exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
59976c2c960b2b6af93e4c0728489f4a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Double.parseDouble; import static java.lang.Integer.compare; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.System.in; import static java.lang.System.out; import static java.util.Arrays.asList; import static java.util.Collections.max; import static java.util.Collections.min; public class Main { private static final int MOD = (int) (1E9 + 7); private static final int INF = (int) (1E9); static FastScanner scanner = new FastScanner(in); public static void main(String[] args) throws IOException { // Write your solution here StringBuilder answer = new StringBuilder(); int t = 1; t = parseInt(scanner.nextLine()); while (t-- > 0) { answer.append(solve()).append("\n"); } out.println(answer); } private static Object solve() throws IOException { int n = scanner.nextInt(); Integer[] a = new Integer[n]; int not = 0; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); if(!isSquare(a[i])) not++; } if(not > 0) return "YES"; return "NO"; } private static boolean isSquare(int n){ int s = (int) Math.sqrt(n); return s * s == n; } private static class Pair implements Comparable<Pair> { int index, value; public Pair(int index, int value) { this.index = index; this.value = value; } public int compareTo(Pair o) { if (value != o.value) return compare(value, o.value); return compare(index, o.index); } } private static int maxx(Integer... a) { return max(asList(a)); } private static int minn(Integer... a) { return min(asList(a)); } private static long maxx(Long... a) { return max(asList(a)); } private static long minn(Long... a) { return min(asList(a)); } private static int add(int a, int b) { long res = ((long) (a + MOD) % MOD + (b + MOD) % MOD) % MOD; return (int) res; } private static int mul(int a, int b) { long res = ((long) a % MOD * b % MOD) % MOD; return (int) res; } private static int pow(int a, int b) { a %= MOD; int res = 1; while (b > 0) { if ((b & 1) != 0) res = mul(res, a); a = mul(a, a); b >>= 1; } return res; } private static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } private static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String nextLine() { try { return br.readLine(); } catch (IOException e) { return null; } } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return parseInt(next()); } long nextLong() { return parseLong(next()); } double nextDouble() { return parseDouble(next()); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
b2d3ac2ee0ab7f1888ed07777b17c025
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Double.parseDouble; import static java.lang.Integer.compare; import static java.lang.Integer.parseInt; import static java.lang.Long.parseLong; import static java.lang.System.in; import static java.lang.System.out; import static java.util.Arrays.asList; import static java.util.Collections.max; import static java.util.Collections.min; public class Main { private static final int MOD = (int) (1E9 + 7); private static final int INF = (int) (1E9); static FastScanner scanner = new FastScanner(in); public static void main(String[] args) throws IOException { // Write your solution here StringBuilder answer = new StringBuilder(); int t = 1; t = parseInt(scanner.nextLine()); while (t-- > 0) { answer.append(solve()).append("\n"); } out.println(answer); } private static Object solve() throws IOException { int n = scanner.nextInt(); Integer[] a = new Integer[n]; int not = 0; for (int i = 0; i < n; i++) { a[i] = scanner.nextInt(); if(!isSquare(a[i])) not++; } if(not > 0) return "YES"; return "NO"; } private static boolean isSquare(int n){ int s = (int) Math.sqrt(n); return s * s == n; } private static class Pair implements Comparable<Pair> { int index, value; public Pair(int index, int value) { this.index = index; this.value = value; } public int compareTo(Pair o) { if (value != o.value) return compare(value, o.value); return compare(index, o.index); } } private static int maxx(Integer... a) { return max(asList(a)); } private static int minn(Integer... a) { return min(asList(a)); } private static long maxx(Long... a) { return max(asList(a)); } private static long minn(Long... a) { return min(asList(a)); } private static int add(int a, int b) { long res = ((long) (a + MOD) % MOD + (b + MOD) % MOD) % MOD; return (int) res; } private static int mul(int a, int b) { long res = ((long) a % MOD * b % MOD) % MOD; return (int) res; } private static int pow(int a, int b) { a %= MOD; int res = 1; while (b > 0) { if ((b & 1) != 0) res = mul(res, a); a = mul(a, a); b >>= 1; } return res; } private static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } private static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class FastScanner { BufferedReader br; StringTokenizer st; FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String nextLine() { try { return br.readLine(); } catch (IOException e) { return null; } } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return parseInt(next()); } long nextLong() { return parseLong(next()); } double nextDouble() { return parseDouble(next()); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
8dc4e1c1bdde507c8a1d66ec06e8a1c0
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
