exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
b5e5958b4ab9de244dadc4ccc1fa7c95
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0<x_1<x_2<\ldots<x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; import java.util.concurrent.ThreadLocalRandom; public class c731{ public static void main(String[] args) throws IOException{ BufferedWriter out = new BufferedWriter( new OutputStreamWriter(System.out)); BufferedReader br = new BufferedReader( new InputStreamReader(System.in)); PrintWriter pt = new PrintWriter(System.out); FastReader sc = new FastReader(); int t = sc.nextInt(); for(int o = 0; o<t;o++) { int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); long[] arr = new long[n+1]; for(int i = 1; i<=n;i++) { arr[i] = sc.nextLong(); } long[] dp = new long[n+1]; int v = 1; for(int i = n-1 ; i>=0;i--) { dp[i] = dp[i+1] + v *(arr[i+1] - arr[i])* b; v++; } long ans = dp[0]; for(int i = 1 ; i<=n;i++ ) { long val = arr[i]*(a+b) + dp[i]; ans = Math.min(ans, val); } System.out.println(ans); } } //------------------------------------------------------------------------------------------------------------------------------------------------ public static boolean check(int[] arr , int n , int v , int l ) { int x = v/2; int y = v/2; // System.out.println(x + " " + y); if(v%2 == 1 ) { x++; } for(int i = 0 ; i<n;i++) { int d = l - arr[i]; int c = Math.min(d/2, y); y -= c; arr[i] -= c*2; if(arr[i] > x) { return false; } x -= arr[i]; } return true; } public static int cnt_set(long x) { long v = 1l; int c =0; int f = 0; while(v<=x) { if((v&x)!=0) { c++; } v = v<<1; } return c; } public static int lis(int[] arr,int[] dp) { int n = arr.length; ArrayList<Integer> al = new ArrayList<Integer>(); al.add(arr[0]); dp[0]= 1; for(int i = 1 ; i<n;i++) { int x = al.get(al.size()-1); if(arr[i]>x) { al.add(arr[i]); }else { int v = lower_bound(al, 0, al.size(), arr[i]); // System.out.println(v); al.set(v, arr[i]); } dp[i] = al.size(); } //return al.size(); return al.size(); } public static int lis2(int[] arr,int[] dp) { int n = arr.length; ArrayList<Integer> al = new ArrayList<Integer>(); al.add(-arr[n-1]); dp[n-1] = 1; // System.out.println(al); for(int i = n-2 ; i>=0;i--) { int x = al.get(al.size()-1); // System.out.println(-arr[i] + " " + i + " " + x); if((-arr[i])>x) { al.add(-arr[i]); }else { int v = lower_bound(al, 0, al.size(), -arr[i]); // System.out.println(v); al.set(v, -arr[i]); } dp[i] = al.size(); } //return al.size(); return al.size(); } static int cntDivisors(int n){ int cnt = 0; for (int i=1; i<=Math.sqrt(n); i++) { if (n%i==0) { if (n/i == i) cnt++; else cnt+=2; } } return cnt; } public static long power(long x, long y, long p){ long res = 1; x = x % p; if (x == 0) return 0; while (y > 0){ if ((y & 1) != 0) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } public static long ncr(long[] fac, int n , int r , long m) { if(r>n) { return 0; } return fac[n]*(modInverse(fac[r], m))%m *(modInverse(fac[n-r], m))%m; } public static int lower_bound(ArrayList<Integer> arr,int lo , int hi, int k) { int s=lo; int e=hi; while (s !=e) { int mid = s+e>>1; if (arr.get(mid) <k) { s=mid+1; } else { e=mid; } } if(s==arr.size()) { return -1; } return s; } public static int upper_bound(ArrayList<Integer> arr,int lo , int hi, int k) { int s=lo; int e=hi; while (s !=e) { int mid = s+e>>1; if (arr.get(mid) <=k) { s=mid+1; } else { e=mid; } } if(s==arr.size()) { return -1; } return s; } // ----------------------------------------------------------------------------------------------------------------------------------------------- public static long gcd(long a, long b){ if (a == 0) return b; return gcd(b % a, a); } //-------------------------------------------------------------------------------------------------------------------------------------------------------- public static long modInverse(long a, long m){ long m0 = m; long y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient long q = a / m; long t = m; // m is remainder now, process // same as Euclid's algo m = a % m; a = t; t = y; // Update x and y y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } //_________________________________________________________________________________________________________________________________________________________________ // private static int[] parent; // private static int[] size; public static int find(int[] parent, int u) { while(u != parent[u]) { parent[u] = parent[parent[u]]; u = parent[u]; } return u; } private static void union(int[] parent,int[] size,int u, int v) { int rootU = find(parent,u); int rootV = find(parent,v); if(rootU == rootV) { return; } if(size[rootU] < size[rootV]) { parent[rootU] = rootV; size[rootV] += size[rootU]; } else { parent[rootV] = rootU; size[rootU] += size[rootV]; } } //----------------------------------------------------------------------------------------------------------------------------------- //segment tree //for finding minimum in range public static void build(int [] seg,int []arr,int idx, int lo , int hi) { if(lo == hi) { seg[idx] = arr[lo]; return; } int mid = (lo + hi)/2; build(seg,arr,2*idx+1, lo, mid); build(seg,arr,idx*2+2, mid +1, hi); // seg[idx] = Math.min(seg[2*idx+1],seg[2*idx+2]); // seg[idx] = seg[idx*2+1]+ seg[idx*2+2]; // seg[idx] = Math.min(seg[idx*2+1], seg[idx*2+2]); seg[idx] = seg[idx*2+1] * seg[idx*2+2]; } //for finding minimum in range public static int query(int[]seg,int idx , int lo , int hi , int l , int r) { if(lo>=l && hi<=r) { return seg[idx]; } if(hi<l || lo>r) { return 1; } int mid = (lo + hi)/2; int left = query(seg,idx*2 +1, lo, mid, l, r); int right = query(seg,idx*2 + 2, mid + 1, hi, l, r); // return Math.min(left, right); //return gcd(left, right); // return Math.min(left, right); return left * right; } // // for sum // //public static void update(int[]seg,int idx, int lo , int hi , int node , int val) { // if(lo == hi) { // seg[idx] += val; // }else { //int mid = (lo + hi )/2; //if(node<=mid && node>=lo) { // update(seg, idx * 2 +1, lo, mid, node, val); //}else { // update(seg, idx*2 + 2, mid + 1, hi, node, val); //} //seg[idx] = seg[idx*2 + 1] + seg[idx*2 + 2]; // //} //} //--------------------------------------------------------------------------------------------------------------------------------------- // //static void shuffleArray(long[] ar) //{ // // If running on Java 6 or older, use `new Random()` on RHS here // Random rnd = ThreadLocalRandom.current(); // for (int i = ar.length - 1; i > 0; i--) // { // int index = rnd.nextInt(i + 1); // // Simple swap // int a = ar[index]; // ar[index] = ar[i]; // ar[i] = a; // } //} // static void shuffleArray(coup[] ar) // { // // If running on Java 6 or older, use `new Random()` on RHS here // Random rnd = ThreadLocalRandom.current(); // for (int i = ar.length - 1; i > 0; i--) // { // int index = rnd.nextInt(i + 1); // // Simple swap // coup a = ar[index]; // ar[index] = ar[i]; // ar[i] = a; // } // } //----------------------------------------------------------------------------------------------------------------------------------------------------------- } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //------------------------------------------------------------------------------------------------------------------------------------------------------------ //----------------------------------------------------------------------------------------------------------------------------------------------------------- class coup{ int a; int b; public coup(int a , int b) { this.a = a; this.b = b; } } class tripp{ int a; int b; double c; public tripp(int a , int b, double c) { this.a = a; this.b = b; this.c = c; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
52c66b9b0aa67e91fe2a985dc8bf6556
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class c { static BufferedReader bf; static PrintWriter out; public static void main (String[] args)throws IOException { bf = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); int t= nextInt(); while(t-- > 0){ solve(); } } public static void solve()throws IOException{ String[]temp = bf.readLine().split(" "); long n = toLong(temp[0]); long a = toLong(temp[1]); long b = toLong(temp[2]); long []arr = nextLongArray((int)n); if(n == 1){ println(arr[0]*b); return; } long count = 0; long cur = 0; for(int i =0;i<n;i++){ count += (Math.abs(arr[i] - cur)*b); if(Math.abs(arr[i] - cur)*a <= ((n-1)-i) * b * (Math.abs(arr[i] - cur))){ count += Math.abs(arr[i] - cur)*a; cur = arr[i]; } } println(count); } // code for input public static void print(String s ){ System.out.print(s); } public static void print(int num ){ System.out.print(num); } public static void print(long num ){ System.out.print(num); } public static void println(String s){ System.out.println(s); } public static void println(int num){ System.out.println(num); } public static void println(long num){ System.out.println(num); } public static void println(){ System.out.println(); } public static int toInt(String s){ return Integer.parseInt(s); } public static long toLong(String s){ return Long.parseLong(s); } public static String[] nextStringArray()throws IOException{ return bf.readLine().split(" "); } public static int nextInt()throws IOException{ return Integer.parseInt(bf.readLine()); } public static long nextLong()throws IOException{ return Long.parseLong(bf.readLine()); } public static String nextString()throws IOException{ return bf.readLine(); } public static int[] nextIntArray(int n)throws IOException{ String[]str = bf.readLine().split(" "); int[]arr = new int[n]; for(int i =0;i<n;i++){ arr[i] = Integer.parseInt(str[i]); } return arr; } public static long[] nextLongArray(int n)throws IOException{ String[]str = bf.readLine().split(" "); long[]arr = new long[n]; for(int i =0;i<n;i++){ arr[i] = Long.parseLong(str[i]); } return arr; } public static int[][] newIntMatrix(int r,int c)throws IOException{ int[][]arr = new int[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Integer.parseInt(str[j]); } } return arr; } public static long[][] newLongMatrix(int r,int c)throws IOException{ long[][]arr = new long[r][c]; for(int i =0;i<r;i++){ String[]str = bf.readLine().split(" "); for(int j =0;j<c;j++){ arr[i][j] = Long.parseLong(str[j]); } } return arr; } //someuseFull functions to use public static long gcd(long a,long b){ if(b == 0)return a; return gcd(b,a%b); } public static int gcd(int a,int b){ if(b == 0)return a; return gcd(b,a%b); } public static long lcm(long a,long b){ return (a*b)/(gcd(a,b)); } } // if a problem is related to binary string it could also be related to parenthesis // try to use binary search in the question it might work // try sorting // try to think in opposite direction of question it might work in your way // if a problem is related to maths try to relate some of the continuous subarray with variables like - > a+b+c+ or a,b,c,d in general // gcd(1.p1,2.p2,3.p3,4.p4....n.pn) cannot be greater than 2 it has been proved
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d266fda914ee5f4b26d96a471559b09d
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.IOException; public class Contest_yandexA{ //static final int MAXN = (int)1e6; public static void main(String[] args) throws IOException{ Scanner input = new Scanner(System.in); /*int n = input.nextInt(); int k = input.nextInt(); k = k%4; int[] a = new int[n]; for(int i = 0;i<n;i++){ a[i] = input.nextInt(); } int[] count = new int[n]; int sum = 0; for(int tt = 0;tt<k;tt++){ for(int i = 0;i<n;i++){ count[a[i]-1]++; } for(int i = 0;i<n;i++){ sum+= count[i]; } for(int i = 0;i<n;i++){ a[i] = sum; sum-= count[i]; } } for(int i = 0;i<n;i++){ System.out.print(a[i] + " "); }*/ int t = input.nextInt(); for(int tt = 0;tt<t;tt++){ int n = input.nextInt(); long a = input.nextLong(); long b = input.nextLong(); long[] x = new long[n]; long[] dp = new long[n+1]; for(int i = 0;i<n;i++){ x[i] = input.nextLong(); dp[i+1]+= dp[i] + x[i]; } long min = Long.MAX_VALUE; for(int i = 0;i<n-1;i++){ min = Math.min(min,x[i]*(a+b)+(dp[n]-dp[i+1]-(x[i]*(n-i-1)))*b); } min = Math.min(min,dp[n]*b); System.out.println(min); } } public static long gcd(long a,long b){ if(b == 0){ return a; } return gcd(b,a%b); } /*public static int lcm(int a,int b){ return (a / gcd(a, b)) * b; }*/ } class Pair implements Comparable<Pair>{ int x; int y; Pair(int x,int y){ this.x = x; this.y = y; } @Override public int compareTo(Pair p){ return this.x-p.x; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
ab57aed5a170572cb9da151e1d33d86d
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { static FastReader sc=new FastReader(); static PrintWriter out=new PrintWriter(System.out); static long mod=1000000007; // static long mod=998244353; static int MAX=Integer.MAX_VALUE; static int MIN=Integer.MIN_VALUE; static long MAXL=Long.MAX_VALUE; static long MINL=Long.MIN_VALUE; static ArrayList<Integer> graph[]; // static ArrayList<ArrayList<Integer>> graph; static long fact[]; static int seg[]; static int dp[][]; // static long dp[][]; public static void main (String[] args) throws java.lang.Exception { // code goes here int t=I(); outer:while(t-->0) { int n=I(); long a=L(),b=L(); long arr[]=new long[n+1]; for(int i=1;i<=n;i++){ arr[i]=L(); } long temp1[]=new long[n+1]; long temp2[]=new long[n+1]; for(int i=1;i<=n;i++){ temp1[i]+=arr[i]+temp1[i-1]; } for(int i=1;i<=n;i++){ temp2[i]+=(b*(arr[i]-arr[i-1]))+temp2[i-1]; } long ans=temp1[n]*b; for(int i=1;i<=n;i++){ long temp=b*(temp1[n]-temp1[i]-(n-i)*arr[i]); temp+=temp2[i]; temp+=a*arr[i]; ans=min(ans,temp); } out.println(ans); } out.close(); } public static class pair { long a; long b; public pair(long aa,long bb) { a=aa; b=bb; } } public static class myComp implements Comparator<pair> { //sort in ascending order. public int compare(pair p1,pair p2) { if(p1.a==p2.a) return 0; else if(p1.a<p2.a) return -1; else return 1; } // sort in descending order. // public int compare(pair p1,pair p2) // { // if(p1.a==p2.a) // return 0; // else if(p1.a<p2.a) // return 1; // else // return -1; // } } public static void DFS(int s,boolean visited[]) { visited[s]=true; for(int i:graph[s]){ if(!visited[i]){ DFS(i,visited); } } } public static void setGraph(int n,int m) { graph=new ArrayList[n+1]; for(int i=0;i<=n;i++){ graph[i]=new ArrayList<>(); } for(int i=0;i<m;i++){ int u=I(),v=I(); graph[u].add(v); graph[v].add(u); } } //LOWER_BOUND and UPPER_BOUND functions //It returns answer according to zero based indexing. public static int lower_bound(long arr[],long X,int start, int end) //start=0,end=n-1 { if(start>end)return -1; if(arr[arr.length-1]<X)return end; if(arr[0]>X)return -1; int left=start,right=end; while(left<right){ int mid=(left+right)/2; // if(arr[mid]==X){ //Returns last index of lower bound value. // if(mid<end && arr[mid+1]==X){ // left=mid+1; // }else{ // return mid; // } // } if(arr[mid]==X){ //Returns first index of lower bound value. if(mid>start && arr[mid-1]==X){ right=mid-1; }else{ return mid; } } else if(arr[mid]>X){ if(mid>start && arr[mid-1]<X){ return mid-1; }else{ right=mid-1; } }else{ if(mid<end && arr[mid+1]>X){ return mid; }else{ left=mid+1; } } } return left; } //It returns answer according to zero based indexing. public static int upper_bound(long arr[],long X,int start,int end) //start=0,end=n-1 { if(arr[0]>=X)return start; if(arr[arr.length-1]<X)return -1; int left=start,right=end; while(left<right){ int mid=(left+right)/2; if(arr[mid]==X){ //returns first index of upper bound value. if(mid>start && arr[mid-1]==X){ right=mid-1; }else{ return mid; } } // if(arr[mid]==X){ //returns last index of upper bound value. // if(mid<end && arr[mid+1]==X){ // left=mid+1; // }else{ // return mid; // } // } else if(arr[mid]>X){ if(mid>start && arr[mid-1]<X){ return mid; }else{ right=mid-1; } }else{ if(mid<end && arr[mid+1]>X){ return mid+1; }else{ left=mid+1; } } } return left; } //END //Segment Tree Code public static void buildTree(int a[],int si,int ss,int se) { if(ss==se){ // seg[si]=ss; if(a[ss]%2==0){ seg[si]=1; }else{ seg[si]=0; } return; } int mid=(ss+se)/2; buildTree(a,2*si+1,ss,mid); buildTree(a,2*si+2,mid+1,se); // seg[si]=max(seg[2*si+1],seg[2*si+2]); seg[si]=(seg[2*si+1]&seg[2*si+2]); } public static void merge(ArrayList<Integer> f,ArrayList<Integer> a,ArrayList<Integer> b) { int i=0,j=0; while(i<a.size() && j<b.size()){ if(a.get(i)<=b.get(j)){ f.add(a.get(i)); i++; }else{ f.add(b.get(j)); j++; } } while(i<a.size()){ f.add(a.get(i)); i++; } while(j<b.size()){ f.add(b.get(j)); j++; } } public static void update(int si,int ss,int se,int pos,int val) { if(ss==se){ seg[si]=(int)add(seg[si],val); return; } int mid=(ss+se)/2; if(pos<=mid){ update(2*si+1,ss,mid,pos,val); }else{ update(2*si+2,mid+1,se,pos,val); } seg[si]=(int)add(seg[2*si+1],seg[2*si+2]); } public static int query(int a[],int si,int ss,int se,int qs,int qe) { if(qs>se || qe<ss)return -1; if(ss>=qs && se<=qe)return seg[si]; int mid=(ss+se)/2; // return max(query(2*si+1,ss,mid,qs,qe),query(2*si+2,mid+1,se,qs,qe)); int p1=query(a,2*si+1,ss,mid,qs,qe); int p2=query(a,2*si+2,mid+1,se,qs,qe); if(p1==-1 && p2==-1)return -1; else if(p1==-1)return p2; else if(p2==-1)return p1; else return (p1&p2); } //Segment Tree Code end //Prefix Function of KMP Algorithm public static int[] KMP(char c[],int n) { int pi[]=new int[n]; for(int i=1;i<n;i++){ int j=pi[i-1]; while(j>0 && c[i]!=c[j]){ j=pi[j-1]; } if(c[i]==c[j])j++; pi[i]=j; } return pi; } public static long kadane(long a[],int n) //largest sum subarray { long max_sum=Long.MIN_VALUE,max_end=0; for(int i=0;i<n;i++){ max_end+=a[i]; if(max_sum<max_end){max_sum=max_end;} if(max_end<0){max_end=0;} } return max_sum; } public static long nPr(int n,int r) { long ans=divide(fact(n),fact(n-r),mod); return ans; } public static long nCr(int n,int r) { long ans=divide(fact[n],mul(fact[n-r],fact[r]),mod); return ans; } public static boolean isSorted(int a[]) { int n=a.length; for(int i=0;i<n-1;i++){ if(a[i]>a[i+1])return false; } return true; } public static boolean isSorted(long a[]) { int n=a.length; for(int i=0;i<n-1;i++){ if(a[i]>a[i+1])return false; } return true; } public static int computeXOR(int n) //compute XOR of all numbers between 1 to n. { if (n % 4 == 0) return n; if (n % 4 == 1) return 1; if (n % 4 == 2) return n + 1; return 0; } public static int np2(int x) { x--; x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; x++; return x; } public static int hp2(int x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x ^ (x >> 1); } public static long hp2(long x) { x |= x >> 1; x |= x >> 2; x |= x >> 4; x |= x >> 8; x |= x >> 16; return x ^ (x >> 1); } public static ArrayList<Integer> primeSieve(int n) { ArrayList<Integer> arr=new ArrayList<>(); boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } for (int i = 2; i <= n; i++) { if (prime[i] == true) arr.add(i); } return arr; } // Fenwick / BinaryIndexed Tree USE IT - FenwickTree ft1=new FenwickTree(n); public static class FenwickTree { int farr[]; int n; public FenwickTree(int c) { n=c+1; farr=new int[n]; } // public void update_range(int l,int r,long p) // { // update(l,p); // update(r+1,(-1)*p); // } public void update(int x,int p) { for(;x<n;x+=x&(-x)) { farr[x]+=p; } } public int get(int x) { int ans=0; for(;x>0;x-=x&(-x)) { ans=ans+farr[x]; } return ans; } } //Disjoint Set Union public static class DSU { int par[],rank[]; public DSU(int c) { par=new int[c+1]; rank=new int[c+1]; for(int i=0;i<=c;i++) { par[i]=i; rank[i]=0; } } public int find(int a) { if(a==par[a]) return a; return par[a]=find(par[a]); } public void union(int a,int b) { int a_rep=find(a),b_rep=find(b); if(a_rep==b_rep) return; if(rank[a_rep]<rank[b_rep]) par[a_rep]=b_rep; else if(rank[a_rep]>rank[b_rep]) par[b_rep]=a_rep; else { par[b_rep]=a_rep; rank[a_rep]++; } } } public static HashMap<Integer,Integer> primeFact(int a) { // HashSet<Long> arr=new HashSet<>(); HashMap<Integer,Integer> hm=new HashMap<>(); int p=0; while(a%2==0){ // arr.add(2L); p++; a=a/2; } hm.put(2,hm.getOrDefault(2,0)+p); for(int i=3;i*i<=a;i+=2){ p=0; while(a%i==0){ // arr.add(i); p++; a=a/i; } hm.put(i,hm.getOrDefault(i,0)+p); } if(a>2){ // arr.add(a); hm.put(a,hm.getOrDefault(a,0)+1); } // return arr; return hm; } public static boolean isInteger(double N) { int X = (int)N; double temp2 = N - X; if (temp2 > 0) { return false; } return true; } public static boolean isPalindrome(String s) { int n=s.length(); for(int i=0;i<=n/2;i++){ if(s.charAt(i)!=s.charAt(n-i-1)){ return false; } } return true; } public static int gcd(int a,int b) { if(b==0) return a; else return gcd(b,a%b); } public static long gcd(long a,long b) { if(b==0) return a; else return gcd(b,a%b); } public static long fact(long n) { long fact=1; for(long i=2;i<=n;i++){ fact=((fact%mod)*(i%mod))%mod; } return fact; } public static long fact(int n) { long fact=1; for(int i=2;i<=n;i++){ fact=((fact%mod)*(i%mod))%mod; } return fact; } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static boolean isPrime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static void printArray(long a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(int a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(char a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]); } out.println(); } public static void printArray(String a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(boolean a[]) { for(int i=0;i<a.length;i++){ out.print(a[i]+" "); } out.println(); } public static void printArray(pair a[]) { for(pair p:a){ out.println(p.a+"->"+p.b); } } public static void printArray(int a[][]) { for(int i=0;i<a.length;i++){ for(int j=0;j<a[i].length;j++){ out.print(a[i][j]+" "); }out.println(); } } public static void printArray(long a[][]) { for(int i=0;i<a.length;i++){ for(int j=0;j<a[i].length;j++){ out.print(a[i][j]+" "); }out.println(); } } public static void printArray(char a[][]) { for(int i=0;i<a.length;i++){ for(int j=0;j<a[i].length;j++){ out.print(a[i][j]+" "); }out.println(); } } public static void printArray(ArrayList<?> arr) { for(int i=0;i<arr.size();i++){ out.print(arr.get(i)+" "); } out.println(); } public static void printMapI(HashMap<?,?> hm){ for(Map.Entry<?,?> e:hm.entrySet()){ out.println(e.getKey()+"->"+e.getValue()); }out.println(); } public static void printMap(HashMap<Long,ArrayList<Integer>> hm){ for(Map.Entry<Long,ArrayList<Integer>> e:hm.entrySet()){ out.print(e.getKey()+"->"); ArrayList<Integer> arr=e.getValue(); for(int i=0;i<arr.size();i++){ out.print(arr.get(i)+" "); }out.println(); } } //Modular Arithmetic public static long add(long a,long b) { a+=b; if(a>=mod)a-=mod; return a; } public static long sub(long a,long b) { a-=b; if(a<0)a+=mod; return a; } public static long mul(long a,long b) { return ((a%mod)*(b%mod))%mod; } public static long divide(long a,long b,long m) { a=mul(a,modInverse(b,m)); return a; } public static long modInverse(long a,long m) { int x=0,y=0; own p=new own(x,y); long g=gcdExt(a,m,p); if(g!=1){ out.println("inverse does not exists"); return -1; }else{ long res=((p.a%m)+m)%m; return res; } } public static long gcdExt(long a,long b,own p) { if(b==0){ p.a=1; p.b=0; return a; } int x1=0,y1=0; own p1=new own(x1,y1); long gcd=gcdExt(b,a%b,p1); p.b=p1.a - (a/b) * p1.b; p.a=p1.b; return gcd; } public static long pwr(long m,long n) { long res=1; if(m==0) return 0; while(n>0) { if((n&1)!=0) { res=(res*m); } n=n>>1; m=(m*m); } return res; } public static long modpwr(long m,long n) { long res=1; m=m%mod; if(m==0) return 0; while(n>0) { if((n&1)!=0) { res=(res*m)%mod; } n=n>>1; m=(m*m)%mod; } return res; } public static class own { long a; long b; public own(long val,long index) { a=val; b=index; } } //Modular Airthmetic public static void sort(int[] A) { int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i) { int tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } public static void sort(char[] A) { int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i) { char tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } public static void sort(long[] A) { int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i) { long tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } //max & min public static int max(int a,int b){return Math.max(a,b);} public static int min(int a,int b){return Math.min(a,b);} public static int max(int a,int b,int c){return Math.max(a,Math.max(b,c));} public static int min(int a,int b,int c){return Math.min(a,Math.min(b,c));} public static long max(long a,long b){return Math.max(a,b);} public static long min(long a,long b){return Math.min(a,b);} public static long max(long a,long b,long c){return Math.max(a,Math.max(b,c));} public static long min(long a,long b,long c){return Math.min(a,Math.min(b,c));} public static int maxinA(int a[]){int n=a.length;int mx=a[0];for(int i=1;i<n;i++){mx=max(mx,a[i]);}return mx;} public static long maxinA(long a[]){int n=a.length;long mx=a[0];for(int i=1;i<n;i++){mx=max(mx,a[i]);}return mx;} public static int mininA(int a[]){int n=a.length;int mn=a[0];for(int i=1;i<n;i++){mn=min(mn,a[i]);}return mn;} public static long mininA(long a[]){int n=a.length;long mn=a[0];for(int i=1;i<n;i++){mn=min(mn,a[i]);}return mn;} public static long suminA(int a[]){int n=a.length;long sum=0;for(int i=0;i<n;i++){sum+=a[i];}return sum;} public static long suminA(long a[]){int n=a.length;long sum=0;for(int i=0;i<n;i++){sum+=a[i];}return sum;} //end public static int[] I(int n){int a[]=new int[n];for(int i=0;i<n;i++){a[i]=I();}return a;} public static long[] IL(int n){long a[]=new long[n];for(int i=0;i<n;i++){a[i]=L();}return a;} public static long[] prefix(int a[]){int n=a.length;long pre[]=new long[n];pre[0]=a[0];for(int i=1;i<n;i++){pre[i]=pre[i-1]+a[i];}return pre;} public static long[] prefix(long a[]){int n=a.length;long pre[]=new long[n];pre[0]=a[0];for(int i=1;i<n;i++){pre[i]=pre[i-1]+a[i];}return pre;} public static int I(){return sc.I();} public static long L(){return sc.L();} public static String S(){return sc.S();} public static double D(){return sc.D();} } class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader(new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try { st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int I(){ return Integer.parseInt(next());} long L(){ return Long.parseLong(next());} double D(){return Double.parseDouble(next());} String S(){ String str = ""; try { str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
e43e17b7a9f3eca05e8247ae43c7f485
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int T=sc.nextInt(); while(T-->0) { int n=sc.nextInt(); int a=sc.nextInt(); int b=sc.nextInt(); long[] x=new long[n+1]; long[] pre=new long[n+1]; for(int i=1;i<=n;i++) { x[i]=sc.nextLong(); pre[i]=pre[i-1]+x[i]; } long ans=b*pre[n]; for(int i=1;i<=n;i++) { long t1=(pre[n]-pre[i]-(n-i)*x[i])*b; long t2=x[i]*a; long t3=x[i]*b; ans=Math.min(ans,t1+t2+t3); } System.out.println(ans); } sc.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
0118d6345a0f7835a8214bffcea9e4f7
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; public class Main { public static void main(String arggs[]) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(), a = sc.nextInt(), b = sc.nextInt(); long[] arr = new long[n+1], sum = new long[n+1]; for(int i=1; i<=n; i++) sum[i] = sum[i-1] + (arr[i] = sc.nextInt()); long cost = sum[n]*b, ans = cost; for(int i=1; i<=n; i++) { cost -= (n-i)*(arr[i]-arr[i-1])*b; cost += (arr[i]-arr[i-1])*a; ans = Math.min(ans, cost); } System.out.println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
578b2bd7c3e58040cb349be6737251af
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* author:Karan created:18.04.2022 11:26:13 */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Collections; import java.util.StringTokenizer; import java.util.*; public class C_Line_Empire { public static void main(String[] args) throws IOException { try { FastScanner fs = new FastScanner(); long T = fs.nextInt(); for (long tt = 0; tt < T; tt++) { long a,b; int n; n=fs.nextInt(); a=fs.nextLong(); b=fs.nextLong(); long arr[] = fs.readArray(n); long pref[] = new long[(int)n+1]; pref[n-1]=arr[n-1]; for(int i=n-2;i>=0;i--) { pref[i]=pref[i+1]+arr[i]; } pref[n]=pref[n-1]; long cur=0; long ans = b*pref[0]; for(int i=0;i<n;i++) { long temp=arr[i]; if(i!=0) temp-=arr[i-1]; cur+=temp*a; cur+=temp*b; //System.out.println(cur+" "+b*(pref[i+1]-((n-i-1)*arr[i]))); ans=Math.min(ans,cur+b*(pref[i+1]-((n-i-1)*arr[i]))); } System.out.println(ans); } } catch (Exception e) { return; } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long[] readArray(long n) { long[] a = new long[(int)n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d734273bc22cca0e1efaf71fc5b44d58
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class C_Line_Empire { static Scanner in = new Scanner(); static PrintWriter out = new PrintWriter(System.out); static StringBuilder ans = new StringBuilder(); static int n, testCases; static long a, b; static long arr[]; static long max = Long.MAX_VALUE, mod = (long) (1e9); static long solve(int index, long max, long summation) { if (index >= n) { return max; } long current = (a + b) * arr[index]; summation -= arr[index]; long X = summation - (n - index - 1) * arr[index]; current += X * b; max = Math.min(max, current); return solve(index + 1, max, summation); } static void solve(int t) { long sum = detect_sum(0, arr, 0); max = Long.MAX_VALUE; ans.append(solve(0, max, sum)); if (t != testCases) { ans.append("\n"); } } public static void main(String[] priya) throws IOException { testCases = in.nextInt(); for (int t = 0; t < testCases; ++t) { n = in.nextInt() + 1; a = in.nextLong(); b = in.nextLong(); arr = new long[n]; for (int i = 1; i < n; ++i) { arr[i] = in.nextLong(); } solve(t + 1); } out.print(ans.toString()); out.flush(); in.close(); } static boolean isSmaller(String str1, String str2) { // Calculate lengths of both string int n1 = str1.length(), n2 = str2.length(); if (n1 < n2) { return true; } if (n2 < n1) { return false; } for (int i = 0; i < n1; i++) { if (str1.charAt(i) < str2.charAt(i)) { return true; } else if (str1.charAt(i) > str2.charAt(i)) { return false; } } return false; } static String sub(String str1, String str2) { if (isSmaller(str1, str2)) { String t = str1; str1 = str2; str2 = t; } String str = ""; int n1 = str1.length(), n2 = str2.length(); int diff = n1 - n2; int carry = 0; for (int i = n2 - 1; i >= 0; i--) { int sub = (((int) str1.charAt(i + diff) - (int) '0') - ((int) str2.charAt(i) - (int) '0') - carry); if (sub < 0) { sub = sub + 10; carry = 1; } else { carry = 0; } str += String.valueOf(sub); } for (int i = n1 - n2 - 1; i >= 0; i--) { if (str1.charAt(i) == '0' && carry > 0) { str += "9"; continue; } int sub = (((int) str1.charAt(i) - (int) '0') - carry); if (i > 0 || sub > 0) { str += String.valueOf(sub); } carry = 0; } return new StringBuilder(str).reverse().toString(); } static String sum(String str1, String str2) { if (str1.length() > str2.length()) { String t = str1; str1 = str2; str2 = t; } String str = ""; int n1 = str1.length(), n2 = str2.length(); int diff = n2 - n1; int carry = 0; for (int i = n1 - 1; i >= 0; i--) { int sum = ((int) (str1.charAt(i) - '0') + (int) (str2.charAt(i + diff) - '0') + carry); str += (char) (sum % 10 + '0'); carry = sum / 10; } for (int i = n2 - n1 - 1; i >= 0; i--) { int sum = ((int) (str2.charAt(i) - '0') + carry); str += (char) (sum % 10 + '0'); carry = sum / 10; } if (carry > 0) { str += (char) (carry + '0'); } return new StringBuilder(str).reverse().toString(); } static long detect_sum(int i, long a[], long sum) { if (i >= a.length) { return sum; } return detect_sum(i + 1, a, sum + a[i]); } static String mul(String num1, String num2) { int len1 = num1.length(); int len2 = num2.length(); if (len1 == 0 || len2 == 0) { return "0"; } int result[] = new int[len1 + len2]; int i_n1 = 0; int i_n2 = 0; for (int i = len1 - 1; i >= 0; i--) { int carry = 0; int n1 = num1.charAt(i) - '0'; i_n2 = 0; for (int j = len2 - 1; j >= 0; j--) { int n2 = num2.charAt(j) - '0'; int sum = n1 * n2 + result[i_n1 + i_n2] + carry; carry = sum / 10; result[i_n1 + i_n2] = sum % 10; i_n2++; } if (carry > 0) { result[i_n1 + i_n2] += carry; } i_n1++; } int i = result.length - 1; while (i >= 0 && result[i] == 0) { i--; } if (i == -1) { return "0"; } String s = ""; while (i >= 0) { s += (result[i--]); } return s; } static class Node<T> { T data; Node<T> next; public Node() { this.next = null; } public Node(T data) { this.data = data; this.next = null; } public T getData() { return data; } public void setData(T data) { this.data = data; } public Node<T> getNext() { return next; } public void setNext(Node<T> next) { this.next = next; } @Override public String toString() { return this.getData().toString() + " "; } } static class ArrayList<T> { Node<T> head, tail; int len; public ArrayList() { this.head = null; this.tail = null; this.len = 0; } int size() { return len; } boolean isEmpty() { return len == 0; } int indexOf(T data) { if (isEmpty()) { throw new ArrayIndexOutOfBoundsException(); } Node<T> temp = head; int index = -1, i = 0; while (temp != null) { if (temp.getData() == data) { index = i; } i++; temp = temp.getNext(); } return index; } void add(T data) { Node<T> newNode = new Node<>(data); if (isEmpty()) { head = newNode; tail = newNode; len++; } else { tail.setNext(newNode); tail = newNode; len++; } } void see() { if (isEmpty()) { throw new ArrayIndexOutOfBoundsException(); } Node<T> temp = head; while (temp != null) { out.print(temp.getData().toString() + " "); out.flush(); temp = temp.getNext(); } out.println(); out.flush(); } void inserFirst(T data) { Node<T> newNode = new Node<>(data); Node<T> temp = head; if (isEmpty()) { head = newNode; tail = newNode; len++; } else { newNode.setNext(temp); head = newNode; len++; } } T get(int index) { if (isEmpty() || index >= len) { throw new ArrayIndexOutOfBoundsException(); } Node<T> temp = head; int i = 0; T data = null; while (temp != null) { if (i == index) { data = temp.getData(); } i++; temp = temp.getNext(); } return data; } void addAt(T data, int index) { if (index >= len) { throw new ArrayIndexOutOfBoundsException(); } Node<T> newNode = new Node<>(data); int i = 0; Node<T> temp = head; while (temp.next != null) { if (i == index) { newNode.setNext(temp.next); temp.next = newNode; } i++; temp = temp.getNext(); } // temp.setNext(temp); len++; } void popFront() { if (isEmpty()) { throw new ArrayIndexOutOfBoundsException(); } if (head == tail) { head = null; tail = null; } else { head = head.getNext(); } len--; } void removeAt(int index) { if (index >= len) { throw new ArrayIndexOutOfBoundsException(); } if (index == 0) { this.popFront(); return; } Node<T> temp = head; int i = 0; Node<T> n = new Node<>(); while (temp != null) { if (i == index) { n.next = temp.next; temp.next = n; break; } i++; n = temp; temp = temp.getNext(); } tail = n; --len; } void clearAll() { this.head = null; this.tail = null; } } static void merge(long a[], int left, int right, int mid) { int n1 = mid - left + 1, n2 = right - mid; long L[] = new long[n1]; long R[] = new long[n2]; for (int i = 0; i < n1; i++) { L[i] = a[left + i]; } for (int i = 0; i < n2; i++) { R[i] = a[mid + 1 + i]; } int i = 0, j = 0, k1 = left; while (i < n1 && j < n2) { if (L[i] <= R[j]) { a[k1] = L[i]; i++; } else { a[k1] = R[j]; j++; } k1++; } while (i < n1) { a[k1] = L[i]; i++; k1++; } while (j < n2) { a[k1] = R[j]; j++; k1++; } } static void sort(long a[], int left, int right) { if (left >= right) { return; } int mid = (left + right) / 2; sort(a, left, mid); sort(a, mid + 1, right); merge(a, left, right, mid); } static class Scanner { BufferedReader in; StringTokenizer st; public Scanner() { in = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } String nextLine() throws IOException { return in.readLine(); } int nextInt() throws IOException { return Integer.parseInt(next()); } double nextDouble() throws IOException { return Double.parseDouble(next()); } long nextLong() throws IOException { return Long.parseLong(next()); } void close() throws IOException { in.close(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
af50a05191e9153cd5cd5652b63a15bf
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class a { public static void main(String[] args){ FastScanner sc = new FastScanner(); int t = sc.nextInt(); while(t-- > 0){ int n = sc.nextInt(); long a = sc.nextInt(); long b = sc.nextInt(); int arr[] = new int[n]; for(int i=0; i<n; i++){ arr[i] = sc.nextInt(); } int selected[] = new int[n]; for(int i=0; i<n-1; i++){ if(a * (arr[i]-0) < (n-1-i)*b*(arr[i]-0)){ selected[i] = 1; } } long ans = 0; long cap = 0; for(int i=0; i<n; i++){ if(selected[i] == 1){ ans += b*(arr[i]-cap); ans += a*(arr[i]-cap); cap = arr[i]; } else{ ans += b*(arr[i]-cap); } } System.out.println(ans); } } } class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
d6fe3d1334137792a9632ceff2e5b56e
