i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static boolean prime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static boolean prime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
b6e4154ab501c56fb37cdd6657cb4b77
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class codeforces1659C { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int numCases = Integer.parseInt(br.readLine()); for (int rep = 0; rep<numCases;rep++) { StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int a = Integer.parseInt(st.nextToken()); int b = Integer.parseInt(st.nextToken()); long [] kingdoms= new long[n+1]; kingdoms[0] = 0; long [] arr = new long[n]; st = new StringTokenizer(br.readLine()); for (int i = 0; i<n;i++) { arr[i] = Long.parseLong(st.nextToken()); kingdoms[i+1] = arr[i]+kingdoms[i]; } long currCapital = 0; long cost = 0; for (int i = 0;i<n;i++) { cost+=(arr[i]-currCapital)*b; //change the capital if it decreases the cost of adding the rest //System.out.println(((kingdoms[n]-kingdoms[i+1]-((n-i-1)*currCapital))*b)+" "+ (a*(arr[i]-currCapital)+((kingdoms[n]-kingdoms[i+1]-((n-i-1)*arr[i]))*b))); if (((kingdoms[n]-kingdoms[i+1]-((n-i-1)*currCapital))*b)>(a*(arr[i]-currCapital)+((kingdoms[n]-kingdoms[i+1]-((n-i-1)*arr[i]))*b))) { //System.out.println("hit"); cost+=a*(arr[i]-currCapital); currCapital = arr[i]; } //System.out.println(cost+" "+arr[i]+" "+currCapital+" "+b); //just move on because changing the capital isn't optimal } //cost+=b*(arr[n-1]-currCapital); System.out.println(cost); //System.out.println(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
ad7ba0966a43a2d6435bfb1216212e1a
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class Main { public static void main(String args[]) { FastScanner input = new FastScanner(); int tc = input.nextInt(); work: while (tc-- > 0) { int n = input.nextInt(); int aa =input.nextInt(); int b =input.nextInt(); long a[]= new long[n+1]; long dif[] = new long[n+1]; long prefix[] = new long[n+1]; long suffix[] = new long[n+2]; for (int i = 1; i <=n; i++) { a[i] = input.nextInt(); } // for (int i = 1; i <=n; i++) { // if(i==1) // { // dif[i] = a[i]; // } // else // { // dif[i]= a[i]-a[i-1]; // } // } // for (int i = 1; i <=n; i++) { // if(i==1) // { // prefix[i] = dif[i]; // } // else // { // prefix[i] = dif[i]; // prefix[i]+=prefix[i-1]; // // } // } // System.out.println(Arrays.toString(dif)); for (int i = n; i>=1; i--) { if(i==n) { suffix[i] = a[i]; } else { suffix[i] = a[i]; suffix[i]+=suffix[i+1]; } } // System.out.println(Arrays.toString(suffix)); long ans = suffix[1]*b; for (int i = 1; i <=n; i++) { ans = Math.min(ans,a[i]*(aa+b)+(suffix[i+1]-((n-i)*a[i]))*b); } System.out.println(ans); } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
15c9c8c0fe37c7925c527d89bd754147
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class C { public static void main(String[] args) { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = in.nextInt(); for (int tt = 0; tt < t; tt++) { int n = in.nextInt(); long a = in.nextLong(), b = in.nextLong(); long[] arr = new long[n + 1]; for (int i = 1; i <= n; i++) arr[i] = in.nextLong(); pw.println(solve(arr, n, a, b)); } pw.close(); } static long solve(long[] arr, int n, long a, long b) { long res = Long.MAX_VALUE; long[] d = new long[n + 1]; for (int i = 1; i <= n; i++) { d[i] = d[i - 1] + (a + b) * (arr[i] - arr[i - 1]); } long temp = 0; for (int i = n - 1; i >= 0; i--) { temp += (n - i) * (arr[i + 1] - arr[i]) * b; res = Math.min(res, d[i] + temp); } return res; } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
041147fa33e8b3e73017433606ee78ff
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class C { public static void main(String[] args) { Scanner in = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = in.nextInt(); for (int tt = 0; tt < t; tt++) { int n = in.nextInt(); long a = in.nextLong(), b = in.nextLong(); long[] arr = new long[n + 1]; for (int i = 1; i <= n; i++) arr[i] = in.nextLong(); pw.println(solve(arr, n, a, b)); } pw.close(); } static long solve(long[] arr, int n, long a, long b) { long res = Long.MAX_VALUE; long[] d = new long[n + 1]; for (int i = 1; i <= n; i++) { d[i] = d[i - 1] + (a + b) * (arr[i] - arr[i - 1]); } long temp = 0; for (int i = n - 1; i >= 0; i--) { temp += (n - i) * (arr[i + 1] - arr[i]) * b; res = Math.min(res, d[i] + temp); } return res; } static void debug(Object... obj) { System.err.println(Arrays.deepToString(obj)); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
