exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | fbad7a88109f29452ee68514a055b184 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | //some updates in import stuff
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.util.*;
import java.io.*;
import java.math.*;
//key points learned
//max space ever that could be alloted in a program to pass in cf
//int[][] prefixSum = new int[201][200_005]; -> not a single array more!!!
//never allocate memory again again to such bigg array, it will give memory exceeded for sure
//believe in your fucking solution and keep improving it!!! (sometimes)
public class Main{
static int mod = (int) (Math.pow(10, 9)+7);
static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 };
static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 };
static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 };
static final double eps = 1e-10;
static List<Integer> primeNumbers = new ArrayList<>();
public static void main(String[] args) {
MyScanner sc = new MyScanner(); //pretty important for sure -
out = new PrintWriter(new BufferedOutputStream(System.out)); //dope shit output for sure
//code here
int test = sc.nextInt();
while(test--> 0){
int n= sc.nextInt();
int k = sc.nextInt();
char[] inp = sc.nextLine().toCharArray();
int[] ans = new int[n];
int total = k;
for(int i= 0; i < n; i++){
if(k == 0) break;
if(inp[i] == '1'){
if(total % 2== 0){
}else{
ans[i] = 1;
k--;
}
}else{
if(total % 2== 0){
ans[i] = 1;
k--;
}else{
}
}
if(k == 0) break;
}
ans[n-1] += k;
//after this make the proper array too for sure for once, boi
//this would help you a lot for sure in future
int[] finalans = new int[n];
for(int i = 0; i < n; i++){
int flips = total - ans[i];
int given = inp[i] - '0';
finalans[i] = given;
if(flips %2 == 1){
finalans[i] = finalans[i] == 1 ? 0 : 1;
}
}
for(int i : finalans){
out.print(i);
}
out.println();
for(int i : ans){
out.print(i + " ");
}
out.println();
}
out.close();
}
//new stuff to learn (whenever this is need for them, then only)
//Lazy Segment Trees
//Persistent Segment Trees
//Square Root Decomposition
//Geometry & Convex Hull
//High Level DP -- yk yk
//String Matching Algorithms
//Heavy light Decomposition
//Updation Required
//Fenwick Tree - both are done (sum)
//Segment Tree - both are done (min, max, sum)
//-----CURRENTLY PRESENT-------//
//Graph
//DSU
//powerMODe
//power
//Segment Tree (work on this one)
//Prime Sieve
//Count Divisors
//Next Permutation
//Get NCR
//isVowel
//Sort (int)
//Sort (long)
//Binomial Coefficient
//Pair
//Triplet
//lcm (int & long)
//gcd (int & long)
//gcd (for binomial coefficient)
//swap (int & char)
//reverse
//primeExponentCounts
//Fast input and output
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//GRAPH (basic structure)
public static class Graph{
public int V;
public ArrayList<ArrayList<Integer>> edges;
//2 -> [0,1,2] (current)
Graph(int V){
this.V = V;
edges = new ArrayList<>(V+1);
for(int i= 0; i <= V; i++){
edges.add(new ArrayList<>());
}
}
public void addEdge(int from , int to){
edges.get(from).add(to);
edges.get(to).add(from);
}
}
//DSU (path and rank optimised)
public static class DisjointUnionSets {
int[] rank, parent;
int n;
public DisjointUnionSets(int n)
{
rank = new int[n];
parent = new int[n];
Arrays.fill(rank, 1);
Arrays.fill(parent,-1);
this.n = n;
}
public int find(int curr){
if(parent[curr] == -1)
return curr;
//path compression optimisation
return parent[curr] = find(parent[curr]);
}
public void union(int a, int b){
int s1 = find(a);
int s2 = find(b);
if(s1 != s2){
//union by size
if(rank[s1] < rank[s2]){
parent[s1] = s2;
rank[s2] += rank[s1];
}else{
parent[s2] = s1;
rank[s1] += rank[s2];
}
}
}
}
//with mod
public static long powerMOD(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
x %= mod;
res %= mod;
res = (res * x)%mod;
}
// y must be even now
y = y >> 1; // y = y/2
x%= mod;
x = (x * x)%mod; // Change x to x^2
}
return res%mod;
}
//without mod
public static long power(long x, long y)
{
long res = 1L;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) != 0){
res = (res * x);
}
// y must be even now
y = y >> 1; // y = y/
x = (x * x);
}
return res;
}
public static class segmentTree{
//so let's make a constructor function for this bad boi for sure!!!
public long[] arr;
public long[] tree;
//COMPLEXITY (normal segment tree, stuff)
//build -> O(n)
//query -> O(logn)
//update -> O(logn)
//update-range -> O(n) (worst case)
//simple iteration and stuff for sure
public segmentTree(long[] arr){
int n = arr.length;
this.arr = new long[n];
for(int i= 0; i < n; i++){
this.arr[i] = arr[i];
}
tree = new long[4*n + 1];
}
//pretty basic idea if you read the code once
//first make child node once
//then form the parent node using them
public void buildTree(int s, int e, int index){
if(s == e){
tree[index] = arr[s];
return;
}
//recursive case
int mid = (s + e)/2;
buildTree(s, mid, 2 * index);
buildTree(mid + 1, e, 2*index + 1);
//the condition we want from children be like this
tree[index] = min(tree[2 * index], tree[2 * index + 1]);
return;
}
//definitely index based 0 query!!!
//only int index = 1!!
//baaki everything is simple as fuck
public long query(int s, int e, int qs , int qe, int index){
//complete overlap
if(s >= qs && e <= qe){
return tree[index];
}
//no overlap
if(qe < s || qs > e){
return Long.MAX_VALUE;
}
//partial overlap
int mid = (s + e)/2;
long left = query( s, mid , qs, qe, 2*index);
long right = query( mid + 1, e, qs, qe, 2*index + 1);
return min(left, right);
}
//gonna do range updates for sure now!!
//let's do this bois!!! (solve this problem for sure)
public void updateRange(int s, int e, int l, int r, long increment, int index){
//out of bounds
if(l > e || r < s){
return;
}
//leaf node
if(s == e){
tree[index] += increment;
return; //behnchoda return tera baap krvayege?
}
//recursive case
int mid = (s + e)/2;
updateRange(s, mid, l, r, increment, 2 * index);
updateRange(mid + 1, e, l, r, increment, 2 * index + 1);
tree[index] = min(tree[2 * index], tree[2 * index + 1]);
}
}
public static class SegmentTreeLazy{
//so let's make a constructor function for this bad boi for sure!!!
public long[] arr;
public long[] tree;
public long[] lazy;
//COMPLEXITY (normal segment tree, stuff)
//build -> O(n)
//query-range -> O(logn)
//lazy update-range -> O(logn) (imp)
//simple iteration and stuff for sure
public SegmentTreeLazy(long[] arr){
int n = arr.length;
this.arr = new long[n];
for(int i= 0; i < n; i++){
this.arr[i] = arr[i];
}
tree = new long[4*n + 1];
lazy = new long[100000]; //pretty big for no inconvenience (no?)
}
//pretty basic idea if you read the code once
//first make child node once
//then form the parent node using them
public void buildTree(int s, int e, int index){
if(s == e){
tree[index] = arr[s];
return;
}
//recursive case
int mid = (s + e)/2;
buildTree(s, mid, 2 * index);
buildTree(mid + 1, e, 2*index + 1);
//the condition we want from children be like this
tree[index] = min(tree[2 * index], tree[2 * index + 1]);
return;
}
//definitely index based 0 query!!!
//only int index = 1!!
//baaki everything is simple as fuck
public long queryLazy(int s, int e, int qs, int qe, int index){
//before going down resolve if it exist
if(lazy[index] != 0){
tree[index] += lazy[index];
//non leaf node
if(s != e){
lazy[2*index] += lazy[index];
lazy[2*index + 1] += lazy[index];
}
lazy[index] = 0; //clear the lazy value at current node for sure
}
//no overlap
if(s > qe || e < qs){
return Long.MAX_VALUE;
}
//complete overlap
if(s >= qs && e <= qe){
return tree[index];
}
//partial overlap
int mid = (s + e)/2;
long left = queryLazy(s, mid, qs, qe, 2 * index);
long right = queryLazy(mid + 1, e, qs, qe, 2 * index + 1);
return Math.min(left, right);
}
//update range in O(logn) -- using lazy array
public void updateRangeLazy(int s, int e, int l, int r, int inc, int index){
//before going down resolve if it exist
if(lazy[index] != 0){
tree[index] += lazy[index];
//non leaf node
if(s != e){
lazy[2*index] += lazy[index];
lazy[2*index + 1] += lazy[index];
}
lazy[index] = 0; //clear the lazy value at current node for sure
}
//no overlap
if(s > r || l > e){
return;
}
//another case
if(l <= s && e <= r){
tree[index] += inc;
//create a new lazy value for children node
if(s != e){
lazy[2*index] += inc;
lazy[2*index + 1] += inc;
}
return;
}
//recursive case
int mid = (s + e)/2;
updateRangeLazy(s, mid, l, r, inc, 2*index);
updateRangeLazy(mid + 1, e, l, r, inc, 2*index + 1);
//update the tree index
tree[index] = Math.min(tree[2*index], tree[2*index + 1]);
return;
}
}
//prime sieve
public static void primeSieve(int n){
BitSet bitset = new BitSet(n+1);
for(long i = 0; i < n ; i++){
if (i == 0 || i == 1) {
bitset.set((int) i);
continue;
}
if(bitset.get((int) i)) continue;
primeNumbers.add((int)i);
for(long j = i; j <= n ; j+= i)
bitset.set((int)j);
}
}
//number of divisors
public static int countDivisors(long number){
if(number == 1) return 1;
List<Integer> primeFactors = new ArrayList<>();
int index = 0;
long curr = primeNumbers.get(index);
while(curr * curr <= number){
while(number % curr == 0){
number = number/curr;
primeFactors.add((int) curr);
}
index++;
curr = primeNumbers.get(index);
}
if(number != 1) primeFactors.add((int) number);
int current = primeFactors.get(0);
int totalDivisors = 1;
int currentCount = 2;
for (int i = 1; i < primeFactors.size(); i++) {
if (primeFactors.get(i) == current) {
currentCount++;
} else {
totalDivisors *= currentCount;
currentCount = 2;
current = primeFactors.get(i);
}
}
totalDivisors *= currentCount;
return totalDivisors;
}
//primeExponentCounts
public static int primeExponentsCount(int n) {
if (n <= 1)
return 0;
int sqrt = (int) Math.sqrt(n);
int remainingNumber = n;
int result = 0;
for (int i = 2; i <= sqrt; i++) {
while (remainingNumber % i == 0) {
result++;
remainingNumber /= i;
}
}
//in case of prime numbers this would happen
if (remainingNumber > 1) {
result++;
}
return result;
}
//now adding next permutation function to java hehe
public static boolean next_permutation(int[] p) {
for (int a = p.length - 2; a >= 0; --a)
if (p[a] < p[a + 1])
for (int b = p.length - 1;; --b)
if (p[b] > p[a]) {
int t = p[a];
p[a] = p[b];
p[b] = t;
for (++a, b = p.length - 1; a < b; ++a, --b) {
t = p[a];
p[a] = p[b];
p[b] = t;
}
return true;
}
return false;
}
//finding the value of NCR in O(RlogN) time and O(1) space
public static long getNcR(int n, int r)
{
long p = 1, k = 1;
if (n - r < r) r = n - r;
if (r != 0) {
while (r > 0) {
p *= n;
k *= r;
long m = __gcd(p, k);
p /= m;
k /= m;
n--;
r--;
}
}
else {
p = 1;
}
return p;
}
//is vowel function
public static boolean isVowel(char c)
{
return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U');
}
//to sort the array with better method
public static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//sort long
public static void sort(long[] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//for calculating binomialCoeff
public static int binomialCoeff(int n, int k)
{
int C[] = new int[k + 1];
// nC0 is 1
C[0] = 1;
for (int i = 1; i <= n; i++) {
// Compute next row of pascal
// triangle using the previous row
for (int j = Math.min(i, k); j > 0; j--)
C[j] = C[j] + C[j - 1];
}
return C[k];
}
//Pair with int int
public static class Pair{
public int a;
public int b;
public int hashCode;
Pair(int a , int b){
this.a = a;
this.b = b;
this.hashCode = Objects.hash(a, b);
}
@Override
public String toString(){
return a + " -> " + b;
}
@Override
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Pair that = (Pair) o;
return a == that.a && b == that.b;
}
@Override
public int hashCode() {
return this.hashCode;
}
}
//Triplet with int int int
public static class Triplet{
public int a;
public int b;
public int c;
Triplet(int a , int b, int c){
this.a = a;
this.b = b;
this.c = c;
}
@Override
public String toString(){
return a + " -> " + b;
}
}
//Shortcut function
public static long lcm(long a , long b){
return a * (b/gcd(a,b));
}
//let's make one for calculating lcm basically
public static int lcm(int a , int b){
return (a * b)/gcd(a,b);
}
//int version for gcd
public static int gcd(int a, int b){
if(b == 0)
return a;
return gcd(b , a%b);
}
//long version for gcd
public static long gcd(long a, long b){
if(b == 0)
return a;
return gcd(b , a%b);
}
//for ncr calculator(ignore this code)
public static long __gcd(long n1, long n2)
{
long gcd = 1;
for (int i = 1; i <= n1 && i <= n2; ++i) {
// Checks if i is factor of both integers
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
//swapping two elements in an array
public static void swap(int[] arr, int left , int right){
int temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
}
//for char array
public static void swap(char[] arr, int left , int right){
char temp = arr[left];
arr[left] = arr[right];
arr[right] = temp;
}
//reversing an array
public static void reverse(int[] arr){
int left = 0;
int right = arr.length-1;
while(left <= right){
swap(arr, left,right);
left++;
right--;
}
}
public static long expo(long a, long b, long mod) {
long res = 1;
while (b > 0) {
if ((b & 1) == 1L) res = (res * a) % mod; //think about this one for a second
a = (a * a) % mod;
b = b >> 1;
}
return res;
}
//SOME EXTRA DOPE FUNCTIONS
public static long mminvprime(long a, long b) {
return expo(a, b - 2, b);
}
public static long mod_add(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a + b) % m) + m) % m;
}
public static long mod_sub(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a - b) % m) + m) % m;
}
public static long mod_mul(long a, long b, long m) {
a = a % m;
b = b % m;
return (((a * b) % m) + m) % m;
}
public static long mod_div(long a, long b, long m) {
a = a % m;
b = b % m;
return (mod_mul(a, mminvprime(b, m), m) + m) % m;
}
//O(n) every single time remember that
public static long nCr(long N, long K , long mod){
long upper = 1L;
long lower = 1L;
long lowerr = 1L;
for(long i = 1; i <= N; i++){
upper = mod_mul(upper, i, mod);
}
for(long i = 1; i <= K; i++){
lower = mod_mul(lower, i, mod);
}
for(long i = 1; i <= (N - K); i++){
lowerr = mod_mul(lowerr, i, mod);
}
// out.println(upper + " " + lower + " " + lowerr);
long answer = mod_mul(lower, lowerr, mod);
answer = mod_div(upper, answer, mod);
return answer;
}
// long[] fact = new long[2 * n + 1];
// long[] ifact = new long[2 * n + 1];
// fact[0] = 1;
// ifact[0] = 1;
// for (long i = 1; i <= 2 * n; i++)
// {
// fact[(int)i] = mod_mul(fact[(int)i - 1], i, mod);
// ifact[(int)i] = mminvprime(fact[(int)i], mod);
// }
//ifact is basically inverse factorial in here!!!!!(imp)
public static long combination(long n, long r, long m, long[] fact, long[] ifact) {
long val1 = fact[(int)n];
long val2 = ifact[(int)(n - r)];
long val3 = ifact[(int)r];
return (((val1 * val2) % m) * val3) % m;
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 1bc20618d792d59cbfb5466505f5f040 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class q2 {
public static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// public static long mod = 1000000007;
public static void solve() throws Exception {
String[] parts = br.readLine().split(" ");
int n = Integer.parseInt(parts[0]);
int k = Integer.parseInt(parts[1]);
int ok = k;
int[] arr = new int[n],oarr = new int[n];
String str = br.readLine();
for(int i = 0;i < n;i++){
arr[i] = str.charAt(i) - '0';
}
if(k == 0){
StringBuilder sb = new StringBuilder();
for(int val : arr) sb.append(val);
sb.append("\n");
for(int i = 0;i < n;i++) sb.append("0 ");
System.out.println(sb);
return;
}
int[] ans = new int[n];
if(k % 2 == 0){
for(int i = 0;i < n && k > 0;i++){
if(arr[i] == 0){
ans[i]++;
k--;
}
}
if(k % 2 == 0) ans[0] += k;
else {
ans[0] += k - 1;
ans[n - 1] += 1;
}
}else{
for(int i = 0;i < n && k > 0;i++){
if(arr[i] == 1){
ans[i]++;
k--;
}
}
if(k % 2 == 0) ans[0] += k;
else {
ans[0] += k - 1;
ans[n - 1] += 1;
}
}
StringBuilder sb = new StringBuilder();
for(int i = 0;i < n;i++){
int val = arr[i];
if((ok - ans[i]) % 2 == 1) val ^= 1;
sb.append(val);
}
sb.append("\n");
for(int i = 0;i < n;i++) sb.append(ans[i]).append(" ");
System.out.println(sb);
}
public static void main(String[] args) throws Exception {
int tests = Integer.parseInt(br.readLine());
for (int test = 1; test <= tests; test++) {
solve();
}
}
// public static ArrayList<Integer> primes;
// public static void seive(int n){
// primes = new ArrayList<>();
// boolean[] arr = new boolean[n + 1];
// Arrays.fill(arr,true);
//
// for(int i = 2;i * i <= n;i++){
// if(arr[i]) {
// for (int j = i * i; j <= n; j += i) {
// arr[j] = false;
// }
// }
// }
// for(int i = 2;i <= n;i++) if(arr[i]) primes.add(i);
// }
// public static void sort(int[] arr){
// ArrayList<Integer> temp = new ArrayList<>();
// for(int val : arr) temp.add(val);
//
// Collections.sort(temp);
//
// for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i);
// }
// public static void sort(long[] arr){
// ArrayList<Long> temp = new ArrayList<>();
// for(long val : arr) temp.add(val);
//
// Collections.sort(temp);
//
// for(int i = 0;i < arr.length;i++) arr[i] = temp.get(i);
// }
//
// public static long power(long a,long b,long mod){
// if(b == 0) return 1;
//
// long p = power(a,b / 2,mod);
// p = (p * p) % mod;
//
// if(b % 2 == 1) return (p * a) % mod;
// return p;
// }
// public static long modDivide(long a,long b,long mod){
// return ((a % mod) * (power(b,mod - 2,mod) % mod)) % mod;
// }
//
// public static int GCD(int a,int b){
// return b == 0 ? a : GCD(b,a % b);
// }
// public static long GCD(long a,long b){
// return b == 0 ? a : GCD(b,a % b);
// }
//
// public static int LCM(int a,int b){
// return a * b / GCD(a,b);
// }
// public static long LCM(long a,long b){
// return a * b / GCD(a,b);
// }
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9940517611ba2a41b3fdd1b9a3e590ea | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Solution {
public static void main(String[] args) throws IOException {
int t = sc.nextInt();
while (t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
char[] arr = sc.next().toCharArray();
boolean[] temp = new boolean[n];
for (int i = 0; i < temp.length; i++) {
temp[i] = arr[i] == '0' ? false : true;
}
int[] res = new int[n];
int count = 0;
for (int i = 0; i < arr.length; i++) {
if (count == k)
break;
if ((arr[i] == '1' && k % 2 == 1) || (arr[i] == '0' && k % 2 == 0)) {
res[i]++;
count++;
}
}
res[n - 1] += k - count;
for (int i = 0; i < res.length; i++) {
if ((k - res[i]) % 2 == 1)
temp[i] = !temp[i];
}
for (Boolean bool : temp) {
pw.print(bool ? "1" : "0");
}
pw.println();
pw.println(toString(res));
}
pw.close();
}
static int f(int num) {
int res = 0;
while (num > 0) {
if (num % 2 == 0)
num /= 2;
else {
num = (num - 1) / 2;
res++;
}
}
return res;
}
static HashMap Hash(int[] arr) {
HashMap<Integer, Integer> map = new HashMap<>();
for (int i : arr) {
map.put(i, map.getOrDefault(i, 0) + 1);
}
return map;
}
static boolean isPrime(int n) {
if (n <= 1)
return false;
for (int i = 2; i <= Math.sqrt(n); i++)
if (n % i == 0)
return false;
return true;
}
public static long combination(long n, long r) {
return factorial(n) / (factorial(n - r) * factorial(r));
}
static long factorial(Long n) {
if (n == 0)
return 1;
return n * factorial(n - 1);
}
static boolean isPalindrome(char[] str, int i, int j) {
// While there are characters to compare
while (i < j) {
// If there is a mismatch
if (str[i] != str[j])
return false;
// Increment first pointer and
// decrement the other
i++;
j--;
}
// Given string is a palindrome
return true;
}
public static double log2(int N) {
double result = (Math.log(N) / Math.log(2));
return result;
}
public static double log4(int N) {
double result = (Math.log(N) / Math.log(4));
return result;
}
public static int setBit(int mask, int idx) {
return mask | (1 << idx);
}
public static int clearBit(int mask, int idx) {
return mask ^ (1 << idx);
}
public static boolean checkBit(int mask, int idx) {
return (mask & (1 << idx)) != 0;
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
static class pair implements Comparable<pair> {
long x;
long y;
public pair(long x, long y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public boolean equals(Object o) {
if (o instanceof pair) {
pair p = (pair) o;
return p.x == x && p.y == y;
}
return false;
}
public int hashCode() {
return new Long(x).hashCode() * 31 + new Long(y).hashCode();
}
public int compareTo(pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
static class tuble implements Comparable<tuble> {
int x;
int y;
int z;
public tuble(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
public String toString() {
return x + " " + y + " " + z;
}
public int compareTo(tuble other) {
if (this.x == other.x) {
if (this.y == other.y) {
return this.z - other.z;
}
return this.y - other.y;
} else {
return this.x - other.x;
}
}
}
public static String toString(int[] arr) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < arr.length; i++) {
sb.append(arr[i] + " ");
}
return sb.toString().trim();
}
public static String toString(ArrayList arr) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < arr.size(); i++) {
sb.append(arr.get(i) + " ");
}
return sb.toString().trim();
}
public static String toString(int[][] arr) {
StringBuilder sb = new StringBuilder();
for (int[] i : arr) {
sb.append(toString(i) + "\n");
}
return sb.toString();
}
public static String toString(boolean[] arr) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < arr.length; i++) {
sb.append(arr[i] + " ");
}
return sb.toString().trim();
}
public static String toString(Integer[] arr) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < arr.length; i++) {
sb.append(arr[i] + " ");
}
return sb.toString().trim();
}
public static String toString(String[] arr) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < arr.length; i++) {
sb.append(arr[i] + " ");
}
return sb.toString().trim();
}
public static String toString(char[] arr) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < arr.length; i++) {
sb.append(arr[i] + " ");
}
return sb.toString().trim();
}
static long mod = 1000000007;
static Random rn = new Random();
static Scanner sc = new Scanner(System.in);
static PrintWriter pw = new PrintWriter(System.out);
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | adac90e0168c5d571c7597b7a2e8f342 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.lang.*;
public class practice {
static FastInput scn;
static PrintWriter out;
final static int MOD = (int) (1e9 + 7);
final static int MAX = Integer.MAX_VALUE;
final static int MIN = Integer.MIN_VALUE;
// MAIN
public static void main(String[] args) throws IOException {
scn = new FastInput();
out = new PrintWriter(System.out);
int t = 1;
t = scn.nextInt();
while (t-- > 0) {
solve();
}
out.flush();
}
private static void solve() throws IOException {
int n = scn.nextInt(), k = scn.nextInt();
char[] arr = scn.nextCharArray(n);
int[] ans = new int[n];
if (k == 0) {
out.println(String.valueOf(arr));
printIntArray(ans);
return;
}
if (k % 2 != 0) {
if (arr[0] == '1') {
for (int i = 1; i < n; i++) {
arr[i] = arr[i] == '1' ? '0' : '1';
}
ans[0] = 1;
} else {
if (n > 1) {
int i = 1;
for (; i < n; i++) {
if (arr[i] == '1')
break;
arr[i] = (arr[i] == '0') ? '1' : '0';
}
if (i == n) {
i--;
arr[i] = '0';
}
ans[i] = 1;
arr[0] = '1';
// swap remaining
i++;
for (; i < n; i++) {
arr[i] = (arr[i] == '0') ? '1' : '0';
}
} else {
ans[0] = 1;
}
}
k--;
}
for (int i = 0; i < n - 1; i++) {
if (arr[i] == '0') {
ans[i] += 1;
// next zero
int z = i + 1;
for (; z < n; z++) {
if (arr[z] == '0')
break;
}
arr[i] = '1';
if (z == n) {
z--;
arr[z] = '0';
} else {
arr[z] = '1';
}
ans[z] += 1;
k -= 2;
}
if (k == 0)
break;
}
ans[n - 1] += k;
out.println(String.valueOf(arr));
printIntArray(ans);
}
// CLASSES
static class Pair implements Comparable<Pair> {
int first, second;
Pair(int first, int second) {
this.first = first;
this.second = second;
}
Pair(Pair o) {
this.first = o.first;
this.second = o.second;
}
public int compareTo(Pair o) {
return this.first - o.first;
}
}
// CHECK IF STRING IS NUMBER
private static boolean isInteger(String s) {
try {
Integer.parseInt(s);
} catch (NumberFormatException e) {
return false;
} catch (NullPointerException e) {
return false;
}
return true;
}
private static boolean isLong(String s) {
try {
Long.parseLong(s);
} catch (NumberFormatException e) {
return false;
} catch (NullPointerException e) {
return false;
}
return true;
}
// FASTER SORT
private static void fastSort(int[] arr) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void fastSortReverse(int[] arr) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list, Collections.reverseOrder());
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void fastSort(long[] arr) {
int n = arr.length;
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void fastSortReverse(long[] arr) {
int n = arr.length;
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list, Collections.reverseOrder());
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
// QUICK MATHS
private static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
private static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
private static int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
private static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
private static long power(long a, long b) {
if (b == 0)
return 1L;
long ans = power(a, b / 2);
ans *= ans;
if ((b & 1) == 1)
ans *= a;
return ans;
}
private static int mod_power(int a, int b) {
if (b == 0)
return 1;
int temp = mod_power(a, b / 2);
temp %= MOD;
temp = (int) ((1L * temp * temp) % MOD);
if ((b & 1) == 1)
temp = (int) ((1L * temp * a) % MOD);
return temp;
}
private static int multiply(int a, int b) {
return (int) ((((1L * a) % MOD) * ((1L * b) % MOD)) % MOD);
}
private static boolean isPrime(int n) {
for (int i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
private static boolean isPrime(long n) {
for (long i = 2; i * i <= n; i++)
if (n % i == 0)
return false;
return true;
}
// STRING FUNCTIONS
private static boolean isPalindrome(String str) {
int i = 0, j = str.length() - 1;
while (i < j)
if (str.charAt(i++) != str.charAt(j--))
return false;
return true;
}
private static String reverseString(String str) {
StringBuilder sb = new StringBuilder(str);
return sb.reverse().toString();
}
private static String sortString(String str) {
int[] arr = new int[256];
for (char ch : str.toCharArray())
arr[ch]++;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < 256; i++)
while (arr[i]-- > 0)
sb.append((char) i);
return sb.toString();
}
// LONGEST INCREASING AND NON-DECREASING SUBSEQUENCE
private static int LIS(int arr[]) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
int idx = find1(list, arr[i]);
if (idx < list.size()) {
list.set(idx, arr[i]);
} else {
list.add(arr[i]);
}
}
return list.size();
}
private static int find1(List<Integer> list, int val) {
int ret = list.size(), i = 0, j = list.size() - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (list.get(mid) >= val) {
ret = mid;
j = mid - 1;
} else {
i = mid + 1;
}
}
return ret;
}
private static int LNDS(int[] arr) {
int n = arr.length;
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
int idx = find2(list, arr[i]);
if (idx < list.size()) {
list.set(idx, arr[i]);
} else {
list.add(arr[i]);
}
}
return list.size();
}
private static int find2(List<Integer> list, int val) {
int ret = list.size(), i = 0, j = list.size() - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (list.get(mid) <= val) {
i = mid + 1;
} else {
ret = mid;
j = mid - 1;
}
}
return ret;
}
// DISJOINT SET UNION
private static int find(int x, int[] parent) {
if (parent[x] == x) {
return x;
}
parent[x] = find(parent[x], parent);
return parent[x];
}
private static boolean union(int x, int y, int[] parent, int[] rank) {
int lx = find(x, parent), ly = find(y, parent);
if (lx == ly) {
return true;
} else if (rank[lx] > rank[ly]) {
parent[ly] = lx;
} else if (rank[lx] < rank[ly]) {
parent[lx] = ly;
} else {
parent[lx] = ly;
rank[ly]++;
}
return false;
}
// TRIE
static class Trie {
class Node {
Node[] children;
boolean isEnd;
Node() {
children = new Node[26];
}
}
Node root;
Trie() {
root = new Node();
}
public void insert(String word) {
Node curr = root;
for (char ch : word.toCharArray()) {
if (curr.children[ch - 'a'] == null) {
curr.children[ch - 'a'] = new Node();
}
curr = curr.children[ch - 'a'];
}
curr.isEnd = true;
}
public boolean find(String word) {
Node curr = root;
for (char ch : word.toCharArray()) {
if (curr.children[ch - 'a'] == null) {
return false;
}
curr = curr.children[ch - 'a'];
}
return curr.isEnd;
}
}
// INPUT
static class FastInput {
BufferedReader br;
StringTokenizer st;
FastInput() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(nextLine());
return st.nextToken();
}
long nextLong() throws IOException {
return Long.parseLong(next());
}
int nextInt() throws IOException {
return Integer.parseInt(next());
}
double nextDouble() throws IOException {
return Double.parseDouble(next());
}
char nextCharacter() throws IOException {
return next().charAt(0);
}
String nextLine() throws IOException {
return br.readLine().trim();
}
int[] nextIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = nextInt();
return arr;
}
int[][] next2DIntArray(int n, int m) throws IOException {
int[][] arr = new int[n][m];
for (int i = 0; i < n; i++)
arr[i] = nextIntArray(m);
return arr;
}
long[] nextLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
return arr;
}
long[][] next2DLongArray(int n, int m) throws IOException {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++)
arr[i] = nextLongArray(m);
return arr;
}
List<Integer> nextIntList(int n) throws IOException {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(nextInt());
return list;
}
List<Long> nextLongList(int n) throws IOException {
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(nextLong());
return list;
}
char[] nextCharArray(int n) throws IOException {
return next().toCharArray();
}
char[][] next2DCharArray(int n, int m) throws IOException {
char[][] mat = new char[n][m];
for (int i = 0; i < n; i++)
mat[i] = nextCharArray(m);
return mat;
}
}
// OUTPUT
private static void printIntList(List<Integer> list) {
for (int i = 0; i < list.size(); i++)
out.print(list.get(i) + " ");
out.println(" ");
}
private static void printLongList(List<Long> list) {
for (int i = 0; i < list.size(); i++)
out.print(list.get(i) + " ");
out.println(" ");
}
private static void printIntArray(int[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println(" ");
}
private static void print2DIntArray(int[][] arr) {
for (int i = 0; i < arr.length; i++)
printIntArray(arr[i]);
}
private static void printLongArray(long[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println(" ");
}
private static void print2DLongArray(long[][] arr) {
for (int i = 0; i < arr.length; i++)
printLongArray(arr[i]);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | abd7e975d778d25db6491efe83b23110 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class B {
public static void printArr(int arr[], int n) {
StringBuilder s = new StringBuilder();
for (long no :
arr) {
s.append(no).append(" ");
}
System.out.println(s.toString());
}
public static void main(String[] args) {
FastScanner fs=new FastScanner();
PrintWriter out=new PrintWriter(System.out);
int T=fs.nextInt();
for (int tt=0; tt<T; tt++) {
int n=fs.nextInt();
int k=fs.nextInt();
int initk = k;
String s = fs.next();
int i=0;
int[] arr = new int[n];
int sum = 0;
StringBuilder finalAns = new StringBuilder();
while (i<n && k>0) {
if (initk%2 ==0) {
if (s.charAt(i) == '0') {
arr[i] = 1;
sum++;
k--;
}
}
else {
if (s.charAt(i) == '1') {
arr[i] = 1;
sum++;
k--;
}
}
finalAns.append("1");
i++;
}
while (i<n) {
char c = s.charAt(i);
if (initk %2 == 0)
finalAns.append(c);
else
finalAns.append(c == '0' ? "1" : "0");
i++;
}
if (k!=0) {
if (k%2 == 0) {
arr[n-1] += k;
}
else
{
arr[n-1] += k;
finalAns = new StringBuilder(finalAns.substring(0, n - 1) + "0");
}
}
// int j=0;
// StringBuilder finalStr = new StringBuilder();
// for (; j < i; j++) {
// finalStr.append("1");
// }
// for (; j < n; j++) {
// char c = s.charAt(j);
// if (initk %2 == 0)
// finalStr.append(c);
// else
// finalStr.append(c == '0' ? "1" : "0");
// }
System.out.println(finalAns);
printArr(arr, n);
}
}
static final Random random=new Random();
static final int mod=1_000_000_007;
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long add(long a, long b) {
return (a+b)%mod;
}
static long sub(long a, long b) {
return ((a-b)%mod+mod)%mod;
}
static long mul(long a, long b) {
return (a*b)%mod;
}
static long exp(long base, long exp) {
if (exp==0) return 1;
long half=exp(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials=new long[2_000_001];
static long[] invFactorials=new long[2_000_001];
static void precompFacts() {
factorials[0]=invFactorials[0]=1;
for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i);
invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2);
for (int i=invFactorials.length-2; i>=0; i--)
invFactorials[i]=mul(invFactorials[i+1], i+1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k]));
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 0a378c8a91acb79fd1dadb1671c217b0 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static long mod = 1000000007;
static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException {
FastReader sc = new FastReader();
int t = sc.nextInt();
while( t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
char arr[] = sc.next().toCharArray();
int ans[] = new int[n];
int K = k;
for( int i = 0 ;i < n; i++) {
if( arr[i] == '0') {
// means k-i should be odd
if( K %2 == 0 && k > 0) {
ans[i]++;
// out.println(i);
k--;
// arr[i] = '1';
}
if( K%2 != 0) {
// arr[i] = '1';
}
}
else {
/// k-i should be even
if( K%2 != 0 && k > 0) {
ans[i]++;
k--;
}
else if( k % 2 != 0) {
// arr[i] = '0';
}
}
}
if( k > 0) {
ans[n-1]+=k;
for( int i = 0 ;i < n ;i++) {
if( (K-ans[i]) % 2 != 0) {
// out.println(i);
arr[i] = change(arr[i]);
}
}
for( char x : arr) {
out.print(x);
}
out.println();
for( int i = 0 ; i < n ;i++) {
out.print(ans[i] + " ");
}
out.println();
}
else {
for( int i = 0 ;i < n ;i++) {
if( (K-ans[i]) % 2 != 0) {
// out.println(i);
arr[i] = change(arr[i]);
}
}
for( char x : arr) {
out.print(x);
}
out.println();
for( int i = 0 ; i < n ;i++) {
out.print(ans[i] + " ");
}
out.println();
}
}
out.flush();
}
private static char change(char c) {
if( c == '1') {
return '0';
}
return '1';
}
/*
* time for a change
*/
public static boolean ifpowof2(long n ) {
return ((n&(n-1)) == 0);
}
static boolean isprime(long x ) {
if( x== 2) {
return true;
}
if( x%2 == 0) {
return false;
}
for( long i = 3 ;i*i <= x ;i+=2) {
if( x%i == 0) {
return false;
}
}
return true;
}
static boolean[] sieveOfEratosthenes(long n) {
boolean prime[] = new boolean[(int)n + 1];
for (int i = 0; i <= n; i++) {
prime[i] = true;
}
for (long p = 2; p * p <= n; p++) {
if (prime[(int)p] == true) {
for (long i = p * p; i <= n; i += p)
prime[(int)i] = false;
}
}
return prime;
}
public static int[] nextLargerElement(int[] arr, int n) {
Stack<Integer> stack = new Stack<>();
int rtrn[] = new int[n];
rtrn[n-1] = -1;
stack.push( n-1);
for( int i = n-2 ;i >= 0 ; i--){
int temp = arr[i];
int lol = -1;
while( !stack.isEmpty() && arr[stack.peek()] <= temp){
if(arr[stack.peek()] == temp ) {
lol = stack.peek();
}
stack.pop();
}
if( stack.isEmpty()){
if( lol != -1) {
rtrn[i] = lol;
}
else {
rtrn[i] = -1;
}
}
else{
rtrn[i] = stack.peek();
}
stack.push( i);
}
return rtrn;
}
static void mysort(int[] arr) {
for(int i=0;i<arr.length;i++) {
int rand = (int) (Math.random() * arr.length);
int loc = arr[rand];
arr[rand] = arr[i];
arr[i] = loc;
}
Arrays.sort(arr);
}
static void mySort(long[] arr) {
for(int i=0;i<arr.length;i++) {
int rand = (int) (Math.random() * arr.length);
long loc = arr[rand];
arr[rand] = arr[i];
arr[i] = loc;
}
Arrays.sort(arr);
}
static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b)
{
return (a / gcd(a, b)) * b;
}
static long rightmostsetbit(long n) {
return n&-n;
}
static long leftmostsetbit(long n)
{
long k = (long)(Math.log(n) / Math.log(2));
return k;
}
static HashMap<Long,Long> primefactor( long n){
HashMap<Long ,Long> hm = new HashMap<>();
long temp = 0;
while( n%2 == 0) {
temp++;
n/=2;
}
if( temp!= 0) {
hm.put( 2L, temp);
}
long c = (long)Math.sqrt(n);
for( long i = 3 ; i <= c ; i+=2) {
temp = 0;
while( n% i == 0) {
temp++;
n/=i;
}
if( temp!= 0) {
hm.put( i, temp);
}
}
if( n!= 1) {
hm.put( n , 1L);
}
return hm;
}
static ArrayList<Long> allfactors(long abs) {
HashMap<Long,Integer> hm = new HashMap<>();
ArrayList<Long> rtrn = new ArrayList<>();
for( long i = 2 ;i*i <= abs; i++) {
if( abs% i == 0) {
hm.put( i , 0);
hm.put(abs/i, 0);
}
}
for( long x : hm.keySet()) {
rtrn.add(x);
}
if( abs != 0) {
rtrn.add(abs);
}
return rtrn;
}
public static int[][] prefixsum( int n , int m , int arr[][] ){
int prefixsum[][] = new int[n+1][m+1];
for( int i = 1 ;i <= n ;i++) {
for( int j = 1 ; j<= m ; j++) {
int toadd = 0;
if( arr[i-1][j-1] == 1) {
toadd = 1;
}
prefixsum[i][j] = toadd + prefixsum[i][j-1] + prefixsum[i-1][j] - prefixsum[i-1][j-1];
}
}
return prefixsum;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 7b3ad7157005fdf4cfa5b6a957126402 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.Scanner;
public class B {
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
// TODO Auto-generated method stub
int testCases = Integer.parseInt(sc.nextLine());
for (int i = 1; i <= testCases; ++i) {
solve(i);
}
}
private static void solve(int t) {
String [] row = sc.nextLine().split(" ");
int k = Integer.parseInt(row[1]);
String s = sc.nextLine();
int [] arr = new int [s.length()];
int [] val = new int [s.length()];
int last = s.length() - 1;
int flips = k;
for (int i = 0; i < s.length() - 1; ++i) {
val[i] = s.charAt(i) - '0';
//flips = s.length();
if (val[i] % 2 != flips % 2)
val[i] = 1;
else if (k > 0) {
val[i] = 1;
++arr[i];
--k;
}else {
val[i] = 0;
}
}
arr[last] = k;
val[last] = s.charAt(last) - '0';
flips -= k;
if (flips % 2 == 1)
val[last] = 1 - val[last];
print(val , arr);
}
public static void print(int [] arr, int [] val) {
StringBuilder sb = new StringBuilder();
for (int num : arr)
sb.append(num);
System.out.println(sb);
sb.setLength(0);
for (int i = 0; i < val.length; ++i) {
sb.append(val[i]);
if (i != val.length - 1)
sb.append(' ');
}
System.out.println(sb);
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | c76465b265c89c2694c11c6f5d444b84 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class gotoJapan {
public static void main(String[] args) throws java.lang.Exception {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solution solver = new Solution();
boolean isTest = true;
int tC = isTest ? Integer.parseInt(in.next()) : 1;
for (int i = 1; i <= tC; i++)
solver.solve(in, out, i);
out.close();
}
/* ............................................................. */
static class Solution {
InputReader in;
PrintWriter out;
public void solve(InputReader in, PrintWriter out, int test) {
this.in = in;
this.out = out;
int n=ni();
int k=ni();
char x[]=n();
char p=x[n-1];
int a[]=new int[n];
int s=k;
for(int i=0;i<n;i++) {
if(s<=0) {
if(k%2!=0) {
if(x[i]=='1')x[i]='0';
else x[i]='1';
}
continue;
}
if(k%2==0) {
if(x[i]=='0') {
a[i]=1;
x[i]='1';
s--;
}
}
else {
if(x[i]=='1') {
a[i]=1;
s--;
}
else {
x[i]='1';
}
}
//pn(s);
}
if(s>0) {
a[n-1]=a[n-1]+s;
x[n-1]=p;
if((k%2!=0&&a[n-1]%2==0)||(k%2==0&&a[n-1]%2!=0)) {
if(x[n-1]=='1')x[n-1]='0';
else x[n-1]='1';
}
}
for(int i=0;i<n;i++) {
out.print(x[i]);
}
out.println();
for(int i=0;i<n;i++) {
out.print(a[i]+" ");
}
out.println();
}
class Pair {
int x;
int y;
long w;
Pair(int x, int y, long w) {
this.x = x;
this.y = y;
this.w = w;
}
}
char[] n() {
return in.next().toCharArray();
}
int ni() {
return in.nextInt();
}
long nl() {
return in.nextLong();
}
long[] nal(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nl();
return a;
}
void pn(long zx) {
out.println(zx);
}
void pn(String sz) {
out.println(sz);
}
void pn(double dx) {
out.println(dx);
}
void pn(long ar[]) {
for (int i = 0; i < ar.length; i++)
out.print(ar[i] + " ");
out.println();
}
void pn(String ar[]) {
for (int i = 0; i < ar.length; i++)
out.println(ar[i]);
}
}
/* ......................Just Input............................. */
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
/* ......................Just Input............................. */
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | e79fac3a28b23b4e9f88c7016d88ba3a | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.Scanner;
public class Main {
Object solve(int n, int k, String bs) {
int[] b = new int[n];
int[] c = new int[n];
int k_ = k;
for (int i = 0; i < n; i++) {
b[i] = bs.charAt(i) == '0' ? 0 : 1;
b[i] ^= (k & 1);
if (i < n-1) {
if (b[i] == 0 && k_ > 0) {
b[i] = 1;
c[i] = 1;
k_--;
}
} else {
b[i] = b[i] ^ (k_ & 1);
c[i] = k_;
}
System.out.print(b[i]);
}
System.out.println();
System.out.println(toString(c));
return null;
}
Object readInputAndSolve(Scanner in) {
int n = in.nextInt();
int k = in.nextInt();
in.nextLine();
String b = in.nextLine();
return solve(n, k, b);
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int nTests = in.nextInt();
for (int iTest = 0; iTest < nTests; iTest++) {
new Main().readInputAndSolve(in);
}
}
public static String toString(int[] items) {
StringBuilder sb = new StringBuilder();
for (int e : items) {
sb.append(e);
sb.append(" ");
}
return sb.toString();
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9673b144e7e61d6b033a4126bab8c13e | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
// Created by @thesupremeone on 4/17/22
public class B {
void solve() {
int ts = getInt();
for (int t = 0; t < ts; t++) {
int n = getInt();
int k = getInt();
int kb = k;
String s = getLine();
int[] arr = new int[n];
int[] ops = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.charAt(i)=='1' ? 1 : 0;
if(k%2==1){
arr[i] = 1-arr[i];
}
}
for (int i = 0; i < n; i++) {
if(k<=0) break;
if(arr[i]==0){
arr[i] = 1;
k--;
ops[i]++;
}
}
if(k>0){
int done = kb-k;
arr[n-1] = s.charAt(n-1)=='1'?1:0;
if((done-ops[n-1])%2==1){
arr[n-1] = 1-arr[n-1];
}
ops[n-1] += k;
}
StringBuilder builder = new StringBuilder();
for(int e : arr){
builder.append(e);
}
println(builder.toString());
for(int o : ops){
print(o+" ");
}
println("");
}
}
public static void main(String[] args) throws Exception {
if (isOnlineJudge()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new BufferedWriter(new OutputStreamWriter(System.out));
new B().solve();
out.flush();
} else {
localJudge = new Thread();
in = new BufferedReader(new FileReader("input.txt"));
out = new BufferedWriter(new FileWriter("output.txt"));
localJudge.start();
new B().solve();
out.flush();
localJudge.suspend();
}
}
static boolean isOnlineJudge() {
try {
return System.getProperty("ONLINE_JUDGE") != null
|| System.getProperty("LOCAL") == null;
} catch (Exception e) {
return true;
}
}
// Fast Input & Output
static Thread localJudge = null;
static BufferedReader in;
static StringTokenizer st;
static BufferedWriter out;
static String getLine() {
try {
return in.readLine();
} catch (Exception ignored) {
return "";
}
}
static String getToken() {
if (st == null || !st.hasMoreTokens())
st = new StringTokenizer(getLine());
return st.nextToken();
}
static int getInt() {
return Integer.parseInt(getToken());
}
static long getLong() {
return Long.parseLong(getToken());
}
static void print(Object s) {
try {
out.write(String.valueOf(s));
} catch (Exception ignored) {
}
}
static void println(Object s) {
try {
out.write(String.valueOf(s));
out.newLine();
} catch (Exception ignored) {
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 394c2d8de3297a1dfd9d2001accec1ef | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
//need to be careful about negative sum resulting negative mod.
