exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | d4bcefb7b4c5261a560f94b98613d27a | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Cf {
public static void main(String[] args) {
Scanner sc= new Scanner(System.in);
int t=sc.nextInt();
while(t--!=0) {
int n=sc.nextInt();
boolean found=false;
int i=0;
for( ;i<n;i++) {
int a=sc.nextInt();
if(!issqrt(a)) {
found=true;
}
}
if(found) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
}
static boolean issqrt(int n) {
int a=(int)Math.sqrt((double)n);
if(a==0)return false;
if(n%a==0) {
n/=a;
if(a==n)return true;
}
return false;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | ddaf9a59af55c1baca2c35792f899ed6 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Cf {
public static void main(String[] args) {
Scanner sc= new Scanner(System.in);
int t=sc.nextInt();
while(t--!=0) {
int n=sc.nextInt();
boolean found=false;
int sum=1;
int i=0;
for( ;i<n;i++) {
int a=sc.nextInt();
sum*=a;
if(!issqrt(a)) {
found=true;
}
}
if(found) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
}
static boolean issqrt(int n) {
int a=(int)Math.sqrt((double)n);
if(a==0)return false;
if(n%a==0) {
n/=a;
if(a==n)return true;
}
return false;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 03521f7aebf6785841ccf55d8da783e5 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] args) {
// write your code here
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int arr[]=new int[n];
for(int i=0;i<n;i++) {
arr[i] = sc.nextInt();
}
String ans="NO";
for(int x:arr)
{
if(checkPerfectSquare(x)==false)
{
ans="YES";
// break;
}
}
System.out.println(ans);
}
}
static boolean checkPerfectSquare(int number)
{
//calculating the square root of the given number
double sqrt=Math.sqrt(number);
//finds the floor value of the square root and comparing it with zero
return ((sqrt - Math.floor(sqrt)) == 0);
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 91f278079a570d4cb2cea1d7e70c5660 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.io.*;
import java.lang.*;
import java.util.*;
public class A1514 {
public static void main(String[] args) throws IOException{
StringBuffer ans = new StringBuffer();
StringTokenizer st;
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(f.readLine());
int t = Integer.parseInt(st.nextToken());
for(int i = 0; i < t; i++){
st = new StringTokenizer(f.readLine());
int n = Integer.parseInt(st.nextToken());
st = new StringTokenizer(f.readLine());
int[] arr = new int[n];
for(int x = 0; x < n; x++){
arr[x] = Integer.parseInt(st.nextToken());
}
boolean check = false;
for(int x = 0; x < n; x++){
long chk = arr[x];
long r = (long)Math.sqrt(chk);
if(Math.sqrt(chk) - r > .0000000000000000001){
check = true;
}
for(int y = x+1; y < n; y++){
chk = arr[x];
chk*=arr[y];
r = (long)Math.sqrt(chk);
if(Math.sqrt(chk) - r > .0000000000000000001){
check = true;
}
}
}
if(check)
ans.append("YES");
else ans.append("NO");
ans.append("\n");
}
f.close();
System.out.println(ans);
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 7852ab4dc23052adc859f7ed322c3141 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class CodeForces_716 {
public static void main(String[] args){
Scanner in=new Scanner(System.in);
int tt=in.nextInt();
while (tt-->0){
int n=in.nextInt();
long[] a=new long[n];
for(int i=0;i<n;i++){
a[i]=in.nextLong();
}
boolean check=true;
for(int i=0;i<n;i++){
if(!checkPerfectSquare((double) (a[i]))){
check =false;
break;
}
}
if(!check)
System.out.println("YES");
else
System.out.println("NO");
}
}
static boolean isPerfectSquare(double x)
{
if (x >= 0) {
double sr = Math.sqrt(x);
return ((sr * sr) == x);
}
return false;
}
static boolean checkPerfectSquare(double number)
{
double sqrt=Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 26b30b9ad5e70b62cc0b32d60164c306 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
public class SolutionA{
public static void main(String[] args) throws Exception{
Fast sc=new Fast();
StringBuilder sb=new StringBuilder();
int t=sc.nextInt();
HashSet<Double> al=new HashSet<>();
while(t-->0){
int n=sc.nextInt();
long[] ar=new long[n];
for(int i=0;i<n;i++){
ar[i]=sc.nextLong();
}
boolean ok=false;
for(int i=0;i<n;i++){
double z=Math.sqrt(ar[i]);
if(z!=(double)((long)z)) ok=true;
}
if(ok)System.out.println("YES");
else System.out.println("NO");
}
}
static void ReverSort(int[] ar){
ArrayList<Integer> al=new ArrayList<>();
for(int i=0;i<ar.length;i++){
al.add(ar[i]);
}
Collections.sort(al);
int j=0;
for(int i=al.size()-1;i>=0;i--){
ar[j]=al.get(i);
j++;
}
}
static void Sort(int[] ar){
ArrayList<Integer> al=new ArrayList<>();
for(int i=0;i<ar.length;i++){
al.add(ar[i]);
}
Collections.sort(al);
int j=0;
for(int i=0;i<al.size();i++){
ar[j]=al.get(i);
j++;
}
}
static int gcd(int a,int b){
if(b==0) return a;
else return gcd(b,a%b);
}
}
class Pair{
int x, y;
Pair(int x,int y){
this.x=x;
this.y=y;
}
}
class SortPair implements Comparator<Pair>{
public int compare(Pair p1, Pair p2){
return p1.y-p2.y;
}
}
class Fast{
BufferedReader br;
StringTokenizer st;
public Fast(){ br=new BufferedReader(new InputStreamReader(System.in)); }
String next()
{ while (st == null || !st.hasMoreElements())
{ try
{ st = new StringTokenizer(br.readLine()); }
catch (IOException e)
{ e.printStackTrace(); }
}
return st.nextToken();
}
int nextInt(){ return Integer.parseInt(next()); }
long nextLong(){ return Long.parseLong(next()); }
double nextDouble() { return Double.parseDouble(next()); }
String nextLine()
{
String str = "";
try{ str = br.readLine(); }
catch (IOException e) { e.printStackTrace(); }
return str;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | d3da5c3487add77da9be89ce7c925092 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Main
{
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
int t = scn.nextInt();
while(t>0){
int n= scn.nextInt();
int[] arr = new int[n];
for(int i = 0;i<n;i++){
arr[i]=scn.nextInt();
}
int flag = 0;
for(int i = 0;i<n;i++){
if(!isperfectsquar(arr[i])){
flag =1;
}
}
if(flag==0){
System.out.println("NO");
}
else if(flag==1){
System.out.println("YES");
}
t--;
}
}
public static boolean isperfectsquar(int num){
if(num >=0){
int x = (int)Math.sqrt(num);
return (x*x == num);
}
return false;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f3e444b0b7eed97480c0d60324b7ba6b | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Random;
import java.util.StringTokenizer;
/*
*/
public class Solution {
public static void main(String[] args) {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int T = fs.nextInt();
HashMap<Long, Long> map = new HashMap<Long, Long>();
for (int i = 0; i <= 10000; i++) {
map.put((long) (i * i), (long) i);
}
for (int tt = 0; tt < T; tt++) {
int n = fs.nextInt();
int arr[] = new int[n];
boolean sq = true;
for (int i = 0; i < n; i++) {
arr[i] = fs.nextInt();
if (!map.containsKey((long) arr[i])) {
sq = false;
}
}
if (sq)
System.out.println("NO");
else
System.out.println("YES");
}
}
static boolean isPrime(int n) {
if (n == 2) {
return true;
}
for (int i = 2; i <= Math.ceil(Math.sqrt(n)); i++) {
if (n % i == 0) {
return false;
}
}
return true;
}
static long gcd(long a, long b) {
if (b > a) {
return gcd(b, a);
}
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
// Function to find gcd of array of
// numbers
static long findGCD(long arr[], int n) {
long result = 0;
for (long element : arr) {
result = gcd(result, element);
if (result == 1) {
return 1;
}
}
return result;
}
static int isSubstring(
String s1, String s2) {
int M = s1.length();
int N = s2.length();
/* A loop to slide pat[] one by one */
for (int i = 0; i <= N - M; i++) {
int j;
/*
* For current index i, check for
* pattern match
*/
for (j = 0; j < M; j++)
if (s2.charAt(i + j) != s1.charAt(j))
break;
if (j == M)
return i;
}
return -1;
}
static boolean possible(int[] a, int mid) {
int n = a.length;
long[] clone = new long[n];
for (int i = 0; i < n; i++)
clone[i] = a[i];
for (int i = n - 1; i >= 2; i--) {
if (clone[i] < mid)
return false;
long toGive = (clone[i] - mid) / 3 * 3;
toGive = Math.min(toGive, a[i]);
clone[i] -= toGive;
clone[i - 1] += toGive / 3;
clone[i - 2] += toGive / 3 * 2;
}
if (clone[0] < mid || clone[1] < mid)
return false;
return true;
}
static final Random random = new Random();
static final int mod = 1_000_000_007;
static int[] ruffleSort(int[] a) {
int n = a.length;// shuffle, then sort
for (int i = 0; i < n; i++) {
int oi = random.nextInt(n), temp = a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
return a;
}
static long add(long a, long b) {
return (a + b) % mod;
}
static long sub(long a, long b) {
return ((a - b) % mod + mod) % mod;
}
static long mul(long a, long b) {
return (a * b) % mod;
}
static long exp(long base, long exp) {
if (exp == 0)
return 1;
long half = exp(base, exp / 2);
if (exp % 2 == 0)
return mul(half, half);
return mul(half, mul(half, base));
}
static long[] factorials = new long[2_000_001];
static long[] invFactorials = new long[2_000_001];
static void precompFacts() {
factorials[0] = invFactorials[0] = 1;
for (int i = 1; i < factorials.length; i++)
factorials[i] = mul(factorials[i - 1], i);
invFactorials[factorials.length - 1] = exp(factorials[factorials.length - 1], mod - 2);
for (int i = invFactorials.length - 2; i >= 0; i--)
invFactorials[i] = mul(invFactorials[i + 1], i + 1);
}
static long nCk(int n, int k) {
return mul(factorials[n], mul(invFactorials[k], invFactorials[n - k]));
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++)
a[i] = l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 957984da3b4359e174c74e686cf6a734 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String[] srgs) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-- >0){
int n=sc.nextInt();
int[] arr=new int[n];
for (int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
PerfectlyImperfectArray(arr);
}
}
public static void PerfectlyImperfectArray(int[] arr){
for (int i=0;i<arr.length;i++){
double x=arr[i];
double y=Math.sqrt(x);
if (y-(int)y!=0){
System.out.println("YES");
return;
}
}
System.out.println("NO");
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 20a2f12a772206768dc9bb1fe34e93e0 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.util.regex.*;
import java.lang.*;
import java.io.*;
public class rough{
static BufferedReader br;
/*static int[][] dir = {{1,0}, {0,1}, {-1,0}, {0,-1}};
static class Node{
int n, f;
Node(int n, int f){
this.n = n;
this.f = f;
}
}
public static class comp implements Comparator<Node>{
public int compare(Node a, Node b){
return b.f-a.f;
}
}*/
/*static int comp = 0;
public static int find(int[] parent, int x){
if (!(x>=0 && x<parent.length)){
return -1;
}
if (parent[x] < 0){
return x;
}else{
return (parent[x]=find(parent, parent[x]));
}
}
public static void union(int[] parent, int n1, int n2){
int r1 = find(parent, n1), r2 = find(parent, n2);
if (r1 == r2)
return;
comp--;
if (parent[r1] <= parent[r2]){
parent[r1] += parent[r2];
parent[r2] = r1;
}else{
parent[r2] += parent[r1];
parent[r1] = r2;
}
}*/
/*static HashMap<Long, HashMap<Long, Long>> dp;
static long rec(long[] diff, List<Integer> al, long comp, long k, long x){
//System.out.println("```");
//System.out.println(comp+" "+k+" "+x);
if (k<0){
return comp+1;
}
if (al.size() == 0 || k == 0){
return comp;
}
if (hm.containsKey(comp) && hm.get(comp).containsKey(k)){
return hm.get(comp).get(k);
}
int idx = al.get(0);
al.remove(0);
long r = (Math.min(rec(diff, al, comp-1, k-((int)Math.ceil((double)diff[idx]/x)-1), x), rec(diff, al, comp, k, x)));
al.add(0, idx);
if (hm.containsKey(comp)){
if (hm.get(comp).containsKey(k)){
long tmp = hm.get(comp).get(k);
tmp = Math.min(tmp, r);
hm.get(comp).put(k, tmp);
}else{
hm.get(comp).put(k, r);
}
}else{
HashMap<Long, Long> tmp = new HashMap<>();
tmp.put(k, r);
hm.put(comp, tmp);
}
return hm.get(comp).get(k);
//return r;
}*/
public static boolean solve() throws IOException{
int n = Integer.parseInt(br.readLine().trim());
String[] tmp = br.readLine().trim().split(" ");
int[] arr = new int[n];
boolean flag = false;
for (int i=0 ; i<n ; i++){
arr[i] = Integer.parseInt(tmp[i]);
double sqrt = Math.sqrt(arr[i]);
if (sqrt-Math.floor(sqrt) != 0){
return true;
}
}
return false;
}
public static void main(String args[]) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine().trim());
while (t-->0){
boolean ans = solve();
if (ans)
System.out.println("YES");
else
System.out.println("NO");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 86c6d032fef5a9dc9523f9bc87106015 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) throws IOException {
Scanner input = new Scanner(System.in);
int n = input.nextInt();
int sum=0;
for (int i=0;i<n;i++){
int number= input.nextInt();
sum=0;
for (int j=0;j<number;j++){
int numbers= input.nextInt();
//System.out.println("numbers: "+numbers);
if (Math.round(Math.sqrt(numbers))!=Math.sqrt(numbers)){
sum=sum+1;
}
}
if (sum==0){
System.out.println("NO");
}else {
System.out.println("YES");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 3c4b4379f85e2c190c72a2e0e39f739d | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Codechef
{
public static void main(String [] args)
{
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0)
{
int n = sc.nextInt();
int a[] = new int[n];
String s = "";
for(int i=0;i<n;i++)
{
int product = 1;
a[i] = sc.nextInt();
product *= a[i];
long c1 = (long)Math.sqrt(product);
double c2 = (double)c1;
double c3 = (double)Math.sqrt(product);
if(c1!=c3) s+=".";
}
if(s.contains(".")) System.out.println("YES");
else System.out.println("NO");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c8ba7d1d5d8fd3288f57461bc5852d49 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String [] args){
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0)
{
int n = sc.nextInt();
long a[] = new long[n];
long product = 1;
String s = "";
for(int i=0;i<n;i++) {
product = 1;
a[i] = sc.nextLong();
product=product*a[i];
double check1 = (double)Math.pow(product,0.5);
long test = (long)Math.pow(product,0.5);
double check2 = (double)test;
if(check1!=check2) s+="present";
}
if(s.contains("present")) System.out.println("YES");
else System.out.println("NO");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | b9552e45ff425cea0e5fb7fd7ddfabec | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static void main(String[] args) {
FastReader in = new FastReader();
PrintWriter pw = new PrintWriter(System.out);
int t = in.nextInt();
while(t-- > 0) {
int n = in.nextInt();
int[] arr = new int[n];
for(int i = 0; i < n; i++) {
arr[i] = in.nextInt();
}
boolean ans = false;
for(int i = 0; i < n; i++) {
if(Math.sqrt(arr[i]) % 1 != 0) {
ans = true;
break;
}
}
pw.println(ans ? "YES" : "NO");
}
pw.close();
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while(st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch(IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 31188ed2812049fb9ab009df194434ae | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
static int mod=(int)1e9+7;
public static void main(String[] args) {
Scanner scn=new Scanner(System.in);
int t=scn.nextInt();
while(t-- >0){
int n=scn.nextInt();
boolean ans=true;
while(n-->0) {
int val=scn.nextInt();
double sqrt=Math.sqrt(val);
if(sqrt!=(int)sqrt) {
ans=false;
}
}
if(ans) {
System.out.println("NO");
}else {
System.out.println("YES");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 7afbedfe895b95ff4313bc886c1643ba | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in =new Scanner(System.in);
int t=in.nextInt();
while(t>0){
int a=in.nextInt(),s=0;
int arr[]=new int[a];
for(int i=0;i<a;i++){
arr[i]=in.nextInt();
int ss=(int)(Math.sqrt(arr[i]));
if(Math.sqrt(arr[i])-ss==0)s++;
}