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; //import java.math.BigInteger; public class code{ public static class Pair{ int a; int b; Pair(int i,int j){ a=i; b=j; } } public static int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } public static void shuffle(int a[], int n) { for (int i = 0; i < n; i++) { // getting the random index int t = (int)Math.random() * a.length; // and swapping values a random index // with the current index int x = a[t]; a[t] = a[i]; a[i] = x; } } public static PrintWriter out = new PrintWriter(System.out); public static long[][] dp; //@SuppressWarnings("unchecked") public static void main(String[] arg) throws IOException{ //Reader in=new Reader(); //PrintWriter out = new PrintWriter(System.out); //Scanner in = new Scanner(System.in); FastScanner in=new FastScanner(); int t=in.nextInt(); while(t-- > 0){ int n=in.nextInt(); long a =in.nextLong(); long b=in.nextLong(); long[] arr=new long[n+1]; for(int i=1;i<=n;i++) arr[i]=in.nextLong(); for(int i=1;i<=n;i++) arr[i]+=arr[i-1]; long res=arr[n]*b; for(int i=1;i<n;i++){ long d=arr[i]-arr[i-1]; long rem=n-i; long val=b*((arr[n]-arr[i])-(rem*d))+d*(a+b); //out.println(i+" "+val+" "+res); res=Math.min(res,val); } out.println(res); } out.flush(); } } class Fenwick{ int[] bit; public Fenwick(int n){ bit=new int[n]; //int sum=0; } public void update(int index,int val){ index++; for(;index<bit.length;index += index&(-index)) bit[index]+=val; } public int presum(int index){ int sum=0; for(;index>0;index-=index&(-index)) sum+=bit[index]; return sum; } public int sum(int l,int r){ return presum(r+1)-presum(l); } } class FastScanner { private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] nextInts(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
71234fb1bb113d03f5d69025c5c09294
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; /** * * @Har_Har_Mahadev */ /** * Main , Solution , Remove Public */ public class Solution { public static void process() throws IOException { int n=sc.nextInt(); long c1=sc.nextInt(), c2=sc.nextInt(); int[] a=sc.readArray(n); long ans=0; for (int i=0; i<n; i++) { long nToRight=n-i; int last=i==0?0:a[i-1]; long dist=a[i]-last; ans+=dist*min(nToRight*c2, c1+c2); } System.out.println(ans); } //============================================================================= //--------------------------The End--------------------------------- //============================================================================= private static long INF = 2000000000000000000L, M = 1000000007, MM = 998244353; private static int N = 0; private static void google(int tt) { System.out.print("Case #" + (tt) + ": "); } static FastScanner sc; static FastWriter out; public static void main(String[] args) throws IOException { boolean oj = true; if (oj) { sc = new FastScanner(); out = new FastWriter(System.out); } else { sc = new FastScanner("input.txt"); out = new FastWriter("output.txt"); } long s = System.currentTimeMillis(); int t = 1; t = sc.nextInt(); int TTT = 1; while (t-- > 0) { // google(TTT++); process(); } out.flush(); // tr(System.currentTimeMillis()-s+"ms"); } private static boolean oj = System.getProperty("ONLINE_JUDGE") != null; private static void tr(Object... o) { if (!oj) System.err.println(Arrays.deepToString(o)); } static class Pair implements Comparable<Pair> { int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { return Integer.compare(this.x, o.x); } /* @Override public boolean equals(Object o) { if (this == o) return true; if (!(o instanceof Pair)) return false; Pair key = (Pair) o; return x == key.x && y == key.y; } @Override public int hashCode() { int result = x; result = 31 * result + y; return result; } */ } ///////////////////////////////////////////////////////////////////////////////////////////////////////// static int ceil(int x, int y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long ceil(long x, long y) { return (x % y == 0 ? x / y : (x / y + 1)); } static long sqrt(long z) { long sqz = (long) Math.sqrt(z); while (sqz * 1L * sqz < z) { sqz++; } while (sqz * 1L * sqz > z) { sqz--; } return sqz; } static int log2(int N) { int result = (int) (Math.log(N) / Math.log(2)); return result; } public static long gcd(long a, long b) { if (a > b) a = (a + b) - (b = a); if (a == 0L) return b; return gcd(b % a, a); } public static long lcm(long a, long b) { return (a * b) / gcd(a, b); } public static int lower_bound(int[] arr, int x) { int low = 0, high = arr.length - 1, mid = -1; int ans = -1; while (low <= high) { mid = (low + high) / 2; if (arr[mid] > x) { high = mid - 1; } else { ans = mid; low = mid + 1; } } return ans; } public static int upper_bound(int[] arr, int x) { int low = 0, high = arr.length - 1, mid = -1; int ans = arr.length; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= x) { ans = mid; high = mid - 1; } else { low = mid + 1; } } return ans; } static void ruffleSort(int[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); int temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } static void ruffleSort(long[] a) { Random get = new Random(); for (int i = 0; i < a.length; i++) { int r = get.nextInt(a.length); long temp = a[i]; a[i] = a[r]; a[r] = temp; } Arrays.sort(a); } static void reverseArray(int[] a) { int n = a.length; int arr[] = new int[n]; for (int i = 0; i < n; i++) arr[i] = a[n - i - 1]; for (int i = 0; i < n; i++) a[i] = arr[i]; } static void reverseArray(long[] a) { int n = a.length; long arr[] = new long[n]; for (int i = 0; i < n; i++) arr[i] = a[n - i - 1]; for (int i = 0; i < n; i++) a[i] = arr[i]; } //custom multiset (replace with HashMap if needed) public static void push(TreeMap<Integer, Integer> map, int k, int v) { //map[k] += v; if (!map.containsKey(k)) map.put(k, v); else map.put(k, map.get(k) + v); } public static void pull(TreeMap<Integer, Integer> map, int k, int v) { //assumes map[k] >= v //map[k] -= v int lol = map.get(k); if (lol == v) map.remove(k); else map.put(k, lol - v); } // compress Big value to Time Limit public static int[] compress(int[] arr) { ArrayList<Integer> ls = new ArrayList<Integer>(); for (int x : arr) ls.add(x); Collections.sort(ls); HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); int boof = 1; //min value for (int x : ls) if (!map.containsKey(x)) map.put(x, boof++); int[] brr = new int[arr.length]; for (int i = 0; i < arr.length; i++) brr[i] = map.get(arr[i]); return brr; } // Fast Writer public static class FastWriter { private static final int BUF_SIZE = 1 << 13; private final byte[] buf = new byte[BUF_SIZE]; private final OutputStream out; private int ptr = 0; private FastWriter() { out = null; } public FastWriter(OutputStream os) { this.out = os; } public FastWriter(String path) { try { this.out = new FileOutputStream(path); } catch (FileNotFoundException e) { throw new RuntimeException("FastWriter"); } } public FastWriter write(byte b) { buf[ptr++] = b; if (ptr == BUF_SIZE) innerflush(); return this; } public FastWriter write(char c) { return write((byte) c); } public FastWriter write(char[] s) { for (char c : s) { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerflush(); } return this; } public FastWriter write(String s) { s.chars().forEach(c -> { buf[ptr++] = (byte) c; if (ptr == BUF_SIZE) innerflush(); }); return this; } private static int countDigits(int l) { if (l >= 1000000000) return 10; if (l >= 100000000) return 9; if (l >= 10000000) return 8; if (l >= 1000000) return 7; if (l >= 100000) return 6; if (l >= 10000) return 5; if (l >= 1000) return 4; if (l >= 100) return 3; if (l >= 10) return 2; return 1; } public FastWriter write(int x) { if (x == Integer.MIN_VALUE) { return write((long) x); } if (ptr + 12 >= BUF_SIZE) innerflush(); if (x < 0) { write((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } private static int countDigits(long l) { if (l >= 1000000000000000000L) return 19; if (l >= 100000000000000000L) return 18; if (l >= 10000000000000000L) return 17; if (l >= 1000000000000000L) return 16; if (l >= 100000000000000L) return 15; if (l >= 10000000000000L) return 14; if (l >= 1000000000000L) return 13; if (l >= 100000000000L) return 12; if (l >= 10000000000L) return 11; if (l >= 1000000000L) return 10; if (l >= 100000000L) return 9; if (l >= 10000000L) return 8; if (l >= 1000000L) return 7; if (l >= 100000L) return 6; if (l >= 10000L) return 5; if (l >= 1000L) return 4; if (l >= 100L) return 3; if (l >= 10L) return 2; return 1; } public FastWriter write(long x) { if (x == Long.MIN_VALUE) { return write("" + x); } if (ptr + 21 >= BUF_SIZE) innerflush(); if (x < 0) { write((byte) '-'); x = -x; } int d = countDigits(x); for (int i = ptr + d - 1; i >= ptr; i--) { buf[i] = (byte) ('0' + x % 10); x /= 10; } ptr += d; return this; } public FastWriter write(double x, int precision) { if (x < 0) { write('-'); x = -x; } x += Math.pow(10, -precision) / 2; // if(x < 0){ x = 0; } write((long) x).write("."); x -= (long) x; for (int i = 0; i < precision; i++) { x *= 10; write((char) ('0' + (int) x)); x -= (int) x; } return this; } public FastWriter writeln(char c) { return write(c).writeln(); } public FastWriter writeln(int x) { return write(x).writeln(); } public FastWriter writeln(long x) { return write(x).writeln(); } public FastWriter writeln(double x, int precision) { return write(x, precision).writeln(); } public FastWriter write(int... xs) { boolean first = true; for (int x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter write(long... xs) { boolean first = true; for (long x : xs) { if (!first) write(' '); first = false; write(x); } return this; } public FastWriter writeln() { return write((byte) '\n'); } public FastWriter writeln(int... xs) { return write(xs).writeln(); } public FastWriter writeln(long... xs) { return write(xs).writeln(); } public FastWriter writeln(char[] line) { return write(line).writeln(); } public FastWriter writeln(char[]... map) { for (char[] line : map) write(line).writeln(); return this; } public FastWriter writeln(String s) { return write(s).writeln(); } private void innerflush() { try { out.write(buf, 0, ptr); ptr = 0; } catch (IOException e) { throw new RuntimeException("innerflush"); } } public void flush() { innerflush(); try { out.flush(); } catch (IOException e) { throw new RuntimeException("flush"); } } public FastWriter print(byte b) { return write(b); } public FastWriter print(char c) { return write(c); } public FastWriter print(char[] s) { return write(s); } public FastWriter print(String s) { return write(s); } public FastWriter print(int x) { return write(x); } public FastWriter print(long x) { return write(x); } public FastWriter print(double x, int precision) { return write(x, precision); } public FastWriter println(char c) { return writeln(c); } public FastWriter println(int x) { return writeln(x); } public FastWriter println(long x) { return writeln(x); } public FastWriter println(double x, int precision) { return writeln(x, precision); } public FastWriter print(int... xs) { return write(xs); } public FastWriter print(long... xs) { return write(xs); } public FastWriter println(int... xs) { return writeln(xs); } public FastWriter println(long... xs) { return writeln(xs); } public FastWriter println(char[] line) { return writeln(line); } public FastWriter println(char[]... map) { return writeln(map); } public FastWriter println(String s) { return writeln(s); } public FastWriter println() { return writeln(); } } // Fast Inputs static class FastScanner { //I don't understand how this works lmao private int BS = 1 << 16; private char NC = (char) 0; private byte[] buf = new byte[BS]; private int bId = 0, size = 0; private char c = NC; private double cnt = 1; private BufferedInputStream in; public FastScanner() { in = new BufferedInputStream(System.in, BS); } public FastScanner(String s) { try { in = new BufferedInputStream(new FileInputStream(new File(s)), BS); } catch (Exception e) { in = new BufferedInputStream(System.in, BS); } } private char getChar() { while (bId == size) { try { size = in.read(buf); } catch (Exception e) { return NC; } if (size == -1) return NC; bId = 0; } return (char) buf[bId++]; } public int nextInt() { return (int) nextLong(); } public int[] readArray(int N) { int[] res = new int[N]; for (int i = 0; i < N; i++) { res[i] = (int) nextLong(); } return res; } public long[] readArrayLong(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } public int[][] readArrayMatrix(int N, int M, int Index) { if (Index == 0) { int[][] res = new int[N][M]; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) res[i][j] = (int) nextLong(); } return res; } int[][] res = new int[N][M]; for (int i = 1; i <= N; i++) { for (int j = 1; j <= M; j++) res[i][j] = (int) nextLong(); } return res; } public long[][] readArrayMatrixLong(int N, int M, int Index) { if (Index == 0) { long[][] res = new long[N][M]; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) res[i][j] = nextLong(); } return res; } long[][] res = new long[N][M]; for (int i = 1; i <= N; i++) { for (int j = 1; j <= M; j++) res[i][j] = nextLong(); } return res; } public long nextLong() { cnt = 1; boolean neg = false; if (c == NC) c = getChar(); for (; (c < '0' || c > '9'); c = getChar()) { if (c == '-') neg = true; } long res = 0; for (; c >= '0' && c <= '9'; c = getChar()) { res = (res << 3) + (res << 1) + c - '0'; cnt *= 10; } return neg ? -res : res; } public double nextDouble() { double cur = nextLong(); return c != '.' ? cur : cur + nextLong() / cnt; } public double[] readArrayDouble(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } public String next() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c > 32) { res.append(c); c = getChar(); } return res.toString(); } public String nextLine() { StringBuilder res = new StringBuilder(); while (c <= 32) c = getChar(); while (c != '\n') { res.append(c); c = getChar(); } return res.toString(); } public boolean hasNext() { if (c > 32) return true; while (true) { c = getChar(); if (c == NC) return false; else if (c > 32) return true; } } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
c96ff85da2ac2c500b45f35311bf783b
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.lang.*; import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); int a=sc.nextInt(); int b=sc.nextInt(); long arr[]=new long[n]; long sum=0; for(int i=0;i<n;i++){ arr[i]=sc.nextLong(); sum+=arr[i]; } long ans=sum*b; long curr=0; for(int i=1;i<=n;i++){ if(i==1){ curr=arr[i-1]; } else curr=curr+arr[i-1]-arr[i-2]; sum=sum-arr[i-1]; ans=Math.min(ans,curr*a+curr*b+(sum-(n-i)*arr[i-1])*b); } System.out.println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
21f0f716ce5b12e88a5dee9566632d2a
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
/* I am dead inside Do you like NCT, sKz, BTS? 5 4 3 2 1 Moonwalk Imma knock it down like domino Is this what you want? Is this what you want? Let's ttalkbocky about that */ import static java.lang.Math.*; import java.util.*; import java.io.*; import java.math.*; public class NewTimeC { public static void main(String hi[]) throws Exception { BufferedReader infile = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(infile.readLine()); int T = Integer.parseInt(st.nextToken()); StringBuilder sb = new StringBuilder(); while(T-->0) { st = new StringTokenizer(infile.readLine()); int N = Integer.parseInt(st.nextToken()); long A = Integer.parseInt(st.nextToken()); long B = Integer.parseInt(st.nextToken()); int[] arr = readArr(N, infile, st); long[] suffix = new long[N]; suffix[N-1] = arr[N-1]; for(int i=N-2; i >= 0; i--) suffix[i] = suffix[i+1]+arr[i]; long res = B*suffix[0]; long temp = 0L; long curr = 0L; for(int i=0; i < N; i++) { temp += (A+B)*(arr[i]-curr); curr = arr[i]; long val = 0L; if(i+1 < N) val = suffix[i+1]-(long)(N-i-1)*arr[i]; res = min(res, temp+B*val); } sb.append(res+"\n"); } System.out.print(sb); } public static int[] readArr(int N, BufferedReader infile, StringTokenizer st) throws Exception { int[] arr = new int[N]; st = new StringTokenizer(infile.readLine()); for(int i=0; i < N; i++) arr[i] = Integer.parseInt(st.nextToken()); return arr; } } /* dp[y] = min time needed to capture suffix [y..n] if current capital is city y dp[x] = min(b*[abs(c_b-c_{b+1})+abs(c_b-c_{b+2})+...+abs(c_b-c_y)]+a*(c_b-c_y)+dp[y]) for any y > x is it ever optimal to go to y > x+1? */
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
e285a2679f98896fea7de46da8d79dda
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Main { static int t; static int n; static int[] a; static String s; static FastReader fr = new FastReader(); static PrintWriter out = new PrintWriter(System.out); public static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } public static void main(String[] args) { int t = fr.nextInt(); while ((t --) > 0) { int n = fr.nextInt(); int a = fr.nextInt(); int b = fr.nextInt(); int[] x = fr.nextIntArray(n); long[] sum = new long[n + 1]; for (int i = 0; i < n; i ++) sum[i + 1] = sum[i] + x[i]; long ans = Long.MAX_VALUE; ans = 1l * sum[n] * b; for (int i = 0; i < n; i ++) { long costa = 1l * a * (x[i]); long costb1 = 1l * b * (x[i]); long costb2 = 1l * b * (sum[n] - sum[i + 1] - 1l * (n - i - 1) * x[i]); ans = Math.min(ans, costb1 + costb2 + costa); } System.out.println(ans); } return; } static long ask(String op, int a, int b) { System.out.println(op + " " + a + " " + b); System.out.flush(); long gcd = fr.nextLong(); return gcd; // return gcd(12354 + a, 12354 + b); } static class FastReader { private BufferedReader bfr; private StringTokenizer st; public FastReader() { bfr = new BufferedReader(new InputStreamReader(System.in)); } String next() { if (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bfr.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return next().toCharArray()[0]; } String nextString() { return next(); } int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } double[] nextDoubleArray(int n) { double[] arr = new double[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextDouble(); return arr; } long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); return arr; } int[][] nextIntGrid(int nL, int m) { int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) { char[] line = fr.next().toCharArray(); for (int j = 0; j < m; j++) grid[i][j] = line[j] - 48; } return grid; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
0b6363d64ef1e7e05f9f0b7a63b22998
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Map.*; import static java.util.Arrays.*; import static java.util.Collections.*; import static java.lang.System.*; public class Main { public void tq() throws Exception { st=new StringTokenizer(bq.readLine()); int tq=i(); sb=new StringBuilder(2000000); o: while(tq-->0) { int n=i(); long a=l(); long b=l(); int ar[]=new int[n+1]; for(int x=1;x<=n;x++)ar[x]=i(); long c=0l; for(int x:ar)c+=b*x; long m=c; for(int x=1;x<=n;x++) { c-=1l*(n-x)*b*(ar[x]-ar[x-1]); c+=a*(ar[x]-ar[x-1]); m=min(m,c); } pl(m); } p(sb); } long mod=1000000007l; int max=Integer.MAX_VALUE,min=Integer.MIN_VALUE;long maxl=Long.MAX_VALUE,minl=Long.MIN_VALUE; BufferedReader bq = new BufferedReader(new InputStreamReader(in));StringTokenizer st;StringBuilder sb; public static void main(String[] a)throws Exception{new Main().tq();} int di[][]={{-1,0},{1,0},{0,-1},{0,1}}; int de[][]={{-1,0},{1,0},{0,-1},{0,1},{-1,-1},{1,1},{-1,1},{1,-1}}; void f1(int ar[],int v){fill(ar,v);} void f2(int ar[][],int v){for(int a[]:ar)fill(a,v);} void f3(int ar[][][],int v){for(int a[][]:ar)for(int b[]:a)fill(b,v);} void f1(long ar[],long v){fill(ar,v);} void f2(long ar[][],int v){for(long a[]:ar)fill(a,v);} void f3(long ar[][][],int v){for(long a[][]:ar)for(long b[]:a)fill(b,v);} void f(){out.flush();} int p(int i,int p[]){return p[i]<0?i:(p[i]=p(p[i],p));} boolean c(int x,int y,int n,int m){return x>=0&&x<n&&y>=0&&y<m;} int[] so(int ar[]) { Integer r[] = new Integer[ar.length]; for (int x = 0; x < ar.length; x++) r[x] = ar[x]; sort(r); for (int x = 0; x < ar.length; x++) ar[x] = r[x]; return ar; } long[] so(long ar[]) { Long r[] = new Long[ar.length]; for (int x = 0; x < ar.length; x++) r[x] = ar[x]; sort(r); for (int x = 0; x < ar.length; x++) ar[x] = r[x]; return ar; } char[] so(char ar[]) { Character r[] = new Character[ar.length]; for (int x = 0; x < ar.length; x++) r[x] = ar[x]; sort(r); for (int x = 0; x < ar.length; x++) ar[x] = r[x]; return ar; } void p(Object p) {out.print(p);}void pl(Object p) {out.println(p);}void pl() {out.println();} void s(String s) {sb.append(s);} void s(int s) {sb.append(s);} void s(long s) {sb.append(s);} void s(char s) {sb.append(s);} void s(double s) {sb.append(s);} void ss() {sb.append(' ');} void sl(String s) {s(s);sb.append("\n");} void sl(int s) {s(s);sb.append("\n");} void sl(long s) {s(s);sb.append("\n");} void sl(char s) {s(s);sb.append("\n");} void sl(double s) {s(s);sb.append("\n");} void sl() {sb.append("\n");} int l(int v) {return 31 - Integer.numberOfLeadingZeros(v);} long l(long v) {return 63 - Long.numberOfLeadingZeros(v);} int sq(int a) {return (int) sqrt(a);} long sq(long a) {return (long) sqrt(a);} int gcd(int a, int b) { while (b > 0) { int c = a % b; a = b; b = c; } return a; } long gcd(long a, long b) { while (b > 0l) { long c = a % b; a = b; b = c; } return a; } boolean p(String s, int i, int j) { while (i < j) if (s.charAt(i++) != s.charAt(j--)) return false; return true; } boolean[] si(int n) { boolean bo[] = new boolean[n + 1]; bo[0] = bo[1] = true; for (int x = 4; x <= n; x += 2) bo[x] = true; for (int x = 3; x * x <= n; x += 2) { if (!bo[x]) { int vv = (x << 1); for (int y = x * x; y <= n; y += vv) bo[y] = true; } } return bo; } long mul(long a, long b, long m) { long r = 1l; a %= m; while (b > 0) { if ((b & 1) == 1) r = (r * a) % m; b >>= 1; a = (a * a) % m; } return r; } int i() throws IOException { if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); return Integer.parseInt(st.nextToken()); } long l() throws IOException { if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); return Long.parseLong(st.nextToken()); } String s() throws IOException { if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); return st.nextToken(); } double d() throws IOException { if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); return Double.parseDouble(st.nextToken()); } void s(int a[]) { for (int e : a){sb.append(e);sb.append(' ');} sb.append("\n"); } void s(long a[]) { for (long e : a){sb.append(e);sb.append(' ');} sb.append("\n"); } void s(char a[]) { for (char e : a){sb.append(e);sb.append(' ');} sb.append("\n"); } void s(int ar[][]) {for (int a[] : ar) s(a);} void s(long ar[][]) {for (long a[] : ar) s(a);} void s(char ar[][]) {for (char a[] : ar) s(a);} int[] ari(int n) throws IOException { int ar[] = new int[n]; if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); for (int x = 0; x < n; x++) ar[x] = Integer.parseInt(st.nextToken()); return ar; } long[] arl(int n) throws IOException { long ar[] = new long[n]; if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); for (int x = 0; x < n; x++) ar[x] = Long.parseLong(st.nextToken()); return ar; } char[] arc(int n) throws IOException { char ar[] = new char[n]; if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); for (int x = 0; x < n; x++) ar[x] = st.nextToken().charAt(0); return ar; } double[] ard(int n) throws IOException { double ar[] = new double[n]; if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); for (int x = 0; x < n; x++) ar[x] = Double.parseDouble(st.nextToken()); return ar; } String[] ars(int n) throws IOException { String ar[] = new String[n]; if (!st.hasMoreTokens()) st = new StringTokenizer(bq.readLine()); for (int x = 0; x < n; x++) ar[x] = st.nextToken(); return ar; } int[][] ari(int n, int m) throws IOException { int ar[][] = new int[n][m]; for (int x = 0; x < n; x++)ar[x]=ari(m); return ar; } long[][] arl(int n, int m) throws IOException { long ar[][] = new long[n][m]; for (int x = 0; x < n; x++)ar[x]=arl(m); return ar; } char[][] arc(int n, int m) throws IOException { char ar[][] = new char[n][m]; for (int x = 0; x < n; x++)ar[x]=arc(m); return ar; } double[][] ard(int n, int m) throws IOException { double ar[][] = new double[n][m]; for (int x = 0; x < n; x++)ar[x]=ard(m); return ar; } void p(int ar[]) { sb = new StringBuilder(11 * ar.length); for (int a : ar) {sb.append(a);sb.append(' ');} out.println(sb); } void p(long ar[]) { StringBuilder sb = new StringBuilder(20 * ar.length); for (long a : ar){sb.append(a);sb.append(' ');} out.println(sb); } void p(double ar[]) { StringBuilder sb = new StringBuilder(22 * ar.length); for (double a : ar){sb.append(a);sb.append(' ');} out.println(sb); } void p(char ar[]) { StringBuilder sb = new StringBuilder(2 * ar.length); for (char aa : ar){sb.append(aa);sb.append(' ');} out.println(sb); } void p(String ar[]) { int c = 0; for (String s : ar) c += s.length() + 1; StringBuilder sb = new StringBuilder(c); for (String a : ar){sb.append(a);sb.append(' ');} out.println(sb); } void p(int ar[][]) { StringBuilder sb = new StringBuilder(11 * ar.length * ar[0].length); for (int a[] : ar) { for (int aa : a){sb.append(aa);sb.append(' ');} sb.append("\n"); } p(sb); } void p(long ar[][]) { StringBuilder sb = new StringBuilder(20 * ar.length * ar[0].length); for (long a[] : ar) { for (long aa : a){sb.append(aa);sb.append(' ');} sb.append("\n"); } p(sb); } void p(double ar[][]) { StringBuilder sb = new StringBuilder(22 * ar.length * ar[0].length); for (double a[] : ar) { for (double aa : a){sb.append(aa);sb.append(' ');} sb.append("\n"); } p(sb); } void p(char ar[][]) { StringBuilder sb = new StringBuilder(2 * ar.length * ar[0].length); for (char a[] : ar) { for (char aa : a){sb.append(aa);sb.append(' ');} sb.append("\n"); } p(sb); } void pl(Object... ar) {for (Object e : ar) p(e + " ");pl();} }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
427781624c3ce87514f1e8291466878c
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; //import javafx.util.*; public class Main { static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); static int INF = Integer.MAX_VALUE; static int NINF = Integer.MIN_VALUE; public static void main (String[] args) throws java.lang.Exception { //check if you have to take product or the constraints are big int t = i(); while(t-- > 0){ int n = i(); long a = in.nextLong(); long b = in.nextLong(); long[] arr = new long[n + 1]; for(int i = 1;i < n + 1;i++){ arr[i] = in.nextLong(); } long sum = 0l; for(int i = 1;i < n + 1;i++){ sum += arr[i]; } long ans = Long.MAX_VALUE; for(int i = 0;i < n;i++){ long curr = a*arr[i] + b*arr[i]; sum = sum - arr[i]; long remaining = sum - arr[i]*(n - i); curr += remaining * b; ans = Math.min(ans,curr); } out.println(ans); } out.close(); } public static int solve(String s){ int ans = -1; int count = 0; int n = s.length(); for(int i = 0;i < n;i++){ if(s.charAt(i) == 'R'){ count++; }else{ ans = Math.max(ans,count); count = 0; } } ans = Math.max(ans,count); return ans; } public static void sort(int[] arr){ ArrayList<Integer> ls = new ArrayList<>(); for(int x : arr){ ls.add(x); } Collections.sort(ls); for(int i = 0;i < arr.length;i++){ arr[i] = ls.get(i); } } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static int[] input(int N){ int A[]=new int[N]; for(int i=0; i<N; i++) { A[i]=in.nextInt(); } return A; } static long[] inputLong(int N) { long A[]=new long[N]; for(int i=0; i<A.length; i++)A[i]=in.nextLong(); return A; } } class Pair implements Comparable<Pair>{ int x; int y; Pair(int x, int y){ this.x = x; this.y = y; } @Override public int compareTo(Pair obj) { // we sort objects on the basis of Student Id return (this.x - obj.x); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st==null || !st.hasMoreElements()) { try { st=new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
22641c1b0e548a5436d6c6a8226dfbef
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; public class C782 { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(); solver.solve(in, out); out.close(); } private static class Solver { void solve(InputReader in, PrintWriter out) { int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(); int a = in.nextInt(); int b = in.nextInt(); long[] x = new long[n]; for (int i = 0; i < n; i++) { x[i] = in.nextLong(); } // A 移动首都 // B 攻占城市 // 当前首都的绝对位置 long current = 0; // 已攻占城市坐标 int vis = -1; long ans = 0; for (int i = 0; i < n; i++) { // 直接攻占的代价 long directCost = (x[i] - current) * b; // 先移动再攻占的代价 long sumCost = Long.MAX_VALUE; long sumCost2 = Long.MAX_VALUE; if (vis != -1) { // 移动的代价 long costA = (x[vis] - current) * a; // 移动为未来节省的代价 long saveB = (x[vis] - current) * (n - 1 - i) * b; // 攻占i的代价 long costB = (x[i] - x[vis]) * b; sumCost = costA + costB; sumCost2 = sumCost - saveB; } if (sumCost2 <= directCost) { current = x[vis]; ans += sumCost; } else { ans += directCost; } vis = i; } out.println(ans); } } } private static class InputReader { BufferedReader reader; StringTokenizer tokenizer; InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
a18e0aa592da6c96d5ed2f8a25e0207f
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.util.StringTokenizer; /** * * @author eslam */ public class IceCave { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static FastReader input = new FastReader(); static BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) throws IOException { int t = input.nextInt(); while (t-- > 0) { int n = input.nextInt(); long a = input.nextInt(); long b = input.nextInt(); long ar[] = new long[n + 1]; long br[] = new long[n + 1]; long sum = 0; long ans = Long.MAX_VALUE; long s = 0; for (int i = 1; i < ar.length; i++) { ar[i] = input.nextInt(); sum += ar[i]; } for (int i = 1; i < ar.length; i++) { br[i] = (ar[i] - ar[i - 1]) * b; } for (int i = 1; i < br.length; i++) { br[i] = br[i] + br[i - 1]; } for (int i = 0; i < n; i++) { long c = ((sum - ar[i] * (n - i))); long d = br[i] + c * b; ans = Math.min(ans, d + s); sum -= ar[i + 1]; s += (ar[i + 1] - ar[i]) * a; } log.write(ans + "\n"); } log.flush(); } public static long binaryToDecimal(String w) { long r = 0; long l = 0; for (int i = w.length() - 1; i > -1; i--) { long x = (w.charAt(i) - '0') * (long) Math.pow(2, l); r = r + x; l++; } return r; } public static String decimalToBinary(long n) { String w = ""; while (n > 0) { w = n % 2 + w; n /= 2; } return w; } public static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } public static void print(int a[]) throws IOException { for (int i = 0; i < a.length; i++) { log.write(a[i] + " "); } log.write("\n"); } public static void read(long[] a) { for (int i = 1; i < a.length; i++) { a[i] = input.nextInt(); } } static class pair { int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } } public static long LCM(long x, long y) { return (x * y) / GCD(x, y); } public static long GCD(long x, long y) { if (y == 0) { return x; } return GCD(y, x % y); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
e3a9e12dab18f39faf3ce13369083c9a
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import static java.lang.Math.min; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Random; import java.util.StringTokenizer; // snippet public class CF782C { // Question Link : static FastScanner sc=new FastScanner(); static PrintWriter out=new PrintWriter(System.out); public static void main(String[] args) { int T=sc.nextInt(); for (int tt=0; tt<T; tt++) { solve(); } } private static void solve() { // TODO Auto-generated method stub int n = sc.nextInt()+1; int a = sc.nextInt(); int b = sc.nextInt(); int arr[] = new int[n]; long sum =0; for(int i=1;i<arr.length;i++) { arr[i] = sc.nextInt(); sum+=arr[i]; } //System.out.println(sum); long res = Long.MAX_VALUE; for(int i=0;i<arr.length;i++) { long curr = (a+b)*1L*(long)arr[i]; //System.out.println(curr+" ."); sum-=arr[i]; // System.out.println(sum+" .."); // System.out.println(sum-(n-i-1)+" ..."); curr+=(sum-(n-i-1)*(long)arr[i])*b; // System.out.println(curr); res = Math.min(res,curr); // System.out.println(curr+" ...."); } System.out.println(res); } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
2e2f94c457625037eb12088b597314e3
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static long factorial(int number) { long f = 1; int j = 1; while (j <= number) { f = (f * j) % 998244353; j++; } return f; } public static long combination(int n, int r) { return factorial(n) / (factorial(n - r) * factorial(r)); } public static void main(String[] args) throws Exception { int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); n++; int[]x = new int[n]; long sum=0; for(int i=1;i<n;i++) { x[i]=sc.nextInt(); sum+=x[i]; } long ans = (long)1e18; for(int i=0;i<n;i++) { long tmp = (a+b)*1l*x[i]; sum-=x[i]; tmp+=(sum-(n-i-1)*(1l)*x[i])*b; ans = Math.min(ans, tmp); } pw.println(ans); } pw.flush(); } static class SegmentTree { int[] arr, sTree, lazy; int N; public SegmentTree(int[] in) { arr = in; N = in.length - 1; sTree = new int[2 * N]; lazy = new int[2 * N]; build(1, 1, N); } public void build(int Node, int left, int right) { // O(n) if (left == right) sTree[Node] = arr[left]; else { int r = 2 * Node + 1; int l = 2 * Node; int mid = (left + right) / 2; build(l, left, mid); build(r, mid + 1, right); sTree[Node] = sTree[l] + sTree[r]; } } public int query(int i, int j) { return query(1, 1, N, i, j); } public int query(int Node, int left, int right, int i, int j) { if (right < i || left > j) return 0; if (right <= j && i <= left) { return sTree[Node]; } int mid = (left + right) / 2; int l = 2 * Node; int r = 2 * Node + 1; return query(l, left, mid, i, j) + query(r, mid + 1, right, i, j); } public void updatePoint(int idx, int value) { int node = idx + N - 1; arr[idx] = value; sTree[node] = value; while (node > 1) { node /= 2; int l = 2 * node; int r = 2 * node + 1; sTree[node] = sTree[l] + sTree[r]; } } public void updateRange(int i, int j, int val) { updateRange(1, 1, N, i, j, val); } public void updateRange(int Node, int left, int right, int i, int j, int val) { if (i > right || left > j) return; if (right <= j && i <= left) { sTree[Node] += val * (right - left + 1); lazy[Node] += val; } else { int l = 2 * Node; int r = 2 * Node + 1; int mid = (left + right) / 2; propagate(Node, left, right); updateRange(l, left, mid, i, j, val); updateRange(r, mid + 1, right, mid, j, val); sTree[Node] = sTree[l] + sTree[r]; } } public void propagate(int node, int left, int right) { int l = 2 * node; int r = 2 * node + 1; int mid = (left + right) / 2; lazy[l] = lazy[node]; lazy[r] = lazy[node]; sTree[l] += lazy[node] * (mid - left + 1); sTree[r] += lazy[node] * (right - mid); lazy[node] = 0; } } public static void sort(int[] in) { shuffle(in); Arrays.sort(in); } public static void shuffle(int[] in) { for (int i = 0; i < in.length; i++) { int idx = (int) (Math.random() * in.length); int tmp = in[i]; in[i] = in[idx]; in[idx] = tmp; } } static class Pair implements Comparable<Pair> { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return x - o.x; } public String toString() { return x + " " + y; } } static Scanner sc = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public Scanner(FileReader r) { br = new BufferedReader(r); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public long[] nextlongArray(int n) throws IOException { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public Long[] nextLongArray(int n) throws IOException { Long[] a = new Long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public int[] nextIntArray(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public Integer[] nextIntegerArray(int n) throws IOException { Integer[] a = new Integer[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public boolean ready() throws IOException { return br.ready(); } } public static void display(char[][] a) { for (int i = 0; i < a.length; i++) { for (int j = 0; j < a[i].length; j++) { System.out.print(a[i][j]); } System.out.println(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
802f6b8ddf0133e0270f97a7bf21eb31
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import com.sun.security.jgss.GSSUtil; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.math.BigInteger; import java.util.*; public class CF1{ public static void main(String[] args) { FastScanner sc=new FastScanner(); int T=sc.nextInt(); // int T=1; for (int tt=1; tt<=T; tt++){ long n = sc.nextLong(); long a = sc.nextLong(); long b= sc.nextLong(); long x[]= new long[(int) n+1]; long arr[]= new long[(int)n+1]; long sum=0; for (int i=1; i<=n; i++){ arr[i]= sc.nextLong(); sum+=arr[i]; } long ans=0; int pos=0; for (int i=1; i<=n; i++){ x[i]=arr[i-1]+x[i-1]; } for (int i=1; i<=n; i++){ ans+=b*(arr[i]-arr[pos]); long y=((x[(int)n]-x[i])-arr[pos]*(n-i))*b; long z = a*(arr[i]-arr[pos])+(x[(int)n]-x[i]-arr[i]*(n-i))*b; if (y>z){ ans+=a*(arr[i]-arr[pos]); pos=i; } } System.out.println(ans); } } static class LPair{ long x,y; LPair(long x , long y){ this.x=x; this.y=y; } } static long prime(long n){ for (long i=3; i*i<=n; i+=2){ if (n%i==0) return i; } return -1; } static long factorial (int x){ if (x==0) return 1; long ans =x; for (int i=x-1; i>=1; i--){ ans*=i; ans%=mod; } return ans; } static long mod =1000000007L; static long power2 (long a, long b){ long res=1; while (b>0){ if ((b&1)== 1){ res= (res * a % mod)%mod; } a=(a%mod * a%mod)%mod; b=b>>1; } return res; } static boolean []sieveOfEratosthenes(int n) { boolean prime[] = new boolean[n+1]; for(int i=0;i<=n;i++) prime[i] = true; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { for(int i = p*p; i <= n; i += p) prime[i] = false; } } return prime; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static void sortLong(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static long gcd (long n, long m){ if (m==0) return n; else return gcd(m, n%m); } static class Pair implements Comparable<Pair>{ int x,y; private static final int hashMultiplier = BigInteger.valueOf(new Random().nextInt(1000) + 100).nextProbablePrime().intValue(); public Pair(int x, int y){ this.x = x; this.y = y; } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair pii = (Pair) o; if (x != pii.x) return false; return y == pii.y; } public int hashCode() { return hashMultiplier * x + y; } public int compareTo(Pair o){ if (this.x==o.x) return Integer.compare(this.y,o.y); else return Integer.compare(this.x,o.x); } // this.x-o.x is ascending } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