public class Solution {
static long mod = 1000000007;
static long inv(long a, long b) {return 1 < a ? b - inv(b % a, a) * b / a : 1;}
static long mi(long a) {return inv(a, mod);}
static InputReader sc = new InputReader(System.in);
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) throws IOException {
//setUp("input.txt", "output.txt");
//setUp("maxcross.in", "maxcross.out");
int T = 1; T = sc.nextInt();
while(T-- > 0){
int n = sc.nextInt();
int k = sc.nextInt();
char[] word = sc.next().toCharArray();
int[] ans = new int[n];
StringBuilder str = new StringBuilder();
int x = k;
int flipped = 0;
for(int i = 0 ; i < n; i++){
char ch = word[i];
if(flipped % 2 != 0){
if(ch == '0') ch = '1';
else ch = '0';
}
boolean even = x % 2 == 0;
if(x == 0){
str.append(ch);
}else if(i == n - 1){
ans[i] = x;
str.append(ch);
}else{
if(ch == '0' && even){
ans[i] = 1;
x--;
flipped++;
}else if(ch == '1' && !even){
ans[i] = 1;
x--;
flipped++;
}
str.append('1');
}
}
out.println(str.toString());
for(int i = 0 ; i < ans.length; i++){
out.print(ans[i] + " ");
}
out.println("");
}
out.close();
}
public static void solve(){
}
static void setUp(String input, String output) throws IOException {
sc = new InputReader(new FileInputStream(input));
out = new PrintWriter(new BufferedWriter(new FileWriter(output)));
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return str;
}
int[] readArray(int N){
int[] arr = new int[N];
for(int i = 0 ; i < N; i++){
arr[i] = sc.nextInt();
}
return arr;
}
long[] readLongArray(int N){
long[] arr = new long[N];
for(int i = 0 ; i < N; i++){
arr[i] = sc.nextLong();
}
return arr;
}
}
public static void shuffle(int[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
int temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
public static void shuffle(long[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static class Pair<K,V> {
K key;
V val;
public Pair(K key, V val){
this.key = key;
this.val = val;
}
}
public static int gcd(int a, int b){
if(b == 0) return a;
return gcd(b, a % b);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 94e3c758e042aad12dd1742b49213404 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.StringTokenizer;
public class B {
String filename = null;
InputReader sc;
void solve() {
int n = sc.nextInt();
int k = sc.nextInt();
String s = sc.next();
int[] flips = new int[n];
int remaining = k;
for (int i = 0; i < n; i++) {
if (remaining > 0 && (s.charAt(i) == '1') != (k % 2 == 0)) {
flips[i] = 1;
remaining--;
}
}
flips[n - 1] += remaining;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append((s.charAt(i) == '1') == ((k - flips[i]) % 2 == 0) ? '1' : '0');
}
System.out.println(sb);
sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(flips[i]).append(" ");
}
System.out.println(sb);
}
public void run() throws FileNotFoundException {
if (filename == null) {
sc = new InputReader(System.in);
} else {
sc = new InputReader(new FileInputStream(filename));
}
int nTests = sc.nextInt();
for (int test = 0; test < nTests; test++) {
solve();
}
}
public static void main(String[] args) {
B sol = new B();
try {
sol.run();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public float nextFloat() {
return Float.parseFloat(next());
}
public double nextDouble() {
return Float.parseFloat(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9fa93ed1ec943f2987aadea14ab5767c | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.util.*;
import java.io.*;
public class Main {
public static Scanner obj=new Scanner(System.in);
public static PrintWriter out=new PrintWriter(System.out);
public static void main(String[] args)
{
int len=obj.nextInt();
while(len--!=0)
{
int n=obj.nextInt();
int k=obj.nextInt();
String s=obj.next();
char[] c=s.toCharArray();
int[] ans=new int[n];
int op=k;
int i=0;
for(i=0;i<n && op>0 ;i++)
{
if(c[i]=='1' )
{
if(k%2!=0) {
ans[i]+=1;
op--;
}
}
if(c[i]=='0') {
if(k%2==0)
{
ans[i]+=1;
op--;
}
c[i]='1';
}
}
if(i==n)
{
if(op%2!=0) c[n-1]='0';
ans[n-1]+=op;
}
else {
if(k%2!=0)
for(;i<n;i++)
{
if(c[i]=='1')c[i]='0';
else c[i]='1';
}
}
out.println(c);
for(i=0;i<n;i++)out.print(ans[i]+" ");
out.println();
}
out.flush();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 6ce3af3854670b54a376894b266760b5 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
private static int MOD = 1000000007;
private static long Inf = (long) 1E15;
public static void main(String[] args) throws Exception {
InputStream inputStream = System.in;
//InputStream inputStream = new FileInputStream(new File("/tmp/input.txt"));
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int t = in.nextInt();
for (int i = 0; i < t; i++) {
Task solver = new Task();
solver.solve(in, out);
}
out.close();
}
static class Task {
private static boolean touch(int bit, int k) {
if (bit == 0) {
return k % 2 == 0;
} else {
return k % 2 == 1;
}
}
private static int newVal(int init, int touched, int k) {
int flips = k - touched;
if (flips % 2 == 0) {
return init;
} else {
return 1 - init;
}
}
public void solve(Scanner in, PrintWriter out) {
int n = in.nextInt();
int k = in.nextInt();
int origK = k;
char[] ar = in.next().toCharArray();
int[] bits = new int[n];
for (int i = 0; i < n; i++) {
bits[i] = ar[i] - '0';
}
int[] counts = new int[n];
int touched = 0;
for (int i = 0; i < n && k > 0; i++) {
int cBit = 0;
if (touched % 2 == 0) {
cBit = bits[i];
} else {
cBit = 1 - bits[i];
}
if (touch(cBit, k)) {
touched++;
counts[i] = 1;
k--;
}
}
counts[n-1] += k;
for (int i = 0; i < n; i++) {
out.print(newVal(bits[i], counts[i], origK));
}
out.println();
for (int i = 0; i < n; i++) {
out.print(counts[i]);
out.print(" ");
}
out.println();
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 5fb0eeed898773952b72393405aafcb3 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Bit_Flipping {
static FastScanner fs;
static FastWriter fw;
static boolean checkOnlineJudge = System.getProperty("ONLINE_JUDGE") == null;
private static final int[][] kdir = new int[][]{{-1, 2}, {-2, 1}, {-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}};
private static final int[][] dir = new int[][]{{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
private static final int iMax = Integer.MAX_VALUE, iMin = Integer.MIN_VALUE;
private static final long lMax = Long.MAX_VALUE, lMin = Long.MIN_VALUE;
private static final int mod1 = (int) (1e9 + 7);
private static final int mod2 = 998244353;
public static void main(String[] args) throws IOException {
fs = new FastScanner();
fw = new FastWriter();
int t = 1;
t = fs.nextInt();
for (int tt = 1; tt <= t; tt++) {
// fw.out.print("Case #" + tt + ": ");
solve();
}
fw.out.close();
}
private static void solve() {
int n = fs.nextInt(), k = fs.nextInt();
char[] arr = fs.nextLine().toCharArray();
int[] ans = new int[n];
int cnt = 0;
for (int i = 0; i < n; i++) {
if (cnt == k) break;
if (i == n - 1) ans[i] = (k - cnt);
else {
if (arr[i] == '1') {
if ((k & 1) == 1) {
ans[i] = 1;
cnt++;
}
} else {
if ((k & 1) == 0) {
ans[i] = 1;
cnt++;
}
}
}
}
StringBuilder ans_str = new StringBuilder();
for (int i = 0; i < n; i++) {
int num = arr[i] - '0';
if (((k - ans[i]) & 1) == 1) ans_str.append((num ^ 1));
else ans_str.append(num);
}
fw.out.println(ans_str);
for (int x : ans) fw.out.print(x + " ");
fw.out.println();
}
private static class UnionFind {
private final int[] parent;
private final int[] rank;
UnionFind(int n) {
parent = new int[n + 5];
rank = new int[n + 5];
for (int i = 0; i <= n; i++) {
parent[i] = i;
rank[i] = 0;
}
}
private int find(int i) {
if (parent[i] == i)
return i;
return parent[i] = find(parent[i]);
}
private void union(int a, int b) {
a = find(a);
b = find(b);
if (a != b) {
if (rank[a] < rank[b]) {
int temp = a;
a = b;
b = temp;
}
parent[b] = a;
if (rank[a] == rank[b])
rank[a]++;
}
}
}
private static class SCC {
private final int n;
private final List<List<Integer>> adjList;
SCC(int _n, List<List<Integer>> _adjList) {
n = _n;
adjList = _adjList;
}
private List<List<Integer>> getSCC() {
List<List<Integer>> ans = new ArrayList<>();
Stack<Integer> stack = new Stack<>();
boolean[] vis = new boolean[n];
for (int i = 0; i < n; i++) {
if (!vis[i]) dfs(i, adjList, vis, stack);
}
vis = new boolean[n];
List<List<Integer>> rev_adjList = rev_graph(n, adjList);
while (!stack.isEmpty()) {
int curr = stack.pop();
if (!vis[curr]) {
List<Integer> scc_list = new ArrayList<>();
dfs2(curr, rev_adjList, vis, scc_list);
ans.add(scc_list);
}
}
return ans;
}
private void dfs(int curr, List<List<Integer>> adjList, boolean[] vis, Stack<Integer> stack) {
vis[curr] = true;
for (int x : adjList.get(curr)) {
if (!vis[x]) dfs(x, adjList, vis, stack);
}
stack.add(curr);
}
private void dfs2(int curr, List<List<Integer>> adjList, boolean[] vis, List<Integer> scc_list) {
vis[curr] = true;
scc_list.add(curr);
for (int x : adjList.get(curr)) {
if (!vis[x]) dfs2(x, adjList, vis, scc_list);
}
}
}
private static List<List<Integer>> rev_graph(int n, List<List<Integer>> adjList) {
List<List<Integer>> ans = new ArrayList<>();
for (int i = 0; i < n; i++) ans.add(new ArrayList<>());
for (int i = 0; i < n; i++) {
for (int x : adjList.get(i)) {
ans.get(x).add(i);
}
}
return ans;
}
private static class Calc_nCr {
private final long[] fact;
private final long[] invfact;
private final int p;
Calc_nCr(int n, int prime) {
fact = new long[n + 5];
invfact = new long[n + 5];
p = prime;
fact[0] = 1;
for (int i = 1; i <= n; i++) {
fact[i] = (i * fact[i - 1]) % p;
}
invfact[n] = pow_with_mod(fact[n], p - 2, p);
for (int i = n - 1; i >= 0; i--) {
invfact[i] = (invfact[i + 1] * (i + 1)) % p;
}
}
private long nCr(int n, int r) {
if (r > n || n < 0 || r < 0) return 0;
return (((fact[n] * invfact[r]) % p) * invfact[n - r]) % p;
}
}
private static int random_between_two_numbers(int l, int r) {
Random ran = new Random();
return ran.nextInt(r - l) + l;
}
private static long gcd(long a, long b) {
return (b == 0 ? a : gcd(b, a % b));
}
private static long lcm(long a, long b) {
return ((a * b) / gcd(a, b));
}
private static long pow(long a, long b) {
long result = 1;
while (b > 0) {
if ((b & 1L) == 1) {
result = (result * a);
}
a = (a * a);
b >>= 1;
}
return result;
}
private static long pow_with_mod(long a, long b, int mod) {
long result = 1;
while (b > 0) {
if ((b & 1L) == 1) {
result = (result * a) % mod;
}
a = (a * a) % mod;
b >>= 1;
}
return result;
}
private static long ceilDiv(long a, long b) {
return ((a + b - 1) / b);
}
private static long getMin(long... args) {
long min = lMax;
for (long arg : args)
min = Math.min(min, arg);
return min;
}
private static long getMax(long... args) {
long max = lMin;
for (long arg : args)
max = Math.max(max, arg);
return max;
}
private static boolean isPalindrome(String s, int l, int r) {
int i = l, j = r;
while (j - i >= 1) {
if (s.charAt(i) != s.charAt(j))
return false;
i++;
j--;
}
return true;
}
private static List<Integer> primes(int n) {
boolean[] primeArr = new boolean[n + 5];
Arrays.fill(primeArr, true);
for (int i = 2; (i * i) <= n; i++) {
if (primeArr[i]) {
for (int j = i * i; j <= n; j += i) {
primeArr[j] = false;
}
}
}
List<Integer> primeList = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (primeArr[i])
primeList.add(i);
}
return primeList;
}
private static int noOfSetBits(long x) {
int cnt = 0;
while (x != 0) {
x = x & (x - 1);
cnt++;
}
return cnt;
}
private static int sumOfDigits(long num) {
int cnt = 0;
while (num > 0) {
cnt += (num % 10);
num /= 10;
}
return cnt;
}
private static int noOfDigits(long num) {
int cnt = 0;
while (num > 0) {
cnt++;
num /= 10;
}
return cnt;
}
private static boolean isPerfectSquare(long num) {
long sqrt = (long) Math.sqrt(num);
return ((sqrt * sqrt) == num);
}
private static class Pair<U, V> {
private final U first;
private final V second;
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<?, ?> pair = (Pair<?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second);
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
@Override
public String toString() {
return "(" + first + ", " + second + ")";
}
private Pair(U ff, V ss) {
this.first = ff;
this.second = ss;
}
}
private static void randomizeIntArr(int[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swapInIntArr(arr, i, j);
}
}
private static void randomizeLongArr(long[] arr, int n) {
Random r = new Random();
for (int i = (n - 1); i > 0; i--) {
int j = r.nextInt(i + 1);
swapInLongArr(arr, i, j);
}
}
private static void swapInIntArr(int[] arr, int a, int b) {
int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
private static void swapInLongArr(long[] arr, int a, int b) {
long temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;
}
private static int[] readIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextInt();
return arr;
}
private static long[] readLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = fs.nextLong();
return arr;
}
private static List<Integer> readIntList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextInt());
return list;
}
private static List<Long> readLongList(int n) {
List<Long> list = new ArrayList<>();
for (int i = 0; i < n; i++)
list.add(fs.nextLong());
return list;
}
private static class FastScanner {
BufferedReader br;
StringTokenizer st;
FastScanner() throws IOException {
if (checkOnlineJudge)
this.br = new BufferedReader(new FileReader("src/input.txt"));
else
this.br = new BufferedReader(new InputStreamReader(System.in));
this.st = new StringTokenizer("");
}
public String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException err) {
err.printStackTrace();
}
}
return st.nextToken();
}
public String nextLine() {
if (st.hasMoreTokens()) {
return st.nextToken("").trim();
}
try {
return br.readLine().trim();
} catch (IOException err) {
err.printStackTrace();
}
return "";
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
private static class FastWriter {
PrintWriter out;
FastWriter() throws IOException {
if (checkOnlineJudge)
out = new PrintWriter(new FileWriter("src/output.txt"));
else
out = new PrintWriter(System.out);
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 7d42a7102c753b6114dfb02fcfed28e0 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | //<———My cp————
//https://takeuforward.org/interview-experience/strivers-cp-sheet/?utm_source=youtube&utm_medium=striver&utm_campaign=yt_video
import java.util.*;
import java.io.*;
public class Solution{
static PrintWriter pw = new PrintWriter(System.out);
static FastReader fr = new FastReader(System.in);
private static long MOD = 1_000_000_007;
public static void main(String[] args) throws Exception{
int t = fr.nextInt();
while(t-->0){
int n = fr.nextInt();
int k = fr.nextInt();
String s = fr.next();
int usedOp = 0;
int i=0;
int[] op = new int[n];
for(i = 0;i<n-1&& usedOp<k ;i++){
char curr = s.charAt(i);
if(usedOp%2==1){
if(curr=='0'){
curr='1';
}else{
curr='0';
}
}
pw.print(1);
if(curr=='1'&&(k-usedOp)%2==1){
usedOp++;
op[i]=1;
}else if(curr=='0'&&(k-usedOp)%2==0){
usedOp++;
op[i]=1;
}
}
for(;i<n;i++){
char curr = s.charAt(i);
if(usedOp%2==1){
if(curr=='1'){
curr='0';
}else{
curr='1';
}
}
op[i]=(k-usedOp);
pw.print(curr);
}
pw.println();
for(int r=0;r<op.length;r++){
pw.print(op[r]+" ");
}
pw.println();
}
pw.close();
}
static class Pair{
int height;
int width;
public Pair(int height,int width){
this.height = height;
this.width = width;
}
@Override
public String toString() {
return "height: "+height+" width: "+width;
}
}
public static long opNeeded(long c,long[] vals){
long tempResult = 0;
for(int j = 0;j<vals.length;j++){
tempResult=tempResult+Math.abs((long)(vals[j]-Math.pow(c,j)));
}
if(tempResult<0){
tempResult=Long.MAX_VALUE;
}
return tempResult;
}
static int isPerfectSquare(int vals){
int lastPow=1;
while(lastPow*lastPow<vals){
lastPow++;
}
if(lastPow*lastPow==vals){
return lastPow*lastPow;
}else{
return -1;
}
}
public static int[] sort(int[] vals){
ArrayList<Integer> values = new ArrayList<>();
for(int i = 0;i<vals.length;i++){
values.add(vals[i]);
}
Collections.sort(values);
for(int i =0;i<values.size();i++){
vals[i] = values.get(i);
}
return vals;
}
public static long[] sort(long[] vals){
ArrayList<Long> values = new ArrayList<>();
for(int i = 0;i<vals.length;i++){
values.add(vals[i]);
}
Collections.sort(values);
for(int i =0;i<values.size();i++){
vals[i] = values.get(i);
}
return vals;
}
public static void reverseArray(long[] vals){
int startIndex = 0;
int endIndex = vals.length-1;
while(startIndex<=endIndex){
long temp = vals[startIndex];
vals[startIndex] = vals[endIndex];
vals[endIndex] = temp;
startIndex++;
endIndex--;
}
}
public static void reverseArray(int[] vals){
int startIndex = 0;
int endIndex = vals.length-1;
while(startIndex<=endIndex){
int temp = vals[startIndex];
vals[startIndex] = vals[endIndex];
vals[endIndex] = temp;
startIndex++;
endIndex--;
}
}
static class FastReader{
byte[] buf = new byte[2048];
int index, total;
InputStream in;
FastReader(InputStream is) {
in = is;
}
int scan() throws IOException {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
String next() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan());
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
int nextInt() throws IOException {
int c, val = 0;
for (c = scan(); c <= 32; c = scan());
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
long nextLong() throws IOException {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan());
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
}
public static int GCD(int numA, int numB){
if(numA==0){
return numB;
}else if(numB==0){
return numA;
}else{
if(numA>numB){
return GCD(numA%numB,numB);
}else{
return GCD(numA,numB%numA);
}
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | bb82ce465b4f4ff2190ee69d51b70e87 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.util.*;
import java.lang.*;
import java.io.*;
public class New {
public static void main (String[] args) throws java.lang.Exception
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int testCases = Integer.parseInt(br.readLine());
while(testCases-->0){
String input[]=br.readLine().split(" ");
int n=Integer.parseInt(input[0]);
int k=Integer.parseInt(input[1]);
char arr[]=br.readLine().toCharArray();
int temp[]=new int[n];
int xor=0;
for(int i=0;i<n;i++) {
if(xor==1) {
if(arr[i]=='0') arr[i]='1';
else arr[i]='0';
}
if(k==0) continue;
if(arr[i]=='1') {
if(k%2!=0) {
temp[i]++;
k--;
xor^=1;
}
}else {
if(k%2==0) {
temp[i]++;
k--;
xor^=1;
}
arr[i]='1';
}
}
if(k%2!=0) {
if(arr[n-1]=='0') arr[n-1]='1';
else arr[n-1]='0';
}
temp[n-1]+=k;
for(int i=0;i<n;i++) {
out.print(arr[i]);
}
out.println();
for(int i=0;i<n;i++) {
out.print(temp[i]+" ");
}
out.println();
}
out.close();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9f5d289d1e54f0ebc705ccc94c41bf1d | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
import java.util.StringTokenizer;
/*
*/
public class B {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
PrintWriter out=new PrintWriter(System.out);
int T=fs.nextInt();
// int T=1;
for (int tt=0; tt<T; tt++) {
int n = fs.nextInt(), k = fs.nextInt();
int K = k;
char[] s = fs.next().toCharArray();
int[] used = new int[n];
Arrays.fill(used, k);
int last = -1;
for (int i = 0; i < n; i++) {
if (k > 0 && used[i] % 2 == 1 && s[i] == '1') {
used[i]--;
last = i;
k--;
} else if (k > 0 && used[i] % 2 == 0 && s[i] == '0') {
used[i]--;
last = i;
k--;
}
if (used[i] % 2 == 1) {
if (s[i] == '0') s[i] = '1';
else s[i] = '0';
}
}
if (k % 2 == 1) {
s[n - 1] = '0';
used[n - 1] -= k;
} else {
used[n - 1] -= k;
}
for (int i = 0; i < n; i++) out.print(s[i]);
out.println();
for (int i = 0; i < n; i++) out.print(K - used[i] + " ");
out.println();
}
out.close();
}
static final Random random=new Random();
static final int mod=1_000_000_007;
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long add(long a, long b) {
return (a+b)%mod;
}
static long sub(long a, long b) {
return ((a-b)%mod+mod)%mod;
}
static long mul(long a, long b) {
return (a*b)%mod;
}
static long exp(long base, long exp) {
if (exp==0) return 1;
long half=exp(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials=new long[2_000_001];
static long[] invFactorials=new long[2_000_001];
static void precompFacts() {
factorials[0]=invFactorials[0]=1;
for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i);
invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2);
for (int i=invFactorials.length-2; i>=0; i--)
invFactorials[i]=mul(invFactorials[i+1], i+1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k]));
}
static void sort(int[] b) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:b) l.add(i);
Collections.sort(l);
for (int i=0; i<b.length; i++) b[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 3fb33abf347bedc34127c4e1ef535002 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
public class BitFlipping {
public static void main(String[] args) throws IOException {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
PrintWriter pr=new PrintWriter(System.out);
int t=Integer.parseInt(br.readLine());
while(t!=0){
solve(br,pr);
t--;
}
pr.flush();
pr.close();
}
public static void solve(BufferedReader br,PrintWriter pr) throws IOException{
String[] temp=br.readLine().split(" ");
int n=Integer.parseInt(temp[0]);
int k=Integer.parseInt(temp[1]);
String s=br.readLine();
char[] bits=s.toCharArray();
int[] res=new int[n];
if(k%2==1){
for(int i=0;i<n;i++){
if(bits[i]=='0'){
bits[i]='1';
}
else{
bits[i]='0';
}
}
}
for(int i=0;i<n;i++){
if(k<=0){
break;
}
if(bits[i]=='0'){
res[i]=1;
k--;
bits[i]='1';
}
}
if(k!=0){
res[n-1]+=k;
if(k%2!=0){
bits[n-1]=(bits[n-1]=='0'?'1':'0');
}
}
pr.println(new String(bits));
for(int i:res){
pr.print(i+" ");
}
pr.print('\n');
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | d1bf45046892fd4ec1a2ec59a5a7b745 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import com.sun.security.jgss.GSSUtil;
import java.io.*;
import java.util.*;
public class Main {
private boolean oj = System.getProperty("ONLINE_JUDGE") != null;
private FastWriter wr;
private Reader rd;
public final int MOD = 1000000007;
/************************************************** FAST INPUT IMPLEMENTATION *********************************************/
class Reader {
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
public Reader(String path) throws FileNotFoundException {
br = new BufferedReader(
new InputStreamReader(new FileInputStream(path)));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public int ni() throws IOException {
return rd.nextInt();
}
public long nl() throws IOException {
return rd.nextLong();
}
public void yOrn(boolean flag) {
if (flag) {
wr.println("YES");
} else {
wr.println("NO");
}
}
char nc() throws IOException {
return rd.next().charAt(0);
}
public String ns() throws IOException {
return rd.nextLine();
}
public Double nd() throws IOException {
return rd.nextDouble();
}
public int[] nai(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
public long[] nal(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
/************************************************** FAST OUTPUT IMPLEMENTATION *********************************************/
public static class FastWriter {
private static final int BUF_SIZE = 1 << 13;
private final byte[] buf = new byte[BUF_SIZE];
private final OutputStream out;
private int ptr = 0;
private FastWriter() {
out = null;
}
public FastWriter(OutputStream os) {
this.out = os;
}
public FastWriter(String path) {
try {
this.out = new FileOutputStream(path);
} catch (FileNotFoundException e) {
throw new RuntimeException("FastWriter");
}
}
public FastWriter write(byte b) {
buf[ptr++] = b;
if (ptr == BUF_SIZE) innerflush();
return this;
}
public FastWriter write(char c) {
return write((byte) c);
}
public FastWriter write(char[] s) {
for (char c : s) {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
}
return this;
}
public FastWriter write(String s) {
s.chars().forEach(c -> {
buf[ptr++] = (byte) c;
if (ptr == BUF_SIZE) innerflush();
});
return this;
}
private static int countDigits(int l) {
if (l >= 1000000000) return 10;
if (l >= 100000000) return 9;
if (l >= 10000000) return 8;
if (l >= 1000000) return 7;
if (l >= 100000) return 6;
if (l >= 10000) return 5;
if (l >= 1000) return 4;
if (l >= 100) return 3;
if (l >= 10) return 2;
return 1;
}
public FastWriter write(int x) {
if (x == Integer.MIN_VALUE) {
return write((long) x);
}
if (ptr + 12 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
private static int countDigits(long l) {
if (l >= 1000000000000000000L) return 19;
if (l >= 100000000000000000L) return 18;
if (l >= 10000000000000000L) return 17;
if (l >= 1000000000000000L) return 16;
if (l >= 100000000000000L) return 15;
if (l >= 10000000000000L) return 14;
if (l >= 1000000000000L) return 13;
if (l >= 100000000000L) return 12;
if (l >= 10000000000L) return 11;
if (l >= 1000000000L) return 10;
if (l >= 100000000L) return 9;
if (l >= 10000000L) return 8;
if (l >= 1000000L) return 7;
if (l >= 100000L) return 6;
if (l >= 10000L) return 5;
if (l >= 1000L) return 4;
if (l >= 100L) return 3;
if (l >= 10L) return 2;
return 1;
}
public FastWriter write(long x) {
if (x == Long.MIN_VALUE) {
return write("" + x);
}
if (ptr + 21 >= BUF_SIZE) innerflush();
if (x < 0) {
write((byte) '-');
x = -x;
}
int d = countDigits(x);
for (int i = ptr + d - 1; i >= ptr; i--) {
buf[i] = (byte) ('0' + x % 10);
x /= 10;
}
ptr += d;
return this;
}
public FastWriter write(double x, int precision) {
if (x < 0) {
write('-');
x = -x;
}
x += Math.pow(10, -precision) / 2;
// if(x < 0){ x = 0; }
write((long) x).write(".");
x -= (long) x;
for (int i = 0; i < precision; i++) {
x *= 10;
write((char) ('0' + (int) x));
x -= (int) x;
}
return this;
}
public FastWriter writeln(char c) {
return write(c).writeln();
}
public FastWriter writeln(int x) {
return write(x).writeln();
}
public FastWriter writeln(long x) {
return write(x).writeln();
}
public FastWriter writeln(double x, int precision) {
return write(x, precision).writeln();
}
public FastWriter write(int... xs) {
boolean first = true;
for (int x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter write(long... xs) {
boolean first = true;
for (long x : xs) {
if (!first) write(' ');
first = false;
write(x);
}
return this;
}
public FastWriter writeln() {
return write((byte) '\n');
}
public FastWriter writeln(int... xs) {
return write(xs).writeln();
}
public FastWriter writeln(long... xs) {
return write(xs).writeln();
}
public FastWriter writeln(char[] line) {
return write(line).writeln();
}
public FastWriter writeln(char[]... map) {
for (char[] line : map) write(line).writeln();
return this;
}
public FastWriter writeln(String s) {
return write(s).writeln();
}
private void innerflush() {
try {
out.write(buf, 0, ptr);
ptr = 0;
} catch (IOException e) {
throw new RuntimeException("innerflush");
}
}
public void flush() {
innerflush();
try {
out.flush();
} catch (IOException e) {
throw new RuntimeException("flush");
}
}
public FastWriter print(byte b) {
return write(b);
}
public FastWriter print(char c) {
return write(c);
}
public FastWriter print(char[] s) {
return write(s);
}
public FastWriter print(String s) {
return write(s);
}
public FastWriter print(int x) {
return write(x);
}
public FastWriter print(long x) {
return write(x);
}
public FastWriter print(double x, int precision) {
return write(x, precision);
}
public FastWriter println(char c) {
return writeln(c);
}
public FastWriter println(int x) {
return writeln(x);
}
public FastWriter println(long x) {
return writeln(x);
}
public FastWriter println(double x, int precision) {
return writeln(x, precision);
}
public FastWriter print(int... xs) {
return write(xs);
}
public FastWriter print(long... xs) {
return write(xs);
}
public FastWriter println(int... xs) {
return writeln(xs);
}
public FastWriter println(long... xs) {
return writeln(xs);
}
public FastWriter println(char[] line) {
return writeln(line);
}
public FastWriter println(char[]... map) {
return writeln(map);
}
public FastWriter println(String s) {
return writeln(s);
}
public FastWriter println() {
return writeln();
}
}
/********************************************************* USEFUL CODE **************************************************/
boolean[] SAPrimeGenerator(int n) {
// TC-N*LOG(LOG N)
//Create Prime Marking Array and fill it with true value
boolean[] primeMarker = new boolean[n + 1];
Arrays.fill(primeMarker, true);
primeMarker[0] = false;
primeMarker[1] = false;
for (int i = 2; i <= n; i++) {
if (primeMarker[i]) {
// we start from 2*i because i*1 must be prime
for (int j = 2 * i; j <= n; j += i) {
primeMarker[j] = false;
}
}
}
return primeMarker;
}
private void tr(Object... o) {
if (!oj) System.out.println(Arrays.deepToString(o));
}
class Pair<F, S> {
private F first;
private S second;
Pair(F first, S second) {
this.first = first;
this.second = second;
}
public F getFirst() {
return first;
}
public S getSecond() {
return second;
}
@Override
public String toString() {
return "Pair{" +
"first=" + first +
", second=" + second +
'}';
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Pair<F, S> pair = (Pair<F, S>) o;
return first == pair.first && second == pair.second;
}
@Override
public int hashCode() {
return Objects.hash(first, second);
}
}
class PairThree<F, S, X> {
private F first;
private S second;
private X third;
PairThree(F first, S second, X third) {
this.first = first;
this.second = second;
this.third = third;
}
public F getFirst() {
return first;
}
public void setFirst(F first) {
this.first = first;
}
public S getSecond() {
return second;
}
public void setSecond(S second) {
this.second = second;
}
public X getThird() {
return third;
}
public void setThird(X third) {
this.third = third;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
PairThree<?, ?, ?> pair = (PairThree<?, ?, ?>) o;
return first.equals(pair.first) && second.equals(pair.second) && third.equals(pair.third);
}
@Override
public int hashCode() {
return Objects.hash(first, second, third);
}
}
public static void main(String[] args) throws IOException {
new Main().run();
}
public void run() throws IOException {
if (oj) {
rd = new Reader();
wr = new FastWriter(System.out);
} else {
File input = new File("input.txt");
File output = new File("output.txt");
if (input.exists() && output.exists()) {
rd = new Reader(input.getPath());
wr = new FastWriter(output.getPath());
} else {
rd = new Reader();
wr = new FastWriter(System.out);
oj = true;
}
}
long s = System.currentTimeMillis();
solve();
wr.flush();
tr(System.currentTimeMillis() - s + "ms");
}
/***************************************************************************************************************************
*********************************************************** MAIN CODE ******************************************************
****************************************************************************************************************************/
boolean[] sieve;
public void solve() throws IOException {
int t = 1;
t = ni();
while (t-- > 0) {
go();
}
}
/********************************************************* MAIN LOGIC HERE ****************************************************/
long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
static int lower_bound(int array[], int key) {
int low = 0, high = array.length;
int mid;
while (low < high) {
mid = low + (high - low) / 2;
if (key <= array[mid]) {
high = mid;
} else {
low = mid + 1;
}
}
if (low < array.length && array[low] < key) {
low++;
}
return low;
}
boolean isPowerOfTwo(int n) {
int counter = 0;
while (n != 0) {
if ((n & 1) == 1) {
counter++;
}
n = n >> 1;
}
return counter <= 1;
}
void swap(int[] arr,int i,int j){
int temp=arr[i];
arr[i]=arr[j];
arr[j]=temp;
}
void printList(ArrayList<Integer> al){
for(int i=0;i<al.size();i++){
wr.print(al.get(i)+" ");
}
wr.println("");
}
public void go() throws IOException {
int n=ni();
int k=ni();
int temp_k=k;
String st=ns();
int[] arr=new int[n];
Arrays.fill(arr,0);
int val=k%2==0?1:0;
int val2=k%2==0?0:1;
StringBuilder ans=new StringBuilder();
for(int i=0;i<n;i++){
char ch=st.charAt(i);
if(ch=='1'){
if(k-val2>=0){
k-=val2;
arr[i]+=val2;
}
}else {
if(k-val>=0){
k-=val;
arr[i]+=val;
}
}
}
arr[n-1]+=k;
for(int i=0;i<n;i++){
char ch=st.charAt(i);
if((temp_k-arr[i])%2==0){
ans.append(ch);
}else {
ans.append((ch=='0'?'1':'0'));
}
}
wr.println(ans.toString());
wr.println(arr);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 29d5010fdf523a33cde412bb37a11682 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main
{
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
if(st.hasMoreTokens()){
str = st.nextToken("\n");
}
else{
str = br.readLine();
}
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static class pair
{
long num;
int val;
pair(long num,int val)
{
this.num=num;
this.val=val;
}
}
public static void main(String[] args)
{
FastReader obj=new FastReader();
PrintWriter out=new PrintWriter(System.out);
int len=obj.nextInt();
while(len--!=0)
{
int n=obj.nextInt();
int k=obj.nextInt();
int temp=k;
char[] ch=obj.next().toCharArray();
int[] ans=new int[n];
for(int i=0;i<n;i++)
{
if(temp==0)break;
if(k%2==0)
{
if(ch[i]=='0'){
ans[i]=1;
temp--;
}
}
else{
if(ch[i]=='1')
{
ans[i]=1;
temp--;
}
}
}
ans[n-1]+=temp;
for(int i=0;i<n;i++)
{
int tut=k-ans[i];
if(tut%2!=0){
if(ch[i]=='0')ch[i]='1';
else ch[i]='0';
}
}
out.println(ch);
for(int i=0;i<n;i++)out.print(ans[i]+" ");
out.println();
}
out.flush();
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 8149c77aba271207d5e45529bb63a09c | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | //Utilities
import java.io.*;
import java.util.*;
public class a {
static int t;
static int n, k;
static char[] ch, f;
static int[] res;
public static void main(String[] args) throws IOException {
t = in.iscan();
while (t-- > 0) {
n = in.iscan(); k = in.iscan();
ch = in.sscan().toCharArray();
f = new char[n];
int original_k = k;
for (int i = 0; i < n; i++) {
f[i] = ch[i];
if (k % 2 == 1) {
if (f[i] == '0') f[i] = '1';
else f[i] = '0';
}
}
res = new int[n];
int idx = 0;
while (idx < n) {
if (k == 0) break;
int cur = Integer.parseInt(""+ch[idx]);
boolean flag = cur == 1 && original_k % 2 == 0 || cur == 0 && original_k % 2 == 1;
if (flag) {
f[idx] = '1';
res[idx] = 0;
}
else {
res[idx] = 1;
f[idx] = '1';
k--;
}
idx++;
}
if (k > 0) {
res[n-1] += k;
if (k % 2 == 1) {
if (f[n-1] == '0') f[n-1] = '1';
else f[n-1] = '0';
}
}
out.println(f);
for (int i = 0; i < n; i++) {
out.print(res[i] + " ");
}
out.println();
}
out.close();
}
static INPUT in = new INPUT(System.in);
static PrintWriter out = new PrintWriter(System.out);
private static class INPUT {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public INPUT (InputStream stream) {
this.stream = stream;
}
public INPUT (String file) throws IOException {
this.stream = new FileInputStream (file);
}
public int cscan () throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read (buf);
}
if (numChars == -1)
return numChars;
return buf[curChar++];
}
public int iscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
int res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public String sscan () throws IOException {
int c = cscan ();
while (space (c))
c = cscan ();
StringBuilder res = new StringBuilder ();
do {
res.appendCodePoint (c);
c = cscan ();
}
while (!space (c));
return res.toString ();
}
public double dscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
double res = 0;
while (!space (c) && c != '.') {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
res *= 10;
res += c - '0';
c = cscan ();
}
if (c == '.') {
c = cscan ();
double m = 1;
while (!space (c)) {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
m /= 10;
res += (c - '0') * m;
c = cscan ();
}
}
return res * sgn;
}
public long lscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
long res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public boolean space (int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
public static class UTILITIES {
static final double EPS = 10e-6;
public static void sort(int[] a, boolean increasing) {
ArrayList<Integer> arr = new ArrayList<Integer>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static void sort(long[] a, boolean increasing) {
ArrayList<Long> arr = new ArrayList<Long>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static void sort(double[] a, boolean increasing) {
ArrayList<Double> arr = new ArrayList<Double>();
int n = a.length;
for (int i = 0; i < n; i++) {
arr.add(a[i]);
}
Collections.sort(arr);
for (int i = 0; i < n; i++) {
if (increasing) {
a[i] = arr.get(i);
}
else {
a[i] = arr.get(n-1-i);
}
}
}
public static int lower_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static int upper_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static void updateMap(HashMap<Integer, Integer> map, int key, int v) {
if (!map.containsKey(key)) {
map.put(key, v);
}
else {
map.put(key, map.get(key) + v);
}
if (map.get(key) == 0) {
map.remove(key);
}
}
public static long gcd (long a, long b) {
return b == 0 ? a : gcd (b, a % b);
}
public static long lcm (long a, long b) {
return a * b / gcd (a, b);
}
public static long fast_pow_mod (long b, long x, int mod) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow_mod (b * b % mod, x / 2, mod) % mod;
return b * fast_pow_mod (b * b % mod, x / 2, mod) % mod;
}
public static long fast_pow (long b, long x) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow (b * b, x / 2);
return b * fast_pow (b * b, x / 2);
}
public static long choose (long n, long k) {
k = Math.min (k, n - k);
long val = 1;
for (int i = 0; i < k; ++i)
val = val * (n - i) / (i + 1);
return val;
}
public static long permute (int n, int k) {
if (n < k) return 0;
long val = 1;
for (int i = 0; i < k; ++i)
val = (val * (n - i));
return val;
}
// start of permutation and lower/upper bound template
public static void nextPermutation(int[] nums) {
//find first decreasing digit
int mark = -1;
for (int i = nums.length - 1; i > 0; i--) {
if (nums[i] > nums[i - 1]) {
mark = i - 1;
break;
}
}
if (mark == -1) {
reverse(nums, 0, nums.length - 1);
return;
}
int idx = nums.length-1;
for (int i = nums.length-1; i >= mark+1; i--) {
if (nums[i] > nums[mark]) {
idx = i;
break;
}
}
swap(nums, mark, idx);
reverse(nums, mark + 1, nums.length - 1);
}
public static void swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
public static void reverse(int[] nums, int i, int j) {
while (i < j) {
swap(nums, i, j);
i++;
j--;
}
}
static int lower_bound (int[] arr, int hi, int cmp) {
int low = 0, high = hi, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= cmp) high = mid;
else low = mid + 1;
}
return low;
}
static int upper_bound (int[] arr, int hi, int cmp) {
int low = 0, high = hi, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > cmp) high = mid;
else low = mid + 1;
}
return low;
}
// end of permutation and lower/upper bound template
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 71d19ca439b0c4c9533a249d3ad85c00 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.StringTokenizer;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
BBitFlipping solver = new BBitFlipping();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class BBitFlipping {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), k = in.nextInt();
int[] arr = toIntArray(in.next());
ArrayList<Integer> z = new ArrayList<>();
ArrayList<Integer> o = new ArrayList<>();
for (int i = 0; i < n; i++) {
if (arr[i] == 1) o.add(i);
else z.add(i);
}
int[] ans = new int[n];
if (k % 2 == 1) {
int i = 0;
while (k-- > 0 && i < o.size()) {
ans[o.get(i++)] = 1;
}
ans[n - 1] += k + 1;
for (int j = 0; j < n; j++) {
if (arr[j] == 1) {
if (ans[j] % 2 == 0) arr[j] = 0;
} else {
if (ans[j] % 2 == 0) arr[j] = 1;
}
}
} else {
int i = 0;
while (k-- > 0 && i < z.size()) {
ans[z.get(i++)] = 1;
}
ans[n - 1] += k + 1;
for (int j = 0; j < n; j++) {
if (arr[j] == 1) {
if (ans[j] % 2 == 1) arr[j] = 0;
} else {
if (ans[j] % 2 == 1) arr[j] = 1;
}
}
}
for (int a : arr) out.print(a);
out.println();
out.println(ans);
}
int[] toIntArray(String s) {
int[] A = new int[s.length()];
for (int i = 0; i < A.length; i++) {
A[i] = s.charAt(i) - '0';
}
return A;
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(int[] array) {
for (int i = 0; i < array.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(array[i]);
}
}
public void println(int[] array) {
print(array);
writer.println();
}
public void println() {
writer.println();
}
public void close() {
writer.close();
}
public void print(int i) {
writer.print(i);
}
}
static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | fa0def6c90caab7998887ddb3ab42e1d | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class BitFlipping {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb = new StringBuilder();
int t = Integer.parseInt(br.readLine());
for (int caseNum = 0; caseNum < t; caseNum++) {
String[] data = br.readLine().split(" ");
int n = Integer.parseInt(data[0]);
int k = Integer.parseInt(data[1]);
int N = n;
int K = k;
String input = br.readLine();
boolean[] bits = new boolean[n];
int[] numInversions = new int[n];
for (int i = 0; i < n; i++) {
bits[i] = input.charAt(i) == '1';
}
int index = 0;
boolean needsInverted = false;
while (k > 0 && index < n) {
if ((bits[index] ^ needsInverted) == ((k%2)==0)) index++;
else {
// INVERT ARRAY EXCEPT FOR BITS
bits[index] = !bits[index];
numInversions[index++]++;
needsInverted = !needsInverted;
k--;
}
}
if ((k & 1) == 1) {
bits[N-1] = !bits[N-1];
numInversions[N-1]++;
needsInverted = !needsInverted;
k--;
}
numInversions[N-1] += k;
if (needsInverted) {
for (int i = 0; i < N; i++) {
bits[i] = !bits[i];
}
}
for (int i = 0; i < N; i++) {
sb.append(bits[i] ? '1' : '0');
}
sb.append(System.lineSeparator()).append(numInversions[0]);
for (int i = 1; i < N; i++) {
sb.append(' ').append(numInversions[i]);
}
sb.append(System.lineSeparator());
}
System.out.print(sb);
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9b3a35273b5aab76a0c597a1df519e20 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.lang.Math;
import java.lang.reflect.Array;
import java.util.*;
import javax.swing.text.DefaultStyledDocument.ElementSpec;
public final class Solution {
static BufferedReader br = new BufferedReader(
new InputStreamReader(System.in)
);
static BufferedWriter bw = new BufferedWriter(
new OutputStreamWriter(System.out)
);
static StringTokenizer st;
/*write your constructor and global variables here*/
static class sortCond implements Comparator<Pair<Integer, Integer>> {
@Override
public int compare(Pair<Integer, Integer> p1, Pair<Integer, Integer> p2) {
if (p1.a <= p2.a) {
return -1;
} else {
return 1;
}
}
}
static class Rec {
int a;
int b;
long c;
Rec(int a, int b, long c) {
this.a = a;
this.b = b;
this.c = c;
}
}
static class Pair<f, s> {
f a;
s b;
Pair(f a, s b) {
this.a = a;
this.b = b;
}
}
interface modOperations {
int mod(int a, int b, int mod);
}
static int findBinaryExponentian(int a, int pow, int mod) {
if (pow == 1) {
return a;
} else if (pow == 0) {
return 1;
} else {
int retVal = findBinaryExponentian(a, (int) pow / 2, mod);
return modMul.mod(
modMul.mod(retVal, retVal, mod),
(pow % 2 == 0) ? 1 : a,
mod
);
}
}
static int findPow(int a, int b, int mod) {
if (b == 1) {
return a % mod;
} else if (b == 0) {
return 1;
} else {
int res = findPow(a, (int) b / 2, mod);
return modMul.mod(res, modMul.mod(res, (b % 2 == 1 ? a : 1), mod), mod);
}
}
static int bleft(long ele, ArrayList<Long> sortedArr) {
int l = 0;
int h = sortedArr.size() - 1;
int ans = -1;
while (l <= h) {
int mid = l + (int) (h - l) / 2;
if (sortedArr.get(mid) < ele) {
l = mid + 1;
} else if (sortedArr.get(mid) >= ele) {
ans = mid;
h = mid - 1;
}
}
return ans;
}
static long gcd(long a, long b) {
long div = b;
long rem = a % b;
while (rem != 0) {
long temp = rem;
rem = div % rem;
div = temp;
}
return div;
}
static int log(int no) {
int i = 0;
while ((1 << i) <= no) {
i++;
}
if ((1 << (i - 1)) == no) {
return i - 1;
} else {
return i;
}
}
static modOperations modAdd = (int a, int b, int mod) -> {
return (a % mod + b % mod) % mod;
};
static modOperations modSub = (int a, int b, int mod) -> {
return (int) ((1l * a % mod - 1l * b % mod + 1l * mod) % mod);
};
static modOperations modMul = (int a, int b, int mod) -> {
return (int) ((1l * (a % mod) * 1l * (b % mod)) % (1l * mod));
};
static modOperations modDiv = (int a, int b, int mod) -> {
return modMul.mod(a, findBinaryExponentian(b, mod - 1, mod), mod);
};
static HashSet<Integer> primeList(int MAXI) {
int[] prime = new int[MAXI + 1];
HashSet<Integer> obj = new HashSet<>();
for (int i = 2; i <= (int) Math.sqrt(MAXI) + 1; i++) {
if (prime[i] == 0) {
obj.add(i);
for (int j = i * i; j <= MAXI; j += i) {
prime[j] = 1;
}
}
}
for (int i = (int) Math.sqrt(MAXI) + 1; i <= MAXI; i++) {
if (prime[i] == 0) {
obj.add(i);
}
}
return obj;
}
static int[] factorialList(int MAXI, int mod) {
int[] factorial = new int[MAXI + 1];
factorial[2] = 1;
for (int i = 3; i < MAXI + 1; i++) {
factorial[i] = modMul.mod(factorial[i - 1], i, mod);
}
return factorial;
}
static void put(HashMap<Integer, Integer> cnt, int key) {
if (cnt.containsKey(key)) {
cnt.replace(key, cnt.get(key) + 1);
} else {
cnt.put(key, 1);
}
}
static long arrSum(ArrayList<Long> arr) {
long tot = 0;
for (int i = 0; i < arr.size(); i++) {
tot += arr.get(i);
}
return tot;
}
static int ord(char b) {
return (int) b - (int) 'a';
}
static int optimSearch(int[] cnt, int lower_bound, int pow, int n) {
int l = lower_bound + 1;
int h = n;
int ans = 0;
while (l <= h) {
int mid = l + (h - l) / 2;
if (cnt[mid] - cnt[lower_bound] == pow) {
return mid;
} else if (cnt[mid] - cnt[lower_bound] < pow) {
ans = mid;
l = mid + 1;
} else {
h = mid - 1;
}
}
return ans;
}
static Pair<Long, Integer> ret_ans(ArrayList<Integer> ans) {
int size = ans.size();
int mini = 1000000000 + 1;
long tit = 0l;
for (int i = 0; i < size; i++) {
tit += 1l * ans.get(i);
mini = Math.min(mini, ans.get(i));
}
return new Pair<>(tit - mini, mini);
}
static int factorList(
HashMap<Integer, Integer> maps,
int no,
int maxK,
int req
) {
int i = 1;
while (i * i <= no) {
if (no % i == 0) {
if (i != no / i) {
put(maps, no / i);
}
put(maps, i);
if (maps.get(i) == req) {
maxK = Math.max(maxK, i);
}
if (maps.get(no / i) == req) {
maxK = Math.max(maxK, no / i);
}
}
i++;
}
return maxK;
}
static ArrayList<Integer> getKeys(HashMap<Integer, Integer> maps) {
ArrayList<Integer> vals = new ArrayList<>();
for (Map.Entry<Integer, Integer> map : maps.entrySet()) {
vals.add(map.getKey());
}
return vals;
}
static ArrayList<Integer> getValues(HashMap<Integer, Integer> maps) {
ArrayList<Integer> vals = new ArrayList<>();
for (Map.Entry<Integer, Integer> map : maps.entrySet()) {
vals.add(map.getValue());
}
return vals;
}
/*write your methods here*/
static int getMax(ArrayList<Integer> arr) {
int max = arr.get(0);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i) > max) {
max = arr.get(i);
}
}
return max;
}
static int getMin(ArrayList<Integer> arr) {
int max = arr.get(0);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i) < max) {
max = arr.get(i);
}
}
return max;
}
public static void main(String[] args) throws IOException {
int cases = Integer.parseInt(br.readLine()), n, k, i, j;
while (cases-- != 0) {
st = new StringTokenizer(br.readLine());
n = Integer.parseInt(st.nextToken());
k = Integer.parseInt(st.nextToken());
char s[] = br.readLine().toCharArray();
if (k % 2 != 0) {
for (i = 0; i < n; i++) {
if (s[i] == '0') {
s[i] = '1';
} else {
s[i] = '0';
}
}
}
int cnt[] = new int[n];
for (i = 0; i < n; i++) {
if (s[i] == '0') {
if (k > 0) {
k--;
cnt[i] = 1;
s[i] = '1';
}
}
}
cnt[n - 1] += k;
if (k % 2 != 0) {
if (s[n - 1] == '1') {
s[n - 1] = '0';
} else {
s[n - 1] = '1';
}
}
bw.write(s);
bw.write("\n");
for (i = 0; i < n; i++) {
bw.write(cnt[i] + " ");
}
bw.write("\n");
}
bw.flush();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | fb249a558ddd05a6d53fbac08f07e520 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
int t=Integer.parseInt(bu.readLine());
while(t-->0)
{
String s[]=bu.readLine().split(" ");
int n=Integer.parseInt(s[0]),k=Integer.parseInt(s[1]);
char c[]=bu.readLine().toCharArray();
int i,use=0,ans[]=new int[n],times[]=new int[n];
for(i=0;i<n;i++) ans[i]=c[i]-'0';
for(i=0;use<k && i<n;i++)
if(ans[i]==k%2)
{
times[i]++; use++;
}
for(i=0;i<n;i++)
if((k-times[i])%2==1) ans[i]^=1;
use=k-use;
for(i=n-1;i>=0 && use>0;i--)
if(ans[i]==1)
{
times[i]+=use;
use=0;
}
if(use>0) times[n-1]+=use;
for(i=0;i<n;i++)
{
if((k-times[i])%2==1) ans[i]=(c[i]-'0')^1;
else ans[i]=c[i]-'0';
sb.append(ans[i]);
}
sb.append("\n");
for(i=0;i<n;i++) sb.append(times[i]+" ");
sb.append("\n");
}
System.out.print(sb);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 90d3cd918f6d7297b0c25769e73562f0 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class B {
static class Scan {
private byte[] buf=new byte[1024];
private int index;
private InputStream in;
private int total;
public Scan()
{
in=System.in;
}
public int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
public int scanInt()throws IOException
{
int integer=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
integer*=10;
integer+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
return neg*integer;
}
public double scanDouble()throws IOException
{
double doub=0;
int n=scan();
while(isWhiteSpace(n))
n=scan();
int neg=1;
if(n=='-')
{
neg=-1;
n=scan();
}
while(!isWhiteSpace(n)&&n!='.')