a5f9a14829cd963b10b37c1ec3885384
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); // int a = 1; int t; t = in.nextInt(); //t = 1; while (t > 0) { // out.print("Case #"+(a++)+": "); solver.call(in,out); t--; } out.close(); } static class TaskA { public void call(InputReader in, PrintWriter out) { int n; long a, b; n = in.nextInt(); a = in.nextLong(); b = in.nextLong(); int[] arr = new int[n]; long[] prefix = new long[n]; for (int i = 0; i < n; i++) { arr[i] = in.nextInt(); } for (int i = 0; i < n; i++) { if(i == 0){ prefix[i] = arr[i] * (a + b); } else prefix[i] = (arr[i] - arr[i - 1]) * (b + a) + prefix[i - 1]; } long ans = prefix[n - 1]; long ans1 = 0, ans2 = 0; for (int i = n - 1; i >= 0; i--) { ans1 += b*arr[i]; ans2++; if(i == 0){ ans= Math.min(ans, ans1); } else { ans = Math.min(ans, ans1 - ans2 * (arr[i - 1]) * b + prefix[i - 1]); } } out.println(ans); } } static int gcd(int a, int b ) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class answer implements Comparable<answer>{ int a, b; long c; public answer(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public answer(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer o) { return Integer.compare(this.a, o.a); } } static class answer1 implements Comparable<answer1>{ int a, b, c; public answer1(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public answer1(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer1 o) { if(this.b == o.b){ return Integer.compare(this.a, o.a); } return Integer.compare(this.b, o.b); } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (Long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static final Random random=new Random(); static void shuffleSort(int[] a) { int n = a.length; for (int i=0; i<n; i++) { int oi= random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
1f149d12ac32b44ae8f57be758954f60
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; public class c_1659 { public static void main(String[] args) throws Exception { // TODO Auto-generated method stub FastScanner in = new FastScanner(System.in); OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); int T = in.nextInt(); for(int aa = 0; aa < T; aa++) { int n = in.nextInt(); long a = in.nextLong(); long b = in.nextLong(); long c [] = new long [n]; long sum = 0; for(int i = 0; i < n; i++) { c[i] = in.nextLong(); sum = sum + b*c[i]; } long last = 0; for(int i = 0; i < n; i++) { long dif = (n - i - 1)*(c[i] - last)*b - (c[i] - last)*a; if(dif > 0) { sum -= dif; last = c[i]; } } out.println(sum); } out.close(); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); st = new StringTokenizer(""); } public FastScanner(String fileName) throws Exception { br = new BufferedReader(new FileReader(new File(fileName))); st = new StringTokenizer(""); } public String next() throws Exception { while (!st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(next()); } public long nextLong() throws Exception { return Long.parseLong(next()); } public Double nextDouble() throws Exception { return Double.parseDouble(next()); } public String nextLine() throws Exception { if (st.hasMoreTokens()) { StringBuilder str = new StringBuilder(); boolean first = true; while (st.hasMoreTokens()) { if (first) { first = false; } else { str.append(" "); } str.append(st.nextToken()); } return str.toString(); } else { return br.readLine(); } } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
384e3430be0ca88b938b6266c5708bc6
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static class Pair implements Comparable < Pair > { int d; int i; Pair(int d, int i) { this.d = d; this.i = i; } public int compareTo(Pair o) { if (this.d == o.d) return this.i - o.i; if (this.d < o.d) return -1; else return 1; } } public static class SegmentTree { long[] st; long[] lazy; int n; SegmentTree(long[] arr, int n) { this.n = n; st = new long[4 * n]; lazy = new long[4 * n]; construct(arr, 0, n - 1, 0); } public long construct(long[] arr, int si, int ei, int node) { if (si == ei) { st[node] = arr[si]; return arr[si]; } int mid = (si + ei) / 2; long left = construct(arr, si, mid, 2 * node + 1); long right = construct(arr, mid + 1, ei, 2 * node + 2); st[node] = left + right; return st[node]; } public long get(int l, int r) { return get(0, n - 1, l, r, 0); } public long get(int si, int ei, int l, int r, int node) { if (r < si || l > ei) return 0; if (lazy[node] != 0) { st[node] += lazy[node] * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (l <= si && r >= ei) return st[node]; int