bebc5674a182d09a73f2801c4f633cdf
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; // BEFORE 31ST MARCH 2022 !! //MAX RATING EVER ACHIEVED-1622(LETS SEE WHEN WILL I GET TO CHANGE THIS) ////*************************************************************************** /* public class E_Gardener_and_Tree implements Runnable{ public static void main(String[] args) throws Exception { new Thread(null, new E_Gardener_and_Tree(), "E_Gardener_and_Tree", 1<<28).start(); } public void run(){ WRITE YOUR CODE HERE!!!! JUST WRITE EVERYTHING HERE WHICH YOU WRITE IN MAIN!!! } } */ /////************************************************************************** public class C_Line_Empire{ public static void main(String[] args) { FastScanner s= new FastScanner(); //PrintWriter out=new PrintWriter(System.out); //end of program //out.println(answer); //out.close(); StringBuilder res = new StringBuilder(); int t=s.nextInt(); int p=0; while(p<t){ int n=s.nextInt(); long a=s.nextLong(); long b=s.nextLong(); n++; long array[]= new long[n]; for(int i=1;i<n;i++){ array[i]=s.nextLong(); } long nice[]= new long[n]; nice[n-1]=0; for(int i=n-2;i>=0;i--){ long hh=(array[i+1]-array[i]); long yo=n-i-1; hh=(hh*yo); long yoyo=hh+nice[i+1]; nice[i]=yoyo; // System.out.print("nn "+nice[i]); } long ans=Long.MAX_VALUE; long till=0; for(int i=0;i<n;i++){ long yoyo=b*nice[i]; long yoyo2=till+yoyo; ans=Math.min(ans,yoyo2); if(i+1<n){ long hh=array[i+1]-array[i]; hh=(hh*(a+b)); till+=hh; } } res.append(ans+" \n"); p++; } System.out.println(res); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(nextToken()); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } } static long modpower(long x, long y, long p) { long res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p if (x == 0) return 0; // In case x is divisible by p; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } // SIMPLE POWER FUNCTION=> static long power(long x, long y) { long res = 1; // Initialize result while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0) res = res * x; // y must be even now y = y >> 1; // y = y/2 x = x * x; // Change x to x^2 } return res; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
97130245cb87b2ec154b321818df76a3
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.io.*; import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; /* */ public class C { public static void main(String[] args) { FastReader sc = new FastReader(); int t = sc.nextInt(); while (t-- > 0) { int n, a, b; n = sc.nextInt() + 1; a = sc.nextInt(); b = sc.nextInt(); long aa[] = new long[n]; for (int i = 1; i < n; i++) aa[i] = sc.nextLong(); long sum = 0; for (int i = 1; i < n; ++i) { sum += aa[i]; } long ans = help(aa,n,a,b,sum); System.out.println(ans); } } public static long help(long[]aa,int n,int a,int b,long sum) { long ans = Long.MAX_VALUE; for (int i = 0; i < n; ++i) { sum -= aa[i]; long now = (a + b) * aa[i]; now = now + (sum - (n - i - 1) * aa[i]) * b; ans = min(ans, now); } return ans; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } int[] readArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(next()); } return a; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void reverse(int[] a) { for (int i = 0; i < a.length / 2; i++) { int temp = a[i]; a[i] = a[a.length - i - 1]; a[a.length - i - 1] = temp; } } static void debug(int[] arr) { for (int i = 0; i < arr.length; ++i) System.out.print(arr[i] + " "); System.out.println(); } static void debug(int[][] arr) { for (int i = 0; i < arr.length; ++i) { for (int j = 0; j < arr[0].length; ++j) System.out.print(arr[i][j] + " "); System.out.println(); } System.out.println(); } static void debug(long[] arr) { for (int i = 0; i < arr.length; ++i) System.out.print(arr[i] + " "); System.out.println(); } static void debug(long[][] arr) { for (int i = 0; i < arr.length; ++i) { for (int j = 0; j < arr[0].length; ++j) System.out.print(arr[i][j] + " "); System.out.println(); } System.out.println(); } static int MOD = (int) (1e9 + 7); static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static void debug(ArrayList<Integer> arr) { for (int i = 0; i < arr.size(); i++) { System.out.print(arr.get(i) + " "); } System.out.println(); } static void sieveOfEratosthenes(int n) { boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { if (prime[p] == true) { for (int i = p * p; i <= n; i += p) prime[i] = false; } } for (int i = 2; i <= n; i++) { // if (prime[i] == true) // add it to HashSet } } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static boolean isPalindrome(String s) { for (int i = 0, j = s.length() - 1; i < j; i++, j--) { if (s.charAt(i) != s.charAt(j)) return false; } return true; } /* * * if RTE inside for loop: - check for increment/decrement in loop, (i++,i--) if * after custom sorting an array using lamda , numbers are messed up - check the * order in which input is taken * */ }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
983fb4fde74d5fe787ac3e6dfecac2de
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class Main { //--------------------------INPUT READER---------------------------------// static class fs { public BufferedReader br; StringTokenizer st = new StringTokenizer(""); public fs() { this(System.in); } public fs(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String ns() { return next(); } int[] na(long nn) { int n = (int) nn; int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } long[] nal(long nn) { int n = (int) nn; long[] l = new long[n]; for(int i = 0; i < n; i++) l[i] = nl(); return l; } } //-----------------------------------------------------------------------// //---------------------------PRINTER-------------------------------------// static class Printer { static PrintWriter w; public Printer() {this(System.out);} public Printer(OutputStream os) { w = new PrintWriter(os); } public void p(int i) {w.println(i);} public void p(long l) {w.println(l);} public void p(double d) {w.println(d);} public void p(String s) { w.println(s);} public void pr(int i) {w.print(i);} public void pr(long l) {w.print(l);} public void pr(double d) {w.print(d);} public void pr(String s) { w.print(s);} public void pl() {w.println();} public void close() {w.close();} } //-----------------------------------------------------------------------// //--------------------------VARIABLES------------------------------------// static fs sc = new fs(); static OutputStream outputStream = System.out; static Printer w = new Printer(outputStream); static long lma = Long.MAX_VALUE, lmi = Long.MIN_VALUE; static int ima = Integer.MAX_VALUE, imi = Integer.MIN_VALUE; static long mod = 1000000007; //-----------------------------------------------------------------------// //--------------------------ADMIN_MODE-----------------------------------// private static void ADMIN_MODE() throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { w = new Printer(new FileOutputStream("output.txt")); sc = new fs(new FileInputStream("input.txt")); } } //-----------------------------------------------------------------------// //----------------------------START--------------------------------------// public static void main(String[] args) throws IOException { ADMIN_MODE(); int t = sc.ni();while(t-->0) solve(); w.close(); } static void solve() throws IOException { int n = sc.ni(); long a = sc.ni(), b = sc.ni(); long[] arr = new long[n+1]; for(int i = 1; i <= n; i++) { arr[i] = sc.nl(); } long[] suff = new long[n+1]; suff[n] = arr[n]; for(int i = n-1; i > 0; i--) { suff[i] = suff[i+1]+arr[i]; } int at = 0, target = 1, check = 0; long cost = 0; while(target <= n) { int numberLeft = n - target + 1; long withoutDistance, withoutCost; // without withoutDistance = suff[target] - (numberLeft * arr[at]); withoutCost = withoutDistance * b; // with long withDistance, withCost; withDistance = suff[target] - (numberLeft * arr[check]); withCost = withDistance * b + ((arr[check]-arr[at]) * a); if(withoutCost > withCost) { cost += (arr[check]-arr[at]) * a; at = check; } long distance = arr[target] - arr[at]; long currCost = distance * b; cost += currCost; check = target; target++; } w.p(cost); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
74b929ae2c1b8de6742f1327acf6bf29
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.StreamTokenizer; import java.math.BigInteger; import static java.lang.System.out; import static java.lang.Math.*; import java.util.*; public class Main { public static void main(String[] args) { Read in = new Read(System.in); int tN = in.nextInt(); while(tN > 0) { tN--; int n=in.nextInt(); long a = in.nextInt(); long b = in.nextInt(); int[] w = new int [n+1]; for(int i = 1; i <= n;i++) { w[i] = in.nextInt(); } long ans = b*w[1]; boolean f = true; int now = 0; for(int i = 2;i <= n;i++) { if( a*(w[i-1]-now) >= b*(w[i-1]-now)*(n-i+1)) { f=false; } if(f) { ans+=a*(w[i-1]-now) ; now = w[i-1]; } ans +=b*(w[i]-now); } out.println(ans); } } static class Read {//自定义快读 Read public BufferedReader reader; public StringTokenizer tokenizer; public Read(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public String nextLine() { String str = null; try { str = reader.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public Double nextDouble() { return Double.parseDouble(next()); } public BigInteger nextBigInteger() { return new BigInteger(next()); } } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long gcd(long a, long b) { return (a % b == 0) ? b : gcd(b, a % b); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
f19323530b43ea9999ca357a3563098e
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String args[]) { FastReader input=new FastReader(); PrintWriter out=new PrintWriter(System.out); int T=input.nextInt(); while(T-->0) { int n=input.nextInt(); int a=input.nextInt(); int b=input.nextInt(); int arr[]=new int[n+1]; for(int i=1;i<=n;i++) { int x=input.nextInt(); arr[i]=x; } long sufSum[]=new long[n+1]; long sum=0; for(int i=n;i>=0;i--) { sum+=arr[i]; sufSum[i]=sum; } long min=Long.MAX_VALUE; for(int i=0;i<=n-1;i++) { long val=0; val+=(long)(a+b)*(long)arr[i]; long v1=sufSum[i+1]; v1-=(long)(n-i)*(long)(arr[i]); v1*=b; val+=v1; min=Math.min(min,val); } out.println(min); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
0cb73e2cbfa13d2827cedd09ac601dfa
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; /** * @author Naitik * */ public class A { static FastReader sc=new FastReader(); static long dp[][][]; static int mod=998244353;//1000000007; // static int mod=1000000009; static int max; static int bit[]; static long ans; static long seg[]; static long A[]; static HashMap<Integer,Integer> map; static ArrayList<Integer> l=new ArrayList<Integer>(); public static void main(String[] args) { //CHECK FOR N=1 //CHECK FOR N=1 PrintWriter out=new PrintWriter(System.out); //StringBuffer sb=new StringBuffer(""); int ttt=1; ttt =i(); outer :while (ttt-- > 0) { int n=i(); long a=i(),b=i(); long A[]=inputL(n); long S[]=suffix(A); long ans=0; ArrayList<Long> l=new ArrayList<Long>(); long pv=0; long curr=0; long left=0; for(int i=0;i<n;i++) { long len=n-i; long y=b*(S[i]-len*pv)+curr+left; l.add(y); pv=A[i]; left+=b*(A[i]-(i>0?A[i-1]:0)); curr=a*A[i]; } l.sort(null); System.out.println(l.get(0)); } out.close(); // System.out.println(sb.toString()); //CHECK FOR N=1 //CHECK FOR M=0 //CHECK FOR N=1 //CHECK FOR M=0 } static class Pair implements Comparable<Pair> { int x; int y; Pair(int x,int y){ this.x=x; this.y=y; } @Override public int compareTo(Pair o) { if(this.x>o.x) return 1; else if(this.x<o.x) return -1; else { if(this.y>o.y) return -1; else if(this.y<o.y) return 1; else return 0; } } /* FOR TREE MAP PAIR USE */ // public int compareTo(Pair o) { // if (x > o.x) { // return 1; // } // if (x < o.x) { // return -1; // } // if (y > o.y) { // return 1; // } // if (y < o.y) { // return -1; // } // return 0; // } // public int hashCode() // { // final int temp = 14; // int ans = 1; // ans =x*31+y*13; // return ans; // } // // // Equal objects must produce the same // // hash code as long as they are equal // @Override // public boolean equals(Object o) // { // if (this == o) { // return true; // } // if (o == null) { // return false; // } // if (this.getClass() != o.getClass()) { // return false; // } // Pair other = (Pair)o; // if (this.x != other.x || this.y!=other.y) { // return false; // } // return true; // } } //FRENWICK TREE static void update(int i, int x){ for(; i < bit.length; i += (i&-i)) bit[i] += x; } static int sum(int i){ int ans = 0; for(; i > 0; i -= (i&-i)) ans += bit[i]; return ans; } //END static void add(int v) { if(!map.containsKey(v)) { map.put(v, 1); } else { map.put(v, map.get(v)+1); } } static void remove(int v) { if(map.containsKey(v)) { map.put(v, map.get(v)-1); if(map.get(v)==0) map.remove(v); } } static int[] copy(int A[]) { int B[]=new int[A.length]; for(int i=0;i<A.length;i++) { B[i]=A[i]; } return B; } static long[] copy(long A[]) { long B[]=new long[A.length]; for(int i=0;i<A.length;i++) { B[i]=A[i]; } return B; } static int[] input(int n) { int A[]=new int[n]; for(int i=0;i<n;i++) { A[i]=sc.nextInt(); } return A; } static long[] inputL(int n) { long A[]=new long[n]; for(int i=0;i<n;i++) { A[i]=sc.nextLong(); } return A; } static String[] inputS(int n) { String A[]=new String[n]; for(int i=0;i<n;i++) { A[i]=sc.next(); } return A; } static long sum(int A[]) { long sum=0; for(int i : A) { sum+=i; } return sum; } static long sum(long A[]) { long sum=0; for(long i : A) { sum+=i; } return sum; } static void reverse(long A[]) { int n=A.length; long B[]=new long[n]; for(int i=0;i<n;i++) { B[i]=A[n-i-1]; } for(int i=0;i<n;i++) A[i]=B[i]; } static void reverse(int A[]) { int n=A.length; int B[]=new int[n]; for(int i=0;i<n;i++) { B[i]=A[n-i-1]; } for(int i=0;i<n;i++) A[i]=B[i]; } static void input(int A[],int B[]) { for(int i=0;i<A.length;i++) { A[i]=sc.nextInt(); B[i]=sc.nextInt(); } } static int[][] input(int n,int m){ int A[][]=new int[n][m]; for(int i=0;i<n;i++) { for(int j=0;j<m;j++) { A[i][j]=i(); } } return A; } static char[][] charinput(int n,int m){ char A[][]=new char[n][m]; for(int i=0;i<n;i++) { String s=s(); for(int j=0;j<m;j++) { A[i][j]=s.charAt(j); } } return A; } static int find(int A[],int a) { if(A[a]==a) return a; return A[a]=find(A, A[a]); } static int max(int A[]) { int max=Integer.MIN_VALUE; for(int i=0;i<A.length;i++) { max=Math.max(max, A[i]); } return max; } static int min(int A[]) { int min=Integer.MAX_VALUE; for(int i=0;i<A.length;i++) { min=Math.min(min, A[i]); } return min; } static long max(long A[]) { long max=Long.MIN_VALUE; for(int i=0;i<A.length;i++) { max=Math.max(max, A[i]); } return max; } static long min(long A[]) { long min=Long.MAX_VALUE; for(int i=0;i<A.length;i++) { min=Math.min(min, A[i]); } return min; } static long [] prefix(long A[]) { long p[]=new long[A.length]; p[0]=A[0]; for(int i=1;i<A.length;i++) p[i]=p[i-1]+A[i]; return p; } static long [] prefix(int A[]) { long p[]=new long[A.length]; p[0]=A[0]; for(int i=1;i<A.length;i++) p[i]=p[i-1]+A[i]; return p; } static long [] suffix(long A[]) { long p[]=new long[A.length]; p[A.length-1]=A[A.length-1]; for(int i=A.length-2;i>=0;i--) p[i]=p[i+1]+A[i]; return p; } static long [] suffix(int A[]) { long p[]=new long[A.length]; p[A.length-1]=A[A.length-1]; for(int i=A.length-2;i>=0;i--) p[i]=p[i+1]+A[i]; return p; } static void fill(int dp[]) { Arrays.fill(dp, -1); } static void fill(int dp[][]) { for(int i=0;i<dp.length;i++) Arrays.fill(dp[i], -1); } static void fill(int dp[][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { Arrays.fill(dp[i][j],-1); } } } static void fill(int dp[][][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { for(int k=0;k<dp[0][0].length;k++) { Arrays.fill(dp[i][j][k],-1); } } } } static void fill(long dp[]) { Arrays.fill(dp, -1); } static void fill(long dp[][]) { for(int i=0;i<dp.length;i++) Arrays.fill(dp[i], -1); } static void fill(long dp[][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { Arrays.fill(dp[i][j],-1); } } } static void fill(long dp[][][][]) { for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { for(int k=0;k<dp[0][0].length;k++) { Arrays.fill(dp[i][j][k],-1); } } } } static int min(int a,int b) { return Math.min(a, b); } static int min(int a,int b,int c) { return Math.min(a, Math.min(b, c)); } static int min(int a,int b,int c,int d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static int max(int a,int b) { return Math.max(a, b); } static int max(int a,int b,int c) { return Math.max(a, Math.max(b, c)); } static int max(int a,int b,int c,int d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long min(long a,long b) { return Math.min(a, b); } static long min(long a,long b,long c) { return Math.min(a, Math.min(b, c)); } static long min(long a,long b,long c,long d) { return Math.min(a, Math.min(b, Math.min(c, d))); } static long max(long a,long b) { return Math.max(a, b); } static long max(long a,long b,long c) { return Math.max(a, Math.max(b, c)); } static long max(long a,long b,long c,long d) { return Math.max(a, Math.max(b, Math.max(c, d))); } static long power(long x, long y, long p) { if(y==0) return 1; if(x==0) return 0; long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static void print(int A[]) { for(int i : A) { System.out.print(i+" "); } System.out.println(); } static void print(long A[]) { for(long i : A) { System.out.print(i+" "); } System.out.println(); } static long mod(long x) { return ((x%mod + mod)%mod); } static String reverse(String s) { StringBuffer p=new StringBuffer(s); p.reverse(); return p.toString(); } static int i() { return sc.nextInt(); } static String s() { return sc.next(); } static long l() { return sc.nextLong(); } static void sort(int[] A){ int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i){ int tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static void sort(long[] A){ int n = A.length; Random rnd = new Random(); for(int i=0; i<n; ++i){ long tmp = A[i]; int randomPos = i + rnd.nextInt(n-i); A[i] = A[randomPos]; A[randomPos] = tmp; } Arrays.sort(A); } static String sort(String s) { Character ch[]=new Character[s.length()]; for(int i=0;i<s.length();i++) { ch[i]=s.charAt(i); } Arrays.sort(ch); StringBuffer st=new StringBuffer(""); for(int i=0;i<s.length();i++) { st.append(ch[i]); } return st.toString(); } static HashMap<Integer,Integer> hash(int A[]){ HashMap<Integer,Integer> map=new HashMap<Integer, Integer>(); for(int i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static TreeMap<Integer,Integer> tree(int A[]){ TreeMap<Integer,Integer> map=new TreeMap<Integer, Integer>(); for(int i : A) { if(map.containsKey(i)) { map.put(i, map.get(i)+1); } else { map.put(i, 1); } } return map; } static boolean prime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static boolean prime(long n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; double sq=Math.sqrt(n); for (int i = 5; i <= sq; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
c37f88934b7d7db20c69761e0bca17d2
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class Main { static long startTime = System.currentTimeMillis(); // for global initializations and methods starts here // global initialisations and methods end here static void run() { boolean tc = true; AdityaFastIO r = new AdityaFastIO(); //FastReader r = new FastReader(); try (OutputStream out = new BufferedOutputStream(System.out)) { //long startTime = System.currentTimeMillis(); int testcases = tc ? r.ni() : 1; int tcCounter = 1; // Hold Here Sparky------------------->>> // Solution Starts Here start: while (testcases-- > 0) { int n = r.ni(); long a = r.nl(); long b = r.nl(); List<Long> al = new ArrayList<>(); al.add(0L); for (int i = 0; i < n; i++) al.add(r.nl()); //out.write((al + " ").getBytes()); long sum = 0; for (long ele : al) sum += ele; long ans = Long.MAX_VALUE; for (int i = 0; i < n + 1; i++) { long get = al.get(i); long ele = (a + b) * get; sum -= get; long can = sum - (n - i) * get; ele += can * b; ans = Math.min(ans, ele); } out.write((ans + " ").getBytes()); out.write(("\n").getBytes()); } // Solution Ends Here } catch (IOException e) { e.printStackTrace(); } } static class AdityaFastIO { final private int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public BufferedReader br; public StringTokenizer st; public AdityaFastIO() { br = new BufferedReader(new InputStreamReader(System.in)); din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public AdityaFastIO(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public String readLine() throws IOException { byte[] buf = new byte[100000001]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int ni() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nl() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nd() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws Exception { run(); } static int[] readIntArr(int n, AdityaFastIO r) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = r.ni(); return arr; } static long[] readLongArr(int n, AdityaFastIO r) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = r.nl(); return arr; } static List<Integer> readIntList(int n, AdityaFastIO r) throws IOException { List<Integer> al = new ArrayList<>(); for (int i = 0; i < n; i++) al.add(r.ni()); return al; } static List<Long> readLongList(int n, AdityaFastIO r) throws IOException { List<Long> al = new ArrayList<>(); for (int i = 0; i < n; i++) al.add(r.nl()); return al; } static long mod = 998244353; static long modInv(long base, long e) { long result = 1; base %= mod; while (e > 0) { if ((e & 1) > 0) result = result * base % mod; base = base * base % mod; e >>= 1; } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int ni() { return Integer.parseInt(word()); } long nl() { return Long.parseLong(word()); } double nd() { return Double.parseDouble(word()); } } static int MOD = (int) (1e9 + 7); static long powerLL(long x, long n) { long result = 1; while (n > 0) { if (n % 2 == 1) result = result * x % MOD; n = n / 2; x = x * x % MOD; } return result; } static long powerStrings(int i1, int i2) { String sa = String.valueOf(i1); String sb = String.valueOf(i2); long a = 0, b = 0; for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD; for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1); return powerLL(a, b); } static long gcd(long a, long b) { if (a == 0) return b; else return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long lower_bound(int[] arr, int x) { int l = -1, r = arr.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (arr[m] >= x) r = m; else l = m; } return r; } static int upper_bound(int[] arr, int x) { int l = -1, r = arr.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (arr[m] <= x) l = m; else r = m; } return l + 1; } static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) { graph.get(edge1).add(edge2); graph.get(edge2).add(edge1); } public static class Pair implements Comparable<Pair> { int first; int second; public Pair(int first, int second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(Pair o) { // TODO Auto-generated method stub if (this.first != o.first) return (int) (this.first - o.first); else return (int) (this.second - o.second); } } public static class PairC<X, Y> implements Comparable<PairC> { X first; Y second; public PairC(X first, Y second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(PairC o) { // TODO Auto-generated method stub return o.compareTo((PairC) first); } } static boolean isCollectionsSorted(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false; return true; } static boolean isCollectionsSortedReverseOrder(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false; return true; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
7d582f191994872b66f1c1c367ba62c5
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.StringTokenizer; public class Main { public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); for (int ca = 1; ca <= t; ca++) { int n = in.nextInt(), a = in.nextInt(), b = in.nextInt(); int[] kingdoms = new int[n + 10]; long sum = 0; for (int i = 1; i <= n; i++) { kingdoms[i] = in.nextInt(); sum += ((long) kingdoms[i] * b); } long result = sum; for (int i = 1; i <= n; i++) { int diff = kingdoms[i] - kingdoms[i - 1]; sum -= (long) diff * (n - i) * b; sum += (long) diff * a; result = Math.min(result, sum); } out.println(result); } out.close(); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
8df491eec3870bdc75623b25f4b0cf17
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author real */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); CLineEmpire solver = new CLineEmpire(); int testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class CLineEmpire { public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); long a = in.nextLong(); long b = in.nextLong(); long ar[] = new long[n + 1]; for (int i = 1; i <= n; i++) { ar[i] = in.nextInt(); } long min = Long.MAX_VALUE; long cost = 0; for (int i = n; i >= 1; i--) { long ans = (a + b) * ar[i]; min = Math.min(min, ans + cost * b); cost = cost + (ar[i] - ar[i - 1]) * (n - i + 1); } min = Math.min(min, cost * b); out.println(min); } } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar; private int snumChars; public InputReader(InputStream st) { this.stream = st; } public int read() { //*-*------clare-----anjlika--- //remeber while comparing 2 non primitive data type not to use == //remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort //again silly mistakes ,yr kb tk krta rhega ye mistakes //try to write simple codes ,break it into simple things //knowledge>rating /* public class Main implements Runnable{ public static void main(String[] args) { new Thread(null,new Main(),"Main",1<<26).start(); } public void run() { InputStream inputStream = System.in; OutputStream outputStream = System.out; libraries.InputReader in = new libraries.InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC();//chenge the name of task solver.solve(1, in, out); out.close(); } */ if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public String next() { return readString(); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
73856c38a5476169bf030f10dde811fb
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import org.omg.PortableInterceptor.INACTIVE; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Scanner; import java.util.StringTokenizer; public class C { static StringTokenizer st; static PrintWriter pw; static BufferedReader br; static String nextToken() { try { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } static int nextInt() { return Integer.parseInt(nextToken()); } static long nextLong() { return Long.parseLong(nextToken()); } public static void main(String[] args) { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(System.out); run(); pw.close(); } private static void run() { int t = nextInt(); for (int i = 0; i < t; i++) { int n = nextInt(); long a = nextLong(); long b = nextLong(); long x[] = new long[n]; for (int j = 0; j < n; j++) { x[j] = nextLong(); } long ans = 0; long place = 0; for (int j = 0; j < n; j++) { ans += (x[j] - place) * b; if ((n - j - 1) * b > a) { ans += a * (x[j] - place); place = x[j]; } } pw.println(ans); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
8836aabb49d3b58c1be0a330cfce4be5
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; public class C { FastScanner in; PrintWriter out; boolean systemIO = true; public class DSU { int[] sz; int[] p; public DSU(int n) { sz = new int[n]; p = new int[n]; for (int i = 0; i < p.length; i++) { p[i] = i; sz[i] = 1; } } public int get(int x) { if (x == p[x]) { return x; } int par = get(p[x]); p[x] = par; return par; } public boolean unite(int a, int b) { int pa = get(a); int pb = get(b); if (pa == pb) { return false; } if (sz[pa] < sz[pb]) { p[pa] = pb; sz[pb] += sz[pa]; } else { p[pb] = pa; sz[pa] += sz[pb]; } return true; } } public class SegmentTreeAdd { int pow; long[] max; long[] delta; boolean[] flag; public SegmentTreeAdd(long[] a) { pow = 1; while (pow < a.length) { pow *= 2; } flag = new boolean[2 * pow]; max = new long[2 * pow]; delta = new long[2 * pow]; for (int i = 0; i < max.length; i++) { max[i] = Long.MIN_VALUE / 2; } for (int i = 0; i < a.length; i++) { max[pow + i] = a[i]; } for (int i = pow - 1; i > 0; i--) { max[i] = f(max[2 * i], max[2 * i + 1]); } } public long get(int v, int tl, int tr, int l, int r) { push(v, tl, tr); if (l > r) { return Long.MIN_VALUE / 2; } if (l == tl && r == tr) { return max[v]; } int tm = (tl + tr) / 2; return f(get(2 * v, tl, tm, l, Math.min(r, tm)), get(2 * v + 1, tm + 1, tr, Math.max(l, tm + 1), r)); } public void set(int v, int tl, int tr, int l, int r, long x) { push(v, tl, tr); if (l > tr || r < tl) { return; } if (l <= tl && r >= tr) { delta[v] += x; flag[v] = true; push(v, tl, tr); return; } int tm = (tl + tr) / 2; set(2 * v, tl, tm, l, r, x); set(2 * v + 1, tm + 1, tr, l, r, x); max[v] = f(max[2 * v], max[2 * v + 1]); } public void push(int v, int tl, int tr) { if (flag[v]) { if (v < pow) { flag[2 * v] = true; flag[2 * v + 1] = true; delta[2 * v] += delta[v]; delta[2 * v + 1] += delta[v]; } flag[v] = false; max[v] += delta[v]; delta[v] = 0; } } public long f(long a, long b) { return Math.max(a, b); } } public class SegmentTreeSet { int pow; int[] sum; int[] delta; boolean[] flag; public SegmentTreeSet(int[] a) { pow = 1; while (pow < a.length) { pow *= 2; } flag = new boolean[2 * pow]; sum = new int[2 * pow]; delta = new int[2 * pow]; for (int i = 0; i < a.length; i++) { sum[pow + i] = a[i]; } for (int i = pow - 1; i > 0; i--) { sum[i] = f(sum[2 * i], sum[2 * i + 1]); } } public int get(int v, int tl, int tr, int l, int r) { push(v, tl, tr); if (l > r) { return 0; } if (l == tl && r == tr) { return sum[v]; } int tm = (tl + tr) / 2; return f(get(2 * v, tl, tm, l, Math.min(r, tm)), get(2 * v + 1, tm + 1, tr, Math.max(l, tm + 1), r)); } public void set(int v, int tl, int tr, int l, int r, int x) { push(v, tl, tr); if (l > tr || r < tl) { return; } if (l <= tl && r >= tr) { delta[v] = x; flag[v] = true; push(v, tl, tr); return; } int tm = (tl + tr) / 2; set(2 * v, tl, tm, l, r, x); set(2 * v + 1, tm + 1, tr, l, r, x); sum[v] = f(sum[2 * v], sum[2 * v + 1]); } public void push(int v, int tl, int tr) { if (flag[v]) { if (v < pow) { flag[2 * v] = true; flag[2 * v + 1] = true; delta[2 * v] = delta[v]; delta[2 * v + 1] = delta[v]; } flag[v] = false; sum[v] = delta[v] * (tr - tl + 1); } } public int f(int a, int b) { return a + b; } } public class Pair implements Comparable<Pair> { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } public Pair clone() { return new Pair(x, y); } public String toString() { return x + " " + y; } @Override public int compareTo(Pair o) { if (x > o.x) { return 1; } if (x < o.x) { return -1; } if (y > o.y) { return 1; } if (y < o.y) { return -1; } return 0; } } long mod = 1000000007; Random random = new Random(); public void shuffle(Pair[] a) { for (int i = 0; i < a.length; i++) { int x = random.nextInt(i + 1); Pair t = a[x]; a[x] = a[i]; a[i] = t; } } public void sort(int[][] a) { for (int i = 0; i < a.length; i++) { Arrays.sort(a[i]); } } public void add(Map<Long, Integer> map, long l) { if (map.containsKey(l)) { map.put(l, map.get(l) + 1); } else { map.put(l, 1); } } public void remove(Map<Integer, Integer> map, Integer s) { if (map.get(s) > 1) { map.put(s, map.get(s) - 1); } else { map.remove(s); } } long max = Long.MAX_VALUE / 2; double eps = 1e-10; public int signum(double x) { if (x > eps) { return 1; } if (x < -eps) { return -1; } return 0; } public long abs(long x) { return x < 0 ? -x : x; } public long min(long x, long y) { return x < y ? x : y; } public long max(long x, long y) { return x > y ? x : y; } public long gcd(long x, long y) { while (y > 0) { long c = y; y = x % y; x = c; } return x; } public final Vector ZERO = new Vector(0, 0); // public class Vector implements Comparable<Vector> { // long x; // long y; // int type; // int number; // // public Vector() { // x = 0; // y = 0; // } // // public Vector(long x, long y, int type, int number) { // this.x = x; // this.y = y; // this.type = type; // this.number = number; // } // // public Vector(long x, long y) { // // } // // public Vector(Point begin, Point end) { // this(end.x - begin.x, end.y - begin.y); // } // // public void orient() { // if (x < 0) { // x = -x; // y = -y; // } // if (x == 0 && y < 0) { // y = -y; // } // } // // public void normalize() { // long gcd = gcd(abs(x), abs(y)); // x /= gcd; // y /= gcd; // } // // public String toString() { // return x + " " + y; // } // // public boolean equals(Vector v) { // return x == v.x && y == v.y; // } // // public boolean collinear(Vector v) { // return cp(this, v) == 0; // } // // public boolean orthogonal(Vector v) { // return dp(this, v) == 0; // } // // public Vector ort(Vector v) { // return new Vector(-y, x); // } // // public Vector add(Vector v) { // return new Vector(x + v.x, y + v.y); // } // // public Vector multiply(long c) { // return new Vector(c * x, c * y); // } // // public int quater() { // if (x > 0 && y >= 0) { // return 1; // } // if (x <= 0 && y > 0) { // return 2; // } // if (x < 0) { // return 3; // } // return 0; // } // // public long len2() { // return x * x + y * y; // } // // @Override // public int compareTo(Vector o) { // if (quater() != o.quater()) { // return quater() - o.quater(); // } // return signum(cp(o, this)); // } // } // public long dp(Vector v1, Vector v2) { // return v1.x * v2.x + v1.y * v2.y; // } // // public long cp(Vector v1, Vector v2) { // return v1.x * v2.y - v1.y * v2.x; // } // public class Line implements Comparable<Line> { // Point p; // Vector v; // // public Line(Point p, Vector v) { // this.p = p; // this.v = v; // } // // public Line(Point p1, Point p2) { // if (p1.compareTo(p2) < 0) { // p = p1; // v = new Vector(p1, p2); // } else { // p = p2; // v = new Vector(); // } // } // // public boolean collinear(Line l) { // return v.collinear(l.v); // } // // public boolean inLine(Point p) { // return hv(p) == 0; // } // // public boolean inSegment(Point p) { // if (!inLine(p)) { // return false; // } // Point p1 = p; // Point p2 = p.add(v); // return p1.x <= p.x && p.x <= p2.x && min(p1.y, p2.y) <= p.y && p.y <= // max(p1.y, p2.y); // } // // public boolean equalsSegment(Line l) { // return p.equals(l.p) && v.equals(l.v); // } // // public boolean equalsLine(Line l) { // return collinear(l) && inLine(l.p); // } // // public long hv(Point p) { // Vector v1 = new Vector(this.p, p); // return cp(v, v1); // } // // public double h(Point p) { // Vector v1 = new Vector(this.p, p); // return cp(v, v1) / Math.sqrt(v.len2()); // } // // public long[] intersectLines(Line l) { // if (collinear(l)) { // return null; // } // long[] ans = new long[4]; // // return ans; // } // // public long[] intersectSegment(Line l) { // long[] ans = intersectLines(l); // if (ans == null) { // return null; // } // Point p1 = p; // Point p2 = p.add(v); // boolean f1 = p1.x * ans[1] <= ans[0] && ans[0] <= p2.x * ans[1] && min(p1.y, // p2.y) * ans[3] <= ans[2] // && ans[2] <= max(p1.y, p2.y) * ans[3]; // p1 = l.p; // p2 = l.p.add(v); // boolean f2 = p1.x * ans[1] <= ans[0] && ans[0] <= p2.x * ans[1] && min(p1.y, // p2.y) * ans[3] <= ans[2] // && ans[2] <= max(p1.y, p2.y) * ans[3]; // if (!f1 || !f2) { // return null; // } // return ans; // } // // @Override // public int compareTo(Line o) { // return v.compareTo(o.v); // } // } public class Rect { long x1; long x2; long y1; long y2; int number; public Rect(long x1, long x2, long y1, long y2, int number) { this.x1 = x1; this.x2 = x2; this.y1 = y1; this.y2 = y2; this.number = number; } } public static class Fenvik { int[] t; public Fenvik(int n) { t = new int[n]; } public void add(int x, int delta) { for (int i = x; i < t.length; i = (i | (i + 1))) { t[i] += delta; } } private int sum(int r) { int ans = 0; int x = r; while (x >= 0) { ans += t[x]; x = (x & (x + 1)) - 1; } return ans; } public int sum(int l, int r) { return sum(r) - sum(l - 1); } } public class SegmentTreeMaxSum { int pow; int[] sum; int[] maxPrefSum; int[] maxSufSum; int[] maxSum; public SegmentTreeMaxSum(int[] a) { pow = 1; while (pow < a.length) { pow *= 2; } sum = new int[2 * pow]; maxPrefSum = new int[2 * pow]; maxSum = new int[2 * pow]; maxSufSum = new int[2 * pow]; for (int i = 0; i < a.length; i++) { sum[pow + i] = a[i]; maxSum[pow + i] = Math.max(a[i], 0); maxPrefSum[pow + i] = maxSum[pow + i]; maxSufSum[pow + i] = maxSum[pow + i]; } for (int i = pow - 1; i > 0; i--) { update(i); } } public int[] get(int v, int tl, int tr, int l, int r) { if (r <= tl || l >= tr) { int[] ans = { 0, 0, 0, 0 }; return ans; } if (l <= tl && r >= tr) { int[] ans = { maxPrefSum[v], maxSum[v], maxSufSum[v], sum[v] }; return ans; } int tm = (tl + tr) / 2; int[] left = get(2 * v, tl, tm, l, r); int[] right = get(2 * v + 1, tm, tr, l, r); int[] ans = { Math.max(left[0], right[0] + left[3]), Math.max(left[1], Math.max(right[1], left[2] + right[0])), Math.max(right[2], left[2] + right[3]), left[3] + right[3] }; return ans; } public void set(int v, int tl, int tr, int x, int value) { if (v >= pow) { sum[v] = value; maxSum[v] = Math.max(value, 0); maxPrefSum[v] = maxSum[v]; maxSufSum[v] = maxSum[v]; return; } int tm = (tl + tr) / 2; if (x < tm) { set(2 * v, tl, tm, x, value); } else { set(2 * v + 1, tm, tr, x, value); } update(v); } public void update(int i) { sum[i] = f(sum[2 * i], sum[2 * i + 1]); maxSum[i] = Math.max(maxSum[2 * i], Math.max(maxSum[2 * i + 1], maxSufSum[2 * i] + maxPrefSum[2 * i + 1])); maxPrefSum[i] = Math.max(maxPrefSum[2 * i], maxPrefSum[2 * i + 1] + sum[2 * i]); maxSufSum[i] = Math.max(maxSufSum[2 * i + 1], maxSufSum[2 * i] + sum[2 * i + 1]); } public int f(int a, int b) { return a + b; } } public class Point implements Comparable<Point> { double x; double y; public Point() { x = 0; y = 0; } public Point(double x, double y) { this.x = x; this.y = y; } public String toString() { return x + " " + y; } public boolean equals(Point p) { return x == p.x && y == p.y; } public double dist2() { return x * x + y * y; } public Point add(Point v) { return new Point(x + v.x, y + v.y); } @Override public int compareTo(Point o) { int z = signum(x + y - o.x - o.y); if (z != 0) { return z; } return signum(x - o.x) != 0 ? signum(x - o.x) : signum(y - o.y); } } public class Circle implements Comparable<Circle> { Point p; int r; public Circle(Point p, int r) { this.p = p; this.r = r; } public Point angle() { double z = r / sq2; z -= z % 1e-5; return new Point(p.x - z, p.y - z); } public boolean inside(Point p) { return hypot2(p.x - this.p.x, p.y - this.p.y) <= sq(r); } @Override public int compareTo(Circle o) { Point a = angle(); Point oa = o.angle(); int z = signum(a.x + a.y - oa.x - oa.y); if (z != 0) { return z; } return signum(a.y - oa.y); } } public class Fraction implements Comparable<Fraction> { long x; long y; public Fraction(long x, long y, boolean needNorm) { this.x = x; this.y = y; if (y < 0) { this.x *= -1; this.y *= -1; } if (needNorm) { long gcd = gcd(this.x, this.y); this.x /= gcd; this.y /= gcd; } } public Fraction clone() { return new Fraction(x, y, false); } public String toString() { return x + "/" + y; } @Override public int compareTo(Fraction o) { long res = x * o.y - y * o.x; if (res > 0) { return 1; } if (res < 0) { return -1; } return 0; } } public double sq(double x) { return x * x; } public long sq(long x) { return x * x; } public double hypot2(double x, double y) { return sq(x) + sq(y); } public long hypot2(long x, long y) { return sq(x) + sq(y); } public boolean kuhn(int v, int[][] edge, boolean[] used, int[] mt) { used[v] = true; for (int u : edge[v]) { if (mt[u] < 0 || (!used[mt[u]] && kuhn(mt[u], edge, used, mt))) { mt[u] = v; return true; } } return false; } public int matching(int[][] edge) { int n = edge.length; int[] mt = new int[n]; Arrays.fill(mt, -1); boolean[] used = new boolean[n]; int ans = 0; for (int i = 0; i < n; i++) { if (!used[i] && kuhn(i, edge, used, mt)) { Arrays.fill(used, false); ans++; } } return ans; } double sq2 = Math.sqrt(2); int small = 20; public class MyStack { int[] st; int sz; public MyStack(int n) { this.st = new int[n]; sz = 0; } public boolean isEmpty() { return sz == 0; } public int peek() { return st[sz - 1]; } public int pop() { sz--; return st[sz]; } public void clear() { sz = 0; } public void add(int x) { st[sz++] = x; } public int get(int x) { return st[x]; } } public int[][] readGraph(int n, int m) { int[][] to = new int[n][]; int[] sz = new int[n]; int[] x = new int[m]; int[] y = new int[m]; for (int i = 0; i < m; i++) { x[i] = in.nextInt() - 1; y[i] = in.nextInt() - 1; sz[x[i]]++; sz[y[i]]++; } for (int i = 0; i < to.length; i++) { to[i] = new int[sz[i]]; sz[i] = 0; } for (int i = 0; i < x.length; i++) { to[x[i]][sz[x[i]]++] = y[i]; to[y[i]][sz[y[i]]++] = x[i]; } return to; } public class Pol { double[] coeff; public Pol(double[] coeff) { this.coeff = coeff; } public Pol mult(Pol p) { double[] ans = new double[coeff.length + p.coeff.length - 1]; for (int i = 0; i < ans.length; i++) { for (int j = Math.max(0, i - p.coeff.length + 1); j < coeff.length && j <= i; j++) { ans[i] += coeff[j] * p.coeff[i - j]; } } return new Pol(ans); } public String toString() { String ans = ""; for (int i = 0; i < coeff.length; i++) { ans += coeff[i] + " "; } return ans; } public double value(double x) { double ans = 0; double p = 1; for (int i = 0; i < coeff.length; i++) { ans += coeff[i] * p; p *= x; } return ans; } public double integrate(double r) { Pol p = new Pol(new double[coeff.length + 1]); for (int i = 0; i < coeff.length; i++) { p.coeff[i + 1] = coeff[i] / fact[i + 1]; } return p.value(r); } public double integrate(double l, double r) { return integrate(r) - integrate(l); } } double[] fact = new double[100]; public class SparseTable { int pow; int[] lessPow; int[][] min; public SparseTable(int[] a) { pow = 0; while ((1 << pow) <= a.length) { pow++; } min = new int[pow][a.length]; for (int i = 0; i < a.length; i++) { min[0][i] = a[i]; } for (int i = 1; i < pow; i++) { for (int j = 0; j < a.length; j++) { min[i][j] = min[i - 1][j]; if (j + (1 << (i - 1)) < a.length) { min[i][j] = func(min[i][j], min[i - 1][j + (1 << (i - 1))]); } } } lessPow = new int[a.length + 1]; for (int i = 1; i < lessPow.length; i++) { if (i < (1 << (lessPow[i - 1]) + 1)) { lessPow[i] = lessPow[i - 1]; } else { lessPow[i] = lessPow[i - 1] + 1; } } } public int get(int l, int r) { // [l, r) int p = lessPow[r - l]; return func(min[p][l], min[p][r - (1 << p)]); } public int func(int a, int b) { if (a < b) { return a; } return b; } } public double check(int n, ArrayList<Integer> masks) { int good = 0; for (int colorMask = 0; colorMask < (1 << n); ++colorMask) { int best = 2 << n; int cnt = 0; for (int curMask : masks) { int curScore = 0; for (int i = 0; i < n; ++i) { if (((curMask >> i) & 1) == 1) { if (((colorMask >> i) & 1) == 0) { curScore += 1; } else { curScore += 2; } } } if (curScore < best) { best = curScore; cnt = 1; } else if (curScore == best) { ++cnt; } } if (cnt == 1) { ++good; } } return (double) good / (double) (1 << n); } public int builtin_popcount(int x) { int ans = 0; for (int i = 0; i < 14; i++) { if (((x >> i) & 1) > 0) { ans++; } } return ans; } public int number(int[] x) { int ans = 0; for (int i = 0; i < x.length; i++) { ans *= 3; ans += x[i]; } return ans; } public int[] rotate(int[] x) { int[] ans = { x[2], x[0], x[3], x[1] }; return ans; } int MAX = 100000; // boolean[] b = new boolean[MAX]; int[][] max0 = new int[MAX][2]; int[][] max1 = new int[MAX][2]; int[][] max2 = new int[MAX][2]; int[] index0 = new int[MAX]; int[] index1 = new int[MAX]; int[] p = new int[MAX]; public int place(String s) { if (s.charAt(s.length() - 1) == '1') { return 1; } int number = 16; boolean w = true; boolean a = true; for (int i = 0; i < s.length(); i++) { if (number == 1) { return 2; } if (s.charAt(i) == '1') { if (w) { number /= 2; } else { if (a) { a = false; } else { number /= 2; a = true; } } } else { if (w) { if (number == 16) { w = false; number /= 2; } else { w = false; a = false; } } else { if (number == 8) { if (a) { return 13; } else { return 9; } } else if (number == 4) { if (a) { return 7; } else { return 5; } } else if (a) { return 4; } else { return 3; } } } } return 0; } public class P implements Comparable<P> { Integer x; String s; public P(Integer x, String s) { this.x = x; this.s = s; } @Override public String toString() { return x + " " + s; } @Override public int compareTo(P o) { if (x != o.x) { return x - o.x; } return s.compareTo(o.s); } } public BigInteger prod(int l, int r) { if (l + 1 == r) { return BigInteger.valueOf(l); } int m = (l + r) >> 1; return prod(l, m).multiply(prod(m, r)); } public class Frac { BigInteger p; BigInteger q; public Frac(BigInteger p, BigInteger q) { BigInteger gcd = p.gcd(q); this.p = p.divide(gcd); this.q = q.divide(gcd); } public String toString() { return p + "\n" + q; } public Frac(long p, long q) { this(BigInteger.valueOf(p), BigInteger.valueOf(q)); } public Frac mul(Frac o) { return new Frac(p.multiply(o.p), q.multiply(o.q)); } public Frac sum(Frac o) { return new Frac(p.multiply(o.q).add(q.multiply(o.p)), q.multiply(o.q)); } public Frac diff(Frac o) { return new Frac(p.multiply(o.q).subtract(q.multiply(o.p)), q.multiply(o.q)); } } public int[] transform(int[] x, int k, int step) { int n = x.length; int[] a = new int[n]; int[][] prefsum = new int[n][]; int[] elements = new int[n]; int[] start = new int[n]; int[] id = new int[n]; for (int i = 0; i < n; i++) { if (elements[i] > 0) { continue; } int cur = i; do { elements[i]++; cur += step; cur %= n; } while (cur != i); for (int j = 0; j < elements[i]; j++) { start[cur] = i; id[cur] = j; elements[cur] = elements[i]; cur += step; cur %= n; } prefsum[i] = new int[3 * elements[i] + 1]; for (int j = 0; j < 3 * elements[i]; j++) { prefsum[i][j + 1] = prefsum[i][j] ^ x[cur]; cur += step; cur %= n; } } for (int i = 0; i < x.length; i++) { int curlen = k % (2 * elements[i]); a[i] = prefsum[start[i]][id[i] + curlen] ^ prefsum[start[i]][id[i]]; } return a; } public int[][] readTree(int n) { int m = n - 1; int[][] to = new int[n][]; int[] sz = new int[n]; int[] x = new int[m]; int[] y = new int[m]; for (int i = 0; i < m; i++) { x[i] = in.nextInt() - 1; y[i] = i + 1; sz[x[i]]++; } for (int i = 0; i < to.length; i++) { to[i] = new int[sz[i]]; sz[i] = 0; } for (int i = 0; i < x.length; i++) { to[x[i]][sz[x[i]]++] = y[i]; } return to; } int[][] to; int[] b; public double dfs(int v) { if (b[v] > 0) { return b[v]; } double max = 0; double sum = 0; for (int i : to[v]) { double cur = dfs(i); max = Math.max(max, cur); sum += cur; } if (b[v] < 0) { return max; } return sum / to[v].length; } public void solve() { for (int qwerty = in.nextInt(); qwerty > 0; --qwerty) { int n = in.nextInt(); long a = in.nextLong(); long b = in.nextLong(); long[] x = new long[n]; for (int i = 0; i < x.length; i++) { x[i] = in.nextLong(); } long[] sufSumm = new long[n]; sufSumm[n - 1] = x[n - 1]; for (int i = n - 2; i >= 0; --i) { sufSumm[i] = sufSumm[i + 1] + x[i]; } long ans = sufSumm[0] * b; for (int i = 0; i < n - 1; i++) { ans = Math.min(ans, (a + b) * x[i] + (sufSumm[i + 1] - (n - i - 1) * x[i]) * b); } out.println(ans); } } public void add(HashMap<Integer, Integer> map, int x) { if (map.containsKey(x)) { map.put(x, map.get(x) + 1); } else { map.put(x, 1); } } public void run() { try { if (systemIO) { in = new FastScanner(System.in); out = new PrintWriter(System.out); } else { in = new FastScanner(new File("input.txt")); out = new PrintWriter(new File("output.txt")); } solve(); out.close(); } catch (IOException e) { e.printStackTrace(); } } class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String nextLine() { try { return br.readLine(); } catch (IOException e) { return null; } } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } // AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA public static void main(String[] arg) { new C().run(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
64b3c100dd5eca41acd79632f4fad616
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.Arrays; import java.util.InputMismatchException; import java.util.StringTokenizer; import java.util.Vector; public class template { static class QuickReader { BufferedReader in; StringTokenizer token; public QuickReader(InputStream ins) { in=new BufferedReader(new InputStreamReader(ins)); token=new StringTokenizer(""); } public boolean hasNext() { while (!token.hasMoreTokens()) { try { String s = in.readLine(); if (s == null) return false; token = new StringTokenizer(s); } catch (IOException e) { throw new InputMismatchException(); } } return true; } public String next() { hasNext(); return token.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public int[] nextInts(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) res[i] = nextInt(); return res; } public long nextLong() { return Long.parseLong(next()); } public long[] nextLongs(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) res[i] = nextLong(); return res; } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException ignored) {} return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } } private QuickReader sc; private PrintWriter ptk; public template(QuickReader sc, PrintWriter ptk) { this.sc = sc; this.ptk = ptk; } public static void main(String[] args) { QuickReader in = new QuickReader(System.in); try(PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));) { new template(in, out).solve(); } } public static String sortString(String inputString) { // Converting input string to character array char tempArray[] = inputString.toCharArray(); // Sorting temp array using Arrays.sort(tempArray); // Returning new sorted string return new String(tempArray); } public void solve() { int t =sc.nextInt(); while (t-- > 0) { int n=sc.nextInt(); n++; int a=sc.nextInt(); int b=sc.nextInt(); long [] arr=new long[n]; for (int i = 1; i <n ; i++) { arr[i]=sc.nextLong(); } long sum=0; for (int i = 1; i <n ; i++) { sum+=arr[i]; } long min=Long.MAX_VALUE; for (int i = 0; i <n ; i++) { long now=arr[i]*(a+b); sum=sum-arr[i]; now=now+b*(sum-(n-i-1)*(arr[i])); min=Math.min(now,min); } System.out.println(min); } } static long lcm(int a, int b) { return (a / gcd(a, b)) * b; } private static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
a8cdd0765df1ce07e8ce328b70902ed2
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; import java.math.BigInteger; public final class B { static PrintWriter out = new PrintWriter(System.out); static StringBuilder ans=new StringBuilder(); static FastReader in=new FastReader(); // static int g[][]; static ArrayList<Integer> g[]; static long mod=(long)998244353,INF=Long.MAX_VALUE; static boolean set[]; static int max=0; static int lca[][]; static int par[],col[],D[]; static long fact[]; static int size[],N; static long dp[][],sum[][],f[]; static int seg[]; public static void main(String args[])throws IOException { /* * star,rope,TPST * BS,LST,MS,MQ */ int T=i(); outer:while(T-->0) { int N=i(); long a=l(),b=l(); long c=a+b; long A[]=new long[N+1]; for(int i=1; i<=N; i++)A[i]=l(); long pre[]=new long[N+1]; for(int i=1; i<=N; i++) { pre[i]=b*A[i]; pre[i]+=pre[i-1]; } long min=pre[N];//cost with 0 as captial long move[]=new long[N+1]; for(int i=1; i<=N; i++) { move[i]=c*(A[i]-A[i-1]); move[i]+=move[i-1]; } long left=N-1; for(int i=1; i<N; i++) { long temp=move[i];//min cost to make it capital long s=pre[N]-pre[i];//summation b*A[i] long t=b*A[i]; t*=left; temp+=s-t; min=Math.min(min, temp); left--; } out.println(min); } out.print(ans); out.close(); } static void dfs(int n,int p,long A[],HashMap<String,Integer> mp) { for(int c:g[n]) { if(c!=p) { long x=mp.get(n+" "+c); long y=mp.get(c+" "+n); if(A[n]*y!=A[c]*x) { } dfs(c,n,A,mp); } } } static int count(long N) { int cnt=0; long p=1L; while(p<=N) { if((p&N)!=0)cnt++; p<<=1; } return cnt; } static long kadane(long A[]) { long lsum=A[0],gsum=0; gsum=Math.max(gsum, lsum); for(int i=1; i<A.length; i++) { lsum=Math.max(lsum+A[i],A[i]); gsum=Math.max(gsum,lsum); } return gsum; } public static boolean pal(int i) { StringBuilder sb=new StringBuilder(); StringBuilder rev=new StringBuilder(); int p=1; while(p<=i) { if((i&p)!=0) { sb.append("1"); } else sb.append("0"); p<<=1; } rev=new StringBuilder(sb.toString()); rev.reverse(); if(i==8)System.out.println(sb+" "+rev); return (sb.toString()).equals(rev.toString()); } public static void reverse(int i,int j,int A[]) { while(i<j) { int t=A[i]; A[i]=A[j]; A[j]=t; i++; j--; } } public static int ask(int a,int b,int c) { System.out.println("? "+a+" "+b+" "+c); return i(); } static int[] reverse(int A[],int N) { int B[]=new int[N]; for(int i=N-1; i>=0; i--) { B[N-i-1]=A[i]; } return B; } static boolean isPalin(char X[]) { int i=0,j=X.length-1; while(i<=j) { if(X[i]!=X[j])return false; i++; j--; } return true; } static int distance(int a,int b) { int d=D[a]+D[b]; int l=LCA(a,b); l=2*D[l]; return d-l; } static int LCA(int a,int b) { if(D[a]<D[b]) { int t=a; a=b; b=t; } int d=D[a]-D[b]; int p=1; for(int i=0; i>=0 && p<=d; i++) { if((p&d)!=0) { a=lca[a][i]; } p<<=1; } if(a==b)return a; for(int i=max-1; i>=0; i--) { if(lca[a][i]!=-1 && lca[a][i]!=lca[b][i]) { a=lca[a][i]; b=lca[b][i]; } } return lca[a][0]; } static void dfs(int n,int p) { lca[n][0]=p; if(p!=-1)D[n]=D[p]+1; for(int c:g[n]) { if(c!=p) { dfs(c,n); } } } static int[] prefix_function(char X[])//returns pi(i) array { int N=X.length; int pre[]=new int[N]; for(int i=1; i<N; i++) { int j=pre[i-1]; while(j>0 && X[i]!=X[j]) j=pre[j-1]; if(X[i]==X[j])j++; pre[i]=j; } return pre; } // static TreeNode start; // public static void f(TreeNode root,TreeNode p,int r) // { // if(root==null)return; // if(p!=null) // { // root.par=p; // } // if(root.val==r)start=root; // f(root.left,root,r); // f(root.right,root,r); // } // static int right(int A[],int Limit,int l,int r) { while(r-l>1) { int m=(l+r)/2; if(A[m]<Limit)l=m; else r=m; } return l; } static int left(int A[],int a,int l,int r) { while(r-l>1) { int m=(l+r)/2; if(A[m]<a)l=m; else r=m; } return l; } static void build(int v,int tl,int tr,int A[]) { if(tl==tr) { seg[v]=A[tl]; return; } int tm=(tl+tr)/2; build(v*2,tl,tm,A); build(v*2+1,tm+1,tr,A); seg[v]=seg[v*2]+seg[v*2+1]; } static void update(int v,int tl,int tr,int index) { if(index==tl && index==tr) { seg[v]--; } else { int tm=(tl+tr)/2; if(index<=tm)update(v*2,tl,tm,index); else update(v*2+1,tm+1,tr,index); seg[v]=seg[v*2]+seg[v*2+1]; } } static int ask(int v,int tl,int tr,int l,int r) { if(l>r)return 0; if(tl==l && r==tr) { return seg[v]; } int tm=(tl+tr)/2; return ask(v*2,tl,tm,l,Math.min(tm, r))+ask(v*2+1,tm+1,tr,Math.max(tm+1, l),r); } static boolean f(long A[],long m,int N) { long B[]=new long[N]; for(int i=0; i<N; i++) { B[i]=A[i]; } for(int i=N-1; i>=0; i--) { if(B[i]<m)return false; if(i>=2) { long extra=Math.min(B[i]-m, A[i]); long x=extra/3L; B[i-2]+=2L*x; B[i-1]+=x; } } return true; } static int f(int l,int r,long A[],long x) { while(r-l>1) { int m=(l+r)/2; if(A[m]>=x)l=m; else r=m; } return r; } static boolean f(long m,long H,long A[],int N) { long s=m; for(int i=0; i<N-1;i++) { s+=Math.min(m, A[i+1]-A[i]); } return s>=H; } static long ask(long l,long r) { System.out.println("? "+l+" "+r); return l(); } static long f(long N,long M) { long s=0; if(N%3==0) { N/=3; s=N*M; } else { long b=N%3; N/=3; N++; s=N*M; N--; long a=N*M; if(M%3==0) { M/=3; a+=(b*M); } else { M/=3; M++; a+=(b*M); } s=Math.min(s, a); } return s; } static int ask(StringBuilder sb,int a) { System.out.println(sb+""+a); return i(); } static void swap(char X[],int i,int j) { char x=X[i]; X[i]=X[j]; X[j]=x; } static int min(int a,int b,int c) { return Math.min(Math.min(a, b), c); } static long and(int i,int j) { System.out.println("and "+i+" "+j); return l(); } static long or(int i,int j) { System.out.println("or "+i+" "+j); return l(); } static int len=0,number=0; static void f(char X[],int i,int num,int l) { if(i==X.length) { if(num==0)return; //update our num if(isPrime(num))return; if(l<len) { len=l; number=num; } return; } int a=X[i]-'0'; f(X,i+1,num*10+a,l+1); f(X,i+1,num,l); } static boolean is_Sorted(int A[]) { int N=A.length; for(int i=1; i<=N; i++)if(A[i-1]!=i)return false; return true; } static boolean f(StringBuilder sb,String Y,String order) { StringBuilder res=new StringBuilder(sb.toString()); HashSet<Character> set=new HashSet<>(); for(char ch:order.toCharArray()) { set.add(ch); for(int i=0; i<sb.length(); i++) { char x=sb.charAt(i); if(set.contains(x))continue; res.append(x); } } String str=res.toString(); return str.equals(Y); } static boolean all_Zero(int f[]) { for(int a:f)if(a!=0)return false; return true; } static long form(int a,int l) { long x=0; while(l-->0) { x*=10; x+=a; } return x; } static int count(String X) { HashSet<Integer> set=new HashSet<>(); for(char x:X.toCharArray())set.add(x-'0'); return set.size(); } static int f(long K) { long l=0,r=K; while(r-l>1) { long m=(l+r)/2; if(m*m<K)l=m; else r=m; } return (int)l; } // static void build(int v,int tl,int tr,long A[]) // { // if(tl==tr) // { // seg[v]=A[tl]; // } // else // { // int tm=(tl+tr)/2; // build(v*2,tl,tm,A); // build(v*2+1,tm+1,tr,A); // seg[v]=Math.min(seg[v*2], seg[v*2+1]); // } // } static int [] sub(int A[],int B[]) { int N=A.length; int f[]=new int[N]; for(int i=N-1; i>=0; i--) { if(B[i]<A[i]) { B[i]+=26; B[i-1]-=1; } f[i]=B[i]-A[i]; } for(int i=0; i<N; i++) { if(f[i]%2!=0)f[i+1]+=26; f[i]/=2; } return f; } static int[] f(int N) { char X[]=in.next().toCharArray(); int A[]=new int[N]; for(int i=0; i<N; i++)A[i]=X[i]-'a'; return A; } static int max(int a ,int b,int c,int d) { a=Math.max(a, b); c=Math.max(c,d); return Math.max(a, c); } static int min(int a ,int b,int c,int d) { a=Math.min(a, b); c=Math.min(c,d); return Math.min(a, c); } static HashMap<Integer,Integer> Hash(int A[]) { HashMap<Integer,Integer> mp=new HashMap<>(); for(int a:A) { int f=mp.getOrDefault(a,0)+1; mp.put(a, f); } return mp; } static long mul(long a, long b) { return ( a %mod * 1L * b%mod )%mod; } static void swap(int A[],int a,int b) { int t=A[a]; A[a]=A[b]; A[b]=t; } static int find(int a) { if(par[a]<0)return a; return par[a]=find(par[a]); } static void union(int a,int b) { a=find(a); b=find(b); if(a!=b) { if(par[a]>par[b]) //this means size of a is less than that of b { int t=b; b=a; a=t; } par[a]+=par[b]; par[b]=a; } } static boolean isSorted(int A[]) { for(int i=1; i<A.length; i++) { if(A[i]<A[i-1])return false; } return true; } static boolean isDivisible(StringBuilder X,int i,long num) { long r=0; for(; i<X.length(); i++) { r=r*10+(X.charAt(i)-'0'); r=r%num; } return r==0; } static int lower_Bound(int A[],int low,int high, int x) { if (low > high) if (x >= A[high]) return A[high]; int mid = (low + high) / 2; if (A[mid] == x) return A[mid]; if (mid > 0 && A[mid - 1] <= x && x < A[mid]) return A[mid - 1]; if (x < A[mid]) return lower_Bound( A, low, mid - 1, x); return lower_Bound(A, mid + 1, high, x); } static String f(String A) { String X=""; for(int i=A.length()-1; i>=0; i--) { int c=A.charAt(i)-'0'; X+=(c+1)%2; } return X; } static void sort(long[] a) //check for long { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static String swap(String X,int i,int j) { char ch[]=X.toCharArray(); char a=ch[i]; ch[i]=ch[j]; ch[j]=a; return new String(ch); } static int sD(long n) { if (n % 2 == 0 ) return 2; for (int i = 3; i * i <= n; i += 2) { if (n % i == 0 ) return i; } return (int)n; } // static void setGraph(int N,int nodes) // { //// size=new int[N+1]; // par=new int[N+1]; // col=new int[N+1]; //// g=new int[N+1][]; // D=new int[N+1]; // int deg[]=new int[N+1]; // int A[][]=new int[nodes][2]; // for(int i=0; i<nodes; i++) // { // int a=i(),b=i(); // A[i][0]=a; // A[i][1]=b; // deg[a]++; // deg[b]++; // } // for(int i=0; i<=N; i++) // { // g[i]=new int[deg[i]]; // deg[i]=0; // } // for(int a[]:A) // { // int x=a[0],y=a[1]; // g[x][deg[x]++]=y; // g[y][deg[y]++]=x; // } // } static long pow(long a,long b) { //long mod=1000000007; long pow=1; long x=a; while(b!=0) { if((b&1)!=0)pow=(pow*x)%mod; x=(x*x)%mod; b/=2; } return pow; } static long toggleBits(long x)//one's complement || Toggle bits { int n=(int)(Math.floor(Math.log(x)/Math.log(2)))+1; return ((1<<n)-1)^x; } static int countBits(long a) { return (int)(Math.log(a)/Math.log(2)+1); } static long fact(long N) { long n=2; if(N<=1)return 1; else { for(int i=3; i<=N; i++)n=(n*i)%mod; } return n; } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static boolean isPrime(long N) { if (N<=1) return false; if (N<=3) return true; if (N%2L == 0 || N%3L == 0) return false; for (long i=5; i*i<=N; i+=2) if (N%i==0) return false; return true; } static void print(char A[]) { for(char c:A)System.out.print(c+" "); System.out.println(); } static void print(boolean A[]) { for(boolean c:A)System.out.print(c+" "); System.out.println(); } static void print(int A[]) { for(int a:A)System.out.print(a+" "); System.out.println(); } static void print(long A[]) { for(long i:A)System.out.print(i+ " "); System.out.println(); } static void print(boolean A[][]) { for(boolean a[]:A)print(a); } static void print(long A[][]) { for(long a[]:A)print(a); } static void print(int A[][]) { for(int a[]:A)print(a); } static void print(ArrayList<Integer> A) { for(int a:A)System.out.print(a+" "); System.out.println(); } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static int[] input(int N){ int A[]=new int[N]; for(int i=0; i<N; i++) { A[i]=in.nextInt(); } return A; } static long[] inputLong(int N) { long A[]=new long[N]; for(int i=0; i<A.length; i++)A[i]=in.nextLong(); return A; } static long GCD(long a,long b) { if(b==0) { return a; } else return GCD(b,a%b ); } } //Code For FastReader //Code For FastReader //Code For FastReader //Code For FastReader class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st==null || !st.hasMoreElements()) { try { st=new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
26d3f6f55d2e1c4328c2842ffa22a128
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.util.function.Function; public class C { public static void main(String[] args) throws NumberFormatException, IOException { MyReader reader = new MyReader(); int t = reader.nextInt(); for(int testcase=0; testcase<t; testcase++) { int n = reader.nextInt(); int a = reader.nextInt(); int b = reader.nextInt(); //0 at front long[] x = new long[n+1]; for(int i=0; i<n; i++) { x[i+1] = reader.nextInt(); } PrefixSums prefSums = new PrefixSums(x); long[] d = new long[n+1]; d[0] = 0; for(int i=1; i<n+1; i++) { final int iFinal = i; int argj = binarySearch( j -> (d[j] - d[j+1] + (a + 1L*b*(iFinal-j+1))*(x[j+1]-x[j])), iFinal-1); //System.out.println(i + " " + argj); d[i] = d[argj] + cost(argj, i, x,prefSums,a,b) + 1L*a*(x[i]-x[argj]); } long ans = Long.MAX_VALUE; for(int j=0; j<n+1; j++) { ans = Math.min(ans, d[j] + cost(j,n, x,prefSums,a,b)); } System.out.println(ans); //System.out.println("---------"); } } //cost to conquer j+1...i from j, without including capital moving cost public static long cost(int j, int i, long[] x, PrefixSums xPrefSums, int a, int b) { return b*xPrefSums.query(j+1,i) - b*(i-j)*x[j]; } //return min of f, compare tells us f(i) - f(i+1) for a input i public static int binarySearch(Function<Integer, Long> compare, int initR) { int l = 0; int r = initR; while(r>l) { Integer m = (l+r)/2; if(compare.apply(m) > 0) l = m+1; else r = m; } return l; } static class PrefixSums { long[] prefixSums; public PrefixSums(long[] arr) { prefixSums = new long[arr.length]; prefixSums[0] = arr[0]; for(int i=1; i<arr.length; i++) { prefixSums[i] = prefixSums[i-1] + arr[i]; } } public long query(int l, int r) { return prefixSums[r] - (l==0 ? 0 : prefixSums[l-1]); } } static class MyReader { BufferedReader br; StringTokenizer st; public MyReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() throws IOException { while (st == null || !st.hasMoreElements()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); } double nextDouble() throws NumberFormatException, IOException { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
2a1de3d4f6f6b3baaaa1f5d00c35e85b
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
//make sure to make new file! import java.io.*; import java.util.*; public class C782{ public static void main(String[] args)throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int t = Integer.parseInt(f.readLine()); for(int q = 1; q <= t; q++){ StringTokenizer st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); long b = Long.parseLong(st.nextToken()); long a = Long.parseLong(st.nextToken()); long[] array = new long[n+1]; array[0] = 0; st = new StringTokenizer(f.readLine()); for(int k = 1; k <= n; k++){ array[k] = Long.parseLong(st.nextToken()); } long[] sufsum = new long[n+1]; sufsum[n] = 0; for(int k = n-1; k >= 0; k--){ sufsum[k] = sufsum[k+1] + array[k+1]; } //cost to get the capital to point array[k] long curcost = 0; long answer = Long.MAX_VALUE; for(int k = 0; k < n; k++){ answer = Math.min(answer,a*(sufsum[k]-array[k]*(long)(n-k))+curcost); if(k < n-1) curcost += (a+b)*(array[k+1]-array[k]); } if(n > 1) answer = Math.min(answer,curcost+a*(array[n]-array[n-1])); out.println(answer); } out.close(); } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
a455f1d56e2a329b043659e007780a19
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class LineEmpire { public static void main(String[] args) throws IOException { Reader in = new Reader(); PrintWriter out = new PrintWriter(System.out); int T = in.nextInt(); for (int t = 0; t < T; t++) { int N = in.nextInt() + 1, A = in.nextInt(), B = in.nextInt(); int[] arr = new int[N]; for (int i = 1; i < N; i++) { arr[i] = in.nextInt(); } long res = 0; for (int i = 1; i < N; i++) { res += (long)arr[i] * B; } int current = 0; for (int i = 1; i < N; i++) { long cost = (long)(arr[i] - arr[current]) * A; long save = (long)(arr[i] - arr[current]) * B * (N - 1 - i); if (save > cost) { current = i; res += cost; res -= save; } } out.println(res); } out.close(); } static class Reader { BufferedReader in; StringTokenizer st; public Reader() { in = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(""); } public String nextLine() throws IOException { st = new StringTokenizer(""); return in.readLine(); } public String next() throws IOException { while (!st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } public static void sort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int i : arr) { list.add(i); } Collections.sort(list); for (int i = 0; i < arr.length; i++) { arr[i] = list.get(i); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
f60c7a31fe65011980399a977f6b2f6c
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Random; import java.util.StringTokenizer; /* X X X X ------- B --------- B ------- A ------- B Distance between doesn't change move strategy at all $1 to conquere, $1 to move X X X X X - - - - - - - - - - $10 - - - - - - Each thing is min of (timesAcross*b, b+a) */ public class C { public static void main(String[] args) { FastScanner fs=new FastScanner(); PrintWriter out=new PrintWriter(System.out); int T=fs.nextInt(); for (int tt=0; tt<T; tt++) { int n=fs.nextInt(); long c1=fs.nextInt(), c2=fs.nextInt(); int[] a=fs.readArray(n); long ans=0; for (int i=0; i<n; i++) { int nToRight=n-i; int last=i==0?0:a[i-1]; long dist=a[i]-last; ans+=dist*Math.min(nToRight*c2, c1+c2); } System.out.println(ans); } } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 8
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
f2c0f4993061d3c1fb1966acd41d2dc4
train_110.jsonl
1650206100
You are an ambitious king who wants to be the Emperor of The Reals. But to do that, you must first become Emperor of The Integers.Consider a number axis. The capital of your empire is initially at $$$0$$$. There are $$$n$$$ unconquered kingdoms at positions $$$0&lt;x_1&lt;x_2&lt;\ldots&lt;x_n$$$. You want to conquer all other kingdoms.There are two actions available to you: You can change the location of your capital (let its current position be $$$c_1$$$) to any other conquered kingdom (let its position be $$$c_2$$$) at a cost of $$$a\cdot |c_1-c_2|$$$. From the current capital (let its current position be $$$c_1$$$) you can conquer an unconquered kingdom (let its position be $$$c_2$$$) at a cost of $$$b\cdot |c_1-c_2|$$$. You cannot conquer a kingdom if there is an unconquered kingdom between the target and your capital. Note that you cannot place the capital at a point without a kingdom. In other words, at any point, your capital can only be at $$$0$$$ or one of $$$x_1,x_2,\ldots,x_n$$$. Also note that conquering a kingdom does not change the position of your capital.Find the minimum total cost to conquer all kingdoms. Your capital can be anywhere at the end.
256 megabytes
import java.util.*; import java.io.*; public class B { public static void main(String[] args) throws IOException { Soumit sc = new Soumit(); int tc = sc.nextInt(); StringBuilder sb = new StringBuilder(); while (tc-->0){ int n = sc.nextInt(); long a = sc.nextLong(); long b = sc.nextLong(); long[] x = sc.nextLongArray(n); if(a <= b){ if(n == 1){ long tot = x[0] * b; sb.append(tot).append("\n"); continue; } long tot = (x[n-2]) * a; long last = 0; for(int i=0;i<n;i++){ tot += (x[i] - last) * b; last = x[i]; } sb.append(tot).append("\n"); continue; } long tot_bi = 0; for(int i=0;i<n;i++) tot_bi += x[i]; long tot = (tot_bi * b); long cur_bi = 0; long done_bi = 0; for(int i=0;i<n;i++){ long ad = x[i] * a; cur_bi += x[i]; if(i>0) done_bi += (x[i] - x[i-1]); else done_bi += x[i]; long bi = cur_bi + (x[i] * (n - i - 1)); long bd = (tot_bi - bi + done_bi) * b; long cur = ad + bd; tot = Math.min(tot, cur); } sb.append(tot).append("\n"); } System.out.println(sb); sc.close(); } static class Soumit { final private int BUFFER_SIZE = 1 << 18; final private DataInputStream din; final private byte[] buffer; private PrintWriter pw; private int bufferPointer, bytesRead; StringTokenizer st; public Soumit() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Soumit(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public void streamOutput(String file) throws IOException { FileWriter fw = new FileWriter(file); BufferedWriter bw = new BufferedWriter(fw); pw = new PrintWriter(bw); } public void println(String a) { pw.println(a); } public void print(String a) { pw.print(a); } public String readLine() throws IOException { byte[] buf = new byte[3000064]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public void sort(int[] arr) { ArrayList<Integer> arlist = new ArrayList<>(); for (int i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public void sort(long[] arr) { ArrayList<Long> arlist = new ArrayList<>(); for (long i : arr) arlist.add(i); Collections.sort(arlist); for (int i = 0; i < arr.length; i++) arr[i] = arlist.get(i); } public int[] nextIntArray(int n) throws IOException { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) throws IOException { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public double[] nextDoubleArray(int n) throws IOException { double[] arr = new double[n]; for (int i = 0; i < n; i++) { arr[i] = nextDouble(); } return arr; } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { /*if (din == null) return;*/ if (din != null) din.close(); if (pw != null) pw.close(); } } }
Java
["4\n5 2 7\n3 5 12 13 21\n5 6 3\n1 5 6 21 30\n2 9 3\n10 15\n11 27182 31415\n16 18 33 98 874 989 4848 20458 34365 38117 72030"]
1 second
["173\n171\n75\n3298918744"]
NoteHere is an optimal sequence of moves for the second test case: Conquer the kingdom at position $$$1$$$ with cost $$$3\cdot(1-0)=3$$$. Move the capital to the kingdom at position $$$1$$$ with cost $$$6\cdot(1-0)=6$$$. Conquer the kingdom at position $$$5$$$ with cost $$$3\cdot(5-1)=12$$$. Move the capital to the kingdom at position $$$5$$$ with cost $$$6\cdot(5-1)=24$$$. Conquer the kingdom at position $$$6$$$ with cost $$$3\cdot(6-5)=3$$$. Conquer the kingdom at position $$$21$$$ with cost $$$3\cdot(21-5)=48$$$. Conquer the kingdom at position $$$30$$$ with cost $$$3\cdot(30-5)=75$$$. The total cost is $$$3+6+12+24+3+48+75=171$$$. You cannot get a lower cost than this.
Java 17
standard input
[ "binary search", "brute force", "dp", "greedy", "implementation", "math" ]
ce2b12f1d7c0388c39fee52f5410b94b
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. The description of each test case follows. The first line of each test case contains $$$3$$$ integers $$$n$$$, $$$a$$$, and $$$b$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$1 \leq a,b \leq 10^5$$$). The second line of each test case contains $$$n$$$ integers $$$x_1, x_2, \ldots, x_n$$$ ($$$1 \leq x_1 &lt; x_2 &lt; \ldots &lt; x_n \leq 10^8$$$). The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,500
For each test case, output a single integer  — the minimum cost to conquer all kingdoms.