{
if(n>='0'&&n<='9')
{
doub*=10;
doub+=n-'0';
n=scan();
}
else throw new InputMismatchException();
}
if(n=='.')
{
n=scan();
double temp=1;
while(!isWhiteSpace(n))
{
if(n>='0'&&n<='9')
{
temp/=10;
doub+=(n-'0')*temp;
n=scan();
}
else throw new InputMismatchException();
}
}
return doub*neg;
}
public String scanString()throws IOException
{
StringBuilder sb=new StringBuilder();
int n=scan();
while(isWhiteSpace(n))
n=scan();
while(!isWhiteSpace(n))
{
sb.append((char)n);
n=scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
}
public static void sort(int arr[],int l,int r) { //sort(arr,0,n-1);
if(l==r) {
return;
}
int mid=(l+r)/2;
sort(arr,l,mid);
sort(arr,mid+1,r);
merge(arr,l,mid,mid+1,r);
}
public static void merge(int arr[],int l1,int r1,int l2,int r2) {
int tmp[]=new int[r2-l1+1];
int indx1=l1,indx2=l2;
//sorting the two halves using a tmp array
for(int i=0;i<tmp.length;i++) {
if(indx1>r1) {
tmp[i]=arr[indx2];
indx2++;
continue;
}
if(indx2>r2) {
tmp[i]=arr[indx1];
indx1++;
continue;
}
if(arr[indx1]<arr[indx2]) {
tmp[i]=arr[indx1];
indx1++;
continue;
}
tmp[i]=arr[indx2];
indx2++;
}
//Copying the elements of tmp into the main array
for(int i=0,j=l1;i<tmp.length;i++,j++) {
arr[j]=tmp[i];
}
}
public static void sort(long arr[],int l,int r) { //sort(arr,0,n-1);
if(l==r) {
return;
}
int mid=(l+r)/2;
sort(arr,l,mid);
sort(arr,mid+1,r);
merge(arr,l,mid,mid+1,r);
}
public static void merge(long arr[],int l1,int r1,int l2,int r2) {
long tmp[]=new long[r2-l1+1];
int indx1=l1,indx2=l2;
//sorting the two halves using a tmp array
for(int i=0;i<tmp.length;i++) {
if(indx1>r1) {
tmp[i]=arr[indx2];
indx2++;
continue;
}
if(indx2>r2) {
tmp[i]=arr[indx1];
indx1++;
continue;
}
if(arr[indx1]<arr[indx2]) {
tmp[i]=arr[indx1];
indx1++;
continue;
}
tmp[i]=arr[indx2];
indx2++;
}
//Copying the elements of tmp into the main array
for(int i=0,j=l1;i<tmp.length;i++,j++) {
arr[j]=tmp[i];
}
}
public static void main(String args[]) throws IOException {
Scan input=new Scan();
StringBuilder ans=new StringBuilder("");
int test=input.scanInt();
for(int tt=1;tt<=test;tt++) {
int n=input.scanInt();
int k=input.scanInt();
StringBuilder tmp=new StringBuilder(input.scanString());
int arr[]=new int[n];
if(k%2==0) {
for(int i=0;i<n;i++) {
if(k==0) {
continue;
}
if(tmp.charAt(i)=='0') {
arr[i]++;
k--;
}
else {
}
}
if(k%2==0) {
arr[0]+=k;
k=0;
}
else {
arr[0]+=(k-1);
k-=(k-1);
if(k!=0) {
arr[n-1]+=k;
}
}
for(int i=0;i<n;i++) {
if(arr[i]%2==1) {
if(tmp.charAt(i)=='0') {
tmp.setCharAt(i, '1');
}
else {
tmp.setCharAt(i, '0');
}
}
}
}
else {
for(int i=0;i<n;i++) {
if(k==0) {
continue;
}
if(tmp.charAt(i)=='0') {
}
else {
arr[i]++;
k--;
}
}
if(k%2==0) {
arr[0]+=k;
k=0;
}
else {
arr[0]+=(k-1);
k-=(k-1);
if(k!=0) {
arr[n-1]+=k;
}
}
for(int i=0;i<n;i++) {
if(arr[i]%2==0) {
if(tmp.charAt(i)=='0') {
tmp.setCharAt(i, '1');
}
else {
tmp.setCharAt(i, '0');
}
}
}
}
ans.append(tmp+"\n");
for(int i=0;i<n;i++) {
ans.append(arr[i]+" ");
}
ans.append("\n");
}
System.out.println(ans);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | cf1e806a4a10d8cbd83191d65f99a597 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class Solution {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
while (t-->0){
int[] nk = Arrays.stream(br.readLine().split("\\s+")).mapToInt(Integer::parseInt).toArray();
int n = nk[0]; int k = nk[1];
String s = br.readLine();
StringBuilder sb = new StringBuilder();
StringBuilder ans = new StringBuilder();
int times = 0;
for(int i=0;i<n;i++){
char c = s.charAt(i);
if(i==n-1){
// System.out.println(k + " "+times);
// times = k-times;
if(c=='1' && times%2==0 && times>0){
sb.append("1");
}else if(c=='1' && times%2==1){
sb.append("0");
}else if(c=='0' && times%2==0 && times>0){
sb.append("0");
}else if(times>0){
sb.append("1");
}else{
sb.append(c);
}
ans.append(k-times);
}
else if(c=='1' && k%2==1 && times<k){
times++;
sb.append("1");
ans.append("1");
}else if(c=='0' && k%2==0 && times<k){
times++;
sb.append("1");
ans.append("1");
}else{
if(c=='1' && k%2==1){
sb.append("0");
}else if(c=='1' && k%2==0){
sb.append("1");
}else if(c=='0' && k%2==1){
sb.append("1");
}else{
sb.append("0");
}
ans.append(0);
}
ans.append(" ");
}
System.out.println(sb);
System.out.println(ans.toString().trim());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | f3dab53e5d0024d8642d51a7f94155a5 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | /*
Rating: 1461
Date: 17-04-2022
Time: 20-27-57
Author: Kartik Papney
Linkedin: https://www.linkedin.com/in/kartik-papney-4951161a6/
Leetcode: https://leetcode.com/kartikpapney/
Codechef: https://www.codechef.com/users/kartikpapney
*/
import java.util.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class B_Bit_Flipping {
public static boolean debug = false;
static void debug(String st) {
if(debug) p.writeln(st);
}
public static void s() {
int n = sc.nextInt(), k = sc.nextInt();
int[] opn = new int[n];
StringBuilder s = new StringBuilder(sc.nextLine());
if(k%2 != 0) {
for(int i=0; i<n; i++) {
s.setCharAt(i, (char)('1' - s.charAt(i)+'0'));
}
}
for(int i=0; i<s.length() && k != 0; i++) {
if(s.charAt(i) == '0') {
opn[i]++;
s.setCharAt(i, '1');
k--;
}
}
if(k%2 == 1) {
char c = s.charAt(s.length()-1);
s.setCharAt(s.length()-1, (char)('1' - c + '0'));
}
opn[n-1] += k;
p.writeln(s.toString());
p.writes(opn);
p.writeln();
}
public static void main(String[] args) {
int t = 1;
t = sc.nextInt();
while (t-- != 0) {
s();
}
p.print();
}
static final Integer MOD = (int) 1e9 + 7;
static final FastReader sc = new FastReader();
static final Print p = new Print();
static class Functions {
static void sort(int... a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static void sort(long... a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static int max(int... a) {
int max = Integer.MIN_VALUE;
for (int val : a) max = Math.max(val, max);
return max;
}
static int min(int... a) {
int min = Integer.MAX_VALUE;
for (int val : a) min = Math.min(val, min);
return min;
}
static long min(long... a) {
long min = Long.MAX_VALUE;
for (long val : a) min = Math.min(val, min);
return min;
}
static long max(long... a) {
long max = Long.MIN_VALUE;
for (long val : a) max = Math.max(val, max);
return max;
}
static long sum(long... a) {
long sum = 0;
for (long val : a) sum += val;
return sum;
}
static int sum(int... a) {
int sum = 0;
for (int val : a) sum += val;
return sum;
}
public static long mod_add(long a, long b) {
return (a % MOD + b % MOD + MOD) % MOD;
}
public static long pow(long a, long b) {
long res = 1;
while (b > 0) {
if ((b & 1) != 0)
res = mod_mul(res, a);
a = mod_mul(a, a);
b >>= 1;
}
return res;
}
public static long mod_mul(long a, long b) {
long res = 0;
a %= MOD;
while (b > 0) {
if ((b & 1) > 0) {
res = mod_add(res, a);
}
a = (2 * a) % MOD;
b >>= 1;
}
return res;
}
public static long gcd(long a, long b) {
if (a == 0) return b;
return gcd(b % a, a);
}
public static long factorial(long n) {
long res = 1;
for (int i = 1; i <= n; i++) {
res = (i % MOD * res % MOD) % MOD;
}
return res;
}
public static int count(int[] arr, int x) {
int count = 0;
for (int val : arr) if (val == x) count++;
return count;
}
public static ArrayList<Integer> generatePrimes(int n) {
boolean[] primes = new boolean[n];
for (int i = 2; i < primes.length; i++) primes[i] = true;
for (int i = 2; i < primes.length; i++) {
if (primes[i]) {
for (int j = i * i; j < primes.length; j += i) {
primes[j] = false;
}
}
}
ArrayList<Integer> arr = new ArrayList<>();
for (int i = 0; i < primes.length; i++) {
if (primes[i]) arr.add(i);
}
return arr;
}
}
static class Print {
StringBuffer strb = new StringBuffer();
public void write(Object str) {
strb.append(str);
}
public void writes(Object str) {
char c = ' ';
strb.append(str).append(c);
}
public void writeln(Object str) {
char c = '\n';
strb.append(str).append(c);
}
public void writeln() {
char c = '\n';
strb.append(c);
}
public void yes() {
char c = '\n';
writeln("YES");
}
public void no() {
writeln("NO");
}
public void writes(int... arr) {
for (int val : arr) {
write(val);
write(' ');
}
}
public void writes(long... arr) {
for (long val : arr) {
write(val);
write(' ');
}
}
public void writeln(int... arr) {
for (int val : arr) {
writeln(val);
}
}
public void print() {
System.out.print(strb);
}
public void println() {
System.out.println(strb);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
double[] readArrayDouble(int n) {
double[] a = new double[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
String nextLine() {
String str = new String();
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 40e977d7605343413a7f3f6bfc30e708 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.io.*;
import java.math.*;
import java.util.*;
// @author : Dinosparton
public class test {
static class Pair{
long x;
long y;
Pair(long x,long y){
this.x = x;
this.y = y;
}
}
static class Sort implements Comparator<Pair>
{
@Override
public int compare(Pair a, Pair b)
{
if(a.x!=b.x)
{
return (int)(a.x - b.x);
}
else
{
return (int)(a.y-b.y);
}
}
}
static class Compare {
void compare(Pair arr[], int n)
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{
if(p1.x!=p2.x) {
return (int)(p1.x - p2.x);
}
else {
return (int)(p1.y - p2.y);
}
}
});
// for (int i = 0; i < n; i++) {
// System.out.print(arr[i].x + " " + arr[i].y + " ");
// }
// System.out.println();
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String args[]) throws Exception {
Scanner sc = new Scanner();
StringBuilder res = new StringBuilder();
int tc = sc.nextInt();
while(tc-->0) {
int n = sc.nextInt();
long k = sc.nextLong();
String s = sc.next();
char c[] = s.toCharArray();
long ans[] = new long[n];
long fill = 0;
if(k%2==1) {
for(int i=0;i<n;i++) {
if(c[i]=='0') {
c[i]='1';
}
else {
c[i]='0';
}
}
}
for(int i=0;i<n-1;i++) {
if(c[i]=='0') {
if(fill<k) {
ans[i] = 1;
fill++;
c[i] = '1';
}
}
}
if(fill != k ) {
long add = k - fill;
ans[n-1] += add;
if(ans[n-1]%2==1) {
if(c[n-1]=='0') {
c[n-1]='1';
}
else {
c[n-1]='0';
}
}
}
for(char i : c) {
res.append(i);
}
res.append("\n");
for(long i : ans) {
res.append(i+" ");
}
res.append("\n");
}
System.out.println(res);
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | b371bf6ea363c83e24dedf8c12359ace | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | //Number of pairs
import java.io.BufferedReader;
import java.io.*;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.*;
public class Yoo
{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static void change(int []a, int n)
{
int i =0 ;
for(i=0;i<n;i++)
{
if(i==n)
continue;
else
{
if(a[i]==0)
a[i]=1;
else
a[i]=0;
}
}
}
public static void main(String[] args)
{
FastReader sc=new FastReader();
int i,j=0;
int t = sc.nextInt();
while(t-->0)
{
int n = sc.nextInt();
int k = sc.nextInt();
String s = sc.next();
char[]ch = s.toCharArray();
if(k%2!=0)
{
for(i=0;i<n;i++)
{
if(ch[i]=='0')
ch[i]='1';
else
ch[i]='0';
}
}
int a[] = new int[n];
i=0;
while(k>0 && i<n)
{
if(ch[i]=='0')
{
ch[i]='1';
k--;
a[i]++;
}
i++;
}
if(k>0)
{
if(k%2==0)
{
a[n-1]+=k;
}
else
{
if(ch[n-1]=='0')
ch[n-1]='1';
else
ch[n-1]='0';
a[n-1]+=k;
}
}
String result = String.valueOf(ch);
System.out.println(result);
for(i=0;i<n;i++)
{
System.out.print(a[i]+" ");
}
System.out.println();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 8c000fb67497811885fa9c3e18646abd | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.util.*;
import javax.print.DocFlavor.INPUT_STREAM;
import java.io.*;
import java.math.*;
import java.sql.Array;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.SQLIntegrityConstraintViolationException;
public class Main {
private static class MyScanner {
private static final int BUF_SIZE = 2048;
BufferedReader br;
private MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
private boolean isSpace(char c) {
return c == '\n' || c == '\r' || c == ' ';
}
String next() {
try {
StringBuilder sb = new StringBuilder();
int r;
while ((r = br.read()) != -1 && isSpace((char)r));
if (r == -1) {
return null;
}
sb.append((char) r);
while ((r = br.read()) != -1 && !isSpace((char)r)) {
sb.append((char)r);
}
return sb.toString();
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
static class Reader{
BufferedReader br;
StringTokenizer st;
public Reader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static long mod = (long)(1e9 + 7);
static void sort(long[] arr ) {
ArrayList<Long> al = new ArrayList<>();
for(long e:arr) al.add(e);
Collections.sort(al);
for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i);
}
static void sort(int[] arr ) {
ArrayList<Integer> al = new ArrayList<>();
for(int e:arr) al.add(e);
Collections.sort(al);
for(int i = 0 ; i<al.size(); i++) arr[i] = al.get(i);
}
static void sort(char[] arr) {
ArrayList<Character> al = new ArrayList<Character>();
for(char cc:arr) al.add(cc);
Collections.sort(al);
for(int i = 0 ;i<arr.length ;i++) arr[i] = al.get(i);
}
static long mod_mul( long... a) {
long ans = a[0]%mod;
for(int i = 1 ; i<a.length ; i++) {
ans = (ans * (a[i]%mod))%mod;
}
return ans;
}
static long mod_sum( long... a) {
long ans = 0;
for(long e:a) {
ans = (ans + e)%mod;
}
return ans;
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static void print(long[] arr) {
System.out.println("---print---");
for(long e:arr) System.out.print(e+" ");
System.out.println("-----------");
}
static void print(int[] arr) {
System.out.println("---print---");
for(long e:arr) System.out.print(e+" ");
System.out.println("-----------");
}
static boolean[] prime(int num) {
boolean[] bool = new boolean[num];
for (int i = 0; i< bool.length; i++) {
bool[i] = true;
}
for (int i = 2; i< Math.sqrt(num); i++) {
if(bool[i] == true) {
for(int j = (i*i); j<num; j = j+i) {
bool[j] = false;
}
}
}
if(num >= 0) {
bool[0] = false;
bool[1] = false;
}
return bool;
}
static long modInverse(long a, long m)
{
long g = gcd(a, m);
return power(a, m - 2);
}
static long lcm(long a , long b) {
return (a*b)/gcd(a, b);
}
static int lcm(int a , int b) {
return (int)((a*b)/gcd(a, b));
}
static long power(long x, long y){
if(y<0) return 0;
long m = mod;
if (y == 0) return 1; long p = power(x, y / 2) % m; p = (int)((p * (long)p) % m);
if (y % 2 == 0) return p; else return (int)((x * (long)p) % m); }
static class Combinations{
private long[] z; // factorial
private long[] z1; // inverse factorial
private long[] z2; // incerse number
private long mod;
public Combinations(long N , long mod) {
this.mod = mod;
z = new long[(int)N+1];
z1 = new long[(int)N+1];
z[0] = 1;
for(int i =1 ; i<=N ; i++) z[i] = (z[i-1]*i)%mod;
z2 = new long[(int)N+1];
z2[0] = z2[1] = 1;
for (int i = 2; i <= N; i++)
z2[i] = z2[(int)(mod % i)] * (mod - mod / i) % mod;
z1[0] = z1[1] = 1;
for (int i = 2; i <= N; i++)
z1[i] = (z2[i] * z1[i - 1]) % mod;
}
long fac(long n) {
return z[(int)n];
}
long invrsNum(long n) {
return z2[(int)n];
}
long invrsFac(long n) {
return z1[(int)n];
}
long ncr(long N, long R)
{ if(R<0 || R>N ) return 0;
long ans = ((z[(int)N] * z1[(int)R])
% mod * z1[(int)(N - R)])
% mod;
return ans;
}
}
static class DisjointUnionSets {
int[] rank, parent;
int n;
public DisjointUnionSets(int n)
{
rank = new int[n];
parent = new int[n];
this.n = n;
makeSet();
}
void makeSet()
{
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
int find(int x)
{
if (parent[x] != x) {
parent[x] = find(parent[x]);
}
return parent[x];
}
void union(int x, int y)
{
int xRoot = find(x), yRoot = find(y);
if (xRoot == yRoot)
return;
if (rank[xRoot] < rank[yRoot])
parent[xRoot] = yRoot;
else if (rank[yRoot] < rank[xRoot])
parent[yRoot] = xRoot;
else
{
parent[yRoot] = xRoot;
rank[xRoot] = rank[xRoot] + 1;
}
}
}
static int max(int... a ) {
int max = a[0];
for(int e:a) max = Math.max(max, e);
return max;
}
static long max(long... a ) {
long max = a[0];
for(long e:a) max = Math.max(max, e);
return max;
}
static int min(int... a ) {
int min = a[0];
for(int e:a) min = Math.min(e, min);
return min;
}
static long min(long... a ) {
long min = a[0];
for(long e:a) min = Math.min(e, min);
return min;
}
static int[] KMP(String str) {
int n = str.length();
int[] kmp = new int[n];
for(int i = 1 ; i<n ; i++) {
int j = kmp[i-1];
while(j>0 && str.charAt(i) != str.charAt(j)) {
j = kmp[j-1];
}
if(str.charAt(i) == str.charAt(j)) j++;
kmp[i] = j;
}
return kmp;
}
/************************************************ Query **************************************************************************************/
/***************************************** Sparse Table ********************************************************/
static class SparseTable{
private long[][] st;
SparseTable(long[] arr){
int n = arr.length;
st = new long[n][25];
log = new int[n+2];
build_log(n+1);
build(arr);
}
private void build(long[] arr) {
int n = arr.length;
for(int i = n-1 ; i>=0 ; i--) {
for(int j = 0 ; j<25 ; j++) {
int r = i + (1<<j)-1;
if(r>=n) break;
if(j == 0 ) st[i][j] = arr[i];
else st[i][j] = max(st[i][j-1] , st[ i + ( 1 << (j-1) ) ][ j-1 ] );
}
}
}
public long gcd(long a ,long b) {
if(a == 0) return b;
return gcd(b%a , a);
}
public long query(int l ,int r) {
int w = r-l+1;
int power = log[w];
return max(st[l][power],st[r - (1<<power) + 1][power]);
}
private int[] log;
void build_log(int n) {
log[1] = 0;
for(int i = 2 ; i<=n ; i++) {
log[i] = 1 + log[i/2];
}
}
}
/******************************************************** Segement Tree *****************************************************/
static class SegmentTree{
long[] tree;
long[] arr;
int n;
SegmentTree(long[] arr){
this.n = arr.length;
tree = new long[4*n+1];
this.arr = arr;
buildTree(0, n-1, 1);
}
void buildTree(int s ,int e ,int index ) {
if(s == e) {
tree[index] = arr[s];
return;
}
int mid = (s+e)/2;
buildTree( s, mid, 2*index);
buildTree( mid+1, e, 2*index+1);
tree[index] = gcd(tree[2*index] , tree[2*index+1]);
}
long query(int si ,int ei) {
return query(0 ,n-1 , si ,ei , 1 );
}
private long query( int ss ,int se ,int qs , int qe,int index) {
if(ss>=qs && se<=qe) return tree[index];
if(qe<ss || se<qs) return (long)(0);
int mid = (ss + se)/2;
long left = query( ss , mid , qs ,qe , 2*index);
long right= query(mid + 1 , se , qs ,qe , 2*index+1);
return min(left, right);
}
public void update(int index , int val) {
arr[index] = val;
update(index , 0 , n-1 , 1);
}
private void update(int id ,int si , int ei , int index) {
if(id < si || id>ei) return;
if(si == ei ) {
tree[index] = arr[id];
return;
}
if(si > ei) return;
int mid = (ei + si)/2;
update( id, si, mid , 2*index);
update( id , mid+1, ei , 2*index+1);
tree[index] = Math.min(tree[2*index] ,tree[2*index+1]);
}
}
/* ***************************************************************************************************************************************************/
// static MyScanner sc = new MyScanner(); // only in case of less memory
static Reader sc = new Reader();
static int TC;
static StringBuilder sb = new StringBuilder();
static PrintWriter out=new PrintWriter(System.out);
public static void main(String args[]) throws IOException {
int tc = 1;
tc = sc.nextInt();
TC = 0;
for(int i = 1 ; i<=tc ; i++) {
TC++;
// sb.append("Case #" + i + ": " ); // During KickStart && HackerCup
TEST_CASE();
}
System.out.print(sb);
}
static void TEST_CASE() {
int n = sc.nextInt();
int k = sc.nextInt();
String str = sc.next();
int[] arr = new int[n];
for(int i = 0 ;i<n ; i++)
arr[i] = str.charAt(i)-'0';
int[] ans = new int[n];
if(k%2 == 1) {
for(int i =0 ;i<n-1 ; i++)
{
if(k == 0) break;
else if(arr[i] == 1) {
ans[i] = 1;
k--;
}
}
ans[n-1] = k;
for(int i =0 ;i<n ; i++) {
if(arr[i] == ans[i]%2) sb.append("1");
else sb.append("0");
}
sb.append("\n");
for(int e:ans) sb.append(e+" ");
sb.append("\n");
}else {
for(int i =0 ;i<n-1 ; i++)
{
if(k == 0) break;
else if(arr[i] == 0) {
ans[i] = 1;
k--;
}
}
ans[n-1] = k;
for(int i =0 ;i<n ; i++) {
if(arr[i] == ans[i]%2) sb.append("0");
else sb.append("1");
}
sb.append("\n");
for(int e:ans) sb.append(e+" ");
sb.append("\n");
}
}
}
/*******************************************************************************************************************************************************/
/**
6 11
101100
110011
001000
76yhb
*/
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | ede92bb92c8f070993f1878c2a2a56c6 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.util.NoSuchElementException;
import java.util.*;
import static java.util.Arrays.*;
public class CodeforcesTemp {
public static void main(String[] args) throws IOException {
Reader scan = new Reader();
FastPrinter out = new FastPrinter();
int t =scan.nextInt();
for (int tc = 1; tc <= t; tc++) {
int n=scan.nextInt();
int k=scan.nextInt();
String s= scan.next();
char[] arr=s.toCharArray();
int[] choosebit=new int[n];
int op=0;
boolean flag=false;
for (int i = 0; i < n; i++) {
if(op%2==1){
arr[i]=(arr[i]=='1')?'0':'1';
}
if(k>0){
if( (arr[i]=='1' && k%2==1) || (arr[i]=='0' && k%2==0) ){
k--;
op++;
choosebit[i]++;
}
if(arr[i]=='0' && i==(n-1)){
flag=true;
}
arr[i]='1';
}
}
if(flag)arr[n-1]='0';
choosebit[n-1]+=k;
out.println(String.valueOf(arr));
out.printArray(choosebit);
}
out.close();
}
static class Reader {
private final InputStream in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private static final long LONG_MAX_TENTHS = 922337203685477580L;
private static final int LONG_MAX_LAST_DIGIT = 7;
private static final int LONG_MIN_LAST_DIGIT = 8;
public Reader(InputStream in) {
this.in = in;
}
public Reader() {
this(System.in);
}
private boolean hasNextByte() {
if (ptr < buflen) {
return true;
} else {ptr = 0;
try {buflen = in.read(buffer);} catch (IOException e) {e.printStackTrace();}
if (buflen <= 0) {return false;}
}return true;
}
private int readByte() {if (hasNextByte()) return buffer[ptr++];else return -1;}
private static boolean isPrintableChar(int c) {
return 33 <= c && c <= 126;
}
public boolean hasNext() {while (hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;
return hasNextByte();}
public String next() {
if (!hasNext())
throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while (isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
if (!hasNext())
throw new NoSuchElementException();
long n = 0;
boolean minus = false;
int b = readByte();
if (b == '-') {
minus = true;
b = readByte();
}
if (b < '0' || '9' < b) {
throw new NumberFormatException();
}
while (true) {
if ('0' <= b && b <= '9') {
int digit = b - '0';
if (n >= LONG_MAX_TENTHS) {
if (n == LONG_MAX_TENTHS) {
if (minus) {
if (digit <= LONG_MIN_LAST_DIGIT) {
n = -n * 10 - digit;
b = readByte();
if (!isPrintableChar(b)) {
return n;
} else if (b < '0' || '9' < b) {
throw new NumberFormatException(
String.format("not number"));
}
}
} else {
if (digit <= LONG_MAX_LAST_DIGIT) {
n = n * 10 + digit;
b = readByte();
if (!isPrintableChar(b)) {
return n;
} else if (b < '0' || '9' < b) {
throw new NumberFormatException(
String.format("not number"));
}
}
}
}
throw new ArithmeticException(
String.format(" overflows long."));
}
n = n * 10 + digit;
} else if (b == -1 || !isPrintableChar(b)) {
return minus ? -n : n;
} else {
throw new NumberFormatException();
}
b = readByte();
}
}
public int nextInt() {
long nl = nextLong();
if (nl < Integer.MIN_VALUE || nl > Integer.MAX_VALUE)
throw new NumberFormatException();
return (int) nl;
}
public double nextDouble() {
return Double.parseDouble(next());
}
public long[] nextLongArray(int length) {
long[] array = new long[length];
for (int i = 0; i < length; i++)
array[i] = this.nextLong();
return array;
}
public long[] nextLongArray(int length, java.util.function.LongUnaryOperator map) {
long[] array = new long[length];
for (int i = 0; i < length; i++)
array[i] = map.applyAsLong(this.nextLong());
return array;
}
public int[] nextIntArray(int length) {
int[] array = new int[length];
for (int i = 0; i < length; i++)
array[i] = this.nextInt();
return array;
}
public int[][] nextIntArrayMulti(int length, int width) {
int[][] arrays = new int[width][length];
for (int i = 0; i < length; i++) {
for (int j = 0; j < width; j++)
arrays[j][i] = this.nextInt();
}
return arrays;
}
public int[] nextIntArray(int length, java.util.function.IntUnaryOperator map) {
int[] array = new int[length];
for (int i = 0; i < length; i++)
array[i] = map.applyAsInt(this.nextInt());
return array;
}
public double[] nextDoubleArray(int length) {
double[] array = new double[length];
for (int i = 0; i < length; i++)
array[i] = this.nextDouble();
return array;
}
public double[] nextDoubleArray(int length, java.util.function.DoubleUnaryOperator map) {
double[] array = new double[length];
for (int i = 0; i < length; i++)
array[i] = map.applyAsDouble(this.nextDouble());
return array;
}
public long[][] nextLongMatrix(int height, int width) {
long[][] mat = new long[height][width];
for (int h = 0; h < height; h++)
for (int w = 0; w < width; w++) {
mat[h][w] = this.nextLong();
}
return mat;
}
public int[][] nextIntMatrix(int height, int width) {
int[][] mat = new int[height][width];
for (int h = 0; h < height; h++)
for (int w = 0; w < width; w++) {
mat[h][w] = this.nextInt();
}
return mat;
}
public double[][] nextDoubleMatrix(int height, int width) {
double[][] mat = new double[height][width];
for (int h = 0; h < height; h++)
for (int w = 0; w < width; w++) {
mat[h][w] = this.nextDouble();
}
return mat;
}
public char[][] nextCharMatrix(int height, int width) {
char[][] mat = new char[height][width];
for (int h = 0; h < height; h++) {
String s = this.next();
for (int w = 0; w < width; w++) {
mat[h][w] = s.charAt(w);
}
}
return mat;
}
}
static class FastPrinter extends PrintWriter {
public FastPrinter(PrintStream stream) {
super(stream);
}
public FastPrinter() {
super(System.out);
}
private static String dtos(double x, int n) {
StringBuilder sb = new StringBuilder();
if (x < 0) {
sb.append('-');
x = -x;
}
x += Math.pow(10, -n) / 2;
sb.append((long) x);
sb.append(".");
x -= (long) x;
for (int i = 0; i < n; i++) {
x *= 10;
sb.append((int) x);
x -= (int) x;
}
return sb.toString();
}
@Override
public void print(float f) {
super.print(dtos(f, 20));
}
@Override
public void println(float f) {
super.println(dtos(f, 20));
}
@Override
public void print(double d) {
super.print(dtos(d, 20));
}
@Override
public void println(double d) {
super.println(dtos(d, 20));
}
public void printArray(int[] array, String separator) {
int n = array.length;
for (int i = 0; i < n - 1; i++) {
super.print(array[i]);
super.print(separator);
}
super.println(array[n - 1]);
}
public void printArray(int[] array) {
this.printArray(array, " ");
}
public void printArray(int[] array, String separator, java.util.function.IntUnaryOperator map) {
int n = array.length;
for (int i = 0; i < n - 1; i++) {
super.print(map.applyAsInt(array[i]));
super.print(separator);
}
super.println(map.applyAsInt(array[n - 1]));
}
public void printArray(int[] array, java.util.function.IntUnaryOperator map) {
this.printArray(array, " ", map);
}
public void printArray(long[] array, String separator) {
int n = array.length;
for (int i = 0; i < n - 1; i++) {
super.print(array[i]);
super.print(separator);
}
super.println(array[n - 1]);
}
public void printArray(long[] array) {
this.printArray(array, " ");
}
public void printArray(long[] array, String separator, java.util.function.LongUnaryOperator map) {
int n = array.length;
for (int i = 0; i < n - 1; i++) {
super.print(map.applyAsLong(array[i]));
super.print(separator);
}
super.println(map.applyAsLong(array[n - 1]));
}
public void printArray(long[] array, java.util.function.LongUnaryOperator map) {
this.printArray(array, " ", map);
}
public void printMatrix(int[][] arr) {
for (int i = 0; i < arr.length; i++) {
this.printArray(arr[i]);
}
}
}
static Random __r = new Random();
static int randInt(int min, int max) {return __r.nextInt(max - min + 1) + min;}
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 080eec96a1038a882c1d46b2eac8b158 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class BitFlipping {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int T = Integer.parseInt(br.readLine());
for (int t = 1; t <= T; t++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
String s = br.readLine();
int[] flip = new int[n];
boolean maximize = true;
if (k % 2 == 0) {
// we maximize
for (int i = 0; i < n; i++) {
if (k == 0)
break;
if (s.charAt(i) == '0') {
flip[i] = 1;
k--;
}
}
flip[n - 1] += k;
} else {
// we minimize
maximize = false;
for (int i = 0; i < flip.length; i++) {
if (k == 0)
break;
if (s.charAt(i) == '1') {
flip[i] = 1;
k--;
}
}
flip[n - 1] += k;
}
StringBuilder sb = new StringBuilder();
if (maximize) {
// do not flip
for (int i = 0; i < n; i++) {
if ((s.charAt(i) == '1' && flip[i] % 2 == 1) || (s.charAt(i) == '0' && flip[i] % 2 == 0)) {
sb.append('0');
} else {
sb.append('1');
}
}
} else {
for (int i = 0; i < n; i++) {
if ((s.charAt(i) == '1' && flip[i] % 2 == 1) || (s.charAt(i) == '0' && flip[i] % 2 == 0)) {
sb.append('1');
} else {
sb.append('0');
}
}
}
pw.println(sb.toString());
for (int i = 0; i < n; i++) {
pw.print(flip[i] + " ");
}
pw.println();
}
pw.flush();
pw.close();
br.close();
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | c3dd8bda027284e3ef616f1eeab812f4 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
public class MyClass {
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
int k=sc.nextInt();
String str=sc.next();
char[] arr=str.toCharArray();
int[] freq=new int[n];
if(k%2==1){
for(int i=0; i<n; i++){
if(arr[i]=='1'){
freq[i]=1;
k--;
if(k==0){
for(int j=i+1; j<n; j++){
arr[j]=(arr[j]=='0')?'1':'0';
}
break;
}
}
else{
arr[i]='1';
}
}
if(k%2==1){
arr[n-1]='0';
if(freq[n-1]==1){
freq[n-1]=0;
k++;
}
else{
freq[n-1]=1;
k--;
}
}
freq[0]+=k;
}
else{
for(int i=0; i<n && k>0; i++){
if(arr[i]=='0'){
freq[i]=1;
arr[i]='1';
k--;
if(k==0){
break;
}
}
}
if(k%2==1){
arr[n-1]='0';
if(freq[n-1]==1){
freq[n-1]=0;
k++;
}
else{
freq[n-1]=1;
k--;
}
}
freq[0]+=k;
}
String ans=new String(arr);
System.out.println(ans);
for(int i=0; i<n; i++){
System.out.print(freq[i]+" ");
}
System.out.println();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 29c357c168a670473570819c0176debd | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Codeforces
{
public static void main(String args[])throws Exception
{
BufferedReader bu=new BufferedReader(new InputStreamReader(System.in));
StringBuilder sb=new StringBuilder();
int t=Integer.parseInt(bu.readLine());
while(t-->0)
{
String s[]=bu.readLine().split(" ");
int n=Integer.parseInt(s[0]),k=Integer.parseInt(s[1]);
char c[]=bu.readLine().toCharArray();
int i,use=0,ans[]=new int[n],times[]=new int[n];
for(i=0;i<n;i++) ans[i]=c[i]-'0';
for(i=0;use<k && i<n;i++)
if(ans[i]==k%2)
{
times[i]++; use++;
}
for(i=0;i<n;i++)
if((k-times[i])%2==1) ans[i]^=1;
use=k-use;
for(i=n-1;i>=0 && use>0;i--)
if(ans[i]==1)
{
times[i]+=use;
use=0;
}
if(use>0) times[n-1]+=use;
for(i=0;i<n;i++)
{
if((k-times[i])%2==1) ans[i]=(c[i]-'0')^1;
else ans[i]=c[i]-'0';
sb.append(ans[i]);
}
sb.append("\n");
for(i=0;i<n;i++) sb.append(times[i]+" ");
sb.append("\n");
}
System.out.print(sb);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 1a970840a67a3554cb47f0b86ee3c34a | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Practice {
static boolean multipleTC = true;
final static int mod2 = 1000000007;
final static int mod = 998244353;
final double E = 2.7182818284590452354;
final double PI = 3.14159265358979323846;
int MAX = 200001;
void pre() throws Exception {
}
// All the best
void solve(int TC) throws Exception {
int n = ni(), k = ni();
char arr[] = nln().toCharArray();
int count[] = new int[n];
if (k % 2 == 1) {
for (int i = 0; i < n; i++) {
if (arr[i] == '0')
arr[i] = '1';
else
arr[i] = '0';
}
}
for(int i=0;i<n;i++) {
if(arr[i]=='0' && k>0) {
arr[i]='1';
count[i]++;
k--;
}
}
count[n-1]+=k;
if(k%2==1) {
arr[n-1]= '0';
}
pn(String.valueOf(arr));
pn(count);
}
public static long gcd(long a, long b) {
if (a > b)
a = (a + b) - (b = a);
if (a == 0L)
return b;
return gcd(b % a, a);
}
double dist(int x1, int y1, int x2, int y2) {
double a = x1 - x2, b = y1 - y2;
return Math.sqrt((a * a) + (b * b));
}
int[] readArr(int n) throws Exception {
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