if(s==a) System.out.println("NO");
else System.out.println("YES");
t--;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 4d907e8cba712910019dda30f379504a | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Main
{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0)
{
int n = sc.nextInt();
double arr[] = new double[n];
int pro = 1;
double num = 0;
for(int i=0;i<n;i++)
{
arr[i] = sc.nextDouble();
}
if(check(arr))
{
System.out.println("NO");
}else
{
System.out.println("YES");
}
}
}
public static boolean check(double arr[])
{
int n =arr.length;
for(int i=0;i<n;i++)
{
if(!check(arr[i]))
{
return false;
}
}
return true;
}
public static boolean check(double num)
{
double sq = Math.sqrt(num);
return (sq-Math.floor(sq)==0);
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 0955c020c65b89f62937f9e9b0ab4a4e | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class Test1 {
public static boolean isPerfectSquare(int n){
boolean res=false;
double sqrt=Math.sqrt(n);
return ((sqrt - Math.floor(sqrt)) == 0);
}
public static void main(String[] args) {
Scanner scan=new Scanner(System.in);
int t=scan.nextInt();
while(t-->0){
int n=scan.nextInt();
int[]a=new int[n];
for(int i=0;i<n;i++) {
a[i] = scan.nextInt();
}
int flag=0;
for(int i=0;i<a.length;i++){
if(!isPerfectSquare(a[i])){
System.out.println("YES");
flag=1;
break;
}
}
if(flag!=1)
System.out.println("NO");
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c502962010288c63e0160bf538e1b191 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// write your code here
Scanner input = new Scanner(System.in);
int numberOfTestCases = input.nextInt();
for (int x = 0; x < numberOfTestCases; x++){
int arraySize = input.nextInt();
int arr[] = new int[arraySize];
for (int i = 0; i < arraySize; i++){
arr[i] = input.nextInt();
}
imperfectArray(arr);
}
}
static void imperfectArray(int[] arr){
int l = arr.length;
for (int j = 0; j < l; j++){
int p = 1;
if (arr[j] == 0 || arr[j] == 1) continue;
p *= arr[j];
double root = Math.sqrt((double) p);
if (root != Math.floor(root)) {
System.out.println("YES");
return;
}
}
System.out.println("NO");
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 03ddd58155c707d2eb53f11b75ebf06b | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.io.*;
import java.math.*;
import java.util.*;
// @author : Dinosparton
public class test {
static class Pair{
long x;
long y;
Pair(long x,long y){
this.x = x;
this.y = y;
}
}
static class Compare {
void compare(Pair arr[], int n)
{
// Comparator to sort the pair according to second element
Arrays.sort(arr, new Comparator<Pair>() {
@Override public int compare(Pair p1, Pair p2)
{
return (int)(p1.x - p2.x);
}
});
// for (int i = 0; i < n; i++) {
// System.out.print(arr[i].x + " " + arr[i].y + " ");
// }
// System.out.println();
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String args[]) throws Exception {
Scanner sc = new Scanner();
StringBuffer ans = new StringBuffer();
boolean[] prime = new boolean[100001];
for(int i = 1; i <= 100; i++) {
prime[i * i] = true;
}
int tc = sc.nextInt();
while(tc-->0) {
int n = sc.nextInt();
boolean ok = false;
for(int i=0;i<n;i++) {
int x = sc.nextInt();
if(!prime[x])
ok = true;
}
if(ok)
ans.append("YES"+"\n");
else
ans.append("NO"+"\n");
}
System.out.println(ans);
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 2216da952a717ab2d802f48ea2fb8102 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
public class a2oj {
static FastReader sc;
static PrintWriter out;
static int mod = 1000000007;
public static void main(String[] args) throws IOException {
if (System.getProperty("ONLINE_JUDGE") == null) {
File f1 = new File("input.txt");
File f2 = new File("output.txt");
Reader r = new FileReader(f1);
sc = new FastReader(r);
out = new PrintWriter(f2);
double prev = System.currentTimeMillis();
solve();
out.println("\n\nExecuted in : " + ((System.currentTimeMillis() - prev) / 1e3) + " sec");
} else {
sc = new FastReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
}
out.flush();
out.close();
}
static void solve() {
int t = sc.nextInt();
StringBuilder ans = new StringBuilder("");
while (t-- > 0) {
int n = sc.nextInt();
long[] arr = sc.readArrayL(n);
boolean z = false;
for (int i = 0; i < n; i++) {
if (!isPerfectSquare(arr[i])) {
z = true;
break;
}
}
if (z) {
ans.append("YES\n");
} else {
ans.append("NO\n");
}
}
out.println(ans);
}
static long modInverse(long a) {
long g = gcd(a, mod);
if (g != 1)
return -1;
else {
return modPower(a, mod - 2L);
}
}
static long modPower(long x, long y) {
long res = 1;
x = x % mod;
if (x == 0)
return 0;
while (y > 0) {
if ((y & 1) != 0)
res = (res * x) % mod;
y = y >> 1;
x = (x * x) % mod;
}
return res;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
static boolean isPerfectSquare(long x) {
long sqrt = (long) Math.sqrt(x);
return (sqrt * sqrt) == x;
}
public static int digitsCount(long x) {
return (int) Math.floor(Math.log10(x)) + 1;
}
public static boolean isPowerTwo(long n) {
return (n & n - 1) == 0;
}
static void sieve(boolean[] prime, int n) { // Sieve Of Eratosthenes
for (int i = 1; i <= n; i++) {
prime[i] = true;
}
for (int i = 2; i * i <= n; i++) {
if (prime[i]) {
for (int j = 2; i * j <= n; j++) {
prime[i * j] = false;
}
}
}
}
static long nCr(int n, int r) { // Combinations
if (n < r)
return 0;
if (r > n - r) { // because nCr(n, r) == nCr(n, n - r)
r = n - r;
}
long ans = 1L;
for (int i = 0; i < r; i++) {
ans *= (n - i);
ans /= (i + 1);
}
return ans;
}
static long catalan(int n) { // n-th Catalan Number
long c = nCr(2 * n, n);
return c / (n + 1);
}
static class Pair implements Comparable<Pair> { // Pair Class
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Pair)) {
return false;
}
Pair pair = (Pair) o;
if (x != pair.x) {
return false;
}
if (y != pair.y) {
return false;
}
return true;
}
@Override
public int hashCode() {
long result = x;
result = 31 * result + y;
return (int) result;
}
@Override
public int compareTo(Pair o) {
return (int) (this.x - o.x);
}
}
static class Trip { // Triplet Class
long x;
long y;
long z;
Trip(long x, long y, long z) {
this.x = x;
this.y = y;
this.z = z;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Trip)) {
return false;
}
Trip trip = (Trip) o;
if (x != trip.x) {
return false;
}
if (y != trip.y) {
return false;
}
if (z != trip.z) {
return false;
}
return true;
}
@Override
public int hashCode() {
long result = 62 * x + 31 * y + z;
return (int) result;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader(Reader r) {
br = new BufferedReader(r);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArrayI(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
return arr;
}
long[] readArrayL(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextLong();
}
return arr;
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/*
* ASCII Range--->(A-Z)--->[65,90]<<::>>(a-z)--->[97,122]
*/
/******************************************************************************************************************/
static void printArray(int[] arr) {
out.print("[");
for (int i = 0; i < arr.length; i++) {
if (i < arr.length - 1)
out.print(arr[i] + ",");
else
out.print(arr[i]);
}
out.print("]");
out.println();
}
static void printArray(long[] arr) {
out.print("[");
for (int i = 0; i < arr.length; i++) {
if (i < arr.length - 1)
out.print(arr[i] + ",");
else
out.print(arr[i]);
}
out.print("]");
out.println();
}
static void printArray(double[] arr) {
out.print("[");
for (int i = 0; i < arr.length; i++) {
if (i < arr.length - 1)
out.print(arr[i] + ",");
else
out.print(arr[i]);
}
out.print("]");
out.println();
}
/**********************************************************************************************************************/
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 6ff92cd0924264e6e7db56fdebe18d02 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
import java.io.*;
import java.util.*;
import java.util.Stack;
import java.util.HashMap;
import java.util.Map;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.StreamTokenizer;
import java.util.StringTokenizer;
import java.io.Reader;
import java.util.Collections;
import java.lang.StringBuilder;
import java.util.Queue;
import java.util.List;
import java.text.DecimalFormat;
import java.math.BigDecimal;
import java.math.BigInteger;
public class Codeforces2{
public static void main(String[] args){
Scanner scan = new Scanner(System.in);
int tests = scan.nextInt();
for(int i=0; i<tests;i++)
{
int num = scan.nextInt();
boolean perfect=true;
for(int j=0;j<num;j++)
{
double x = scan.nextDouble();
double y = (Math.sqrt(x));
double noDecimals = y-Math.floor(y);
if(perfect == true && noDecimals != 0)
perfect = false;
}
if(perfect==true)
{
System.out.println("NO");
}
else
System.out.println("YES");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 4d601f7a23f53a2213327d4025aca7fb | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main
{
public static void main(String[] args)throws java.lang.Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int t=Integer.parseInt(br.readLine());
while(t-->0)
{
String p=br.readLine();
String s[]=p.split(" ");
String arr=br.readLine();
String ar[]=arr.split(" ");
int n=Integer.parseInt(s[0]);
int a[]=new int[n];
int c=1;
int m=0;
for(int i=0;i<n;i++)
{
a[i]=Integer.parseInt(ar[i]);
int h=(int)(Math.sqrt(a[i]));
if(((h*h)!=a[i]) && a[i]%h!=h)
{
c=0;
break;
}
}
/*for(int h=0;h<n;h++)
{
int g=1;
for(int k=1;k<n;k++)
{
g=a[h]*a[k];
int u=(int)(Math.sqrt(g));
if(u*u!=g)
{
m++;
break;
}
}
}
int q=(int)(Math.sqrt(c));*/
if(c==0)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | bc422106ca5a89d1013ae135096951ca | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Codeforces {
public void solve() {
FastScanner fs = new FastScanner();
PrintWriter out = new PrintWriter(System.out);
int t = fs.nextInt();
while (t-- > 0 ){
int n = fs.nextInt();
int[]ar = new int[n];
boolean ans = false;
int even = 0,odd = 0;
ArrayList<Integer> list = new ArrayList<>();
for(int i=0;i<n;i++) {
ar[i] = fs.nextInt();
long a = (long)Math.sqrt(ar[i]);
if( a*a != ar[i] ){
ans = true;
}
}
if(ans){
out.println("Yes");
}else{
out.println("No");
}
}
out.flush();
}
public static void main(String[]args){
try{
new Codeforces().solve();
}catch (Exception e){
e.printStackTrace();
}
}
class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f480cb86b87d1bb394006945a3af6338 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
public class Main{
static int mod=(int)1e9+9;
public static void main(String args[]){
InputReader sc = new InputReader(System.in);
//write your code
int test=sc.nextInt();
while(test-->0){
int n=sc.nextInt();
boolean bool=false;
for(int i=0;i<n;i++){
int num=sc.nextInt();
double sqrt=Math.sqrt(num);
if(sqrt - Math.floor(sqrt)!= 0) {bool=true;}
}
if(bool) System.out.println("YES");
else System.out.println("NO");
}
}
}
// for Fast input template
class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[8192];
private int curChar, snumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int snext() {
if (snumChars == -1)
throw new InputMismatchException();
if (curChar >= snumChars) {
curChar = 0;
try {
snumChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (snumChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = snext();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = snext();
} while (!isSpaceChar(c));
return res * sgn;
}
public int[] nextIntArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
public String readString() {
int c = snext();
while (isSpaceChar(c)) {
c = snext();
}
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isSpaceChar(c));
return res.toString();
}
public String nextLine() {
int c = snext();
while (isSpaceChar(c))
c = snext();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = snext();
} while (!isEndOfLine(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private boolean isEndOfLine(int c) {
return c == '\n' || c == '\r' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | edcb46d04d2fda577fc26d273db040e5 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
import java.io.PrintWriter;
import java.io.OutputStream;
/*
* @author : Imtiaz Adar
*/
public class Perfectly_Imperfect_Array {
public static void main(String[] args) {
InputReader scan = new InputReader();
OutputStream os = System.out;
PrintWriter out = new PrintWriter(os);
Driver drive = new Driver();
int n = scan.nextInt();
for(int i = 0; i < n; i++)
drive.Raw(scan, out);
out.close();
}
static class Driver {
boolean isPerfectSquare(long num)
{
long square = 0;
if(num > 0){
square = (long)Math.sqrt(num);
}
return (square*square == num);
}
void Raw(InputReader scan, PrintWriter out)
{
StringBuilder sb = new StringBuilder();
long x = scan.nextLong();
boolean stat = false;
for(long j = 0; j < x; j++)
{
long vals = scan.nextLong();
if(!isPerfectSquare(vals))
{
stat = true;
}
}
sb.append((stat)? "YES" : "NO");
out.println(sb);
}
}
static class InputReader {
BufferedReader readfile = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer token = new StringTokenizer("");
String next() {
while (!token.hasMoreTokens()) {
try {
token = new StringTokenizer(readfile.readLine());
} catch (IOException e) {
}
}
return token.nextToken();
}
String nextLine() throws IOException {
return readfile.readLine();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] nextIntArray(int size) throws IOException {
int[] arr = new int[size];
token = new StringTokenizer(readfile.readLine());
for (int i = 0; i < arr.length; i++) {
arr[i] = Integer.parseInt(token.nextToken());
}
return arr;
}
double[] nextDoubleArray(int size) throws IOException {
double[] arr = new double[size];
token = new StringTokenizer(readfile.readLine());
for (int i = 0; i < arr.length; i++) {
arr[i] = Double.parseDouble(token.nextToken());
}
return arr;
}
long[] nextLongArray(int size) throws IOException {
long[] arr = new long[size];
token = new StringTokenizer(readfile.readLine());
for (int i = 0; i < arr.length; i++) {
arr[i] = Long.parseLong(token.nextToken());
}
return arr;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | d7062a28baa5daba18bd09a718a9a8b8 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class HelloWorld{
public static void main(String args[]){
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t-->0)
{
int n = sc.nextInt();
long a[] = new long[n];
int l = 7;
for(int i=0;i<n;i++) {
a[i] = sc.nextLong();
double c1 = (double)Math.pow(a[i],0.5);
long test = (long)Math.pow(a[i],0.5);
double c2 = (double)test;
if(c1!=c2) {
l=77;
}
}
if(l==77) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
sc.close();
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | d12447283bbded879ba8f867cc5ad992 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | //package codeforces;
import java.util.Scanner;
public class PerfectlyImperfectArray {
public static void main(String[] args)
{
// TODO Auto-generated method stub
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int arr[]=new int[n];
for(int i=0;i<n;i++) {
arr[i]=sc.nextInt();
}
int flag=0;
for(int i:arr) {
if((int)(Math.sqrt(i))*(int)Math.sqrt(i)!=i) {
System.out.println("YES");
flag=1;
break;
}
}
if(flag==1) {
continue;
}
System.out.println("NO");
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 65f9e9df469e925b0aec0d5e6a5051be | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Test{
public static void main(String rhf[]){
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++){
a[i]=sc.nextInt();
}
boolean flag=true;
for(int i=0;i<n;i++){
if(!issquare(a[i]))
{flag=false; break;}
}
if(flag==false)
System.out.println("YES");
else
System.out.println("NO");
}
sc.close();
}
public static boolean issquare(int n){