mid = (si + ei) / 2; return get(si, mid, l, r, 2 * node + 1) + get(mid + 1, ei, l, r, 2 * node + 2); } public void update(int index, int value) { update(0, n - 1, index, 0, value); } public void update(int si, int ei, int index, int node, int val) { if (si == ei) { st[node] = val; return; } int mid = (si + ei) / 2; if (index <= mid) { update(si, mid, index, 2 * node + 1, val); } else { update(mid + 1, ei, index, 2 * node + 2, val); } st[node] = st[2 * node + 1] + st[2 * node + 2]; } public void rangeUpdate(int l, int r, int val) { rangeUpdate(0, n - 1, l, r, 0, val); } public void rangeUpdate(int si, int ei, int l, int r, int node, int val) { if (r < si || l > ei) return; if (lazy[node] != 0) { st[node] += lazy[node] * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += lazy[node]; lazy[2 * node + 2] += lazy[node]; } lazy[node] = 0; } if (l <= si && r >= ei) { st[node] += val * (ei - si + 1); if (si != ei) { lazy[2 * node + 1] += val; lazy[2 * node + 2] += val; } return; } int mid = (si + ei) / 2; rangeUpdate(si, mid, l, r, 2 * node + 1, val); rangeUpdate(mid + 1, ei, l, r, 2 * node + 2, val); st[node] = st[2 * node + 1] + st[2 * node + 2]; } } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream( new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') { if (cnt != 0) { break; } else { continue; } } buf[cnt++] = (byte)c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { try { System.setIn(new FileInputStream(new File("input.txt"))); System.setOut(new PrintStream(new File("output.txt"))); } catch (Exception e) { } } Reader sc = new Reader(); int tc = sc.nextInt(); StringBuilder sb = new StringBuilder(); while (tc-- > 0) { int n = sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = sc.nextLong(); long[] sum = new long[n]; for (int i = n - 1; i >= 0; i--) { if (i == n - 1) sum[i] = arr[i]; else sum[i] = sum[i + 1] + arr[i]; } long ans = arr[n - 1] * (a + b); for (int i = 0; i < n - 1; i++) { ans = Math.min(ans, arr[i] * (a + b) + (sum[i + 1] - (arr[i] * (n - i - 1))) * b); } sb.append(Math.min(ans, sum[0] * b)); sb.append("\n"); } System.out.println(sb); } public static int log2(long N) { // calculate log2 N indirectly // using log() method int result = (int)Math.ceil((Math.log(N) / Math.log(2))); return result; } static long power(long x, long y, long p) { long res = 1; // Initialize result // Update x if it is more // than or equal to p x = x % p; while (y > 0) { // If y is odd, multiply // x with the result if ((y & 1) > 0) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } public static int countBit(long n) { int count = 0; while (n > 0) { count += (n & 1); n /= 2; } return count; } public static int get(int[] dsu, int x) { if (dsu[x] == x) return x; int k = get(dsu, dsu[x]); dsu[x] = k; return k; } static int gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return gcd(a - b, b); return gcd(a, b - a); } public static int Xor(int n) { if (n % 4 == 0) return n; // If n%4 gives remainder 1 if (n % 4 == 1) return 1; // If n%4 gives remainder 2 if (n % 4 == 2) return n + 1; // If n%4 gives remainder 3 return 0; } public static long pow(long a, long b, long mod) { long res = 1; while (b > 0) { if ((b & 1) > 0) res = (res * a) % mod; b = b >> 1; a = ((a % mod) * (a % mod)) % mod; } return (res % mod + mod) % mod; } public static double digit(long num) { return Math.floor(Math.log10(num) + 1); } static int upperBound(ArrayList<Long> arr, long key) { int mid, N = arr.size(); // Initialise starting index and // ending index int low = 0; int high = N; // Till low is less than high while (low < high && low != N) { // Find the index of the middle element mid = low + (high - low) / 2; // If key is greater than or equal // to arr[mid], then find in // right subarray if (key >= arr.get(mid)) { low = mid + 1; } // If key is less than arr[mid] // then find in left subarray else { high = mid; } } // If key is greater than last element which is // array[n-1] then upper bound // does not exists in the array return low; } static int lowerBound(ArrayList<Long> array, long key) { // Initialize starting index and // ending index int low = 0, high = array.size(); int mid; // Till high does not crosses low while (low < high) { // Find the index of the middle element mid = low + (high - low) / 2; // If key is less than or equal // to array[mid], then find in // left subarray if (key <= array.get(mid)) { high = mid; } // If key is greater than array[mid], // then find in right subarray else { low = mid + 1; } } // If key is greater than last element which is // array[n-1] then lower bound // does not exists in the array if (low < array.size() && array.get(low) < key) { low++; } // Returning the lower_bound index return low; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