void sort(int arr[], int left, int right) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = left; i <= right; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = left; i <= right; i++)
arr[i] = list.get(i - left);
}
void sort(int arr[]) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < arr.length; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < arr.length; i++)
arr[i] = list.get(i);
}
public long max(long... arr) {
long max = arr[0];
for (long itr : arr)
max = Math.max(max, itr);
return max;
}
public int max(int... arr) {
int max = arr[0];
for (int itr : arr)
max = Math.max(max, itr);
return max;
}
public long min(long... arr) {
long min = arr[0];
for (long itr : arr)
min = Math.min(min, itr);
return min;
}
public int min(int... arr) {
int min = arr[0];
for (int itr : arr)
min = Math.min(min, itr);
return min;
}
public long sum(long... arr) {
long sum = 0;
for (long itr : arr)
sum += itr;
return sum;
}
public long sum(int... arr) {
long sum = 0;
for (int itr : arr)
sum += itr;
return sum;
}
String bin(long n) {
return Long.toBinaryString(n);
}
String bin(int n) {
return Integer.toBinaryString(n);
}
static int bitCount(int x) {
return x == 0 ? 0 : (1 + bitCount(x & (x - 1)));
}
static void dbg(Object... o) {
System.err.println(Arrays.deepToString(o));
}
int bit(long n) {
return (n == 0) ? 0 : (1 + bit(n & (n - 1)));
}
int abs(int a) {
return (a < 0) ? -a : a;
}
long abs(long a) {
return (a < 0) ? -a : a;
}
void p(Object o) {
out.print(o);
}
void pn(Object o) {
out.println(o);
}
void pni(Object o) {
out.println(o);
out.flush();
}
void pn(int[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
void pn(long[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
String n() throws Exception {
return in.next();
}
String nln() throws Exception {
return in.nextLine();
}
int ni() throws Exception {
return Integer.parseInt(in.next());
}
long nl() throws Exception {
return Long.parseLong(in.next());
}
double nd() throws Exception {
return Double.parseDouble(in.next());
}
public static void main(String[] args) throws Exception {
new Practice().run();
}
FastReader in;
PrintWriter out;
void run() throws Exception {
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC) ? ni() : 1;
pre();
for (int t = 1; t <= T; t++)
solve(t);
out.flush();
out.close();
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception {
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | df5f72409818baddb66bec25074504b6 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
import java.util.StringTokenizer;
/*
1
6 3
100001
*/
public class B {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
PrintWriter out=new PrintWriter(System.out);
int T=fs.nextInt();
for (int tt=0; tt<T; tt++) {
int n=fs.nextInt();
int k=fs.nextInt();
char[] a=fs.next().toCharArray();
if (k%2==1) {
for (int i=0; i<n; i++) {
if (a[i]=='0') a[i]='1';
else a[i]='0';
}
}
int[] choice=new int[n];
for (int i=0; i<a.length; i++) {
if (a[i]=='0' && k>0) {
a[i]='1';
k--;
choice[i]++;
}
}
choice[n-1]+=k;
if (k%2==1) {
a[n-1]='0';
}
out.println(a);
for (int i=0; i<n; i++) {
out.print(choice[i]+" ");
}
out.println();
}
out.close();
}
static final Random random=new Random();
static final int mod=1_000_000_007;
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long add(long a, long b) {
return (a+b)%mod;
}
static long sub(long a, long b) {
return ((a-b)%mod+mod)%mod;
}
static long mul(long a, long b) {
return (a*b)%mod;
}
static long exp(long base, long exp) {
if (exp==0) return 1;
long half=exp(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials=new long[2_000_001];
static long[] invFactorials=new long[2_000_001];
static void precompFacts() {
factorials[0]=invFactorials[0]=1;
for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i);
invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2);
for (int i=invFactorials.length-2; i>=0; i--)
invFactorials[i]=mul(invFactorials[i+1], i+1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k]));
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | f63ac22841a3b0dfd80ba4e38145a76a | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.*;
import java.lang.*;
import static java.lang.Math.max;
import static java.lang.Math.min;
import static java.lang.Math.abs;
import java.math.*;
import java.util.function.Consumer;
import java.util.stream.Collectors;
public class AAtempOneForCodeForces {
@SuppressWarnings("FieldCanBeLocal")
private static Reader in;
private static PrintWriter out;
private static String YES = "YES";
private static String NO = "NO";
private static void solve() throws IOException{
//Your Code Goes Here;
int n = in.nextInt(), k = in.nextInt();
char[] s = in.next().toCharArray();
if(k % 2 == 1){
for(int i = 0; i < n; i++){
if(s[i] == '0')s[i] = '1';
else s[i] = '0';
}
}
int[] choice = new int[n];
for(int i = 0; i < s.length; i++){
if(s[i] == '0' && k > 0){
s[i] = '1';
k--;
choice[i]++;
}
}
choice[n - 1] += k;
if(k % 2 == 1){
s[n - 1] = '0';
}
System.out.println(s);
for(int i = 0; i < n; i++){
System.out.print(choice[i] + " ");
}
System.out.println();
}
public static void main(String[] args) throws IOException, InterruptedException {
in = new Reader();
out = new PrintWriter(new OutputStreamWriter(System.out));
int T = in.nextInt();
while(T --> 0){
solve();
}
out.flush();
in.close();
out.close();
}
static final Random random = new Random();
static final int mod = 1_000_000_007;
private static boolean check(long[] arr, long n){
long ch = arr[0];
for(int i = 0; i < n; i++){
if(ch != arr[i]){
return false;
}
}
return true;
}
//This function gives the max occuring of any element in an array;(HashMap version)
private static long maxFreqHashMap(long[] arr, long n){
Map<Long, Long> hp = new HashMap<Long, Long>();
for(int i = 0; i < n; i++) {
long key = arr[i];
if(hp.containsKey(key)) {
long freq = hp.get(key);
freq++;
hp.put(key, freq);
}
else {
hp.put(key, 1L);
}
}
long max_count = 0, res = 1, count = 0;
for(Map.Entry<Long, Long> val : hp.entrySet()) {
if (max_count < val.getValue()) {
res = Math.toIntExact(val.getKey());
max_count = Math.toIntExact(val.getValue());
count = max_count;
}
}
return count;
}
//This function gives the max occuring of any element in an array; this also known as the "MOORE's Algorithm"
private static long maxFreq(long []arr, long n) {
// using moore's voting algorithm
long res = 0;
long count = -1;
for(int i = 1; i < n; i++) {
if(arr[i] == arr[(int) res]) {
count++;
}
else {
count--;
}
if(count == 0) {
res = i;
count = 1;
}
}
return arr[(int) res];
/*
you've to add below code in the solve()
long freq = maxFreq(arr, n);
int count = 0;
for(int i = 0; i < n; i++){
if(arr[i] == freq){
count++;
}
}
*/
}
private static int LCSubStr(char[] X, char[] Y, int m, int n) {
int[][] LCStuff = new int[m + 1][n + 1];
int result = 0;
for (int i = 0; i <= m; i++){
for (int j = 0; j <= n; j++) {
if (i == 0 || j == 0) {
LCStuff[i][j] = 0;
}
else if (X[i - 1] == Y[j - 1]) {
LCStuff[i][j] = LCStuff[i - 1][j - 1] + 1;
result = Integer.max(result, LCStuff[i][j]);
}
else {
LCStuff[i][j] = 0;
}
}
}
return result;
}
private static long longCusBsearch(long[] arr, long n, long h){
long ans = h;
long l = 1;
long r = h;
while(l <= r){
long mid = (l + r) / 2;
long ok = 0;
for(long i = 0; i < n; i++){
if(i == n - 1) {
ok += mid;
}
else{
long x = arr[(int) (i + 1)] - arr[(int) i];
if(x >= mid) {
ok += mid;
}
else{
ok += x;
}
}
}
if(ok >= h){
ans = mid;
r = mid - 1;
}
else{
l = mid + 1;
}
}
return ans;
}
public static int intCusBsearch(int[] arr, int n, int h){
int ans = h, l = 1, r = h;
while(l <= r){
int mid = (l + r) / 2;
int ok = 0;
for(int i = 0; i < n; i++){
if(i == n - 1){
ok += mid;
}
else{
int x = arr[i + 1] - arr[i];
if(x >= mid){
ok += mid;
}
else{
ok += x;
}
}
}
if(ok >= h){
ans = mid;
r = mid - 1;
}
else{
l = mid + 1;
}
}
return ans;
}
/* Method to check if x is power of 2*/
private static boolean isPowerOfTwo (int x) {
/* First x in the below expression is
for the case when x is 0 */
return x!=0 && ((x&(x-1)) == 0);
}
//Taken From "Second Thread"
static void ruffleSort(int[] a){
int n = a.length;//shuffles, then sort;
for(int i=0; i<n; i++){
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i]; a[i] = temp;
}
sort(a);
}
private static void longRuffleSort(long[] a){
long n = a.length;
for(long i = 0;i<n;i++){
long oi = random.nextInt((int) n), temp = a[(int) oi];
a[(int) oi] = a[(int) i]; a[(int) i] = temp;
}
longSort(a);
}
private static int gcd(int a, int b){
if(a == 0 || b == 0){
return 0;
}
while(b != 0){
int temp;
temp = a % b;
a = b;
b = temp;
}
return a;
}
private static long gcd(long a, long b){
if(a == 0 || b == 0){
return 0;
}
while(b != 0){
long temp;
temp = a % b;
a = b;
b = temp;
}
return a;
}
private static int lowestCommonMultiple(int a, int b){
return (a / gcd(a, b) * b);
}
/*
The Below func: the for loop runs in sqrt times. The second if is used to if the
divisors are equal to print only one of them otherwise we're printing both;
*/
private static void pDivisors(int n){
for(int i=1;i<Math.sqrt(n);i++){
if(n % i == 0){
if(n / i == i){
System.out.println(i + " ");
}
else{
System.out.println(i + " " + (n / i) + " ");
}
}
}
}
private static void returnNothing(){return;}
private static int numOfdigitsinN(int a){return (int) (Math.floor(Math.log10(a)) + 1);}
//prime Num till N: it takes any number and prints all the prime till that
//num;
private static boolean isPrime(int n){
if(n <= 1) return false;
if(n <= 3) return true;
//This is checked so that we can skip middle five number in below loop:
if(n % 2 == 0 || n % 3 == 0) return false;
for(int i = 5; i * i <= n; i = i + 6){
if(n % i == 0 || n % (i + 2) == 0){
return false;
}
}
return true;
}
//below func is to print the isPrime func();
private static void printTheIsPrimeFunc(int n){
for(int i=2;i<=n;i++){
if(isPrime(i)) System.out.println(i + " ");
}
}
public static boolean primeFinder(int n){
int m = 0;
int flag = 0;
m = n / 2;
if(n == 0 ||n == 1){
return false;
}
else{
for(int i=2;i<=m;i++){
if(n % i == 0){
return false;
}
}
return true;
}
}
private static boolean evenOdd(int num){
//System.out.println((num & 1) == 0 ? "EVEN" : "ODD");
return (num & 1) == 0 ? true : false;
}
private static boolean[] sieveOfEratosthenes(long n) {
boolean prime[] = new boolean[(int)n + 1];
for (int i = 0; i <= n; i++) {
prime[i] = true;
}
for (long p = 2; p * p <= n; p++) {
if (prime[(int)p] == true) {
for (long i = p * p; i <= n; i += p)
prime[(int)i] = false;
}
}
return prime;
}
private static int log2(int n){
int result = (int) (Math.log(n) / Math.log(2));
return result;
}
private static long add(long a, long b){
return (a + b) % mod;
}
private static long lcm(long a, long b){
return (a / gcd((int) a, (int) b) * b);
}
private static void sort(int[] a){
ArrayList<Integer> l = new ArrayList<>();
for(int i:a) l.add(i);
Collections.sort(l);
for(int i=0;i<a.length;i++)a[i] = l.get(i);
}
private static void longSort(long[] a){
ArrayList<Long> l = new ArrayList<Long>();
for(long i:a) l.add(i);
Collections.sort(l);
for(int i=0;i<a.length;i++)a[i] = l.get(i);
}
public static int[][] prefixsum( int n , int m , int arr[][] ){
int prefixsum[][] = new int[n+1][m+1];
for( int i = 1 ;i <= n ;i++) {
for( int j = 1 ; j<= m ; j++) {
int toadd = 0;
if( arr[i-1][j-1] == 1) {
toadd = 1;
}
prefixsum[i][j] = toadd + prefixsum[i][j-1] + prefixsum[i-1][j] - prefixsum[i-1][j-1];
}
}
return prefixsum;
}
//call this method when you want to read an integer array;
private static int[] readArray(int len) throws IOException{
int[] a = new int[len];
for(int i=0;i<len;i++)a[i] = in.nextInt();
return a;
}
//call this method when you want to read an Long array;
private static long[] readLongArray(int len) throws IOException{
long[] a = new long[len];
for(int i=0;i<len;i++) a[i] = in.nextLong();
return a;
}
//call this method to print the integer array;
private static void printArray(int[] array){
for(int now : array) out.print(now);out.print(' ');out.close();
}
//call this method to print the long array;
private static void printLongArray(long[] array){
for(long now:array) out.print(now); out.print(' '); out.close();
}
/*Another way of Reading input...collected from a online blog
from here => https://codeforces.com/contest/1625/submission/144334744;*/
private static class Reader {
private static final int BUFFER_SIZE = 1 << 16;
private final DataInputStream din;
private final byte[] buffer;
private int bufferPointer, bytesRead;
Reader() {//Constructor;
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {//To take user input for String values;
final byte[] buf = new byte[1024]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
break;
}
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextSign() throws IOException {//For taking the signs like plus or minus ...
byte c = read();
while ('+' != c && '-' != c) {
c = read();
}
return '+' == c ? 0 : 1;
}
private static boolean isSpaceChar(int c) {
return !(c >= 33 && c <= 126);
}
public int skip() throws IOException {
int b;
// noinspection ALL
while ((b = read()) != -1 && isSpaceChar(b)) {
;
}
return b;
}
public char nc() throws IOException {
return (char) skip();
}
public String next() throws IOException {
int b = skip();
final StringBuilder sb = new StringBuilder();
while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ')
sb.appendCodePoint(b);
b = read();
}
return sb.toString();
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg) {
return -ret;
}
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ') {
c = read();
}
final boolean neg = c == '-';
if (neg) {
c = read();
}
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg) {
return -ret;
}
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1) {
buffer[0] = -1;
}
}
private byte read() throws IOException {
if (bufferPointer == bytesRead) {
fillBuffer();
}
return buffer[bufferPointer++];
}
public void close() throws IOException {
din.close();
}
}
/* A class representing a Mutable Multiset (Collectied From TechieDelight)*/
private static class Multiset<E> {
/* List to store distinct values */
private List<E> values;
/* List to store counts of distinct values */
private List<Integer> frequency;
private final String ERROR_MSG = "Count cannot be negative: ";
/* Constructor */
public Multiset() {
values = new ArrayList<>();
frequency = new ArrayList<>();
}
/**
* Adds an element to this multiset specified number of times
*
* @param `element` The element to be added
* @param `count` The number of times
* @return The previous count of the element
*/
public int add(E element, int count) {
if (count < 0) {
throw new IllegalArgumentException(ERROR_MSG + count);
}
int index = values.indexOf(element);
int prevCount = 0;
if (index != -1) {
prevCount = frequency.get(index);
frequency.set(index, prevCount + count);
}
else if (count != 0) {
values.add(element);
frequency.add(count);
}
return prevCount;
}
/**
* Adds specified element to this multiset
*
* @param `element` The element to be added
* @return true always
*/
public boolean add(E element) {
return add(element, 1) >= 0;
}
/**
* Adds all elements in the specified collection to this multiset
*
* @param `c` Collection containing elements to be added
* @return true if all elements are added to this multiset
*/
boolean addAll(Collection<? extends E> c) {
for (E element: c) {
add(element, 1);
}
return true;
}
/**
* Adds all elements in the specified array to this multiset
*
* @param `arr` An array containing elements to be added
*/
public void addAll(E... arr) {
for (E element: arr) {
add(element, 1);
}
}
/**
* Performs the given action for each element of the Iterable,
* including duplicates
*
* @param `action` The action to be performed for each element
*/
public void forEach(Consumer<? super E> action) {
List<E> all = new ArrayList<>();
for (int i = 0; i < values.size(); i++)
{
for (int j = 0; j < frequency.get(i); j++) {
all.add(values.get(i));
}
all.forEach(action);
}
}
/**
* Removes a single occurrence of the specified element from this multiset
*
* @param `element` The element to removed
* @return true if an occurrence was found and removed
*/
public boolean remove(Object element) {
return remove(element, 1) > 0;
}
/**
* Removes a specified number of occurrences of the specified element
* from this multiset
*
* @param `element` The element to removed
* @param `count` The number of occurrences to be removed
* @return The previous count
*/
public int remove(Object element, int count) {
if (count < 0) {
throw new IllegalArgumentException(ERROR_MSG + count);
}
int index = values.indexOf(element);
if (index == -1) {
return 0;
}
int prevCount = frequency.get(index);
if (prevCount > count) {
frequency.set(index, prevCount - count);
}
else {
values.remove(index);
frequency.remove(index);
}
return prevCount;
}
/**
* Check if this multiset contains at least one occurrence of the
* specified element
*
* @param `element` The element to be checked
* @return true if this multiset contains at least one occurrence
* of the element
*/
public boolean contains(Object element) {
return values.contains(element);
}
/**
* Check if this multiset contains at least one occurrence of each element
* in the specified collection
*
* @param `c` The collection of elements to be checked
* @return true if this multiset contains at least one occurrence
* of each element
*/
public boolean containsAll(Collection<?> c) {
return values.containsAll(c);
}
/**
* Update the frequency of an element to the specified count or
* add element to this multiset if not present
*
* @param `element` The element to be updated
* @param `count` The new count
* @return The previous count
*/
public int setCount(E element, int count) {
if (count < 0) {
throw new IllegalArgumentException(ERROR_MSG + count);
}
if (count == 0) {
remove(element);
}
int index = values.indexOf(element);
if (index == -1) {
return add(element, count);
}
int prevCount = frequency.get(index);
frequency.set(index, count);
return prevCount;
}
/**
* Find the frequency of an element in this multiset
*
* @param `element` The element to be counted
* @return The frequency of the element
*/
public int count(Object element) {
int index = values.indexOf(element);
return (index == -1) ? 0 : frequency.get(index);
}
/**
* @return A view of the set of distinct elements in this multiset
*/
public Set<E> elementSet() {
return values.stream().collect(Collectors.toSet());
}
/**
* @return true if this multiset is empty
*/
public boolean isEmpty() {
return values.size() == 0;
}
/**
* @return Total number of elements in this multiset, including duplicates
*/
public int size() {
int size = 0;
for (Integer i: frequency) {
size += i;
}
return size;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder("[");
for (int i = 0; i < values.size(); i++)
{
sb.append(values.get(i));
if (frequency.get(i) > 1) {
sb.append(" x ").append(frequency.get(i));
}
if (i != values.size() - 1) {
sb.append(", ");
}
}
return sb.append("]").toString();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 92b016a1833ac40b2d464d3b812b1f54 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
public class Main {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args)
{
FastReader s = new FastReader();
int t = s.nextInt();
while (t-- > 0){
int n = s.nextInt();
int k = s.nextInt();
char[] ar = s.next().toCharArray();
int[] fr = new int[n];
int cnt = 0;
for (int i = 0; i < n && cnt < k; i++){
if (k%2 == 0){
if (ar[i] == '0') {
fr[i]++;
cnt++;
}
} else {
if (ar[i] == '1') {
fr[i]++;
cnt++;
}
}
}
fr[n-1] += (k-cnt);
for (int i = 0; i < n; i++){
if ((k-fr[i])%2 == 1){
ar[i]=(char)('0'+(char)('1'-ar[i]));
}
}
System.out.println(String.valueOf(ar));
for(int e: fr) System.out.print(e + " ");
System.out.println();
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 3fe5eb608f4b715d26fa783b8634b4bb | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | /*----------- ---------------*
Author : Ryan Ranaut
__Hope is a big word, never lose it__
------------- --------------*/
import java.io.*;
import java.util.*;
public class Codeforces2 {
static PrintWriter out = new PrintWriter(System.out);
//static final int mod = 1_000_000_007;
static final int mod = 998244353;
static final int max = (int)(1e6);
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/*-------------------------------------------------------------------------*/
//Try seeing general case
public static void main(String[] args)
{
FastReader s = new FastReader();
int t = s.nextInt();
while(t-->0)
{
int n = s.nextInt();
int k = s.nextInt();
char[] str = s.nextLine().toCharArray();
find(n, k, str);
}
out.close();
}
public static void find(int n, int k, char[] str)
{
List<Integer> ls = new ArrayList<>();
int kk = k;
for(int i=0;i<n;i++)
{
if(str[i] == '1')
{
if((k&1)==1 && kk>0)//Use it one time
{
ls.add(1);
kk--;
}
else
ls.add(0);
}
else
{
if((k&1)==0 && kk>0)//Use it one time
{
ls.add(1);
kk--;
}
else
ls.add(0);
}
}
int rem = kk;
int last = ls.get(n-1);
ls.set(n-1, last+rem);
StringBuilder sb = new StringBuilder();
for(int i=0;i<n;i++)
{
int count = k-ls.get(i);
if((count&1) == 1)//Change the parity
sb.append(str[i] == '0' ? '1' : '0');
else
sb.append(str[i]);
}
out.println(sb);
for(Integer x: ls)
out.print(x+" ");
out.println();
}
/*-----------------------------------End of the road--------------------------------------*/
static class DSU {
int[] parent;
int[] ranks;
int[] groupSize;
int size;
public DSU(int n) {
size = n;
parent = new int[n];//0 based
ranks = new int[n];
groupSize = new int[n];//Size of each component
for (int i = 0; i < n; i++) {
parent[i] = i;
ranks[i] = 1; groupSize[i] = 1;
}
}
public int find(int x)//Path Compression
{
if (parent[x] == x)
return x;
else
return parent[x] = find(parent[x]);
}
public void union(int x, int y)//Union by rank
{
int x_rep = find(x);
int y_rep = find(y);
if (x_rep == y_rep)
return;
if (ranks[x_rep] < ranks[y_rep])
{
parent[x_rep] = y_rep;
groupSize[y_rep] += groupSize[x_rep];
}
else if (ranks[x_rep] > ranks[y_rep])
{
parent[y_rep] = x_rep;
groupSize[x_rep] += groupSize[y_rep];
}
else {
parent[y_rep] = x_rep;
ranks[x_rep]++;
groupSize[x_rep] += groupSize[y_rep];
}
size--;//Total connected components
}
}
public static int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
public static long gcd(long x,long y)
{
return y==0L?x:gcd(y,x%y);
}
public static int lcm(int a, int b) {
return (a * b) / gcd(a, b);
}
public static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
public static long pow(long a,long b)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1)
tmp*=a;
a*=a;
b>>=1;
}
return (tmp*a);
}
public static long modPow(long a,long b,long mod)
{
if(b==0L)
return 1L;
long tmp=1;
while(b>1L)
{
if((b&1L)==1L)
tmp*=a;
a*=a;
a%=mod;
tmp%=mod;
b>>=1;
}
return (tmp*a)%mod;
}
static long mul(long a, long b) {
return a*b%mod;
}
static long fact(int n) {
long ans=1;
for (int i=2; i<=n; i++) ans=mul(ans, i);
return ans;
}
static long fastPow(long base, long exp) {
if (exp==0) return 1;
long half=fastPow(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static void debug(int ...a)
{
for(int x: a)
out.print(x+" ");
out.println();
}
static void debug(long ...a)
{
for(long x: a)
out.print(x+" ");
out.println();
}
static void debugMatrix(int[][] a)
{
for(int[] x:a)
out.println(Arrays.toString(x));
}
static void debugMatrix(long[][] a)
{
for(long[] x:a)
out.println(Arrays.toString(x));
}
static void reverseArray(int[] a) {
int n = a.length;
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void reverseArray(long[] a) {
int n = a.length;
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = a[n - i - 1];
for (int i = 0; i < n; i++)
a[i] = arr[i];
}
static void sort(int[] a)
{
ArrayList<Integer> ls = new ArrayList<>();
for(int x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static void sort(long[] a)
{
ArrayList<Long> ls = new ArrayList<>();
for(long x: a) ls.add(x);
Collections.sort(ls);
for(int i=0;i<a.length;i++)
a[i] = ls.get(i);
}
static class Pair{
int x, y;
Pair(int x, int y)
{
this.x = x;
this.y = y;
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 3a23b14fa1220d4ed7b2285becd21e26 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | /*LoudSilence*/
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
static FastScanner s = new FastScanner();
static FastWriter out = new FastWriter();
final static int mod = (int)1e9 + 7;
final static int INT_MAX = Integer.MAX_VALUE;
final static int INT_MIN = Integer.MIN_VALUE;
final static long LONG_MAX = Long.MAX_VALUE;
final static long LONG_MIN = Long.MIN_VALUE;
final static double DOUBLE_MAX = Double.MAX_VALUE;
final static double DOUBLE_MIN = Double.MIN_VALUE;
final static float FLOAT_MAX = Float.MAX_VALUE;
final static float FLOAT_MIN = Float.MIN_VALUE;
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
static class FastScanner{BufferedReader br;StringTokenizer st;
public FastScanner() {if(System.getProperty("ONLINE_JUDGE") == null){try {br = new BufferedReader(new FileReader("E:\\Competitive Coding\\input.txt"));}
catch (FileNotFoundException e) {br = new BufferedReader(new InputStreamReader(System.in));}}else{br = new BufferedReader(new InputStreamReader(System.in));}}
String next(){while (st == null || !st.hasMoreElements()){try{st = new StringTokenizer(br.readLine());}catch (IOException e){e.printStackTrace();}}return st.nextToken();}
int nextInt(){return Integer.parseInt(next());}
long nextLong(){return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
List<Integer> readIntList(int n){List<Integer> arr = new ArrayList<>(); for(int i = 0; i < n; i++) arr.add(s.nextInt()); return arr;}
List<Long> readLongList(int n){List<Long> arr = new ArrayList<>(); for(int i = 0; i < n; i++) arr.add(s.nextLong()); return arr;}
int[] readIntArr(int n){int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = s.nextInt(); return arr;}
long[] readLongArr(int n){long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = s.nextLong(); return arr;}
String nextLine(){String str = "";try{str = br.readLine();}catch (IOException e){e.printStackTrace();}return str;}}
static class FastWriter{private BufferedWriter bw;public FastWriter(){if(System.getProperty("ONLINE_JUDGE") == null){try {this.bw = new BufferedWriter(new FileWriter("E:\\Competitive Coding\\output.txt"));}
catch (IOException e) {this.bw = new BufferedWriter(new OutputStreamWriter(System.out));}}else{this.bw = new BufferedWriter(new OutputStreamWriter(System.out));}}
public void print(Object object) throws IOException{bw.append(""+ object);}
public void println(Object object) throws IOException{print(object);bw.append("\n");}
public void debug(int object[]) throws IOException{bw.append("["); for(int i = 0; i < object.length; i++){if(i != object.length-1){print(object[i]+", ");}else{print(object[i]);}}bw.append("]\n");}
public void debug(long object[]) throws IOException{bw.append("["); for(int i = 0; i < object.length; i++){if(i != object.length-1){print(object[i]+", ");}else{print(object[i]);}}bw.append("]\n");}
public void close() throws IOException{bw.close();}}
public static void println(Object str) throws IOException{out.println(""+str);}
public static void println(Object str, int nextLine) throws IOException{out.print(""+str);}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
public static ArrayList<Integer> seive(int n){ArrayList<Integer> list = new ArrayList<>();int arr[] = new int[n+1];for(long i = 2; i <= n; i++) {if(arr[(int)i] == 1) {continue;}else {list.add((int)i);for(long j = i*i; j <= n; j = j + i) {arr[(int)j] = 1;}}}return list;}
public static long gcd(long a, long b){if(a > b) {a = (a+b)-(b=a);}if(a == 0L){return b;}return gcd(b%a, a);}
public static void swap(int[] arr, int i, int j) {arr[i] = arr[i] ^ arr[j]; arr[j] = arr[j] ^ arr[i]; arr[i] = arr[i] ^ arr[j];}
public static boolean isPrime(long n){if(n < 2){return false;}if(n == 2 || n == 3){return true;}if(n%2 == 0 || n%3 == 0){return false;}long sqrtN = (long)Math.sqrt(n)+1;for(long i = 6L; i <= sqrtN; i += 6) {if(n%(i-1) == 0 || n%(i+1) == 0) return false;}return true;}
public static long mod_add(long a, long b){ return (a%mod + b%mod)%mod;}
public static long mod_sub(long a, long b){ return (a%mod - b%mod + mod)%mod;}
public static long mod_mul(long a, long b){ return (a%mod * b%mod)%mod;}
public static long modInv(long a, long b){ return expo(a, b-2)%b;}
public static long mod_div(long a, long b){return mod_mul(a, modInv(b, mod));}
public static long expo (long a, long n){if(n == 0){return 1;}long recAns = expo(mod_mul(a,a), n/2);if(n % 2 == 0){return recAns;}else{return mod_mul(a, recAns);}}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
// Pair class
public static class Pair<X extends Comparable<X>,Y extends Comparable<Y>> implements Comparable<Pair<X, Y>>{
X first;
Y second;
public Pair(X first, Y second){
this.first = first;
this.second = second;
}
public String toString(){
return "( " + first+" , "+second+" )";
}
@Override
public int compareTo(Pair<X, Y> o) {
int t = first.compareTo(o.first);
if(t == 0) return second.compareTo(o.second);
return t;
}
}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
// Code begins
public static void solve() throws IOException {
int n = s.nextInt();
int k = s.nextInt();
String str = s.nextLine();
int arr[] = new int[n];
int first_one = -1;
for(int i = 0; i < n; i++){
arr[i] = Integer.parseInt(""+str.charAt(i));
if(arr[i] == 1 && first_one == -1){
first_one = i;
}
}
if(first_one == -1){
first_one = n-1;
}
int ans[] = new int[n];
if(k%2 == 1){
ans[first_one] = 1;
for(int i = 0; i < n; i++){
if(i != first_one){
arr[i] = arr[i] ^ 1;
}
}
k--;
}
for(int i = 0; i < n-1; i++){
if(arr[i] == 0 && k > 0){
k--;
arr[i] = 1;
ans[i] += 1;
}
}
if(k%2 == 0){
ans[n-1] += k;
}else{
ans[n-1] += k;
arr[n-1] = arr[n-1]^1;
}
for(int i = 0; i < n; i++){
println(arr[i],1);
}
println("");
for(int i = 0; i < n; i++){
println(ans[i]+" ",1);
}
println("");
}
/*----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------*/
public static void main(String[] args) throws IOException {
int test = s.nextInt();
for(int t = 1; t <= test; t++) {
solve();
}
out.close();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9433ca75282db3abd41906953982b93e | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.lang.reflect.Array;
import java.text.DecimalFormat;
import java.util.Arrays;
import java.util.*;
import java.util.Scanner;
import java.util.StringTokenizer;
public class copy {
static int log=18;
static int[][] ancestor;
static int[] depth;
static void sieveOfEratosthenes(int n, ArrayList<Integer> arr) {
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
// If prime[p] is not changed, then it is a
// prime
if (prime[p]) {
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
// Print all prime numbers
for (int i = 2; i <= n; i++) {
if (prime[i]) {
arr.add(i);
}
}
}
public static long fac(long N, long mod) {
if (N == 0)
return 1;
if(N==1)
return 1;
return ((N % mod) * (fac(N - 1, mod) % mod)) % mod;
}
static long power(long x, long y, long p) {
// Initialize result
long res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0) {
// If y is odd, multiply x
// with result
if (y % 2 == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static long modInverse(long n, long p) {
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
static long nCrModPFermat(long n, long r,
long p) {
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
return ((fac(n, p) % p * (modInverse(fac(r, p), p)
% p)) % p * (modInverse(fac(n - r, p), p)
% p)) % p;
}
public static int find(int[] parent, int x) {
if (parent[x] == x)
return x;
return find(parent, parent[x]);
}
public static void merge(int[] parent, int[] rank, int x, int y,int[] child) {
int x1 = find(parent, x);
int y1 = find(parent, y);
if (rank[x1] > rank[y1]) {
parent[y1] = x1;
child[x1]+=child[y1];
} else if (rank[y1] > rank[x1]) {
parent[x1] = y1;
child[y1]+=child[x1];
} else {
parent[y1] = x1;
child[x1]+=child[y1];
rank[x1]++;
}
}
public static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static int power(int x, int y, int p)
{
int res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
static int modInverse(int n, int p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's
// little theorem.