double num=n;
if(num==(int)Math.sqrt(num)*(int)Math.sqrt(num))
return true;
else
return false;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | ed5996d2f3389c1f06ade1fa825a32d9 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.*;
import java.util.*;
import static java.lang.Math.*;
import static java.util.Arrays.*;
public class CF1514A {
public static void main(String[] args) throws IOException {
int t = ri();
t: while (t-- > 0) {
int n = ri(), a[] = ria(n);
for (int x : a) {
int s = (int) sqrt(x);
if (s * s != x) {
prY();
continue t;
}
}
prN();
}
close();
}
static BufferedReader __i = new BufferedReader(new InputStreamReader(System.in));
static PrintWriter __o = new PrintWriter(new OutputStreamWriter(System.out));
static StringTokenizer input;
static Random __r = new Random();
// references
// IBIG = 1e9 + 7
// IMAX ~= 2e9
// LMAX ~= 9e18
// constants
static final int IBIG = 1000000007;
static final int IMAX = 2147483647;
static final int IMIN = -2147483648;
static final long LMAX = 9223372036854775807L;
static final long LMIN = -9223372036854775808L;
// math util
static int minof(int a, int b, int c) {return min(a, min(b, c));}
static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static long minof(long a, long b, long c) {return min(a, min(b, c));}
static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;}
static int maxof(int a, int b, int c) {return max(a, max(b, c));}
static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static long maxof(long a, long b, long c) {return max(a, max(b, c));}
static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;}
static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;}
static int fli(double d) {return (int) d;}
static int cei(double d) {return (int) ceil(d);}
static long fll(double d) {return (long) d;}
static long cel(double d) {return (long) ceil(d);}
static int gcf(int a, int b) {return b == 0 ? a : gcf(b, a % b);}
static long gcf(long a, long b) {return b == 0 ? a : gcf(b, a % b);}
static int[] exgcd(int a, int b) {if (b == 0) return new int[] {1, 0}; int[] y = exgcd(b, a % b); return new int[] {y[1], y[0] - y[1] * (a / b)};}
static long[] exgcd(long a, long b) {if (b == 0) return new long[] {1, 0}; long[] y = exgcd(b, a % b); return new long[] {y[1], y[0] - y[1] * (a / b)};}
static int randInt(int min, int max) {return __r.nextInt(max - min + 1) + min;}
static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);}
// array util
static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}}
static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}}
static void rsort(int[] a) {shuffle(a); sort(a);}
static void rsort(long[] a) {shuffle(a); sort(a);}
static void rsort(double[] a) {shuffle(a); sort(a);}
static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;}
// input
static void r() throws IOException {input = new StringTokenizer(rline());}
static int ri() throws IOException {return Integer.parseInt(rline());}
static long rl() throws IOException {return Long.parseLong(rline());}
static double rd() throws IOException {return Double.parseDouble(rline());}
static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;}
static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;}
static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;}
static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;}
static char[] rcha() throws IOException {return rline().toCharArray();}
static String rline() throws IOException {return __i.readLine();}
static String n() {return input.nextToken();}
static int rni() throws IOException {r(); return ni();}
static int ni() {return Integer.parseInt(n());}
static long rnl() throws IOException {r(); return nl();}
static long nl() {return Long.parseLong(n());}
static double rnd() throws IOException {r(); return nd();}
static double nd() {return Double.parseDouble(n());}
// output
static void pr(int i) {__o.print(i);}
static void prln(int i) {__o.println(i);}
static void pr(long l) {__o.print(l);}
static void prln(long l) {__o.println(l);}
static void pr(double d) {__o.print(d);}
static void prln(double d) {__o.println(d);}
static void pr(char c) {__o.print(c);}
static void prln(char c) {__o.println(c);}
static void pr(char[] s) {__o.print(new String(s));}
static void prln(char[] s) {__o.println(new String(s));}
static void pr(String s) {__o.print(s);}
static void prln(String s) {__o.println(s);}
static void pr(Object o) {__o.print(o);}
static void prln(Object o) {__o.println(o);}
static void prln() {__o.println();}
static void pryes() {prln("yes");}
static void pry() {prln("Yes");}
static void prY() {prln("YES");}
static void prno() {prln("no");}
static void prn() {prln("No");}
static void prN() {prln("NO");}
static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;};
static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;}
static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;}
static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();}
static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();}
static void h() {prln("hlfd"); flush();}
static void flush() {__o.flush();}
static void close() {__o.close();}} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 0bb27006a1117d2971deac2339fdcedc | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | //package contest04_05;
import java.util.*;
public class ProblemA {
public static void main(String[] args) {
Scanner in= new Scanner (System.in);
int test= in.nextInt();
for(int t=0;t<test;t++)
{
int n=in.nextInt();
String ans="NO";
double[] prod= new double[n];
double val=0.0;
for(int i=0;i<n;i++)
{
prod[i]=in.nextDouble();
}
for(int i=0;i<n;i++)
{
//System.out.println(prod[i]+"##");
if(Double.compare((Math.sqrt(prod[i]) % 1) , val)!=0)
{
//System.out.println(Math.sqrt(prod[i]) );
ans=new String("YES");
break;
}
}
System.out.println(ans);
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | d726e0a2800174b951b65d789643bf0d | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
public class Test{
static FastReader scan;
static void solve(){
int n=scan.nextInt();
int []arr=new int[n];
scanInt(arr);
for(int i=0;i<n;i++){
if(!perfectSquare(arr[i])){
System.out.println("YES");
return;
}
}
System.out.println("NO");
}
static boolean perfectSquare(long n){
long k=(long)Math.sqrt(n);
return k*k==n?true:false;
}
public static void main (String[] args) throws java.lang.Exception{
scan=new FastReader();
int t=scan.nextInt();
while(t-->0){
solve();
}
}
static void printLong(long []arr){
for(long x:arr)System.out.print(x+" ");
}
static void printInt(int []arr){
for(int x:arr)System.out.print(x+" ");
}
static void scanInt(int []arr){
for(int i=0;i<arr.length;i++){
arr[i]=scan.nextInt();
}
}
static void scanLong(long []arr){
for(int i=0;i<arr.length;i++){
arr[i]=scan.nextLong();
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble() { return Double.parseDouble(next()); }
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static class Pair implements Comparable<Pair>{
int wt;
int idx;
Pair(int x,int y){
this.wt=x;
this.idx=y;
}
@Override
public int compareTo(Pair x){
return this.wt-x.wt;
}
public String toString(){
return "("+wt+" "+idx+")";
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 10180ad72109f7c7275860ceca383753 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class test{
static Scanner sc = new Scanner(System.in);
public static void main(String[] args) {
int t = sc.nextInt();
while(t-- >0){
int n = sc.nextInt(), val =1;
int[] arr = new int[n];
boolean v = false;
for(int i=0;i<n;i++) {
arr[i] = sc.nextInt();
}
for(int i=0;i<n;i++) {
long y = (long)Math.sqrt(arr[i]);
if(y*y!=arr[i]){
v = true;
break;
}
}
if(v) System.out.println("yes");
else System.out.println("no");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 74aa39505061bb3e3dcb56038e4a4002 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Problem_1 {
public static void main(String args[]) {
FastScanner sc = new FastScanner();
int testSize = sc.nextInt();
String[] answer = new String[testSize];
outer:
for (int t = 0; t < testSize; t++) {
int n = sc.nextInt();
answer[t] = "NO";
for (int i = 0; i < n; i++) {
int next = sc.nextInt();
if (!isSquare(next)) {
answer[t] = "YES";
}
}
}
for (int i = 0; i < testSize; i++) {
System.out.println(answer[i]);
}
}
public static boolean isSquare(int x) {
for (int i = 1; i <= 100; i++) {
int sq = i * i;
if (x == sq) {
return true;
}
}
return false;
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f2485167f09a60e844f5fb268d6aca89 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class PerfectlyImperfectArray {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
for (int i = 0; i < t; i++) {
int n=sc.nextInt();
int[] a=new int[n];
for (int j = 0; j < n; j++) {
a[j]=sc.nextInt();
}
boolean flag=false;
for (int j = 0; j< n; j++) {
int s=(int) Math.sqrt(a[j]);
if(s*s!=a[j]){
flag=true;
break;
}
}
if(flag)System.out.println("YES");
else
System.out.println("NO");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 98c532d980922c5e920373e44b74f0f5 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.* ;
import java.lang.* ;
import java.io.*;
public class javaTemplate {
static FastReader sc = new FastReader();
// static Scanner sc = new Scanner(System.in) ;
public static void main(String[] args) {
int t = sc.nextInt() ;
while(t -- != 0) {
int n = sc.nextInt() ;
int arr[] = new int[n] ;
boolean val = false ;
for(int i = 0 ; i< n ; i++) {
arr[i] = sc.nextInt() ;
}
for(int i = 0 ; i< n ; i++) {
int mul = (int)Math.sqrt(arr[i]) ;
if((mul*mul) != arr[i]) {
val = true ;
break ;
}
}
System.out.println(val ? "YES" : "NO");
}
}
//_________________________//Template//_____________________________________________________________________
// FAST I/O
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
// Modulo
static int mod(int a, int m)
{
return (a%m + m) % m;
}
// LPS Array
static void LPSArray(String pat, int M, int lps[]) {
int i = 1 ;
int length = 0 ;
lps[0] = 0 ;
while(i < M) {
if(pat.charAt(i) == pat.charAt(length)) {
length ++ ;
lps[i] = length ;
i ++ ;
} else if(length != 0) {
length = lps[length-1] ;
} else {
lps[i] = length ;
i ++ ;
}
}
}
// KMP Search
static boolean kmpSearch(String pat, String txt) {
boolean val = false ;
int M = pat.length() ;
int N = txt.length() ;
int lps[] = new int[M] ;
int j = 0 ;
int i = 0 ;
LPSArray(pat,M,lps) ;
while(i < N) {
if(pat.charAt(j) == txt.charAt(i)) {
i ++ ;
j ++ ;
} else if(j != 0) {
j = lps[j-1] ;
} else {
i ++ ;
}
if(j == M) {
val = true ;
j = lps[j-1] ;
}
}
return val ;
}
// Palindrom or Not
static boolean isPalindrome(StringBuilder str, int low, int high) {
while (low < high) {
if (str.charAt(low) != str.charAt(high)) return false;
low++;
high--;
}
return true;
}
// Euler Tortient fx
static int Phi(int n) {
int count = 0 ;
for(int i = 1 ; i< n ; i++) {
if(GCD(i,n) == 1) count ++ ;
}
return count ;
}
// Integer Sort
static void sort(int[] a)
{
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
// Long Sort
static void sort(long[] a)
{
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
// boolean Value
static void val(boolean val)
{
System.out.println(val ? "YES" : "NO");
System.out.flush();
}
// GCD
public static int GCD(int a , int b) {
if(b == 0) return a ;
return GCD(b, a%b) ;
}
// sieve
public static boolean [] sieveofEratosthenes(int n) {
boolean isPrime[] = new boolean[n+1] ;
Arrays.fill(isPrime, true);
isPrime[0] = false ;
isPrime[1] = false ;
for(int i = 2 ; i * i <= n ; i++) {
for(int j = 2 * i ; j<= n ; j+= i) {
isPrime[j] = false ;
}
}
return isPrime ;
}
// fastPower
public static long fastPowerModulo(long a, long b, long n) {
long res = 1 ;
while(b > 0) {
if((b&1) != 0) {
res = (res * a % n) % n ;
}
a = (a % n * a % n) % n ;
b = b >> 1 ;
}
return res ;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | e1dd04c271dc5d76fa63819026444366 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.util.*;
public class random{
static boolean check(int n){
for(int i=0;i<=Math.sqrt(n);i++)
{
if(n==i*i)
return true;
}
return false;
}
public static void main(String args[]){
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++)
a[i]=sc.nextInt();
boolean flag=true;
for(int i=0;i<n;i++){
if(!check(a[i])){
flag=false;
break;
}
}
if(flag)
System.out.println("NO") ;
else
System.out.println("YES") ;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 388440aeeb2697d2c9ed14d0fb76bf64 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.math.BigInteger;
import java.util.*;
public class Main {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
while(n-- >0){
boolean imp = false;
int count = 0;
int j = sc.nextInt();
for(int i=0; i<j; i++){
int sum = sc.nextInt();
double sq = Math.sqrt(sum);
//System.out.println(sq);
//System.out.println(Math.floor(sq));
//System.out.println(Math.ceil(sq));
imp = ((sq - Math.ceil(sq)) != 0);
if(imp){
count++;
}
}
System.out.println(count>0?"YES":"NO");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 26d4422e37454ef0883954fb31f57fd3 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class MyClass {
public static void main(String args[]) {
HashSet<Integer> hs = new HashSet<>();
for(int i=1;i<10001;i++)
{
hs.add(i*i);
}
Scanner sc = new Scanner(System.in);
int test = sc.nextInt();
while(test-- != 0)
{
int n = sc.nextInt();
int a = 0;
boolean check = false;
for(int i=0;i<n;i++)
{
a = sc.nextInt();
if(hs.contains(a) == false)
check = true;
}
if(check == true)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 43e558ca89e7b91c610551e259b5dafe | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class MyClass {
public static void main(String args[]) {
HashSet<Integer> hs = new HashSet<>();
for(int i=1;i<10001;i++)
{
hs.add(i*i);
}
Scanner sc = new Scanner(System.in);
int test = sc.nextInt();
while(test-- != 0)
{
int n = sc.nextInt();
int a = 0;
int[] f = new int[10001];
boolean check = false;
for(int i=0;i<n;i++)
{
a = sc.nextInt();
if(hs.contains(a) == false)
f[a]++;
}
for(int i=1;i<10001;i++)
{
if(f[i] >= 1 && i!=1)
{
check = true;
break;
}
}
if(check == true)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c5b8a75b2840853da4e2b13c7daeda4c | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Main
{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t!=0)
{
int n=sc.nextInt();
boolean f=false;
int a[]=new int[n];
for(int i=0;i<n;i++)
{
a[i]=sc.nextInt();
int p=(int)Math.sqrt(a[i]);
if(p*p!=a[i])
f=true;
}
if(f)
System.out.println("YES");
else
System.out.println("NO");
t--;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 4e318ad6a329d655153999e2113eadd6 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.io.*;
import java.util.*;
import java.text.DecimalFormat;
public class Main {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
// function to find
// the rightmost set bit
static int PositionRightmostSetbit(int n)
{
// Position variable initialize
// with 1 m variable is used to
// check the set bit
int position = 1;
int m = 1;
while ((n & m) == 0) {
// left shift
m = m << 1;
position++;
}
return position;
}
// used for swapping ith and jth elements of array
public static void swap(int[] arr, int i, int j) {
System.out.println("Swapping " + arr[i] + " and " + arr[j]);
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
static boolean palindrome(String s) {
return new StringBuilder(s).reverse().toString().equals(s);
}
static int countDigit(long n)
{
return (int)Math.floor(Math.log10(n) + 1);
}
static boolean isPerfectSquare(double x)
{
double sq = Math.sqrt(x);
/* Math.floor() returns closest integer value, for
* example Math.floor of 984.1 is 984, so if the value
* of sq is non integer than the below expression would
* be non-zero.