standard output
PASSED
b10d67acdff8588280ff7dfe84d4f001
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; import java.util.regex.*; import java.util.stream.*; public class B { static FastScanner fs = new FastScanner(); public static void main(String[] args) throws IOException { int T = fs.nextInt(); int N; int K; int k; while (T-- > 0) { N = fs.nextInt(); K = fs.nextInt(); k = K; String bitVect = fs.nextLine(); List<List<Integer>> bits = new ArrayList<>(2); bits.add(new LinkedList<Integer>()); bits.add(new LinkedList<Integer>()); for (int i = 0; i < N; i++) { if (bitVect.charAt(i) == '1') bits.get(1).add(i); else bits.get(0).add(i); } int badBits = (K % 2 == 0)?0:1; int good = (1 + badBits) % 2; // touch as many bad bits as possible int n = Math.min(bits.get(badBits).size(), K); int flipped; int[] result = new int[N]; while(n-- > 0) { flipped = bits.get(badBits).remove(0); result[flipped]++; bits.get(good).add(flipped); K--; } result[N-1] += K; // Final number; char[] binNum = new char[N]; Arrays.fill(binNum, '1'); for (Integer idx: bits.get(badBits)) binNum[idx] = '0'; // Value of last bit if ((k - result[N-1]) % 2 == 0) binNum[N-1] = bitVect.charAt(N-1); else binNum[N-1] = (bitVect.charAt(N-1)=='0')?'1':'0'; System.out.println(String.valueOf(binNum)); System.out.println(Arrays.stream(result) .mapToObj(Integer::toString) .collect(Collectors.joining(" ")) ); } fs.close(); } } class FastScanner { BufferedReader br; StringTokenizer stk; FastScanner() { this(System.in); } FastScanner(InputStream stream) { br = new BufferedReader(new InputStreamReader(stream)); } String nextLine() throws IOException { return br.readLine().trim(); } String next() throws IOException { if (stk == null || !stk.hasMoreTokens()) stk = new StringTokenizer(this.nextLine()); return stk.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(this.next()); } long nextLong() throws IOException { return Long.parseLong(this.next()); } double nextDouble() throws IOException { return Double.parseDouble(this.next()); } char nextChar() throws IOException { return this.next().charAt(0); } int[] readArray(int count) throws IOException { int[] ret = new int[count]; for (int i = 0; i < count; i++) ret[i] = this.nextInt(); return ret; } long[] readArrayLong(int count) throws IOException { long[] ret = new long[count]; for (int i = 0; i < count; i++) ret[i] = this.nextLong(); return ret; } boolean hasNextLine() throws IOException { br.mark(2); try { int ret = br.read(); br.reset(); if (ret != -1) return true; return false; } catch(IOException e) { return false; } } boolean hasNext() throws IOException { return (stk != null && stk.hasMoreTokens()) || this.hasNextLine(); } void close() throws IOException { br.close(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 17
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
6c60ae978662b0fc63430ae32ea9814b
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class practice { public static void solve() { Reader sc = new Reader(); PrintWriter out = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(); int k = sc.nextInt(); char[] s = sc.next().toCharArray(); int[] a = new int[n]; int temp_k = k; for(int i = 0;i < n && temp_k > 0;i++) { if(k % 2 == s[i] - '0') { a[i] = 1; temp_k--; } } a[n - 1] += temp_k; for(int i = 0;i < n;i++) if((k - a[i]) % 2 == 1) s[i] = (char) ('1' - (s[i] - '0')); for(char c : s) out.print(c); out.println(); for(int i : a) out.print(i + " "); out.println(); } out.flush(); } public static void main(String[] args) throws IOException { solve(); } public static class Reader { BufferedReader br; StringTokenizer st; public Reader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { if(st.hasMoreTokens()) str = st.nextToken("\n"); else str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 17
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
fcbccf4bf9225938515ee6493f220611
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; public class pb2 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0 ){ int n = sc.nextInt(); int k = sc.nextInt(); char[] str = sc.next().toCharArray(); int tt = k; HashSet<Integer> set = new HashSet<>(); if (k % 2 != 0){ boolean flag = true; for (int i = 0 ; i < n ; i++){ if (flag && str[i] == '1'){ flag = false; str[i] = '1'; set.add(i); } else{ if (str[i] == '0'){ str[i] = '1'; } else{ str[i] = '0'; } } } if (flag){ str[n-1] = '0'; set.add(n-1); } tt--; } for (int i = 0; i < n && tt > 0 ; i++){ if (str[i] == '0'){ str[i] = '1'; set.add(i); tt--; } } if (tt > 0 && tt%2 != 0){ str[n-1] = '0'; } System.out.println(new String(str)); for (int i = 0; i < n-1 ; i++){ if (set.contains(i)){ System.out.print(1 + " "); k--; } else{ System.out.print(0 + " "); } } System.out.println(k); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 17
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
a61ca0f11bb9ddef044cf24e73dc46e2
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.PrintWriter; import java.util.Arrays; import java.util.Scanner; public class Main { public static void main(String[] args) { //new Main().run(); //} //void run() { Scanner sc=new Scanner(System.in); PrintWriter pw=new PrintWriter(System.out); int t=sc.nextInt(); while (t-->0) { int n=sc.nextInt(); int k=sc.nextInt(); char[] cs=sc.next().toCharArray(); int[] a=new int[cs.length]; Arrays.setAll(a, i->cs[i]-'0'); for (int i=0;i<a.length;++i) { a[i]^=k%2; } int[] ans=new int[a.length]; for (int i=0;i<a.length;++i) { if (a[i]==0&&k>0) { ans[i]=1; a[i]^=1; --k; } } ans[a.length-1]+=k; a[a.length-1]^=k%2; for (int i=0;i<a.length;++i) { pw.print(a[i]+(i==a.length-1?"\n":"")); } for (int i=0;i<ans.length;++i) { pw.print(ans[i]+(i==ans.length-1?"\n":" ")); } } pw.close(); } //void tr(Object...o) {System.out.println(Arrays.deepToString(o));} }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 17
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
d1eff8db1e6478bc3806c72c535324b8
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { // int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); String s = br.readLine(); char arr2[] = s.toCharArray(); int arr[] = new int[n]; for(int i = 0; i < n; i++) arr[i] = arr2[i] - '0'; int res[] = new int[n]; if(k == 0) { output.write(s + "\n"); for(int i = 0; i < n; i++) output.write("0 "); output.write("\n"); continue; } if(k % 2 == 1) { if(arr[0] == 1) { res[0]++; k--; for(int i = 1; i < n; i++) arr[i] = 1 - arr[i]; } else { int flag = 0; arr[0] = 1; for(int i = 1; i < n; i++) { if(flag == 1) { arr[i] = 1 - arr[i]; continue; } if(arr[i] == 1) { flag = 1; k--; res[i]++; } arr[i] = 1; } if(flag == 0) { k--; res[n-1]++; for(int i = 0; i < n; i++) { if(i == n - 1) arr[i] = 0; else arr[i] = 1; } } } } for(int i = 0; i < n - 1; i++) { if(k == 0) break; if(arr[i] == 1) continue; else { res[i]++; arr[i] = 1; i++; k-=2; int flag = 0; while(arr[i]!=0) { arr[i] = 1; i++; if(i == n) { flag = 1; break; } } if(flag == 1) {res[n-1]++; arr[n-1] = 1 - arr[n-1]; break;} else { res[i]++; arr[i] = 1-arr[i]; i--; continue; } } } if(k > 0) res[0]+=k; for(int i : arr) output.write(i + ""); output.write("\n"); for(int i : res) output.write(i + " "); output.write("\n"); // int arr[] = new int[n]; // for(int i = 0; i < n; i++) // { // arr[i] = e; // } // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
f64f792b25430d6a8fb798bd23973d83
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { // int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); String s = br.readLine(); char arr2[] = s.toCharArray(); int arr[] = new int[n]; for(int i = 0; i < n; i++) arr[i] = arr2[i] - '0'; int res[] = new int[n]; if(k == 0) { output.write(s + "\n"); for(int i = 0; i < n; i++) output.write("0 "); output.write("\n"); continue; } if(k % 2 == 1) { int ind = -1; for(int i = 0; i < n; i++) { if(arr[i] == 1) { ind = i; break; } } if(ind == -1) ind = n - 1; for(int i = 0; i < n; i++) { if(i == ind) continue; else arr[i] = 1 - arr[i]; } k--; res[ind]++; } for(int i = 0; i < n - 1; i++) { if(k == 0) break; if(arr[i] == 1) continue; else { res[i]++; arr[i] = 1; i++; k-=2; int flag = 0; while(arr[i]!=0) { arr[i] = 1; i++; if(i == n) { flag = 1; break; } } if(flag == 1) {res[n-1]++; arr[n-1] = 1 - arr[n-1]; break;} else { res[i]++; arr[i] = 1-arr[i]; i--; continue; } } } if(k > 0) res[0]+=k; for(int i : arr) output.write(i + ""); output.write("\n"); for(int i : res) output.write(i + " "); output.write("\n"); // int arr[] = new int[n]; // for(int i = 0; i < n; i++) // { // arr[i] = e; // } // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
f3e1508c3b193071559de01cf6074955
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { // int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); String s = br.readLine(); char arr2[] = s.toCharArray(); int arr[] = new int[n]; for(int i = 0; i < n; i++) arr[i] = arr2[i] - '0'; int res[] = new int[n]; if(k == 0) { output.write(s + "\n"); for(int i = 0; i < n; i++) output.write("0 "); output.write("\n"); continue; } if(k % 2 == 1) { int ind = -1; for(int i = 0; i < n; i++) { if(arr[i] == 1) { ind = i; break; } } if(ind == -1) ind = n - 1; for(int i = 0; i < n; i++) { if(i == ind) continue; else arr[i] = 1 - arr[i]; } k--; res[ind]++; } for(int i = 0; i < n - 1; i++) { if(k == 0) break; if(arr[i] == 1) continue; else { res[i]++; arr[i] = 1; i++; k-=2; int flag = 0; while(arr[i]!=0) { arr[i] = 1; i++; if(i == n) { flag = 1; break; } } if(flag == 1) {res[n-1]++; arr[n-1] = 1 - arr[n-1]; break;} else { res[i]++; arr[i] = 1; i--; continue; } } } if(k > 0) res[0]+=k; for(int i : arr) output.write(i + ""); output.write("\n"); for(int i : res) output.write(i + " "); output.write("\n"); // int arr[] = new int[n]; // for(int i = 0; i < n; i++) // { // arr[i] = e; // } // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
67401b50b718e5a5bfd5cb60839488ae
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { // int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); String s = br.readLine(); char arr2[] = s.toCharArray(); int arr[] = new int[n]; for(int i = 0; i < n; i++) arr[i] = arr2[i] - '0'; int res[] = new int[n]; if(k == 0) { output.write(s + "\n"); for(int i = 0; i < n; i++) output.write("0 "); output.write("\n"); continue; } if(k % 2 == 1) { int ind = -1; for(int i = 0; i < n; i++) { if(arr[i] == 1) { ind = i; break; } } if(ind == -1) ind = n - 1; for(int i = 0; i < n; i++) { if(i == ind) continue; else arr[i] = 1 - arr[i]; } k--; res[ind]++; } for(int i = 0; i < n - 1; i++) { if(k == 0) break; if(arr[i] == 1) continue; else { res[i]++; arr[i] = 1; i++; k-=2; int flag = 0; while(arr[i]!=0) { arr[i] = 1; i++; if(i == n) { flag = 1; break; } } if(flag == 1) {res[n-1]++; arr[n-1] = 1 - arr[n-1]; break;} else { res[i]++; arr[i] = 1; // i--; continue; } } } if(k > 0) res[0]+=k; for(int i : arr) output.write(i + ""); output.write("\n"); for(int i : res) output.write(i + " "); output.write("\n"); // int arr[] = new int[n]; // for(int i = 0; i < n; i++) // { // arr[i] = e; // } // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
dd501300ad5ebdad64ffcc9799e6b9c4
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { // int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); String s = br.readLine(); char arr2[] = s.toCharArray(); int arr[] = new int[n]; for(int i = 0; i < n; i++) arr[i] = arr2[i] - '0'; int res[] = new int[n]; if(k == 0) { output.write(s + "\n"); for(int i = 0; i < n; i++) output.write("0 "); output.write("\n"); continue; } if(k % 2 == 1) { int ind = -1; for(int i = 0; i < n; i++) { if(arr[i] == 1) { ind = i; break; } } if(ind == -1) ind = n - 1; for(int i = 0; i < n; i++) { if(i == ind) continue; else arr[i] = 1 - arr[i]; } k--; res[ind]++; } for(int i = 0; i < n - 1; i++) { if(k == 0) break; if(arr[i] == 1) continue; else { res[i]++; arr[i] = 1; i++; k-=2; int flag = 0; while(arr[i]!=0) { i++; if(i == n) { flag = 1; break; } } if(flag == 1) {res[n-1]++; arr[n-1] = 1 - arr[n-1]; break;} else { res[i]++; arr[i] = 1-arr[i]; // i--; continue; } } } if(k > 0) res[0]+=k; for(int i : arr) output.write(i + ""); output.write("\n"); for(int i : res) output.write(i + " "); output.write("\n"); // int arr[] = new int[n]; // for(int i = 0; i < n; i++) // { // arr[i] = e; // } // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
4eb3f1db39bb2521277916f95044ab42
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); int k = Integer.parseInt(st.nextToken()); String s = br.readLine(); char arr2[] = s.toCharArray(); int arr[] = new int[n]; for(int i = 0; i < n; i++) arr[i] = arr2[i] - '0'; int res[] = new int[n]; int k2 = k; for(int i = 0; i < n; i++) { if(k2 == 0) break; if((k%2 == 0 && arr[i] == 0) || (k%2 == 1 && arr[i] == 1)) { res[i] = 1; k2--; continue; } } res[n-1]+=k2; for(int i = 0; i < n; i++) arr[i] = ((k-res[i])%2==0)?arr[i]:1-arr[i]; for(int i : arr) output.write(i + ""); output.write("\n"); for(int i : res) output.write(i + " "); output.write("\n"); } output.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
fc79f55b348faa96df46659d0e19225d
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out)); StringTokenizer st; while (t-- > 0) { // int n = Integer.parseInt(br.readLine()); st = new StringTokenizer(br.readLine()); int not = Integer.parseInt(st.nextToken()); int knot = Integer.parseInt(st.nextToken()); int Onot = knot; char sot[] = br.readLine().toCharArray(); int Sot[] = new int[not]; for(int i = 0; i < sot.length; i++) Sot[i] = sot[i] - '0'; int fin[] = new int[not]; int onot = 0; for(int i = 0; i < not && knot > 0; i++) { int stemp = (sot[i] - '0') ^ onot; sot[i] = (stemp==0)?'0':'1'; if(knot%2!=stemp || i==not-1) continue; else { fin[i]++; onot = onot ^ 1; knot--; } } fin[fin.length - 1]+=knot; for(int i=0;i<not;i++) { int e = Onot-fin[i]; if(e%2 == 1) Sot[i]^=1; } for(int i : Sot) output.write(i + ""); output.write("\n"); for(int i : fin) output.write(i + " "); output.write("\n"); // int arr[] = new int[n]; // for(int i = 0; i < n; i++) // { // arr[i] = e; // } // int k = Integer.parseInt(st.nextToken()); // char arr[] = br.readLine().toCharArray(); // output.write(); // int n = Integer.parseInt(st.nextToken()); // HashMap<Character, Integer> map = new HashMap<Character, Integer>(); // if // output.write("YES\n"); // else // output.write("NO\n"); // long a = Long.parseLong(st.nextToken()); // long b = Long.parseLong(st.nextToken()); // if(flag == 1) // output.write("NO\n"); // else // output.write("YES\n" + x + " " + y + " " + z + "\n"); // output.write(n+ "\n"); } output.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
83d628c92b43e91b6a05d387b5fd0449
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Random; import java.util.StringTokenizer; import java.util.*; public class spidername { static FastScanner sc = new FastScanner(); static PrintWriter out = new PrintWriter(System.out); static int nxt() { int x = sc.nextInt(); return x; } static void solve() { int n = nxt(); int k = nxt(); String s = sc.next(); int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = (int)s.charAt(i) - '0'; } int ans[] = new int[n]; int cnt[] = new int[n]; int need = 1, flip = 1; if (k % 2 == 0) { need = 0; flip = 0; } for (int i = 0; i < n ; i++) { ans[i] = a[i] ^ flip; if (a[i] == need && k > 0) { cnt[i]++; k--; } } cnt[n - 1] += k; for (int i = 0; i < n; i++) { if (cnt[i] % 2 == 1) { ans[i] ^= 1; } out.print(ans[i]); } out.println(); for (int i = 0; i < n; i++) { out.print(cnt[i] + " "); } out.println(); } public static void main(String args[]) { int t = nxt(); while (t-- > 0) { solve(); } out.close(); } } class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
210c58ec5a4555e891d760678e797a10
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { // when can't think of anything -->> // 1. In sorting questions try to think about all possibilities like starting from start, end, middle. // 2. Two pointers, brute force. // 3. In graph query questions try to solve it reversely or try to process all the queries in a single parse. // 4. If order does not matter then just sort the data if constraints allow. It'll never harm. // 5. In greedy problems if you are just overwhelmed by the possibilities and stuck, try to code whatever you come up with. // 6. Try to solve it from back or reversely. // 7. When can't prove something take help of contradiction. public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); PrintWriter writer = new PrintWriter(System.out); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int k = sc.nextInt(); int ok = k; String s = sc.next(); int ans[] = new int[n]; int arr[] = new int[n]; int onecount = 0; for(char c : s.toCharArray())if(c=='1')onecount++; int zerocount = n-onecount; if(k%2==0) { int val = 0; int count = 0; for(char c : s.toCharArray()) { if(c=='0' && count < k) { arr[val]++; count++; } val++; } arr[n-1]+=k-count; for(int i = 0; i < n; i++) { int val1 = arr[i]; int val2 = s.charAt(i) - '0'; ans[i] = val1^val2; } if(arr[n-1]>1) { if(zerocount%2==0)ans[n-1]=1; else ans[n-1]=0; } }else { int val = 0; int count = 0; for(char c : s.toCharArray()) { if(c=='1' && count < k) { arr[val]++; count++; } val++; } arr[n-1]+=k-count; for(int i = 0; i < n; i++) { int val1 = arr[i]; int val2 = s.charAt(i) - '0'; if(val1==val2)ans[i]=1; else ans[i]=0; } if(arr[n-1]>1) { if(onecount%2==1)ans[n-1]=1; else ans[n-1]=0; } } //writer.println(zerocount + " " + onecount); for(int i : ans)writer.print(i); writer.println(); for(int i : arr) { writer.print(i + " "); } writer.println(); } writer.flush(); writer.close(); } private static int findVal(String a, String b, int n) { int diff1 = 0; for(int i = 0; i < n; i++) { if(a.charAt(i) != b.charAt(i))diff1++; } return diff1; } private static long power (long a, long n, long p) { long res = 1; while(n!=0) { if(n%2==1) { res=(res*a)%p; n--; }else { a= (a*a)%p; n/=2; } } return res; } private static boolean isPrime(int c) { for (int i = 2; i*i <= c; i++) { if(c%i==0)return false; } return true; } private static int find(int a , int arr[]) { if(arr[a] != a) return arr[a] = find(arr[a], arr); return arr[a]; } private static void union(int a, int b, int arr[]) { int aa = find(a,arr); int bb = find(b, arr); arr[aa] = bb; } private static int gcd(int a, int b) { if(a==0)return b; return gcd(b%a, a); } public static int[] readIntArray(int size, FastReader s) { int[] array = new int[size]; for (int i = 0; i < size; i++) { array[i] = s.nextInt(); } return array; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } class Pair implements Comparable<Pair>{ int a; int b; Pair(int a, int b){ this.a = a; this.b = b; } @Override public boolean equals(Object obj) { if(this == obj) return true; if(obj == null || obj.getClass()!= this.getClass()) return false; Pair pair = (Pair) obj; return (pair.a == this.a && pair.b == this.b); } @Override public int hashCode() { return Objects.hash(a,b); } @Override public int compareTo(Pair o) { if(this.a == o.a) { return Integer.compare(this.b, o.b); }else { return Integer.compare(this.a, o.a); } } @Override public String toString() { return this.a + " " + this.b; } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
c5e7c79b5d58e360bff528ddf2e29240
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; import java.math.BigInteger; public class Main{ public static FastReader cin; public static PrintWriter out; public static void main(String[] args) throws Exception{ out = new PrintWriter(new BufferedOutputStream(System.out)); cin = new FastReader(); int t=cin.nextInt(); for(int z=0;z<t;z++) { int n=cin.nextInt(); int k=cin.nextInt(); char []arr=cin.next().toCharArray(); int tmpk=k; int []f=new int [n]; for(int i=0;i<n&&tmpk>0;i++) { if((k%2==1&&arr[i]=='1')||(k%2==0&&arr[i]=='0')) { f[i]=1; tmpk--; } /*if(k%2==(int)(arr[i]-'0')) { f[i]=1; tmpk--; }*/ } f[n-1]+=tmpk; for(int i=0;i<n;i++) { int change=(k-f[i])%2;//变换次数 if(change==1) { if(arr[i]=='1')arr[i]='0'; else arr[i]='1'; } } out.println(String.valueOf(arr)); for(int i=0;i<n;i++)out.printf("%d ",f[i]); out.println(); } out.close(); } static class FastReader { BufferedReader br; StringTokenizer str; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (str == null || !str.hasMoreElements()) { try { str = new StringTokenizer(br.readLine()); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } } return str.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } return str; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
3ce06d92864bd2ebcf62ded1731bddc8
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; public class codeforces { public static void main(String[] args) throws IOException { BufferedReader scan = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(scan.readLine()); while (t-->0) { String[] s = scan.readLine().split(" "); int n = Integer.parseInt(s[0]); int k = Integer.parseInt(s[1]); char[] bitStr = scan.readLine().toCharArray(); taskB(n, k, bitStr); } } // public static String compute(long games, long r, long b) { // long rest = r%(b+1); // long ratio = r/(b+1); // String sol = ""; // long j = 0; // while(j <= b) { // for (int i = 0; i < ratio; i++) { // sol += "R"; // } // if (j < rest) sol += "R"; // if (j < b) sol = sol + "B"; // j++; // } // // return sol; // } public static void taskB(long n, long k, char[] bitStr) { StringBuilder sol = new StringBuilder(); StringBuilder f = new StringBuilder(); char[] switchStr = bitStr; if (k%2 == 1) { for (int i = 0; i < n; i++) { if (switchStr[i] == "0".charAt(0)) switchStr[i] = "1".charAt(0); else switchStr[i] = "0".charAt(0); } } for (int i = 0; i < n; i++) { if (i == n-1) { f.append(k); if (k%2 == 0) sol.append(switchStr[i]); else if (switchStr[i] == "1".charAt(0)) sol.append("0"); else sol.append("1"); k=0; } else if (switchStr[i] == "0".charAt(0) && k > 0) { f.append("1 "); sol.append("1"); k--; } else { f.append("0 "); sol.append(switchStr[i]); } } System.out.println(sol); System.out.println(f); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
12ecdb5ed0753783e4b82bcd1cd45cb7
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public class codeforces_782_B { private static void solve(FastIOAdapter in, PrintWriter out) { int n = in.nextInt(); int k = in.nextInt(); char[] s = in.next().toCharArray(); int cur = 0; char[] sans = new char[n]; int[] ans = new int[n]; boolean last = s[n - 1] == '1'; for (int i = 0; i < n - 1; i++) { if (cur < k) { int left = k - cur; if (s[i] == '1' && cur % 2 == 0 || s[i] == '0' && cur % 2 == 1) { sans[i] = '1'; if (left % 2 != 0) { ans[i] = 1; last = !last; cur++; } } else { sans[i] = '1'; if (left % 2 == 0) { if (left > 1) { ans[i] = 1; last = !last; cur++; } else { boolean g = false; for (int j = i + 1; j < n - 1; j++) { if (s[j] == '1' && cur % 2 == 0 || s[j] == '0' && cur % 2 == 1) { g = true; ans[j] = 1; sans[j] = '1'; last = !last; cur++; break; } } if (!g) { ans[n - 1] = 1; cur++; } } } } } else if (s[i] == '1' && k % 2 == 0 || s[i] == '0' && k % 2 == 1) { sans[i] = '1'; } else sans[i] = '0'; } int left = k - cur; ans[n - 1] += left; if (last) sans[n - 1] = '1'; else sans[n - 1] = '0'; for (int i = 0; i < n; i++) { out.print(sans[i]); } out.println(); for (int i = 0; i < n; i++) { out.print(ans[i] + " "); } out.println(); } public static void main(String[] args) throws Exception { try (FastIOAdapter ioAdapter = new FastIOAdapter()) { int count = 1; count = ioAdapter.nextInt(); while (count-- > 0) { solve(ioAdapter, ioAdapter.out); } } } static void ruffleSort(int[] arr) { int n = arr.length; Random rnd = new Random(); for (int i = 0; i < n; ++i) { int tmp = arr[i]; int randomPos = i + rnd.nextInt(n - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } Arrays.sort(arr); } static class FastIOAdapter implements AutoCloseable { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter((System.out)))); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String nextLine() { try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); return null; } } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readArrayLong(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } @Override public void close() throws Exception { out.flush(); out.close(); br.close(); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
741db639cf685a16614710d37dd414e4
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; public class BitFlipping { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); while(t > 0) { int n = scan.nextInt(); int k = scan.nextInt(); scan.nextLine(); String str = scan.nextLine(); int[] arr = new int[n]; int sum = 0; for(int i = 0; i < n; i++) { if(sum == k) { break; } if(str.charAt(i) == '0') { if(k % 2 == 0) { arr[i]++; sum++; } } else { if(k % 2 == 1) { arr[i]++; sum++; } } } arr[n-1] += (k - sum); StringBuilder str1 = new StringBuilder(""); StringBuilder str2 = new StringBuilder(""); for(int i = 0; i < n; i++) { str1.append((((str.charAt(i)-'0')+k-arr[i])%2)); str2.append(arr[i] + " "); } System.out.println(str1); System.out.println(str2); t--; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
2d5c7633a795151909382e784e984eb1
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.io.*; import java.util.*; public class Solution { static int mod=(int)998244353; public static void main(String[] args) { Copied io = new Copied(System.in, System.out); // int k=1; int t = 1; t = io.nextInt(); for (int i = 0; i < t; i++) { // io.print("Case #" + k + ": "); solve(io); // k++; } io.close(); } public static void solve(Copied io) { int n = io.nextInt(), k = io.nextInt(); String s = io.next(); char c[] = new char[n]; for(int i = 0; i < n; i++) { c[i] = s.charAt(i); } int ans[] = new int[n]; if(k % 2 == 0) { int nz = 0; for(int i = 0; i < n; i++) { if(c[i] == '0') { nz++; } } for(int i = 0; i < n && nz > 1 && k > 0; i++) { if(c[i] == '0') { ans[i]++; c[i] = '1'; while(i < n && c[i] == '1') { i++; } ans[i]++; nz -= 2; k -= 2; c[i] = '1'; } } if(k > 0) { for(int i = 0; i < n; i++) { if(c[i] == '0') { c[i] = '1'; c[n - 1] = '0'; ans[i]++; ans[n - 1]++; nz--; k -= 2; break; } } ans[n - 1] += k; } }else { int nz = 0; for(int i = 0; i < n; i++) { if(c[i] == '1') { nz++; } } for(int i = 0; i < n && nz > 1 && k > 1; i++) { if(c[i] == '1') { ans[i]++; c[i] = '0'; while(i < n && c[i] == '0') { i++; } ans[i]++; nz -= 2; k -= 2; c[i] = '0'; } } if(k >= 1) { if(k > 1) { ans[n - 1] += (k - 1); k = 1; } int pos = n - 1; for(int i = 0; i < n; i++) { if(c[i] == '1') { pos = i; break; } } ans[pos]++; for(int i = 0; i < pos; i++) { c[i] = (c[i] == '0' ? '1' : '0'); } for(int i = pos + 1; i < n; i++) { c[i] = (c[i] == '0' ? '1' : '0'); } } } for(char ch: c) { io.print(ch); } io.println(); printArr(ans, io); } static String sortString(String inputString) { char tempArray[] = inputString.toCharArray(); Arrays.sort(tempArray); return new String(tempArray); } static void binaryOutput(boolean ans, Copied io){ String a=new String("YES"), b=new String("NO"); if(ans){ io.println(a); } else{ io.println(b); } } static int power(int x, int y, int p) { int res = 1; x = x % p; if (x == 0) return 0; while (y > 0) { if ((y & 1) != 0) res = (res * x) % p; y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void sort(long[] a) { ArrayList<Long> l = new ArrayList<>(); for (long i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static void printArr(int[] arr,Copied io) { for (int x : arr) io.print(x + " "); io.println(); } static void printArr(long[] arr,Copied io) { for (long x : arr) io.print(x + " "); io.println(); } static int[] listToInt(ArrayList<Integer> a){ int n=a.size(); int arr[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=a.get(i); } return arr; } static int mod_mul(int a, int b){ a = a % mod; b = b % mod; return (((a * b) % mod) + mod) % mod;} static int mod_add(int a, int b){ a = a % mod; b = b % mod; return (((a + b) % mod) + mod) % mod;} static int mod_sub(int a, int b){ a = a % mod; b = b % mod; return (((a - b) % mod) + mod) % mod;} } class Pair implements Cloneable, Comparable<Pair> { int x,y; Pair(int a,int b) { this.x=a; this.y=b; } @Override public boolean equals(Object obj) { if(obj instanceof Pair) { Pair p=(Pair)obj; return p.x==this.x && p.y==this.y; } return false; } @Override public int hashCode() { return Math.abs(x)+101*Math.abs(y); } @Override public String toString() { return "("+x+" "+y+")"; } @Override protected Pair clone() throws CloneNotSupportedException { return new Pair(this.x,this.y); } @Override public int compareTo(Pair a) { int t= this.x-a.x; if(t!=0) return t; else return this.y-a.y; } } class byY implements Comparator<Pair>{ // @Override public int compare(Pair o1,Pair o2){ // -1 if want to swap and (1,0) otherwise. int t= o1.y-o2.y; if(t!=0) return t; else return o1.x-o2.x; } } class byX implements Comparator<Pair>{ // @Override public int compare(Pair o1,Pair o2){ // -1 if want to swap and (1,0) otherwise. int t= o1.x-o2.x; if(t!=0) return t; else return o1.y-o2.y; } } class DescendingOrder<T> implements Comparator<T>{ @Override public int compare(Object o1,Object o2){ // -1 if want to swap and (1,0) otherwise. int addingNumber=(Integer) o1,existingNumber=(Integer) o2; if(addingNumber>existingNumber) return -1; else if(addingNumber<existingNumber) return 1; else return 0; } } class Copied extends PrintWriter { public Copied(InputStream i) { super(new BufferedOutputStream(System.out)); r = new BufferedReader(new InputStreamReader(i)); } public Copied(InputStream i, OutputStream o) { super(new BufferedOutputStream(o)); r = new BufferedReader(new InputStreamReader(i)); } public boolean hasMoreTokens() { return peekToken() != null; } public int nextInt() { return Integer.parseInt(nextToken()); } public double nextDouble() { return Double.parseDouble(nextToken()); } public long nextLong() { return Long.parseLong(nextToken()); } public String next() { return nextToken(); } public double[] nextDoubles(int N) { double[] res = new double[N]; for (int i = 0; i < N; i++) { res[i] = nextDouble(); } return res; } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongs(int N) { long[] res = new long[N]; for (int i = 0; i < N; i++) { res[i] = nextLong(); } return res; } private BufferedReader r; private String line; private StringTokenizer st; private String token; private String peekToken() { if (token == null) try { while (st == null || !st.hasMoreTokens()) { line = r.readLine(); if (line == null) return null; st = new StringTokenizer(line); } token = st.nextToken(); } catch (IOException e) { } return token; } private String nextToken() { String ans = peekToken(); token = null; return ans; } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
f6590aec452aafa108498f198ba12bbd
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Solution6 { public static void main(String[] args) { FastScanner fs=new FastScanner(); PrintWriter out=new PrintWriter(System.out); int t=fs.nextInt(); int l=0; while(t-->0){ //long n=fs.nextLong(); //long k=fs.nextLong(); int n=fs.nextInt(); int k=fs.nextInt(); String s=fs.next(); char ch[]=s.toCharArray(); int fn[]=new int[n]; //char ch[]=s.toCharArray(); int m=k; for(int i=0;i<n && m>0;i++){ if(k%2==ch[i]-'0'){ fn[i]=1; m--; } } fn[n-1]+=m; String res=""; for(int i=0;i<n;i++){ if((k-fn[i])%2!=0) ch[i]=(char)('1'-(ch[i]-'0')); } out.println(ch); for(int i:fn) out.print(i+" "); out.println(); } out.close(); } // public static void check(int n,int k,char ch[]){ // PrintWriter out=new PrintWriter(System.out); // // // } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
adbf55ca2e306182201399194e432123
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Solution6 { public static void main(String[] args) { FastScanner fs=new FastScanner(); PrintWriter out=new PrintWriter(System.out); int t=fs.nextInt(); int l=0; while(t-->0){ //long n=fs.nextLong(); //long k=fs.nextLong(); int n=fs.nextInt(); int k=fs.nextInt(); String s=fs.next(); char ch[]=s.toCharArray(); check(n,k,ch); } } public static void check(int n,int k,char ch[]){ int fn[]=new int[n]; //char ch[]=s.toCharArray(); int m=k; for(int i=0;i<n && m>0;i++){ if(k%2==ch[i]-'0'){ fn[i]=1; m--; } } fn[n-1]+=m; String res=""; for(int i=0;i<n;i++){ if((k-fn[i])%2!=0) ch[i]=(char)('1'-(ch[i]-'0')); } System.out.println(ch); for(int i:fn) System.out.print(i+" "); System.out.println(); } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
c07a0d17e86f52bc17b4f68c4c67a7e5
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Solution6 { public static void main(String[] args) { FastScanner fs=new FastScanner(); PrintWriter out=new PrintWriter(System.out); int t=fs.nextInt(); int l=0; while(t-->0){ //long n=fs.nextLong(); //long k=fs.nextLong(); int n=fs.nextInt(); int k=fs.nextInt(); String s=fs.next(); char ch[]=s.toCharArray(); check(n,k,ch); } } public static void check(int n,int k,char ch[]){ int fn[]=new int[n]; //char ch[]=s.toCharArray(); int m=k; for(int i=0;i<n && m>0;i++){ if(k%2==ch[i]-'0'){ fn[i]=1; m--; } } fn[n-1]+=m; String res=""; for(int i=0;i<n;i++){ if((k-fn[i])%2!=0) ch[i]=(char)('1'-(ch[i]-'0')); } System.out.println(String.valueOf(ch)); for(int i:fn) System.out.print(i+" "); System.out.println(); } static long binpow(long a, long b) { a %= mod; long res = 1; while (b > 0) { if ((b & 1)==1) res = res * a % mod; a = a * a % mod; b >>= 1; } return res; } static long setbit(long x){ long ind=0;int i=0; while(x>0){ if((x & 1)==1) ind =i; i++; x>>=1; } return ind; } static final Random random=new Random(); static final int mod=1_000_000_007; static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static long add(long a, long b) { return (a+b)%mod; } static long sub(long a, long b) { return ((a-b)%mod+mod)%mod; } static long mul(long a, long b) { return (a*b)%mod; } static long exp(long base, long exp) { if (exp==0) return 1; long half=exp(base, exp/2); if (exp%2==0) return mul(half, half); return mul(half, mul(half, base)); } static long[] factorials=new long[2_000_001]; static long[] invFactorials=new long[2_000_001]; static void precompFacts() { factorials[0]=invFactorials[0]=1; for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i); invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2); for (int i=invFactorials.length-2; i>=0; i--) invFactorials[i]=mul(invFactorials[i+1], i+1); } static long nCk(int n, int k) { return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k])); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
94d4129f24c65255bfe475c7ea744e9e
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Solution{ public static void main(String[] args) { TaskA solver = new TaskA(); int t = in.nextInt(); for (int i = 1; i <= t ; i++) { solver.solve(i, in, out); } // solver.solve(1, in, out); out.flush(); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n= in.nextInt(); int k= in.nextInt(); char[]c=in.next().toCharArray(); if(n==1) { println((char)c[0]-'0'); println(k); return; } int []ans=new int[n];int k1=k; for(int i=0;i<n&&k1>0;i++) { if(k%2==c[i]-'0') { ans[i]=1;k1--; } } ans[n-1]+=k1; for(int i=0;i<n;i++) { if((k-ans[i])%2==1) { if(c[i]=='0') { c[i]='1'; } else { c[i]='0'; } } } println(String.valueOf(c)); println(ans); } } static int ceil(int a,int b) { int ans=a/b;if(a%b!=0) { ans++; } return ans; } static int query(int l,int r) { System.out.println("? "+l+" "+r); System.out.print ("\n"); int x=in.nextInt(); return x; } static boolean check(Pair[]arr,int mid,int n) { int c=0; for(int i=0;i<n;i++) { if(mid-1-arr[i].first<=c&&c<=arr[i].second) { c++; } } return c>=mid; } static long sum(int[]arr) { long s=0; for(int x:arr) { s+=x; } return s; } static long sum(long[]arr) { long s=0; for(long x:arr) { s+=x; } return s; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(int[] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void sort(long[] a) { ArrayList<Long> q = new ArrayList<>(); for (long i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void println(int[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(long[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(int[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static void println(long[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static long[]input(int n){ long[]arr=new long[n]; for(int i=0;i<n;i++) { arr[i]=in.nextInt(); } return arr; } static long[]input(){ long n= in.nextInt(); long[]arr=new long[(int)n]; for(int i=0;i<n;i++) { arr[i]=in.nextLong(); } return arr; } //////////////////////////////////////////////////////// static class Pair { long first; long second; Pair(long x, long y) { this.first = x; this.second = y; } } static void sortS(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.second - p2.second); } }); } static void sortF(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.first - p2.first); } }); } ///////////////////////////////////////////////////////////// static InputStream inputStream = System.in; static OutputStream outputStream = System.out; static InputReader in = new InputReader(inputStream); static PrintWriter out = new PrintWriter(outputStream); static void println(long c) { out.println(c); } static void print(long c) { out.print(c); } static void print(int c) { out.print(c); } static void println(int x) { out.println(x); } static void print(String s) { out.print(s); } static void println(String s) { out.println(s); } static void println(boolean b) { out.println(b); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
9cdc742df730ff1b78d8c1d3eff56b11