static int nCrModPFermat(int n, int r,
int p)
{
if (n<r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
int[] fac = new int[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p)
% p * modInverse(fac[n - r], p)
% p)
% p;
}
public static long[][] ncr(int n,int r)
{
long[][] dp=new long[n+1][r+1];
for(int i=0;i<=n;i++)
dp[i][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=r;j++)
{
if(j>i)
continue;
dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
}
}
return dp;
}
public static boolean prime(long N)
{
int c=0;
for(int i=2;i*i<=N;i++)
{
if(N%i==0)
++c;
}
return c==0;
}
public static int sparse_ancestor_table(ArrayList<ArrayList<Integer>> arr,int x,int parent,int[] child)
{
int c=0;
for(int i:arr.get(x))
{
if(i!=parent)
{
// System.out.println(i+" hello "+x);
depth[i]=depth[x]+1;
ancestor[i][0]=x;
// if(i==2)
// System.out.println(parent+" hello");
for(int j=1;j<log;j++)
ancestor[i][j]=ancestor[ancestor[i][j-1]][j-1];
c+=sparse_ancestor_table(arr,i,x,child);
}
}
child[x]=1+c;
return child[x];
}
public static int lca(int x,int y)
{
if(depth[x]<depth[y])
{
int temp=x;
x=y;
y=temp;
}
x=get_kth_ancestor(depth[x]-depth[y],x);
if(x==y)
return x;
// System.out.println(x+" "+y);
for(int i=log-1;i>=0;i--)
{
if(ancestor[x][i]!=ancestor[y][i])
{
x=ancestor[x][i];
y=ancestor[y][i];
}
}
return ancestor[x][0];
}
public static int get_kth_ancestor(int K,int x)
{
if(K==0)
return x;
int node=x;
for(int i=0;i<log;i++)
{
if(K%2!=0)
{
node=ancestor[node][i];
}
K/=2;
}
return node;
}
public static ArrayList<Integer> primeFactors(int n)
{
// Print the number of 2s that divide n
ArrayList<Integer> factors=new ArrayList<>();
if(n%2==0)
factors.add(2);
while (n%2==0)
{
n /= 2;
}
// n must be odd at this point. So we can
// skip one element (Note i = i +2)
for (int i = 3; i <= Math.sqrt(n); i+= 2)
{
// While i divides n, print i and divide n
if(n%i==0)
factors.add(i);
while (n%i == 0)
{
n /= i;
}
}
// This condition is to handle the case when
// n is a prime number greater than 2
if (n > 2)
{
factors.add(n);
}
return factors;
}
static long ans=1,mod=1000000007;
public static void recur(long X,long N,int index,ArrayList<Integer> temp)
{
// System.out.println(X);
if(index==temp.size())
{
System.out.println(X);
ans=((ans%mod)*(X%mod))%mod;
return;
}
for(int i=0;i<=60;i++)
{
if(X*Math.pow(temp.get(index),i)<=N)
recur(X*(long)Math.pow(temp.get(index),i),N,index+1,temp);
else
break;
}
}
public static int upper(ArrayList<Integer> temp,int X)
{
int l=0,r=temp.size()-1;
while(l<=r)
{
int mid=(l+r)/2;
if(temp.get(mid)==X)
return mid;
// System.out.println(mid+" "+temp.get(mid));
if(temp.get(mid)<X)
l=mid+1;
else
{
if(mid-1>=0 && temp.get(mid-1)>=X)
r=mid-1;
else
return mid;
}
}
return -1;
}
public static int lower(ArrayList<Integer> temp,int X)
{
int l=0,r=temp.size()-1;
while(l<=r)
{
int mid=(l+r)/2;
if(temp.get(mid)==X)
return mid;
// System.out.println(mid+" "+temp.get(mid));
if(temp.get(mid)>X)
r=mid-1;
else
{
if(mid+1<temp.size() && temp.get(mid+1)<=X)
l=mid+1;
else
return mid;
}
}
return -1;
}
public static int[] check(String shelf,int[][] queries)
{
int[] arr=new int[queries.length];
ArrayList<Integer> indices=new ArrayList<>();
for(int i=0;i<shelf.length();i++)
{
char ch=shelf.charAt(i);
if(ch=='|')
indices.add(i);
}
for(int i=0;i<queries.length;i++)
{
int x=queries[i][0]-1;
int y=queries[i][1]-1;
int left=upper(indices,x);
int right=lower(indices,y);
if(left<=right && left!=-1 && right!=-1)
{
arr[i]=indices.get(right)-indices.get(left)+1-(right-left+1);
}
else
arr[i]=0;
}
return arr;
}
static boolean check;
public static void check(ArrayList<ArrayList<Integer>> arr,int x,int[] color,boolean[] visited)
{
visited[x]=true;
PriorityQueue<Integer> pq=new PriorityQueue<>();
for(int i:arr.get(x))
{
if(color[i]<color[x])
pq.add(color[i]);
if(color[i]==color[x])
check=false;
if(!visited[i])
check(arr,i,color,visited);
}
int start=1;
while(pq.size()>0)
{
int temp=pq.poll();
if(temp==start)
++start;
else
break;
}
if(start!=color[x])
check=false;
}
static boolean cycle;
public static void cycle(boolean[] stack,boolean[] visited,int x,ArrayList<ArrayList<Integer>> arr)
{
if(stack[x])
{
cycle=true;
return;
}
visited[x]=true;
for(int i:arr.get(x))
{
if(!visited[x])
{
cycle(stack,visited,i,arr);
}
}
stack[x]=false;
}
public static int check(char[][] ch,int x,int y)
{
int cnt=0;
int c=0;
int N=ch.length;
int x1=x,y1=y;
while(c<ch.length)
{
if(ch[x][y]=='1')
++cnt;
// if(x1==0 && y1==3)
// System.out.println(x+" "+y+" "+cnt);
x=(x+1)%N;
y=(y+1)%N;
++c;
}
return cnt;
}
public static void s(char[][] arr,int x)
{
char start=arr[arr.length-1][x];
for(int i=arr.length-1;i>0;i--)
{
arr[i][x]=arr[i-1][x];
}
arr[0][x]=start;
}
public static void shuffle(char[][] arr,int x,int down)
{
int N= arr.length;
down%=N;
char[] store=new char[N-down];
for(int i=0;i<N-down;i++)
store[i]=arr[i][x];
for(int i=0;i<arr.length;i++)
{
if(i<down)
{
// Printing rightmost
// kth elements
arr[i][x]=arr[N + i - down][x];
}
else
{
// Prints array after
// 'k' elements
arr[i][x]=store[i-down];
}
}
}
public static String form(int C1,char ch1,char ch2)
{
char ch=ch1;
String s="";
for(int i=1;i<=C1;i++)
{
s+=ch;
if(ch==ch1)
ch=ch2;
else
ch=ch1;
}
return s;
}
public static void printArray(long[] arr)
{
for(int i=0;i<arr.length;i++)
System.out.print(arr[i]+" ");
System.out.println();
}
public static boolean check(long mid,long[] arr,long K)
{
long[] arr1=Arrays.copyOfRange(arr,0,arr.length);
long ans=0;
for(int i=0;i<arr1.length-1;i++)
{
if(arr1[i]+arr1[i+1]>=mid)
{
long check=(arr1[i]+arr1[i+1])/mid;
// if(mid==5)
// System.out.println(check);
long left=check*mid;
left-=arr1[i];
if(left>=0)
arr1[i+1]-=left;
ans+=check;
}
// if(mid==5)
// printArray(arr1);
}
// if(mid==5)
// System.out.println(ans);
ans+=arr1[arr1.length-1]/mid;
return ans>=K;
}
public static long search(long sum,long[] arr,long K)
{
long l=1,r=sum/K;
while(l<=r)
{
long mid=(l+r)/2;
if(check(mid,arr,K))
{
if(mid+1<=sum/K && check(mid+1,arr,K))
l=mid+1;
else
return mid;
}
else
r=mid-1;
}
return -1;
}
public static void check(ArrayList<ArrayList<Integer>> arr,int x,int parent,int[] dist)
{
for(int i:arr.get(x))
{
if(i!=parent)
{
dist[i]=dist[x]+1;
check(arr,i,x,dist);
}
}
}
public static void reconstruct(boolean[][] dp,int x,int y,int[] arr,ArrayList<Integer> ans)
{
if(y==0)
return;
if(arr[x]==0)
return;
if(y-arr[x]>=0 && dp[x-1][y-arr[x]])
{
ans.add(arr[x]);
reconstruct(dp,x-1,y-arr[x],arr,ans);
}
else
{
reconstruct(dp,x-1,y,arr,ans);
}
}
public static long check(int[] arr,int height)
{
long even=0,odd=0;
for(int i=0;i<arr.length;i++)
{
if(height%2==0)
{
if(arr[i]%2==0)
{
even+=(height-arr[i])/2;
}
else
{
odd+=1;
even+=(height-arr[i])/2;
}
}
else
{
if(arr[i]%2!=0)
{
even+=(height-arr[i])/2;
}
else
{
odd+=1;
even+=(height-arr[i])/2;
}
}
}
long diff=Math.abs(even-odd);
long odd1=odd,even1=even;
// System.out.println(odd+" "+even);
if(odd>even)
{
return even*2+(odd-even)*2-1;
}
else
{
long days=diff/3;
odd+=days*2;
even-=(days);
long days1=days+1;
odd1+=days1*2;
even1-=(days1);
// System.out.println(odd+" "+even+" "+odd1+" "+even1);
// System.out.println(odd*2+(even-odd)*2+" "+(even1*2+(odd1-even1)*2-1));
return Math.min(odd*2+(even-odd)*2,even1*2+(odd1-even1)*2-1);
}
}
public static void check(int x,ArrayList<ArrayList<Integer>> arr,int parent,int[] dist)
{
for(int i:arr.get(x))
{
if(i!=parent)
{
dist[i]=dist[x]+1;
check(i,arr,x,dist);
}
}
}
static int fin_t;
public static void check(int[] dist1,int[] dist2,ArrayList<ArrayList<Integer>> arr,int x,int parent)
{
if(dist1[x]<=dist2[x])
return;
fin_t=Math.max(fin_t, dist1[x]*2);
for(int i:arr.get(x))
{
if(i!=parent)
{
check(dist1,dist2,arr,i,x);
}
}
}
public static void main(String[] args) throws IOException {
Reader.init(System.in);
BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out));
int T=Reader.nextInt();
for(int m=1;m<=T;m++)
{
int N=Reader.nextInt();
int k=Reader.nextInt();
char[] ch=Reader.next().toCharArray();
int[] tot=new int[N];
int cnt=0;
for(int i=0;i<N;i++)
{
char ch1;
if(k==0)
break;
if(cnt%2!=0)
{
if(ch[i]=='1')
ch1='0';
else
ch1='1';
}
else
ch1=ch[i];
if(ch1=='1')
{
if(k%2!=0)
{
tot[i]++;
cnt++;
k-=1;
}
}
if(ch1=='0')
{
if(k%2==0)
{
tot[i]++;
cnt++;
k-=1;
}
}
}
tot[N-1]+=k;
int mov=0;
for(int i=0;i<N;i++)
mov+=tot[i];
for(int i=0;i<N;i++)
{
if((mov-tot[i])%2!=0)
output.write(1-(ch[i]-48)+"");
else
output.write(ch[i]);
}
output.write("\n");
for(int i=0;i<N;i++)
output.write(tot[i]+" ");
output.write("\n");
}
output.flush();
}
}
class Reader {
static BufferedReader reader;
static StringTokenizer tokenizer;
static void init(InputStream input) {
reader = new BufferedReader(
new InputStreamReader(input));
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
while (!tokenizer.hasMoreTokens()) {
tokenizer = new StringTokenizer(
reader.readLine());
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException {
return Integer.parseInt(next());
}
static long nextLong() throws IOException {
return Long.parseLong(next());
}
static double nextDouble() throws IOException {
return Double.parseDouble(next());
}
}
class TreeNode
{
int data;
TreeNode left;
TreeNode right;
TreeNode(int data)
{
left=null;
right=null;
this.data=data;
}
}
class div {
int start;
int left;
div(int start,int left) {
this.start=start;
this.left=left;
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 0b785096b9e5ad4f6f3f3cf83a04b426 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | /* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Ideone
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
while(t>0){
int n = scn.nextInt();
int k = scn.nextInt();
String s = scn.next();
char[] ch = s.toCharArray();
if(k%2!=0){
for(int i=0;i<n;i++){
if(ch[i]=='0'){
ch[i]='1';
}else{
ch[i]='0';
}
}
}
int[] ans = new int[n];
int i=0;
while(k>0 && i<n){
if(ch[i]=='0'){
ch[i]='1';
k--;
ans[i]++;
}
i++;
}
if(k>0){
if(k%2==0){
ans[n-1]+=k;
}else{
if(ch[n-1]=='0'){
ch[n-1]='1';
}else{
ch[n-1]= '0';
}
ans[n-1]+=k;
}
}
System.out.println(String.valueOf(ch));
for(i=0;i<n;i++){
System.out.print(ans[i]+" ");
}
System.out.println();
t--;
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | ada0274103b453dbb06327123347eb74 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class BitFlipping {
public static void main(String[] args) throws Exception {
FastIO in = new FastIO();
int t = in.nextInt();
for (int tc=0; tc<t; tc++) {
int n = in.nextInt();
int k = in.nextInt();
char[] bits = in.next().toCharArray();
// in.pr.println(bits.toString());
int[] ans = new int[n];
if (k%2==1) {
for (int i=0; i<n; i++) {
if (bits[i]=='0') bits[i] = '1';
else bits[i] = '0';
}
}
for (int i=0; i<n-1; i++) {
if (k==0) break;
if (bits[i]=='0') {
bits[i] = '1';
k--;
ans[i]++;
}
}
if (k>0) {
if (k%2==1) {
if (bits[n-1]=='1') {
bits[n-1] = '0';
}
else bits[n-1] = '1';
}
ans[n-1]=k;
}
for (int i=0; i<n; i++) in.pr.print(bits[i]);
in.pr.println();
for (int i=0; i<n; i++) in.pr.print(ans[i]+" ");
in.pr.println();
}
in.pr.close();
}
static class FastIO {
BufferedReader br;
StringTokenizer st;
PrintWriter pr;
public FastIO() throws IOException
{
br = new BufferedReader(
new InputStreamReader(System.in));
pr = new PrintWriter(System.out);
}
public String next() throws IOException
{
while (st == null || !st.hasMoreElements()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); }
public long nextLong() throws NumberFormatException, IOException { return Long.parseLong(next()); }
public double nextDouble() throws NumberFormatException, IOException
{
return Double.parseDouble(next());
}
public String nextLine() throws IOException
{
String str = br.readLine();
return str;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9a6c9f24727c2e2669797d34db2de635 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static int[][] size;
static int[][][] parent;
static char[][] a;
public static void main(String[] args) {
MyScanner in = new MyScanner();
out = new PrintWriter(new BufferedOutputStream(System.out));
int t = in.nextInt();
while(t-- > 0) {
int n = in.nextInt();
int k = in.nextInt();
int[] a = new int[n];
int[] b = new int[n];
char[] s = in.next().toCharArray();
for(int i = 0; i < n; i++) {
a[i] = s[i] - '0';
}
int toSwap = k % 2;
int cnt = 0;
for(int i = 0; i < n - 1; i++) {
if(a[i] == toSwap && cnt < k) {
cnt++;
a[i] = 1;
b[i] = 1;
continue;
}
if(k % 2 == 1) {
a[i] = 1 - a[i];
}
}
b[n-1] += k - cnt;
if(cnt % 2 == 1) {
a[n-1] = 1 - a[n-1];
}
for(int i = 0; i < n; i++) {
out.print(a[i]);
}
out.println();
for(int i = 0; i < n; i++) {
out.print(b[i] + " ");
}
out.println("");
}
out.close();
return;
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
//--------------------------------------------------------
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | b47136f247305ad565dd4d157f8660a7 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Random;
import java.util.StringTokenizer;
/*
1
6 3
100001
*/
public class B {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
PrintWriter out=new PrintWriter(System.out);
int T=fs.nextInt();
for (int tt=0; tt<T; tt++) {
int n=fs.nextInt();
int k=fs.nextInt();
char[] a=fs.next().toCharArray();
if (k%2==1) {
for (int i=0; i<n; i++) {
if (a[i]=='0') a[i]='1';
else a[i]='0';
}
}
int[] choice=new int[n];
for (int i=0; i<a.length; i++) {
if (a[i]=='0' && k>0) {
a[i]='1';
k--;
choice[i]++;
}
}
choice[n-1]+=k;
if (k%2==1) {
a[n-1]='0';
}
out.println(a);
for (int i=0; i<n; i++) {
out.print(choice[i]+" ");
}
out.println();
}
out.close();
}
static final Random random=new Random();
static final int mod=1_000_000_007;
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static long add(long a, long b) {
return (a+b)%mod;
}
static long sub(long a, long b) {
return ((a-b)%mod+mod)%mod;
}
static long mul(long a, long b) {
return (a*b)%mod;
}
static long exp(long base, long exp) {
if (exp==0) return 1;
long half=exp(base, exp/2);
if (exp%2==0) return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials=new long[2_000_001];
static long[] invFactorials=new long[2_000_001];
static void precompFacts() {
factorials[0]=invFactorials[0]=1;
for (int i=1; i<factorials.length; i++) factorials[i]=mul(factorials[i-1], i);
invFactorials[factorials.length-1]=exp(factorials[factorials.length-1], mod-2);
for (int i=invFactorials.length-2; i>=0; i--)
invFactorials[i]=mul(invFactorials[i+1], i+1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n-k]));
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | fa33b0022c56f256c89c985ca3c8e6df | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
//import javafx.util.Pair;
public class CodeForces {
public static void main(String[] args) throws FileNotFoundException {
FastScanner fs = new FastScanner();
int tt = fs.nextInt();
while(tt-->0) {
int n = fs.nextInt(), k = fs.nextInt();
char[] a = fs.next().toCharArray();
if((k&1)==1) {
for(int i = 0; i < a.length; i++) {
a[i] = a[i] == '0' ? '1' : '0';
}
}
int[] ans = new int[n];
for(int i = 0; i < a.length && k > 0; i++) {
if(a[i] == '0') {
a[i] = '1';
k--;
ans[i]+=1;
}
}
if(k%2!=0) {
a[a.length-1] = a[a.length-1] == '1' ? '0' : '1';
ans[ans.length-1]+=1;
k--;
}
ans[ans.length-1]+=k;
StringBuilder sb2 = new StringBuilder();
StringBuilder sb = new StringBuilder();
for(int i = 0; i < ans.length; i++) {
sb2.append(a[i]+"");
sb.append(ans[i] + " ");
}
System.out.println(sb2.toString());
System.out.println(sb.toString());
}
}
public static int gcd(int a, int b) {
if(b == 0) return a;
return gcd(b, a%b);
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readArrayLong(int n) {
long[] a = new long[n];
for(int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 815f7bc907aea9459200a80e4d1dccb7 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Codechef
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner cin=new Scanner(System.in);
int t=cin.nextInt();
while(t-->0)
{
int n=cin.nextInt();
int k=cin.nextInt();
StringBuilder s=new StringBuilder(cin.next());
StringBuilder s1=new StringBuilder();
StringBuilder s2=new StringBuilder();
if((k&1)==0)
{
for(int i=0;i<n-1;i++)
{
if(s.charAt(i)=='0')
{
if(k>0)
{
s1.append("1");
s2.append(1+" ");
k--;
}
else{
s1.append("0");
s2.append(0+" ");
}
}
else
{
s1.append("1");
s2.append(0+" ");
}
}
if((s.charAt(n-1)=='0'&&(k%2==0))||(s.charAt(n-1)=='1'&&(k%2==1)))
{
s1.append("0");
s2.append(k);
}
else{
s1.append("1");
s2.append(k);
}
}
else{
for(int i=0;i<n-1;i++)
{
if(s.charAt(i)=='1')
{
if(k>0)
{
s1.append("1");
s2.append(1+" ");
k--;
}
else{
s1.append("0");
s2.append(0+" ");
}
}
else
{
s1.append("1");
s2.append(0+" ");
}
}
if((s.charAt(n-1)=='0'&&(k%2==0))||(s.charAt(n-1)=='1'&&(k%2==1)))
{
s1.append("1");
s2.append(k);
}
else{
s1.append("0");
s2.append(k);
}
}
System.out.println(s1);
System.out.println(s2);
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | a475db81bb70bf9fb645a28da5a69e9f | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class CodeForces {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
int tt = Integer.parseInt(in.readLine());
while (tt-- > 0) {
String[] tokens = in.readLine().split("\\s+");
int n = Integer.parseInt(tokens[0]);
int kfixed = Integer.parseInt(tokens[1]);
int k = kfixed;
StringBuilder str = new StringBuilder(in.readLine());
StringBuilder res = new StringBuilder();
StringBuilder flips = new StringBuilder();
int indexOfFirst1 = 0;
while (indexOfFirst1 < str.length()-1 && str.charAt(indexOfFirst1) != '1') {
indexOfFirst1++;
}
if (k%2 == 0){
for (int i = 0; i < str.length(); i++) {
if (k > 0) {
if (str.charAt(i) == '0') {
flips.append(1);
flips.append(" ");
k--;
} else {
flips.append(0);
flips.append(" ");
}
} else {
flips.append(0);
flips.append(" ");
}
}
} else{
StringBuilder flipped = new StringBuilder();
k--;
for (int i = 0; i < str.length(); i++){
if (i != indexOfFirst1){
flipped.append(str.charAt(i) == '0' ? 1: 0);
} else {
flipped.append(str.charAt(i));
}
}
for (int i = 0; i < flipped.length(); i++){
if (k > 0) {
if (flipped.charAt(i) == '0') {
flips.append(1 + (indexOfFirst1 == i ? 1 : 0));
flips.append(" ");
k--;
} else{
flips.append(0 + (indexOfFirst1 == i ? 1 : 0));
flips.append(" ");
}
}
else {
flips.append(0 + (indexOfFirst1 == i ? 1 : 0));
flips.append(" ");
}
}
}
int lastAdd = k + flips.charAt(flips.length()-2)-'0';
if (k > 0){
int add = flips.charAt(flips.length()-2)-'0';
flips.delete(flips.length()-2,flips.length());
flips.append(k + add);
}
for (int i = 0; i < str.length()-1; i++){
int curr = str.charAt(i)-'0';
if (kfixed%2 == 0){
res.append((flips.charAt(2*i)-'0')%2 == 0 ? curr : Math.abs(curr-1));
} else{
res.append((flips.charAt(2*i)-'0')%2 == 1 ? curr : Math.abs(curr-1));
}
}
int curr = str.charAt(str.length()-1)-'0';
if (kfixed%2 == 0){
res.append(lastAdd%2==0 ? curr : Math.abs(curr-1));
} else{
res.append(lastAdd%2==1 ? curr : Math.abs(curr-1));
}
System.out.println(res.toString());
System.out.println(flips.toString());
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 517a4b983d21bc335ee8857e9d5dcb9f | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.util.*;
import java.io.*;
public class Main {
// Graph
// prefix sums
//inputs
public static void main(String args[])throws Exception{
Input sc=new Input();
precalculates p=new precalculates();
StringBuilder sb=new StringBuilder();
int t=sc.readInt();
for(int f=0;f<t;f++){
int d[]=sc.readArray();
int n=d[0],k=d[1];
int arr[]=new int[n];
String str=sc.readString();
int a[]=new int[n];
for(int i=0;i<n;i++){
if(str.charAt(i)=='1'){
a[i]=1;
}
}
if(k%2==0){// even
int count=0;
for(int i=0;i<n;i++){
if(a[i]==0){
count++;
}
}
int g=0;
for(int i=0;i<n ;i++){
if(a[i]==0 && g<Math.min(k,count)){
a[i]=1;
g++;
arr[i]=1;
}else{
if(a[i]==0){
}else{
}
}
}
g=Math.max(0,k-g);
if(g%2!=0){
if(a[n-1]==0)
a[n-1]=1;
else
a[n-1]=0;
arr[n-1]+=g;
}else
arr[n-1]+=g;
for(int i=0;i<n;i++){
sb.append(a[i]);
}
}else{// odd
int count=0;
for(int i=0;i<n;i++){
if(a[i]==1){
count++;
}
}
int g=0;
for(int i=0;i<n;i++){
if(a[i]==1 && g<Math.min(k,count)){
a[i]=1;
g++;
arr[i]=1;
}else{
if(a[i]==1){
a[i]=0;
}else
a[i]=1;
}
}
g=Math.max(0,k-g);
if(g%2!=0){
if(a[n-1]==0)
a[n-1]=1;
else
a[n-1]=0;
arr[n-1]+=g;
}else{
arr[n-1]+=g;
}
for(int i=0;i<n;i++){
sb.append(a[i]);
}
}
sb.append("\n");
for(int i=0;i<n;i++){
sb.append(arr[i]+" ");
}
sb.append("\n");
}
System.out.print(sb);
}
}
class Input{
BufferedReader br;
StringTokenizer st;
Input(){
br=new BufferedReader(new InputStreamReader(System.in));
st=new StringTokenizer("");
}
public int[] readArray() throws Exception{
st=new StringTokenizer(br.readLine());
int a[]=new int[st.countTokens()];
for(int i=0;i<a.length;i++){
a[i]=Integer.parseInt(st.nextToken());
}
return a;
}
public long[] readArrayLong() throws Exception{
st=new StringTokenizer(br.readLine());
long a[]=new long[st.countTokens()];
for(int i=0;i<a.length;i++){
a[i]=Long.parseLong(st.nextToken());
}
return a;
}
public int readInt() throws Exception{
st=new StringTokenizer(br.readLine());
return Integer.parseInt(st.nextToken());
}
public long readLong() throws Exception{
st=new StringTokenizer(br.readLine());
return Long.parseLong(st.nextToken());
}
public String readString() throws Exception{
return br.readLine();
}
public int[][] read2dArray(int n,int m)throws Exception{
int a[][]=new int[n][m];
for(int i=0;i<n;i++){
st=new StringTokenizer(br.readLine());
for(int j=0;j<m;j++){
a[i][j]=Integer.parseInt(st.nextToken());
}
}
return a;
}
}
class precalculates{
public long gcd(long p, long q) {
if (q == 0) return p;
else return gcd(q, p % q);
}
public int[] prefixSumOneDimentional(int a[]){
int n=a.length;
int dp[]=new int[n];
for(int i=0;i<n;i++){
if(i==0)
dp[i]=a[i];
else
dp[i]=dp[i-1]+a[i];
}
return dp;
}
public int[] postSumOneDimentional(int a[]) {
int n = a.length;
int dp[] = new int[n];
for (int i = n - 1; i >= 0; i--) {
if (i == n - 1)
dp[i] = a[i];
else
dp[i] = dp[i + 1] + a[i];
}
return dp;
}
public int[][] prefixSum2d(int a[][]){
int n=a.length;int m=a[0].length;
int dp[][]=new int[n+1][m+1];
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
dp[i][j]=a[i-1][j-1]+dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];
}
}
return dp;
}
public long pow(long a,long b){
long mod=998244353;
long ans=1;
if(b<=0)
return 1;
if(b%2==0){
ans=pow(a,b/2)%mod;
return ((ans%mod)*(ans%mod))%mod;
}else{
ans=pow(a,b-1)%mod;
return ((a%mod)*(ans%mod))%mod;
}
}
}
class GraphInteger{
HashMap<Integer,vertex> vtces;
class vertex{
HashMap<Integer,Integer> children;
public vertex(){
children=new HashMap<>();
}
}
public GraphInteger(){
vtces=new HashMap<>();
}
public void addVertex(int a){
vtces.put(a,new vertex());
}
public void addEdge(int a,int b,int cost){
if(!vtces.containsKey(a)){
vtces.put(a,new vertex());
}
if(!vtces.containsKey(b)){
vtces.put(b,new vertex());
}
vtces.get(a).children.put(b,cost);
// vtces.get(b).children.put(a,cost);
}
public boolean isCyclicDirected(){
boolean isdone[]=new boolean[vtces.size()+1];
boolean check[]=new boolean[vtces.size()+1];
for(int i=1;i<=vtces.size();i++) {
if (!isdone[i] && isCyclicDirected(i,isdone, check)) {
return true;
}
}
return false;
}
private boolean isCyclicDirected(int i,boolean isdone[],boolean check[]){
if(check[i])
return true;
if(isdone[i])
return false;
check[i]=true;
isdone[i]=true;
Set<Integer> set=vtces.get(i).children.keySet();
for(Integer ii:set){
if(isCyclicDirected(ii,isdone,check))
return true;
}
check[i]=false;
return false;
}
}
class union_find {
int n;
int[] sz;
int[] par;
union_find(int nval) {
n = nval;
sz = new int[n + 1];
par = new int[n + 1];
for (int i = 0; i <= n; i++) {
par[i] = i;
sz[i] = 1;
}
}
int root(int x) {
if (par[x] == x)
return x;
return par[x] = root(par[x]);
}
boolean find(int a, int b) {
return root(a) == root(b);
}
int union(int a, int b) {
int ra = root(a);
int rb = root(b);
if (ra == rb)
return 0;
if(a==b)
return 0;
if (sz[a] > sz[b]) {
int temp = ra;
ra = rb;
rb = temp;
}
par[ra] = rb;
sz[rb] += sz[ra];
return 1;
}
}
/*
static int mod=998244353;
private static int add(int x, int y) {
x += y;
return x % MOD;
}
private static int mul(int x, int y) {
int res = (int) (((long) x * y) % MOD);
return res;
}
private static int binpow(int x, int y) {
int z = 1;
while (y > 0) {
if (y % 2 != 0)
z = mul(z, x);
x = mul(x, x);
y >>= 1;
}
return z;
}
private static int inv(int x) {
return binpow(x, MOD - 2);
}
private static int devide(int x, int y) {
return mul(x, inv(y));
}
private static int C(int n, int k, int[] fact) {
return devide(fact[n], mul(fact[k], fact[n-k]));
}
*/
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 3b2d3a60497a2cebda13addeff41cc8a | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | // JAI SHREE RAM, HAR HAR MAHADEV, HARE KRISHNA
import java.util.*;
import java.util.Map.Entry;
import java.util.stream.*;
import java.lang.*;
import java.math.BigInteger;
import java.text.DecimalFormat;
import java.io.*;
public class CodeForces {
static private final String INPUT = "input.txt";
static private final String OUTPUT = "output.txt";
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer st;
static PrintWriter out = new PrintWriter(System.out);
static DecimalFormat df = new DecimalFormat("0.00000");
final static int mod = (int) (1e9 + 7);
final static int MAX = Integer.MAX_VALUE;
final static int MIN = Integer.MIN_VALUE;
final static long INF = Long.MAX_VALUE;
final static long NEG_INF = Long.MIN_VALUE;
static Random rand = new Random();
// ======================= MAIN ==================================
public static void main(String[] args) throws IOException {
long time = System.currentTimeMillis();
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
// ==== start ====
input();
preprocess();
int t = 1;
t = readInt();
while (t-- > 0) {
solve();
}
out.flush();
// ==== end ====
if (!oj)
System.out.println(Arrays.deepToString(new Object[] { System.currentTimeMillis() - time + " ms" }));
}
private static void solve() throws IOException {
int n = readInt(), k = readInt(), K = k;
int[] arr = new int[n];
String str = readLine();
StringBuilder sb = new StringBuilder(str);
int i = 0;
boolean flag = false;
while (i < n && k > 0) {
if (flag)
sb.setCharAt(i, sb.charAt(i) == '0' ? '1' : '0');
if (!((k & 1) != sb.charAt(i) - '0' || i == n - 1)) {
arr[i]++;
k--;
flag = !flag;
}
i++;
}
arr[n - 1] += k;
StringBuilder ans = new StringBuilder();
for (i = 0; i < n; i++) {
if (((K - arr[i]) & 1) == 1)
ans.append(str.charAt(i) == '0' ? '1' : '0');
else
ans.append(str.charAt(i));
}
out.println(ans);
printIArray(arr);
}
// private static void solve() throws IOException {
// int n = readInt(), a = readInt(), b = readInt();
// int[] arr = readIntArray(n);
// sort(arr);
// long[] suf = new long[n + 1];
// for (int i = n - 1; i >= 0; i--)
// suf[i] = suf[i + 1] + arr[i];
// int cap = 0;
// long ans = 0L;
// for (int i = 0; i < n; i++) {
// ans += 1L * b * (arr[i] - cap);
// if (1L * b * (suf[i + 1] - cap) >= 1L * a * (arr[i] - cap) + 1L * b * (suf[i
// + 1] - arr[i])) {
// cap = arr[i];
// ans += 1L * a * (arr[i] - cap);
// }
// }
// out.println(ans);
// }
private static void preprocess() throws IOException {
}
// cd C:\Users\Eshan Bhatt\Visual Studio Code\Competitive Programming\CodeForces
// javac CodeForces.java
// java CodeForces
// javac CodeForces.java && java CodeForces
// ==================== CUSTOM CLASSES ================================
static class Pair {
int first, second;
Pair(int f, int s) {
first = f;
second = s;
}
public int compareTo(Pair o) {
if (this.first == o.first)
return this.second - o.second;
return this.first - o.first;
}
@Override
public boolean equals(Object obj) {
if (obj == this)
return true;
if (obj == null)
return false;
if (this.getClass() != obj.getClass())
return false;
Pair other = (Pair) (obj);
if (this.first != other.first)
return false;
if (this.second != other.second)
return false;
return true;
}
@Override
public int hashCode() {
return this.first ^ this.second;
}
@Override
public String toString() {
return this.first + " " + this.second;
}
}
static class DequeNode {
DequeNode prev, next;
int val;
DequeNode(int val) {
this.val = val;
}
DequeNode(int val, DequeNode prev, DequeNode next) {
this.val = val;
this.prev = prev;
this.next = next;
}
}
// ======================= FOR INPUT ==================================
private static void input() {
FileInputStream instream = null;
PrintStream outstream = null;
try {
instream = new FileInputStream(INPUT);
outstream = new PrintStream(new FileOutputStream(OUTPUT));
System.setIn(instream);
System.setOut(outstream);
} catch (Exception e) {
System.err.println("Error Occurred.");
}
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
static String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(readLine());
return st.nextToken();
}
static long readLong() throws IOException {
return Long.parseLong(next());
}
static int readInt() throws IOException {
return Integer.parseInt(next());
}
static double readDouble() throws IOException {
return Double.parseDouble(next());
}
static char readCharacter() throws IOException {
return next().charAt(0);
}
static String readString() throws IOException {
return next();
}
static String readLine() throws IOException {
return br.readLine().trim();
}
static int[] readIntArray(int n) throws IOException {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = readInt();
return arr;
}
static int[][] read2DIntArray(int n, int m) throws IOException {
int[][] arr = new int[n][m];
for (int i = 0; i < n; i++)
arr[i] = readIntArray(m);
return arr;
}
static List<Integer> readIntList(int n) throws IOException {
List<Integer> list = new ArrayList<>(n);
for (int i = 0; i < n; i++)
list.add(readInt());
return list;
}
static long[] readLongArray(int n) throws IOException {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = readLong();
return arr;
}
static long[][] read2DLongArray(int n, int m) throws IOException {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++)
arr[i] = readLongArray(m);
return arr;
}
static List<Long> readLongList(int n) throws IOException {
List<Long> list = new ArrayList<>(n);
for (int i = 0; i < n; i++)
list.add(readLong());
return list;
}
static char[] readCharArray(int n) throws IOException {
return readString().toCharArray();
}
static char[][] readMatrix(int n, int m) throws IOException {
char[][] mat = new char[n][m];
for (int i = 0; i < n; i++)
mat[i] = readCharArray(m);
return mat;
}
// ========================= FOR OUTPUT ==================================
private static void printIList(List<Integer> list) {
for (int i = 0; i < list.size(); i++)
out.print(list.get(i) + " ");
out.println(" ");
}
private static void printLList(List<Long> list) {
for (int i = 0; i < list.size(); i++)
out.print(list.get(i) + " ");
out.println(" ");
}
private static void printIArray(int[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println(" ");
}
private static void print2DIArray(int[][] arr) {
for (int i = 0; i < arr.length; i++)
printIArray(arr[i]);
}
private static void printLArray(long[] arr) {
for (int i = 0; i < arr.length; i++)
out.print(arr[i] + " ");
out.println(" ");
}
private static void print2DLArray(long[][] arr) {
for (int i = 0; i < arr.length; i++)
printLArray(arr[i]);
}
// ====================== TO CHECK IF STRING IS NUMBER ========================
private static boolean isInteger(String s) {
try {
Integer.parseInt(s);
} catch (NumberFormatException e) {
return false;
} catch (NullPointerException e) {
return false;
}
return true;
}
private static boolean isLong(String s) {
try {
Long.parseLong(s);
} catch (NumberFormatException e) {
return false;
} catch (NullPointerException e) {
return false;
}
return true;
}
// ==================== FASTER SORT ================================
private static void sort(int[] arr) {
int n = arr.length;
List<Integer> list = new ArrayList<>(n);
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void reverseSort(int[] arr) {
int n = arr.length;
List<Integer> list = new ArrayList<>(n);
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list, Collections.reverseOrder());
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void sort(long[] arr) {
int n = arr.length;
List<Long> list = new ArrayList<>(n);
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
private static void reverseSort(long[] arr) {
int n = arr.length;
List<Long> list = new ArrayList<>(n);
for (int i = 0; i < n; i++)
list.add(arr[i]);
Collections.sort(list, Collections.reverseOrder());
for (int i = 0; i < n; i++)
arr[i] = list.get(i);
}
// ==================== MATHEMATICAL FUNCTIONS ===========================
private static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
private static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
private static int lcm(int a, int b) {
return (a / gcd(a, b)) * b;
}
private static long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
private static long power(long a, long b) {
if (b == 0)
return 1L;
long ans = power(a, b >> 1);
ans *= ans;
if ((b & 1) == 1)
ans *= a;
return ans;
}
private static int mod_power(int a, int b, int mod) {
if (b == 0)
return 1;
int temp = mod_power(a, b >> 1, mod);
temp %= mod;
temp = (int) ((1L * temp * temp) % mod);
if ((b & 1) == 1)
temp = (int) ((1L * temp * a) % mod);
return temp;
}
private static int multiply(int a, int b) {
return (int) ((((1L * a) % mod) * ((1L * b) % mod)) % mod);
}
private static boolean isPrime(long n) {
for (long i = 2; i * i <= n; i++) {
if (n % i == 0)
return false;
}
return true;
}
private static long nCr(long n, long r) {
if (n - r > r)
r = n - r;
long ans = 1L;
for (long i = r + 1; i <= n; i++)
ans *= i;
for (long i = 2; i <= n - r; i++)
ans /= i;
return ans;
}
// ==================== Primes using Seive =====================
private static List<Integer> getPrimes(int n) {
boolean[] prime = new boolean[n + 1];
Arrays.fill(prime, true);
for (int i = 2; i * i <= n; i++) {
if (prime[i]) {
for (int j = i * i; j <= n; j += i)
prime[j] = false;
}
}
// return prime;
List<Integer> list = new ArrayList<>();
for (int i = 2; i <= n; i++)
if (prime[i])
list.add(i);
return list;
}
private static int[] SeivePrime(int n) {
int[] primes = new int[n];
for (int i = 0; i < n; i++)
primes[i] = i;
for (int i = 2; i * i < n; i++) {
if (primes[i] != i)
continue;
for (int j = i * i; j < n; j += i) {
if (primes[j] == j)
primes[j] = i;
}
}
return primes;
}
// ==================== STRING FUNCTIONS ================================
private static boolean isPalindrome(String str) {
int i = 0, j = str.length() - 1;
while (i < j)
if (str.charAt(i++) != str.charAt(j--))
return false;
return true;
}
private static String reverseString(String str) {
StringBuilder sb = new StringBuilder(str);
return sb.reverse().toString();
}
private static String sortString(String str) {
int[] arr = new int[256];
for (char ch : str.toCharArray())
arr[ch]++;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < 256; i++)
while (arr[i]-- > 0)
sb.append((char) i);
return sb.toString();
}
// ==================== LIS & LNDS ================================
private static int LIS(int arr[], int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
int idx = find1(list, arr[i]);
if (idx < list.size())
list.set(idx, arr[i]);
else
list.add(arr[i]);
}
return list.size();
}
private static int find1(List<Integer> list, int val) {
int ret = list.size(), i = 0, j = list.size() - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (list.get(mid) >= val) {
ret = mid;
j = mid - 1;
} else {
i = mid + 1;
}
}
return ret;
}
private static int LNDS(int[] arr, int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
int idx = find2(list, arr[i]);
if (idx < list.size())
list.set(idx, arr[i]);
else
list.add(arr[i]);
}
return list.size();
}
private static int find2(List<Integer> list, int val) {
int ret = list.size(), i = 0, j = list.size() - 1;
while (i <= j) {
int mid = (i + j) / 2;
if (list.get(mid) <= val) {
i = mid + 1;
} else {
ret = mid;
j = mid - 1;
}
}
return ret;
}
// =============== Lower Bound & Upper Bound ===========
// less than or equal
private static int lower_bound(List<Integer> list, int val) {
int ans = -1, lo = 0, hi = list.size() - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
private static int lower_bound(List<Long> list, long val) {
int ans = -1, lo = 0, hi = list.size() - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
private static int lower_bound(int[] arr, int val) {
int ans = -1, lo = 0, hi = arr.length - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
private static int lower_bound(long[] arr, long val) {
int ans = -1, lo = 0, hi = arr.length - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] <= val) {
ans = mid;
lo = mid + 1;
} else {
hi = mid - 1;
}
}
return ans;
}
// greater than or equal
private static int upper_bound(List<Integer> list, int val) {
int ans = list.size(), lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
private static int upper_bound(List<Long> list, long val) {
int ans = list.size(), lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (list.get(mid) >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
private static int upper_bound(int[] arr, int val) {
int ans = arr.length, lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
private static int upper_bound(long[] arr, long val) {
int ans = arr.length, lo = 0, hi = ans - 1;
while (lo <= hi) {
int mid = (lo + hi) / 2;
if (arr[mid] >= val) {
ans = mid;
hi = mid - 1;
} else {
lo = mid + 1;
}
}
return ans;
}
// ==================== UNION FIND =====================
private static int find(int x, int[] parent) {
if (parent[x] == x)
return x;
return parent[x] = find(parent[x], parent);
}
private static boolean union(int x, int y, int[] parent, int[] rank) {
int lx = find(x, parent), ly = find(y, parent);
if (lx == ly)
return false;
if (rank[lx] > rank[ly])
parent[ly] = lx;
else if (rank[lx] < rank[ly])
parent[lx] = ly;
else {
parent[lx] = ly;
rank[ly]++;
}
return true;
}
// ================== SEGMENT TREE (RANGE SUM & RANGE UPDATE) ==================
public static class SegmentTree {
int n;
int[] arr, tree, lazy;
SegmentTree(int arr[]) {
this.arr = arr;
this.n = arr.length;
this.tree = new int[(n << 2)];
this.lazy = new int[(n << 2)];
build(1, 0, n - 1);
}
void build(int id, int start, int end) {
if (start == end)
tree[id] = arr[start];
else {
int mid = (start + end) / 2, left = (id << 1), right = left + 1;
build(left, start, mid);
build(right, mid + 1, end);
tree[id] = tree[left] + tree[right];
}
}
void update(int l, int r, int val) {
update(1, 0, n - 1, l, r, val);
}
void update(int id, int start, int end, int l, int r, int val) {
distribute(id, start, end);
if (end < l || r < start)
return;
if (start == end)
tree[id] += val;
else if (l <= start && end <= r) {
lazy[id] += val;
distribute(id, start, end);
} else {
int mid = (start + end) / 2, left = (id << 1), right = left + 1;
update(left, start, mid, l, r, val);
update(right, mid + 1, end, l, r, val);
tree[id] = tree[left] + tree[right];
}
}
int query(int l, int r) {
return query(1, 0, n - 1, l, r);
}
int query(int id, int start, int end, int l, int r) {
if (end < l || r < start)
return 0;
distribute(id, start, end);
if (start == end)
return tree[id];
else if (l <= start && end <= r)
return tree[id];
else {
int mid = (start + end) / 2, left = (id << 1), right = left + 1;
return query(left, start, mid, l, r) + query(right, mid + 1, end, l, r);
}
}
void distribute(int id, int start, int end) {
if (start == end)
tree[id] += lazy[id];
else {
tree[id] += lazy[id] * (end - start + 1);
lazy[(id << 1)] += lazy[id];
lazy[(id << 1) + 1] += lazy[id];
}
lazy[id] = 0;
}
}
// ==================== TRIE ================================
static class Trie {
class Node {
Node[] children;
boolean isEnd;
Node() {
children = new Node[26];
}
}
Node root;
Trie() {
root = new Node();
}
void insert(String word) {
Node curr = root;
for (char ch : word.toCharArray()) {
if (curr.children[ch - 'a'] == null)
curr.children[ch - 'a'] = new Node();
curr = curr.children[ch - 'a'];
}
curr.isEnd = true;
}
boolean find(String word) {
Node curr = root;
for (char ch : word.toCharArray()) {
if (curr.children[ch - 'a'] == null)
return false;
curr = curr.children[ch - 'a'];
}
return curr.isEnd;
}
}
// ==================== FENWICK TREE ================================
static class FT {
long[] tree;
int n;
FT(int[] arr, int n) {
this.n = n;
this.tree = new long[n + 1];
for (int i = 1; i <= n; i++) {
update(i, arr[i - 1]);
}
}
void update(int idx, int val) {
while (idx <= n) {
tree[idx] += val;
idx += idx & -idx;
}
}
long query(int l, int r) {
return getSum(r) - getSum(l - 1);
}
long getSum(int idx) {
long ans = 0L;
while (idx > 0) {
ans += tree[idx];
idx -= idx & -idx;
}
return ans;
}
}
// ==================== BINARY INDEX TREE ================================
static class BIT {
long[][] tree;
int n, m;
BIT(int[][] mat, int n, int m) {
this.n = n;
this.m = m;
tree = new long[n + 1][m + 1];
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
update(i, j, mat[i - 1][j - 1]);
}
}
}
void update(int x, int y, int val) {
while (x <= n) {
int t = y;
while (t <= m) {
tree[x][t] += val;
t += t & -t;
}
x += x & -x;
}
}
long query(int x1, int y1, int x2, int y2) {
return getSum(x2, y2) - getSum(x1 - 1, y2) - getSum(x2, y1 - 1) + getSum(x1 - 1, y1 - 1);
}
long getSum(int x, int y) {
long ans = 0L;
while (x > 0) {
int t = y;
while (t > 0) {
ans += tree[x][t];
t -= t & -t;
}
x -= x & -x;
}
return ans;
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 3f7fb73f569699beb5e877c031a26394 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class practiceb {
static FastScanner sc;
static int ans;
static long[] arr, arr1;
static char[][] board;
static long mul, mul1;
static int[] spf;
static char[] ch;
static int n, q, m;
static long k, a, x, c, y;
static StringBuilder sb, sb1;
static long b, sum;
static Map<Integer, List<Integer>> map;
static Map<Long, List<Integer>> map2;
static Map<Long, List<Integer>> map3;
static Map<Integer, Integer> shortest;
static Map<Integer, Integer> map1, in;
static List<Integer> list, list1;
static long[] count;
static boolean[] vis;
static boolean flag;
static long total, xor1;
// static class Node{
// long dist;
// Set<Integer> set;
// Node(){
// this.set = new HashSet<>();
// }
// Node(int f){
// this.dist = f;
// this.set = new HashSet<>();
// }
// }
// public static class Lca {
// int[] depth;
// int[] dfs_order;
// int cnt;
// int[] first;
// int[] minPos;
// int n;
// void dfs(List<Integer>[] tree, int u, int d) {
// depth[u] = d;
// dfs_order[cnt++] = u;
// for (int v : tree[u])
// if (depth[v] == -1) {
// dfs(tree, v, d + 1);
// dfs_order[cnt++] = u;
// }
// }
// void buildTree(int node, int left, int right) {
// if (left == right) {
// minPos[node] = dfs_order[left];
// return;
// }
// int mid = (left + right) >> 1;
// buildTree(2 * node + 1, left, mid);
// buildTree(2 * node + 2, mid + 1, right);
// minPos[node] = depth[minPos[2 * node + 1]] < depth[minPos[2 * node + 2]] ? minPos[2 * node + 1] : minPos[2 * node + 2];
// }
// public Lca(List<Integer>[] tree, int root) {
// int nodes = tree.length;
// depth = new int[nodes];
// Arrays.fill(depth, -1);
// n = 2 * nodes - 1;
// dfs_order = new int[n];
// cnt = 0;
// dfs(tree, root, 0);
// minPos = new int[4 * n];
// buildTree(0, 0, n - 1);
// first = new int[nodes];
// Arrays.fill(first, -1);
// for (int i = 0; i < dfs_order.length; i++)
// if (first[dfs_order[i]] == -1)
// first[dfs_order[i]] = i;
// }
// public int lca(int a, int b) {
// return minPos(Math.min(first[a], first[b]), Math.max(first[a], first[b]), 0, 0, n - 1);
// }
// int minPos(int a, int b, int node, int left, int right) {
// if (a == left && right == b)
// return minPos[node];
// int mid = (left + right) >> 1;
// if (a <= mid && b > mid) {
// int p1 = minPos(a, Math.min(b, mid), 2 * node + 1, left, mid);
// int p2 = minPos(Math.max(a, mid + 1), b, 2 * node + 2, mid + 1, right);
// return depth[p1] < depth[p2] ? p1 : p2;
// } else if (a <= mid) {
// return minPos(a, Math.min(b, mid), 2 * node + 1, left, mid);
// } else if (b > mid) {
// return minPos(Math.max(a, mid + 1), b, 2 * node + 2, mid + 1, right);
// } else {
// throw new RuntimeException();
// }
// }
// }
// private static long dfs(int v, int parent,long ht) {
// List<Integer> list = map.get(v);
// hyt[v] = ht;
// if(list.size() == 1){
// if(!map3.containsKey(ht))
// map3.put(ht,new ArrayList<>());
// map3.get(ht).add(v);
// return ht;
// }
// long maxl = -1;
// for(Integer i : list){
// if(i == parent)
// continue;
// maxl = Math.max(maxl,dfs(i,v,ht+1));
// }
// return maxl;
// }
// public static int N = 100005;
// long a[N];
// long sfx[N];
// long pfx[N];
// public static boolean f(int width){
//
// // long[] a = new long[n];
// long[] sfx = new long[n];
// long[] pfx = new long[n];
// for (int j = 0; j < n; j++){
// if (j % width == 0){
// pfx[j] = a[j];
// }
// else pfx[j] = gcd(pfx[j - 1], a[j]);
// }
// for (int j = n - 2; j >= 0; j--){
// if (j % width == width - 1){
// sfx[j] = a[j];
// }
// else sfx[j] = gcd(sfx[j + 1], a[j]);
// }
//
// for(int j = 0; j < n - width + 1 ; j++){
// if (gcd(sfx[j], pfx[j + width - 1]) >= k) return true;
// if (((j % width) == width - 1) && pfx[j] >= k){
// return true;
// }
// }
// return false;
// }
public static class Node {
int first;
int second;
Node(int v, int second) {
this.first = v;
this.second = second;
}
}
public static long lcm(long a, long b) {
return (b / gcd(b, a % b)) * a;
}
public static void SpecialSieve(int MAXN) {
spf = new int[MAXN];
spf[1] = 1;
for (int i = 2; i < MAXN; i++)
// marking smallest prime factor for every
// number to be itself.