*/
return ((sq - Math.floor(sq)) == 0);
}
public static void main(String[] args)
{
try {
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
} catch (Exception e) {
System.err.println("Error");
}
FastReader sc = new FastReader();
int t = Integer.parseInt(sc.next());
// int t = 1;
while(t-->0){
int n = sc.nextInt();
int a[] = new int[n];
for (int i = 0; i<n; i++) {
a[i] = sc.nextInt();
}
boolean f = false;
for (int i = 0; i<n; i++) {
if(isPerfectSquare(a[i])){
continue;
}else{
f = true;
break;
}
}
if(f){
System.out.println("YES");
}
else{
System.out.println("NO");
}
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c3c1a308235cc4accf2312b1a69eaf44 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) {
BufferedReader read = new BufferedReader(new InputStreamReader(System.in));
try {
int n = Integer.valueOf(read.readLine());
for (int tests = 0; tests < n; tests++) {
int len = Integer.valueOf(read.readLine());
String[] input = read.readLine().split(" ");
boolean returned = false;
for (int i = 0; i < len; i++) {
if (!isSquare(Integer.valueOf(input[i]))) {
System.out.println("YES");
returned = true;
break;
}
}
if (returned) continue;
System.out.println("NO");
}
} catch (NumberFormatException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
static boolean isSquare(int n) {
int sqrt = (int) Math.sqrt(n);
if (sqrt * sqrt == n) return true;
return false;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 6f3602b2b2b9ae94b77372008999680c | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner scn = new Scanner(System.in);
int X = scn.nextInt();
for(int i=1;i<=X;i++) {
int Y = scn.nextInt();
int [] arr = new int[Y];
for(int j =0;j<Y;j++) {
arr[j] = scn.nextInt();
}
boolean flag = true;
for(int j =0;j<Y;j++) {
if(isPerfectSquare(arr[j])==false) {
System.out.println("YES");
flag=false;
break;
}
}
if(flag==true) {
System.out.println("NO");
}
}
}
public static boolean isPerfectSquare(double x)
{
if (x >= 0) {
// Find floating point value of
// square root of x.
int sr = (int)Math.sqrt(x);
// if product of square root
// is equal, then
// return T/F
return ((sr * sr) == x);
}
return false;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 2cbf5e0c46049cfd3a36d3202815ca9e | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Prob1{
public static void main(String args[]){
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while(t-- > 0){
int n = s.nextInt();
int arr[] = new int[n];
for(int i=0;i<n;i++) arr[i] = s.nextInt();
long prod = 1;
int flag = 0;
for(int i=0;i<n;i++){
double sqrt = Math.sqrt(arr[i]);
if(Math.floor(sqrt) != Math.ceil(sqrt)){
flag = 1;
break;
}
// prod *= (long)arr[i];
// sqrt = Math.sqrt(prod);
// if(Math.floor(sqrt) != Math.ceil(sqrt)){
// flag = 1;
// break;
// }
}
if(flag == 1){
System.out.println("YES");
}
else{
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 54349201d205a8c028c1f64c36dc0ea8 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
public class CodeForces {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader in = new FastReader();
int t = in.nextInt();
while(t-->0) {
int n = in.nextInt();
int a[] = new int[n];
int i;
for(i=0;i<n;i++) {
a[i] = in.nextInt();
}
int j;
double s = 0.0;
int p = 1;
String ans = "NO";
for(i=0;i<n;i++) {
s = Math.sqrt(a[i]);
if(s - (int)Math.floor(s) != 0) {
ans = "YES";
break;
}
}
System.out.println(ans);
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f0c93cfc829d43bf168a557fa20f26ae | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int t = Integer.parseInt(br.readLine());
StringTokenizer st;
while(t-->0){
int n = Integer.parseInt(br.readLine());
st = new StringTokenizer(br.readLine(), " ");
int i = 0;
for (; i <n; i++) {
int p = Integer.parseInt(st.nextToken());
if(p!=(int)(Math.pow((int)Math.sqrt(p), 2))){
System.out.println("YES");
break;
}
}
if(i==n)
System.out.println("NO");
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 1ece47bec4847865c43b95f2c139f226 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.lang.*;
import java.math.*;
import java.io.*;
import java.util.*;
public class Practice{
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static int gcd(int a, int b) {
if (b == 0) {
return a;}
else {
return gcd(b, a % b);}}
//for prime no
static boolean isPrime(int n) {
return BigInteger.valueOf(n).isProbablePrime(1);
}
static boolean isPrime(long n) {
return BigInteger.valueOf(n).isProbablePrime(1);
}
static boolean[] seiveOfEratoSthenes(int n) {
boolean isPrime[]=new boolean[n+1];
Arrays.fill(isPrime, true);
isPrime[0]=false;
isPrime[1]=false;
for(int i=2;i<=Math.sqrt(n);i++) {
for(int j=2*i;j<=n;j+=i) {
isPrime[j]=false;
}
}
return isPrime;
}
static long modulo(long a,long b,int n) {
long res=1;
while(b>0) {
if((b&1)==1) {
res=(res*(a%n))%n;
}
a=((a%n)*(a%n))%n;
b=b>>1;
}
return res;
}
static class Pair implements Comparable<Pair>{
double a;
int b;
Pair(double tim,int index){
this.b=index;
this.a=tim;
}
public int compareTo(Pair st){
if(a==st.a)
return b-st.b;
else if(a>st.a)
return 1;
else
return -1;
}
}
static boolean isPalindrome(String s) {
int length = s.length();
for (int i = 0; i < length / 2; i++) {
if (s.charAt(i) != s.charAt(length - 1 - i)) {
return false;
}
}
return true;
}
static void reverseArray(int[] arr) {
for (int i = 0; i < arr.length / 2; i++) {
int temp = arr[i];
arr[i] = arr[arr.length - 1 - i];
arr[arr.length - 1 - i] = temp;
}
}
static void reverseArray(String[] arr) {
for (int i = 0; i < arr.length / 2; i++) {
String temp = arr[i];
arr[i] = arr[arr.length - 1 - i];
arr[arr.length - 1 - i] = temp;
}
}
static void reverseArray(char[] arr) {
for (int i = 0; i < arr.length / 2; i++) {
char temp = arr[i];
arr[i] = arr[arr.length - 1 - i];
arr[arr.length - 1 - i] = temp;
}
}
public static void main(String[] args)
{
FastReader sc = new FastReader();
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
int arr[]=new int[n];
long sum=1;
boolean right=false;
for(int i=0;i<n;i++) {
arr[i]=sc.nextInt();
if(perfect(arr[i])) {
continue;
}
sum*=arr[i];
right=true;
}
if(right) {System.out.println("YES");}
else {System.out.println("NO");}
}
}
static boolean perfect(long a) {
double sqrt=Math.sqrt(a);
if(sqrt==(long)sqrt) {
return true;
}
return false;
}
static int binary(int start,int end,int arr[],int v ) {
int Q=0;
if (end <= start)
{ Q=(v >= arr[start])? start : (start-1); }
else{
int mid = (start + end)/2;
if(v == arr[mid])
return mid;
if(v >arr[mid]) {
Q= binary( mid+1, end,arr, v); }
else if(v <arr[mid]){
Q= binary( start, mid-1,arr, v); }}
return Q;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | e22b6195b54f8b97464f4b40f89f0069 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.StringTokenizer;
public class Qus1 {
static HashMap<Integer, Integer> hashMap;
public static void main(String[] args) {
handmadeInput.FastReader in = new handmadeInput.FastReader();
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt();
int[] qus = new int[n];
hashMap = new HashMap<>(n);
for (int i = 0; i < n; i++) {
qus[i] = in.nextInt();
if (!isPerfectSquare(qus[i])) {
if (!hashMap.containsKey(qus[i])) {
hashMap.put(qus[i], 1);
} else {
hashMap.replace(qus[i], hashMap.get(qus[i]));
}
}
}
boolean b=false;
for(int i:hashMap.keySet()){
if(hashMap.get(i)%2!=0){
b=true;
}
break;
}
if(b){
System.out.println("YES");
}
else{
System.out.println("NO");
}
}
}
private static boolean isPerfectSquare(int x) {
int y = (int) Math.sqrt(x);
return y * y == x;
}
}
class handmadeInput {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | d3685fd29607e0d10243ca2b2b5e8fd0 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.*;
import java.util.*;
public class CodeF1
{
// .....................................input stuff started....................................
private static StringTokenizer st;
public static void nextLine(BufferedReader br) throws IOException
{
st = new StringTokenizer(br.readLine());
}
public static int nextInt()
{
return Integer.parseInt(st.nextToken());
}
public static String next()
{
return st.nextToken();
}
public static long nextLong()
{
return Long.parseLong(st.nextToken());
}
public static double nextDouble()
{
return Double.parseDouble(st.nextToken());
}
// .....................................input stuff ends....................................
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static BufferedWriter out = new BufferedWriter(new OutputStreamWriter(System.out));
static boolean prime[];
public static void genSeive(){
prime=new boolean[1000001];
Arrays.fill(prime,true);
prime[0]=false;
prime[1]=false;
for(int i=2;i*i<=1000000;i++)
if(prime[i])
for(int j=2*i;j<=1000000;j+=i)
prime[j]=false;
}
public static void solve() throws IOException{
nextLine(br);
int n=nextInt();
nextLine(br);
int[] arr=new int[n];
// HashSet<Integer> set=new HashSet<>();
for(int i=0;i<n;i++){
arr[i]=nextInt();
// set.add(arr[i]);
}
// if(set.size()!=n){
// out.append("NO\n");
// return ;
// }
for(int i=0;i<n;i++){
if((int)Math.pow(arr[i],0.5)!=Math.pow(arr[i],0.5)){
out.append("YES\n");
return;
}
}
out.append("NO\n");
}
public static void main(String[] args) throws IOException
{
genSeive();
nextLine(br);
int t=nextInt();
while(t-- >0)
solve();
out.flush();
out.close();
}
static int gcd(int a, int b) {
// if b=0, a is the GCD
if (b == 0)
return a;
// call the gcd() method recursively by
// replacing a with b and b with
// modulus(a,b) as long as b != 0
else
return gcd(b, a % b);
}
// lcm() method returns the LCM of a and b
static int lcm(int a, int b, int gcdValue)
{
return Math.abs(a * b) / gcdValue;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f532b0b787684c6c2662fa873d229585 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.util.*;
import java.math.*;
//import java.io.*;
public class Experiment {
static Scanner in=new Scanner(System.in);
// static BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
public static void sort(int ar[],int l,int r) {
if(l<r) {
int m=l+(r-l)/2;
sort(ar,l,m);
sort(ar,m+1,r);
merge(ar,l,m,r);
}
}
public static void merge(int ar[],int l,int m,int r) {
int n1=m-l+1;int n2=r-m;
int L[]=new int[n1];
int R[]=new int[n2];
for(int i=0;i<n1;i++)
L[i]=ar[l+i];
for(int i=0;i<n2;i++)
R[i]=ar[m+i+1];
int i=0;int j=0;int k=l;
while(i<n1 && j<n2) {
if(L[i]<=R[j]) {
ar[k++]=L[i++];
}else {
ar[k++]=R[j++];
}
}
while(i<n1)
ar[k++]=L[i++];
while(j<n2)
ar[k++]=R[j++];
}
public static int[] sort(int ar[]) {
sort(ar,0,ar.length-1);
//Array.sort uses O(n^2) in its worst case ,so better use merge sort
return ar;
}
public static void func(int ar[]) {
int k=0;
for(int ele:ar) {
if((double)(int)Math.sqrt(ele)==Math.sqrt(ele)) {
k++;
}}
if(k==ar.length)
System.out.println("NO");
else
System.out.println("YES");
}
public static void main(String[] args) {
int t=in.nextInt();
while(t!=0) {
int n=in.nextInt();
int ar[]=new int[n];
int p=1;
for(int i=0;i<n;i++) {
ar[i]=in.nextInt();
// p=p*ar[i];
}
func(ar);
t--;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 1a55c0b496b72a66280e74263f8e9dbe | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.util.*;
import java.lang.*;
import java.io.*;
public class CP
{
static boolean isSqr(int n){
double sqrt=Math.sqrt(n);
//finds the floor value of the square root and comparing it with zero
return ((sqrt - Math.floor(sqrt)) == 0);
}
public static void main (String[] args) throws java.lang.Exception
{
FastReader src =new FastReader();
int t=src.nextInt();
while(t-->0)
{
int n = src.nextInt();
int[] array = src.readArray(n);
int flag =0;
for(int i=0;i<n;i++){
if(!isSqr(array[i])){
flag=1;
break;
}
}
if(flag==1){
System.out.println("YES");
}
else{
System.out.println("NO");
}
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
float nextFloat()
{
return Float.parseFloat(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 8d00a5601cb5d90590e3a654de788b8e | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Codeforces1 {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader(){
br = new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while(st == null || !st.hasMoreElements()){
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){return Integer.parseInt(next());}
long nextLong(){return Long.parseLong(next());}
double nextDouble(){return Double.parseDouble(next());}
String nextLine(){
String str = "";
try {
str=br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args)throws IOException {
FastReader sc = new FastReader();
BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out));
//t -> test cases;
long t = sc.nextLong();
while(t-->0){
int n = sc.nextInt();
boolean flag = false;
for(int i=0; i<n; i++){
int a = sc.nextInt();
double sq = Math.sqrt(a);
if(sq*10%10 != 0){
flag=true;
}
}
if(flag)
output.write("YES"+"\n");
else
output.write("NO"+"\n");
}
output.flush();
}
//Number of bits
static int numberOfBits(int n){
return (int)(Math.log(n)/Math.log(2)+1);
}
//GCD of a Two number
static long GCD(long a, long b){
if(b==0)
return a;
return GCD(b, a%b);
}
//No of factors in factorial n i.e. (n!)