//package com.govinda.codeforces.codeforces; import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; /** * # https://codeforces.com/problemset/problem/1517/A * # A. Sum of 2050 */ public class App { final static PrintWriter s_writer = new PrintWriter(System.out); private static int count = 1; private static class Reader { static StringTokenizer s_tokenizer = new StringTokenizer(""); private static BufferedReader s_reader; private static interface Settings { static final boolean ONE_WORD_PER_LINE = false; static final boolean CONSOLE_READ = true; } static { if (Settings.CONSOLE_READ) s_reader = new BufferedReader(new InputStreamReader(System.in)); else { // read from file try { s_reader = new BufferedReader(new InputStreamReader(new FileInputStream("Input.txt"))); } catch (FileNotFoundException e) { e.printStackTrace(); } } } static String next() throws IOException { if (Settings.ONE_WORD_PER_LINE) return s_reader.readLine(); while (!s_tokenizer.hasMoreTokens()) s_tokenizer = new StringTokenizer(s_reader.readLine()); return s_tokenizer.nextToken(); } static int nextInt() throws IOException { return Integer.parseInt(next()); } @SuppressWarnings("unused") static double nextDouble() throws IOException { return Double.parseDouble(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } static int[] nextIntArray(int p_numElems) throws IOException { int[] result = new int[p_numElems]; for (int i = 0; i < p_numElems; i++) result[i] = Reader.nextInt(); return result; } @SuppressWarnings("unused") static void close() { s_writer.close(); } } private static void solve() throws IOException { int numInputs = Reader.nextInt(); while (numInputs-- > 0) { int numOfElems = Reader.nextInt(); int[] array = Reader.nextIntArray(numOfElems); boolean result = false; for (int i = 0; i < numOfElems; i++) { if (Math.sqrt(array[i]) % 1 != 0) { result = true; break; } } s_writer.println(result ? "YES" : "NO"); } s_writer.close(); } public static void printArray(int[] p_data) { s_writer.print(p_data[0]); for (int i = 1; i < p_data.length; i++) { s_writer.print(" "); s_writer.print(p_data[i]); } s_writer.println(); } public static void main(String[] args) throws IOException { solve(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
09b5edf8b77119b3dafdfa1518e0f5ca
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0){ int n = sc.nextInt(); int arr[] = new int[n]; for(int i = 0; i < n; i++){ arr[i] = sc.nextInt(); } boolean isFound = false; for(int i = 0; i < n; i++){ int sr = (int)Math.sqrt(arr[i]); if(sr*sr != arr[i]){ isFound = true; break; } } System.out.println(isFound==true?"YES": "NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
d50fb397258767cc6b7a51fa7f3d4a6f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import javafx.util.Pair; public class Main { static void sort(int a[]) { Random ran = new Random(); for (int i = 0; i < a.length; i++) { int r = ran.nextInt(a.length); int temp = a[r]; a[r] = a[i]; a[i] = temp; } Arrays.sort(a); } public static void main(String args[]) { FastScanner input = new FastScanner(); int tc = input.nextInt(); work: while (tc-- > 0) { int n = input.nextInt(); int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = input.nextInt(); } sort(a); for (int i = 0; i < n; i++) { int rot = (int) Math.sqrt(a[i]); if(rot*rot!=(a[i])) { System.out.println("YES"); continue work; } } System.out.println("NO"); } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() throws IOException { return br.readLine(); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
ba34620e2bf3e24c547c499033b74fb5
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static boolean isPerfectSquare(int x) { if (x >= 0) { int sr = (int)Math.sqrt(x); return ((sr * sr) == x); } return false; } public static void main(String[] args) { try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); } catch (Exception e) { System.err.println("Error"); } FastReader scn = new FastReader(); int t = scn.nextInt(); while (t-- > 0) { int n = scn.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = scn.nextInt(); } int flag = 1; for (int i = 0; i < n; i++) { int temp = arr[i]; //System.out.println(temp + " " + isPerfectSquare(temp)); if (!isPerfectSquare(temp)) { flag = 0; System.out.println("YES"); break; } } if (flag == 1) System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
d3a77abbfc48f59293b0adfa9fc37c4c
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner o=new Scanner(System.in); int t=o.nextInt(); while(t>0) { int n=o.nextInt(); int ar[]=new int[n]; for(int i=0;i<n;i++) { ar[i]=o.nextInt(); } boolean ps=true; for(int i=0;i<n;i++) { int v=(int)Math.sqrt(ar[i]); if(v*v!=ar[i]) { ps=false; break; } } if(!ps) System.out.println("YES"); else System.out.println("NO"); t--; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 17
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
b3e53a53a1209341fe9f92b476254dc1