spf[i] = i;
// separately marking spf for every even
// number as 2
for (int i = 4; i < MAXN; i += 2)
spf[i] = 2;
for (int i = 3; i * i < MAXN; i++) {
// checking if i is prime
if (spf[i] == i) {
// marking SPF for all numbers divisible by i
for (int j = i * i; j < MAXN; j += i)
// marking spf[j] if it is not
// previously marked
if (spf[j] == j)
spf[j] = i;
}
}
}
public static void solve() {
/*
*
* 5 6 3
5 6 21 30
-5*6
5*3
5*3
5*3
*
* */
char[] ch1 = new char[n];
for(int i = 0 ; i < n ; i++)
ch1[i] = ch[i];
k = a;
boolean flag = false;
List<Long> list = new ArrayList<>();
for(int i = 0 ; i < n && k > 0; i++) {
if(flag) {
if(ch[i] == '0') {
ch[i] = '1';
} else {
ch[i] = '0';
}
}
if(ch[i] == '0') {
if(k%2 == 0) {
list.add(1L);
flag = !flag;
k -= 1;
} else {
list.add(0L);
}
} else {
if(k%2 == 1) {
list.add(1L);
flag = !flag;
k -= 1;
} else {
list.add(0L);
}
}
}
if(k > 0) {
list.set(list.size()-1,list.get(list.size()-1)+k);
}
while(list.size() != n) {
list.add(0L);
}
for(int i = 0 ; i < list.size() ; i++) {
long switched = a - list.get(i);
if(switched%2 == 0) {
sb.append(ch1[i]);
} else {
if(ch1[i] == '0')
sb.append("1");
else
sb.append("0");
}
}
sb.append("\n");
for(int i = 0 ; i < n ; i++) {
// if((list.size()) <= (i+1))
// list.add(0L);
sb.append(list.get(i)).append(" ");
}
sb.append("\n");
}
public static void main(String[] args) {
sc = new FastScanner();
// Scanner sc = new Scanner(System.in);
// SpecialSieve(5000000+5);
// long num = 1;
// list = new ArrayList<>();
// for(int i = 0 ; i <= 60 ; i++) {
// list.add(num);
// num *= 2;
// }
int t = sc.nextInt();
// SpecialSieve(10001);
// fact(200000+1);
sb = new StringBuilder();
// int t = 1;
while (t > 0) {
// a = sc.nextLong();
// b = sc.nextLong();
// c = sc.nextLong();
n = sc.nextInt();
a = sc.nextLong();
// b = sc.nextLong();
// x = sc.nextLong();
// m = sc.nextInt();
// k = sc.nextInt();
// mat = new int[2][m];
// for(int i = 0 ; i < 2 ; i++)
// for(int j = 0 ; j < m ; j++)
// mat[i][j] = sc.nextLong();
// for(int i = 1 ; i <= 15 ; i++){
// m = i;
// solve();
// // }
// board = new char[3][3];
// for(int i = 0 ; i < 3 ; i++){
// String s = sc.next();
// for(int j = 0 ; j < 3 ; j++){
// board[i][j] = s.charAt(j);
// }
// }
// x = sc.nextInt();
ch = sc.next().toCharArray();
// q = sc.nextInt();
// ch = sc.next().toCharArray();
// arr = new long[n];
// for (int i = 0; i < n; i++)
// arr[i] = sc.nextLong();
// ch = sc.next().toCharArray();
// arr1 = new long[m];
// for(int i = 0 ; i < m ; i++)
// arr1[i] = sc.nextLong();
//
// a = new long[n-1];
// for(int i = 1 ; i < n ; i++)
// a[i-1] = Math.abs(arr[i] - arr[i-1]);
//
// n -= 1;
solve();
t -= 1;
}
System.out.print(sb);
}
// Use this instead of Arrays.sort() on an array of ints. Arrays.sort() is n^2
// worst case since it uses a version of quicksort. Although this would never
// actually show up in the real world, in codeforces, people can hack, so
// this is needed.
static void ruffleSort(long[] a) {
//ruffle
int n = a.length;
Random r = new Random();
for (int i = 0; i < a.length; i++) {
int oi = r.nextInt(n);
long temp = a[i];
a[i] = a[oi];
a[oi] = temp;
}
//then sort
Arrays.sort(a);
}
public static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
public static int log(double n, double base) {
if (n == 0 || n == 1)
return 0;
if (n == base)
return 1;
double num = Math.log(n);
double den = Math.log(base);
if (den == 0)
return 0;
return (int) (num / den);
}
public static long mod(long x, long mod) {
long result = x % mod;
if (result < 0) {
result += mod;
}
return result;
}
// Use this to input code since it is faster than a Scanner
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 11 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | a331b2f32cf12b5565db8f6dd0fc4d6a | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = Integer.parseInt(sc.next());
while(T-->0){
int n = Integer.parseInt(sc.next());
int k = Integer.parseInt(sc.next());
int K = k;
String bits = sc.next();
char[] c = bits.toCharArray();
int[] times = new int[n];
for(int i =0;i<n && k>0;i++){
if(K%2==1 && c[i]=='1'){
times[i]++;
k--;
}else if(K%2==0 && c[i]=='0'){
times[i]++;
k--;
}
}
times[n-1] += k;
// if(k%2==0){
// for(int i = 0;i<n && k>0;i++){
// if(bits.charAt(i)=='0'){
// times[i]++;
// k--;
// }
// }
// times[n-1]+=k;
// }else{
// for(int i = 0;i<n && k>0;i++){
// if(bits.charAt(i)=='1'){
// times[i]++;
// k--;
// }
// }
// times[n-1]+=k;
// }
StringBuilder p=new StringBuilder(bits);
for(int i=0;i<n;i++)
{
if((K-times[i])%2==1) {
p.setCharAt(i,(char)('1'-(c[i]-'0')));
}
}
System.out.println(p);
for(int i = 0;i<n;i++){
System.out.print(times[i]+" ");
}
System.out.println("");
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | a61080810d78b2f053aeda9a12449f6b | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.util.*;
public class Main2 {
static void solve() {
Scanner scan = new Scanner(System.in);
int t = scan.nextInt();
for (int i = 0; i < t; i++) {
int n = scan.nextInt();
int m = scan.nextInt();
solveCase(n, m);
}
}
static void solve2() {
Scanner scan = new Scanner(System.in);
int t = scan.nextInt();
for (int i = 0; i < t; i++) {
int n = scan.nextInt();
int k = scan.nextInt();
// int[] arr = new int[n];
char[] arr = scan.next().toCharArray();
solveCase2(n, k, arr);
}
}
static void solveCase2(int n, int k, char[] arr) {
if(k%2 != 0) {
for(int i = 0; i < n; i++) {
arr[i] = arr[i] == '0' ? '1' : '0';
}
}
int[] fr = new int[n];
for(int i = 0; i < n; i++) {
if(k <= 0) {
break;
}
if(arr[i] == '0') {
arr[i] = '1';
fr[i]++;
k--;
}
}
fr[n - 1]+=k;
if(k > 0 && k % 2 != 0) {
arr[n - 1] = arr[n - 1] == '0' ? '1' : '0';
}
System.out.println(arr);
for(int v : fr) {
System.out.print(v + " ");
}
System.out.println();
}
static void solveCase(int n, int m) {
char dir = '0';
int x = 0;
int y = 0;
int cnt = 0;
if(n == 1 && m == 1) {
System.out.println(0);
return;
}
if(n == 1 && m > 2) {
System.out.println(-1);
return;
}
if(m == 1 && n > 2) {
System.out.println(-1);
return;
}
if((n == 1 && m == 2) || (n == 2 && m == 1)) {
System.out.println(1);
return;
}
int diff = Math.abs(n - m);
int min = Math.min(n,m);
if(diff % 2 == 0) {
cnt = (min-1)*2 + diff/2 + diff/2*3;
} else {
cnt = (min-1)*2 + diff/2+1 + diff/2*3;
}
System.out.println(cnt);
}
public static void main(String[] args) {
solve2();
}
static class Node implements Comparable<Node> {
long val;
Node parent;
List<Node> children;
long max;
boolean isLeave;
public Node(int val) {
this.val = val;
this.max = val;
isLeave = true;
children = new ArrayList<>();
}
@Override
public int compareTo(Node node) {
if(this.max < node.max) {
return -1;
} else if(this.max > node.max) {
return 1;
}
return 0;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | c0907cfbd1ae449e2e26857cef932ab2 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.util.*;
import java.io.*;
public class Main {
public static int[] arr = new int[300000];
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
sc.nextLine();
while(t>0){
int n=sc.nextInt();
int k = sc.nextInt();
sc.nextLine();
String bt = sc.nextLine();
int swi=0;
StringBuilder stringBuilder = new StringBuilder();
for(int i=0;i<n-1;i++){
arr[i]=0;
if(bt.charAt(i)=='1'){
if(k%2==0){
stringBuilder.append('1');
} else if(swi<k){
stringBuilder.append('1');
arr[i]=1;
swi++;
} else{
stringBuilder.append('0');
}
} else {
if(k%2==0 && swi < k){
stringBuilder.append('1');
arr[i]=1;
swi++;
} else if(k%2==0){
stringBuilder.append('0');
} else{
stringBuilder.append('1');
}
}
}
arr[n-1]=0;
arr[n-1]+=(k-swi);
if(bt.charAt(n-1)=='1'){
if(swi%2==1){
stringBuilder.append('0');
}else{
stringBuilder.append('1');
}
} else {
if(swi%2==0){
stringBuilder.append('0');
}else{
stringBuilder.append('1');
}
}
System.out.println(stringBuilder);
for(int i=0;i<n;i++){
System.out.print(arr[i]+" ");
}
System.out.println();
t--;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 46d8971a8213ec0576bb586bd4a35ca6 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.io.*;
import java.lang.*;
import java.util.*;
public class B16559 {
public static void main(String[] args) throws IOException{
StringBuffer ans = new StringBuffer();
StringTokenizer st;
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(f.readLine());
int t = Integer.parseInt(st.nextToken());
for(int j = 0; j < t; j++){
st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
int used = 0;
st = new StringTokenizer(f.readLine());
String str = st.nextToken();
// if(j == 99){
// System.out.println(k + " " + str);
// System.exit(0);
// }
StringBuffer str1 = new StringBuffer();
int[] changes = new int[n];
int p = -1;
if(k % 2 == 1)
for(int i = 0; i < n-1; i++){
if(str.charAt(i) == '1' && used == 0){
p = i;
used++;
str1.append(1);
}else{
str1.append((str.charAt(i)-48)^1);
}
}
if(k % 2 == 1){
if(used == 0){
str1.append(str.charAt(n-1));
p = n-1;
}else str1.append((str.charAt(n-1)-48)^1);
str = str1.toString();
k--;
used = 0;
}
//System.out.println(used + " " + k);
for(int i = 0; i < n && used < k; i++){
//System.out.println(str.charAt(i));
if(str.charAt(i) == '0'){
//System.out.println("here");
changes[i]++;
used++;
}
}
//System.out.println(str + " " + Arrays.toString(changes));
changes[n-1]+=k-used;
for(int i = 0; i < n; i++){
//System.out.println(str.charAt(i)-48 + " " + (2-changes[i])%2);
ans.append((str.charAt(i)-48)^((k-changes[i])%2));
}
ans.append("\n");
if(p != -1) changes[p]++;
for(int i = 0; i < n; i++){
ans.append(changes[i]).append(" ");
}
ans.append("\n");
}
System.out.println(ans);
f.close();
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 8853dc9ecf29cf442cc61a538ca65106 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
public class class1 {
public static void main(String[] args) {
Scanner input =new Scanner(System.in);
int t=input.nextInt();
while(t-->0) {
int n=input.nextInt();
int k=input.nextInt();
int m=k,x=0;
String s=input.next();
char c[]=s.toCharArray();
StringBuilder p=new StringBuilder(s);
char d[]=new char[n];
int f[]=new int[n];
int tmpk=k;
for(int i=0;i<n && tmpk>0;i++)
{
if(k%2==c[i]-'0')
{
f[i]=1;
tmpk--;
}
}
f[n-1]+=tmpk;
for(int i=0;i<n;i++)
{
if((k-f[i])%2==1) {
p.setCharAt(i,(char)('1'-(c[i]-'0')));
}
}
System.out.println(p);
for(int i=0;i<n;i++) {
System.out.print(f[i]+" ");
}
System.out.println();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | d09089990191e1130b8e054407e223a7 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.Scanner;
public class Codeforces782_2 {
public static void main(String[] args) {
Scanner input =new Scanner(System.in);
int t= input.nextInt();
// System.out.println(t);
for(int i=0;i<t;i++){
long k;
int n;
n= input.nextInt();
k= input.nextLong();
String s= input.next();
StringBuilder ss=new StringBuilder(s);
// System.out.println(s+" "+ss);
// char [] s1=new char[n];
// for(int j=0;j<n;j++){
// s1[j]=s.charAt(j);
// }
long [] f=new long[n];
// long flag[]=new long[n];
// int count=0;
if(k%2==0){
for(int j=0;j<n;j++){
// System.out.println(j);
if(s.charAt(j)=='0'){
if(k>0) {
k--;
// s1[j] = '1';
ss.setCharAt(j,'1');
f[j]++;
}else{
// s1[j]='0';
ss.setCharAt(j,'0');
}
}
else{
// s1[j]='1';
ss.setCharAt(j,'1');
}
}
if(k>0){
f[n-1]=f[n-1]+k;
if(k%2!=0){
// s1=s1.substring(0,n-1);
// s1[n-1]='0';
ss.setCharAt(n-1,'0');
}
}
}
else{
for(int j=0;j<n;j++){
if(s.charAt(j)=='1'){
if(k>0){
k--;
// s1[j]='1';
ss.setCharAt(j,'1');
f[j]++;
}
else{
// s1[j]='0';
ss.setCharAt(j,'0');
}
}
else{
// s1[j]='1';
ss.setCharAt(j,'1');
}
}
if(k>0){
f[n-1]=f[n-1]+k;
if(k%2!=0){
// s1=s1.substring(0,n-1);
// s1[n-1]='0';
ss.setCharAt(n-1,'0');
}
}
}
System.out.println(ss);
// for(int j=0;j<n;j++){
// System.out.print(s1[j]);
// }
// System.out.println();
for(int j=0;j<n;j++){
System.out.print(f[j]+" ");
}
System.out.println();
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | ae6276384972d76df7c94d8c6e82735b | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
String s = sc.next();
StringBuilder sb = new StringBuilder();
Map<Integer, Integer> map = new HashMap<>();
int index = 0;
int tempK = k;
if(k % 2 == 0) {
while(index < n && k > 0) {
if(s.charAt(index) == '1') {
sb.append("1");
}
else {
sb.append("1");
k--;
map.put(index, map.getOrDefault(index, 0) + 1);
}
index++;
}
} else {
while(index < n && k > 0) {
if(s.charAt(index) == '1') {
sb.append("1");
k--;
map.put(index, map.getOrDefault(index, 0) + 1);
}
else {
sb.append("1");
}
index++;
}
}
if(k > 0) {
if (k % 2 != 0) {
sb.replace(n - 1, n, String.valueOf(sb.charAt(n - 1) == '0' ? '1' : '0'));
}
map.put(index-1, map.getOrDefault(index-1, 0) + k);
} else {
while(index < n) {
if (tempK % 2 == 0) sb.append(s.charAt(index));
else sb.append(s.charAt(index) == '0' ? '1' : '0');
index++;
}
}
System.out.println(sb.toString());
for(int i = 0; i < n; i++) {
System.out.print(map.getOrDefault(i, 0) + " ");
}
System.out.println();
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | e664fe8452adcb34d11a3502827a7599 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-- > 0) {
int n = sc.nextInt();
int k = sc.nextInt();
String s = sc.next();
StringBuilder sb = new StringBuilder();
Map<Integer, Integer> map = new HashMap<>();
if(k % 2 == 0) {
int index = 0;
while(index < n && k > 0) {
if(s.charAt(index) == '1') {
sb.append("1");
}
else {
sb.append("1");
k--;
map.put(index, map.getOrDefault(index, 0) + 1);
}
index++;
}
if(k > 0) {
if(k % 2 == 0) {
map.put(index-1, map.getOrDefault(index-1, 0) + k);
} else {
sb.replace(n-1, n, String.valueOf(sb.charAt(n-1) == '0' ? '1' : '0'));
map.put(index-1, map.getOrDefault(index-1, 0) + k );
}
} else {
while(index < n) {
sb.append(s.charAt(index));
index++;
}
}
System.out.println(sb.toString());
sb.setLength(0);
for(int i = 0; i < n; i++) {
System.out.print(map.getOrDefault(i, 0) + " ");
}
System.out.println();
} else {
int index = 0;
while(index < n && k > 0) {
if(s.charAt(index) == '1') {
sb.append("1");
k--;
map.put(index, map.getOrDefault(index, 0) + 1);
}
else {
sb.append("1");
}
index++;
}
if(k > 0) {
if(k % 2 == 0) {
map.put(index-1, map.getOrDefault(index-1, 0) + k);
} else {
sb.replace(n-1, n, String.valueOf(sb.charAt(n-1) == '0' ? '1' : '0'));
map.put(index-1, map.getOrDefault(index-1, 0) + k);
}
} else {
while(index < n) {
sb.append(s.charAt(index) == '0' ? '1' : '0');
index++;
}
}
System.out.println(sb.toString());
for(int i = 0; i < n; i++) {
System.out.print(map.getOrDefault(i, 0) + " ");
}
System.out.println();
}
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | dc0a6aedf071e6454940f08159883a4f | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.Scanner;
public class ProblemC1 {
static int[] moveCount;
static int k;
public static char[] reverseStr(char[] chars) {
char[] reverseChars = new char[chars.length];
for (int i = 0; i < chars.length; i++) {
reverseChars[i] = chars[i] == '0' ? '1' : '0';
}
return reverseChars;
}
public static void printResult(String binaryStr, int n) {
moveCount = new int[n];
char[] chars = binaryStr.toCharArray();
char[] reverseChars = reverseStr(chars);
char[] temp = chars;
int i;
for (i = 0; i < n && k > 0; i++) {
if ((temp[i] == '1' && k % 2 == 0) || (temp[i] == '0' && k % 2 == 1)) {
chars[i] = '1';
continue;
}
if ((temp[i] == '1' && k % 2 == 1) || (temp[i] == '0' && k % 2 == 0)) {
if (temp == chars) {
temp = reverseChars;
} else {
temp = chars;
}
chars[i] = '1';
k--;
moveCount[i]++;
}
}
for (; i < n; i++) {
chars[i] = temp[i];
}
if (k % 2 == 1) {
chars[n - 1] = '0';
}
moveCount[n - 1] += k;
System.out.println(new String(chars));
printResult(moveCount);
}
public static void printResult(int[] result) {
for (int i : result) {
System.out.print(i + " ");
}
System.out.println();
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = Integer.parseInt(in.nextLine());
for (int i = 0; i < t; i++) {
String[] s = in.nextLine().split(" ");
int n = Integer.parseInt(s[0]);
k = Integer.parseInt(s[1]);
String binaryStr = in.nextLine();
printResult(binaryStr, n);
}
in.close();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 151ee7a932d598d42ba222c6c5df5229 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
private static void solve(String s, int n, int k){
int[] count = new int[n];
int remain = k;
for(int i = 0; i < n; i++){
if(remain == 0){
break;
}
int bit = s.charAt(i) - '0';
if(k % 2 == 0){
if(bit == 0){
count[i]++;
remain--;
}
}
else{
if(bit == 1){
count[i]++;
remain--;
}
}
}
if(remain > 0){
count[n-1] += remain;
}
for(int i = 0; i < n; i++){
int flip = k - count[i];
int bit = s.charAt(i) - '0';
out.print(bit ^ (flip % 2));
}
out.print("\n");
printArray(count);
}
public static void main(String[] args){
MyScanner scanner = new MyScanner();
int t = scanner.nextInt();
for(int i = 0; i < t; i++){
int n = scanner.nextInt(), k = scanner.nextInt();
String s = scanner.nextLine();
solve(s, n, k);
}
out.close();
}
private static void printArray(int[] arr){
for(int i = 0; i < arr.length; i++){
out.print(arr[i]);
if(i < arr.length - 1){
out.print(' ');
}
else{
out.print("\n");
}
}
}
private static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 8a9d890a09829bfa617bf273b9e47fdb | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
public class B1659 {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
Solver solver = new Solver();
solver.solve(in, out);
out.close();
}
private static class Solver {
void solve(InputReader in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int k = in.nextInt();
String s = in.next();
char[] chars = s.toCharArray();
int[] ans = new int[chars.length];
if (k % 2 == 0) {
for (int i = 0; i < n; i++) {
if (chars[i] == '0' && k > 0) {
k--;
ans[i]++;
}
}
ans[n - 1] += k;
for (int i = 0; i < n; i++) {
if (ans[i] % 2 != 0) {
chars[i] = (char)('0' + ('1' - chars[i]));
}
}
}
else {
for (int i = 0; i < n; i++) {
if (chars[i] == '1' && k > 0) {
k--;
ans[i]++;
}
}
ans[n - 1] += k;
for (int i = 0; i < n; i++) {
if (ans[i] % 2 == 0) {
chars[i] = (char)('0' + ('1' - chars[i]));
}
}
}
out.println(chars);
for (int an : ans) {
out.print(an + " ");
}
out.println();
}
}
}
private static class InputReader {
BufferedReader reader;
StringTokenizer tokenizer;
InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 900d3afe5da91b1b5f92cce5c1f8b73b | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class c {
static BufferedReader bf;
static PrintWriter out;
public static void main (String[] args)throws IOException {
bf = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
int t= nextInt();
while(t-- > 0){
solve();
}
}
public static void solve()throws IOException{
String[]temp = bf.readLine().split(" ");
int n = toInt(temp[0]);
int k = toInt(temp[1]);
String s = bf.readLine();
boolean check = false;
int[]count = new int[n];
StringBuilder sb = new StringBuilder();
for(int i =0;i<n;i++){
char c = '2';
if(check){
c = (s.charAt(i) == '1')?'0':'1';
}
else{
c = s.charAt(i);
}
if(k != 0){
if(i == n-1 && c == '0'){
sb.append('0');
continue;
}
if(k%2 == 1 && c == '1'){
k--;
count[i]++;
sb.append('1');
check = !check;
}
else if(k%2 == 0 && c == '0'){
k--;
count[i]++;
sb.append('1');
check = !check;
}
else{
sb.append('1');
}
}
else{
sb.append(c);
}
}
if(k>0){
count[n-1]+=k;
}
println(sb.toString());
for(int i =0;i<n;i++){
out.print(count[i]+" ");
}
out.println();
out.flush();
}
// code for input
public static void print(String s ){
System.out.print(s);
}
public static void print(int num ){
System.out.print(num);
}
public static void print(long num ){
System.out.print(num);
}
public static void println(String s){
System.out.println(s);
}
public static void println(int num){
System.out.println(num);
}
public static void println(long num){
System.out.println(num);
}
public static void println(){
System.out.println();
}
public static int toInt(String s){
return Integer.parseInt(s);
}
public static long toLong(String s){
return Long.parseLong(s);
}
public static String[] nextStringArray()throws IOException{
return bf.readLine().split(" ");
}
public static int nextInt()throws IOException{
return Integer.parseInt(bf.readLine());
}
public static long nextLong()throws IOException{
return Long.parseLong(bf.readLine());
}
public static String nextString()throws IOException{
return bf.readLine();
}
public static int[] nextIntArray(int n)throws IOException{
String[]str = bf.readLine().split(" ");
int[]arr = new int[n];
for(int i =0;i<n;i++){
arr[i] = Integer.parseInt(str[i]);
}
return arr;
}
public static long[] nextLongArray(int n)throws IOException{
String[]str = bf.readLine().split(" ");
long[]arr = new long[n];
for(int i =0;i<n;i++){
arr[i] = Long.parseLong(str[i]);
}
return arr;
}
public static int[][] newIntMatrix(int r,int c)throws IOException{
int[][]arr = new int[r][c];
for(int i =0;i<r;i++){
String[]str = bf.readLine().split(" ");
for(int j =0;j<c;j++){
arr[i][j] = Integer.parseInt(str[j]);
}
}
return arr;
}
public static long[][] newLongMatrix(int r,int c)throws IOException{
long[][]arr = new long[r][c];
for(int i =0;i<r;i++){
String[]str = bf.readLine().split(" ");
for(int j =0;j<c;j++){
arr[i][j] = Long.parseLong(str[j]);
}
}
return arr;
}
//someuseFull functions to use
public static long gcd(long a,long b){
if(b == 0)return a;
return gcd(b,a%b);
}
public static int gcd(int a,int b){
if(b == 0)return a;
return gcd(b,a%b);
}
public static long lcm(long a,long b){
return (a*b)/(gcd(a,b));
}
}
// if a problem is related to binary string it could also be related to parenthesis
// try to use binary search in the question it might work
// try sorting
// try to think in opposite direction of question it might work in your way
// if a problem is related to maths try to relate some of the continuous subarray with variables like - > a+b+c+ or a,b,c,d in general
// gcd(1.p1,2.p2,3.p3,4.p4....n.pn) cannot be greater than 2 it has been proved | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | c973ed07aa93324a8abd4ac5a9a1a355 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class problemB {
public static void main(String[] args)throws IOException {
// TODO Auto-generated method stub
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(br.readLine());
for(int i=0; i<t; i++) {
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
int k = Integer.parseInt(st.nextToken());
int curr = k;
String str = br.readLine();
char[] arr = str.toCharArray();
int[] rep = new int[n];
for(int j=0; j<n-1; j++) {
int sub = 0;
if(((arr[j]-'0')&1)==(k&1))sub++;
if(curr-sub>=0) {
curr-=sub;
out.write("1");
rep[j] = sub;
}
else out.write("0");
}
int sub = 0;
if(((arr[n-1]-'0')&1)==(k&1))sub++;
if(((curr-sub)&1)==0) {
rep[n-1] = curr;
curr-=sub;
out.write("1");
}
else if(curr-sub>=0) {
rep[n-1] = curr;
curr-=sub;
out.write("0");
}
else out.write("0");
out.write("\n");
for(int j=0; j<n; j++)out.write(rep[j]+" ");
out.write("\n");
}
out.flush();
out.close();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | c474c9c9d3167d97f30bcd53885c1665 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
/*
Goal: Become better in CP!
Key: Consistency and Discipline
Desire: SDE @ Google USA
Motto: Do what i Love <=> Love what i do
If you don't use your brain 100%, it deteriorates gradually
*/
public class Coder {
static StringBuffer str=new StringBuffer();
static char c[];
static int n, k;
static void solve(){
int cnt[]=new int[n];
if(k%2!=0){
int pos=n-1;
for(int i=0;i<n-1;i++){
if(c[i]=='1'){
pos=i;
break;
}else c[i]='1';
}
cnt[pos]++;
for(int i=pos+1;i<n;i++) c[i]=(char)('0'+'1'-c[i]);
k--;
}
Queue<Integer> q=new LinkedList<>();
for(int i=0;i<n;i++) if(c[i]=='0') q.add(i);
while(q.size()>1 && k>1){
int i=q.remove();
int j=q.remove();
cnt[i]++;
cnt[j]++;
for(int p=i;p<=j;p++) c[p]='1';
k-=2;
}
if(q.size()==1 && k>0){
int i=q.remove();
if(i<n-1){
for(int p=0;p<n;p++){
c[p]='1';
}
c[n-1]='0';
k-=2;
cnt[i]++;
cnt[n-1]++;
}
}
cnt[n-1]+=k;
for(int i=0;i<n;i++) str.append(c[i]);
str.append("\n");
for(int i=0;i<n;i++) str.append(cnt[i]).append(" ");
str.append("\n");
}
public static void main(String[] args) throws java.lang.Exception {
BufferedReader bf;
PrintWriter pw;
boolean lenv=false;
if(lenv){
bf = new BufferedReader(
new FileReader("input.txt"));
pw=new PrintWriter(new
BufferedWriter(new FileWriter("output.txt")));
}else{
bf = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
}
int q = Integer.parseInt(bf.readLine().trim());
while (q-- > 0) {
String s[]=bf.readLine().trim().split("\\s+");
n=Integer.parseInt(s[0]);
k=Integer.parseInt(s[1]);
c=bf.readLine().trim().toCharArray();
solve();
}
pw.print(str);
pw.flush();
// System.out.print(str);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 0088f8ad37199250b532d6fd91f764ce | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
/*
Challenge 1: Newbie to CM in 1year (Dec 2021 - Nov 2022) 5* Codechef
Challenge 2: CM to IM in 1 year (Dec 2022 - Nov 2023) 6* Codechef
Challenge 3: IM to GM in 1 year (Dec 2023 - Nov 2024) 7* Codechef
Goal: Become better in CP!
Key: Consistency and Discipline
Desire: SDE @ Google USA
Motto: Do what i Love <=> Love what you do
*/
public class Coder {
static StringBuffer str=new StringBuffer();
static int n, k;
static char c[];
static void solve(){
int f[]=new int[n];
int tk=k;
for(int i=0;i<n && tk>0;i++){
f[i]=((('1'-c[i])&(1-k%2)) | ((c[i]-'0') & (k%2)));
if(f[i]==1) tk--;
}
f[n-1]+=tk;
for(int i=0;i<n;i++){
if((k-f[i])%2!=0) c[i]=(char)('1'-c[i]+'0');
}
for(int i=0;i<n;i++) str.append(c[i]);
str.append("\n");
for(int i=0;i<n;i++) str.append(f[i]).append(" ");
str.append("\n");
}
public static void main(String[] args) throws java.lang.Exception {
boolean lenv=false;
BufferedReader bf;
PrintWriter pw;
if(lenv){
bf = new BufferedReader(
new FileReader("input.txt"));
pw=new PrintWriter(new
BufferedWriter(new FileWriter("output.txt")));
}else{
bf = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
}
int q1 = Integer.parseInt(bf.readLine().trim());
while (q1-->0) {
String s[]=bf.readLine().trim().split("\\s+");
n=Integer.parseInt(s[0]);
k=Integer.parseInt(s[1]);
c=bf.readLine().trim().toCharArray();
solve();
}
pw.print(str);
pw.flush();
// System.out.print(str);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 7c1494b7aed79b33bd27b9c64a993227 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void solve(int n, int k, String s) {
int[] count = new int[n];
StringBuilder sb = new StringBuilder(s);
int lastIdx = -1, idx = 0, cnt = 0;
while (k > 0 && idx < n) {
//制造更多的高位0
if(k%2 == 0) {
while(idx < n-1 && (cnt+sb.charAt(idx)-'0')%2 == 1) {
idx++;
}
}
//制造更多的高位1
else {
while(idx < n-1 && (cnt+sb.charAt(idx)-'0')%2 == 0) {
idx++;
}
}
if(idx != n-1) {
sb.setCharAt(idx,'1');
} else {
if((cnt+sb.charAt(idx)-'0')%2 == 0) {
sb.setCharAt(idx,'0');
} else {
sb.setCharAt(idx,'1');
}
}
for(int i = lastIdx+1; i < idx; i++) {
sb.setCharAt(i,'1');
}
lastIdx = idx;
count[idx]++;
idx++;
k--;
cnt++;
}
for(int i = lastIdx+1; i < n; i++) {
if((cnt+sb.charAt(i)-'0')%2 == 0) {
sb.setCharAt(i,'0');
} else {
sb.setCharAt(i,'1');
}
}
System.out.println(sb);
count[n-1] += k;
for(int i = 0; i < n; i++) {
System.out.print(count[i]+" ");
}
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
for(int i = 0; i < t; i++) {
int n = in.nextInt();
int k = in.nextInt();
in.nextLine();
String s = in.nextLine();
solve(n,k,s);
System.out.println();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 74731261fcb0ad54e5fa3c073ee226c0 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
public class Contest782B{
public static PrintWriter pw = new PrintWriter(System.out);
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int t = Integer.parseInt(br.readLine());
//n length, k move = all bits flipped except selected
while(t-- > 0){
//input
int[] test = Arrays.stream(br.readLine().split(" ")).mapToInt(Integer::parseInt).toArray();
String bitString = br.readLine();
//initialize
StringBuilder bitBuilder = new StringBuilder();
int count = 0;
int[] arr = new int[test[0]];
//logic
for(int i = 0; i < arr.length - 1; i++){
if(bitString.charAt(i) - '0' == (test[1] % 2)){
if(count < test[1]){
count++;
arr[i]++;;
bitBuilder.append(1);
} else{
bitBuilder.append(0);
}
} else{
bitBuilder.append(1);
}
}
arr[arr.length - 1] += test[1] - count;
bitBuilder.append((bitString.charAt(arr.length - 1) - '0' == (count % 2) ? 0 : 1));
pw.println(bitBuilder);
for(int i = 0; i < arr.length; i++){
pw.print(arr[i] + " ");
}
pw.println();
}
pw.close();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 1e61f4c38705fd56ce500de7d6a2498b | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.StringTokenizer;
public class CodeForces {
static int mod = (int)1e9+7;
public static void main(String[] args) throws InterruptedException {
// PrintWriter out = new PrintWriter("output.txt");
// File input = new File("input.txt");
// FastScanner fs = new FastScanner(input);
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int testNumber =fs.nextInt();
for (int T =0;T<testNumber;T++){
int n= fs.nextInt();
int k = fs.nextInt();
char[] arr = fs.next().toCharArray();
int [] f = new int[n];
int c=0;
for (int i=0;i<n;i++)if(k-c>0){
if(k%2==0){
if(arr[i]=='0'){
f[i]=1;
c++;
}else f[i]=0;
}else {
if(arr[i]=='1'){
f[i]=1;
c++;
}else f[i]=0;
}
}
if(k-c>0){
f[n-1]+=(k-c);
}
for (int i=0;i<n;i++){
if((k-f[i])%2==0){
out.print(arr[i]);
}else {
out.print(arr[i]=='0'?'1':'0');
}
}
out.print("\n");
for (int i:f)out.print(i+" ");
out.print("\n");
}
out.flush();
}
static long modInverse( long n, long p)
{
return FastPower(n, p - 2, p);
}
static int[] factorials(int max,int mod){
int [] ans = new int[max+1];
ans[0]=1;
for (int i=1;i<=max;i++){
ans[i]=ans[i-1]*i;
ans[i]%=mod;
}
return ans;
}
static String toBinary(int num,int bits){
String res =Integer.toBinaryString(bits);
while(res.length()<bits)res="0"+res;
return res;
}
static String toBinary(long num,int bits){
String res =Long.toBinaryString(bits);
while(res.length()<bits)res="0"+res;
return res;
}
static long LCM(long a,long b){
return a*b/gcd(a,b);
}
static long FastPower(long x,long p,long mod){
if(p==0)return 1;
long ans =FastPower(x, p/2,mod);
ans%=mod;
ans*=ans;
ans%=mod;
if(p%2==1)ans*=x;
ans%=mod;
return ans;
}
static double FastPower(double x,int p){
if(p==0)return 1.0;
double ans =FastPower(x, p/2);
ans*=ans;
if(p%2==1)ans*=x;
return ans;
}
static int FastPower(int x,int p){
if(p==0)return 1;
int ans =FastPower(x, p/2);
ans*=ans;
if(p%2==1)ans*=x;
return ans;
}
static ArrayList<Vertex> vertices = new ArrayList<>();
static class Vertex {
public ArrayList<Integer>edges = new ArrayList<>();
public boolean isEnd=false;
public Vertex (){
for(int i=0;i<26;i++){
edges.set(i, -1);
}
}
}
static class Trie {
private int root=0;
public Trie(){
vertices.add(new Vertex());
}
public void InsertWord(String s){
int current = root;
for(char c:s.toCharArray()){
int pos = c-'a';
if(vertices.get(current).edges.get(pos)==-1){
vertices.add(new Vertex());
Vertex x = vertices.get(current);
x.edges.set(pos,vertices.size()-1);
vertices.set(current, x);
}
current=vertices.get(current).edges.get(pos);
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(){
br=new BufferedReader(new InputStreamReader(System.in));
st=new StringTokenizer("");
}
public FastScanner(File f){
try {
br=new BufferedReader(new FileReader(f));
st=new StringTokenizer("");
} catch(FileNotFoundException e){
br=new BufferedReader(new InputStreamReader(System.in));
st=new StringTokenizer("");
}
}
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] readLongArray(int n) {
long[] a =new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
public static long factorial(int n){
if(n==0)return 1;
return (long)n*factorial(n-1);
}
public static long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
static void sort (int[]a){
ArrayList<Integer> b = new ArrayList<>();
for(int i:a)b.add(i);
Collections.sort(b);
for(int i=0;i<b.size();i++){
a[i]=b.get(i);
}
}
static void sortReversed (int[]a){
ArrayList<Integer> b = new ArrayList<>();
for(int i:a)b.add(i);
Collections.sort(b,new Comparator<Integer>(){
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
});
for(int i=0;i<b.size();i++){
a[i]=b.get(i);
}
}
static void sort (long[]a){
ArrayList<Long> b = new ArrayList<>();
for(long i:a)b.add(i);
Collections.sort(b);
for(int i=0;i<b.size();i++){
a[i]=b.get(i);
}
}
static ArrayList<Integer> sieveOfEratosthenes(int n)
{
boolean prime[] = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++)
{
if (prime[p] == true)
{
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
ArrayList<Integer> ans = new ArrayList<>();
for (int i = 2; i <= n; i++)
{
if (prime[i] == true)
ans.add(i);
}
return ans;
}
static int binarySearchSmallerOrEqual(int arr[], int key)
{
int n = arr.length;
int left = 0, right = n;
int mid = 0;
while (left < right) {
mid = (right + left) >> 1;
if (arr[mid] == key) {
while (mid + 1 < n && arr[mid + 1] == key)
mid++;
break;
}
else if (arr[mid] > key)
right = mid;
else
left = mid + 1;
}
while (mid > -1 && arr[mid] > key)
mid--;
return mid;
}
static int binarySearchSmallerOrEqual(long arr[], long key)
{
int n = arr.length;
int left = 0, right = n;
int mid = 0;
while (left < right) {
mid = (right + left) >> 1;
if (arr[mid] == key) {
while (mid + 1 < n && arr[mid + 1] == key)
mid++;
break;
}
else if (arr[mid] > key)
right = mid;
else
left = mid + 1;
}
while (mid > -1 && arr[mid] > key)
mid--;
return mid;
}
public static int binarySearchStrictlySmaller(int[] arr, int target)
{
int start = 0, end = arr.length-1;
if(end == 0) return -1;
if (target > arr[end]) return end;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] >= target) {
end = mid - 1;
}
else {
ans = mid;
start = mid + 1;
}
}
return ans;
}
public static int binarySearchStrictlySmaller(long[] arr, long target)
{
int start = 0, end = arr.length-1;
if(end == 0) return -1;
if (target > arr[end]) return end;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] >= target) {
end = mid - 1;
}
else {
ans = mid;
start = mid + 1;
}
}
return ans;
}
static int binarySearch(int arr[], int x)
{
int l = 0, r = arr.length - 1;
while (l <= r) {
int m = l + (r - l) / 2;
if (arr[m] == x)
return m;
if (arr[m] < x)
l = m + 1;
else
r = m - 1;
}
return -1;
}
static int binarySearch(long arr[], long x)
{
int l = 0, r = arr.length - 1;
while (l <= r) {
int m = l + (r - l) / 2;
if (arr[m] == x)
return m;
if (arr[m] < x)
l = m + 1;
else
r = m - 1;
}
return -1;
}
static void init(int[]arr,int val){
for(int i=0;i<arr.length;i++){
arr[i]=val;
}
}
static void init(int[][]arr,int val){
for(int i=0;i<arr.length;i++){
for(int j=0;j<arr[i].length;j++){
arr[i][j]=val;
}
}
}
static void init(long[]arr,long val){
for(int i=0;i<arr.length;i++){
arr[i]=val;
}
}
static<T> void init(ArrayList<ArrayList<T>>arr,int n){
for(int i=0;i<n;i++){
arr.add(new ArrayList());
}
}
static int binarySearchStrictlySmaller(ArrayList<Pair> arr, int target)
{
int start = 0, end = arr.size()-1;
if(end == 0) return -1;
if (target > arr.get(end).y) return end;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr.get(mid).y >= target) {
end = mid - 1;
}
else {
ans = mid;
start = mid + 1;
}
}
return ans;
}
static int binarySearchStrictlyGreater(int[] arr, int target)
{
int start = 0, end = arr.length - 1;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] <= target) {
start = mid + 1;
}
else {
ans = mid;
end = mid - 1;
}
}
return ans;
}
public static long pow(long n, long pow) {
if (pow == 0) {
return 1;
}
long retval = n;
for (long i = 2; i <= pow; i++) {
retval *= n;
}
return retval;
}
static String reverse(String s){
StringBuffer b = new StringBuffer(s);
b.reverse();
return b.toString();
}
static String charToString (char[] arr){
String t="";
for(char c :arr){
t+=c;
}
return t;
}
int[] copy (int [] arr , int start){
int[] res = new int[arr.length-start];
for (int i=start;i<arr.length;i++)res[i-start]=arr[i];
return res;
}
static int[] swap(int [] A,int l,int r){
int[] B=new int[A.length];
for (int i=0;i<l;i++){
B[i]=A[i];
}
int k=0;
for (int i=r;i>=l;i--){
B[l+k]=A[i];
k++;
}
for (int i=r+1;i<A.length;i++){
B[i]=A[i];
}
return B;
}
static int mex (int[] d){
int [] a = Arrays.copyOf(d, d.length);
sort(a);
if(a[0]!=0)return 0;
int ans=1;
for(int i=1;i<a.length;i++){
if(a[i]==a[i-1])continue;
if(a[i]==a[i-1]+1)ans++;
else break;
}
return ans;
}
static int[] mexes(int[] arr){
int[] freq = new int [100000+7];
for (int i:arr)freq[i]++;
int maxMex =0;
for (int i=0;i<=100000+7;i++){
if(freq[i]!=0)maxMex++;
else break;
}
int []ans = new int[arr.length];
ans[arr.length-1] = maxMex;
for (int i=arr.length-2;i>=0;i--){
freq[arr[i+1]]--;
if(freq[arr[i+1]]<=0){
if(arr[i+1]<maxMex)
maxMex=arr[i+1];
ans[i]=maxMex;
} else {
ans[i]=ans[i+1];
}
}
return ans;
}
static int [] freq (int[]arr,int max){
int []b = new int[max];
for (int i:arr)b[i]++;
return b;
}
static int[] prefixSum(int[] arr){
int [] a = new int[arr.length];
a[0]=arr[0];
for (int i=1;i<arr.length;i++)a[i]=a[i-1]+arr[i];
return a;
}
static class Pair {
int x;
long y;
int extra;
public Pair(int x,long y){
this.x=x;
this.y=y;
}
public Pair(int x,long y,int extra){
this.x=x;
this.y=y;
this.extra=extra;
}
// @Override
// public boolean equals(Object o) {
// if(o instanceof Pair){
// if(o.hashCode()!=hashCode()){
// return false;
// } else {
// return x==((Pair)o).x&&y==((Pair)o).y;
// }
// }
//
// return false;
//
// }
//
//
//
//
//
// @Override
// public int hashCode() {
// return x+(int)y*2;
// }
//
//
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 9c6d3c06fb37a96f696cfd44344279a9 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
//import javafx.util.*;
public class Main
{
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
static int INF = Integer.MAX_VALUE;
static int NINF = Integer.MIN_VALUE;
public static void main (String[] args) throws java.lang.Exception
{
//check if you have to take product or the constraints are big
int t = i();
while(t-- > 0){
int n = i();
int k = i();
char[] ch = in.nextLine().toCharArray();
int[] ans = new int[n];
if(k == 0){
out.println(String.valueOf(ch));
for(int i = 0;i < n;i++){
out.print(0 + " ");
}
out.println();
continue;
}
if(k%2 != 0){
for(int i = 0;i < n;i++){
if(ch[i] == '1'){
k--;
ans[i]++;
if(k == 0){
for(int j = i + 1;j < n;j++){
if(ch[j] == '0'){
ch[j] = '1';
}else{
ch[j] = '0';
}
}
break;
}
}else{
ans[i] = 0;