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { static long mod = (int)1e9+7; // static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); public static void main (String[] args) throws java.lang.Exception { FastReader sc =new FastReader(); int t=sc.nextInt(); // int t=1; while(t-->0) { int n = sc.nextInt(); int k = sc.nextInt(); char arr[] = sc.next().toCharArray(); int ans[] = new int[n]; if(k % 2 == 0) { for(int i=0;i<n;i++) { if(k > 0 && arr[i] == '0') { arr[i] = '1'; k--; ans[i]++; } } if(k % 2 == 1) { ans[n - 1]++; arr[n - 1] = (arr[n - 1] == '0') ? '1' : '0'; k--; } ans[0] += k; System.out.println(arr); for(int x:ans) { System.out.print(x+" "); } System.out.println(); } else { k -= 1; for(int i=0;i<n-1;i++) { if(k > 0 && arr[i] == '1') { arr[i] = '0'; k--; ans[i]++; } } if(k % 2 == 1) { if(arr[n - 1] == '0') { arr[n - 1] = '1'; ans[n - 1]++; } else { arr[n - 2] = '1'; ans[n - 2]++; } k--; } ans[0] += k; int index = n - 1; for(int i=0;i<n;i++) { if(arr[i] == '1') { index = i; break; } } ans[index]++; for(int i=0;i<n;i++) { if(i != index) { arr[i] = (arr[i] == '1') ? '0' : '1'; } } System.out.println(arr); for(int x:ans) { System.out.print(x+" "); } System.out.println(); } } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] readArrayLong(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } static class FenwickTree { //Binary Indexed Tree //1 indexed public int[] tree; public int size; public FenwickTree(int size) { this.size = size; tree = new int[size+5]; } public void add(int i, int v) { while(i <= size) { tree[i] += v; i += i&-i; } } public int find(int i) { int res = 0; while(i >= 1) { res += tree[i]; i -= i&-i; } return res; } public int find(int l, int r) { return find(r)-find(l-1); } } public static int[] radixSort2(int[] a) { int n = a.length; int[] c0 = new int[0x101]; int[] c1 = new int[0x101]; int[] c2 = new int[0x101]; int[] c3 = new int[0x101]; for(int v : a) { c0[(v&0xff)+1]++; c1[(v>>>8&0xff)+1]++; c2[(v>>>16&0xff)+1]++; c3[(v>>>24^0x80)+1]++; } for(int i = 0;i < 0xff;i++) { c0[i+1] += c0[i]; c1[i+1] += c1[i]; c2[i+1] += c2[i]; c3[i+1] += c3[i]; } int[] t = new int[n]; for(int v : a)t[c0[v&0xff]++] = v; for(int v : t)a[c1[v>>>8&0xff]++] = v; for(int v : a)t[c2[v>>>16&0xff]++] = v; for(int v : t)a[c3[v>>>24^0x80]++] = v; return a; } private static long mergeAndCount(int[] arr, int l, int m, int r) { // Left subarray int[] left = Arrays.copyOfRange(arr, l, m + 1); // Right subarray int[] right = Arrays.copyOfRange(arr, m + 1, r + 1); int i = 0, j = 0, k = l;long swaps = 0; while (i < left.length && j < right.length) { if (left[i] < right[j]) arr[k++] = left[i++]; else { arr[k++] = right[j++]; swaps += (m + 1) - (l + i); } } while (i < left.length) arr[k++] = left[i++]; while (j < right.length) arr[k++] = right[j++]; return swaps; } // Merge sort function private static long mergeSortAndCount(int[] arr, int l, int r) { // Keeps track of the inversion count at a // particular node of the recursion tree long count = 0; if (l < r) { int m = (l + r) / 2; // Total inversion count = left subarray count // + right subarray count + merge count // Left subarray count count += mergeSortAndCount(arr, l, m); // Right subarray count count += mergeSortAndCount(arr, m + 1, r); // Merge count count += mergeAndCount(arr, l, m, r); } return count; } static void my_sort(long[] arr) { ArrayList<Long> list = new ArrayList<>(); for(int i=0;i<arr.length;i++) { list.add(arr[i]); } Collections.sort(list); for(int i=0;i<arr.length;i++) { arr[i] = list.get(i); } } static void reverse_sorted(int[] arr) { ArrayList<Integer> list = new ArrayList<>(); for(int i=0;i<arr.length;i++) { list.add(arr[i]); } Collections.sort(list , Collections.reverseOrder()); for(int i=0;i<arr.length;i++) { arr[i] = list.get(i); } } static int LowerBound(int a[], int x) { // x is the target value or key int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } static int UpperBound(ArrayList<Integer> list, int x) {// x is the key or target value int l=-1,r=list.size(); while(l+1<r) { int m=(l+r)>>>1; if(list.get(m)<=x) l=m; else r=m; } return l+1; } public static HashMap<Integer, Integer> sortByValue(HashMap<Integer, Integer> hm) { // Create a list from elements of HashMap List<Map.Entry<Integer, Integer> > list = new LinkedList<Map.Entry<Integer, Integer> >(hm.entrySet()); // Sort the list Collections.sort(list, new Comparator<Map.Entry<Integer, Integer> >() { public int compare(Map.Entry<Integer, Integer> o1, Map.Entry<Integer, Integer> o2) { return (o1.getValue()).compareTo(o2.getValue()); } }); // put data from sorted list to hashmap HashMap<Integer, Integer> temp = new LinkedHashMap<Integer, Integer>(); for (Map.Entry<Integer, Integer> aa : list) { temp.put(aa.getKey(), aa.getValue()); } return temp; } static class Queue_Pair implements Comparable<Queue_Pair> { int first , second; public Queue_Pair(int first, int second) { this.first=first; this.second=second; } public int compareTo(Queue_Pair o) { return Integer.compare(o.first, first); } } static void leftRotate(int arr[], int d, int n) { for (int i = 0; i < d; i++) leftRotatebyOne(arr, n); } static void leftRotatebyOne(int arr[], int n) { int i, temp; temp = arr[0]; for (i = 0; i < n - 1; i++) arr[i] = arr[i + 1]; arr[n-1] = temp; } static boolean isPalindrome(String str) { // Pointers pointing to the beginning // and the end of the string int i = 0, j = str.length() - 1; // While there are characters to compare while (i < j) { // If there is a mismatch if (str.charAt(i) != str.charAt(j)) return false; // Increment first pointer and // decrement the other i++; j--; } // Given string is a palindrome return true; } static boolean palindrome_array(char arr[], int n) { // Initialise flag to zero. int flag = 0; // Loop till array size n/2. for (int i = 0; i <= n / 2 && n != 0; i++) { // Check if first and last element are different // Then set flag to 1. if (arr[i] != arr[n - i - 1]) { flag = 1; break; } } // If flag is set then print Not Palindrome // else print Palindrome. if (flag == 1) return false; else return true; } static boolean allElementsEqual(int[] arr,int n) { int z=0; for(int i=0;i<n-1;i++) { if(arr[i]==arr[i+1]) { z++; } } if(z==n-1) { return true; } else { return false; } } static boolean allElementsDistinct(int[] arr,int n) { int z=0; for(int i=0;i<n-1;i++) { if(arr[i]!=arr[i+1]) { z++; } } if(z==n-1) { return true; } else { return false; } } public static void reverse(int[] array) { // Length of the array int n = array.length; // Swaping the first half elements with last half // elements for (int i = 0; i < n / 2; i++) { // Storing the first half elements temporarily int temp = array[i]; // Assigning the first half to the last half array[i] = array[n - i - 1]; // Assigning the last half to the first half array[n - i - 1] = temp; } } public static void reverse_Long(long[] array) { // Length of the array int n = array.length; // Swaping the first half elements with last half // elements for (int i = 0; i < n / 2; i++) { // Storing the first half elements temporarily long temp = array[i]; // Assigning the first half to the last half array[i] = array[n - i - 1]; // Assigning the last half to the first half array[n - i - 1] = temp; } } static boolean isSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] > a[i + 1]) { return false; } } return true; } static boolean isReverseSorted(int[] a) { for (int i = 0; i < a.length - 1; i++) { if (a[i] < a[i + 1]) { return false; } } return true; } static int[] rearrangeEvenAndOdd(int arr[], int n) { ArrayList<Integer> list = new ArrayList<>(); for(int i=0;i<n;i++) { if(arr[i]%2==0) { list.add(arr[i]); } } for(int i=0;i<n;i++) { if(arr[i]%2!=0) { list.add(arr[i]); } } int len = list.size(); int[] array = list.stream().mapToInt(i->i).toArray(); return array; } static long[] rearrangeEvenAndOddLong(long arr[], int n) { ArrayList<Long> list = new ArrayList<>(); for(int i=0;i<n;i++) { if(arr[i]%2==0) { list.add(arr[i]); } } for(int i=0;i<n;i++) { if(arr[i]%2!=0) { list.add(arr[i]); } } int len = list.size(); long[] array = list.stream().mapToLong(i->i).toArray(); return array; } static boolean isPrime(long n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (long i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static long getSum(long n) { long sum = 0; while (n != 0) { sum = sum + n % 10; n = n/10; } return sum; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static long gcdLong(long a, long b) { if (b == 0) return a; return gcdLong(b, a % b); } static void swap(int i, int j) { int temp = i; i = j; j = temp; } static int countDigit(int n) { return (int)Math.floor(Math.log10(n) + 1); } } class Pair { int first; int second; Pair(int first , int second) { this.first = first; this.second = second; } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
24ccd5e885660d288b3eece3b36ce368
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static Scanner obj=new Scanner(System.in); public static PrintWriter out=new PrintWriter(System.out); public static void main(String[] args) { int len=obj.nextInt(); while(len--!=0) { int n=obj.nextInt(); int k=obj.nextInt(); String s=obj.next(); char[] c=s.toCharArray(); int[] ans=new int[n]; int op=k; int i=0; for(i=0;i<n && op>0 ;i++) { if(c[i]=='1' ) { if(k%2!=0) { ans[i]+=1; op--; } } if(c[i]=='0') { if(k%2==0) { ans[i]+=1; op--; } c[i]='1'; } } if(i==n) { if(op%2!=0) c[n-1]='0'; ans[n-1]+=op; } else { if(k%2!=0) for(;i<n;i++) { if(c[i]=='1')c[i]='0'; else c[i]='1'; } } out.println(c); for(i=0;i<n;i++)out.print(ans[i]+" "); out.println(); } out.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
7c030e98d82ee264eb037ecc85671e65
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class E { static class Reader { BufferedReader br; StringTokenizer st; public Reader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static class Pair<T extends Comparable<T>, U extends Comparable<U>> implements Comparable<Pair<T, U>>{ // note first and second must not change T first; U second; private int hashCode; public Pair(T first, U second) { this.first = first; this.second = second; hashCode = Objects.hash(first, second); } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair p = (Pair) o; return first.equals(p.first) && second.equals(p.second); } public int hashCode() { return hashCode; } public int compareTo(Pair<T, U> o) { return first.compareTo(o.first); } } public static void main(String args[]) { Reader rd = new Reader(); int tcs = rd.nextInt(); for (int tc = 1; tc <= tcs; tc++) { int n = rd.nextInt(); long kk = rd.nextLong(); long k = kk; String s = rd.next(); /* if (k % 2 != 0) { StringBuilder rev = new StringBuilder(); for (int i = 0; i < n; i++) { rev.append(s.charAt(i) == '0' ? "1" : "0"); } s = rev.toString(); } */ long[] o = new long[n]; for (int i = 0; i < n && k > 0; i++) { if ((kk + s.charAt(i) - '0') % 2 == 0) { o[i] = 1; k--; } } o[n - 1] += k; StringBuilder a = new StringBuilder(); for (int i = 0; i < n; i++) { long add = (o[i] + kk + s.charAt(i) - '0') % 2; a.append(Long.toString(add)); } System.out.println(a.toString()); a.setLength(0); for (int i = 0; i < n; i++) { a.append(Long.toString(o[i])); a.append(" "); } System.out.println(a.toString()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
ae6a14244873cc6098941107c749ce03
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
// package div_2_782; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class B{ public static void main(String[] args){ FastReader sc = new FastReader(); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); int k=sc.nextInt(); char c[]=sc.next().toCharArray(); int ans[]=new int [n]; if((k&1)==0) { StringBuilder s= new StringBuilder(); for(int i=0;i<n;i++) { int cnt=0; if(i==n-1) { if((k&1)==0) { if(c[i]=='0')s.append('0'); else s.append('1'); }else { if(c[i]=='0')s.append('1'); else s.append('0'); } cnt=k; } else if(c[i]=='0') { if(k>0) { cnt=1; s.append('1'); k--; }else s.append('0'); } else s.append('1'); ans[i]=cnt; } System.out.println(s); }else { StringBuilder s= new StringBuilder(); for(int i=0;i<n;i++) { int cnt=0; if(i==n-1) { if((k&1)==0) { if(c[i]=='0')s.append('1'); else s.append('0'); }else { if(c[i]=='0')s.append('0'); else s.append('1'); } cnt=k; } else if(c[i]=='1') { if(k>0) { cnt=1; s.append('1'); k--; }else s.append('0'); } else s.append('1');; ans[i]=cnt; } System.out.println(s); } print(ans); } } static int pow(int a,int b) { if(b==0)return 1; if(b==1)return a; return a*pow(a,b-1); } static class pair { int x;int y; pair(int x,int y){ this.x=x; this.y=y; } } static ArrayList<Integer> primeFac(int n){ ArrayList<Integer>ans = new ArrayList<Integer>(); int lp[]=new int [n+1]; Arrays.fill(lp, 0); //0-prime for(int i=2;i<=n;i++) { if(lp[i]==0) { for(int j=i;j<=n;j+=i) { if(lp[j]==0) lp[j]=i; } } } int fac=n; while(fac>1) { ans.add(lp[fac]); fac=fac/lp[fac]; } print(ans); return ans; } static ArrayList<Long> prime_in_given_range(long l,long r){ ArrayList<Long> ans= new ArrayList<>(); int n=(int)Math.sqrt(r)+1; int prime[]=sieve_of_Eratosthenes(n); long res[]=new long [(int)(r-l)+1]; for(int i=0;i<=r-l;i++) { res[i]=i+l; } for(int i=0;i<prime.length;i++) { if(prime[i]==1) { System.out.println(2); for(int j=Math.max((int)i*i, (int)(l+i-1)/i*i);j<=r;j+=i) { res[j-(int)l]=0; } } } for(long i:res) if(i!=0)ans.add(i); return ans; } static int [] sieve_of_Eratosthenes(int n) { int prime[]=new int [n]; Arrays.fill(prime, 1); // 1-prime | 0-not prime prime[0]=prime[1]=0; for(int i=2;i<n;i++) { if(prime[i]==1) { for(int j=i*i;j<n;j+=i) { prime[j]=0; } } } return prime; } static long binpow(long a,long b) { long res=1; if(b==0)return 1; if(a==0)return 0; while(b>0) { if((b&1)==1) { res*=a; } a*=a; b>>=1; } return res; } static void print(int a[]) { // System.out.println(a.length); for(int i:a) { System.out.print(i+" "); } System.out.println(); } static void print(long a[]) { System.out.println(a.length); for(long i:a) { System.out.print(i+" "); } System.out.println(); } static long rolling_hashcode(String s ,int st,int end,long Hashcode,int n) { if(end>=s.length()) return -1; int mod=1000000007; Hashcode=Hashcode-(s.charAt(st-1)*(long)Math.pow(27,n-1)); Hashcode*=10; Hashcode=(Hashcode+(long)s.charAt(end))%mod; return Hashcode; } static long hashcode(String s,int n) { long code=0; for(int i=0;i<n;i++) { code+=((long)s.charAt(i)*(long)Math.pow(27, n-i-1)%1000000007); } return code; } static void print(ArrayList<Integer> a) { System.out.println(a.size()); for(long i:a) { System.out.print(i+" "); } System.out.println(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } int [] fastArray(int n) { int a[]=new int [n]; for(int i=0;i<n;i++) { a[i]=nextInt(); } return a; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
fbede8b0f0635b6427abbaad5ded5a9c
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; public class Main { static BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter pw = new PrintWriter(System.out);; public static void main(String[] args) throws IOException { int T = Integer.parseInt(in.readLine()); while (T-- > 0) { solve(); } pw.close(); } private static void solve() throws IOException { String input = in.readLine(); int n = Integer.parseInt(input.split(" ")[0]); int k = Integer.parseInt(input.split(" ")[1]); String str = in.readLine(); int[] ans = new int[n]; int time = k; if(k%2==0){ for (int i = 0; i < n && time > 0; i++) { if(str.charAt(i) == '0'){ ans[i]++; time--; } } }else { for (int i = 0; i < n && time > 0; i++) { if(str.charAt(i) == '1'){ ans[i]++; time--; } } } if(time > 0){ ans[n - 1] += time; } if(k%2==0){ for (int i = 0; i < n - 1; i++) { if(str.charAt(i) == '0' && ans[i] == 1){ pw.print("1"); }else { pw.print(str.charAt(i)); } } }else { for (int i = 0; i < n - 1; i++) { if(str.charAt(i) == '1' && ans[i] == 0){ pw.print("0"); }else{ pw.print('1'); } } } if((k - ans[n - 1]) % 2 == 0){ pw.println(str.charAt(n - 1)); }else { pw.println(str.charAt(n - 1) == '1'?'0':'1'); } for (int i = 0; i < n; i++){ pw.print(ans[i] + " "); } pw.println(); pw.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
25a2cb3390e72821913d1b77fa45dfc9
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; public class D { static FastScanner fs = new FastScanner(); static Scanner scn = new Scanner(System.in); static PrintWriter pw = new PrintWriter(System.out); static StringBuilder sb = new StringBuilder(""); public static void main(String[] args) { int t = fs.nextInt(); for (int tt = 0; tt < t; tt++) { int n = fs.nextInt(); int k = fs.nextInt(); String s = fs.next(); int r = k; int[] a = new int[n]; for (int i = 0; i < n; i++) { if (s.charAt(i) == '1' && k % 2 == 1 && r > 0) { a[i]++; r--; } if (s.charAt(i) == '0' && k % 2 == 0 && r > 0) { a[i]++; r--; } } a[n-1] += Math.max(r, 0); for (int i = 0; i < n; i++) { if (a[i] % 2 == 1 && s.charAt(i) == '1' && k % 2 == 1) sb.append("1"); if (a[i] % 2 == 0 && s.charAt(i) == '0' && k % 2 == 1) sb.append("1"); if (a[i] % 2 == 0 && s.charAt(i) == '1' && k % 2 == 0) sb.append("1"); if (a[i] % 2 == 1 && s.charAt(i) == '0' && k % 2 == 0) sb.append("1"); if (a[i] % 2 == 1 && s.charAt(i) == '1' && k % 2 == 0) sb.append("0"); if (a[i] % 2 == 0 && s.charAt(i) == '1' && k % 2 == 1) sb.append("0"); if (a[i] % 2 == 0 && s.charAt(i) == '0' && k % 2 == 0) sb.append("0"); if (a[i] % 2 == 1 && s.charAt(i) == '0' && k % 2 == 1) sb.append("0"); } sb.append("\n"); for (int i = 0; i < n; i++) sb.append(a[i] + " "); sb.append("\n"); } pw.print(sb.toString()); pw.close(); } static void sort(int[] a) { ArrayList<Integer> al = new ArrayList<>(); for (int i : a) al.add(i); Collections.sort(al); for (int i = 0; i < a.length; i++) a[i] = al.get(i); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() {while (!st.hasMoreTokens()) try {st = new StringTokenizer(br.readLine());} catch (IOException e) {}return st.nextToken();} int nextInt() {return Integer.parseInt(next());} long nextLong() {return Long.parseLong(next());} double nextDouble() {return Double.parseDouble(next());} } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
2be4433caa06dcab5a95fe1a0d630ab5
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.lang.*; import java.util.*; public class ComdeFormces { public static int cc2; public static pair pr; public static long sum; public static void main(String[] args) throws Exception{ // TODO Auto-generated method stub // Reader.init(System.in); FastReader sc=new FastReader(); BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out)); // OutputStream out = new BufferedOutputStream ( System.out ); int t=sc.nextInt(); int tc=1; while(t--!=0) { int n=sc.nextInt(); int k=sc.nextInt(); char a[]=sc.next().toCharArray(); int cnt1=0; ArrayList<Integer> ar=new ArrayList<>(); char b[]=a.clone(); int mov[]=new int[n]; int cnt=0; int i=0; int ptr=0; if(k%2!=0) { if(b[0]=='0') { int ct=0; for( i=0;i<b.length;i++) { if(b[i]=='0') { b[i]='1'; } else { if(ct==0) { ptr=i; mov[i]=1; ct++; continue; } b[i]='0'; } } if(ct==0) { b[n-1]='0'; mov[n-1]=1; } } else if(b[0]=='1') { mov[0]=1; for( i=1;i<b.length;i++) { if(b[i]=='0') { b[i]='1'; } else { b[i]='0'; } } } k--; } cnt=0; i=0; for( i=0;i<b.length;i++) { if(b[i]=='0')ar.add(i); } for(i=0;i<ar.size();i+=2) { if(i+1<ar.size() && cnt+2<=k) { mov[ar.get(i)]++; mov[ar.get(i+1)]++; b[ar.get(i)]='1'; b[ar.get(i+1)]='1'; cnt+=2; } else break; } if(k-cnt>0) { int p2=n-1; int p1=0; int vl=k-cnt; while(p1<p2) { while(p1<n && b[p1]!='0')p1++; while(p2>p1 && b[p2]!='1')p2--; if(p1<p2 && vl>0) { mov[p1]++; mov[p2]++; b[p1]='1'; b[p2]='0'; vl-=2; } else break; } mov[ptr]+=vl; } for(i=0;i<b.length;i++)log.write(b[i]+""); log.write("\n"); for(i=0;i<n;i++)log.write(mov[i]+" "); log.write("\n"); log.flush(); } } static long eval(ArrayList<ArrayList<Integer>> ar,int src,long f[], boolean vis[]) { long mn=Integer.MAX_VALUE; vis[src]=true; for(int p:ar.get(src)) { if(!vis[p]) { long s=eval(ar,p,f,vis); mn=Math.min(mn,s); sum+=s; } } if(src==0)return 0; if(mn==Integer.MAX_VALUE)return f[src]; sum-=mn; return Math.max(f[src], mn); } public static void radixSort(int a[]) { int n=a.length; int res[]=new int[n]; int p=1; for(int i=0;i<=8;i++) { int cnt[]=new int[10]; for(int j=0;j<n;j++) { a[j]=res[j]; cnt[(a[j]/p)%10]++; } for(int j=1;j<=9;j++) { cnt[j]+=cnt[j-1]; } for(int j=n-1;j>=0;j--) { res[cnt[(a[j]/p)%10]-1]=a[j]; cnt[(a[j]/p)%10]--; } p*=10; } } static int bits(long n) { int ans=0; while(n!=0) { if((n&1)==1)ans++; n>>=1; } return ans; } static long flor(ArrayList<Long> ar,long el) { int s=0; int e=ar.size()-1; while(s<=e) { int m=s+(e-s)/2; if(ar.get(m)==el)return ar.get(m); else if(ar.get(m)<el)s=m+1; else e=m-1; } return e>=0?e:-1; } public static int kadane(int a[]) { int sum=0,mx=Integer.MIN_VALUE; for(int i=0;i<a.length;i++) { sum+=a[i]; mx=Math.max(mx, sum); if(sum<0) sum=0; } return mx; } public static int m=1000000007; public static int mul(int a, int b) { return ((a%m)*(b%m))%m; } public static long mul(long a, long b) { return ((a%m)*(b%m))%m; } public static int add(int a, int b) { return ((a%m)+(b%m))%m; } public static long add(long a, long b) { return ((a%m)+(b%m))%m; } //debug public static <E> void p(E[][] a,String s) { System.out.println(s); for(int i=0;i<a.length;i++) { for(int j=0;j<a[0].length;j++) { System.out.print(a[i][j]+" "); } System.out.println(); } } public static void p(int[] a,String s) { System.out.print(s+"="); for(int i=0;i<a.length;i++)System.out.print(a[i]+" "); System.out.println(); } public static void p(long[] a,String s) { System.out.print(s+"="); for(int i=0;i<a.length;i++)System.out.print(a[i]+" "); System.out.println(); } public static <E> void p(E a,String s){ System.out.println(s+"="+a); } public static <E> void p(ArrayList<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(LinkedList<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(HashSet<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(Stack<E> a,String s){ System.out.println(s+"="+a); } public static <E> void p(Queue<E> a,String s){ System.out.println(s+"="+a); } //utils static ArrayList<Integer> divisors(int n){ ArrayList<Integer> ar=new ArrayList<>(); for (int i=2; i<=Math.sqrt(n); i++){ if (n%i == 0){ if (n/i == i) { ar.add(i); } else { ar.add(i); ar.add(n/i); } } } return ar; } static int primeDivisor(int n){ ArrayList<Integer> ar=new ArrayList<>(); int cnt=0; boolean pr=false; while(n%2==0) { pr=true; ar.add(2); n/=2; } for(int i=3;i*i<=n;i+=2) { pr=false; while(n%i==0) { n/=i; ar.add(i); pr=true; } } if(n>2) ar.add(n); return ar.size(); } static long gcd(long a,long b) { if(b==0)return a; else return gcd(b,a%b); } static int gcd(int a,int b) { if(b==0)return a; else return gcd(b,a%b); } static long factmod(long n,long mod,long img) { if(n==0)return 1; long ans=1; long temp=1; while(n--!=0) { if(temp!=img) { ans=((ans%mod)*((temp)%mod))%mod; } temp++; } return ans%mod; } static int ncr(int n, int r){ if(r>n-r)r=n-r; int ans=1; for(int i=0;i<r;i++){ ans*=(n-i); ans/=(i+1); } return ans; } public static class trip{ int a,b; int c; public trip(int a,int b,int c) { this.a=a; this.b=b; this.c=c; } public int compareTo(trip q) { return this.b-q.b; } } static void mergesort(long[] a,int start,int end) { if(start>=end)return ; int mid=start+(end-start)/2; mergesort(a,start,mid); mergesort(a,mid+1,end); merge(a,start,mid,end); } static void merge(long[] a, int start,int mid,int end) { int ptr1=start; int ptr2=mid+1; long b[]=new long[end-start+1]; int i=0; while(ptr1<=mid && ptr2<=end) { if(a[ptr1]<=a[ptr2]) { b[i]=a[ptr1]; ptr1++; i++; } else { b[i]=a[ptr2]; ptr2++; i++; } } while(ptr1<=mid) { b[i]=a[ptr1]; ptr1++; i++; } while(ptr2<=end) { b[i]=a[ptr2]; ptr2++; i++; } for(int j=start;j<=end;j++) { a[j]=b[j-start]; } } public static class FastReader { BufferedReader b; StringTokenizer s; public FastReader() { b=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(s==null ||!s.hasMoreElements()) { try { s=new StringTokenizer(b.readLine()); } catch(IOException e) { e.printStackTrace(); } } return s.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=b.readLine(); } catch(IOException e) { e.printStackTrace(); } return str; } boolean hasNext() { if (s != null && s.hasMoreTokens()) { return true; } String tmp; try { b.mark(1000); tmp = b.readLine(); if (tmp == null) { return false; } b.reset(); } catch (IOException e) { return false; } return true; } } public static class pair{ int a; int b; public pair(int a,int b) { this.a=a; this.b=b; } public int compareTo(pair b) { return this.a-b.a; } // public int compareToo(pair b) { // return this.b-b.b; // } @Override public String toString() { return "{"+this.a+" "+this.b+"}"; } } static long pow(long a, long pw) { long temp; if(pw==0)return 1; temp=pow(a,pw/2); if(pw%2==0)return temp*temp; return a*temp*temp; } static int pow(int a, int pw) { int temp; if(pw==0)return 1; temp=pow(a,pw/2); if(pw%2==0)return temp*temp; return a*temp*temp; } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
523ca7e2d99a18997931d88a98b230ff
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; public class codeforces2 { static List<Integer> primes; static final long X = 10000000000L; public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); // primes = sieveOfEratosthenes(100_000); // System.out.println(primes.toString()); int tc = sc.ni(); // int tc = 1; for (int rep = 0; rep < tc; rep++) { int N = sc.ni(); int K = sc.ni(); String s=sc.next(); // int[] arr = sc.intArray(N); pw.println(solve(N,K, s)); } pw.close(); } public static String solve(final int N, int K, String s) { if (K == 0) { int[] bruh = new int[N]; StringBuilder sb = new StringBuilder(); sb.append(s + "\n"); for (int x : bruh) sb.append(x + " "); return sb.substring(0,sb.length()-1); } final int orig = K; char[] S = s.toCharArray(); int[] arr = new int[N]; StringBuilder newstr = new StringBuilder(); for (int i = 0; i < N; i++) { if ((S[i] == '1' && orig % 2 == 1) || (S[i] == '0' && orig % 2 == 0)) { K--; arr[i]++; newstr.append('1'); if (K == 0) { if (orig % 2 == 1) newstr.append(flip(s.substring(i+1, s.length()))); else newstr.append(s.substring(i+1, s.length())); break; } } else newstr.append('1'); } // if (K > 0) { // if (K % 2 == 1) { // arr[N-1]++; // } if (K % 2==1) { newstr.deleteCharAt(newstr.length() - 1); newstr.append(0); } arr[N-1] += K; // } StringBuilder sb = new StringBuilder(); sb.append(newstr); sb.append("\n"); for (int x : arr) sb.append(x + " "); return sb.substring(0, sb.length() - 1); } static String flip(String s) { StringBuilder sb = new StringBuilder(); for (char c : s.toCharArray()) { if (c == '0') sb.append('1'); else sb.append('0'); } return sb.toString(); } static int charint(char c) { return (int)(c) - (int)('a'); } static long stringHash(String s) { switch (s.length()) { case 1: return ((long)((int)(s.charAt(0)) - (int)('a'))); case 2: return (getHash(charint(s.charAt(0)), charint(s.charAt(1)))); default: return (getHash( charint(s.charAt(0)) , charint(s.charAt(1)) , charint(s.charAt(2)) )); } } static long getHash(int a,int b, int c) { long fault = 1_00000; return ((a*fault)+b)*fault + c; } static long getHash(int a, int b) { long fault = 1_00000; return a*fault+b; } static boolean isSet(long n, int bit) { if (((1 << bit) & n) > 0) return true; return false; } static long nextPrime(long input){ long counter; input++; while(true){ int l = (int) Math.sqrt(input); counter = 0; for(long i = 2; i <= l; i ++){ if(input % i == 0) counter++; } if(counter == 0) return input; else{ input++; continue; } } } public static List<Integer> sieveOfEratosthenes(int n) { boolean prime[] = new boolean[n + 1]; Arrays.fill(prime, true); for (int p = 2; p * p <= n; p++) { if (prime[p]) { for (int i = p * 2; i <= n; i += p) { prime[i] = false; } } } List<Integer> primeNumbers = new LinkedList<>(); for (int i = 2; i <= n; i++) { if (prime[i]) { primeNumbers.add(i); } } return primeNumbers; } public static boolean perfectSquare(long n) { long lo = 0; long hi = n; while (lo < hi) { long k = (lo + hi) / 2; if (k * k < n) lo = k + 1; else hi = k; } return (lo * lo == n); } static Set<Integer> divisors(int n) { Set<Integer> set = new HashSet(); for (int i=1; i<=Math.sqrt(n); i++) { if (n%i==0) { // If divisors are equal, print only one if (n/i == i) set.add(i); else {// Otherwise print both set.add(i); set.add(n / i); } } } return set; } static Map<Integer, Integer> primeFactorization(int x) { //first divide by 2 Map<Integer, Integer> map = new HashMap(); if (x == 0) return map; int count = 0; while (x % 2 == 0) { x /=2; count++; } //insert 2 if (count > 0) map.put(2, count); for (int divisor = 3; divisor * divisor <= x; divisor += 2) { int cnt = 0; while (x % divisor == 0) { x /= divisor; cnt++; } if (cnt > 0) map.put(divisor, cnt); } if (x > 1) { map.put(x, 1); } return map; } static boolean isPrime(int n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } // method to return LCM of two numbers static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static void sort(int[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); int temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } public static void sort(long[] arr) { Random rgen = new Random(); for (int i = 0; i < arr.length; i++) { int r = rgen.nextInt(arr.length); long temp = arr[i]; arr[i] = arr[r]; arr[r] = temp; } Arrays.sort(arr); } /* */ //printing methods /* */ //WOW! /* */ public static void printArr(PrintWriter pw, int[] arr) { StringBuilder sb = new StringBuilder(); for (int x : arr) { sb.append(x + ""); } sb.setLength(sb.length() - 1); pw.println(sb.toString()); } public static void printArr2d(PrintWriter pw, int[][] arr) { StringBuilder sb = new StringBuilder(); for (int[] row : arr) { for (int x : row) { sb.append(x + " "); } sb.setLength(sb.length() - 1); sb.append("\n"); } sb.setLength(sb.length() - 1); pw.println(sb.toString()); } } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in), 32768); st = null; } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } int[] intArray(int N) { int[] ret = new int[N]; for (int i = 0; i < N; i++) ret[i] = ni(); return ret; } long nl() { return Long.parseLong(next()); } long[] longArray(int N) { long[] ret = new long[N]; for (int i = 0; i < N; i++) ret[i] = nl(); return ret; } double nd() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class UnionFind { int size; private int[] id; public UnionFind(int size) { this.size = size; id = new int[size]; for (int i = 0; i < id.length; i++) { id[i] = i; } } public int find(int a) { if (id[a] != a) { id[a] = find(id[a]); } return id[a]; } public void union(int a, int b) { int r1 = find(a); int r2 = find(b); if (r1 == r2) return; size--; id[r1] = r2; } @Override public String toString() { return Arrays.toString(id); } } class isSame { private long[] arr; TreeMap<Integer, Integer> map = new TreeMap(); public isSame(long[] in) { arr = in; int prev = 0; for (int i = 1; i < arr.length; i++) { if (arr[i] == arr[i-1]) { } else { map.put(prev, i-1); prev = i; } } map.put(prev, arr.length - 1); } public boolean query(int l, int r) { Integer lower = map.floorKey(l); //should never happen i think if (lower == null) return false; return map.get(lower) >= r; } @Override public String toString() { return map.toString(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
bf1f2687d6e3c7f25f466af04b8fa999
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.PrintWriter; import java.util.*; public class B_Bit_Flipping { static Scanner s = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); static void solve() { int n = s.nextInt(); int k = s.nextInt(); String str = s.next(); int[] arr = new int[n]; StringBuilder temp = new StringBuilder(); int c1 = 0; int c0 = 0; for (int i = 0; i < str.length() - 1; i++) { if (str.charAt(i) == '1') c1++; else c0++; } if (k % 2 == 0) { for (int i = 0; i < n; i++) { if (k == 0) { temp.append(str.charAt(i)); continue; } if (k > 0 && i == n - 1) { // System.out.println("hello" + k); arr[i] = k; if (c0 % 2 == 0) temp.append(str.charAt(i)); else temp.append(1 - (str.charAt(i) - '0')); continue; } if (str.charAt(i) == '0') { k--; arr[i] = 1; } temp.append("1"); } } else { for (int i = 0; i < n; i++) { if (k == 0) { temp.append(1 - (str.charAt(i) - '0')); continue; } if (k > 0 && i == n - 1) { arr[i] = k; if (c1 % 2 == 0) temp.append(str.charAt(i)); else temp.append(1 - (str.charAt(i) - '0')); continue; } if (str.charAt(i) == '1') { k--; arr[i] = 1; } temp.append("1"); } } out.println(temp); for (int i = 0; i < arr.length; i++) { out.print(arr[i] + " "); } out.println(); out.flush(); } public static void main(String[] args) { int t = s.nextInt(); while (t-- > 0) { solve(); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
708f8ded38dcfaff1c11bf2e428ccf05
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; public class B_Bit_Flipping { public static void main(String[] args) { OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); FastReader f = new FastReader(); int t = f.nextInt(); while(t-- > 0){ solve(f, out); } out.close(); } public static void solve(FastReader f, PrintWriter out) { int n = f.nextInt(); int k = f.nextInt(); int ops = k; StringBuilder sb = new StringBuilder(f.nextLine()); int arr[] = new int[n]; if(k%2 == 0) { for(int i = 0; i < n && k > 0; i++) { if(sb.charAt(i) == '0') { arr[i] = 1; k--; } } arr[n-1] += k; for(int i = 0; i < n; i++) { if((ops-arr[i])%2 == 1) { sb.setCharAt(i, (char)(sb.charAt(i)^'1'^'0')); } } } else { for(int i = 0; i < n && k > 0; i++) { if(sb.charAt(i) == '1') { arr[i] = 1; k--; } } arr[n-1] += k; for(int i = 0; i < n; i++) { if((ops-arr[i])%2 == 1) { sb.setCharAt(i, (char)(sb.charAt(i)^'1'^'0')); } } } out.println(sb); for(int i = 0; i < n; i++) { out.print(arr[i] + " "); } out.println(); } public static void sort(int arr[]) { ArrayList<Integer> al = new ArrayList<>(); for(int i: arr) { al.add(i); } Collections.sort(al); for(int i = 0; i < arr.length; i++) { arr[i] = al.get(i); } } public static void allDivisors(int n) { for(int i = 1; i*i <= n; i++) { if(n%i == 0) { System.out.println(i + " "); if(i != n/i) { System.out.println(n/i + " "); } } } } public static boolean isPrime(int n) { if(n < 1) return false; if(n == 2 || n == 3) return true; if(n % 2 == 0 || n % 3 == 0) return false; for(int i = 5; i*i <= n; i += 6) { if(n % i == 0 || n % (i+2) == 0) { return false; } } return true; } public static int gcd(int a, int b) { int dividend = a > b ? a : b; int divisor = a < b ? a : b; while(divisor > 0) { int reminder = dividend % divisor; dividend = divisor; divisor = reminder; } return dividend; } public static int lcm(int a, int b) { int lcm = gcd(a, b); int hcf = (a * b) / lcm; return hcf; } public static String sortString(String inputString) { char tempArray[] = inputString.toCharArray(); Arrays.sort(tempArray); return new String(tempArray); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] nextArray(int n) { int[] a = new int[n]; for(int i=0; i<n; i++) { a[i] = nextInt(); } return a; } } } /** Dec Char Dec Char Dec Char Dec Char --------- --------- --------- ---------- 0 NUL (null) 32 SPACE 64 @ 96 ` 1 SOH (start of heading) 33 ! 65 A 97 a 2 STX (start of text) 34 " 66 B 98 b 3 ETX (end of text) 35 # 67 C 99 c 4 EOT (end of transmission) 36 $ 68 D 100 d 5 ENQ (enquiry) 37 % 69 E 101 e 6 ACK (acknowledge) 38 & 70 F 102 f 7 BEL (bell) 39 ' 71 G 103 g 8 BS (backspace) 40 ( 72 H 104 h 9 TAB (horizontal tab) 41 ) 73 I 105 i 10 LF (NL line feed, new line) 42 * 74 J 106 j 11 VT (vertical tab) 43 + 75 K 107 k 12 FF (NP form feed, new page) 44 , 76 L 108 l 13 CR (carriage return) 45 - 77 M 109 m 14 SO (shift out) 46 . 78 N 110 n 15 SI (shift in) 47 / 79 O 111 o 16 DLE (data link escape) 48 0 80 P 112 p 17 DC1 (device control 1) 49 1 81 Q 113 q 18 DC2 (device control 2) 50 2 82 R 114 r 19 DC3 (device control 3) 51 3 83 S 115 s 20 DC4 (device control 4) 52 4 84 T 116 t 21 NAK (negative acknowledge) 53 5 85 U 117 u 22 SYN (synchronous idle) 54 6 86 V 118 v 23 ETB (end of trans. block) 55 7 87 W 119 w 24 CAN (cancel) 56 8 88 X 120 x 25 EM (end of medium) 57 9 89 Y 121 y 26 SUB (substitute) 58 : 90 Z 122 z 27 ESC (escape) 59 ; 91 [ 123 { 28 FS (file separator) 60 < 92 \ 124 | 29 GS (group separator) 61 = 93 ] 125 } 30 RS (record separator) 62 > 94 ^ 126 ~ 31 US (unit separator) 63 ? 95 _ 127 DEL */
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
0cd6f075476b962bfdf4d7fa24dd590e
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; public class B_Bit_Flipping { public static void main(String[] args) { OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); FastReader f = new FastReader(); int t = f.nextInt(); while(t-- > 0){ solve(f, out); } out.close(); } public static void solve(FastReader f, PrintWriter out) { int n = f.nextInt(); int k = f.nextInt(); StringBuilder sb = new StringBuilder(f.nextLine()); int arr[] = new int[n]; if(k%2 == 1) { boolean flag = true; for(int i = 0; i < n; i++) { if(sb.charAt(i) == '1' && flag) { arr[i]++; flag = false; } else { sb.setCharAt(i, (char)(sb.charAt(i)^'0'^'1')); } } if(flag) { arr[n-1]++; sb.setCharAt(n-1, '0'); } k--; } for(int i = 0; i < n && k > 0; i++) { if(sb.charAt(i) == '0') { sb.setCharAt(i, '1'); arr[i]++; k--; } } if(k%2 == 1) { sb.setCharAt(n-1, '0'); } arr[n-1] += max(k, 0); out.println(sb); for(int i = 0; i < n; i++) { out.print(arr[i] + " "); } out.println(); } public static void sort(int arr[]) { ArrayList<Integer> al = new ArrayList<>(); for(int i: arr) { al.add(i); } Collections.sort(al); for(int i = 0; i < arr.length; i++) { arr[i] = al.get(i); } } public static void allDivisors(int n) { for(int i = 1; i*i <= n; i++) { if(n%i == 0) { System.out.println(i + " "); if(i != n/i) { System.out.println(n/i + " "); } } } } public static boolean isPrime(int n) { if(n < 1) return false; if(n == 2 || n == 3) return true; if(n % 2 == 0 || n % 3 == 0) return false; for(int i = 5; i*i <= n; i += 6) { if(n % i == 0 || n % (i+2) == 0) { return false; } } return true; } public static int gcd(int a, int b) { int dividend = a > b ? a : b; int divisor = a < b ? a : b; while(divisor > 0) { int reminder = dividend % divisor; dividend = divisor; divisor = reminder; } return dividend; } public static int lcm(int a, int b) { int lcm = gcd(a, b); int hcf = (a * b) / lcm; return hcf; } public static String sortString(String inputString) { char tempArray[] = inputString.toCharArray(); Arrays.sort(tempArray); return new String(tempArray); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } boolean nextBoolean() { return Boolean.parseBoolean(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] nextArray(int n) { int[] a = new int[n]; for(int i=0; i<n; i++) { a[i] = nextInt(); } return a; } } } /** Dec Char Dec Char Dec Char Dec Char --------- --------- --------- ---------- 0 NUL (null) 32 SPACE 64 @ 96 ` 1 SOH (start of heading) 33 ! 65 A 97 a 2 STX (start of text) 34 " 66 B 98 b 3 ETX (end of text) 35 # 67 C 99 c 4 EOT (end of transmission) 36 $ 68 D 100 d 5 ENQ (enquiry) 37 % 69 E 101 e 6 ACK (acknowledge) 38 & 70 F 102 f 7 BEL (bell) 39 ' 71 G 103 g 8 BS (backspace) 40 ( 72 H 104 h 9 TAB (horizontal tab) 41 ) 73 I 105 i 10 LF (NL line feed, new line) 42 * 74 J 106 j 11 VT (vertical tab) 43 + 75 K 107 k 12 FF (NP form feed, new page) 44 , 76 L 108 l 13 CR (carriage return) 45 - 77 M 109 m 14 SO (shift out) 46 . 78 N 110 n 15 SI (shift in) 47 / 79 O 111 o 16 DLE (data link escape) 48 0 80 P 112 p 17 DC1 (device control 1) 49 1 81 Q 113 q 18 DC2 (device control 2) 50 2 82 R 114 r 19 DC3 (device control 3) 51 3 83 S 115 s 20 DC4 (device control 4) 52 4 84 T 116 t 21 NAK (negative acknowledge) 53 5 85 U 117 u 22 SYN (synchronous idle) 54 6 86 V 118 v 23 ETB (end of trans. block) 55 7 87 W 119 w 24 CAN (cancel) 56 8 88 X 120 x 25 EM (end of medium) 57 9 89 Y 121 y 26 SUB (substitute) 58 : 90 Z 122 z 27 ESC (escape) 59 ; 91 [ 123 { 28 FS (file separator) 60 < 92 \ 124 | 29 GS (group separator) 61 = 93 ] 125 } 30 RS (record separator) 62 > 94 ^ 126 ~ 31 US (unit separator) 63 ? 95 _ 127 DEL */
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
225aa2d4827ae4dc663693ebdb3c29ff
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; public class Solution{ public static void main(String[] args) { TaskA solver = new TaskA(); int t = in.nextInt(); for (int i = 1; i <= t ; i++) { solver.solve(i, in, out); } // solver.solve(1, in, out); out.flush(); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { int n= in.nextInt(); int k= in.nextInt(); char[]c=in.next().toCharArray(); if(n==1) { println((char)c[0]-'0'); println(k); return; } int []ans=new int[n];int k1=k; for(int i=0;i<n&&k1>0;i++) { if(k%2==c[i]-'0') { ans[i]=1;k1--; } } ans[n-1]+=k1; for(int i=0;i<n;i++) { if((k-ans[i])%2==1) { if(c[i]=='0') { c[i]='1'; } else { c[i]='0'; } } } println(String.valueOf(c)); println(ans); } } static int ceil(int a,int b) { int ans=a/b;if(a%b!=0) { ans++; } return ans; } static int query(int l,int r) { System.out.println("? "+l+" "+r); System.out.print ("\n"); int x=in.nextInt(); return x; } static boolean check(Pair[]arr,int mid,int n) { int c=0; for(int i=0;i<n;i++) { if(mid-1-arr[i].first<=c&&c<=arr[i].second) { c++; } } return c>=mid; } static long sum(int[]arr) { long s=0; for(int x:arr) { s+=x; } return s; } static long sum(long[]arr) { long s=0; for(long x:arr) { s+=x; } return s; } static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(int[] a) { ArrayList<Integer> q = new ArrayList<>(); for (int i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void sort(long[] a) { ArrayList<Long> q = new ArrayList<>(); for (long i : a) q.add(i); Collections.sort(q); for (int i = 0; i < a.length; i++) a[i] = q.get(i); } static void println(int[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(long[][]arr) { for(int i=0;i<arr.length;i++) { for(int j=0;j<arr[0].length;j++) { print(arr[i][j]+" "); } print("\n"); } } static void println(int[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static void println(long[]arr){ for(int i=0;i<arr.length;i++) { print(arr[i]+" "); } print("\n"); } static long[]input(int n){ long[]arr=new long[n]; for(int i=0;i<n;i++) { arr[i]=in.nextInt(); } return arr; } static long[]input(){ long n= in.nextInt(); long[]arr=new long[(int)n]; for(int i=0;i<n;i++) { arr[i]=in.nextLong(); } return arr; } //////////////////////////////////////////////////////// static class Pair { long first; long second; Pair(long x, long y) { this.first = x; this.second = y; } } static void sortS(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.second - p2.second); } }); } static void sortF(Pair arr[]) { Arrays.sort(arr, new Comparator<Pair>() { @Override public int compare(Pair p1, Pair p2) { return (int)(p1.first - p2.first); } }); } ///////////////////////////////////////////////////////////// static InputStream inputStream = System.in; static OutputStream outputStream = System.out; static InputReader in = new InputReader(inputStream); static PrintWriter out = new PrintWriter(outputStream); static void println(long c) { out.println(c); } static void print(long c) { out.print(c); } static void print(int c) { out.print(c); } static void println(int x) { out.println(x); } static void print(String s) { out.print(s); } static void println(String s) { out.println(s); } static void println(boolean b) { out.println(b); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
0b4208b39d359b018f16c6fb779c384c