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; import java.awt.geom.*; import static java.lang.Math.*; public class Solution implements Runnable { long mod1 = (long) 1e9 + 7; int mod2 = 998244353; public void solve() throws Exception { int n=sc.nextInt(); ArrayList<Integer> a=new ArrayList<>(); a.add(1); long prod=1; for(int i=2;i<n;i++) { if(gcd(i,n)==1 ) { a.add(i); prod=(prod*i)%n; } } if(prod!=1) { for(int i=0;i<a.size();i++) { if(a.get(i)==prod) { a.remove(i); break; } } } out.println(a.size()); for(int i:a) out.print(i+" "); } static boolean isPrime(int n) { // Check if number is less than // equal to 1 if (n <= 1) return false; // Check if number is 2 else if (n == 2) return true; // Check if n is a multiple of 2 else if (n % 2 == 0) return false; // If not, then just check the odds for (int i = 3; i <= Math.sqrt(n); i += 2) { if (n % i == 0) return false; } return true; } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static void sort(int[] a) { ArrayList<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); for (int i = 0; i < a.length; i++) a[i] = l.get(i); } static long ncr(int n, int r, long p) { if (r > n) return 0l; if (r > n - r) r = n - r; long C[] = new long[r + 1]; C[0] = 1; for (int i = 1; i <= n; i++) { for (int j = Math.min(i, r); j > 0; j--) C[j] = (C[j] + C[j - 1]) % p; } return C[r] % p; } void sieveOfEratosthenes(boolean prime[], int size) { for (int i = 0; i < size; i++) prime[i] = true; for (int p = 2; p * p < size; p++) { if (prime[p] == true) { for (int i = p * p; i < size; i += p) prime[i] = false; } } } static int LowerBound(int a[], int x) { // smallest index having value >= x; returns 0-based index int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] >= x) r = m; else l = m; } return r; } static int UpperBound(int a[], int x) {// biggest index having value <= x; returns 1-based index int l = -1, r = a.length; while (l + 1 < r) { int m = (l + r) >>> 1; if (a[m] <= x) l = m; else r = m; } return l + 1; } public long power(long x, long y, long p) { long res = 1; // out.println(x+" "+y); x = x % p; if (x == 0) return 0; while (y > 0) { if ((y & 1) == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static Throwable uncaught; BufferedReader in; FastScanner sc; PrintWriter out; @Override public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); sc = new FastScanner(in); solve(); } catch (Throwable uncaught) { Solution.uncaught = uncaught; } finally { out.close(); } } public static void main(String[] args) throws Throwable { Thread thread = new Thread(null, new Solution(), "", (1 << 26)); thread.start(); thread.join(); if (Solution.uncaught != null) { throw Solution.uncaught; } } } class FastScanner { BufferedReader in; StringTokenizer st; public FastScanner(BufferedReader in) { this.in = in; } public String nextToken() throws Exception { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } public int nextInt() throws Exception { return Integer.parseInt(nextToken()); } public int[] readArray(int n) throws Exception { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long nextLong() throws Exception { return Long.parseLong(nextToken()); } public double nextDouble() throws Exception { return Double.parseDouble(nextToken()); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c4acf17e9a5aac9642a29691294ace35
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
// package eround101; import java.util.*; import java.io.*; import java.lang.*; import java.util.StringTokenizer; import java.util.concurrent.TimeUnit; public class C101 { static HritikScanner sc = new HritikScanner(); static PrintWriter pw = new PrintWriter(System.out, true); final static int MOD = (int) 1e9 + 7; static StringBuilder sb = new StringBuilder(); public static void main(String[] args) { int t = 1; while (t-- > 0) { solve(); } } static void solve() { // int n = ni(); // int m = ni(); // int[][] arr = new int[n][m]; // List<Pair> list = new ArrayList<>(); // for(int i = 0; i < n; i++) // { // for(int j = 0; j < m; j++) // { // arr[i][j] = ni(); // list.add(new Pair(arr[i][j], i, j)); // } // } // Collections.sort(list); //// for(int i = 0; i < list.size(); i++) //// { //// pl(list.get(i).num); //// } //// pl(list.toString()); // for(int i = 0; i< m; i++) // { //// pl("to change int col " +i + " " +arr[list.get(i).row][list.get(i).col]); // int temp = arr[list.get(i).row][i]; // arr[list.get(i).row][i] = arr[list.get(i).row][list.get(i).col]; // arr[list.get(i).row][list.get(i).col] = temp; // int rc = list.get(i).row; // int cc = list.get(i).col; // Pair p = list.remove(i); //// pl(list.toString()); // int numb = p.num; // int row = p.row; // int col = p.col; // list.add(i, new Pair(numb, row, i)); //// pl(list.toString()); //// Pair pr = new Pair(arr[list.get(i).row][list.get(i).col], row, list.get(i).col); // int ind = -1; //// pl(pr.toString()); // for(int j = 0; j< list.size(); j++) // { // if(list.get(j).num == arr[rc][cc]) // { // ind = j; // break; // } // } // Pair pr = list.remove(ind); //// pl(pr.toString()); // int numb1 = pr.num; //// pl(list.toString()); // list.add(ind, new Pair(numb1, row, col)); //// pl(list.toString()); // } //// pl(list.toString()); // pa(arr); int n = ni(); List<Integer> l = new ArrayList<>(); long prod = 1; for(int i = 1; i< n; i++) { if(gcd(n, i) == 1) { l.add(i); prod = (prod*i); prod = prod %n; } } // pl(prod); // prod = prod % n; // pa(l); if(prod % n != 1) { l.remove(l.size()-1); } pl(l.size()); pa(l); } ///////////////////////////////////////////////////////////////////////////////// static int[] nextIntArray(int n) { int[] arr = new int[n]; int i = 0; while (i < n) { arr[i++] = ni(); } return arr; } static long[] nextLongArray(int n) { long[] arr = new