ch[i] = '1';
}
}
if(k%2 != 0){
ch[n-1] = '0';
if(ans[n-1] == 1){
ans[n-1] = 0;
k++;
}else{
ans[n-1] = 1;
k--;
}
}
ans[0] += k;
}else{
for(int i = 0;i < n;i++){
if(ch[i] == '0'){
ch[i] = '1';
ans[i]++;
k--;
if(k == 0){
break;
}
}else{
ans[i] = 0;
}
}
if(k%2 != 0){
ch[n-1] = '0';
if(ans[n-1] == 1){
ans[n-1] = 0;
k++;
}else{
ans[n-1] = 1;
k--;
}
}
ans[0] += k;
}
out.println(String.valueOf(ch));
for(int i = 0;i < n;i++){
out.print(ans[i] + " ");
}
out.println();
}
out.close();
}
public static int solve(String s){
int ans = -1;
int count = 0;
int n = s.length();
for(int i = 0;i < n;i++){
if(s.charAt(i) == 'R'){
count++;
}else{
ans = Math.max(ans,count);
count = 0;
}
}
ans = Math.max(ans,count);
return ans;
}
public static void sort(int[] arr){
ArrayList<Integer> ls = new ArrayList<>();
for(int x : arr){
ls.add(x);
}
Collections.sort(ls);
for(int i = 0;i < arr.length;i++){
arr[i] = ls.get(i);
}
}
static int i()
{
return in.nextInt();
}
static long l()
{
return in.nextLong();
}
static int[] input(int N){
int A[]=new int[N];
for(int i=0; i<N; i++)
{
A[i]=in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[]=new long[N];
for(int i=0; i<A.length; i++)A[i]=in.nextLong();
return A;
}
}
class Pair implements Comparable<Pair>{
int x;
int y;
Pair(int x, int y){
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair obj)
{
// we sort objects on the basis of Student Id
return (this.x - obj.x);
}
}
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while(st==null || !st.hasMoreElements())
{
try
{
st=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | ce344f2a5152adfa2989f7983dc0cde0 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class B {
public static PrintWriter out;
public static void main(String[] args)throws IOException{
Scanner sc=new Scanner();
out=new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
int k=sc.nextInt();
String s=sc.next();
if(k==0) {
out.println(s);
for(int i=0;i<s.length();i++) {
out.print(0+" ");
}
out.println();
continue;
}
/*if(n==1) {
if(n=='1'&&k%2==0) {
out.println('1');
}else if(n=='1'&&k%2==1) {
out.println('0');
}else if(n=='0'&&k%2==0) {
out.println('0');
}else {
out.println('1');
}
out.println(k);
}*/
int a[]=new int[n];
int count=k;
for(int i=0;i<s.length()&&count>0;i++) {
if(s.charAt(i)=='0'&&k%2==0) {
a[i]=1;
count--;
}else if(s.charAt(i)=='0'&&k%2==1) {
a[i]=0;
}else if(s.charAt(i)=='1'&&k%2==0) {
a[i]=0;
}else if(s.charAt(i)=='1'&&k%2==1){
a[i]=1;
count--;
}
}
StringBuilder ans=new StringBuilder();
for(int i=0;i<s.length();i++) {
if(s.charAt(i)=='0'&&((k-count)-a[i])%2==1) {
ans.append('1');
}else if(s.charAt(i)=='0'&&((k-count)-a[i])%2==0) {
ans.append('0');
}else if(s.charAt(i)=='1'&&((k-count)-a[i])%2==1) {
ans.append('0');
}else if(s.charAt(i)=='1'&&((k-count)-a[i])%2==0) {
ans.append('1');
}
}
if(count>0) {
StringBuilder temp=new StringBuilder();
int index=-1;
for(int i=0;i<ans.length();i++) {
if(ans.charAt(i)=='1') {
index=i;
break;
}
}
if(count%2==1) {
if(index!=-1) {
a[index]+=count;
for(int i=0;i<ans.length();i++) {
if(i!=index) {
temp.append(""+(1-(ans.charAt(i)-'0')));
}
}
}else {
a[n-1]+=count;
for(int i=0;i<ans.length()-1;i++) {
temp.append(""+(1-(ans.charAt(i)-'0')));
}
temp.append(ans.charAt(n-1));
}
out.println(temp.toString());
for(int i:a) {
out.print(i+" ");
}
out.println();
continue;
}else {
out.println(ans.toString());
a[n-1]+=count;
for(int i:a) {
out.print(i+" ");
}
out.println();
continue;
}
}
out.println(ans.toString());
for(int i:a) {
out.print(i+" ");
}
out.println();
}
out.close();
}
public static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 5084e066a83b96f41d95dc88f9a248db | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.TreeSet;
public class B {
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int t = Integer.parseInt(br.readLine());
while(t-->0) {
String[] inp = br.readLine().split(" ");
int n = Integer.parseInt(inp[0]);
int k = Integer.parseInt(inp[1]);
String s= br.readLine();
int[] ans = new int[s.length()];
char[] tmp = new char[s.length()];
if(k%2==1)
{
boolean found = false;
for(int i=0;i<s.length();i++)
{
if(s.charAt(i)=='0')
tmp[i] = '1';
else if(!found)
{
tmp[i] = '1';
found = true;
ans[i]=1;
}
else
tmp[i] = '0';
}
if(!found)
{
ans[tmp.length-1]++;
tmp[tmp.length-1]='0';
}
k--;
}
else
tmp = s.toCharArray();
TreeSet<Integer> zeros = new TreeSet<>();
for(int i =0;i<tmp.length;i++)
if(tmp[i]=='0')
zeros.add(i);
if(zeros.size()%2==0) {
while(k>0 && zeros.size()>0) {
int i1=zeros.pollFirst();
int i2 = zeros.pollFirst();
ans[i1]++;
ans[i2]++;
tmp[i1]='1';
tmp[i2] = '1';
k-=2;
}
ans[0]+=k;
}
else {
while(k>0 && zeros.size()>1) {
int i1=zeros.pollFirst();
int i2 = zeros.pollFirst();
ans[i1]++;
ans[i2]++;
tmp[i1]='1';
tmp[i2] = '1';
k-=2;
}
if(k>=2 && zeros.size()==1)
{
int ind = zeros.pollFirst();
if(ind < tmp.length-1)
{
ans[ind]++;
ans[tmp.length-1]++;
tmp[ind] = '1';
tmp[tmp.length-1]='0';
k-=2;
}
}
ans[0]+=k;
}
for(char c: tmp)
pw.print(c);
pw.println();
for(int i: ans)
pw.print(i+" ");
pw.println();
}
pw.flush();
pw.close();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 6d778be09b9511e4f9acd887d2ada1cf | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
static int t;
static int n;
static int[] a;
static String s;
static FastReader fr = new FastReader();
static PrintWriter out = new PrintWriter(System.out);
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public static void main(String[] args) {
int t = fr.nextInt();
while ((t --) > 0) {
int n = fr.nextInt();
int k = fr.nextInt();
String s = fr.nextString();
char[] cs = s.toCharArray();
int bh = 0;
int[] cnt = new int[n];
for (int i = 0; i < n; i ++) {
int c = cs[i] - '0';
c = (c + bh) % 2;
if (k == 0) {
if (bh == 0) break;
cs[i] = (char) (c + '0');
continue;
}
if (i == n -1 ) {
cnt[i] = k;
cs[i] = (char) (c + '0');
continue;
}
if (c == 1) {
cs[i] = '1';
if (k % 2 == 0) {
continue;
} else{
bh += 1;
bh %= 2;
cs[i] = '1';
k --;
cnt[i] = 1;
}
} else if (c == 0) {
cs[i] = '1';
if (k % 2 == 0) {
bh = (bh + 1) % 2;
cs[i] = '1';
k --;
cnt[i] = 1;
} else {
continue;
}
}
}
System.out.println(new String(cs));
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i ++) {
sb.append(cnt[i]);
if (i != n - 1) sb.append(" ");
}
System.out.println(sb.toString());
}
return;
}
static long ask(String op, int a, int b) {
System.out.println(op + " " + a + " " + b);
System.out.flush();
long gcd = fr.nextLong();
return gcd;
// return gcd(12354 + a, 12354 + b);
}
static class FastReader {
private BufferedReader bfr;
private StringTokenizer st;
public FastReader() {
bfr = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
if (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(bfr.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
char nextChar() {
return next().toCharArray()[0];
}
String nextString() {
return next();
}
int[] nextIntArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++)
arr[i] = nextInt();
return arr;
}
double[] nextDoubleArray(int n) {
double[] arr = new double[n];
for (int i = 0; i < arr.length; i++)
arr[i] = nextDouble();
return arr;
}
long[] nextLongArray(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++)
arr[i] = nextLong();
return arr;
}
int[][] nextIntGrid(int nL, int m) {
int[][] grid = new int[n][m];
for (int i = 0; i < n; i++) {
char[] line = fr.next().toCharArray();
for (int j = 0; j < m; j++)
grid[i][j] = line[j] - 48;
}
return grid;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | e85bcc0da69bd64c4098fa69bb3a60b3 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.util.concurrent.LinkedBlockingDeque;
import javax.sql.rowset.spi.SyncResolver;
import java.io.*;
import java.nio.channels.NonReadableChannelException;
import java.text.DateFormatSymbols;
public class CpTemp {
static int a[];
static long count=0l;
static long row = 1l;
static long col = 1l;
static FastScanner fs = null;
public static void main(String[] args) {
fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int t = fs.nextInt();
outer:
while (t-- > 0) {
int n = fs.nextInt();
int k = fs.nextInt();
int tmp = k;
String s = fs.next();
int a[] = new int[n];
int c1=0;
for(int i=0;i<n;i++){
if(s.charAt(i)=='1'){
c1++;
}
}
if(k%2==0) {
int c0 = n - c1;
boolean flag = false;
int prev = -1;
int prev0=-1;
for(int i=0;i<n;i++){
if(s.charAt(i)=='1'){
a[i] = 0;
c1--;
prev = i;
}else{
prev0 = i;
if(k>1 && c0>1) {
a[i] = 1;
k--;
c0--;
}else if(k==1 && c0>0){
a[i]=1;
k--;
}else if(c0==1 && k>0){
if(k%2!=0){
a[i] = k;
k = 0;
}else{
if(c1>0) {
a[i] = 1;
k--;
flag = true;
}else{
a[i]=k;
k=0;
}
}
}else if(c0>0 && k==0){
a[i]=0;
}
}
}
if(flag){
a[prev] = k;
k=0;
}
if(k>0){
if(prev0!=-1){
a[prev0] = k;
}else{
a[prev]= k;
}
}
/* for (int i = 0; i < n; i++) {
if (s.charAt(i) == '1') {
a[i] = 0;
} else {
if (k>0) {
a[i] = 1;
k--;
} else {
a[i] = k;
}
}
}*/
}
else{
for(int i=0;i<n-1;i++){
if(s.charAt(i)=='1'){
if(k>0) {
a[i] = 1;
k--;
}else{
a[i]=0;
}
}else{
a[i]=0;
}
}
if(k>0){
a[n-1] = k;
}
}
for(int i=0;i<n;i++){
if(tmp%2==0) {
if (a[i] % 2 == 0) {
out.print(s.charAt(i));
} else {
out.print(s.charAt(i) == '1' ? '0' : '1');
}
}else{
if(a[i]%2==0){
out.print(s.charAt(i) == '1' ? '0' : '1');
}else{
out.print(s.charAt(i));
}
}
}
out.println();
for(int v:a){
out.print(v+" ");
}
out.println();
}
out.close();
}
static class Pair implements Comparable<Pair> {
int x;
int y;
Pair(int x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(Pair o) {
return this.y-o.y;
}
}
static long power(long x, long y, long p) {
if (y == 0)
return 1;
if (x == 0)
return 0;
long res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long power(long x, long y) {
if (y == 0)
return 1;
if (x == 0)
return 0;
long res = 1;
while (y > 0) {
if (y % 2 == 1)
res = (res * x);
y = y >> 1;
x = (x * x);
}
return res;
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readlongArray(int n){
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static boolean prime[];
static void sieveOfEratosthenes(int n) {
prime = new boolean[n + 1];
for (int i = 0; i <= n; i++)
prime[i] = true;
for (int p = 2; p * p <= n; p++) {
// If prime[p] is not changed, then it is a
// prime
if (prime[p] == true) {
// Update all multiples of p
for (int i = p * p; i <= n; i += p)
prime[i] = false;
}
}
}
public static int log2(int x) {
return (int) (Math.log(x) / Math.log(2));
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static long nCk(int n, int k) {
long res = 1;
for (int i = n - k + 1; i <= n; ++i)
res *= i;
for (int i = 2; i <= k; ++i)
res /= i;
return res;
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 3035a8c234461638167c8846ec4f09a7 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IceCave {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader input = new FastReader();
static BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) throws IOException {
int t = input.nextInt();
while (t-- > 0) {
int n = input.nextInt();
int k = input.nextInt();
int ans[] = new int[n];
char ch[] = input.next().toCharArray();
int one = 0;
int zero = 0;
for (int i = 0; i < n; i++) {
if (ch[i] == '1') {
one++;
} else {
zero++;
}
}
if (k % 2 == 1) {
for (int i = 0; i < n && k > 0; i++) {
if (ch[i] == '1') {
ans[i] = 1;
k--;
}
}
ans[n-1]+=k;
for (int i = 0; i < n; i++) {
if (ch[i] == '0') {
if(ans[i]%2==0)
ch[i] = '1';
} else if (ch[i] == '1') {
if (ans[i] % 2 == 0) {
ch[i] = '0';
}
}
}
} else {
for (int i = 0; i < n && k > 0; i++) {
if (ch[i] == '0') {
ans[i] = 1;
k--;
}
}
ans[n-1]+=k;
for (int i = 0; i < n; i++) {
if (ch[i] == '0') {
if (ans[i] % 2 == 0) {
ch[i] = '0';
} else {
ch[i] = '1';
}
}else{
if(ans[i]%2==1){
ch[i] = '0';
}
}
}
}
for (int i = 0; i < n; i++) {
log.write(ch[i]);
}
log.write("\n");
for (int i = 0; i < n; i++) {
log.write(ans[i]+" ");
}
log.write("\n");
}
log.flush();
}
public static long binaryToDecimal(String w) {
long r = 0;
long l = 0;
for (int i = w.length() - 1; i > -1; i--) {
long x = (w.charAt(i) - '0') * (long) Math.pow(2, l);
r = r + x;
l++;
}
return r;
}
public static String decimalToBinary(long n) {
String w = "";
while (n > 0) {
w = n % 2 + w;
n /= 2;
}
return w;
}
public static boolean isSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
public static void print(int a[]) throws IOException {
for (int i = 0; i < a.length; i++) {
log.write(a[i] + " ");
}
log.write("\n");
}
public static void read(int[] a) {
for (int i = 0; i < a.length; i++) {
a[i] = input.nextInt();
}
}
static class pair {
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
}
public static long LCM(long x, long y) {
return (x * y) / GCD(x, y);
}
public static long GCD(long x, long y) {
if (y == 0) {
return x;
}
return GCD(y, x % y);
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 8419be8c231dde3ba9db753dae4a8121 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Main {
static TreeSet<String> tSet;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
int k=sc.nextInt();
String s = sc.next();
int [] arr= new int [s.length()];
int tmp=k;
if(k%2==0)
{
for (int i = 0; i < s.length(); i++) {
if(s.charAt(i)=='0'&& k>0) {
arr[i]=1;
k--;
}
}
}
else {
for (int i = 0; i < s.length(); i++) {
if(s.charAt(i)=='1' && k>0) {
arr[i]=1;
k--;
}
}
}
if(k>0) {
arr[arr.length-1]+=k;
}
// pw.println(Arrays.toString(arr));
StringBuilder sb =new StringBuilder();
char a='x';
for (int i = 0; i < s.length(); i++) {
a=s.charAt(i);
int num =tmp-arr[i];
if(num%2!=0)
a =flip(a);
sb.append(a+"");
// pw.println(arr);
//pw.println(sb);
// pw.println(Arrays.toString(arr));
}
pw.println(sb);
for (int i = 0; i < arr.length; i++) {
pw.print(arr[i]+" ");
}
pw.println();
}
pw.close();
pw.flush();
}
public static char flip(char x) {
if(x=='0')
return '1';
return'0';
}
public static int dfsOnAdjacencyList(ArrayList<Integer>[] graph, int curr, boolean[] vis, int m, int conscats,
int[] cats) { // same DFS code but a7la mn ellyfoo2 fel writing
if (conscats > m)
return 0;
if (graph[curr].size() == 1 && curr != 1) {
if (cats[curr] == 1)
conscats++;
else
conscats = 0;
if (conscats > m)
return 0;
return 1;
}
vis[curr] = true;
if (cats[curr] == 1)
conscats++;
else
conscats = 0;
int res = 0;
for (int x : graph[curr]) {
if (!vis[x])
res += dfsOnAdjacencyList(graph, x, vis, m, conscats, cats);
}
return res;
}
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public static int lcm(int a, int b) {
return a * b / gcd(a, b);
}
public static long fac(long i) {
long res = 1;
while (i > 0) {
res = res * i--;
}
return res;
}
public static long combination(long x, long y) {
return 1l * (fac(x) / (fac(x - y) * fac(y)));
}
public static long permutation(long x, long y) {
return combination(x, y) * fac(y);
}
static class Pair implements Comparable<Pair> {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
public int compareTo(Pair p) {
if(this.x==p.x)
return this.y-p.y;
return this.x-p.x;
}
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public int[] nextIntArray(int n) throws IOException {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] array = new Integer[n];
for (int i = 0; i < n; i++) {
array[i] = nextInt();
}
return array;
}
public long[] nextlongArray(int n) throws IOException {
long[] array = new long[n];
for (int i = 0; i < n; i++) {
array[i] = nextLong();
}
return array;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] array = new Long[n];
for (int i = 0; i < n; i++) {
array[i] = nextLong();
}
return array;
}
public char[] nextCharArray(int n) throws IOException {
char[] array = new char[n];
String string = next();
for (int i = 0; i < n; i++) {
array[i] = string.charAt(i);
}
return array;
}
public boolean ready() throws IOException {
return br.ready();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 39fef41caa364cbee475d57daa34dacf | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String arggs[]) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
StringBuilder sb = new StringBuilder();
while(t-- > 0) {
int n = sc.nextInt(), k = sc.nextInt(), cnt = 0, arr[] = new int[n];
String s = sc.next();
for(int i=0; i<n-1; i++) {
if(s.charAt(i)-'0'== k%2) {
if(cnt < k) {
cnt++;
arr[i]++;
sb.append(1);
} else sb.append(0);
}else sb.append(1);
}
arr[n-1] += k-cnt;
sb.append((s.charAt(n-1)-'0' == cnt%2 ? 0 : 1) + "\n");
for(int a : arr)
sb.append(a + " ");
sb.append("\n");
}
System.out.println(sb);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | d636900aff0aab05a96b28cb41c709eb | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class _1659b {
FastScanner scn;
PrintWriter w;
PrintStream fs;
int MOD = 1000000007;
int MAX = 200005;
long mul(long x, long y) {long res = x * y; return (res >= MOD ? res % MOD : res);}
long power(long x, long y) {if (y < 0) return 1; long res = 1; x %= MOD; while (y!=0) {if ((y & 1)==1)res = mul(res, x); y >>= 1; x = mul(x, x);} return res;}
void ruffleSort(int[] a) {int n=a.length;Random r=new Random();for (int i=0; i<a.length; i++) {int oi=r.nextInt(n), temp=a[i];a[i]=a[oi];a[oi]=temp;}Arrays.sort(a);}
void reverseSort(int[] arr){List<Integer> list = new ArrayList<>();for (int i=0; i<arr.length; i++){list.add(arr[i]);}Collections.sort(list, Collections.reverseOrder());for (int i = 0; i < arr.length; i++){arr[i] = list.get(i);}}
boolean LOCAL;
void debug(Object... o){if(LOCAL)System.err.println(Arrays.deepToString(o));}
//SPEED IS NOT THE CRITERIA, CODE SHOULD BE A NO BRAINER, CMP KILLS, MOCIM
void solve(){
int t=scn.nextInt();
while(t-->0)
{
int n =scn.nextInt();
long m=scn.nextLong();
long orm = m;
String s = scn.next();
long[] ar = new long[s.length()];
int idx = -1;
for(int i=0;i<n-1;i++){
int val = s.charAt(i)-'0';
if(orm==0){
break;
}
if(val==0&&(orm&1)==0){
ar[i]++;
m--;
}else if(val==1&&(orm&1)!=0){
ar[i]++;
m--;
}
if(m==0){
idx = i;
break;
}
}
if(m>0)
{
for(int i=0;i<n-1;i++){
w.print(1);
}
int vv = s.charAt(n-1)-'0';
long xm = orm-m;
if((vv==0&&(xm&1)==0)||(vv==1&&(xm&1)!=0))
w.println(0);
else{
w.println(1);
}
debug("rem",m);
ar[n-1] = m;
for(int i=0;i<n;i++){
w.print(ar[i]+" ");
}
w.println();
}else{
for(int i=0;i<=idx;i++){
w.print(1);
}
for(int i=idx+1;i<n;i++){
int val = s.charAt(i)-'0';
if(val==1&&(orm&1)==0){
w.print(1);
}else if(val==1&&(orm&1)!=0){
w.print(0);
}else if(val==0&&(orm&1)==0){
w.print(0);
}else{
w.print(1);
}
}
w.println();
for(int i=0;i<n;i++){
w.print(ar[i]+" ");
}
w.println();
}
}
}
void run() {
try {
long ct = System.currentTimeMillis();
scn = new FastScanner(new File("input.txt"));
w = new PrintWriter(new File("output.txt"));
fs=new PrintStream("error.txt");
System.setErr(fs);
LOCAL=true;
solve();
w.close();
System.err.println(System.currentTimeMillis() - ct);
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
scn = new FastScanner(System.in);
w = new PrintWriter(System.out);
LOCAL=false;
solve();
w.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
long[] nextLongArray(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nextLong();
}
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
int lowerBound(int[] arr, int x){int n = arr.length, si = 0, ei = n - 1;while(si <= ei){int mid = si + (ei - si)/2;if(arr[mid] == x){if(mid-1 >= 0 && arr[mid-1] == arr[mid]){ei = mid-1;}else{return mid;}}else if(arr[mid] > x){ei = mid - 1; }else{si = mid+1;}}return si; }
int upperBound(int[] arr, int x){int n = arr.length, si = 0, ei = n - 1;while(si <= ei){int mid = si + (ei - si)/2;if(arr[mid] == x){if(mid+1 < n && arr[mid+1] == arr[mid]){si = mid+1;}else{return mid + 1;}}else if(arr[mid] > x){ei = mid - 1; }else{si = mid+1;}}return si; }
int upperBound(ArrayList<Integer> list, int x){int n = list.size(), si = 0, ei = n - 1;while(si <= ei){int mid = si + (ei - si)/2;if(list.get(mid) == x){if(mid+1 < n && list.get(mid+1) == list.get(mid)){si = mid+1;}else{return mid + 1;}}else if(list.get(mid) > x){ei = mid - 1; }else{si = mid+1;}}return si; }
void swap(int[] arr, int i, int j){int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}
long nextPowerOf2(long v){if (v == 0) return 1;v--;v |= v >> 1;v |= v >> 2;v |= v >> 4;v |= v >> 8;v |= v >> 16;v |= v >> 32;v++;return v;}
int gcd(int a, int b) {if(a == 0){return b;}return gcd(b%a, a);} // TC- O(logmax(a,b))
boolean nextPermutation(int[] arr) {if(arr == null || arr.length <= 1){return false;}int last = arr.length-2;while(last >= 0){if(arr[last] < arr[last+1]){break;}last--;}if (last < 0){return false;}if(last >= 0){int nextGreater = arr.length-1;for(int i=arr.length-1; i>last; i--){if(arr[i] > arr[last]){nextGreater = i;break;}}swap(arr, last, nextGreater);}int i = last + 1, j = arr.length - 1;while(i < j){swap(arr, i++, j--);}return true;}
public static void main(String[] args) {
new _1659b().runIO();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | fc920d85a0686882bb2ba442e8f47bc3 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Scanner;
/*
1
6 1
111001
*/
public class B {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int t = in.nextInt();
in.nextLine();
while (t-- > 0) {
int len = in.nextInt();
int moves = in.nextInt(), originalMoves = moves;
in.nextLine();
String s = in.nextLine();
char[] input = s.toCharArray();
int[] swaps = new int[len];
for (int i = 0; i < len; i++) {
char ch = input[i];
if (originalMoves % 2 == 1) {
if (ch == '1' && moves > 0) {
moves--;
swaps[i]++;
} else if (ch == '1') {
input[i] = '0';
} else {
input[i] = '1';
}
} else {
if (ch == '0' && moves > 0) {
input[i] = '1';
moves--;
swaps[i]++;
}
}
}
int lastIndex = len - 1;
if (moves > 0) {
swaps[lastIndex] += moves;
if (moves % 2==1) input[lastIndex] = '0';
}
// out.println(s + " " + originalMoves + " result " + Arrays.toString(input));
// out.println("swaps " + Arrays.toString(swaps));
out.println(new String(input));
for (int i = 0; i < len; i++) out.print(swaps[i] + " ");
out.println();
}
out.close();
in.close();
}
private static void invert(char[] input) {
for (int i = 0; i < input.length; i++) {
input[i] = input[i] == '0' ? '1' : '0';
}
}
private static int count(char[] input, char ch) {
int count = 0;
for (char c : input) {
if (c == ch) {
count++;
}
}
return count;
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | d211f027c82f2a89aeaa7c8ad7ee2252 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(new BufferedInputStream(System.in));
int t = sc.nextInt();
System.out.println();
while (t-- != 0){
int n = sc.nextInt();
int k = sc.nextInt();
sc.nextLine();
String s = sc.nextLine();
char[] chs = s.toCharArray();
int[] ans = new int[n];
if (k % 2 == 0){
for (int i = 0; i < n - 1; i++){
if(k > 0) {
if (chs[i] == '0') {
ans[i] = 1;
k--;
}
chs[i] = '1';
}
}
if (k != 0){
ans[n - 1] = k;
if (k % 2 != 0){
if (chs[n - 1] == '0'){
chs[n - 1] = '1';
}else{
chs[n - 1] = '0';
}
}
}
}else{
for (int i = 0; i < n - 1; i++){
if (k > 0) {
if (chs[i] == '1') {
ans[i] = 1;
k--;
}
chs[i] = '1';
}else{
if (chs[i] == '1'){
chs[i] = '0';
}else{
chs[i] = '1';
}
}
}
if (k != 0){
ans[n - 1] = k;
if (k % 2 == 0){
if (chs[n - 1] == '0'){
chs[n - 1] = '1';
}else{
chs[n - 1] = '0';
}
}
}else{
if (chs[n - 1] == '1'){
chs[n - 1] = '0';
}else{
chs[n - 1] = '1';
}
}
}
System.out.println(String.valueOf(chs));
for (int num : ans){
System.out.print(num + " ");
}
System.out.println();
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 7a85d1420934b7af63b97d0bf8204e66 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) throws IOException{
/* Enter your code here. Read input from STDIN. Print output to STDOUT. Your class should be named Solution. */
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(br.readLine());
while(t--> 0){
String s1[] = br.readLine().split("\\s+");
int n = Integer.parseInt(s1[0]);
int k = Integer.parseInt(s1[1]);
int l = k;
String s2 = br.readLine();
char s3[] = s2.toCharArray();
// for(int i=0;i<n;i++)
// bw.write(s3[i]+"");
int c[] = new int[n];
// bw.write("\n");
int x = 0;
if(k%2==1){
for(int i=0;i<n;i++){
if(k>0 && s3[i]=='1'){
k--;
if(i == n-1)x++;
c[i]++;
}else{
if(s3[i] == '1')s3[i] = '0';
else s3[i] = '1';
if(i == n-1)x++;
}
}
}
else{
for(int i=0;i<n;i++){
if(k>0 && s3[i] == '0'){
k--;
s3[i] = '1';
c[i]++;
}
}
}
if(k>0){
x = x+k;
l = l-x;
if(k%2==1){
if(s3[n-1] == '1')s3[n-1] = '0';
else s3[n-1] = '1';
}
c[n-1]+= k;
}
for(int i=0;i<n;i++)
bw.write(s3[i]+"");
bw.write("\n");
for(int i=0;i<n;i++)
bw.write(c[i]+" ");
bw.write("\n");
}
bw.flush();
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 994866432eb7adbf0b1a6bbf6a4a0e35 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static long mod=(long)1e9+7;
static long[]fac=new long[1002];
static int n, x=0,me,op;
static int[]pe,a,aa, prime=new int[(int)1e7+1];
static int[][]perm;
static long[][]memo;
static Integer[]ps;
static TreeSet<Long>p=new TreeSet<Long>();
public static void main(String[] args) throws Exception{
int t =sc.nextInt();
while(t-->0) {
int n =sc.nextInt();
int k =sc.nextInt();
char[]a=sc.next().toCharArray();
int[]out = new int[n];
int x = k;
int flips = 0;
for (int i = 0; i < a.length; i++) {
if(a[i]=='0'&&flips%2==0||a[i]=='1'&&flips%2==1) {
if(k>0&&k%2==0) {
out[i]++;
k--;
flips++;
}
}else {
if(k%2==1) {
out[i]++;
k--;
flips++;
}
}
}
if(k>0) {
// if(k%2==0) {
// for (int i = 0; i < out.length; i++) {
// if(out[i]%2==0) {
// out[i]+=k;
// break;
// }
// }
// }else {
out[n-1]+=k;
// }
}
for (int i = 0; i < out.length; i++) {
if((x-out[i])%2==1) {
a[i]=a[i]=='0'?'1':'0';
}
}
pw.println(new String(a));
for (int i = 0; i < out.length; i++) {
pw.print(out[i]+" ");
}
pw.println();
}
pw.close();
}
public static long solFul(int m, int o) {
if(o<m)return 0;
if(o == op)return 1;
if(memo[m][o]!=-1) {
return memo[m][o];
}
return memo[m][o] = (solFul(m+1,o)+solFul(m, o+1))%mod;
}
public static long solFree(int m, int o) {
if(m<=o)return 0;
if(m == me)return 1;
if(o == op&&m>op)return 1;
if(memo[m][o]!=-1)return memo[m][o];
return memo[m][o] = (solFree(m+1,o)+solFree(m, o+1))%mod;
}
public static String rev(String s) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < s.length(); i++) {
sb.append(s.charAt(s.length()-1-i));
}
return sb.toString();
}
public static int divNum(int n) {
int total = 1;
while(n>1) {
int p=prime[n];
int count =1;
while(n%p==0) {
n/=p;
count++;
}
total*=count;
}
return total;
}
public static void sieve() {
for (int i = 2; i < prime.length; i++) {
if(prime[i]==0) {
p.add((long)i);
for (int j = i; j < prime.length; j+=i) {
prime[j]++;
}
}
}
}
public static long[] Extended(long p, long q) {
if (q == 0)
return new long[] { p, 1, 0 };
long[] vals = Extended(q, p % q);
long d = vals[0];
long a = vals[2];
long b = vals[1] - (p / q) * vals[2];
return new long[] { d, a, b };
}
public static int LIS(int[] a) {
int n = a.length;
int[] ser = new int[n];
Arrays.fill(ser, Integer.MAX_VALUE);
int cur = -1;
for (int i = 0; i < n; i++) {
int low = 0;
int high = n - 1;
int mid = (low + high) / 2;
while (low <= high) {
if (ser[mid] < a[i]) {
low = mid + 1;
} else {
high = mid - 1;
}
mid = (low + high) / 2;
}
cur = Math.max(cur, high + 1);
ser[high + 1] = Math.min(ser[high + 1], a[i]);
}
return cur + 1;
}
public static void permutation(int idx,int v) {
if(v==(1<<n)-1) {
perm[x++]=pe.clone();
return ;
}
for (int i = 0; i < n; i++) {
if((v&1<<i)==0) {
pe[idx]=aa[i];
permutation(idx+1, v|1<<i);
}
}
return ;
}
public static void sort(int[]a) {
mergesort(a, 0, a.length-1);
}
public static void sortIdx(long[]a,long[]idx) {
mergesortidx(a, idx, 0, a.length-1);
}
public static long C(int a,int b) {
long x=fac[a];
long y=fac[a-b]*fac[b];
return x*pow(y,mod-2)%mod;
}
public static long pow(long a,long b) {
long ans=1;a%=mod;
for(long i=b;i>0;i/=2) {
if((i&1)!=0)
ans=ans*a%mod;
a=a*a%mod;
}
return ans;
}
public static void pre(){
fac[0]=1;
fac[1]=1;
fac[2]=2;
for (int i = 3; i < fac.length; i++) {
fac[i]=fac[i-1]*i%mod;
}
}
public static long eval(String s) {
long p=1;
long res=0;
for (int i = 0; i < s.length(); i++) {
res+=p*(s.charAt(s.length()-1-i)=='1'?1:0);
p*=2;
}
return res;
}
public static String binary(long x) {
String s="";
while(x!=0) {
s=(x%2)+s;
x/=2;
}
return s;
}
public static boolean allSame(String s) {
char x=s.charAt(0);
for (int i = 0; i < s.length(); i++) {
if(s.charAt(i)!=x)return false;
}
return true;
}
public static boolean isPalindrom(String s) {
int l=0;
int r=s.length()-1;
while(l<r) {
if(s.charAt(r--)!=s.charAt(l++))return false;
}
return true;
}
public static boolean isSubString(String s,String t) {
int ls=s.length();
int lt=t.length();
boolean res=false;
for (int i = 0; i <=lt-ls; i++) {
if(t.substring(i, i+ls).equals(s)) {
res=true;
break;
}
}
return res;
}
public static boolean isSorted(long[]a) {
for (int i = 0; i < a.length-1; i++) {
if(a[i]>a[i+1])return false;
}
return true;
}
public static long evaln(String x,int n) {
long res=0;
for (int i = 0; i < x.length(); i++) {
res+=Long.parseLong(x.charAt(x.length()-1-i)+"")*Math.pow(n, i);
}
return res;
}
static void mergesort(int[] arr,int b,int e) {
if(b<e) {
int m=b+(e-b)/2;
mergesort(arr,b,m);
mergesort(arr,m+1,e);
merge(arr,b,m,e);
}
return;
}
static void merge(int[] arr,int b,int m,int e) {
int len1=m-b+1,len2=e-m;
int[] l=new int[len1];
int[] r=new int[len2];
for(int i=0;i<len1;i++)l[i]=arr[b+i];
for(int i=0;i<len2;i++)r[i]=arr[m+1+i];
int i=0,j=0,k=b;
while(i<len1 && j<len2) {
if(l[i]<r[j])arr[k++]=l[i++];
else arr[k++]=r[j++];
}
while(i<len1)arr[k++]=l[i++];
while(j<len2)arr[k++]=r[j++];
return;
}
static void mergesortidx(long[] arr,long[]idx,int b,int e) {
if(b<e) {
int m=b+(e-b)/2;
mergesortidx(arr,idx,b,m);
mergesortidx(arr,idx,m+1,e);
mergeidx(arr,idx,b,m,e);
}
return;
}
static void mergeidx(long[] arr,long[]idx,int b,int m,int e) {
int len1=m-b+1,len2=e-m;
long[] l=new long[len1];
long[] lidx=new long[len1];
long[] r=new long[len2];
long[] ridx=new long[len2];
for(int i=0;i<len1;i++) {
l[i]=arr[b+i];
lidx[i]=idx[b+i];
}
for(int i=0;i<len2;i++) {
r[i]=arr[m+1+i];
ridx[i]=idx[m+1+i];
}
int i=0,j=0,k=b;
while(i<len1 && j<len2) {
if(l[i]<=r[j]) {
arr[k++]=l[i++];
idx[k-1]=lidx[i-1];
}
else {
arr[k++]=r[j++];
idx[k-1]=ridx[j-1];
}
}
while(i<len1) {
idx[k]=lidx[i];
arr[k++]=l[i++];
}
while(j<len2) {
idx[k]=ridx[j];
arr[k++]=r[j++];
}
return;
}
static long mergen(int[] arr,int b,int m,int e) {
int len1=m-b+1,len2=e-m;
int[] l=new int[len1];
int[] r=new int[len2];
for(int i=0;i<len1;i++)l[i]=arr[b+i];
for(int i=0;i<len2;i++)r[i]=arr[m+1+i];
int i=0,j=0,k=b;
long c=0;
while(i<len1 && j<len2) {
if(l[i]<r[j])arr[k++]=l[i++];
else {
arr[k++]=r[j++];
c=c+(long)(len1-i);
}
}
while(i<len1)arr[k++]=l[i++];
while(j<len2)arr[k++]=r[j++];
return c;
}
static long mergesortn(int[] arr,int b,int e) {
long c=0;
if(b<e) {
int m=b+(e-b)/2;
c=c+(long)mergesortn(arr,b,m);
c=c+(long)mergesortn(arr,m+1,e);
c=c+(long)mergen(arr,b,m,e);
}
return c;
}
public static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static long sumd(long x) {
long sum=0;
while(x!=0) {
sum+=x%10;
x=x/10;
}
return sum;
}
public static ArrayList<Integer> findDivisors(int n){
ArrayList<Integer>res=new ArrayList<Integer>();
for (int i=1; i<=Math.sqrt(n); i++)
{
if (n%i==0)
{
// If divisors are equal, print only one
if (n/i == i)
res.add(i);
else {
res.add(i);
res.add(n/i);
}
}
}
return res;
}
public static void sort2darray(Integer[][]a){
Arrays.sort(a,Comparator.<Integer[]>comparingInt(x -> x[0]).thenComparingInt(x -> x[1]));
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
public int[] nextArrint(int size) throws IOException {
int[] a=new int[size];
for (int i = 0; i < a.length; i++) {
a[i]=sc.nextInt();
}
return a;
}
public long[] nextArrlong(int size) throws IOException {
long[] a=new long[size];
for (int i = 0; i < a.length; i++) {
a[i]=sc.nextLong();
}
return a;
}
public int[][] next2dArrint(int rows,int columns) throws IOException{
int[][]a=new int[rows][columns];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
a[i][j]=sc.nextInt();
}
}
return a;
}
public long[][] next2dArrlong(int rows,int columns) throws IOException{
long[][]a=new long[rows][columns];
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
a[i][j]=sc.nextLong();
}
}
return a;
}
}
static class Pair{
long x;
long y;
public Pair(long x,long y) {
this.x=x;
this.y=y;
}
}
static Scanner sc=new Scanner(System.in);
static PrintWriter pw=new PrintWriter(System.out);
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 2e408ae000676b46ec4c3cc27e976431 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class a {
public static void main(String[] args){
FastScanner sc = new FastScanner();
int t = sc.nextInt();
while(t-- > 0){
int n = sc.nextInt();
int k = sc.nextInt();
String s = sc.next();
StringBuilder ans1 = new StringBuilder();
StringBuilder ans2 = new StringBuilder();
if(k == 0){
System.out.println(s);
for(int i=0; i<n; i++){
ans2.append("0 ");
}
System.out.println(ans2);
continue;
}
int arr[] = new int[n];
for(int i=0; i<n; i++){
if(s.charAt(i) == '0'){
if(k%2 == 0){
arr[i] = 1;
}
else{
arr[i] = 0;
}
}
else{
if(k%2 == 0){
arr[i] = 0;
}
else{
arr[i] = 1;
}
}
}
int count = 0;
int idx = -1;
for(int i=0; i<n; i++){
if(arr[i] == 1){
count++;
}
if(count == k){
idx = i+1;
}
}
if(idx == -1 || idx == n){
int rem = k-count;
if(rem%2 == 0){
for(int i=0; i<n; i++){
ans1.append(1);
}
System.out.println(ans1);
for(int i=0; i<n; i++){
if(i == n-1){
ans2.append(arr[i] + rem);
}
else{
ans2.append(arr[i] + " ");
}
}
System.out.println(ans2);
}
else{
for(int i=0; i<n; i++){
if(i == n-1){
ans1.append(0);
}
else{
ans1.append(1);
}
}
System.out.println(ans1);
for(int i=0; i<n; i++){
if(i == n-1){
ans2.append(arr[i] + rem);
}
else{
ans2.append(arr[i] + " ");
}
}
System.out.println(ans2);
}
}
else{
for(int i=0; i<idx; i++){
ans1.append('1');
}
for(int i=idx; i<n; i++){
if(k%2 == 0){
ans1.append(s.charAt(i));
}
else{
if(s.charAt(i) == '1'){
ans1.append(0);
}
else{
ans1.append(1);
}
}
}
System.out.println(ans1);
for(int i=0; i<idx; i++){
ans2.append(arr[i] + " ");
}
for(int i=idx; i<n; i++){
ans2.append("0 ");
}
System.out.println(ans2);
}
}
}
}
class FastScanner
{
//I don't understand how this works lmao
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
private char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
public int nextInt() {
return (int) nextLong();
}
public int[] nextInts(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) nextLong();
}
return res;
}
public long[] nextLongs(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = nextLong();
}
return res;
}
public long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
public double nextDouble() {
double cur = nextLong();
return c != '.' ? cur : cur + nextLong() / cnt;
}
public double[] nextDoubles(int N) {
double[] res = new double[N];
for (int i = 0; i < N; i++) {
res[i] = nextDouble();
}
return res;
}
public String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
public boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 284dd35ef8ba3e1b70a77b708fa6b99a | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author real
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
BBitFlipping solver = new BBitFlipping();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class BBitFlipping {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int k = in.nextInt();
String s = in.readString();
int parity = k % 2;
int initK = k;
int num[] = new int[n];
int ans[] = new int[n];
for (int i = 0; i < n; i++) {
num[i] = s.charAt(i) - '0';
}
for (int i = 0; i < n; i++) {
if (k <= 0)
break;
int val = num[i] + initK;
if (val % 2 == 0) {
ans[i] = 1;
k--;
}
}
ans[n - 1] += k;
for (int i = 0; i < n; i++) {
int val = num[i] + initK - ans[i];
if (val % 2 != 0) {
out.print('1');
} else {
out.print('0');
}
}
out.println();
for (int i = 0; i < n; i++) {
out.print(ans[i] + " ");
}
out.println();
}
}
static class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar;
private int snumChars;
public InputReader(InputStream st) {
this.stream = st;
}
public int read() {
//*-*------clare-----anjlika---
//remeber while comparing 2 non primitive data type not to use ==
//remember Arrays.sort for primitive data has worst time case complexity of 0(n^2) bcoz it uses quick sort
//again silly mistakes ,yr kb tk krta rhega ye mistakes
//try to write simple codes ,break it into simple things
//knowledge>rating
/*
public class Main
implements Runnable{
public static void main(String[] args) {
new Thread(null,new Main(),"Main",1<<26).start();
}
public void run() {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
libraries.InputReader in = new libraries.InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();//chenge the name of task
solver.solve(1, in, out);
out.close();
}
*/
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public String next() {
return readString();
}
public boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 6c4844b48373c5830e0d85b9c73c66ef | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
//import java.math.BigInteger;
public class code{
public static class Pair{
int a;
int b;
Pair(int i,int j){
a=i;
b=j;
}
}
public static int GCD(int a, int b)
{
if (b == 0)
return a;
return GCD(b, a % b);
}
public static void shuffle(int a[], int n)
{
for (int i = 0; i < n; i++) {
// getting the random index
int t = (int)Math.random() * a.length;
// and swapping values a random index
// with the current index
int x = a[t];
a[t] = a[i];
a[i] = x;
}
}
public static PrintWriter out = new PrintWriter(System.out);
public static long[][] dp;
//@SuppressWarnings("unchecked")
public static void main(String[] arg) throws IOException{
//Reader in=new Reader();
//PrintWriter out = new PrintWriter(System.out);
//Scanner in = new Scanner(System.in);
FastScanner in=new FastScanner();
int t=in.nextInt();
while(t-- > 0){
int n=in.nextInt();
int k=in.nextInt();
String s=in.next();
int[] arr=new int[n];
int[] count=new int[n];
if(k==0){
out.println(s);
for(int i=0;i<n;i++) out.print(0+" ");
out.println();
continue;
}
//int f=n-1;
for(int i=0;i<n;i++){
arr[i]=s.charAt(i)-'0';
// if(arr[i]==1){
// if(f==n-1) f=i;
// }
}
int c=0;
int last=arr[n-1];
for(int i=0;i<n;i++){
int r=k-c;
if(arr[i]==0){
if(c%2==0){
if(r>0 && r%2==0){
c++;
arr[i]=1;
count[i]=1;
}
if(r>0 && r%2==1){
arr[i]=1;
}
}
else{
arr[i]=1;
if(r>0 && r%2==1){
c++;
count[i]=1;
}
}
}
else{
if(c%2==0){
if(r>0 && r%2==1){
c++;
count[i]=1;
}
}
else{
arr[i]=0;
if(r>0 && r%2==0){
c++;
count[i]=1;
arr[i]=1;
}