static long factors(long n, long b){
long count =0;
int power = 1;
while(n>=b){
count+=n/b;
b=(long)Math.pow(b, ++power);
}
return count;
}
//prime numbers in a range from 2 to n
static boolean[] primeUptoN(int n){
boolean arr[]= new boolean[n];
return arr;
}
//Round off
static double roundOff(double value, int digit){
double mul = Math.pow(10.0, digit);
value=Math.round((value*mul)/mul);
return value;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 3d228f58b1ecfce912a04240a6cf3928 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.* ;
import java.util.* ;
public class App {
public static void main (String[] args) throws java.lang.Exception {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
//reader = new BufferedReader(new FileReader(new File("C:\\Users\\Anjali\\Desktop\\projects\\HelloWorld\\src\\input.txt")));
BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out));
//writer = new BufferedWriter(new FileWriter(new File("C:\\Users\\Anjali\\Desktop\\projects\\HelloWorld\\src\\output.txt")));
//int tests = Integer.parseInt(reader.readLine());
int tests = 1;
//StringBuilder sb = new StringBuilder(tests);
while (tests-- > 0){
solve(reader, writer);
writer.write("\n");
}
reader.close();
writer.flush();
writer.close();
}
static void solve(BufferedReader reader, BufferedWriter writer) throws IOException {
int tests = Integer.parseInt(reader.readLine());
for (int j = 0; j < tests; j++) {
int n = Integer.parseInt(reader.readLine());
int[] a = new int[n];
String[] input = reader.readLine().split(" ");
for(int i = 0; i < n; i++) {
a[i] = Integer.parseInt(input[i]);
}
int found = 0;
for(int k = 0; k < n; k++) {
found = 0;
for (int i = 1; (i * i) <= a[k]; i++) {
if ((a[k] % i == 0) && (a[k] / i == i)) {
found = 1;
break;
}
}
if (found == 0) {
break;
}
}
if (found == 1) {
writer.write("NO\n");
} else {
writer.write("YES\n");
}
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | e6ddc02b5768cf061dfbe781dbc521bc | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.lang.*;
public class Main
{
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while(t!=0)
{
int n = sc.nextInt();
int a = 0;
for(int i =0;i<n;++i)
{
int y = sc.nextInt();
if((int)Math.sqrt(y) != Math.sqrt(y))
{
a++;
}
}
if(a>0)
System.out.println("YES");
else
System.out.println("NO");
t--;
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c0362ecf80011abeeb31c7c77a24d50d | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.lang.Math;
import java.util.*;
public class A {
public static void main(String[] args){
Scanner s = new Scanner(System.in);
int a = s.nextInt();
for(int i = 0;i < a; i++){
int b = s.nextInt();
boolean check = false;
for(int j = 0; j < b; j++){
int c = s.nextInt();
if(!isPerfectSquare(c)){
if(!check) {
System.out.println("YES");
}
check = true;
}
}
if(check == false){
System.out.println("NO");
}
}
}
public static boolean isPerfectSquare(int n){
double sqrtWithDecimals = Math.sqrt(n);
int sqrtWithoutDecimals = (int)Math.sqrt(n);
if(sqrtWithDecimals == (double)sqrtWithoutDecimals){
return true;
}
return false;
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 0bd23edc44ba3b6028aeb77e767ce78e | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
public static String check(int a[],int n)
{
for(int i=0;i<n;i++)
{
long k=(int)Math.sqrt(a[i]);
if(k*k!=a[i])
return "YES";
}
return "NO";
}
public static void main (String[] args) throws java.lang.Exception
{
Scanner s = new Scanner(System.in);
int t=s.nextInt();
while(t-->0)
{
int n=s.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++)
a[i]=s.nextInt();
System.out.println(check(a,n));
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | adb03afc22607fe77dced82cc3c77a4f | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class PerfectlyImperfectArray {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while (t-- > 0) {
int n = s.nextInt();
int[] a = new int [n];
for (int i = 0; i < n; i++) {
a[i] = s.nextInt();
}
boolean check=false;
for (int i = 0; i < n; i++) {
double ans= (double) a[i];
double x=Math.ceil(Math.sqrt(ans));
double y=Math.floor(Math.sqrt(ans));
if (x-y !=0) {
check=true;
break;
}
}
if (check) {
System.out.println("Yes");
} else {
System.out.println("No");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f7b650d194e1030335d351303698ef90 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
/**
*
* @author Acer
*/
public class PerfectlyImperfectArray {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int T = sc.nextInt();
while(T-- > 0){
int n = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
boolean flag = false;
for (int i = 0; i < n; i++) {
double x = (double)arr[i];
double y = Math.ceil(Math.sqrt(x));
double z = Math.floor(Math.sqrt(x));
if(y-z != 0){
flag = true;
break;
}
}
if(flag){
System.out.println("YES");
}
else{
System.out.println("NO");
}
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f47414f366f3293fc136b5896e5b8e3f | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
for(int i=0;i<n;i++){
int size= sc.nextInt();
int[] arr = new int[size];
for(int j=0;j<arr.length;j++){
arr[j] = sc.nextInt();
}
if(perfect(arr)){
System.out.println("Yes");
}
else{
System.out.println("No");
}
}
}
public static boolean perfect(int[] arr){
for(int i:arr){
int temp = (int)Math.sqrt(i);
if(temp*temp == i){
continue;
}
else{
return true;
}
}
return false;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 7fbf8f5b05ba27a075bf2ed860716f6a | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
public class Codeforces {
final static long mod = 1000000007;
public static void main(String[] args) {
FastReader sc = new FastReader();
int t = sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int a[]= new int[n];
int c=0;
for(int i=0;i<n;i++){
a[i]=sc.nextInt();
if(!checkPerfectSquare(a[i]))
c++;
}
System.out.println(c>0?"YES":"NO");
}
}
static boolean checkPerfectSquare(double number)
{
//calculating the square root of the given number
double sqrt=Math.sqrt(number);
//finds the floor value of the square root and comparing it with zero
return ((sqrt - Math.floor(sqrt)) == 0);
}
static class FastReader {
BufferedReader br;
StringTokenizer st; // StringTokenizer() is used to read long strings
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public class Pair implements Comparable<Pair> {
public final int index;
public final int value;
public Pair(int index, int value) {
this.index = index;
this.value = value;
}
@Override
public int compareTo(Pair other) {
// multiplied to -1 as the author need descending sort order
return -1 * Integer.valueOf(this.value).compareTo(other.value);
}
}
static String reverseString(String str) {
StringBuilder input = new StringBuilder();
return input.append(str).reverse().toString();
}
static long factorial(int n, int b) {
if (n == b)
return 1;
return n * factorial(n - 1, b);
}
static int lcm(int ch, int b) {
return ch * b / gcd(ch, b);
}
static int gcd(int ch, int b) {
return b == 0 ? ch : gcd(b, ch % b);
}
static double ceil(double n, double k) {
return Math.ceil(n / k);
}
static int sqrt(double n) {
return (int) Math.sqrt(n);
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 2fd891f7494d1a485111e235d11cdf50 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class CF_1517A {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int testCase = scan.nextInt();
while (testCase != 0) {
int arrayLimit = scan.nextInt();
boolean result = false;
int[] arrayNumbers = new int[arrayLimit];
for (int i = 0; i < arrayLimit; i++) {
arrayNumbers[i] = scan.nextInt();
int value = (int) Math.sqrt(arrayNumbers[i]);
if(value*value != arrayNumbers[i]) {
result = true;
}
}
System.out.println((result) ? "Yes" : "No");
testCase--;
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 48c7992dcca18fc3712af84fb95f5401 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | /*Author Adityaraj*/
import java.awt.Color;
import java.io.*;
import java.math.BigInteger;
import java.security.spec.ECPublicKeySpec;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Scanner;
import java.util.StringTokenizer;
public class Main {
public static void main(String[] args) throws IOException {
// Initialize the reader
FastScanner scan = new FastScanner();
// Initialize the writer
FastOutput out = new FastOutput();
/************************************************************************************************************************************/
// writer your code here
int t = scan.readInt();
while (t-->0) {
int n = scan.readInt();
int[] arr = scan.readIntArray(n);
boolean flag = true;
for (int i = 0; i < arr.length; i++) {
flag = perfect_square(Long.valueOf(arr[i]));
if(flag == false){
out.writeString("YES");
flag = false;
break;
}
}
if(flag){
out.writeString("NO");
}
}
/*************************************************************************************************************************************/
}
/**************************************************************************************************************************************/
// do not touch it
/**************************************************************************************************************************************/
//Write here the function which do you want to insert into the code during the sumbition
// this function will the gcd of two numbers
public static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
// this will return the pow of a^b
public static long bin_exp(long a, long b) {
long res = 1;
while (b != 0) {
if (b % 2 != 0)
res *= a;
a *= a;
b /= 2;
}
return res;
}
// this will return true if a is prime and false if not
public static boolean primeornot(long a) {
for (int i = 2; i * i <= a; i++) {
if (a % i == 0) {
// System.out.println(i);
return false;
}
}
return true;
}
// this function will check that a given string is palindrome or not
public static boolean palindrome(String string) {
StringBuffer buffer = new StringBuffer(string);
buffer = buffer.reverse();
if (string.equals(buffer.toString())) {
return true;
}
return false;
}
// this function count the number of digit in a number
public static int count_Digit(long a ) {
int count = 0 ;
while(a!=0){
a = a/10;
count++;
}
return count;
}
// this function will check weather a number is a perfect_square or not
public static boolean perfect_square(Long n) {
if (n>=0){
if (Math.ceil((double)Math.sqrt(n)) == Math.floor((double)Math.sqrt(n))){
return true;
}
}
return false;
}
/*************************************************************************************************************************/
/****************************************************************************************************************************************/
// Fast Reader Class
public static class FastScanner {
// Reader object
BufferedReader reader;
// Constructor
public FastScanner() {
// Initialize the reader
reader = new BufferedReader(new InputStreamReader(System.in));
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
reader = new BufferedReader(new InputStreamReader(new FileInputStream("input.txt")));
} catch (Exception e) {
}
}
}
// String tokenizer
StringTokenizer tokenizer;
// Function to read a
// single integer
// to extend the fast reader class writer your function here
public int readInt() throws IOException {
return Integer.parseInt(reader.readLine());
}
// Function to read a
// single long
public long readLong() throws IOException {
return Long.parseLong(reader.readLine());
}
// Function to read string
public String readString() throws IOException {
return reader.readLine();
}
// Function to read a array
// of numsInts integers
// in one line
public int[] readIntArray(int numInts) throws IOException {
int[] nums = new int[numInts];
tokenizer = new StringTokenizer(reader.readLine());
for (int i = 0; i < numInts; i++) {
nums[i] = Integer.parseInt(tokenizer.nextToken());
}
return nums;
}
public Long[] readLongArray(int n) throws IOException {
tokenizer = new StringTokenizer(reader.readLine());
Long[] arr = new Long[n];
int i = 0;
while (tokenizer.hasMoreTokens()) {
arr[i] = Long.parseLong(tokenizer.nextToken());
i++;
}
return arr;
}
public List<Integer> readIntAsList() throws IOException {
List<Integer> list = new ArrayList<Integer>();
tokenizer = new StringTokenizer(reader.readLine());
while (tokenizer.hasMoreTokens()) {
list.add(Integer.parseInt(tokenizer.nextToken()));
}
return list;
}
}
// Fast Writer Class
public static class FastOutput {
// Writer object
BufferedWriter writer;
// Constructor
public FastOutput() {
// Initialize the writer
writer = new BufferedWriter(new OutputStreamWriter(System.out));
if (System.getProperty("ONLINE_JUDGE") == null) {
try {
writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream("output.txt")));
} catch (Exception e) {
}
}
}
// Function to write the
// single integer
public void writeInt(int i) throws IOException {
writer.write(Integer.toString(i));
writer.newLine();
writer.flush();
}
// Function to write single long
public void writeLong(long i) throws IOException {
writer.write(Long.toString(i));
writer.newLine();
writer.flush();
}
// Function to write String
public void writeString(String s) throws IOException {
writer.write(s);
writer.newLine();
writer.flush();
}
public void writeStringWithSpace(String s) throws IOException {
writer.write(s);
writer.write(" ");
writer.flush();
}
// Function to write a Integer of
// array with spaces in one line
public void writeIntArray(int[] nums) throws IOException {
for (int i = 0; i < nums.length; i++) {
writer.write(nums[i] + " ");
}
writer.newLine();
writer.flush();
}
// Function to write Integer of
// array without spaces in 1 line
public void writeIntArrayWithoutSpaces(int[] nums) throws IOException {
for (int i = 0; i < nums.length; i++) {
writer.write(Integer.toString(nums[i]));
}
writer.newLine();
writer.flush();
}
public void writelist(List<Integer> num) throws IOException {
if (num != null) {
for (Integer integer : num) {
writer.write(integer + " ");
}
}
writer.newLine();
writer.flush();
}
public void write_matrix(int[][] matrix) throws IOException {
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[0].length; j++) {
writer.write(matrix[i][j] + " ");
}
writer.newLine();
}
writer.newLine();
writer.flush();
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | b81793d7f9f826fcacdb7d059ec6bdf3 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.util.*;
import java.io.*;
public class kickStart {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
/* --------------------------------------------------------------------------------------------------------------------------------------------------------------------- */
void printArray(int[] arr) {
System.out.println(Arrays.toString(arr));
}
void printArray(String[] arr) {
System.out.println(Arrays.toString(arr));
}
void printArray(long[] arr) {
System.out.println(Arrays.toString(arr));
}
void print(int data) {
System.out.println(data);
}
void print(String data) {
System.out.println(data);
}
void print(long data) {
System.out.println(data);
}
int[] II(int n) {
int[] d = new int[n];
String[] arr = nextLine().split(" ");
for (int i = 0; i < n; i++) {
d[i] = Integer.parseInt(arr[i]);
}
return d;
}