long[n]; int i = 0; while (i < n) { arr[i++] = nl(); } return arr; } static int[] nextIntArray1(int n) { int[] arr = new int[n + 1]; int i = 1; while (i <= n) { arr[i++] = ni(); } return arr; } ///////////////////////////////////////////////////////////////////////////////// static int ni() { return sc.nextInt(); } static long nl() { return sc.nextLong(); } static double nd() { return sc.nextDouble(); } ///////////////////////////////////////////////////////////////////////////////// static void pl() { pw.println(); } static void p(Object o) { pw.print(o+ " "); } static void pl(Object o) { pw.println(o); } static void psb(StringBuilder sb) { pw.print(sb); } static void pa(Object arr[]) { for (Object o : arr) { p(o); } pl(); } static void pa(int arr[]) { for (int o : arr) { p(o); } pl(); } static void pa(long arr[]) { for (long o : arr) { p(o); } pl(); } static void pa(double arr[]) { for (double o : arr) { p(o); } pl(); } static void pa(char arr[]) { for (char o : arr) { p(o); } pl(); } static void pa(List list) { for (Object o : list) { p(o); } pl(); } static void pa(Object[][] arr) { for (int i = 0; i < arr.length; ++i) { for (Object o : arr[i]) { p(o); } pl(); } } static void pa(int[][] arr) { for (int i = 0; i < arr.length; ++i) { for (int o : arr[i]) { p(o); } pl(); } } static void pa(long[][] arr) { for (int i = 0; i < arr.length; ++i) { for (long o : arr[i]) { p(o); } pl(); } } static void pa(char[][] arr) { for (int i = 0; i < arr.length; ++i) { for (char o : arr[i]) { p(o); } pl(); } } static void pa(double[][] arr) { for (int i = 0; i < arr.length; ++i) { for (double o : arr[i]) { p(o); } pl(); } } ///////////////////////////////////////////////////////////////////////////////// static void print(Object s) { System.out.println(s); } ///////////////////////////////////////////////////////////////////////////////// //-----------HritikScanner class for faster input----------// static class HritikScanner { BufferedReader br; StringTokenizer st; public HritikScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } ////////////////////////////////////////////////////////////////// public static class Pair implements Comparable<Pair> { int num, row,col; Pair(int num, int row, int col) { this.num = num; this.row = row; this.col = col; } public int get1() { return num; } public int get2() { return row; } public int compareTo(Pair A) { return this.num - A.num; } public String toString() { return num +" "+ row+" "+col; } } ////////////////////////////////////////////////////////////////// // Function to return gcd of a and b time complexity O(log(a+b)) static long gcd(long a, long b) { if (a == 0) { return b; } return gcd(b % a, a); } // method to return LCM of two numbers static long lcm(int a, int b) { return (a / gcd(a, b)) * b; } ////////////////////////////////////////////////////////////////// static boolean isPrime(long n) { // Corner cases if (n <= 1) { return false; } if (n <= 3) { return true; } // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) { return false; } for (long i = 5; i * i <= n; i = i + 6) { if (n % i == 0 || n % (i + 2) == 0) { return false; } } return true; } ////////////////////////////////////////////////////////////////// static boolean isPowerOfTwo(long n) { if (n == 0) { return false; } return (long) (Math.ceil((Math.log(n) / Math.log(2)))) == (long) (Math.floor(((Math.log(n) / Math.log(2))))); } public static long getFact(int n) { long ans = 1; while (n > 0) { ans *= n; ans %= MOD; n--; } return ans; } public static long pow(long n, int pow) { if (pow == 0) { return 1; } long temp = pow(n, pow / 2) % MOD; temp *= temp; temp %= MOD; if (pow % 2 == 1) { temp *= n; } temp %= MOD; return temp; } public static long nCr(int n, int r) { long ans = 1; int temp = n - r; while (n > temp) { ans *= n; ans %= MOD; n--; } ans *= pow(getFact(r) % MOD, MOD - 2) % MOD; ans %= MOD; return ans; } ////////////////////////////////////////////////////////////////// // method returns Nth power of A static double nthRoot(int A, int N) { // intially guessing a random number between // 0 and 9 double xPre = Math.random() % 10; // smaller eps, denotes more accuracy double eps = 0.001; // initializing difference between two // roots by INT_MAX double delX = 2147483647; // xK denotes current value of x double xK = 0.0; // loop untill we reach desired accuracy while (delX > eps) { // calculating current value from previous // value by newton's method xK = ((N - 1.0) * xPre + (double) A / Math.pow(xPre, N - 1)) / (double) N; delX = Math.abs(xK - xPre); xPre = xK; } return xK; } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
831ac724af110bfbe817b2e3c8aeb7c1
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); ArrayList<Integer> ans = new ArrayList<>(); ans.add(1); if( n!= 2) { long prod = 1; for(int i=2; i<n-1; i++) { if( GCD(i, n) == 1 ) { ans.add(i); prod *= i; prod = prod%n; } } prod *= n-1; if( prod % n == 1 ) ans.add(n-1); } System.out.println(ans.size()); for(Integer ele : ans ) System.out.print(ele + " "); } public static int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
adbf05e877967e3a676fbd9144a8f47b