else if(r>0 && r%2==1){
arr[i]=1;
}
}
}
//out.println("check __ "+ i + " "+ arr[i]+" "+count[i]+" "+c);
}
if(k-c>0){
count[n-1]+=(k-c);
int r=k-count[n-1];
if(r%2==0) arr[n-1]=last;
else arr[n-1]=last^1;
}
for(int i=0;i<n;i++) out.print(arr[i]);
out.println();
for(int i=0;i<n;i++) out.print(count[i]+" ");
out.println();
}
out.flush();
}
}
class Fenwick{
int[] bit;
public Fenwick(int n){
bit=new int[n];
//int sum=0;
}
public void update(int index,int val){
index++;
for(;index<bit.length;index += index&(-index)) bit[index]+=val;
}
public int presum(int index){
int sum=0;
for(;index>0;index-=index&(-index)) sum+=bit[index];
return sum;
}
public int sum(int l,int r){
return presum(r+1)-presum(l);
}
}
class FastScanner {
private int BS = 1 << 16;
private char NC = (char) 0;
private byte[] buf = new byte[BS];
private int bId = 0, size = 0;
private char c = NC;
private double cnt = 1;
private BufferedInputStream in;
public FastScanner() {
in = new BufferedInputStream(System.in, BS);
}
public FastScanner(String s) {
try {
in = new BufferedInputStream(new FileInputStream(new File(s)), BS);
} catch (Exception e) {
in = new BufferedInputStream(System.in, BS);
}
}
private char getChar() {
while (bId == size) {
try {
size = in.read(buf);
} catch (Exception e) {
return NC;
}
if (size == -1) return NC;
bId = 0;
}
return (char) buf[bId++];
}
public int nextInt() {
return (int) nextLong();
}
public int[] nextInts(int N) {
int[] res = new int[N];
for (int i = 0; i < N; i++) {
res[i] = (int) nextLong();
}
return res;
}
public long[] nextLongs(int N) {
long[] res = new long[N];
for (int i = 0; i < N; i++) {
res[i] = nextLong();
}
return res;
}
public long nextLong() {
cnt = 1;
boolean neg = false;
if (c == NC) c = getChar();
for (; (c < '0' || c > '9'); c = getChar()) {
if (c == '-') neg = true;
}
long res = 0;
for (; c >= '0' && c <= '9'; c = getChar()) {
res = (res << 3) + (res << 1) + c - '0';
cnt *= 10;
}
return neg ? -res : res;
}
public double nextDouble() {
double cur = nextLong();
return c != '.' ? cur : cur + nextLong() / cnt;
}
public double[] nextDoubles(int N) {
double[] res = new double[N];
for (int i = 0; i < N; i++) {
res[i] = nextDouble();
}
return res;
}
public String next() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c > 32) {
res.append(c);
c = getChar();
}
return res.toString();
}
public String nextLine() {
StringBuilder res = new StringBuilder();
while (c <= 32) c = getChar();
while (c != '\n') {
res.append(c);
c = getChar();
}
return res.toString();
}
public boolean hasNext() {
if (c > 32) return true;
while (true) {
c = getChar();
if (c == NC) return false;
else if (c > 32) return true;
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | a81a1b3d509a2dbc14dfc6b2527069e4 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.Scanner;
public class BitFlipping {
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int t= sc.nextInt();
for(int i=0;i<t;i++){
int n= sc.nextInt();
int k=sc.nextInt();
int rest=k;
String s=sc.next();
int[] times=new int[n];
for(int j=0;j<n;j++){
if(s.charAt(j)=='0'){
if(k%2==0){
if(rest>0){
rest--;
times[j]+=1;
}
}
}
if (s.charAt(j)=='1'){
if (k%2==1){
if (rest>0){
rest--;
times[j]+=1;
}
}
}
}
if (rest%2==0){
times[0]+=rest;
}
else {
times[n-1]+=rest;
}
StringBuffer res=new StringBuffer();
if(k%2==0) {
for (int j = 0; j < n; j++) {
if (s.charAt(j) == '0') {
if (times[j] % 2 == 0) {
res.append(0);
} else {
res.append(1);
}
} else if (s.charAt(j) == '1') {
if (times[j] % 2 == 0) {
res.append(1);
} else {
res.append(0);
}
}
}
}
else {
for (int j = 0; j < n; j++) {
if (s.charAt(j) == '0') {
if (times[j] % 2 == 0) {
res.append(1);
} else {
res.append(0);
}
} else if (s.charAt(j) == '1') {
if (times[j] % 2 == 0) {
res.append(0);
} else {
res.append(1);
}
}
}
}
System.out.println(res);
for (int time:times){
System.out.print(time+" ");
}
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | b24dd08c11f91f7c79d9a5792d03e601 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.lang.reflect.Array;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.PriorityQueue;
import java.util.Scanner;
import java.util.StringTokenizer;
import javax.print.DocFlavor.INPUT_STREAM;
public class Main {
public static void main(String[] args) throws Exception {
Sol obj=new Sol();
obj.runner();
}
}
class Sol{
FastScanner fs=new FastScanner();
Scanner sc=new Scanner(System.in);
PrintWriter out=new PrintWriter(System.out);
void runner() throws Exception{
int T=1;
//T=sc.nextInt();
//preCompute();
T=fs.nextInt();
while(T-->0) {
solve(T);
}
out.close();
System.gc();
}
private void preCompute() {
}
private void solve(int T) throws Exception {
int n=fs.nextInt();
int k=fs.nextInt();
String s=fs.next();
char arr[]=s.toCharArray();
int t[]=new int[ n ];
int temp=k;
if( k%2==0 ) {
for(int i=0;i<arr.length&& k>0;i++) {
if( arr[i]=='0' ) {
t[i]++;
k--;
}
}
t[n-1]+=k;
}else {
for(int i=0;i<arr.length&& k>0;i++) {
if( arr[i]=='1' ) {
t[i]++;
k--;
}
}
t[n-1]+=k;
}
StringBuilder str=new StringBuilder();
for(int i=0;i<n;i++ ) {
if( (temp-t[i])%2==0 ) {
//System.out.print(arr[i]);
str.append(arr[i]);
}else {
if( arr[i]=='1' )
//System.out.print('0');
str.append("0");
else {
//System.out.print('1');
str.append("1");
}
}
}
System.out.println(str.toString());
for(int i=0;i<n;i++) {
System.out.print(t[i]+" ");
}
System.out.println();
/*
int n=fs.nextInt();
int r=fs.nextInt();
int b=fs.nextInt();
char f , s;
if( r> b ) {
f='R';
s='B';
}else {
f='B';
s='R';
r=(r+b)-(b=r);
}
int dif=( r+b-1 )/b;
while( r > 0 || b > 0 ) {
for( int i=0;i<dif;i++ ) {
System.out.print(f);
}
r-=dif;
b--;
System.out.print(s);
}
System.out.println();
/**/
}
static class FastScanner {
BufferedReader br;
StringTokenizer st ;
FastScanner(){
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer("");
}
FastScanner(String file) {
try {
br = new BufferedReader(new InputStreamReader(new FileInputStream(file)));
st = new StringTokenizer("");
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
System.out.println("file not found");
e.printStackTrace();
}
}
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
String readLine() throws IOException{
return br.readLine();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 244bd78bf93586908f0201c8429d8be4 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.StreamTokenizer;
import java.math.BigInteger;
import static java.lang.System.out;
import static java.lang.Math.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
Read in = new Read(System.in);
int tN = in.nextInt();
while(tN > 0) {
tN--;
int n=in.nextInt();
int k = in.nextInt();
String s=in.next();
int ans [] =new int [n];
int r [] =new int [n];
int cot=k;
for(int i=0;i< n;i++) {
int a=s.charAt(i) - '0';
if(a==0&&k%2==0&&cot>0) {
ans[i]++;
r[i]=1;
cot--;
}else if(a==1&&k%2==1&&cot>0) {
ans[i]++;
r[i]=1;
cot--;
}else {
r[i]=a^(k%2);
}
}
if(cot>0) {
r[n-1]=r[n-1]^(cot%2);
ans[n-1]+=cot;
}
StringBuilder ss=new StringBuilder();
StringBuilder sss=new StringBuilder();
for(int i=0;i<n;i++) {
ss.append(r[i]);
}
for(int i=0;i<n;i++) {
sss.append(ans[i]);
sss.append(' ');
}
out.println(ss.toString());
out.println(sss.toString());
}
}
static class Read {//自定义快读 Read
public BufferedReader reader;
public StringTokenizer tokenizer;
public Read(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
String str = null;
try {
str = reader.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public Double nextDouble() {
return Double.parseDouble(next());
}
public BigInteger nextBigInteger() {
return new BigInteger(next());
}
}
static long lcm(long a, long b) {
return (a * b) / gcd(a, b);
}
static long gcd(long a, long b) {
return (a % b == 0) ? b : gcd(b, a % b);
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | d5ee4f60393ad874c5c1885a40c23b1d | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.io.*;
import java.util.*;
public class B {
static class Pair
{
int f;int s; //
Pair(){}
Pair(int f,int s){ this.f=f;this.s=s;}
}
static class Fast {
BufferedReader br;
StringTokenizer st;
public Fast() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readArray1(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
String nextLine() {
String str = "";
try {
str = br.readLine().trim();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/* static long noOfDivisor(long a)
{
long count=0;
long t=a;
for(long i=1;i<=(int)Math.sqrt(a);i++)
{
if(a%i==0)
count+=2;
}
if(a==((long)Math.sqrt(a)*(long)Math.sqrt(a)))
{
count--;
}
return count;
}*/
static boolean isPrime(long a) {
for (long i = 2; i <= (long) Math.sqrt(a); i++) {
if (a % i == 0)
return false;
}
return true;
}
static void primeFact(int n) {
int temp = n;
HashMap<Integer, Integer> h = new HashMap<>();
for (int i = 2; i * i <= n; i++) {
if (temp % i == 0) {
int c = 0;
while (temp % i == 0) {
c++;
temp /= i;
}
h.put(i, c);
}
}
if (temp != 1)
h.put(temp, 1);
}
static void reverseArray(int a[]) {
int n = a.length;
for (int i = 0; i < n / 2; i++) {
a[i] = a[i] ^ a[n - i - 1];
a[n - i - 1] = a[i] ^ a[n - i - 1];
a[i] = a[i] ^ a[n - i - 1];
}
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void sort(long [] a) {
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void main(String args[]) throws IOException {
Fast sc = new Fast();
PrintWriter out = new PrintWriter(System.out);
int t1 = sc.nextInt();
while (t1-- > 0) {
int n=sc.nextInt();int k=sc.nextInt();
String s2=sc.nextLine();char s[]=s2.toCharArray();
int ans[]=new int[n];Arrays.fill(ans,0);
if(k%2==0)
{
StringBuffer ans1 = new StringBuffer();
TreeSet<Integer> ts = new TreeSet<>();
int k1 = 0;
for (int i = 0; i < n; i++)
{
if (i != n - 1 && s[i] == '0' && k1 < k)
{
ans1.append('1');
ts.add(i);
k1++;
ans[i] = 1;
}
else if (i!=n-1&&k1<k&&s[i] == '1')
ans1.append('1');
else if (k1 >= k)
ans1.append(s[i]);
}
if (k1 < k)
{
ans[n - 1] = ans[n - 1] + k - k1;
if ((k-ans[n - 1]) % 2 == 0)
ans1.append(s[n - 1]);
else ans1.append((char)((1 - (s[n - 1] - '0')) + 48));
}
out.println(ans1);
}
else { //
StringBuffer ans1 = new StringBuffer();
TreeSet<Integer> ts = new TreeSet<>();
int k1 = 0;
for (int i = 0; i < n; i++) {
if (i != n - 1 && s[i] == '1' && k1 < k) {
ans1.append('1');
ts.add(i);
k1++;
ans[i] = 1;
} else if (i!=n-1&&k1<k&&s[i] == '0')
ans1.append('1');
else if (k1 >= k)
{
if(s[i]=='0')
ans1.append('1');
else
ans1.append('0');
}
}
if (k1 < k) {
ans[n - 1] = ans[n - 1] + k - k1;
if ((k-ans[n - 1]) % 2 == 0)
ans1.append(s[n - 1]);
else ans1.append((char)((1 - (s[n - 1] - '0')) +48));
}
out.println(ans1);
}
for(int ne:ans)
out.print(ne+" ");
out.println();
}
out.close();
}
}
/*
8
7
2
1110010
7
2
1110011
7
3
1110010
7
3
1110011
7
8
1110010
7
8
1110010
7
5
1110010
7
5
1110011
*/ | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 6cb80a100d3ce68258b991b381132a3e | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import org.omg.PortableInterceptor.INACTIVE;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Scanner;
import java.util.StringTokenizer;
public class B {
static StringTokenizer st;
static PrintWriter pw;
static BufferedReader br;
static String nextToken() {
try {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
static int nextInt() {
return Integer.parseInt(nextToken());
}
static long nextLong() {
return Long.parseLong(nextToken());
}
public static void main(String[] args) {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(System.out);
run();
pw.close();
}
private static void run() {
int t = nextInt();
if(t == 0){
}
for (int i = 0; i < t; i++) {
int n = nextInt();
int k = nextInt();
String s = nextToken();
int chars[] = new int[n];
for (int j = 0; j < n; j++) {
chars[j] = s.charAt(j) - '0';
}
int[] ans = new int[n];
if (k % 2 == 1) {
int c = n - 1;
for (int j = 0; j < n; j++) {
if (chars[j] == 1) {
c = j;
break;
}
}
swapAll(chars);
chars[c] ^= 1;
ans[c]++;
k--;
}
int l = -1;
for (int j = 0; k > 0 && j < n; j++) {
if (chars[j] == 0) {
if (k % 2 == 0) {
l = j;
k--;
} else {
ans[l]++;
ans[j]++;
chars[l] = 1;
chars[j] = 1;
l = -1;
k--;
}
}
}
if (k == 0) {
myPrint(chars, ans);
} else {
if (k % 2 == 1) {
k--;
ans[l]++;
chars[l] ^= 1;
ans[n - 1]++;
chars[n - 1] ^= 1;
}
ans[n - 1] += k;
myPrint(chars, ans);
}
}
}
private static void swapAll(int[] chars) {
for (int i = 0; i < chars.length; i++) {
chars[i] ^= 1;
}
}
private static void myPrint(int[] chars, int[] ans) {
for (int j = 0; j < chars.length; j++) {
pw.print(chars[j]);
}
pw.println();
for (int j = 0; j < ans.length; j++) {
pw.print(ans[j] + " ");
}
pw.println();
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 71a599fea9a0c2678aabb53b937dbb72 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | /*
* Author: rickytsung(En Chi Tsung)
* Date: 2022/7/30
* Problem: CF Round 782
*/
import java.util.*;
import java.time.*;
import java.io.*;
import java.math.*;
public class Main {
public static BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
public static BufferedWriter bw=new BufferedWriter(new OutputStreamWriter(System.out));
public static long ret,ans=0,x,y;
public static int reti,rd;
public static boolean neg;
public static final int mod=998244353,mod2=1_000_000_007,ma=600005;
public static Useful us=new Useful(mod);
public static int[] A=new int[ma];
public static int[] Aans=new int[ma];
public static int[] B=new int[ma];
public static int[] Bans=new int[ma];
public static void main(String[] args) throws Exception{
//String [] in=br.readLine().split(" ");
final int t=readint();
for(int z=0;z<t;z++) {
final int n=readint();
final int k=readint();
br.readLine().split(" ");
final String in=(br.readLine().split(" "))[0];
for(int i=0;i<n;i++) {
//System.out.println(in);
A[i]=in.charAt(i)-'0';
Aans[i]=0;
if((k&1)==1) {
A[i]^=1;
}
}
int j=k;
for(int i=0;i<n&&j>0;i++) {
if(A[i]==0) {
A[i]=1;
j--;
Aans[i]=1;
}
}
Aans[n-1]+=j;
A[n-1]^=(j&1);
for(int i=0;i<n;i++) {
bw.write(A[i]+"");
}
bw.write("\n");
for(int i=0;i<n;i++) {
bw.write(Aans[i]+" ");
}
bw.write("\n");
}
bw.flush();
}
public static int readint() throws Exception{
reti=0;
neg=false;
while(rd<48||rd>57) {
rd=br.read();
if(rd=='-') {
neg=true;
}
}
while(rd>47&&rd<58) {
reti*=10;
reti+=(rd&15);
rd=br.read();
}
if(neg)reti*=-1;
return reti;
}
public static long readlong() throws Exception{
ret=0;
neg=false;
while(rd<48||rd>57) {
rd=br.read();
if(rd=='-') {
neg=true;
}
}
while(rd>47&&rd<58) {
ret*=10;
ret+=(rd&15);
rd=br.read();
}
if(neg)ret*=-1;
return ret;
}
}
/*
*/
/*
*/
class Pii{
int x,y,z;
Pii(int a,int b,int c){
x=a;
y=b;
z=c;
}
@Override
public boolean equals(Object o) {
if (this==o) return true;
if (!(o instanceof Pii)) return false;
Pii key = (Pii) o;
return x==key.x&&y==key.y;
}
@Override
public int hashCode() {
long result=x;
result=31*result+y;
return (int)(result%998244353);
}
}
class Pll{
long x,y;
Pll(long a,long b){
x=a;
y=b;
}
@Override
public boolean equals(Object o) {
if (this==o) return true;
if (!(o instanceof Pll)) return false;
Pll key = (Pll) o;
return x==key.x&&y==key.y;
}
@Override
public int hashCode() {
long result=x;
result=31*result+y;
return (int)(result%998244353);
}
}
class Useful{
long mod;
Useful(long m){mod=m;}
void al(ArrayList<ArrayList<Integer>> a,int n){for(int i=0;i<n;i++) {a.add(new ArrayList<Integer>());}}
void arr(int[] a,int init) {for(int i=0;i<a.length;i++) {a[i]=init;}}
void arr(long[] a,long init) {for(int i=0;i<a.length;i++) {a[i]=init;}}
void arr(int[][] a,int init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {a[i][j]=init;}}}
void arr(long[][] a,long init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {a[i][j]=init;}}}
void arr(int[][][] a,int init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {a[i][j][k]=init;}}}}
void arr(long[][][] a,long init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {a[i][j][k]=init;}}}}
void arr(int[][][][] a,int init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {Arrays.fill(a[i][j][k],init);}}}}
void arr(long[][][][] a,long init) {for(int i=0;i<a.length;i++) {for(int j=0;j<a[i].length;j++) {for(int k=0;k<a[i][j].length;k++) {Arrays.fill(a[i][j][k],init);}}}}
long fast(long x,long pw) {
if(pw<=0)return 1;
if(pw==1)return x;
long h=fast(x,pw>>1);
if((pw&1)==0) {
return h*h%mod;
}
return h*h%mod*x%mod;
}
long[][] mul(long[][] a,long[][] b){
long[][] c=new long[a.length][b[0].length];
for(int i=0;i<a.length;i++) {
for(int j=0;j<b[0].length;j++) {
for(int k=0;k<a[0].length;k++) {
c[i][j]+=a[i][k]*b[k][j];
c[i][j]%=mod;
}
}
}
return c;
}
long[][] fast(long[][] x,int pw){
if(pw==1)return x;
long[][] h=fast(x,pw>>1);
if((pw&1)==0) {
return mul(h,h);
}
else {
return mul(mul(h,h),x);
}
}
int gcd(int a,int b) {
if(a==0)return b;
if(b==0)return a;
return gcd(b,a%b);
}
long gcd(long a,long b) {
if(a==0)return b;
if(b==0)return a;
return gcd(b,a%b);
}
long lcm(long a, long b){
return a*(b/gcd(a,b));
}
double log2(int x) {
return (Math.log(x)/Math.log(2));
}
double log2(long x) {
return (Math.log(x)/Math.log(2));
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 81865ef55d7515044150abf63dfa0cdd | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Balabizo {
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int tt = sc.nextInt();
while(tt-->0){
int n = sc.nextInt() , k = sc.nextInt() , kk = k;
char[] c = sc.next().toCharArray();
int[] f = new int[n];
for(int i=0; i<n && kk>0 ;i++){
if(k%2 == c[i] - '0'){
f[i] = 1;
kk--;
}
}
f[n-1] += kk;
for(int i=0; i<n ;i++){
if((k-f[i])%2 == 1 )
c[i] = (char) ('1' - (c[i] - '0'));
}
pw.println(new String(c));
for(int i : f)
pw.print(i+" ");
pw.println();
}
pw.flush();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws IOException {
br = new BufferedReader(new FileReader(file));
}
public Scanner(FileReader r) {
br = new BufferedReader(r);
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public String readAllLines(BufferedReader reader) throws IOException {
StringBuilder content = new StringBuilder();
String line;
while ((line = reader.readLine()) != null) {
content.append(line);
content.append(System.lineSeparator());
}
return content.toString();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
String x = next();
StringBuilder sb = new StringBuilder("0");
double res = 0, f = 1;
boolean dec = false, neg = false;
int start = 0;
if (x.charAt(0) == '-') {
neg = true;
start++;
}
for (int i = start; i < x.length(); i++)
if (x.charAt(i) == '.') {
res = Long.parseLong(sb.toString());
sb = new StringBuilder("0");
dec = true;
} else {
sb.append(x.charAt(i));
if (dec)
f *= 10;
}
res += Long.parseLong(sb.toString()) / f;
return res * (neg ? -1 : 1);
}
public long[] nextlongArray(int n) throws IOException {
long[] a = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public Long[] nextLongArray(int n) throws IOException {
Long[] a = new Long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
public int[] nextIntArray(int n) throws IOException {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public Integer[] nextIntegerArray(int n) throws IOException {
Integer[] a = new Integer[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
public boolean ready() throws IOException {
return br.ready();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 213a720f805dabbf4e3ef432cdb30260 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | //---#ON_MY_WAY---
//---#THE_SILENT_ONE---
import static java.lang.Math.*;
import java.io.*;
import java.math.*;
import java.util.*;
public class apples {
static FastReader x = new FastReader();
static OutputStream outputStream = System.out;
static PrintWriter out = new PrintWriter(outputStream);
/*---------------------------------------CODE STARTS HERE-------------------------*/
public static void main(String[] args) throws NumberFormatException, IOException {
long startTime = System.nanoTime();
int mod = 1000000007;
int t = x.nextInt();
StringBuilder str = new StringBuilder();
while (t > 0) {
int n = x.nextInt(), k = x.nextInt();
char a[] = x.next().toCharArray();
int b[] = new int[n];
int flip = 0;
for(int i = 0; i < n&&flip<k; i++) {
if(k%2==0) {
if(a[i]=='0') {
b[i] = 1;
flip++;
}
else b[i] = 0;
}
else {
if(a[i]=='0') b[i] = 0;
else {
b[i] = 1;
flip++;
}
}
if(flip==k) break;
}
if(flip!=k) b[n-1] += (k-flip);
for(int i = 0; i < n; i++) {
if((k-b[i])%2==0) str.append(a[i]);
else {
if(a[i]=='0') str.append(1);
else str.append(0);
}
}
str.append("\n");
for(int i : b) str.append(i+" ");
str.append("\n");
t--;
}
out.println(str);
out.flush();
long endTime = System.nanoTime();
//System.out.println((endTime-startTime)/1000000000.0);
}
/*--------------------------------------------FAST I/O-------------------------------*/
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
char nextchar() {
char ch = ' ';
try {
ch = (char) br.read();
} catch (IOException e) {
e.printStackTrace();
}
return ch;
}
}
/*--------------------------------------------HELPER---------------------------------*/
static class pair implements Comparable<pair> {
int x, y;
public pair(int a, int b) {
x = a;
y = b;
}
@Override
public int hashCode() {
int hash = 3;
hash = 47 * hash + this.x;
hash = 47 * hash + this.y;
return hash;
}
@Override
public boolean equals(Object obj) {
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final pair other = (pair) obj;
if (this.x != other.x) {
return false;
}
if (this.y != other.y) {
return false;
}
return true;
}
@Override
public int compareTo(apples.pair o) {
if(this.x==o.x) return this.y-o.y;
return this.x-o.x;
}
}
/*--------------------------------------------BOILER PLATE---------------------------*/
static int[] readarr(int n) {
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = x.nextInt();
}
return arr;
}
static int[] sortint(int a[]) {
ArrayList<Integer> al = new ArrayList<>();
for (int i : a) {
al.add(i);
}
Collections.sort(al);
for (int i = 0; i < a.length; i++) {
a[i] = al.get(i);
}
return a;
}
static long[] sortlong(long a[]) {
ArrayList<Long> al = new ArrayList<>();
for (long i : a) {
al.add(i);
}
Collections.sort(al);
for (int i = 0; i < al.size(); i++) {
a[i] = al.get(i);
}
return a;
}
static long pow(long x, long y) {
long result = 1;
while (y > 0) {
if (y % 2 == 0) {
x = x * x;
y = y / 2;
} else {
result = result * x;
y = y - 1;
}
}
return result;
}
static long pow(long x, long y, long mod) {
long result = 1;
x %= mod;
while (y > 0) {
if (y % 2 == 0) {
x = (x % mod * x % mod) % mod;
y /= 2;
} else {
result = (result % mod * x % mod) % mod;
y--;
}
}
return result;
}
static int[] revsort(int a[]) {
ArrayList<Integer> al = new ArrayList<>();
for (int i : a) {
al.add(i);
}
Collections.sort(al, Comparator.reverseOrder());
for (int i = 0; i < a.length; i++) {
a[i] = al.get(i);
}
return a;
}
static int[] gcd(int a, int b, int ar[]) {
if (b == 0) {
ar[0] = a;
ar[1] = 1;
ar[2] = 0;
return ar;
}
ar = gcd(b, a % b, ar);
int t = ar[1];
ar[1] = ar[2];
ar[2] = t - (a / b) * ar[2];
return ar;
}
static boolean[] esieve(int n) {
boolean p[] = new boolean[n + 1];
Arrays.fill(p, true);
for (int i = 2; i * i <= n; i++) {
if (p[i] == true) {
for (int j = i * i; j <= n; j += i) {
p[j] = false;
}
}
}
return p;
}
static ArrayList<Integer> primes(int n) {
boolean p[] = new boolean[n + 1];
ArrayList<Integer> al = new ArrayList<>();
Arrays.fill(p, true);
int i = 0;
for (i = 2; i * i <= n; i++) {
if (p[i] == true) {
al.add(i);
for (int j = i * i; j <= n; j += i) {
p[j] = false;
}
}
}
for (i = i; i <= n; i++) {
if (p[i] == true) {
al.add(i);
}
}
return al;
}
static int gcd(int a, int b) {
if (a == 0) {
return b;
}
return gcd(b % a, a);
}
static long gcd(long a, long b) {
if (a == 0) {
return b;
}
return gcd(b % a, a);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | ee6286ed157dccb23eb4213b0382ff8f | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class practice {
public static void main(String[] args) throws Exception {
Scanner s= new Scanner(System.in);
int t=s.nextInt();
while(t-->0) {
int n=s.nextInt();
int k=s.nextInt();
String str=s.next();
int arr[]= new int[n];
StringBuilder ans= new StringBuilder();
if(k%2==0) {
for(int i=0; i<n;i++) {
if(k!=0) {
if(str.charAt(i)=='0') {
ans.append(1);
arr[i]++;
k--;
}else {
ans.append(1);
}
}else {
if(str.charAt(i)=='1') {
ans.append(1);
}else {
ans.append(0);
}
}
}
if(k!=0) {
if(k%2!=0) {
ans.deleteCharAt(n-1);
ans.append(0);
}
arr[n-1]+=k;
}
}else {
for(int i=0; i<n;i++) {
if(k!=0) {
if(str.charAt(i)=='1') {
ans.append(1);
arr[i]++;
k--;
}else {
ans.append(1);
}
}else {
if(str.charAt(i)=='1') {
ans.append(0);
}else {
ans.append(1);
}
}
}
if(k!=0) {
if(k%2!=0) {
ans.deleteCharAt(n-1);
ans.append(0);
}
arr[n-1]+=k;
}
}
System.out.println(ans);
StringBuilder sb= new StringBuilder();
for(int a :arr) {
sb.append(a+" ");
}
System.out.println(sb);
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 378b7b030900ee389e90927ba1bd463f | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes |
import java.io.*;
import java.util.*;
public final class Main {
//int 2e9 - long 9e18
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(0, 1), new Pair(1, 0), new Pair(0, -1)};
static int mod = (int) (1e9 + 7);
static int mod2 = 998244353;
public static void main(String[] args) {
int tt = i();
while (tt-- > 0) {
solve();
}
out.flush();
}
public static void solve() {
int n = i();
int k = i();
int m = k;
String s = s();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.charAt(i) - '0';
}
int[] ans = new int[n];
for (int i = 0; i < n; i++) {
if (m == 0) {
break;
}
if (arr[i] == 1) {
if (k % 2 == 0) {
} else {
ans[i] = 1;
m--;
}
} else {
if (k % 2 == 0) {
ans[i] = 1;
m--;
} else {
}
}
}
ans[n - 1] += m;
for (int i = 0; i < n; i++) {
int kk = k - ans[i];
if (kk % 2 == 1) {
arr[i] = 1 - arr[i];
}
}
for (int i = 0; i < n; i++) {
out.print(arr[i]);
}
out.println();
print(ans);
}
// (10,5) = 2 ,(11,5) = 3
static long upperDiv(long a, long b) {
return (a / b) + ((a % b == 0) ? 0 : 1);
}
static long sum(int[] a) {
long sum = 0;
for (int x : a) {
sum += x;
}
return sum;
}
static int[] preint(int[] a) {
int[] pre = new int[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static long[] pre(int[] a) {
long[] pre = new long[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static long[] post(int[] a) {
long[] post = new long[a.length + 1];
post[0] = 0;
for (int i = 0; i < a.length; i++) {
post[i + 1] = post[i] + a[a.length - 1 - i];
}
return post;
}
static long[] pre(long[] a) {
long[] pre = new long[a.length + 1];
pre[0] = 0;
for (int i = 0; i < a.length; i++) {
pre[i + 1] = pre[i] + a[i];
}
return pre;
}
static void print(char A[]) {
for (char c : A) {
out.print(c);
}
out.println();
}
static void print(boolean A[]) {
for (boolean c : A) {
out.print(c + " ");
}
out.println();
}
static void print(int A[]) {
for (int c : A) {
out.print(c + " ");
}
out.println();
}
static void print(long A[]) {
for (long i : A) {
out.print(i + " ");
}
out.println();
}
static void print(List<Integer> A) {
for (int a : A) {
out.print(a + " ");
}
}
static int i() {
return in.nextInt();
}
static long l() {
return in.nextLong();
}
static double d() {
return in.nextDouble();
}
static String s() {
return in.nextLine();
}
static String c() {
return in.next();
}
static int[][] inputWithIdx(int N) {
int A[][] = new int[N][2];
for (int i = 0; i < N; i++) {
A[i] = new int[]{i, in.nextInt()};
}
return A;
}
static int[] input(int N) {
int A[] = new int[N];
for (int i = 0; i < N; i++) {
A[i] = in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[] = new long[N];
for (int i = 0; i < A.length; i++) {
A[i] = in.nextLong();
}
return A;
}
static int GCD(int a, int b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
static long GCD(long a, long b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
static long LCM(int a, int b) {
return (long) a / GCD(a, b) * b;
}
static long LCM(long a, long b) {
return a / GCD(a, b) * b;
}
// find highest i which satisfy a[i]<=x
static int lowerbound(int[] a, int x) {
int l = 0;
int r = a.length - 1;
while (l < r) {
int m = (l + r + 1) / 2;
if (a[m] <= x) {
l = m;
} else {
r = m - 1;
}
}
return l;
}
static void shuffle(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
}
static void shuffleAndSort(int[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static void shuffleAndSort(int[][] arr, Comparator<? super int[]> comparator) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
int[] temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr, comparator);
}
static void shuffleAndSort(long[] arr) {
for (int i = 0; i < arr.length; i++) {
int rand = (int) (Math.random() * arr.length);
long temp = arr[rand];
arr[rand] = arr[i];
arr[i] = temp;
}
Arrays.sort(arr);
}
static boolean isPerfectSquare(double number) {
double sqrt = Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
static void swap(int A[], int a, int b) {
int t = A[a];
A[a] = A[b];
A[b] = t;
}
static void swap(char A[], int a, int b) {
char t = A[a];
A[a] = A[b];
A[b] = t;
}
static long pow(long a, long b, int mod) {
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0) {
pow = (pow * x) % mod;
}
x = (x * x) % mod;
b /= 2;
}
return pow;
}
static long pow(long a, long b) {
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0) {
pow *= x;
}
x = x * x;
b /= 2;
}
return pow;
}
static long modInverse(long x, int mod) {
return pow(x, mod - 2, mod);
}
static boolean isPrime(long N) {
if (N <= 1) {
return false;
}
if (N <= 3) {
return true;
}
if (N % 2 == 0 || N % 3 == 0) {
return false;
}
for (int i = 5; i * i <= N; i = i + 6) {
if (N % i == 0 || N % (i + 2) == 0) {
return false;
}
}
return true;
}
public static String reverse(String str) {
if (str == null) {
return null;
}
return new StringBuilder(str).reverse().toString();
}
public static void reverse(int[] arr) {
for (int i = 0; i < arr.length / 2; i++) {
int tmp = arr[i];
arr[arr.length - 1 - i] = tmp;
arr[i] = arr[arr.length - 1 - i];
}
}
public static String repeat(char ch, int repeat) {
if (repeat <= 0) {
return "";
}
final char[] buf = new char[repeat];
for (int i = repeat - 1; i >= 0; i--) {
buf[i] = ch;
}
return new String(buf);
}
public static int[] manacher(String s) {
char[] chars = s.toCharArray();
int n = s.length();
int[] d1 = new int[n];
for (int i = 0, l = 0, r = -1; i < n; i++) {
int k = (i > r) ? 1 : Math.min(d1[l + r - i], r - i + 1);
while (0 <= i - k && i + k < n && chars[i - k] == chars[i + k]) {
k++;
}
d1[i] = k--;
if (i + k > r) {
l = i - k;
r = i + k;
}
}
return d1;
}
public static int[] kmp(String s) {
int n = s.length();
int[] res = new int[n];
for (int i = 1; i < n; ++i) {
int j = res[i - 1];
while (j > 0 && s.charAt(i) != s.charAt(j)) {
j = res[j - 1];
}
if (s.charAt(i) == s.charAt(j)) {
++j;
}
res[i] = j;
}
return res;
}
}
class Pair {
int i;
int j;
Pair(int i, int j) {
this.i = i;
this.j = j;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
Pair pair = (Pair) o;
return i == pair.i && j == pair.j;
}
@Override
public int hashCode() {
return Objects.hash(i, j);
}
}
class ThreePair {
int i;
int j;
int k;
ThreePair(int i, int j, int k) {
this.i = i;
this.j = j;
this.k = k;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (o == null || getClass() != o.getClass()) {
return false;
}
ThreePair pair = (ThreePair) o;
return i == pair.i && j == pair.j && k == pair.k;
}
@Override
public int hashCode() {
return Objects.hash(i, j);
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
class Node {
int val;
public Node(int val) {
this.val = val;
}
}
class ST {
int n;
Node[] st;
ST(int n) {
this.n = n;
st = new Node[4 * Integer.highestOneBit(n)];
}
void build(Node[] nodes) {
build(0, 0, n - 1, nodes);
}
private void build(int id, int l, int r, Node[] nodes) {
if (l == r) {
st[id] = nodes[l];
return;
}
int mid = (l + r) >> 1;
build((id << 1) + 1, l, mid, nodes);
build((id << 1) + 2, mid + 1, r, nodes);
st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]);
}
void update(int i, Node node) {
update(0, 0, n - 1, i, node);
}
private void update(int id, int l, int r, int i, Node node) {
if (i < l || r < i) {
return;
}
if (l == r) {
st[id] = node;
return;
}
int mid = (l + r) >> 1;
update((id << 1) + 1, l, mid, i, node);
update((id << 1) + 2, mid + 1, r, i, node);
st[id] = comb(st[(id << 1) + 1], st[(id << 1) + 2]);
}
Node get(int x, int y) {
return get(0, 0, n - 1, x, y);
}
private Node get(int id, int l, int r, int x, int y) {
if (x > r || y < l) {
return new Node(0);
}
if (x <= l && r <= y) {
return st[id];
}
int mid = (l + r) >> 1;
return comb(get((id << 1) + 1, l, mid, x, y), get((id << 1) + 2, mid + 1, r, x, y));
}
Node comb(Node a, Node b) {
if (a == null) {
return b;
}
if (b == null) {
return a;
}
return new Node(GCD(a.val, b.val));
}
static int GCD(int a, int b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 237977e63bfa024d62d8c07182d8c952 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.Scanner;
public class B1659 {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
for (int t=0; t<T; t++) {
int N = in.nextInt();
int K = in.nextInt();
char[] S = in.next().toCharArray();
if (K%2 == 1) {
for (int n=0; n<N; n++) {
S[n] = (S[n] == '0') ? '1' : '0';
}
}
int[] A = new int[N];
for (int n=0; n<N; n++) {
if (S[n] == '0' && K > 0) {
S[n] = '1';
K--;
A[n] = 1;
}
}
if (K%2 == 1) {
S[N-1] = '0';
}
A[N-1] += K;
StringBuilder out = new StringBuilder();
out.append(new String(S)).append('\n');
for (int a : A) {
out.append(a).append(' ');
}
System.out.println(out);
}
}
}
| Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | 570f25620568055b262adfd54f32151f | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
public class class1 {
public static void main(String[] args) {
Scanner input =new Scanner(System.in);
int t=input.nextInt();
while(t-->0) {
int n=input.nextInt();
int k=input.nextInt();
int m=k,x=0;
String s=input.next();
char c[]=s.toCharArray();
StringBuilder p=new StringBuilder(s);
char d[]=new char[n];
int f[]=new int[n];
int tmpk=k;
for(int i=0;i<n && tmpk>0;i++)
{
if(k%2==c[i]-'0')
{
f[i]=1;
tmpk--;
}
}
f[n-1]+=tmpk;
for(int i=0;i<n;i++)
{
if((k-f[i])%2==1) {
p.setCharAt(i,(char)('1'-(c[i]-'0')));
}
}
System.out.println(p);
for(int i=0;i<n;i++) {
System.out.print(f[i]+" ");
}
System.out.println();
}
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output | |
PASSED | dd1c73e00e7dec117756d86b00fc91a0 | train_110.jsonl | 1650206100 | You are given a binary string of length $$$n$$$. You have exactly $$$k$$$ moves. In one move, you must select a single bit. The state of all bits except that bit will get flipped ($$$0$$$ becomes $$$1$$$, $$$1$$$ becomes $$$0$$$). You need to output the lexicographically largest string that you can get after using all $$$k$$$ moves. Also, output the number of times you will select each bit. If there are multiple ways to do this, you may output any of them.A binary string $$$a$$$ is lexicographically larger than a binary string $$$b$$$ of the same length, if and only if the following holds: in the first position where $$$a$$$ and $$$b$$$ differ, the string $$$a$$$ contains a $$$1$$$, and the string $$$b$$$ contains a $$$0$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
/*
Challenge 1: Newbie to CM in 1year (Dec 2021 - Nov 2022) 5* Codechef
Challenge 2: CM to IM in 1 year (Dec 2022 - Nov 2023) 6* Codechef
Challenge 3: IM to GM in 1 year (Dec 2023 - Nov 2024) 7* Codechef
Goal: Become better in CP!
Key: Consistency and Discipline
Desire: SDE @ Google USA
Motto: Do what i Love <=> Love what you do
*/
public class Coder {
static StringBuffer str=new StringBuffer();
static int n, k;
static char c[];
static void solve(){
int f[]=new int[n];
int tk=k;
for(int i=0;i<n && tk>0;i++){
f[i]=((('1'-c[i])&(1-k%2)) | ((c[i]-'0') & (k%2)));
if(f[i]==1) tk--;
}
f[n-1]+=tk;
for(int i=0;i<n;i++){
if((k-f[i])%2!=0) c[i]=(char)('1'-c[i]+'0');
}
for(int i=0;i<n;i++) str.append(c[i]);
str.append("\n");
for(int i=0;i<n;i++) str.append(f[i]).append(" ");
str.append("\n");
}
public static void main(String[] args) throws java.lang.Exception {
boolean lenv=false;
BufferedReader bf;
PrintWriter pw;
if(lenv){
bf = new BufferedReader(
new FileReader("input.txt"));
pw=new PrintWriter(new
BufferedWriter(new FileWriter("output.txt")));
}else{
bf = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
}
int q1 = Integer.parseInt(bf.readLine().trim());
while (q1-->0) {
String s[]=bf.readLine().trim().split("\\s+");
n=Integer.parseInt(s[0]);
k=Integer.parseInt(s[1]);
c=bf.readLine().trim().toCharArray();
solve();
}
pw.print(str);
pw.flush();
// System.out.print(str);
}
} | Java | ["6\n\n6 3\n\n100001\n\n6 4\n\n100011\n\n6 0\n\n000000\n\n6 1\n\n111001\n\n6 11\n\n101100\n\n6 12\n\n001110"] | 1 second | ["111110\n1 0 0 2 0 0 \n111110\n0 1 1 1 0 1 \n000000\n0 0 0 0 0 0 \n100110\n1 0 0 0 0 0 \n111111\n1 2 1 3 0 4 \n111110\n1 1 4 2 0 4"] | NoteHere is the explanation for the first testcase. Each step shows how the binary string changes in a move. Choose bit $$$1$$$: $$$\color{red}{\underline{1}00001} \rightarrow \color{red}{\underline{1}}\color{blue}{11110}$$$. Choose bit $$$4$$$: $$$\color{red}{111\underline{1}10} \rightarrow \color{blue}{000}\color{red}{\underline{1}}\color{blue}{01}$$$. Choose bit $$$4$$$: $$$\color{red}{000\underline{1}01} \rightarrow \color{blue}{111}\color{red}{\underline{1}}\color{blue}{10}$$$. The final string is $$$111110$$$ and this is the lexicographically largest string we can get. | Java 8 | standard input | [
"bitmasks",
"constructive algorithms",
"greedy",
"strings"
] | 38375efafa4861f3443126f20cacf3ae | The first line contains a single integer $$$t$$$ ($$$1 \le t \le 1000$$$) — the number of test cases. Each test case has two lines. The first line has two integers $$$n$$$ and $$$k$$$ ($$$1 \leq n \leq 2 \cdot 10^5$$$; $$$0 \leq k \leq 10^9$$$). The second line has a binary string of length $$$n$$$, each character is either $$$0$$$ or $$$1$$$. The sum of $$$n$$$ over all test cases does not exceed $$$2 \cdot 10^5$$$. | 1,300 | For each test case, output two lines. The first line should contain the lexicographically largest string you can obtain. The second line should contain $$$n$$$ integers $$$f_1, f_2, \ldots, f_n$$$, where $$$f_i$$$ is the number of times the $$$i$$$-th bit is selected. The sum of all the integers must be equal to $$$k$$$. | standard output |
Subsets and Splits