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; public class JavaApplication { static BufferedReader in; static StringTokenizer st; static String token; String getLine() throws IOException { return in.readLine(); } String getToken() throws IOException { if (st == null || !st.hasMoreTokens()) st = new StringTokenizer(getLine()); return st.nextToken(); } int getInt() throws IOException { return Integer.parseInt(getToken()); } long getLong() throws IOException { return Long.parseLong(getToken()); } char getChar() throws IOException { if (token == null || token.length() == 0) token = getToken(); char r = token.charAt(0); token = token.substring(1); return r; } public void Solve() throws IOException { int t = getInt(); while (t-- > 0) { int n = getInt(); int k = getInt(); String s = getLine(); char str[] = s.toCharArray(); int f[] = new int[n]; if (k % 2 == 1) { int i = 0; while (i < n && (str[i] != '1')) i++; if (i == n) i--; for (int j = 0; j < n; j++) if (j != i) { str[j] = (char) ('1' + '0' - str[j]); } f[i]++; k--; } int i = 0; while (k > 0 && i < n) { if (str[i] == '0') { str[i] = '1'; f[i]++; k--; } i++; } if (k % 2 == 1) { i--; int j = n - 1; while (j >= 0 && str[j] == '0') j--; if (i < n && j > i - 1) { str[j] = '0'; f[j]++; k--; } } f[n - 1] += k; StringBuilder ans = new StringBuilder(""); for (int w = 0; w < n; w++) { ans.append(str[w]); } System.out.println(ans); for (int w = 0; w < n; w++) { System.out.print(f[w] + " "); } System.out.println(); } } public static void main(String[] args) throws java.lang.Exception { in = new BufferedReader(new InputStreamReader(System.in)); new JavaApplication().Solve(); return; } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
05e32a52087084dc05d1c8ac42695143
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
// import static java.lang.System.out; import static java.lang.Math.*; import static java.lang.System.*; import java.lang.reflect.Array; import java.net.CookieHandler; import java.util.*; import java.io.*; import java.math.*; public class Main { static FastReader sc; static long mod=((long)1e9)+7; // static FastWriter out; static FastWriter out; public static void main(String args[]) throws IOException { // initializeIO(); out=new FastWriter(); sc=new FastReader(); long startTimeProg=System.currentTimeMillis(); long endTimeProg=Long.MAX_VALUE; int t=sc.nextInt(); // int t=1; // boolean[] seave=sieveOfEratosthenes((int)(1e5)); // int[] seave2=sieveOfEratosthenesInt((int)(1e5)); while(t--!=0) { int n=sc.nextInt(); long k=sc.nextLong(); String s=sc.next(); long[] arr=new long[n]; chk(arr,s,n,k); } endTimeProg=System.currentTimeMillis(); debug("[finished : "+(endTimeProg-startTimeProg)+".ms ]"); // System.out.println(String.format("%.9f", max)); } private static void chk(long[] arr, String s, int n, long k) throws IOException { List<Integer> one=new ArrayList<>(); List<Integer> zero=new ArrayList<>(); for(int i=0;i<n;i++){ if(s.charAt(i)=='0'){ zero.add(i); }else{ one.add(i); } } int count=0; if(k%2==0){ for(int i=0;i<min(zero.size(),k);i++){ arr[zero.get(i)]=1; count++; } }else{ for(int i=0;i<min(one.size(),k);i++){ arr[one.get(i)]=1; count++; } } arr[n-1]+=k-count; // debug(count); // debug(arr); StringBuilder sb=new StringBuilder(s); for(int i=0;i<n;i++){ if(k%2!=0){ if(arr[i]%2==0){ sb.setCharAt(i,sb.charAt(i)=='0'?'1':'0'); } }else{ if(arr[i]%2!=0){ sb.setCharAt(i,sb.charAt(i)=='0'?'1':'0'); } } } print(sb.toString()); out.print(arr); } public static boolean isNumeric(String strNum) { if (strNum == null) { return false; } try { double d = Double.parseDouble(strNum); } catch (NumberFormatException nfe) { return false; } return true; } private static boolean isSorted(List<Integer> li){ int n=li.size(); if(n<=1)return true; for(int i=0;i<n-1;i++){ if(li.get(i)>li.get(i+1))return false; } return true; } public static long log2(long N) { // calculate log2 N indirectly // using log() method long result = (long)(Math.log(N) / Math.log(2)); return result; } static boolean isPowerOfTwo(long x) { return x != 0 && ((x & (x - 1)) == 0); } private static boolean ispallindromeList(List<Integer> res){ int l=0,r=res.size()-1; while(l<r){ if(res.get(l)!=res.get(r))return false; l++; r--; } return true; } private static class Pair{ int first=0; int sec=0; int[] arr; char ch; Map<Integer,Integer> map; Pair(int first,int sec){ this.first=first; this.sec=sec; } Pair(int[] arr){ this.map=new HashMap<>(); for(int x:arr) this.map.put(x,map.getOrDefault(x,0)+1); this.arr=arr; } Pair(char ch,int first){ this.ch=ch; this.first=first; } } private static int sizeOfSubstring(int st,int e){ int s=e-st+1; return (s*(s+1))/2; } private static Set<Long> factors(long n){ Set<Long> res=new HashSet<>(); // res.add(n); for (long i=1; i*i<=(n); i++){ if (n%i==0){ res.add(i); if (n/i != i){ res.add(n/i); } } } return res; } private static long fact(long n){ if(n<=2)return n; return n*fact(n-1); } private static long ncr(long n,long r){ return fact(n)/(fact(r)*fact(n-r)); } private static int lessThen(long[] nums,long val,boolean work,int l,int r){ int i=-1; if(work)i=0; while(l<=r){ int mid=l+((r-l)/2); if(nums[mid]<=val){ i=mid; l=mid+1; }else{ r=mid-1; } } return i; } private static int lessThen(List<Long> nums,long val,boolean work,int l,int r){ int i=-1; if(work)i=0; while(l<=r){ int mid=l+((r-l)/2); if(nums.get(mid)<=val){ i=mid; l=mid+1; }else{ r=mid-1; } } return i; } private static int lessThen(List<Integer> nums,int val,boolean work,int l,int r){ int i=-1; if(work)i=0; while(l<=r){ int mid=l+((r-l)/2); if(nums.get(mid)<=val){ i=mid; l=mid+1; }else{ r=mid-1; } } return i; } private static int greaterThen(List<Long> nums,long val,boolean work,int l,int r){ int i=-1; if(work)i=r; while(l<=r){ int mid=l+((r-l)/2); if(nums.get(mid)>=val){ i=mid; r=mid-1; }else{ l=mid+1; } } return i; } private static int greaterThen(List<Integer> nums,int val,boolean work){ int i=-1,l=0,r=nums.size()-1; if(work)i=r; while(l<=r){ int mid=l+((r-l)/2); if(nums.get(mid)>=val){ i=mid; r=mid-1; }else{ l=mid+1; } } return i; } private static int greaterThen(long[] nums,long val,boolean work,int l,int r){ int i=-1; if(work)i=r; while(l<=r){ int mid=l+((r-l)/2); if(nums[mid]>=val){ i=mid; r=mid-1; }else{ l=mid+1; } } return i; } private static long gcd(long[] arr){ long ans=0; for(long x:arr){ ans=gcd(x,ans); } return ans; } private static int gcd(int[] arr){ int ans=0; for(int x:arr){ ans=gcd(x,ans); } return ans; } private static long sumOfAp(long a,long n,long d){ long val=(n*( 2*a+((n-1)*d))); return val/2; } //geometrics private static double areaOftriangle(double x1,double y1,double x2,double y2,double x3,double y3){ double[] mid_point=midOfaLine(x1,y1,x2,y2); // debug(Arrays.toString(mid_point)+" "+x1+" "+y1+" "+x2+" "+y2+" "+x3+" "+" "+y3); double height=distanceBetweenPoints(mid_point[0],mid_point[1],x3,y3); double wight=distanceBetweenPoints(x1,y1,x2,y2); // debug(height+" "+wight); return (height*wight)/2; } private static double distanceBetweenPoints(double x1,double y1,double x2,double y2){ double x=x2-x1; double y=y2-y1; return (Math.pow(x,2)+Math.pow(y,2)); } public static boolean isPerfectSquareByUsingSqrt(long n) { if (n <= 0) { return false; } double squareRoot = Math.sqrt(n); long tst = (long)(squareRoot + 0.5); return tst*tst == n; } private static double[] midOfaLine(double x1,double y1,double x2,double y2){ double[] mid=new double[2]; mid[0]=(x1+x2)/2; mid[1]=(y1+y2)/2; return mid; } private static long sumOfN(long n){ return (n*(n+1))/2; } private static long power(long x,long y,long p){ long res = 1; // Initialize result x = x % p; // Update x if it is more than or // equal to p if (x == 0) return 0; // In case x is divisible by p; while (y > 0){ // If y is odd, multiply x with result if ((y & 1) != 0) res = (res * x) % p; // y must be even now y = y >> 1; // y = y/2 x = (x * x) % p; } return res; } /* Function to calculate x raised to the power y in O(logn)*/ static long power(long x, long y){ long temp; if( y == 0) return 1l; temp = power(x, y / 2); if (y % 2 == 0) return (temp*temp); else return (x*temp*temp); } private static StringBuilder reverseString(String s){ StringBuilder sb=new StringBuilder(s); int l=0,r=sb.length()-1; while(l<=r){ char ch=sb.charAt(l); sb.setCharAt(l,sb.charAt(r)); sb.setCharAt(r,ch); l++; r--; } return sb; } private static void swap(List<Integer> li,int i,int j){ int t=li.get(i); li.set(i,li.get(j)); li.set(j,t); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static long lcm(long a, long b){ return (a / gcd(a, b)) * b; } private static String decimalToString(int x){ return Integer.toBinaryString(x); } private static String decimalToString(long x){ return Long.toBinaryString(x); } private static boolean isPallindrome(String s,int l,int r){ while(l<r){ if(s.charAt(l)!=s.charAt(r))return false; l++; r--; } return true; } private static boolean isSubsequence(String s, String t) { if (s == null || t == null) return false; Map<Character, List<Integer>> map = new HashMap<>(); //<character, index> //preprocess t for (int i = 0; i < t.length(); i++) { char curr = t.charAt(i); if (!map.containsKey(curr)) { map.put(curr, new ArrayList<Integer>()); } map.get(curr).add(i); } int prev = -1; //index of previous character for (int i = 0; i < s.length(); i++) { char c = s.charAt(i); if (map.get(c) == null) { return false; } else { List<Integer> list = map.get(c); prev = lessThen( list, prev,false,0,list.size()-1); if (prev == -1) { return false; } prev++; } } return true; } private static StringBuilder removeLeadingZero(StringBuilder sb){ int i=0; while(i<sb.length()&&sb.charAt(i)=='0')i++; // debug("remove "+i); if(i==sb.length())return new StringBuilder(); return new StringBuilder(sb.substring(i,sb.length())); } private static StringBuilder removeEndingZero(StringBuilder sb){ int i=sb.length()-1; while(i>=0&&sb.charAt(i)=='0')i--; // debug("remove "+i); if(i<0)return new StringBuilder(); return new StringBuilder(sb.substring(0,i+1)); } private static int stringToDecimal(String binaryString){ // debug(decimalToString(n<<1)); return Integer.parseInt(binaryString,2); } private static int stringToInt(String s){ return Integer.parseInt(s); } private static String toString(long val){ return String.valueOf(val); } private static void debug(int[][] arr){ for(int i=0;i<arr.length;i++){ err.println(Arrays.toString(arr[i])); } } private static void debug(long[][] arr){ for(int i=0;i<arr.length;i++){ err.println(Arrays.toString(arr[i])); } } private static void debug(List<int[]> arr){ for(int[] a:arr){ err.println(Arrays.toString(a)); } } private static void debug(float[][] arr){ for(int i=0;i<arr.length;i++){ err.println(Arrays.toString(arr[i])); } } private static void debug(double[][] arr){ for(int i=0;i<arr.length;i++){ err.println(Arrays.toString(arr[i])); } } private static void debug(boolean[][] arr){ for(int i=0;i<arr.length;i++){ err.println(Arrays.toString(arr[i])); } } private static void print(String s)throws IOException { out.println(s); } private static void debug(String s)throws IOException { err.println(s); } private static int charToIntS(char c){ return ((((int)(c-'0'))%48)); } private static void print(double s)throws IOException { out.println(s); } private static void print(float s)throws IOException { out.println(s); } private static void print(long s)throws IOException { out.println(s); } private static void print(int s)throws IOException { out.println(s); } private static void debug(double s)throws IOException { err.println(s); } private static void debug(float s)throws IOException { err.println(s); } private static void debug(long s){ err.println(s); } private static void debug(int s){ err.println(s); } private static boolean isPrime(int n){ // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } private static List<List<Integer>> readUndirectedGraph(int n){ List<List<Integer>> graph=new ArrayList<>(); for(int i=0;i<=n;i++){ graph.add(new ArrayList<>()); } for(int i=0;i<n;i++){ int x=sc.nextInt(); int y=sc.nextInt(); graph.get(x).add(y); graph.get(y).add(x); } return graph; } private static List<List<Integer>> readUndirectedGraph(int[][] intervals,int n){ List<List<Integer>> graph=new ArrayList<>(); for(int i=0;i<=n;i++){ graph.add(new ArrayList<>()); } for(int i=0;i<intervals.length;i++){ int x=intervals[i][0]; int y=intervals[i][1]; graph.get(x).add(y); graph.get(y).add(x); } return graph; } private static List<List<Integer>> readDirectedGraph(int[][] intervals,int n){ List<List<Integer>> graph=new ArrayList<>(); for(int i=0;i<=n;i++){ graph.add(new ArrayList<>()); } for(int i=0;i<intervals.length;i++){ int x=intervals[i][0]; int y=intervals[i][1]; graph.get(x).add(y); // graph.get(y).add(x); } return graph; } private static List<List<Integer>> readDirectedGraph(int n){ List<List<Integer>> graph=new ArrayList<>(); for(int i=0;i<=n;i++){ graph.add(new ArrayList<>()); } for(int i=0;i<n;i++){ int x=sc.nextInt(); int y=sc.nextInt(); graph.get(x).add(y); // graph.get(y).add(x); } return graph; } static String[] readStringArray(int n){ String[] arr=new String[n]; for(int i=0;i<n;i++){ arr[i]=sc.next(); } return arr; } private static Map<Character,Integer> freq(String s){ Map<Character,Integer> map=new HashMap<>(); for(char c:s.toCharArray()){ map.put(c,map.getOrDefault(c,0)+1); } return map; } private static Map<Long,Integer> freq(long[] arr){ Map<Long,Integer> map=new HashMap<>(); for(long x:arr){ map.put(x,map.getOrDefault(x,0)+1); } return map; } private static Map<Integer,Integer> freq(int[] arr){ Map<Integer,Integer> map=new HashMap<>(); for(int x:arr){ map.put(x,map.getOrDefault(x,0)+1); } return map; } static boolean[] sieveOfEratosthenes(long n){ boolean prime[] = new boolean[(int)n + 1]; for (int i = 2; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true){ // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } return prime; } static int[] sieveOfEratosthenesInt(long n){ boolean prime[] = new boolean[(int)n + 1]; Set<Integer> li=new HashSet<>(); for (int i = 1; i <= n; i++){ prime[i] = true; li.add(i); } for (int p = 2; p * p <= n; p++) { if (prime[p] == true){ for (int i = p * p; i <= n; i += p){ li.remove(i); prime[i] = false; } } } int[] arr=new int[li.size()]; int i=0; for(int x:li){ arr[i++]=x; } return arr; } public static long Kadens(List<Long> prices) { long sofar=0; long max_v=0; for(int i=0;i<prices.size();i++){ sofar+=prices.get(i); if (sofar<0) { sofar=0; } max_v=Math.max(max_v,sofar); } return max_v; } public static int Kadens(int[] prices) { int sofar=0; int max_v=0; for(int i=0;i<prices.length;i++){ sofar+=prices[i]; if (sofar<0) { sofar=0; } max_v=Math.max(max_v,sofar); } return max_v; } static boolean isMemberAC(int a, int d, int x){ // If difference is 0, then x must // be same as a. if (d == 0) return (x == a); // Else difference between x and a // must be divisible by d. return ((x - a) % d == 0 && (x - a) / d >= 0); } static boolean isMemberAC(long a, long d, long x){ // If difference is 0, then x must // be same as a. if (d == 0) return (x == a); // Else difference between x and a // must be divisible by d. return ((x - a) % d == 0 && (x - a) / d >= 0); } private static void sort(int[] arr){ int n=arr.length; List<Integer> li=new ArrayList<>(); for(int x:arr){ li.add(x); } Collections.sort(li); for (int i=0;i<n;i++) { arr[i]=li.get(i); } } private static void sortReverse(int[] arr){ int n=arr.length; List<Integer> li=new ArrayList<>(); for(int x:arr){ li.add(x); } Collections.sort(li,Collections.reverseOrder()); for (int i=0;i<n;i++) { arr[i]=li.get(i); } } private static void sort(double[] arr){ int n=arr.length; List<Double> li=new ArrayList<>(); for(double x:arr){ li.add(x); } Collections.sort(li); for (int i=0;i<n;i++) { arr[i]=li.get(i); } } private static void sortReverse(double[] arr){ int n=arr.length; List<Double> li=new ArrayList<>(); for(double x:arr){ li.add(x); } Collections.sort(li,Collections.reverseOrder()); for (int i=0;i<n;i++) { arr[i]=li.get(i); } } private static void sortReverse(long[] arr){ int n=arr.length; List<Long> li=new ArrayList<>(); for(long x:arr){ li.add(x); } Collections.sort(li,Collections.reverseOrder()); for (int i=0;i<n;i++) { arr[i]=li.get(i); } } private static void sort(long[] arr){ int n=arr.length; List<Long> li=new ArrayList<>(); for(long x:arr){ li.add(x); } Collections.sort(li); for (int i=0;i<n;i++) { arr[i]=li.get(i); } } private static long sum(int[] arr){ long sum=0; for(int x:arr){ sum+=x; } return sum; } private static long sum(long[] arr){ long sum=0; for(long x:arr){ sum+=x; } return sum; } private static long evenSumFibo(long n){ long l1=0,l2=2; long sum=0; while (l2<n) { long l3=(4*l2)+l1; sum+=l2; if(l3>n)break; l1=l2; l2=l3; } return sum; } private static void initializeIO(){ try { System.setIn(new FileInputStream("input")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); System.setErr(new PrintStream(new FileOutputStream("error.txt"))); } catch (Exception e) { System.err.println(e.getMessage()); } } private static int maxOfArray(int[] arr){ int max=Integer.MIN_VALUE; for(int x:arr){ max=Math.max(max,x); } return max; } private static long maxOfArray(long[] arr){ long max=Long.MIN_VALUE; for(long x:arr){ max=Math.max(max,x); } return max; } private static int[][] readIntIntervals(int n,int m){ int[][] arr=new int[n][m]; for(int j=0;j<n;j++){ for(int i=0;i<m;i++){ arr[j][i]=sc.nextInt(); } } return arr; } private static long gcd(long a,long b){ if(b==0)return a; return gcd(b,a%b); } private static int gcd(int a,int b){ if(b==0)return a; return gcd(b,a%b); } private static int[] readIntArray(int n){ int[] arr=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); } return arr; } private static double[] readDoubleArray(int n){ double[] arr=new double[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextDouble(); } return arr; } private static long[] readLongArray(int n){ long[] arr=new long[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextLong(); } return arr; } private static void print(int[] arr)throws IOException { out.println(Arrays.toString(arr)); } private static void print(long[] arr)throws IOException { out.println(Arrays.toString(arr)); } private static void print(String[] arr)throws IOException { out.println(Arrays.toString(arr)); } private static void print(double[] arr)throws IOException { out.println(Arrays.toString(arr)); } private static void debug(String[] arr){ err.println(Arrays.toString(arr)); } private static void debug(Boolean[][] arr){ for(int i=0;i<arr.length;i++)err.println(Arrays.toString(arr[i])); } private static void debug(int[] arr){ err.println(Arrays.toString(arr)); } private static void debug(long[] arr){ err.println(Arrays.toString(arr)); } static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader(){ br=new BufferedReader(new InputStreamReader(System.in)); } String next(){ while(st==null || !st.hasMoreTokens()){ try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str=""; try { str=br.readLine().trim(); } catch (Exception e) { e.printStackTrace(); } return str; } } static class FastWriter { BufferedWriter bw; List<String> list = new ArrayList<>(); Set<String> set = new HashSet<>(); FastWriter() { bw = new BufferedWriter(new OutputStreamWriter(System.out)); } <T> void print(T obj) throws IOException { bw.write(obj.toString()); bw.flush(); } void println() throws IOException { print("\n"); } <T> void println(T obj) throws IOException { print(obj.toString() + "\n"); } void print(int[] arr)throws IOException { for(int x:arr){ print(x+" "); } println(); } void print(long[] arr)throws IOException { for(long x:arr){ print(x+" "); } println(); } void print(double[] arr)throws IOException { for(double x:arr){ print(x+" "); } println(); } void printCharN(char c, int n) throws IOException { for (int i = 0; i < n; i++) { print(c); } } } static class Dsu { int[] parent, size; Dsu(int n) { parent = new int[n + 1]; size = new int[n + 1]; for (int i = 0; i <= n; i++) { parent[i] = i; size[i] = 1; } } private int findParent(int u) { if (parent[u] == u) return u; return parent[u] = findParent(parent[u]); } private boolean union(int u, int v) { // System.out.println("uf "+u+" "+v); int pu = findParent(u); // System.out.println("uf2 "+pu+" "+v); int pv = findParent(v); // System.out.println("uf3 " + u + " " + pv); if (pu == pv) return false; if (size[pu] <= size[pv]) { parent[pu] = pv; size[pv] += size[pu]; } else { parent[pv] = pu; size[pu] += size[pv]; } return true; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
5cdf9779266fe7d31a7aab70e2cd9658
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class B { static class RealScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { RealScanner sc = new RealScanner(); int t = sc.nextInt(); while (t-- > 0) { int n, k; n = sc.nextInt(); k = sc.nextInt(); char[] s = sc.next().toCharArray(); if (k % 2 != 0) { for (int i = 0; i < n; i++) { if (s[i] == '1') { s[i] = '0'; } else { s[i] = '1'; } } } int[] res = new int[n]; for (int i = 0; i < n; i++) { if (s[i] == '0' && k > 0) { s[i] = '1'; k--; res[i]++; } // if (k == 0) { // break; // } } if (k % 2 != 0) { s[n - 1] = '0'; } System.out.println(String.valueOf(s)); for (int i = 0; i < n - 1; i++) { System.out.print(res[i] + " "); } System.out.println(res[n - 1] + k); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
5574ee3cbde697359ae8d44ae4dc3065
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Question4 { static boolean multipleTC = true; final static int Mod = 1000000007; final static int Mod2 = 998244353; final double PI = 3.14159265358979323846; int MAX = 1000000007; void pre() throws Exception { } long knapSack(long W, long wt[], long val[], int n){ long []dp = new long[(int) (W + 1)]; for (int i = 1; i < n + 1; i++) { for (long w = W; w >= 0; w--) { if (wt[i - 1] <= w) dp[(int) w] = Math.max(dp[(int) w], dp[(int) (w - wt[i - 1])] + val[i - 1]); } } return dp[(int) W]; } void solve(int t) throws Exception { int n = ni(); long k = nl(); long temp = k; char arr[] = n().toCharArray(); long is1 = 0; for(int i=0;i<n;i++) if(arr[i] == '1') is1++; int ind = -1; if(k%2 != 0) { if(is1 > 0) { boolean flag = false; for(int i=0;i<n;i++) { if(arr[i] == '1' && !flag) { ind = i; flag = true; continue; } else { if(arr[i] == '1') arr[i] = '0'; else arr[i] = '1'; } } } else { for(int i=0;i<n;i++) arr[i] = '1'; ind = (n-1); arr[n-1] = '0'; } k--; temp--; } long cnt1 = 0, cnt0 = 0; for(int i=0;i<n;i++) { if(arr[i] == '1') cnt1++; else cnt0++; } StringBuilder ans = new StringBuilder(); StringBuilder op = new StringBuilder(); for(int i=0;i<n;i++) { if(arr[i] == '0') { if(temp>0) { ans.append('1'); temp--; } else ans.append('0'); } else ans.append('1'); } temp = k; if(k>=cnt0) { if(cnt0%2 != 0) { ans.deleteCharAt(n-1); ans.append(0); } } long oparr[] = new long[n]; if(ind != -1) oparr[ind]++; for(int i=0;i<n;i++) { if(temp > 0) { if(arr[i] == '0') { oparr[i]++; temp--; } } } if(k >= cnt0) { if(cnt0%2 != 0) { oparr[n-1]++; temp--; } } oparr[0] += temp; pn(ans); for(int i=0;i<n;i++) op.append(oparr[i] + " "); pn(op); } double dist(int x1, int y1, int x2, int y2) { double a = x1 - x2, b = y1 - y2; return Math.sqrt((a * a) + (b * b)); } int[] readArr(int n) throws Exception { int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } void sort(int arr[], int left, int right) { ArrayList<Integer> list = new ArrayList<>(); for (int i = left; i <= right; i++) list.add(arr[i]); Collections.sort(list); for (int i = left; i <= right; i++) arr[i] = list.get(i - left); } void sort(int arr[]) { ArrayList<Integer> list = new ArrayList<>(); for (int i = 0; i < arr.length; i++) list.add(arr[i]); Collections.sort(list); for (int i = 0; i < arr.length; i++) arr[i] = list.get(i); } public long max(long... arr) { long max = arr[0]; for (long itr : arr) max = Math.max(max, itr); return max; } public int max(int... arr) { int max = arr[0]; for (int itr : arr) max = Math.max(max, itr); return max; } public long min(long... arr) { long min = arr[0]; for (long itr : arr) min = Math.min(min, itr); return min; } public int min(int... arr) { int min = arr[0]; for (int itr : arr) min = Math.min(min, itr); return min; } public long sum(long... arr) { long sum = 0; for (long itr : arr) sum += itr; return sum; } public long sum(int... arr) { long sum = 0; for (int itr : arr) sum += itr; return sum; } String bin(long n) { return Long.toBinaryString(n); } String bin(int n) { return Integer.toBinaryString(n); } static int bitCount(int x) { return x == 0 ? 0 : (1 + bitCount(x & (x - 1))); } static void dbg(Object... o) { System.err.println(Arrays.deepToString(o)); } int bit(long n) { return (n == 0) ? 0 : (1 + bit(n & (n - 1))); } int abs(int a) { return (a < 0) ? -a : a; } long abs(long a) { return (a < 0) ? -a : a; } void p(Object o) { out.print(o); } void pn(Object o) { out.println(o); } void pni(Object o) { out.println(o); out.flush(); } void pn(int[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } void pn(long[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } String n() throws Exception { return in.next(); } String nln() throws Exception { return in.nextLine(); } int ni() throws Exception { return Integer.parseInt(in.next()); } long nl() throws Exception { return Long.parseLong(in.next()); } double nd() throws Exception { return Double.parseDouble(in.next()); } public static void main(String[] args) throws Exception { new Question4().run(); } FastReader in; PrintWriter out; void run() throws Exception { in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC) ? ni() : 1; pre(); for (int t = 1; t <= T; t++) solve(t); out.flush(); out.close(); } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception { br = new BufferedReader(new FileReader(s)); } String next() throws Exception { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception { String str = ""; try { str = br.readLine(); } catch (IOException e) { throw new Exception(e.toString()); } return str; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
2ff9f36d597b82dd0c3d5931909d8478
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out)); static FastReader sc = new FastReader(); public static void main (String[] args) throws java.lang.Exception { int t = sc.nextInt(); while(t-->0){ solve(sc); } } public static void solve(FastReader sc) throws IOException{ int n = i();int k = i();String s = s(); if(k==0 ){ out.println(s); for(int i = 0;i<n;++i){ out.print(0 + " "); } out.println(); out.flush();return; } if(n==1){ out.println(s.charAt(0));out.println(k);out.flush();return; } char[] str = s.toCharArray(); int[] arr = new int[n]; int deter = 0; int z = 0; for(;z<n&&k>0;++z){ char ch = str[z]; if(deter%2!=0){ if(ch == '0') ch = '1'; else ch = '0'; } if(ch == '0'){ if(k%2==0){ arr[z]=1; k--;deter++; } }else{ if(k%2!=0){ arr[z]=1; k--;deter++; } } str[z]='1'; } if(k!=0){ arr[n-1]+=k; if(k%2!=0){ str[n-1]='0'; } } if(z!=n && deter%2!=0){ for(int j = z;j<n;++j){ if(str[j]=='0'){ str[j]='1'; }else{ str[j] = '0'; } } } for(int i = 0;i<n;++i){ out.print(str[i]); }out.println(); for(int i = 0;i<n;++i){ out.print(arr[i] + " "); } out.println(); out.flush(); } /* int [] arr = new int[n]; for(int i = 0;i<n;++i){ arr[i] = sc.nextInt(); } */ static void mysort(int[] arr) { for(int i=0;i<arr.length;i++) { int rand = (int) (Math.random() * arr.length); int loc = arr[rand]; arr[rand] = arr[i]; arr[i] = loc; } Arrays.sort(arr); } static class Pair implements Comparable<Pair>{ int ind;int val; Pair(int ind, int val){ this.ind=ind; this.val=val; } public int compareTo(Pair o){ return this.val-o.val; } } static int i() { return sc.nextInt(); } static String s() { return sc.next(); } static long l() { return sc.nextLong(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
da8bd8e2dc27dae807be760ef8d16ed2
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
/* "Everything in the universe is balanced. Every disappointment you face in life will be balanced by something good for you! Keep going, never give up." Just have Patience + 1... */ import java.util.*; import java.lang.*; import java.io.*; public class Solution { static long INF = (long) 1e18; public static void main(String[] args) throws java.lang.Exception { out = new PrintWriter(new BufferedOutputStream(System.out)); sc = new FastReader(); int test = sc.nextInt(); for (int t = 1; t <= test; t++) { solve(); } out.close(); } private static void solve() { int n = sc.nextInt(); int k = sc.nextInt(); char[] arr = sc.next().toCharArray(); int[] operationsPerformed = new int[n]; int remainingOperations = k; for (int i = 0; i < n - 1 && remainingOperations > 0; i++) { // you need to perform even flips on it so that it remains '1', that means on the remaining string we do even operations. if (arr[i] == '1' && k % 2 == 1) { operationsPerformed[i] = 1; remainingOperations--; } // to make arr[i] = '1' you need to perform odd flips on it, that means on the remaining string we do odd operations. if (arr[i] == '0' && k % 2 == 0) { operationsPerformed[i] = 1; remainingOperations--; } } operationsPerformed[n - 1] = remainingOperations; for (int i = 0; i < n; i++) { if ((k - operationsPerformed[i]) % 2 == 1) { if (arr[i] == '0') { arr[i] = '1'; }else { arr[i] = '0'; } } } out.println(String.valueOf(arr)); for (int i = 0; i < n; i++) { out.print(operationsPerformed[i] + " "); } out.println(); } public static FastReader sc; public static PrintWriter out; static class FastReader { BufferedReader br; StringTokenizer str; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (str == null || !str.hasMoreElements()) { try { str = new StringTokenizer(br.readLine()); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } } return str.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } return str; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
0329b60a100a69b1499b5ad66e91d468
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
/* "Everything in the universe is balanced. Every disappointment you face in life will be balanced by something good for you! Keep going, never give up." Just have Patience + 1... */ import java.util.*; import java.lang.*; import java.io.*; public class Solution { public static void main(String[] args) throws java.lang.Exception { out = new PrintWriter(new BufferedOutputStream(System.out)); sc = new FastReader(); int test = sc.nextInt(); for (int t = 1; t <= test; t++) { solve(); } out.close(); } private static void solve() { int n = sc.nextInt(); int k = sc.nextInt(); int remaining = k; String s = sc.next(); char[] from = s.toCharArray(); char[] to = s.toCharArray(); int[] res = new int[n]; int bit = 0; for (int i = 0; i < n && k > 0; i++) { from[i] ^= bit; if (k % 2 != from[i] - '0' || i == n - 1) { continue; } bit ^= 1; res[i]++; k--; } res[n - 1] += k; for (int i = 0; i < n; i++) { if ((remaining - res[i]) % 2 == 1) { to[i] ^= 1; } } out.println(String.valueOf(to)); for (int freq : res) { out.print(freq + " "); } out.println(); } public static FastReader sc; public static PrintWriter out; static class FastReader { BufferedReader br; StringTokenizer str; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (str == null || !str.hasMoreElements()) { try { str = new StringTokenizer(br.readLine()); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } } return str.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException lastMonthOfVacation) { lastMonthOfVacation.printStackTrace(); } return str; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
a527a7e6e7d67976d4bd0ee37811feed
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class B_Bit_Flipping { public static void main(String[] args) { FastReader rd = new FastReader(); StringBuilder bd = new StringBuilder(); int t = rd.nextInt(); while(t!=0) { bd.setLength(0); int n = rd.nextInt(), k = rd.nextInt(); String s = rd.nextLine(); int c1 = 0, c0 = 0; for(int i=0;i<n-1;i++) { if(s.charAt(i) == '0') c0++; else c1++; } int a[] = new int[n]; if(k%2==0) { if(k<=c0) { for(int i=0;i<n && k>0;i++) { if(s.charAt(i) == '0') { a[i] = 1; k--; } } for(int i=0;i<n;i++) { if(a[i] == 0) bd.append(s.charAt(i)); else { if(s.charAt(i) == '0') bd.append(1); else bd.append(0); } } bd.append("\n"); for(int i=0;i<n;i++) { bd.append(a[i] + " "); } bd.append("\n"); } else { for(int i=0;i<n-1;i++) { if(s.charAt(i) == '0') a[i] = 1; } a[n-1] = k-c0; for(int i=0;i<n-1;i++) { if(a[i] == 0) bd.append(s.charAt(i)); else { if(s.charAt(i) == '0') bd.append(1); else bd.append(0); } } if(c0%2==0) { bd.append(s.charAt(n-1)); } else { if(s.charAt(n-1) == '0') bd.append(1); else bd.append(0); } bd.append("\n"); for(int i=0;i<n;i++) { bd.append(a[i] + " "); } bd.append("\n"); } } else { if(k<=c1) { for(int i=0;i<n && k>0;i++) { if(s.charAt(i) == '1') { a[i] = 1; k--; } } for(int i=0;i<n;i++) { if(a[i] == 0) { if(s.charAt(i) == '0') bd.append(1); else bd.append(0); } else { bd.append(s.charAt(i)); } } bd.append("\n"); for(int i=0;i<n;i++) { bd.append(a[i] + " "); } bd.append("\n"); } else { for(int i=0;i<n-1;i++) { if(s.charAt(i) == '1') a[i] = 1; } a[n-1] = k-c1; for(int i=0;i<n-1;i++) { if(a[i] == 0) { if(s.charAt(i) == '0') bd.append(1); else bd.append(0); } else { bd.append(s.charAt(i)); } } if(c1%2==0) { bd.append(s.charAt(n-1)); } else { if(s.charAt(n-1) == '0') bd.append(1); else bd.append(0); } bd.append("\n"); for(int i=0;i<n;i++) { bd.append(a[i] + " "); } bd.append("\n"); } } out(bd.toString()); t--; } } public static void out(Object obj) { System.out.print(obj); } public static void outn(Object obj) { System.out.println(obj); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } } // class Pair { // int first; // int second; // public Pair(int first, int second) { // this.first = first; // this.second = second; // } // } // class Compare { // static void compare(Pair arr[], int PRIORITY) { // Arrays.sort(arr, new Comparator<Pair>(){ // @Override // public int compare(Pair p1, Pair p2) { // if(PRIORITY == 1) return p1.second - p2.second; // else return p1.first - p2.first; // } // }); // } // }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
7ba14c60a6a8310e9569cd9e5ec459b0
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
// Source: https://usaco.guide/general/io import java.io.*; import java.util.StringTokenizer; public class Main { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); StringTokenizer st = new StringTokenizer(br.readLine()); int T= Integer.parseInt(st.nextToken()); int n,k,count; String input= ""; StringBuilder result=new StringBuilder(); StringBuilder secondResult=new StringBuilder(); for (int i=0; i<T; i++){ st= new StringTokenizer(br.readLine()); n= Integer.parseInt(st.nextToken()); k= Integer.parseInt(st.nextToken()); st= new StringTokenizer(br.readLine()); input= st.nextToken(); count=k; for (int z=0; z<n-1; z++){ if ((k + (int) input.charAt(z))%2 == 1){ result.append("1"); secondResult.append( "0 "); }else if (count!=0){ result.append("1"); count--; secondResult.append("1 "); }else{ result.append("0"); secondResult.append("0 "); } } secondResult.append(count); result.append(((input.charAt(n-1) + k%2+ count)%2)); pw.println(result); pw.println(secondResult); result= new StringBuilder(); secondResult= new StringBuilder(); } pw.close(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
dad8fe4c3095e637cef410ef9adc8f9e
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { static boolean cases = true; // Solution static void solve(int t) { int n = sc.nextInt(), k = sc.nextInt(); char a[] = sc.next().toCharArray(); char b[] = a.clone(); int ans[] = new int[n]; int x = 0, temp = k; for (int i = 0; i < n - 1 && k > 0; i++) { if (x == 1) { b[i] = b[i] == '1' ? '0' : '1'; } if (k % 2 != (int) (b[i] - '0')) continue; ans[i]++; k--; x ^= 1; } ans[n - 1] += k; for (int i = 0; i < n; ++i) { if ((temp - ans[i]) % 2 != 0) { a[i] = a[i] == '1' ? '0' : '1'; } } System.out.println(new String(a)); for (int i : ans) System.out.print(i + " "); System.out.println(); } public static void main(String[] args) { int c = 1; for (int t = (cases ? sc.nextInt() : 0); t > 1; t--, c++) solve(c); solve(c); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } } private static final FastScanner sc = new FastScanner(); private static PrintWriter out = new PrintWriter(System.out); }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
ea9bee2a366d4adc05863fdc649fe68c
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.Closeable; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.time.Clock; import java.time.LocalDateTime; import java.util.ArrayList; import java.util.Arrays; import java.util.Collection; import java.util.HashMap; import java.util.HashSet; import java.util.Objects; import java.util.Random; import java.util.Set; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.function.Supplier; public class Solution { private void solve() throws IOException { int n = nextInt(); int k = nextInt(); boolean[] b = new boolean[n]; { char[] s = nextTokenChars(); for (int i = 0; i < n; i++) { b[i] = (s[i] == '1') ^ (k % 2 != 0); } } int[] a = new int[n]; for (int i = 0; i < n - 1 && k > 0; i++) { if (!b[i]) { b[i] = !b[i]; a[i]++; k--; } } a[n - 1] = k; if (k % 2 != 0) { b[n - 1] = !b[n - 1]; } for (boolean i : b) { out.print(i ? 1 : 0); } out.println(); for (int i : a) { out.print(i + " "); } out.println(); } private static final boolean runNTestsInProd = true; private static final boolean printCaseNumber = false; private static final boolean assertInProd = false; private static final boolean logToFile = false; private static final boolean readFromConsoleInDebug = false; private static final boolean writeToConsoleInDebug = true; private static final boolean testTimer = false; private static Boolean isDebug = null; private BufferedReader in; private StringTokenizer line; private PrintWriter out; public static void main(String[] args) throws Exception { isDebug = Arrays.asList(args).contains("DEBUG_MODE"); if (isDebug) { log = logToFile ? new PrintWriter("logs/j_solution_" + System.currentTimeMillis() + ".log") : new PrintWriter(System.out); clock = Clock.systemDefaultZone(); } new Solution().run(); } private void run() throws Exception { in = new BufferedReader(new InputStreamReader(!isDebug || readFromConsoleInDebug ? System.in : new FileInputStream("input.txt"))); out = !isDebug || writeToConsoleInDebug ? new PrintWriter(System.out) : new PrintWriter("output.txt"); try (Timer totalTimer = new Timer("total")) { int t = runNTestsInProd || isDebug ? nextInt() : 1; for (int i = 0; i < t; i++) { if (printCaseNumber) { out.print("Case #" + (i + 1) + ": "); } if (testTimer) { try (Timer testTimer = new Timer("test #" + (i + 1))) { solve(); } } else { solve(); } if (isDebug) { out.flush(); } } } in.close(); out.flush(); out.close(); } private void println(Object... objects) { boolean isFirst = true; for (Object o : objects) { if (!isFirst) { out.print(" "); } else { isFirst = false; } out.print(o.toString()); } out.println(); } private int[] nextIntArray(int n) throws IOException { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt(); } return res; } private long[] nextLongArray(int n) throws IOException { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong(); } return res; } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private char[] nextTokenChars() throws IOException { return nextToken().toCharArray(); } private String nextToken() throws IOException { while (line == null || !line.hasMoreTokens()) { line = new StringTokenizer(in.readLine()); } return line.nextToken(); } private static void assertPredicate(boolean p) { if ((isDebug || assertInProd) && !p) { throw new RuntimeException(); } } private static void assertPredicate(boolean p, String message) { if ((isDebug || assertInProd) && !p) { throw new RuntimeException(message); } } private static <T> void assertNotEqual(T unexpected, T actual) { if ((isDebug || assertInProd) && Objects.equals(actual, unexpected)) { throw new RuntimeException("assertNotEqual: " + unexpected + " == " + actual); } } private static <T> void assertEqual(T expected, T actual) { if ((isDebug || assertInProd) && !Objects.equals(actual, expected)) { throw new RuntimeException("assertEqual: " + expected + " != " + actual); } } private static PrintWriter log = null; private static Clock clock = null; private static void log(Object... objects) { log(true, objects); } private static void logNoDelimiter(Object... objects) { log(false, objects); } private static void log(boolean printDelimiter, Object[] objects) { if (isDebug) { StringBuilder sb = new StringBuilder(); sb.append(LocalDateTime.now(clock)).append(" - "); boolean isFirst = true; for (Object o : objects) { if (!isFirst && printDelimiter) { sb.append(" "); } else { isFirst = false; } sb.append(o.toString()); } log.println(sb); log.flush(); } } private static class Timer implements Closeable { private final String label; private final long startTime = isDebug ? System.nanoTime() : 0; public Timer(String label) { this.label = label; } @Override public void close() throws IOException { if (isDebug) { long executionTime = System.nanoTime() - startTime; String fraction = Long.toString(executionTime / 1000 % 1_000_000); logNoDelimiter("Timer[", label, "]: ", executionTime / 1_000_000_000, '.', "00000".substring(0, 6 - fraction.length()), fraction, 's'); } } } private static <T> T timer(String label, Supplier<T> f) throws Exception { if (isDebug) { try (Timer timer = new Timer(label)) { return f.get(); } } else { return f.get(); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