String[] IS(int n) {
return nextLine().split(" ");
}
long[] IL(int n) {
long[] d = new long[n];
String[] arr = nextLine().split(" ");
for (int i = 0; i < n; i++) {
d[i] = Long.parseLong(arr[i]);
}
return d;
}
}
public static void main(String[] args) {
FastReader fs = new FastReader();
int t = fs.nextInt();
for (int idx = 1; idx <= t; ++idx) {
int n = fs.nextInt();
int[] arr = fs.II(n);
operation(arr, n);
}
}
private static void operation(int[] arr, int n){
for(int i = 0; i < n; i++){
int root = (int)Math.floor(Math.sqrt(arr[i]));
// System.out.println(root);
if(root*root != arr[i]) {
System.out.println("YES");
return;
}
}
System.out.println("NO");
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 7714374abf111f054b8ac2b5a029affe | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.math.*;
import java.lang.*;
public class blipblop {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t=sc.nextInt();
while(t-->0) {
int n=sc.nextInt();
long a[] = new long[n];
for(int i=0 ; i<n ; i++) {
a[i]=sc.nextLong();
}
boolean flag=true;
for(int i=0 ; i<n ; i++) {
double x=Math.sqrt(a[i]);
if(Math.floor(x)!=x) {
flag=false;
System.out.println("YES");
break;
}
}
if(flag) {
System.out.println("NO");
}
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 7252a766a2978ddda29df9660c69e137 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.util.Scanner;
import java.lang.*;
import java.lang.*;
public class Main {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner Sc=new Scanner(System.in);
int t=Sc.nextInt();
while((t--)>0){
int n=Sc.nextInt();
boolean f=false;
for(int i=0;i<n;i++) {
int val=Sc.nextInt();
int x=(int)Math.sqrt(val);
if(val!=x*x) {
f=true;
}
}
if(f) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c52afa52561c96a186fc9cd2a92a6178 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Main{
public static void main(String[] args) {
Scanner scn=new Scanner(System.in);
int t=scn.nextInt();
while(t-->0){
int n=scn.nextInt();
int []arr=new int[n];
for(int i=0;i<n;i++){
arr[i]=scn.nextInt();
}
boolean flag=false;
for(int i=0;i<n;i++){
double d=Math.pow(arr[i], 0.5);
int doub=(int)d;
if((d-(double)doub)>0.00){
flag=true;
break;
}
}
if(flag){
System.out.println("YES");
}else{
System.out.println("NO");
}
}
scn.close();
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | b022a8cd8ea570430d2e75e1adb40b79 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class fact {
public static boolean checkPerfectSquare(double number)
{
double sqrt=Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = sc.nextInt();
while (t-->0){
int n = sc.nextInt();
int[] arr = new int[n];
int count =0;
for (int i = 0; i < arr.length; i++) {
arr[i] = sc.nextInt();
if(!checkPerfectSquare(arr[i])){
count++;
}
}
if(count>0){
System.out.println("YES");
}
else{
System.out.println("NO");
}
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 3f166abc9acfad4959dcf14ad77a8903 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.util.Scanner;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author valeesi
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
APerfectlyImperfectArray solver = new APerfectlyImperfectArray();
int testCount = Integer.parseInt(in.next());
for (int i = 1; i <= testCount; i++)
solver.solve(i, in, out);
out.close();
}
static class APerfectlyImperfectArray {
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int[] arr = in.nextIntArray(n);
for (int i = 0; i < arr.length; i++) {
int sq = (int) Math.sqrt(arr[i]);
if (sq * sq != arr[i]) {
out.println("YES");
return;
}
}
out.println("NO");
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Scanner scanner;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
scanner = new Scanner(reader);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public int[] nextIntArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 26d43899ca5fdc1f2d04775114875558 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.InputMismatchException;
import java.util.*;
import java.io.*;
import java.lang.*;
public class Main{
public static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
private BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars==-1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
}
catch (IOException e) {
throw new InputMismatchException();
}
if(numChars <= 0)
return -1;
}
return buf[curChar++];
}
public String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
public int nextInt() {
int c = read();
while(isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if(c<'0'||c>'9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public long nextLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public double nextDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
}
while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static long gcd(long a, long b){
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b) {
return (a*b)/gcd(a, b);
}
public static void sortbyColumn(int arr[][], int col)
{
Arrays.sort(arr, new Comparator<int[]>() {
@Override
public int compare(final int[] entry1,
final int[] entry2) {
if (entry1[col] > entry2[col])
return 1;
else
return -1;
}
});
}
static long func(long a[],int size,int s){
long max1=a[s];
long maxc=a[s];
for(int i=s+1;i<size;i++){
maxc=Math.max(a[i],maxc+a[i]);
max1=Math.max(maxc,max1);
}
return max1;
}
public static class Pair<U extends Comparable<U>, V extends Comparable<V>> implements Comparable<Pair<U, V>> {
public U x;
public V y;
public Pair(U x, V y) {
this.x = x;
this.y = y;
}
public int hashCode() {
return (x == null ? 0 : x.hashCode() * 31) + (y == null ? 0 : y.hashCode());
}
public boolean equals(Object o) {
if (this == o)
return true;
if (o == null || getClass() != o.getClass())
return false;
Pair<U, V> p = (Pair<U, V>) o;
return (x == null ? p.x == null : x.equals(p.x)) && (y == null ? p.y == null : y.equals(p.y));
}
public int compareTo(Pair<U, V> b) {
int cmpU = x.compareTo(b.x);
return cmpU != 0 ? cmpU : y.compareTo(b.y);
}
public String toString() {
return String.format("(%s, %s)", x.toString(), y.toString());
}
}
static class MultiSet<U extends Comparable<U>> {
public int sz = 0;
public TreeMap<U, Integer> t;
public MultiSet() {
t = new TreeMap<>();
}
public void add(U x) {
t.put(x, t.getOrDefault(x, 0) + 1);
sz++;
}
public void remove(U x) {
if (t.get(x) == 1) t.remove(x);
else t.put(x, t.get(x) - 1);
sz--;
}
}
static void shuffle(long[] a) {
Random get = new Random();
for (int i = 0; i < a.length; i++) {
int r = get.nextInt(a.length);
long temp = a[i];
a[i] = a[r];
a[r] = temp;
}
}
static long myceil(long a, long b){
return (a+b-1)/b;
}
static long C(long n,long r){
long count=0,temp=n;
long ans=1;
long num=n-r+1,div=1;
while(num<=n){
ans*=num;
//ans+=MOD;
ans%=MOD;
ans*=mypow(div,MOD-2);
//ans+=MOD;
ans%=MOD;
num++;
div++;
}
ans+=MOD;
return ans%MOD;
}
static long fact(long a){
long i,ans=1;
for(i=1;i<=a;i++){
ans*=i;
ans%=MOD;
}
return ans%=MOD;
}
static void sieve(int n){
is_sieve[0]=1;
is_sieve[1]=1;
int i,j,k;
for(i=2;i<n;i++){
if(is_sieve[i]==0){
sieve[i]=i;
tr.add(i);
for(j=i*i;j<n;j+=i){
if(j>n||j<0){
break;
}
is_sieve[j]=1;
sieve[j]=i;
}
}
}
}
// static void calc(int n){
// int i,j;
// dp[n-1]=0;
// if(n>1)
// dp[n-2]=1;
// for(i=n-3;i>=0;i--){
// long ind=n-i-1;
// dp[i]=((ind*(long)mypow(10,ind-1))%MOD+dp[i+1])%MOD;
// }
// }
static long mypow(long x,long y){
long temp;
if( y == 0)
return 1;
temp = mypow(x, y/2);
if (y%2 == 0)
return (temp*temp)%MOD;
else
return ((x*temp)%MOD*(temp)%MOD)%MOD;
}
static long dist[],dp[][];
static int visited[],isit[];
static ArrayList<Integer> adj[],li;
//static int dp[][][];
static int MOD=1000000007,max=0;
static char ch[];
static int[] sieve,is_sieve;
static TreeSet<Integer> tr;
static long mat[][];
public static void main(String args[]){
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter w = new PrintWriter(outputStream);
int t,i,j,tno=0,tte;
t=in.nextInt();
//t=1;
//tte=t;
while(t-->0){
int n=in.nextInt();
int arr[]=new int[n];
int flag=0;for(i=0;i<n;i++){
arr[i]=in.nextInt();
}
for(i=0;i<n;i++){
long x=arr[i];
long y=(long)Math.sqrt(x);
if(y*y!=x){
flag=1;
//break;
}
}
if(flag==0){
w.println("NO");
}else{
w.println("YES");
}
}
w.close();
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 8f5fd0af2b39f4cc1181ee65f5262714 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.*;
public class Codeforces {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(br.readLine());
while(t-->0) {
int n = Integer.parseInt(br.readLine());
int arr[] = new int[n];
String inp[] = br.readLine().split(" ");
for(int i = 0; i < n; ++i)
arr[i] = Integer.parseInt(inp[i]);
boolean flag = false;
for(int i : arr) {
if(i % Math.sqrt(i) != 0) {
flag = true;
break;
}
}
if(flag)
bw.write("YES\n");
else
bw.write("NO\n");
}
bw.flush();
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 4cc4398fcbf4472433c9f12f561d69ff | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.util.Scanner;
public class Main
{
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
boolean f=false;
int n=sc.nextInt();
int arr[]=new int[n];
for(int i=0;i<n;i++)
{
arr[i]=sc.nextInt();
}
for(int i=0;i<n;i++)
{
if(!isperfectSquare(arr[i]))
{
f=true;
break;
}
}
if(f)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
public static boolean isperfectSquare(int number)
{
double sqrt=Math.sqrt(number);
return ((sqrt - Math.floor(sqrt)) == 0);
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 32fe92e3b3556120d22e50d0591297ad | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.*;
import java.util.Scanner;
import java.util.*;
import java.lang.*;
import java.io.IOException;
public class Code
{
////
public static void main(String[] args) throws IOException
{
try
{
System.setIn(new FileInputStream("input.txt"));
System.setOut(new PrintStream(new FileOutputStream("output.txt")));
}
catch (Exception e)
{
System.err.println("Error");
}
// BufferedReader br = new BufferedReader(new InputStreamReader(System.in))
Scanner sc= new Scanner(System.in);
int t = sc.nextInt();
while(t--!=0)
{
// int h = sc.nextInt();
// int = sc.nextInt();
int n = sc.nextInt();
int[] a = new int[n];
int c1=0,c2=0;
for(int i=0;i<n;i++)
{
a[i] = sc.nextInt();
if(!(Math.ceil((double)Math.sqrt(a[i])) == Math.floor((double)Math.sqrt(a[i]))))
{
c1++;
}
}
if(c1>0)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
// System.out.println(sum1-diff);
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | d0236be89560733c0db504cd4780c621 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scn = new Scanner(System.in);
long t = scn.nextLong();
for (int j = 1; j <= t; j++) {
int n = scn.nextInt();
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = scn.nextLong();
}
System.out.println(helper(arr));
}
}
public static String helper(long[] arr) {
for (int i = 0; i < arr.length; i++) {
int ceil = (int) Math.ceil(Math.sqrt(arr[i]));
int floor = (int) Math.floor(Math.sqrt(arr[i]));
if (ceil != floor)
return "YES";
}
return "NO";
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 0cd2a96b12054fa23fe709409742e873 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.math.BigInteger;
import java.util.Scanner;
public class p1
{
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int y=Integer.MIN_VALUE;
int n=sc.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++){
a[i]=sc.nextInt();
if(((long)Math.sqrt(a[i])*((long)Math.sqrt(a[i])))!=a[i])
{
y=0;
}
}
if(y==0)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f17f58d16518c648e1c494bf6a057a9d | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.util.StringTokenizer;
public class B {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
int T=fs.nextInt();
while (T-- > 0) {
int n = fs.nextInt();
int[] a = fs.readArray(n);
boolean b = false;
for (int i = 0 ; i < n; i++) {
double sq = Math.sqrt(a[i]);
if ((sq - Math.floor(sq)) != 0.0) {
System.out.println("YES");
b = true;
break;
}
}
if (!b) {
System.out.println("NO");
}
}
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 019d2c952a12c14569581569e2ae03f9 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class MyClass {
public static void main(String args[]) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while(t-->0)
{
int n=sc.nextInt();
int a[]=new int[n];
String s="NO";
for(int i=0;i<n;i++)
a[i]=sc.nextInt();
for(int i=0;i<n;i++)
{
int p=(int)Math.sqrt(a[i]);
if(p*p!=a[i])
{
s="YES";
break;
}
}
System.out.println(s);
}
}} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 10c0fdf0f86133310e202aa873c8f396 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public final class Main {
public static class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){
br=new BufferedReader(new InputStreamReader(System.in));
}
String next(){
while (st==null || !st.hasMoreElements()){
try{
st=new StringTokenizer(br.readLine());
}catch (Exception e){
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt(){
return Integer.parseInt(next());
}
long nextLong(){
return Long.parseLong(next());
}
double nextDouble(){
return Double.parseDouble(next());
}
float nextFloat(){
return Float.parseFloat(next());
}
String nextLine(){
String str="";
try{
str=br.readLine();
}catch (Exception e){
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) {
FastReader in =new FastReader();
int t=in.nextInt();
while (t-->0){
int n=in.nextInt();
int[] a=new int[n];
String[] s=in.nextLine().split(" ");
boolean flag=false;
for (int i=0;i<n;i++){
a[i]= Integer.parseInt(s[i]);
double k= Math.sqrt(a[i]);
int x = (int)k;
if(k!=x){
flag = true;
break;
}
}
if (flag)
System.out.println("YES");
else
System.out.println("NO");
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 99630dee8853e70ee564915942192e01 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | /* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
Scanner scn=new Scanner(System.in);
int t=scn.nextInt();
while(t-->0){
int n=scn.nextInt();
int[] arr=new int[n];
for(int i=0;i<n;i++){
arr[i]=scn.nextInt();
}
boolean found=false;
for(int i=0;i<n;i++){
if((int)Math.ceil(Math.sqrt(arr[i]))!=(int)Math.floor(Math.sqrt(arr[i]))){
System.out.println("YES");
found=true;
break;
}
}
if(!found){
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 2afc0b6410891c1aea9380cfd201390e | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | // Working program using Reader Class
import java.io.DataInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
public class Q1 {
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(
new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n') {
if (cnt != 0) {
break;
}
else {
continue;
}
}
buf[cnt++] = (byte)c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ') {
c = read();
}
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0,
BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
public static void main(String[] args)
throws IOException
{
Reader s = new Reader();
int t=s.nextInt();
while(t-->0) {
int n=s.nextInt();
int[] a=new int[n];
long ans=0;
for(int i=0;i<n;i++) {
a[i]=s.nextInt();
}
for(int i=0;i<n;i++) {
int temp=a[i];
int sqt=(int)Math.sqrt(a[i]);
if(sqt*sqt != temp) {
System.out.println("YES");
ans=1;
break;
}
}
if(ans==0)System.out.println("NO");