6b0cf9034ca72d262b725cbf5d9640b8
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; /** * # * * @author pttrung */ public class C_Round_782_Div2 { public static int MOD = 998244353; public static void main(String[] args) throws FileNotFoundException { // PrintWriter out = new PrintWriter(new FileOutputStream(new File( // "output.txt"))); PrintWriter out = new PrintWriter(System.out); Scanner in = new Scanner(); int Q = in.nextInt(); for (int z = 0; z < Q; z++) { int n = in.nextInt(); long a = in.nextInt(); long b = in.nextInt(); long[] data = new long[n]; long total = 0; for (int i = 0; i < n; i++) { data[i] = in.nextInt(); total += data[i]; } long re = total * b; long pos = 0; long cur = 0; for (int i = 0; i < n; i++) { total -= data[i]; cur += b * (data[i] - pos); long tmp = cur + b * (total - ((n - i - 1) * data[i])) + a * (data[i] - pos); //System.out.println(i + " " + cur + " " + tmp); if (tmp <= re) { re = tmp; cur += a * (data[i] - pos); pos = data[i]; } } out.println(re); } out.close(); } static int abs(int a) { return a < 0 ? -a : a; } public static int[] KMP(String val) { int i = 0; int j = -1; int[] result = new int[val.length() + 1]; result[0] = -1; while (i < val.length()) { while (j >= 0 && val.charAt(j) != val.charAt(i)) { j = result[j]; } j++; i++; result[i] = j; } return result; } public static boolean nextPer(int[] data) { int i = data.length - 1; while (i > 0 && data[i] < data[i - 1]) { i--; } if (i == 0) { return false; } int j = data.length - 1; while (data[j] < data[i - 1]) { j--; } int temp = data[i - 1]; data[i - 1] = data[j]; data[j] = temp; Arrays.sort(data, i, data.length); return true; } public static int digit(long n) { int result = 0; while (n > 0) { n /= 10; result++; } return result; } public static double dist(long a, long b, long x, long y) { double val = (b - a) * (b - a) + (x - y) * (x - y); val = Math.sqrt(val); double other = x * x + a * a; other = Math.sqrt(other); return val + other; } public static class Point { int x; int y; public Point(int start, int end) { this.x = start; this.y = end; } public String toString() { return x + " " + y; } } public static class FT { long[] data; FT(int n) { data = new long[n]; } public void update(int index, long value) { while (index < data.length) { data[index] += value; index += (index & (-index)); } } public long get(int index) { long result = 0; while (index > 0) { result += data[index]; index -= (index & (-index)); } return result; } } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } public static long pow(long a, int b) { if (b == 0) { return 1; } if (b == 1) { return a; } long val = pow(a, b / 2); if (b % 2 == 0) { return (val * val); } else { return (val * ((val * a))); } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() throws FileNotFoundException { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); //br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt")))); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
2ff4878c67d1b799e7d333dbc891570b
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.PriorityQueue; import java.util.StringTokenizer; public class C { public static void main(String[]args) throws IOException { Scanner sc=new Scanner(System.in); PrintWriter out=new PrintWriter(System.out); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(),a=sc.nextInt(),b=sc.nextInt(); int[]arr=new int[n+1]; for(int i=1;i<=n;i++)arr[i]=sc.nextInt(); long ans=0l; int j=0; ans+=1l*b*arr[1]; for(int i=2;i<=n;i++) { if(a<1l*b*(n-i+1)) { ans+=1l*a*(arr[i-1]-arr[j]); j=i-1; } ans+=1l*b*(arr[i]-arr[j]); } out.println(ans); } out.close(); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s){ br = new BufferedReader(new InputStreamReader(s));} public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public boolean hasNext() {return st.hasMoreTokens();} public int nextInt() throws IOException {return Integer.parseInt(next());} public double nextDouble() throws IOException {return Double.parseDouble(next());} public long nextLong() throws IOException {return Long.parseLong(next());} public String nextLine() throws IOException {return br.readLine();} public boolean ready() throws IOException {return br.ready(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output