8412e6908e547f57f0c1751702da3616
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; public class Codeforces{ static long mod = 1000000007L; // map.put(a[i],map.getOrDefault(a[i],0)+1); // map.putIfAbsent; static ArrayList<Integer> li = new ArrayList<>(); static long[] a = new long[40005]; static MyScanner sc = new MyScanner(); //<----------------------------------------------WRITE HERE-------------------------------------------> static void solve(){ int n = sc.nextInt(); int k = sc.nextInt(); char[] c = sc.next().toCharArray(); int[] a = new int[n]; int tmpk = k; String ans = ""; for(int i=0;i<n&& tmpk>0;i++) { if(k%2 == c[i]-'0') { a[i] = 1; tmpk--; } } a[n-1] += tmpk; for(int i=0;i<n;i++) { if((k-a[i])%2 == 1) { c[i] = (char)('1' - (c[i]-'0')); // out.println(('1' - (c[i]-'0')); } } out.println(c); priArr(a); } //<----------------------------------------------WRITE HERE-------------------------------------------> static void swap(int[] a,int i,int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } static void priArr(int[] a) { for(int i=0;i<a.length;i++) { out.print(a[i] + " "); } out.println(); } static long gcd(long a,long b){ if(b==0) return a; return gcd(b,a%b); } static int gcd(int a,int b){ if(b==0) return a; return gcd(b,a%b); } static class Pair implements Comparable<Pair>{ Integer val; Integer ind; Pair(int v,int f){ val = v; ind = f; } public int compareTo(Pair p){ int s1 = this.ind-this.val; int s2 = p.ind-p.val; if(s1 != s2) return s1-s2; return this.val - p.val; } } public static void main(String[] args) { out = new PrintWriter(new BufferedOutputStream(System.out)); int t = sc.nextInt(); // int t= 1; while(t-- >0){ solve(); } // Stop writing your solution here. ------------------------------------- out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int[] readIntArray(int n){ int arr[] = new int[n]; for(int i = 0;i<n;i++){ arr[i] = Integer.parseInt(next()); } return arr; } int[] reverse(int arr[]){ int n= arr.length; int i = 0; int j = n-1; while(i<j){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; j--;i++; } return arr; } long[] readLongArray(int n){ long arr[] = new long[n]; for(int i = 0;i<n;i++){ arr[i] = Long.parseLong(next()); } return arr; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } private static void sort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int i=0; i<arr.length; i++){ list.add(arr[i]); } Collections.sort(list); // collections.sort uses nlogn in backend for (int i = 0; i < arr.length; i++){ arr[i] = list.get(i); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
5ac5466ed3e7209b4917f6ee8daaf3d6
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
//package com.rajan.codeforces.level_1300_1400; import java.io.*; public class BitFlipping { public static void main(String[] args) throws IOException { BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out)); int tt = Integer.parseInt(reader.readLine()); while (tt-- > 0) { String[] temp = reader.readLine().split("\\s+"); int n = Integer.parseInt(temp[0]), k = Integer.parseInt(temp[1]); String s = reader.readLine(); int[] opFreq = new int[n]; int p = k; for (int i = 0; i < n && p > 0; i++) { char c = s.charAt(i); if (c == '1') { if (((k - 1) & 1) == 0) { opFreq[i] = 1; p--; } } else { if (((k - 1) & 1) != 0) { opFreq[i] = 1; p--; } } } if ((p & 1) != 0) { opFreq[n - 1] += 1; p--; } opFreq[0] += p; for (int i = 0; i < n; i++) if (((k - opFreq[i]) & 1) == 0) writer.write(s.charAt(i) + ""); else writer.write((s.charAt(i) == '1' ? "0" : "1")); writer.write("\n"); for (int i = 0; i < n; i++) writer.write((i == 0 ? "" : " ") + opFreq[i]); writer.write("\n"); } writer.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
f2405c95c2197c34de8aff8b313cef4f
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.BufferedReader; import java.util.*; import java.io.OutputStream; import java.io.PrintWriter; public class Solver { public static void main(String[] args) { InputStream inputStream = System.in; InputReader in = new InputReader(inputStream); OutputStream outputStream = System.out; PrintWriter out = new PrintWriter(outputStream); Task task = new Task(); int t = in.nextInt(); while (t-- > 0) { task.solve(in, out); } out.close(); } static class Task { public void solve(InputReader in, PrintWriter out) { int n = in.nextInt(); int k = in.nextInt(); String s = in.next(); int[] f = new int[n]; Arrays.fill(f, 0); int cnt = 0; for (int i = 0; i < n && cnt < k; i++) { if ((s.charAt(i) == '0' && k % 2 == 0) || (s.charAt(i) == '1' && k % 2 == 1)) { f[i] = 1; cnt += 1; } } f[n - 1] += Math.max(k - cnt, 0); for (int i = 0; i < n; i++) { int x = (int) s.charAt(i) - '0'; if ((k - f[i]) % 2 > 0) { x ^= 1; } if (i == n - 1) { out.println(x); } else { out.print(x); } } for (int i = 0; i < n; i++) { out.print(f[i] + (i == n - 1 ? "\n" : " ")); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
9ce646a3d3cf96e99c281e6e8196c4ed
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.math.*; import java.security.KeyStore.Entry; import java.util.*; public class code { private static boolean[] vis; private static long[] dist; private static long mod = 1000000000 + 7; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { if(st.hasMoreTokens()){ str = st.nextToken("\n"); } else{ str = br.readLine(); } } catch (IOException e) { e.printStackTrace(); } return str; } } public static void merge(int arr[], int l, int m, int r) { // Find sizes of two subarrays to be merged int n1 = m - l + 1; int n2 = r - m; /* Create temp arrays */ int L[] = new int [n1]; int R[] = new int [n2]; /*Copy data to temp arrays*/ for (int i=0; i<n1; ++i) L[i] = arr[l + i]; for (int j=0; j<n2; ++j) R[j] = arr[m + 1+ j]; /* Merge the temp arrays */ // Initial indexes of first and second subarrays int i = 0, j = 0; // Initial index of merged subarry array int k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } /* Copy remaining elements of L[] if any */ while (i < n1) { arr[k] = L[i]; i++; k++; } /* Copy remaining elements of R[] if any */ while (j < n2) { arr[k] = R[j]; j++; k++; } } public static void sort(int arr[], int l, int r) { if (l < r) { // Find the middle point int m = (l+r)/2; // Sort first and second halves sort(arr, l, m); sort(arr , m+1, r); // Merge the sorted halves merge(arr, l, m, r); } } private static long gcd(long n, long l) { if (l == 0) return n; return gcd(l, n % l); } private static int gcd(int n, int l) { if (l == 0) return n; return gcd(l, n % l); } public static void dfs(ArrayList<Integer>[] gr,int v) { vis[v]=true; ArrayList<Integer> arr=gr[v]; for(int i=0;i<arr.size();i++) { if(!vis[arr.get(i)]) { dfs(gr,arr.get(i)); } } } private static class Pairs implements Comparable<Pairs>{ String v;int i;int j; public Pairs(String a,int b,int c){ v=a; i=b; j=c; } @Override public int compareTo(Pairs arg0) { if(!this.v.equals(arg0.v)) return this.v.compareTo(arg0.v); else return arg0.i-this.i; } } private static class Pair implements Comparable<Pair>{ int v,i;Pair j; public Pair(int a,int b){ v=a; i=b; } public Pair(int a,Pair b) { v=a; j=b; } @Override public int compareTo(Pair arg0) { { if(this.v!=arg0.v) return this.v-arg0.v; else return this.i-arg0.i; } } } public static long mmi(long a, long m) { long m0 = m; long y = 0, x = 1; if (m == 1) return 0; while (a > 1) { // q is quotient long q = a / m; long t = m; // m is remainder now, process same as // Euclid's algo m = a % m; a = t; t = y; // Update y and x y = x - q * y; x = t; } // Make x positive if (x < 0) x += m0; return x; } private static long pow(long a, long b, long c) { if (b == 0) return 1; long p = pow(a, b / 2, c); p = (p * p) % c; return (b % 2 == 0) ? p : (a * p) % c; } public static int ub(ArrayList<Integer> array, int low,int high, int value) { while (low < high) { final int mid = (low + high) / 2; if (value >= array.get(mid)) { low = mid + 1; } else { high = mid; } } return low; } public static void main(String[] args) throws Exception { FastReader sc = new FastReader(); BufferedWriter pw = new BufferedWriter( new OutputStreamWriter(System.out)); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int k = sc.nextInt(); int tot = k; String s = sc.nextLine(); int[] arr = new int[n]; int[] ans = new int[n]; for(int i=0;i<n-1;i++) { if(s.charAt(i)=='0' && k%2==0 && tot>0) { arr[i]=1; ans[i]=1; tot--; } else if(s.charAt(i)=='1' && k%2==1 && tot>0) { arr[i] = 1; ans[i]=1; tot--; } else { if(k%2==0) { ans[i] = (s.charAt(i)=='1') ? 1 : 0; } else { ans[i] = (s.charAt(i)=='1') ? 0 : 1; } } } k-=tot; if(k%2==0) { ans[n-1] = (s.charAt(n-1)=='1') ? 1 : 0; } else { ans[n-1] = (s.charAt(n-1)=='1') ? 0 : 1; } arr[n-1] += tot; for(int i=0;i<n;i++) pw.append(ans[i]+""); pw.append("\n"); for(int i=0;i<n;i++) pw.append(arr[i]+" "); pw.append("\n"); } pw.flush(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
c2e8380f19a56d4b3cc5accd0c88327d
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.util.*; public class Q1659B { static int mod = (int) (1e9 + 7); static StringBuilder sb=new StringBuilder(); static void solve() { int n = i(); int k = i(); char a[] = s().toCharArray(); int b[] = new int[n]; int tempk = k; for (int i = 0; i < n && tempk > 0; i++) { if (a[i] == '1' && k % 2 != 0) { b[i]++; tempk--; } if (a[i] == '0' && k % 2 == 0) { b[i]++; tempk--; } } b[n-1]+=tempk; for (int i = 0; i < n; i++) { if(((k-b[i])%2)==1){ if(a[i]=='1'){ a[i]='0'; }else{ a[i]='1'; } } } for(char val:a){ sb.append(val); // System.out.print(val); } // System.out.println(); sb.append("\n"); for(int val:b){ sb.append(val+" "); // System.out.print(val+" "); } sb.append("\n"); // System.out.println(); } public static void main(String[] args) { int test = i(); while (test-- > 0) { solve(); } System.out.println(sb); } // -----> POWER ---> long power(long x, long y) <---- // -----> LCM ---> long lcm(long x, long y) <---- // -----> GCD ---> long gcd(long x, long y) <---- // -----> SIEVE --> ArrayList<Integer> sieve(int N) <----- // -----> NCR ---> long ncr(int n, int r) <---- // -----> BINARY_SEARCH ---> int binary_Search(long[]arr,long x) <---- // -----> (SORTING OF LONG, CHAR,INT) -->long[] sortLong(long[] a2)<-- // ----> DFS ---> void dfs(ArrayList<ArrayList<Integer>>edges,int child,int // parent)<--- // ---> NODETOROOT --> ArrayList<Integer> // node2Root(ArrayList<ArrayList<Integer>>edges,int child,int parent,int tofind) // <-- // ---> LEVELS_TREE -->levels_Trees(ArrayList<HashSet<Integer>> edges, int // child, int parent,int[]level,int currLevel) <-- // ---> K_THPARENT --> int k_thparent(int node,int[][]parent,int k) <--- // ---> TWOPOWERITHPARENTFILL --> void twoPowerIthParentFill(int[][]parent) <--- // -----> (INPUT OF INT,LONG ,STRING) -> int i() long l() String s()<- // tempstart static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static InputReader in = new InputReader(System.in); public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
2cd469e8418433f691d2952fbc8121f4
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; import java.util.*; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); int testNum = in.nextInt(); solver.solve(testNum, in, out); out.close(); } static class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { for (int z = 0; z < testNumber; z++) { int n = in.nextInt(); int k = in.nextInt(); int[] numSelected = new int[n]; String s = in.next(); char[] sChar = new char[n]; for (int i = 0; i < n; i++) { sChar[i] = s.charAt(i); } if (k%2 == 1) { for (int i = 0; i < s.length(); i++) { if (sChar[i] == '1') { sChar[i] = '0'; } else { sChar[i] = '1'; } } } for (int i = 0; i < sChar.length; i++) { if (sChar[i] == '0' && k > 0) { sChar[i] = '1'; numSelected[i]++; k--; } } if (k > 0) { numSelected[n-1] += k; if (k % 2 == 1) { sChar[n-1] = '0'; } } for (int i =0; i < n; i++) { out.print(sChar[i]); } out.println(); for (int i = 0; i < n; i++) { out.print(numSelected[i] + " "); } out.println(); } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
760e7ebdc31832ff3f56c2d3c9c22310
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.*; import java.lang.*; import java.util.*; public class BitFlipping { public static void main(String[] args) { // TODO Auto-generated method stub Scanner s = new Scanner(System.in); int t = s.nextInt(); while(t-- > 0) { int n = s.nextInt(); int k = s.nextInt(); String st = s.next(); StringBuilder ans = new StringBuilder(); int x = k; int[] flips = new int[n]; for(int i = 0 ; i < n ; i++) { if(x <= 0) break; char ch = st.charAt(i); if(i == n - 1) { flips[i] = x; } else { if(ch == '1') { if(k % 2 != 0) { flips[i] = 1; x--; } } else { if(k % 2 == 0) { flips[i] = 1; x--; } } } } for(int i = 0 ; i < n ; i++) { char ch = st.charAt(i); int rem = k - flips[i]; if(ch == '1') { if(rem % 2 == 0) ans.append("1"); else ans.append("0"); } else { if(rem % 2 != 0) ans.append("1"); else ans.append("0"); } } System.out.println(ans); StringBuilder temp = new StringBuilder(); for(int i : flips) { temp.append(i + " "); } System.out.println(temp); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
2efe1724807a20bcb954b4e147d34b62
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { static StringBuilder sb; static dsu dsu; static long fact[]; static int mod = (int) (1e9 + 7); static void solve() { int n=i(); int k=i(); String s=s(); int curr=0; int[]arr=new int[n]; int []ans=new int[n]; for(int i=0;i<n;i++){ int bit=s.charAt(i)-'0'; if(curr%2==1){ if(bit==0)bit++; else bit--; } int cans=0; if(bit==0){ int rem=k-curr; if(rem%2==0){ if(rem!=0){ cans++; ans[i]=1; } } else ans[i]=1; } else{ int rem=k-curr; if(rem%2==1){ cans=1; ans[i]=1; } else{ ans[i]=1; } } curr+=cans; arr[i]=cans; } int rem=k-curr; if(rem%2==0){ for(int i=0;i<n;i++){ sb.append(ans[i]+""); } sb.append("\n"); sb.append((arr[0]+rem)+" "); for(int i=1;i<n;i++){ sb.append(arr[i]+" "); } } else{ for(int i=0;i<n;i++){ if(i==n-1)ans[i]=0; sb.append(ans[i]+""); } sb.append("\n"); for(int i=0;i<n-1;i++){ sb.append(arr[i]+" "); } sb.append((arr[n-1]+rem)+" "); } sb.append("\n"); } public static void main(String[] args) { sb = new StringBuilder(); int test = i(); fact=new long[(int)1e6+10]; fact[0]=fact[1]=1; for(int i=2;i<fact.length;i++) { fact[i]=((long)(i%mod)*(long)(fact[i-1]%mod))%mod; } while (test-- > 0) { solve(); } System.out.println(sb); } //**************NCR%P****************** static long ncr(int n, int r) { if (r > n) return (long) 0; long res = fact[n] % mod; // System.out.println(res); res = ((long) (res % mod) * (long) (p(fact[r], mod - 2) % mod)) % mod; res = ((long) (res % mod) * (long) (p(fact[n - r], mod - 2) % mod)) % mod; // System.out.println(res); return res; } static long p(long x, long y)// POWER FXN // { if (y == 0) return 1; long res = 1; while (y > 0) { if (y % 2 == 1) { res = (res * x) % mod; y--; } x = (x * x) % mod; y = y / 2; } return res; } //**************END****************** // *************Disjoint set // union*********// static class dsu { int parent[]; dsu(int n) { parent = new int[n]; for (int i = 0; i < n; i++) parent[i] = i; } int find(int a) { if (parent[a] ==a) return a; else { int x = find(parent[a]); parent[a] = x; return x; } } void merge(int a, int b) { a = find(a); b = find(b); if (a == b) return; parent[b] = a; } } //**************PRIME FACTORIZE **********************************// static TreeMap<Integer, Integer> prime(long n) { TreeMap<Integer, Integer> h = new TreeMap<>(); long num = n; for (int i = 2; i <= Math.sqrt(num); i++) { if (n % i == 0) { int nt = 0; while (n % i == 0) { n = n / i; nt++; } h.put(i, nt); } } if (n != 1) h.put((int) n, 1); return h; } //****CLASS PAIR ************************************************ static class Pair implements Comparable<Pair> { int x; long y; Pair(int x, long y) { this.x = x; this.y = y; } public int compareTo(Pair o) { return (int) (this.y - o.y); } } //****CLASS PAIR ************************************************** static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int Int() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String String() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return String(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } static InputReader in = new InputReader(System.in); static OutputWriter out = new OutputWriter(System.out); public static long[] sort(long[] a2) { int n = a2.length; ArrayList<Long> l = new ArrayList<>(); for (long i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static char[] sort(char[] a2) { int n = a2.length; ArrayList<Character> l = new ArrayList<>(); for (char i : a2) l.add(i); Collections.sort(l); for (int i = 0; i < l.size(); i++) a2[i] = l.get(i); return a2; } public static long pow(long x, long y) { long res = 1; while (y > 0) { if (y % 2 != 0) { res = (res * x);// % modulus; y--; } x = (x * x);// % modulus; y = y / 2; } return res; } //GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ public static long gcd(long x, long y) { if (x == 0) return y; else return gcd(y % x, x); } // ******LOWEST COMMON MULTIPLE // ********************************************* public static long lcm(long x, long y) { return (x * (y / gcd(x, y))); } //INPUT PATTERN******************************************************** public static int i() { return in.Int(); } public static long l() { String s = in.String(); return Long.parseLong(s); } public static String s() { return in.String(); } public static int[] readArrayi(int n) { int A[] = new int[n]; for (int i = 0; i < n; i++) { A[i] = i(); } return A; } public static long[] readArray(long n) { long A[] = new long[(int) n]; for (int i = 0; i < n; i++) { A[i] = l(); } return A; } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
93f8ff2f035cef87a9186c239a3ab2c3
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class test { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int t = Integer.parseInt(br.readLine()); while (t-- > 0) { StringTokenizer tokenizer = new StringTokenizer(br.readLine()); int n = Integer.parseInt(tokenizer.nextToken()); int k = Integer.parseInt(tokenizer.nextToken()); String bits = br.readLine(); pw.println(solve(bits, n, k)); } pw.flush(); pw.close(); br.close(); } public static String solve(String bits, int n, int k) { int[] b = new int[n]; for (int i = 0; i < n; i++) { b[i] = k; } int c = k; for (int i = 0; i < n; i++) { if (c == 0) break; if (k % 2 == 0 && bits.charAt(i) == '0') { b[i]--; c--; } else if (k % 2 == 1 && bits.charAt(i) == '1') { b[i]--; c--; } } b[n - 1] -= c; StringBuilder result = new StringBuilder(); for (int i = 0; i < n; i++) { if (b[i] % 2 != 0) { result.append(bits.charAt(i) == '0' ? '1' : '0'); } else { result.append(bits.charAt(i)); } } result.append("\n"); for (int i = 0; i < n; i++) { if (i > 0) { result.append(" "); } result.append(k - b[i]); } return result.toString(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
c09a54600f7b48d6dba2cde94cc21a50
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class R782B { public static void main(String[] args) throws IOException { PrintWriter pw = new PrintWriter(System.out); BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); while(t-->0) { StringTokenizer st= new StringTokenizer(br.readLine()); int n= Integer.parseInt(st.nextToken()); int k= Integer.parseInt(st.nextToken()); String s= br.readLine(); int[] count= new int[n]; StringBuilder res= new StringBuilder(""); char search='1'; if(k%2==0) { search='0'; } int total=k; for(int i=0;i<n; i++) { if(s.charAt(i)==search&& k>0) { count[i]++; res.append("1"); k--; }else{ if(total%2==0) res.append(s.charAt(i)); else res.append(s.charAt(i)=='0'?'1':'0'); } } if(k>0) { if(k%2==0) { res.setCharAt(n-1,res.charAt(n-1)); }else res.setCharAt(n-1,res.charAt(n-1)=='0'?'1':'0'); count[n-1]+=k; } pw.println(res.toString()); for(int i=0; i<n;i++) pw.print(count[i]+" "); pw.println(); pw.flush(); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
99f12f6c6f5aaf938226a34d4c2add88
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { static long mod = (int)1e9+7; static PrintWriter out=new PrintWriter(new BufferedOutputStream(System.out)); public static void main (String[] args) throws java.lang.Exception { FastReader sc =new FastReader(); int t=sc.nextInt(); // int t=1; O : while(t-->0) { int n=sc.nextInt(); int k=sc.nextInt(); String s=sc.next(); int a[]=new int[n]; for(int i=0;i<n;i++) a[i]=(s.charAt(i)=='1')?1:0; int ans[]=new int[n]; for(int i=0;i<n;i++){ if(a[i]==1){ if(k%2!=0){ ans[i]=1; } } else{ if(k%2==0){ ans[i]=1; } } } int count=0; for(int i=0;i<n;i++){ if(ans[i]==1){ if (count<k) count++; else ans[i]=0; } } if(count<k){ ans[n-1]+=(k-count); } for(int i=0;i<n;i++){ if(a[i]==1){ if(k%2!=0){ if(ans[i]%2==1) out.print(1); else out.print(0); } else{ if(ans[i]%2==1) out.print(0); else out.print(1); } } else{ if(k%2==0){ if(ans[i]%2==1) out.print(1); else out.print(0); } else{ if(ans[i]%2==1) out.print(0); else out.print(1); } } } out.println(); for(int i=0;i<n;i++) out.print(ans[i]+" "); out.println(); } out.flush(); } static void printN() { System.out.println("NO"); } static void printY() { System.out.println("YES"); } static int findfrequencies(int a[],int n) { int count=0; for(int i=0;i<a.length;i++) { if(a[i]==n) { count++; } } return count; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } float nextFloat() { return Float.parseFloat(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] readArrayLong(int n) { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } } public static int[] radixSort2(int[] a) { int n = a.length; int[] c0 = new int[0x101]; int[] c1 = new int[0x101]; int[] c2 = new int[0x101]; int[] c3 = new int[0x101]; for(int v : a) { c0[(v&0xff)+1]++; c1[(v>>>8&0xff)+1]++; c2[(v>>>16&0xff)+1]++; c3[(v>>>24^0x80)+1]++; } for(int i = 0;i < 0xff;i++) { c0[i+1] += c0[i]; c1[i+1] += c1[i]; c2[i+1] += c2[i]; c3[i+1] += c3[i]; } int[] t = new int[n]; for(int v : a)t[c0[v&0xff]++] = v; for(int v : t)a[c1[v>>>8&0xff]++] = v; for(int v : a)t[c2[v>>>16&0xff]++] = v; for(int v : t)a[c3[v>>>24^0x80]++] = v; return a; } static int[] EvenOddArragement(int a[]) { ArrayList<Integer> list=new ArrayList<>(); for(int i=0;i<a.length;i++) { if(a[i]%2==0) { list.add(a[i]); } } for(int i=0;i<a.length;i++) { if(a[i]%2!=0) { list.add(a[i]); } } for(int i=0;i<a.length;i++) { a[i]=list.get(i); } return a; } static int gcd(int a, int b) { while (b != 0) { int t = a; a = b; b = t % b; } return a; } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static HashMap<Integer, Integer> sortByValue(HashMap<Integer, Integer> hm) { // Create a list from elements of HashMap List<Map.Entry<Integer, Integer> > list = new LinkedList<Map.Entry<Integer, Integer> >(hm.entrySet()); // Sort the list Collections.sort(list, new Comparator<Map.Entry<Integer, Integer> >() { public int compare(Map.Entry<Integer, Integer> o1, Map.Entry<Integer, Integer> o2) { return (o1.getValue()).compareTo(o2.getValue()); } }); // put data from sorted list to hashmap HashMap<Integer, Integer> temp = new LinkedHashMap<Integer, Integer>(); for (Map.Entry<Integer, Integer> aa : list) { temp.put(aa.getKey(), aa.getValue()); } return temp; } static int DigitSum(int n) { int r=0,sum=0; while(n>=0) { r=n%10; sum=sum+r; n=n/10; } return sum; } static boolean checkPerfectSquare(int number) { double sqrt=Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } static boolean isPowerOfTwo(int n) { if(n==0) return false; return (int)(Math.ceil((Math.log(n) / Math.log(2)))) == (int)(Math.floor(((Math.log(n) / Math.log(2))))); } static boolean isPrime2(int n) { if (n <= 1) { return false; } if (n == 2) { return true; } if (n % 2 == 0) { return false; } for (int i = 3; i <= Math.sqrt(n) + 1; i = i + 2) { if (n % i == 0) { return false; } } return true; } static String minLexRotation(String str) { int n = str.length(); String arr[] = new String[n]; String concat = str + str; for(int i=0;i<n;i++) { arr[i] = concat.substring(i, i + n); } Arrays.sort(arr); return arr[0]; } static String maxLexRotation(String str) { int n = str.length(); String arr[] = new String[n]; String concat = str + str; for (int i = 0; i < n; i++) { arr[i] = concat.substring(i, i + n); } Arrays.sort(arr); return arr[arr.length-1]; } static class P implements Comparable<P> { int i, j; public P(int i, int j) { this.i=i; this.j=j; } public int compareTo(P o) { return Integer.compare(i, o.i); } } static class pair{ int i,j; pair(int x,int y){ i=x; j=y; } } static int binary_search(int a[],int value) { int start=0; int end=a.length-1; int mid=start+(end-start)/2; while(start<=end) { if(a[mid]==value) { return mid; } if(a[mid]>value) { end=mid-1; } else { start=mid+1; } mid=start+(end-start)/2; } return -1; } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
004bbec9ec7e14269120c31a1b360e4a
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.util.*; import java.io.*; import java.time.*; import static java.lang.Math.*; @SuppressWarnings("unused") public class A { static boolean DEBUG = false; static Reader fs; static PrintWriter pw; static void solve() { int n = fs.nextInt(), k = fs.nextInt(); char a[] = fs.next().toCharArray(); int ans[] = new int[n]; if(k%2==1) { for(int i = 0 ;i < n;i++) { a[i] = a[i] == '0'?'1':'0'; } } for(int i = 0 ; i < n; i++) { if(a[i] == '0' && k > 0) { ans[i]++; a[i] = '1'; k--; } } ans[n-1] += k; if(k%2 == 1) { a[n-1] = '0'; } for(int i = 0 ; i < n ; i++) { pw.print(a[i]); } pw.println(); for(int i = 0 ; i < n ; i++) { pw.print(ans[i] + " "); } pw.println(); } public static void main(String[] args) throws IOException { if (args.length == 2) { System.setIn(new FileInputStream("D:\\program\\javaCPEclipse\\CodeForces\\src\\input.txt")); System.setErr(new PrintStream("D:\\program\\javaCPEclipse\\CodeForces\\src\\error.txt")); DEBUG = true; } Instant start = Instant.now(); fs = new Reader(); pw = new PrintWriter(System.out); int t = fs.nextInt(); while (t-- > 0) { solve(); } Instant end = Instant.now(); if (DEBUG) { pw.println(Duration.between(start, end)); } pw.close(); } static void sort(int a[]) { ArrayList<Integer> l = new ArrayList<Integer>(); for (int x : a) l.add(x); Collections.sort(l); for (int i = 0; i < a.length; i++) { a[i] = l.get(i); } } public static void print(long a, long b, long c, PrintWriter pw) { pw.println(a + " " + b + " " + c); return; } static class Reader { BufferedReader br; StringTokenizer st; public Reader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int[] readArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } int[][] read2Array(int n, int m) { int a[][] = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = nextInt(); } } return a; } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
3b3873b9994b8c6101d21d34fcafebe6
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.FileInputStream; import java.io.FileNotFoundException; import java.util.Scanner; import javax.security.auth.kerberos.KerberosCredMessage; public class B { public static void main(String[] args) { /** * before copy-pasting in to the challenge: * comment out the "System.setIn(new FileInputStream("input.txt"));" in line 24 * rename the class to Solution */ //redirects the input to the file "input.txt" try { System.setIn(new FileInputStream("input.txt")); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } //creates a scanner and reads the first line of the input Scanner sc = new Scanner(System.in); int testCount = Integer.parseInt(sc.nextLine()); for (int i = 0; i < testCount; i++) { //seperates the input by " " String[] inputs = sc.nextLine().split(" "); int n = Integer.parseInt(inputs[0]); int k = Integer.parseInt(inputs[1]); String input = sc.nextLine(); int[] c = new int[input.length()]; char[] chars = input.toCharArray(); if(k%2 == 0) { for (int j = 0; j < chars.length; j++) { if(input.charAt(j) == '1') { chars[j] = '1'; }else if (k > 0) { chars[j] = '1'; c[j]++; k--; }else { chars[j] = '0'; } } }else { for (int j = 0; j < chars.length; j++) { if(input.charAt(j) == '0') { chars[j] = '1'; }else if (k > 0) { chars[j] = '1'; c[j]++; k--; }else { chars[j] = '0'; } } } if(k%2 == 1) { chars[chars.length - 1] = chars[chars.length - 1] == '1' ? '0' : '1'; } c[chars.length - 1]+=k; System.out.println(String.valueOf(chars)); for (int j = 0; j < c.length; j++) { System.out.print(c[j] + " "); } System.out.println(); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
2f7c9d7bb8373ea8270158fd17e5fdda
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
import java.io.DataInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; public class B { static final Reader in = new Reader(); static final PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int t = in.nextInt(); for (int tc = 1; tc <= t; tc++) { solve(); out.println(); } out.close(); } static void solve() { int n = in.nextInt(), k = in.nextInt(); char[] s = in.next().toCharArray(); int par = k % 2; int[] freq = new int[n]; int total = 0; for (int i = 0; i < n && total < k; i++) { if (s[i] == '0') { if (par == 0) { freq[i]++; total++; } } else { if (par == 1) { freq[i]++; total++; } } } if (total < k) { freq[n - 1] += k - total; } for (int i = 0; i < n; i++) { if ((k - freq[i]) % 2 == 1) { out.print('1' - s[i]); } else { out.print(s[i]); } } out.println(); for (int i = 0; i < n; i++) { out.print(freq[i] + " "); } } static class Reader { private final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } Reader(InputStream in) { try { din = new DataInputStream(in); } catch (Exception e) { throw new RuntimeException(); } buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } String next() { int c; while ((c = read()) != -1 && (c == ' ' || c == '\n' || c == '\r')) ; StringBuilder s = new StringBuilder(); while (c != -1) { if (c == ' ' || c == '\n' || c == '\r') break; s.append((char) c); c = read(); } return s.toString(); } String nextLine() { int c; while ((c = read()) != -1 && (c == ' ' || c == '\n' || c == '\r')) ; StringBuilder s = new StringBuilder(); while (c != -1) { if (c == '\n' || c == '\r') break; s.append((char) c); c = read(); } return s.toString(); } int nextInt() { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } int[] nextInts(int n) { int[] ar = new int[n]; for (int i = 0; i < n; ++i) ar[i] = nextInt(); return ar; } long nextLong() { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } long[] nextLongs(int n) { long[] ar = new long[n]; for (int i = 0; i < n; ++i) ar[i] = nextLong(); return ar; } double nextDouble() { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do ret = ret * 10 + c - '0'; while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } byte read() { try { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } catch (IOException e) { throw new RuntimeException(); } } void close() throws IOException { din.close(); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
bfc161e2dad8fcf24e2f9f99077c0e2e
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
/*LoudSilence*/ import java.io.*; import java.util.*; import static java.lang.Math.*; public class Solution { /*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/ static FastScanner s = new FastScanner(); static FastWriter out = new FastWriter(); final static int mod = (int)1e9 + 7; final static int INT_MAX = Integer.MAX_VALUE; final static int INT_MIN = Integer.MIN_VALUE; final static long LONG_MAX = Long.MAX_VALUE; final static long LONG_MIN = Long.MIN_VALUE; final static double DOUBLE_MAX = Double.MAX_VALUE; final static double DOUBLE_MIN = Double.MIN_VALUE; final static float FLOAT_MAX = Float.MAX_VALUE; final static float FLOAT_MIN = Float.MIN_VALUE; /*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/ static class FastScanner{BufferedReader br;StringTokenizer st; public FastScanner() {if(System.getProperty("ONLINE_JUDGE") == null){try {br = new BufferedReader(new FileReader("E:\\Competitive Coding\\input.txt"));} catch (FileNotFoundException e) {br = new BufferedReader(new InputStreamReader(System.in));}}else{br = new BufferedReader(new InputStreamReader(System.in));}} String next(){while (st == null || !st.hasMoreElements()){try{st = new StringTokenizer(br.readLine());}catch (IOException e){e.printStackTrace();}}return st.nextToken();} int nextInt(){return Integer.parseInt(next());} long nextLong(){return Long.parseLong(next());} double nextDouble(){return Double.parseDouble(next());} List<Integer> readIntList(int n){List<Integer> arr = new ArrayList<>(); for(int i = 0; i < n; i++) arr.add(s.nextInt()); return arr;} List<Long> readLongList(int n){List<Long> arr = new ArrayList<>(); for(int i = 0; i < n; i++) arr.add(s.nextLong()); return arr;} int[] readIntArr(int n){int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = s.nextInt(); return arr;} long[] readLongArr(int n){long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = s.nextLong(); return arr;} String nextLine(){String str = "";try{str = br.readLine();}catch (IOException e){e.printStackTrace();}return str;}} static class FastWriter{private BufferedWriter bw;public FastWriter(){if(System.getProperty("ONLINE_JUDGE") == null){try {this.bw = new BufferedWriter(new FileWriter("E:\\Competitive Coding\\output.txt"));} catch (IOException e) {this.bw = new BufferedWriter(new OutputStreamWriter(System.out));}}else{this.bw = new BufferedWriter(new OutputStreamWriter(System.out));}} public void print(Object object) throws IOException{bw.append(""+ object);} public void println(Object object) throws IOException{print(object);bw.append("\n");} public void debug(int object[]) throws IOException{bw.append("["); for(int i = 0; i < object.length; i++){if(i != object.length-1){print(object[i]+", ");}else{print(object[i]);}}bw.append("]\n");} public void debug(long object[]) throws IOException{bw.append("["); for(int i = 0; i < object.length; i++){if(i != object.length-1){print(object[i]+", ");}else{print(object[i]);}}bw.append("]\n");} public void close() throws IOException{bw.close();}} public static void println(Object str) throws IOException{out.println(""+str);} public static void println(Object str, int nextLine) throws IOException{out.print(""+str);} /*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/ public static ArrayList<Integer> seive(int n){ArrayList<Integer> list = new ArrayList<>();int arr[] = new int[n+1];for(long i = 2; i <= n; i++) {if(arr[(int)i] == 1) {continue;}else {list.add((int)i);for(long j = i*i; j <= n; j = j + i) {arr[(int)j] = 1;}}}return list;} public static long gcd(long a, long b){if(a > b) {a = (a+b)-(b=a);}if(a == 0L){return b;}return gcd(b%a, a);} public static void swap(int[] arr, int i, int j) {arr[i] = arr[i] ^ arr[j]; arr[j] = arr[j] ^ arr[i]; arr[i] = arr[i] ^ arr[j];} public static boolean isPrime(long n){if(n < 2){return false;}if(n == 2 || n == 3){return true;}if(n%2 == 0 || n%3 == 0){return false;}long sqrtN = (long)Math.sqrt(n)+1;for(long i = 6L; i <= sqrtN; i += 6) {if(n%(i-1) == 0 || n%(i+1) == 0) return false;}return true;} public static long mod_add(long a, long b){ return (a%mod + b%mod)%mod;} public static long mod_sub(long a, long b){ return (a%mod - b%mod + mod)%mod;} public static long mod_mul(long a, long b){ return (a%mod * b%mod)%mod;} public static long modInv(long a, long b){ return expo(a, b-2)%b;} public static long mod_div(long a, long b){return mod_mul(a, modInv(b, mod));} public static long expo (long a, long n){if(n == 0){return 1;}long recAns = expo(mod_mul(a,a), n/2);if(n % 2 == 0){return recAns;}else{return mod_mul(a, recAns);}} /*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/ // Pair class public static class Pair<X extends Comparable<X>,Y extends Comparable<Y>> implements Comparable<Pair<X, Y>>{ X first; Y second; public Pair(X first, Y second){ this.first = first; this.second = second; } public String toString(){ return "( " + first+" , "+second+" )"; } @Override public int compareTo(Pair<X, Y> o) { int t = first.compareTo(o.first); if(t == 0) return second.compareTo(o.second); return t; } } /*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/ // Code begins public static void solve() throws IOException { int n = s.nextInt(); int k = s.nextInt(); String str = s.nextLine(); int arr[] = new int[n]; int first_one = -1; for(int i = 0; i < n; i++){ arr[i] = Integer.parseInt(""+str.charAt(i)); if(arr[i] == 1 && first_one == -1){ first_one = i; } } if(first_one == -1){ first_one = n-1; } int ans[] = new int[n]; if(k%2 == 1){ ans[first_one] = 1; for(int i = 0; i < n; i++){ if(i != first_one){ arr[i] = arr[i] ^ 1; } } k--; } for(int i = 0; i < n-1; i++){ if(arr[i] == 0 && k > 0){ k--; arr[i] = 1; ans[i] += 1; } } if(k%2 == 0){ ans[n-1] += k; }else{ ans[n-1] += k; arr[n-1] = arr[n-1]^1; } for(int i = 0; i < n; i++){ println(arr[i],1); } println(""); for(int i = 0; i < n; i++){ println(ans[i]+" ",1); } println(""); } /*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/ public static void main(String[] args) throws IOException { int test = s.nextInt(); for(int t = 1; t <= test; t++) { solve(); } out.close(); } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output
PASSED
75ba40d1dc2f636847b20aba7a912e48
train_110.jsonl
1650206100
You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$.
256 megabytes
// Jai Kalash Shah // Jai shree Ram // Jai Bajrang Bali // Jai Saraswati maa import java.util.*; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class B { static FastScanner sn = new FastScanner(); public static void main(String[] args) { // your code here int T = sn.nextInt(); while (T-- > 0) solve(); } public static void solve() { int n = sn.nextInt(); int k = sn.nextInt(); String s = sn.next(); char[] arr = s.toCharArray(); if (k % 2 == 1) { for (int i = 0; i < n; i++) { if (arr[i] == '0') { arr[i] = '1'; } else { arr[i] = '0'; } } } int[] ans = new int[n]; for (int i = 0; i < n; i++) { ans[i] = 0; } for (int i = 0; i < n; i++) { if (arr[i] == '0' && k > 0) { arr[i] = '1'; k--; ans[i]++; } } ans[n - 1] += k; if (k % 2 == 1) { arr[n - 1] = '0'; } s = String.copyValueOf(arr); System.out.println(s); for (int i = 0; i < n; i++) { System.out.print(ans[i] + " "); } System.out.println(); } //----------------------------------------------------------------------------------// static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } char nextChar() { return next().charAt(0); } long[] readArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } static class Debug { public static void debug(long a) { System.out.println("--> " + a); } public static void debug(long a, long b) { System.out.println("--> " + a + " + " + b); } public static void debug(char a, char b) { System.out.println("--> " + a + " + " + b); } public static void debug(int[] array) { System.out.print("Array--> "); System.out.println(Arrays.toString(array)); } public static void debug(char[] array) { System.out.print("Array--> "); System.out.println(Arrays.toString(array)); } public static void debug(HashMap<Integer, Integer> map) { System.out.print("Map--> " + map.toString()); } } }
Java
["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"]
1 second
["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"]
NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get.
Java 11
standard input
[ "bitmasks", "constructive algorithms", "greedy", "strings" ]
38375efafa4861f3443126f20cacf3ae
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$)  — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$.
1,300
For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$.
standard output