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 7fefd3cbc3e6d945e28f48392c9f8701 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.util.LinkedList;
import java.io.*;
import java.math.*;
public class Main
{
static class Pair{
int key;
int value;
Pair(int key,int value)
{
this.key=key;
this.value=value;
}
int getKey(){
return this.key;
}
int getValue(){
return this.value;
}
}
public static class SortbyKey implements Comparator<Pair>
{
public int compare(Pair a, Pair b){
return (a.key- b.key);
}
}
public static boolean isPerfectSquare(double n)
{
double p= Math.sqrt(n);
return ((p - Math.floor(p)) == 0);
}
public static void process()throws IOException
{
int n=ni();
double arr[]=new double[n];
int flag=0;
for(int i=0;i<n;i++)
{
arr[i]=nd();
}
for(int i=0;i<n;i++)
{
if(!isPerfectSquare(arr[i]))
{
flag=1;
break;
}
}
if(flag==1)
pn("YES");
else
pn("NO");
//int n=ni(),k=ni();
}
static AnotherReader sc;
static PrintWriter out;
public static void main(String[]args)throws IOException
{
out = new PrintWriter(System.out);
sc=new AnotherReader();
boolean oj = true;
//PrintWriter out=new PrintWriter("output");
//oj = System.getProperty("ONLINE_JUDGE") != null;
//if(!oj) sc=new AnotherReader(100);
// int T=ni();
//while(T-->0)
//process();
int i=1;
int T=ni();
while(T-->0)
// {
// p("Case #"+i+": ");
process();
// i++;
// }
long s = System.currentTimeMillis();
out.flush();
if(!oj)
System.out.println(System.currentTimeMillis()-s+"ms");
System.out.close();
}
static void sort(long arr[],int n)
{
shuffle(arr,n);
Arrays.sort(arr);
}
static void shuffle(long arr[],int n)
{
Random r=new Random();
for(int i=0;i<n;i++)
{
long temp=arr[i];
int pos=i+r.nextInt(n-i);
arr[i]=arr[pos];
arr[pos]=temp;
}
}
static void pn(Object o){out.println(o);}
static void p(Object o){out.print(o);}
static void pni(Object o){out.println(o);System.out.flush();}
static int ni()throws IOException{return sc.nextInt();}
static long nl()throws IOException{return sc.nextLong();}
static double nd()throws IOException{return sc.nextDouble();}
static String nln()throws IOException{return sc.nextLine();}
static String nn()throws IOException{return sc.next();}
static int len(String s)throws IOException{return s.length();}
static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);}
static long bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));}
static int[] iarr(int N)throws IOException{int[]ARR=new int[N];for(int i=0;i<N;i++){ARR[i]=ni();}return ARR;}
static long[] larr(int N)throws IOException{long[]ARR=new long[N];for(int i=0;i<N;i++){ARR[i]=nl();}return ARR;}
static boolean multipleTC=false;
/////////////////////////////////////////////////////////////////////////////////////////////////////////
static class AnotherReader{BufferedReader br; StringTokenizer st;
AnotherReader()throws FileNotFoundException{
br=new BufferedReader(new InputStreamReader(System.in));}
AnotherReader(int a)throws FileNotFoundException{
br = new BufferedReader(new FileReader("input.txt"));}
String next()throws IOException{
while (st == null || !st.hasMoreElements()) {try{
st = new StringTokenizer(br.readLine());}
catch (IOException e){ e.printStackTrace(); }}
return st.nextToken(); } int nextInt() throws IOException{
return Integer.parseInt(next());}
long nextLong() throws IOException
{return Long.parseLong(next());}
double nextDouble()throws IOException { return Double.parseDouble(next()); }
String nextLine() throws IOException{ String str = ""; try{
str = br.readLine();} catch (IOException e){
e.printStackTrace();} return str;}}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c74d4dec4223e2663ab1f6c070251ec8 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
import java.util.Arrays;
import java.util.HashMap;
//import java.util.HashMap;
//import java.util.Arrays;
//import java.util.Stack;
import java.lang.Math;
public class solution {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int testcases = s.nextInt();
while(testcases-->0) {
int n=s.nextInt();
int[] arr=new int[n];
for(int i=0;i<n;i++) {
arr[i]=s.nextInt();
}
boolean flag=false;
for(int i=0;i<n;i++) {
int a =(int)Math.sqrt(arr[i]);
if(a*a!=arr[i]) {
flag=true;
break;
}
}
if(flag)
System.out.println("YES");
else
System.out.println("NO");
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | aa482b697ef060585c33cb402ad45b56 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class a{
static Scanner sc = new Scanner(System.in);
public static void solve(){
int len = sc.nextInt();
boolean pr = false;
long [] tab = new long[len];
for(int i=0;i<len;i++){
tab[i] = sc.nextLong();
}
for(int i=0;i<len;i++){
long l = (long)Math.sqrt(tab[i]);
if(l*l!=tab[i]){
System.out.println("YES");
pr = true;
break;
}
}
if(!pr) System.out.println("NO");
}
public static void main (String [] args){
int cases = sc.nextInt();
for(int i=1;i<=cases;i++){
//System.out.println("Case "+i+" : ");
solve();
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 024519ba5fe61dd85cc79578992c6c4b | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class Perfectly_Imperfect_Array {
static boolean isPerfectSquare(int num)
{
long left = 1, right = num;
while (left <= right)
{
long mid = (left + right) / 2;
if (mid * mid == num)
{
return true;
}
if (mid * mid < num)
{
left = mid + 1;
}
else
{
right = mid - 1;
}
}
return false;
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t=sc.nextInt();
while (t-->0){
int n=sc.nextInt();
int arr[]=new int[n];
boolean check=true;
for (int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
for (int i=0;i<n;i++){
if (!isPerfectSquare(arr[i])){
check=false;
break;
}
}
if (check){
System.out.println("NO");
}else {
System.out.println("YES");
}
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 97e9e3c891a6261d74959ed3991faf72 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.*;
import java.util.*;
public class Hackerrank {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t = sc.nextInt();
for(int i=0;i<t;i++) {
int n = sc.nextInt();
boolean temp = false;
int[] arr = new int[n];
for(int j=0;j<n;j++) {
arr[j] =sc.nextInt();
int x = (int) Math.sqrt(arr[j]);
if(x*x!=arr[j]) {
temp = true;
}
}
if(temp) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | d6058baccb689479520fa08bdb6e273d | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner o=new Scanner(System.in);
int t=o.nextInt();
while(t>0) {
int n=o.nextInt();
int ar[]=new int[n];
for(int i=0;i<n;i++) {
ar[i]=o.nextInt();
}
boolean ps=true;
for(int i=0;i<n;i++) {
int v=(int)Math.sqrt(ar[i]);
if(v*v!=ar[i]) {
ps=false;
break;
}
}
if(!ps)
System.out.println("YES");
else
System.out.println("NO");
t--;
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | f2c3a9dd6e46e39797f939e4cd4759c7 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class CF2308 {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int testCases = scan.nextInt();
while(testCases>0){
int arrayLength = scan.nextInt();
int[] array = new int[arrayLength];
for(int i=0; i<arrayLength; i++){
array[i] = scan.nextInt();
}
if(hasSquaredSubsequence(array)){
System.out.println("NO");
}else{
System.out.println("YES");
}
testCases--;
}
}
public static boolean hasSquaredSubsequence(int[] array){
for(int num : array){
double dNum = num;
double root = Math.sqrt(dNum);
if(root != (int)root){
return false;
}
}
return true;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 5c771a25d040bcc49aa4ab001fb1b2d7 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class MyClass {
public static void main(String args[])
{
Scanner kb = new Scanner(System.in);
int t = kb.nextInt();
while(t-- > 0)
{
int n = kb.nextInt();
int [] arr = new int[n];
for(int i=0;i<n;i++)
{
arr[i] = kb.nextInt();
}
boolean flag = false;
for(int i=0;i<n;i++)
{
if(!isPerfect(arr[i]))
{
//System.out.println("IN the if for: "+arr[i]);
flag = true;
break;
}
}
if(flag)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
public static boolean isPerfect(int n)
{
for(int i=1;i*i<=n;i++)
{
if(n%i==0 && n/i==i)
{
return true;
}
}
return false;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | a005cd973ec047252f819348776871f8 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int t = sc.nextInt(), n, a[];
boolean k;
while(t -- > 0){
k = false;
n = sc.nextInt();
a = new int[n];
for(int i = 0; i < n; i ++){
a[i] = sc.nextInt();
if(Math.sqrt(a[i]) != (int)Math.sqrt(a[i])) k = true;
}
System.out.println(k ? "YES" : "NO");
}
sc.close();
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | fdc26e53bb946ea176cfa1bc01dcb570 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.io.*;
public class Practice {
static boolean multipleTC = true;
final static int mod = 1000000007;
final static int mod2 = 998244353;
final double E = 2.7182818284590452354;
final double PI = 3.14159265358979323846;
int MAX = 41000;
int N = 40000;
int dp[];
void pre() throws Exception {
// dp = new int[N + 1];
// dp[0] = 1;
// for (int a = 1; a <= N; a++)
// if (reverse(a, 0) == a) {
// for (int n = 0; n + a <= N; n++) {
// dp[n + a] = (dp[n + a] + dp[n]) % mod;
// }
// }
}
int reverse(int a, int b) {
return a == 0 ? b : reverse(a / 10, b * 10 + a % 10);
}
// All the best
void solve(int TC) throws Exception {
int n = ni(), arr[] = readArr(n);
boolean has = false;
for(int i:arr) {
if(StrictMath.sqrt(i) % 1.0 != 0) {
has = true;
}
}
if(has) {
pn("YES");
}else {
pn("NO");
}
}
public static long gcd(long a, long b) {
if (a > b)
a = (a + b) - (b = a);
if (a == 0L)
return b;
return gcd(b % a, a);
}
double dist(int x1, int y1, int x2, int y2) {
double a = x1 - x2, b = y1 - y2;
return Math.sqrt((a * a) + (b * b));
}
int[] readArr(int n) throws Exception {
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
void sort(int arr[], int left, int right) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = left; i <= right; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = left; i <= right; i++)
arr[i] = list.get(i - left);
}
void sort(int arr[]) {
ArrayList<Integer> list = new ArrayList<>();
for (int i = 0; i < arr.length; i++)
list.add(arr[i]);
Collections.sort(list);
for (int i = 0; i < arr.length; i++)
arr[i] = list.get(i);
}
public long max(long... arr) {
long max = arr[0];
for (long itr : arr)
max = Math.max(max, itr);
return max;
}
public int max(int... arr) {
int max = arr[0];
for (int itr : arr)
max = Math.max(max, itr);
return max;
}
public long min(long... arr) {
long min = arr[0];
for (long itr : arr)
min = Math.min(min, itr);
return min;
}
public int min(int... arr) {
int min = arr[0];
for (int itr : arr)
min = Math.min(min, itr);
return min;
}
public long sum(long... arr) {
long sum = 0;
for (long itr : arr)
sum += itr;
return sum;
}
public long sum(int... arr) {
long sum = 0;
for (int itr : arr)
sum += itr;
return sum;
}
String bin(long n) {
return Long.toBinaryString(n);
}
String bin(int n) {
return Integer.toBinaryString(n);
}
static int bitCount(int x) {
return x == 0 ? 0 : (1 + bitCount(x & (x - 1)));
}
static void dbg(Object... o) {
System.err.println(Arrays.deepToString(o));
}
int bit(long n) {
return (n == 0) ? 0 : (1 + bit(n & (n - 1)));
}
int abs(int a) {
return (a < 0) ? -a : a;
}
long abs(long a) {
return (a < 0) ? -a : a;
}
void p(Object o) {
out.print(o);
}
void pn(Object o) {
out.println(o);
}
void pni(Object o) {
out.println(o);
out.flush();
}
void pn(int[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
void pn(long[] arr) {
int n = arr.length;
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++) {
sb.append(arr[i] + " ");
}
pn(sb);
}
String n() throws Exception {
return in.next();
}
String nln() throws Exception {
return in.nextLine();
}
int ni() throws Exception {
return Integer.parseInt(in.next());
}
long nl() throws Exception {
return Long.parseLong(in.next());
}
double nd() throws Exception {
return Double.parseDouble(in.next());
}
public static void main(String[] args) throws Exception {
new Practice().run();
}
FastReader in;
PrintWriter out;
void run() throws Exception {
in = new FastReader();
out = new PrintWriter(System.out);
int T = (multipleTC) ? ni() : 1;
pre();
for (int t = 1; t <= T; t++)
solve(t);
out.flush();
out.close();
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) throws Exception {
br = new BufferedReader(new FileReader(s));
}
String next() throws Exception {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
throw new Exception(e.toString());
}
}
return st.nextToken();
}
String nextLine() throws Exception {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
throw new Exception(e.toString());
}
return str;
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | bb126c456d5422bb6c771b8006e6dfe1 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IceCave {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader input = new FastReader();
static BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) throws IOException {
int t = input.nextInt();
loop:
while (t-- > 0) {
int n = input.nextInt();
int a[] = new int[n];
for (int i = 0; i < n; i++) {
a[i] = input.nextInt();
}
for (int i = 0; i < n; i++) {
int x = (int) Math.sqrt(a[i]);
if (x * x != a[i]) {
log.write("YES\n");
continue loop;
}
}
log.write("NO\n");
}
log.flush();
}
public static long binaryToDecimal(String w) {
long r = 0;
long l = 0;
for (int i = w.length() - 1; i > -1; i--) {
long x = (w.charAt(i) - '0') * (long) Math.pow(2, l);
r = r + x;
l++;
}
return r;
}
public static String decimalToBinary(long n) {
String w = "";
while (n > 0) {
w = n % 2 + w;
n /= 2;
}
return w;
}
public static boolean isSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
public static void print(int a[]) throws IOException {
for (int i = 0; i < a.length; i++) {
log.write(a[i] + " ");
}
log.write("\n");
}
public static void read(int[] a) {
for (int i = 1; i < a.length; i++) {
a[i] = input.nextInt();
}
}
static class pair {
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
public String toString() {
return x + " " + y;
}
}
public static long LCM(long x, long y) {
return (x * y) / GCD(x, y);
}
public static long GCD(long x, long y) {
if (y == 0) {
return x;
}
return GCD(y, x % y);
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 758bfbcb55b95d564866f3e1bd96002b | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class Main
{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
for(int i=0;i<n;i++){
int a = sc.nextInt();
int arr[] = new int[a];
int cnt=0;
for(int j=0;j<a;j++){
arr[j] = sc.nextInt();
if(perfectsquare(arr[j])){
cnt++;
}
}
// System.out.println(cnt);
if(cnt>=a){
System.out.println("NO");
}
else{
System.out.println("YES");
}
}
}
public static String remVowel(String str)
{
return str.replaceAll("[aeiouAEIOU]", "");
}
public static String Ssort(String s) {
char tempArray[] = s.toCharArray();
Arrays.sort(tempArray);
return new String(tempArray);
}
public static int smallest(int x, int y,int z ) {
return Math.min(Math.min(x, y), z);
}
public static int largest(int x,int y, int z) {
return Math.max(Math.max(x, y), z);
}
public static int average(int x,int y,int z) {
return(x+y+z)/3;
}
public static int sumdigit(long x) {
int result = 0;
while(x>0){
result+=x%10;
x/=10;
}
return result;
}
public static String isPowerOfTwo(long n)
{
if (n == 0)
return ("Yes");
while (n != 1)
{
if (n % 2 != 0)