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.stream.IntStream; import java.util.Scanner; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; import java.math.BigInteger; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author valeesi */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); CProduct1ModuloN solver = new CProduct1ModuloN(); solver.solve(1, in, out); out.close(); } static class CProduct1ModuloN { private static int gcdThing(int a, int b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.intValue(); } public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int total = 0; int[] arr = IntStream.range(1, n).toArray(); long result = 1; for (int i = 1; i < n; i++) { if (gcdThing(i, n) != 1) { arr[i - 1] = -1; } else { result = (result * i) % n; total++; } } if (result != 1) { arr[(int) result - 1] = -1; total--; } StringBuilder sb = new StringBuilder(); for (int i = 0; i < arr.length; i++) { if (arr[i] != -1) { sb.append(arr[i] + " "); } } out.println(total); out.println(sb.toString()); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public Scanner scanner; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); scanner = new Scanner(reader); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
48e88333e4b29f7447c583ba8099933f
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Solution { public static void main(String[] args) { Scanner io = new Scanner(System.in) ; long n = io.nextLong(); long coprime[] = new long[(int)n]; coprime[1] = 1; long rem = 1; long ans = 1; for(int i=2;i<n;i++) { if(gcd(i,n) == 1){ coprime[i] = 1; ans++; rem = (rem*i)%n; } } if(rem != 1){ ans--; coprime[(int)rem] = 0; } System.out.println(ans); for(int i=1;i<n;i++){ if(coprime[i]==1)System.out.print(i + " "); } io.close(); // make sure to include this line -- closes io and flushes the output } private static long gcd(long a, long b) { if(b == 0){ return a; } return gcd(b, a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
a5c23939ba5ad8ba5c6949f3e8693696
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.util.Set; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.util.LinkedHashSet; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Manav */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); CProduct1ModuloN solver = new CProduct1ModuloN(); solver.solve(1, in, out); out.close(); } static class CProduct1ModuloN { public void solve(int testNumber, InputReader in, OutputWriter out) { long n = in.nextLong(); Set<Long> set = new LinkedHashSet<Long>(); long product = 1; for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { set.add((long) i); product = (product * (i)) % n; } } // out.println(product); if (product != 1) { set.remove(product); } out.println(set.size()); for (long x : set) { out.print(x + " "); } out.println(); } private long gcd(long a, long b) { while (b > 0) { long temp = a % b; a = b; b = temp; } return a; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void println() { writer.println(); } public void close() { writer.close(); } public void println(int i) { writer.println(i); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
d5a3350fd0c58bb81de94f4aad4a2f0c
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void main (String[] args) throws java.lang.Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); PrintWriter out=new PrintWriter(System.out); int n=Integer.parseInt(br.readLine()); ArrayList<Integer> arr=new ArrayList<>(); //arr.add(1); //long sum=1; for(int i=1;i<=n-2;i++) { if(gcd(i,n)==1){ arr.add(i); // sum=(sum*(long)i)%n; } } long sum=1; for(int i=0;i<arr.size();i++) { sum*=(long)arr.get(i); sum%=n; } if((sum*(long)(n-1))%n==1) arr.add(n-1); System.out.println(arr.size()); for(int i=0;i<arr.size();i++) out.print(arr.get(i)+" "); out.print("\n"); out.flush(); } public static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
3d600399bafe467c52dc73b3f368d6f4
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.InputMismatchException; import java.util.List; public class Main { private static final String NO = "NO"; private static final String YES = "YES"; InputStream is; PrintWriter out; String INPUT = ""; private static final long MOD = 1000000007; private static final int MAXN = 100000; void solve() { int T = 1;//ni(); for (int i = 0; i < T; i++) { solve(i); } } void solve(int T) { int n = ni(); boolean b[] = new boolean[n]; long ans = 1; int cnt = 0; for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { b[i] = true; ans = (ans * i) % n; cnt++; } } if (ans != 1) { b[(int) ans] = false; cnt--; } out.println(cnt); for (int i = 1; i < n; i++) { if (b[i]) out.print(i + " "); } out.println(); } // a^b long power(long a, long b) { long x = 1, y = a; while (b > 0) { if (b % 2 != 0) { x = (x * y) % MOD; } y = (y * y) % MOD; b /= 2; } return x % MOD; } private long gcd(long a, long b) { while (a != 0) { long tmp = b % a; b = a; a = tmp; } return b; } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); if (!INPUT.isEmpty()) tr(System.currentTimeMillis() - s + "ms"); } public static void main(String[] args) throws Exception { new Main().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char) skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' // ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n) { if (!(isSpaceChar(b))) buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private List<Integer> na2(int n) { List<Integer> a = new ArrayList<Integer>(); for (int i = 0; i < n; i++) a.add(ni()); return a; } private int[][] na(int n, int m) { int[][] a = new int[n][]; for (int i = 0; i < n; i++) a[i] = na(m); return a; } private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private long[] nl(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nl(); return a; } private long[][] nl(int n, int m) { long[][] a = new long[n][]; for (int i = 0; i < n; i++) a[i] = nl(m); return a; } private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
6185b4b5016b975dd0ce4df54ffe04b5
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class Solution { static long mod=(long)(1e9+7); public static void main(String[] args) { Scanner sc = new Scanner(System.in); // int t = sc.nextInt(); // while(t-->0){ long n=sc.nextInt(); // long k=sc.nextLong(); List<Long> ans=new ArrayList<>(); long i=1l; long prod=1l; while(i<n){ if(gcd(i,n)==1l){ ans.add(i); prod=(prod*i)%n; } i++; } // System.out.println(prod); // for(int k:ans) // System.out.print(k+" "); long x=-1l; if(prod!=1l ){ x=prod; } if(x==-1l) System.out.println(ans.size()); else System.out.println(ans.size()-1); for(long k:ans) { if(k!=x) System.out.print(k+" "); } System.out.println(""); } // } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
abdf2b001cb048d20a8910d89cd17bfb
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.Random; import java.util.*; public class ProductModuloN implements Runnable { int[] arr = new int[100005]; void solve() throws IOException { int n = ri(); long prod = 1; for (int num = 1; num < n; num++) { if (gcd(n, num) == 1) { arr[num] = 1; prod = (prod * num) % n; } } if (prod != 1) arr[(int) prod] = 0; println(count(arr, n)); for (int i = 1; i < n; i++) { if (arr[i] == 1) { sbr.append(i).append(" "); } } print(sbr.toString()); } int count(int[] arr, int n) { int count = 0; for (int i = 1; i < n; i++) if (arr[i] == 1) count++; return count; } long gcd(long a, long b) { return (b > 0) ? gcd(b, a % b) : a; } /************************************************************************************************************************************************/ public static void main(String[] args) throws IOException { new Thread(null, new ProductModuloN(), "1").start(); } static PrintWriter out = new PrintWriter(System.out); static Reader read = new Reader(); static StringBuilder sbr = new StringBuilder(); static int mod = (int) 1e9 + 7; static int dmax = Integer.MAX_VALUE; static long lmax = Long.MAX_VALUE; static int dmin = Integer.MIN_VALUE; static long lmin = Long.MIN_VALUE; @Override public void run() { try { solve(); out.close(); } catch (IOException e) { e.printStackTrace(); System.exit(1); } } static class Reader { private byte[] buf = new byte[1024]; private int index; private InputStream in; private int total; public Reader() { in = System.in; } public int scan() throws IOException { if (total < 0) throw new InputMismatchException(); if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) return -1; } return buf[index++]; } public int intNext() throws IOException { int integer = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { integer *= 10; integer += n - '0'; n = scan(); } else throw new InputMismatchException(); } return neg * integer; } public double doubleNext() throws IOException { double doub = 0; int n = scan(); while (isWhiteSpace(n)) n = scan(); int neg = 1; if (n == '-') { neg = -1; n = scan(); } while (!isWhiteSpace(n) && n != '.') { if (n >= '0' && n <= '9') { doub *= 10; doub += n - '0'; n = scan(); } else throw new InputMismatchException(); } if (n == '.') { n = scan(); double temp = 1; while (!isWhiteSpace(n)) { if (n >= '0' && n <= '9') { temp /= 10; doub += (n - '0') * temp; n = scan(); } else throw new InputMismatchException(); } } return doub * neg; } public String read() throws IOException { StringBuilder sb = new StringBuilder(); int n = scan(); while (isWhiteSpace(n)) n = scan(); while (!isWhiteSpace(n)) { sb.append((char) n); n = scan(); } return sb.toString(); } private boolean isWhiteSpace(int n) { if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) return true; return false; } } static void shuffle(int[] aa) { int n = aa.length; Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int tmp = aa[i]; aa[i] = aa[j]; aa[j] = tmp; } } static void shuffle(int[][] aa) { int n = aa.length; Random rand = new Random(); for (int i = 1; i < n; i++) { int j = rand.nextInt(i + 1); int first = aa[i][0]; int second = aa[i][1]; aa[i][0] = aa[j][0]; aa[i][1] = aa[j][1]; aa[j][0] = first; aa[j][1] = second; } } static void print(Object object) { out.print(object); } static void println(Object object) { out.println(object); } static int[] iArr(int len) { return new int[len]; } static long[] lArr(int len) { return new long[len]; } static long min(long a, long b) { return Math.min(a, b); } static int min(int a, int b) { return Math.min(a, b); } static long max(Long a, Long b) { return Math.max(a, b); } static int max(int a, int b) { return Math.max(a, b); } static int ri() throws IOException { return read.intNext(); } static long rl() throws IOException { return Long.parseLong(read.read()); } static String rs() throws IOException { return read.read(); } static char rc() throws IOException { return rs().charAt(0); } static double rd() throws IOException { return read.doubleNext(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