return ("Yes");
n = n / 2;
}
return ("No");
}
public static char[] swap(String s)
{
char ch[] = s.toCharArray();
char temp = ch[0];
ch[0] = ch[s.length()-1];
ch[s.length()-1] = temp;
return ch;
}
public static boolean perfectsquare(int x)
{
if (x >= 0) {
int sr = (int)Math.sqrt(x);
return ((sr * sr) == x);
}
return false;
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 11 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | ef0d9d2fb8e0d1eeb0629e1f5394b4af | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes |
import java.util.*;
public class Main {
public static boolean perfect(int x)
{
int i = 0;
while(i * i < x) {
++i;
}
if(i * i == x) {
return true;
} else {
return false;
}
}
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
int testCases= input.nextInt();
for(int i = 0; i < testCases; ++i) {
int length = input.nextInt();;
boolean square = true;
for(int j = 0; j < length; ++j) {
int element=input.nextInt();
if(square && !perfect(element)) {
square = false;
}
}
if(square) {
System.out.println("No");
} else {
System.out.println("Yes");
}
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | ff5fec316666b2c427b32058c9881cd4 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.*;
import java.math.*;
import java.util.*;
public class D {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader s = new FastReader();
static PrintWriter out = new PrintWriter(System.out);
private static int[] rai(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextInt();
}
return arr;
}
private static int[][] rai(int n, int m) {
int[][] arr = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextInt();
}
}
return arr;
}
private static long[] ral(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = s.nextLong();
}
return arr;
}
private static long[][] ral(int n, int m) {
long[][] arr = new long[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
arr[i][j] = s.nextLong();
}
}
return arr;
}
private static int ri() {
return s.nextInt();
}
private static long rl() {
return s.nextLong();
}
private static String rs() {
return s.next();
}
// int g;
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader sc=new FastReader();
int t,n,m=0,i=0,j=0,k=0,c=0,fg=0,p=0,q=0,tm=0,a=0,b=0,x=0,y=0,z=0,max=-1,min=Integer.MAX_VALUE;
String str;
long sum=0,ans=0,g=1;
BigInteger f=BigInteger.valueOf(1);
// System.out.println("");
t=sc.nextInt();
while(t-->0)
{
n=sc.nextInt();
int arr[]=new int[n];
for(i=0;i<n;i++)
{
arr[i]=sc.nextInt();
if(arr[i]!=(int)Math.sqrt(arr[i])*Math.sqrt(arr[i]))
fg=1;
// System.out.println(arr[i]+" "+Math.sqrt(arr[i])*Math.sqrt(arr[i]));
}
if(fg==1)
System.out.println("YES");
else
System.out.println("NO");
fg=0;
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 9d21d972e5067e240a1ec54a34231b33 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class A {
//a
public static void main(String[] args) {
FastScanner fs = new FastScanner();
int test = fs.nextInt();
test: for (int tt = 0; tt < test; tt++) {
int n = fs.nextInt();
int[] ar = fs.readArray(n);
boolean notSq =false;
for(int i : ar){
if(!isSquare(i))notSq=true;
}
if(notSq)System.out.println("YES");
else System.out.println("NO");
}
}
private static boolean isSquare(long x) {
long y = (long) Math.sqrt(x);
while (y*y>x)--y;
while (y*y<x)++y;
return y*y==x;
}
static void sort(int[] s) {
ArrayList<Integer> list = new ArrayList<>();
for (int i : s) list.add(i);
Collections.sort(list);
for (int i = 0; i < s.length; i++) s[i] = list.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
List<Integer> readList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
list.add(nextInt());
}
return list;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 71d87332a003e9f968258701ac3a4628 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class A {
public static void main(String[] args) {
FastScanner fs = new FastScanner();
int test = fs.nextInt();
test: for (int tt = 0; tt < test; tt++) {
int n = fs.nextInt();
int[] ar = fs.readArray(n);
boolean notSq =false;
for(int i : ar){
if(!isSquare(i))notSq=true;
}
if(notSq)System.out.println("YES");
else System.out.println("NO");
}
}
private static boolean isSquare(long x) {
long y = (long) Math.sqrt(x);
while (y*y>x)--y;
while (y*y<x)++y;
return y*y==x;
}
static void sort(int[] s) {
ArrayList<Integer> list = new ArrayList<>();
for (int i : s) list.add(i);
Collections.sort(list);
for (int i = 0; i < s.length; i++) s[i] = list.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
List<Integer> readList(int n) {
List<Integer> list = new ArrayList<>();
for (int i = 0; i < n; i++) {
list.add(nextInt());
}
return list;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 5c9461978ec73829dc588ad19c3b5475 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
solve(in, out);
out.close();
}
static String reverse(String s) {
return (new StringBuilder(s)).reverse().toString();
}
static void sieveOfEratosthenes(int n, int factors[])
{
n=1000000001;
factors[1]=1;
for(int p = 2; p*p <=n; p++)
{
if(factors[p] == 0)
{
factors[p]=p;
for(int i = p*p; i <= n; i += p)
factors[i] = p;
}
}
}
static void sort(int ar[]) {
int n = ar.length;
ArrayList<Integer> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static void sort1(long ar[]) {
int n = ar.length;
ArrayList<Long> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static long ncr(long n, long r, long mod) {
if (r == 0)
return 1;
long val = ncr(n - 1, r - 1, mod);
val = (n * val) % mod;
val = (val * modInverse(r, mod)) % mod;
return val;
}
public static int convert(String a, String b)
{
int T=0;
if(b.charAt(0)=='P')
{
if(a.charAt(0)=='1'&&a.charAt(1)=='2') T=12;
else
T=(a.charAt(0)-'0')*10+(a.charAt(1)-'0')+12;
}
else if(b.charAt(0)=='A')
{
if(a.charAt(0)=='1'&&a.charAt(1)=='2') T=0;
else
T=(a.charAt(0)-'0')*10+(a.charAt(1)-'0');
}
T=T*100+(a.charAt(3)-'0')*10+(a.charAt(4)-'0');
return T;
}
static boolean areBracketsBalanced(String expr)
{
// Using ArrayDeque is faster than using Stack class
Deque<Character> stack
= new ArrayDeque<Character>();
// Traversing the Expression
for (int i = 0; i < expr.length(); i++)
{
char x = expr.charAt(i);
if (x == '(' || x == '[' || x == '{')
{
// Push the element in the stack
stack.push(x);
continue;
}
// IF current current character is not opening
// bracket, then it must be closing. So stack
// cannot be empty at this point.
if (stack.isEmpty())
return false;
char check;
switch (x) {
case ')':
check = stack.pop();
if (check == '{' || check == '[')
return false;
break;
case '}':
check = stack.pop();
if (check == '(' || check == '[')
return false;
break;
case ']':
check = stack.pop();
if (check == '(' || check == '{')
return false;
break;
}
}
// Check Empty Stack
return (stack.isEmpty());
}
public static int hr(String s)
{
int hh=0;
hh=(s.charAt(0)-'0')*10+(s.charAt(1)-'0');
return hh;
}
public static int mn(String s)
{
int mm=0;
mm=(s.charAt(3)-'0')*10+(s.charAt(4)-'0');
return mm;
}
/*
* public static void countNumberOfPrimeFactors(){ boolean flag[]=new
* boolean[N]; Arrays.fill(flag,true); for(int i=2;i<N;i++){ if(flag[i]){
* for(int j=i;j<N;j+=i) { prime[j]++; flag[j]=false; } } } // prime[1]=1; }
*/
public static String rev(String s)
{
char[] temp=s.toCharArray();
for(int i=0;i<s.length()/2;i++)
{
char tmp=temp[i];
temp[i]=temp[s.length()-1-i];
temp[s.length()-1-i]=tmp;
}
String str="";
for(char ch: temp)
{
str+=ch;
}
return str;
}
static boolean isP(String str)
{
// Pointers pointing to the beginning
// and the end of the string
int i = 0, j = str.length() - 1;
// While there are characters to compare
while (i < j) {
// If there is a mismatch
if (str.charAt(i) != str.charAt(j))
return false;
// Increment first pointer and
// decrement the other
i++;
j--;
}
// Given string is a palindrome
return true;
}
public static boolean isSorted(List<Integer> l)
{
int n=l.size(),i=0;
for(i=1;i<l.size();i++)
{
if(l.get(i-1)<l.get(i)) return false;
}
return true;
}
public static boolean ln(long n, int c)
{
int l=0;
long t=n;
while(t!=0)
{
t/=10;
l++;
}
return l==c;
}
public static void solve(InputReader sc, PrintWriter pw) {
int t=sc.nextInt();
while(t-->0) {
boolean f=true;
int n=sc.nextInt();
int a[]=new int[n];
for(int i=0;i<n;i++) a[i]=sc.nextInt();
for(int i=0;i<n;i++)
{
int sq=(int)Math.sqrt(a[i]);
if(sq*sq!=a[i]) {f=false; }
}
if(!f) pw.print("YES");
else pw.print("NO");
pw.print("\n");
}
}
static class Pair1 {
long a;
long b;
Pair1(long a, long b) {
this.a = a;
this.b = b;
}
}
static class Pair implements Comparable<Pair> {
int a;
int b;
Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair p) {
if(a!=p.a)
return p.a-a;
return b-p.b;
}
}
static boolean isPrime(long n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long fast_pow(long base, long n, long M) {
if (n == 0)
return 1;
if (n == 1)
return base % M;
long halfn = fast_pow(base, n / 2, M);
if (n % 2 == 0)
return (halfn * halfn) % M;
else
return (((halfn * halfn) % M) * base) % M;
}
static long modInverse(long n, long M) {
return fast_pow(n, M - 2, M);
}
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String nextLine() {
return null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 0181875281c3288010dce53ada1f2039 | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
solve(in, out);
out.close();
}
static String reverse(String s) {
return (new StringBuilder(s)).reverse().toString();
}
static void sieveOfEratosthenes(int n, int factors[])
{
n=1000000001;
factors[1]=1;
for(int p = 2; p*p <=n; p++)
{
if(factors[p] == 0)
{
factors[p]=p;
for(int i = p*p; i <= n; i += p)
factors[i] = p;
}
}
}
static void sort(int ar[]) {
int n = ar.length;
ArrayList<Integer> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static void sort1(long ar[]) {
int n = ar.length;
ArrayList<Long> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static long ncr(long n, long r, long mod) {
if (r == 0)
return 1;
long val = ncr(n - 1, r - 1, mod);
val = (n * val) % mod;
val = (val * modInverse(r, mod)) % mod;
return val;
}
public static int convert(String a, String b)
{
int T=0;
if(b.charAt(0)=='P')
{
if(a.charAt(0)=='1'&&a.charAt(1)=='2') T=12;
else
T=(a.charAt(0)-'0')*10+(a.charAt(1)-'0')+12;
}
else if(b.charAt(0)=='A')
{
if(a.charAt(0)=='1'&&a.charAt(1)=='2') T=0;
else
T=(a.charAt(0)-'0')*10+(a.charAt(1)-'0');
}
T=T*100+(a.charAt(3)-'0')*10+(a.charAt(4)-'0');
return T;
}
static boolean areBracketsBalanced(String expr)
{
// Using ArrayDeque is faster than using Stack class
Deque<Character> stack
= new ArrayDeque<Character>();
// Traversing the Expression
for (int i = 0; i < expr.length(); i++)
{
char x = expr.charAt(i);
if (x == '(' || x == '[' || x == '{')
{
// Push the element in the stack
stack.push(x);
continue;
}
// IF current current character is not opening
// bracket, then it must be closing. So stack
// cannot be empty at this point.
if (stack.isEmpty())
return false;
char check;
switch (x) {
case ')':
check = stack.pop();
if (check == '{' || check == '[')
return false;
break;
case '}':
check = stack.pop();
if (check == '(' || check == '[')
return false;
break;
case ']':
check = stack.pop();
if (check == '(' || check == '{')
return false;
break;
}
}
// Check Empty Stack
return (stack.isEmpty());
}
public static int hr(String s)
{
int hh=0;
hh=(s.charAt(0)-'0')*10+(s.charAt(1)-'0');
return hh;
}
public static int mn(String s)
{
int mm=0;
mm=(s.charAt(3)-'0')*10+(s.charAt(4)-'0');
return mm;
}
/*
* public static void countNumberOfPrimeFactors(){ boolean flag[]=new
* boolean[N]; Arrays.fill(flag,true); for(int i=2;i<N;i++){ if(flag[i]){
* for(int j=i;j<N;j+=i) { prime[j]++; flag[j]=false; } } } // prime[1]=1; }
*/
public static String rev(String s)
{
char[] temp=s.toCharArray();
for(int i=0;i<s.length()/2;i++)
{
char tmp=temp[i];
temp[i]=temp[s.length()-1-i];
temp[s.length()-1-i]=tmp;
}
String str="";
for(char ch: temp)
{
str+=ch;
}
return str;
}
static boolean isP(String str)
{
// Pointers pointing to the beginning
// and the end of the string
int i = 0, j = str.length() - 1;
// While there are characters to compare
while (i < j) {
// If there is a mismatch
if (str.charAt(i) != str.charAt(j))
return false;
// Increment first pointer and
// decrement the other
i++;
j--;
}
// Given string is a palindrome
return true;
}
public static boolean isSorted(List<Integer> l)
{
int n=l.size(),i=0;
for(i=1;i<l.size();i++)
{
if(l.get(i-1)<l.get(i)) return false;
}
return true;
}
public static boolean ln(long n, int c)
{
int l=0;
long t=n;
while(t!=0)
{
t/=10;
l++;
}
return l==c;
}
public static void solve(InputReader sc, PrintWriter pw) {
int t=sc.nextInt();
while(t-->0) {
boolean f=true;
int n=sc.nextInt();
for(int i=0;i<n;i++)
{
int a=sc.nextInt();
int sq=(int)Math.sqrt(a);
if(sq*sq!=a) f=false;
}
if(!f) pw.print("YES");
else pw.print("NO");
pw.print("\n");
}
}
static class Pair1 {
long a;
long b;
Pair1(long a, long b) {
this.a = a;
this.b = b;
}
}
static class Pair implements Comparable<Pair> {
int a;
int b;
Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair p) {
if(a!=p.a)
return p.a-a;
return b-p.b;
}
}
static boolean isPrime(long n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long fast_pow(long base, long n, long M) {
if (n == 0)
return 1;
if (n == 1)
return base % M;
long halfn = fast_pow(base, n / 2, M);
if (n % 2 == 0)
return (halfn * halfn) % M;
else
return (((halfn * halfn) % M) * base) % M;
}
static long modInverse(long n, long M) {
return fast_pow(n, M - 2, M);
}
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String nextLine() {
return null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | 96789c3c96a367558ba4a364bbab227f | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.math.BigInteger;
public class perfectly_imperfectly_square {
public static void main(String[] args) throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
try
{
int t=Integer.parseInt(br.readLine());
while(t-->0)
{
int n=Integer.parseInt(br.readLine());
String temp[]=br.readLine().split(" ");
int arr[]=new int[n];
for(int i=0;i<temp.length;i++)
{
arr[i]=Integer.parseInt(temp[i]);
}
boolean flag=false;
for(int i:arr)
{
int num=i;
int val=(int)Math.sqrt(num);
if((val*val)!=num)
{
flag=true;
}
}
if(flag)
{
System.out.println("YES");
}
else
{
System.out.println("NO");
}
}
}
catch(Exception e)
{
}
}
}
| Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output | |
PASSED | c5a93f4e18b189575ce5741a6dbd69ce | train_110.jsonl | 1618839300 | Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements. | 256 megabytes | import java.util.*;
public class Q1 {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int t = s.nextInt();
while(t--!=0) {
int n = s.nextInt();
int flag=0;
while(n--!=0) {
int c = s.nextInt();
int ans = (int)(Math.sqrt(c));
if(ans*ans!=c) {
flag=1;
}
}
if(flag==1) {
System.out.println("YES");
}
else {
System.out.println("NO");
}
}
}
} | Java | ["2\n3\n1 5 4\n2\n100 10000"] | 1 second | ["YES\nNO"] | NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product. | Java 8 | standard input | [
"math",
"number theory"
] | 33a31edb75c9b0cf3a49ba97ad677632 | The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$. | 800 | If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO". | standard output |
Subsets and Splits