83834610b4a9a98abd996c789f7392a4
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class GFG { public static int gcd(int n,int m) { if(m==0) return n; else{ return gcd(m,n%m); } } public static void main (String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int mod=1000000007; ArrayList<Integer> al =new ArrayList<>(); long j=1; for(int i=1;i<n;i++ ) { if(gcd(i,n)==1) { j=(j*i)%n; al.add(i); } } int l=al.size(); if(j!=1) { al.remove(l-1); l=l-1; } System.out.println(l); for(int i=0;i<l;i++) { System.out.print(al.get(i)+" "); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c57541c53549f5bb07fdac6304cc7ea8
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; import static java.lang.System.in; import static java.lang.System.out; public class Main{ final static int INF=Integer.MAX_VALUE; final static int nINF=Integer.MIN_VALUE; final static long MOD=1000000007; public static void main(String[] args){ FastReader fr=new FastReader(); int tc=1; while(tc-->0){ int n=fr.nextInt(); ArrayList<Integer>al=new ArrayList<>(); long mult=1; for (int i=1;i<=n;i++){ if(gcd(i,n)==1){ al.add(i); mult=(mult*i)%n; } } int tr=-1; if(mult>1){ tr=(int)mult; } if(tr==-1){ out.println(al.size()); } else { out.println(al.size()-1); } StringBuilder sb=new StringBuilder(); for (int here:al){ if (here!=tr){ sb.append(here+" "); } } sb.deleteCharAt(sb.length()-1); out.println(sb); } } /////////////////////////////////////////////////////////// static int[] fillInt(int n,FastReader fr){ int ret[]=new int[n]; for(int i=0;i<n;i++){ ret[i]=fr.nextInt(); } return ret; } static long[] fillLong(int n,FastReader fr){ long ret[]=new long[n]; for(int i=0;i<n;i++){ ret[i]=fr.nextInt(); } return ret; } static int max(int a,int b){ return Math.max(a,b); } static long max(long a,long b){ return Math.max(a,b); } static int min(int a,int b){ return Math.min(a,b); } static long min(long a,long b){ return Math.min(a,b); } static int modDivide(int a,int b){ return (int) (a*Math.pow(b,MOD-2)%MOD); } static int gcd(int a,int b){ if(b==0){ return a; } return gcd(b,a%b); } static long gcd(long a,long b){ if(b==0){ return a; } return gcd(b,a%b); } static int lcm(int a,int b){ return (a*b)/gcd(a,b); } static int longestProperPrefixSuffix(String str){ // KMP int n=str.length(); int st[]=new int[n]; int len=0,c=1; while(c<n){ if(str.charAt(len)==str.charAt(c)){ len++; st[c]=len; c++; }else{ if(len>0){ len=st[len-1]; }else{ st[c]=0; c++; } } } // out.println(Arrays.toString(st)); return st[n-1]; } static int lowerBound(int a[],int val){ int ret=Arrays.binarySearch(a,val); if(ret<0){ return -1; }else{ while(ret>0 && a[ret-1]==val){ ret--; } return ret; } } static int upperBound(int a[],int val){ int ret=Arrays.binarySearch(a,val); if(ret<0){ return -1; }else{ while(ret<a.length-1 && a[ret+1]==val){ ret++; } return ret; } } static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } byte nextByte(){ return Byte.parseByte(next()); } Float nextFloat(){ return Float.parseFloat(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } short nextShort(){ return Short.parseShort(next()); } Boolean nextbol(){ return Boolean.parseBoolean(next()); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c49d2c7f28a71c7acb8cb48407686f1a
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class A { public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter out = new PrintWriter(System.out); // boolean[] is = sieve(100000); int n = sc.nextInt(); List<Integer> list = new ArrayList<>(); for(int i = 1; i < n; i++) { if(gcd(i,n) == 1) { list.add(i); } } long mul = 1L; for(int e : list) { mul *= e*1l; mul %= n; } int index = -1; for(int i = list.size()-1 ; i >= 0; i--) { // System.out.println(mul + " " + (is(mul,n))); if(is(mul,n)) { index = i; break; } mul /= list.get(i); } if(index == -1) { out.println("1"); out.println("1"); out.close(); return; } out.println(index+1); for(int i = 0; i <= index; i++) { out.print(list.get(i) + " "); } out.println(); out.close(); } private static boolean is(long a, int n) { int div = (int)(a/(n*1l)); if((n*1L*div+1)*1l == a) return true; return false; } static class Pair { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } } static void ruffleSort(int[] a) { int n = a.length; Random r = new Random(); for (int i = 0; i < a.length; i++) { int oi = r.nextInt(n), temp = a[i]; a[i] = a[oi]; a[oi] = temp; } Arrays.sort(a); } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static boolean[] sieve(int n) { boolean isPrime[] = new boolean[n + 1]; for (int i = 2; i <= n; i++) { if (isPrime[i]) continue; for (int j = 2 * i; j <= n; j += i) { isPrime[j] = true; } } return isPrime; } static int mod = 1000000007; static long pow(int a, long b) { if (b == 0) { return 1; } if (b == 1) { return a; } if (b % 2 == 0) { long ans = pow(a, b / 2); return ans * ans; } else { long ans = pow(a, (b - 1) / 2); return a * ans * ans; } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } // For Input.txt and Output.txt // FileInputStream in = new FileInputStream("input.txt"); // FileOutputStream out = new FileOutputStream("output.txt"); // PrintWriter pw = new PrintWriter(out); // Scanner sc = new Scanner(in); }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
61706d9cf07892e6cf5da3c5ba3da769
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
// have faith in yourself!! /* Naive mistakes in java : --> Arrays.sort(primitive) is O(n^2) --> Never use '=' to compare to Integer data types, instead use 'equals()' --> -4 % 3 = -1, actually it should be 2, so add '+n' to modulo result Stuffs to do when you have no idea how to proceed --> Maybe try brute force and find patter/observations */ import java.io.*; import java.util.*; public class CodeForces { public static void main(String[] args) throws IOException { openIO(); int testCase = 1; // testCase = sc. nextInt(); for (int i = 1; i <= testCase; i++) solve(i); closeIO(); } /*-------------------------------------------EDITING CODE STARTS HERE-------------------------------------------*/ public static void solve(int tCase) throws IOException { int n = sc.nextInt(); List<Integer> ans = new ArrayList<>(); long prod = 1; for(int i=1;i<=n-1;i++) { if (_gcd(i, n) == 1){ ans.add(i); prod *= i; prod %=n; } } int j = ans.size()-1; if(prod !=1)j--; out.println(j+1); for(int i=0;i<=j;i++)out.println(ans.get(i)); } /*-------------------------------------------EDITING CODE ENDS HERE-------------------------------------------*/ public static int mod = (int) 1e9 + 7; // public static int mod = 998244353; public static int inf_int = (int) 2e9; public static long inf_long = (long) 2e18; public static void _sort(int[] arr, boolean isAscending) { int n = arr.length; List<Integer> list = new ArrayList<>(); for (int ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } public static void _sort(long[] arr, boolean isAscending) { int n = arr.length; List<Long> list = new ArrayList<>(); for (long ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } // time : O(1), space : O(1) public static int _digitCount(long num,int base){ // this will give the # of digits needed for a number num in format : base return (int)(1 + Math.log(num)/Math.log(base)); } // time : O(n), space: O(n) public static long _fact(int n){ // simple factorial calculator long ans = 1; for(int i=2;i<=n;i++) ans = ans * i % mod; return ans; } // time for pre-computation of factorial and inverse-factorial table : O(nlog(mod)) public static long[] factorial , inverseFact; public static void _ncr_precompute(int n){ factorial = new long[n+1]; inverseFact = new long[n+1]; factorial[0] = inverseFact[0] = 1; for (int i = 1; i <=n; i++) { factorial[i] = (factorial[i - 1] * i) % mod; inverseFact[i] = _modExpo(factorial[i], mod - 2); } } // time of factorial calculation after pre-computation is O(1) public static int _ncr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[r] % mod * inverseFact[n - r] % mod); } public static int _npr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[n - r] % mod); } // euclidean algorithm time O(max (loga ,logb)) public static long _gcd(long a, long b) { while (a>0){ long x = a; a = b % a; b = x; } return b; // if (a == 0) // return b; // return _gcd(b % a, a); } // lcm(a,b) * gcd(a,b) = a * b public static long _lcm(long a, long b) { return (a / _gcd(a, b)) * b; } // binary exponentiation time O(logn) public static long _modExpo(long x, long n) { long ans = 1; while (n > 0) { if ((n & 1) == 1) { ans *= x; ans %= mod; n--; } else { x *= x; x %= mod; n >>= 1; } } return ans; } public static long _modInv(long a,long b){ return (a * _modExpo(b,mod-2)) % mod; } //sieve or first divisor time : O(mx * log ( log (mx) ) ) public static int[] _seive(int mx){ int[] firstDivisor = new int[mx+1]; for(int i=0;i<=mx;i++)firstDivisor[i] = i; for(int i=2;i*i<=mx;i++) if(firstDivisor[i] == i) for(int j = i*i;j<=mx;j+=i) firstDivisor[j] = i; return firstDivisor; } // check if x is a prime # of not. time : O( n ^ 1/2 ) private static boolean _isPrime(long x){ for(long i=2;i*i<=x;i++) if(x%i==0)return false; return true; } static class Pair<K, V>{ K ff; V ss; public Pair(K ff, V ss) { this.ff = ff; this.ss = ss; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || this.getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return ff.equals(pair.ff) && ss.equals(pair.ss); } @Override public int hashCode() { return Objects.hash(ff, ss); } @Override public String toString(){ return ff.toString()+" "+ss.toString(); } } static FastestReader sc; static PrintWriter out; private static void openIO() throws IOException { sc = new FastestReader(); out = new PrintWriter(System.out); } /*-------------------------------------------FAST INPUT STARTS HERE---------------------------------------------*/ public static void closeIO() throws IOException { out.flush(); out.close(); sc.close(); } private static final class FastestReader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public FastestReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastestReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() throws IOException { int b; //noinspection StatementWithEmptyBody while ((b = read()) != -1 && isSpaceChar(b)) { } return b; } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } /*---------------------------------------------FAST INPUT ENDS HERE ---------------------------------------------*/ }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
4dc2a69fe1430493fdbf7a80158342d3
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
// have faith in yourself!! /* Naive mistakes in java : --> Arrays.sort(primitive) is O(n^2) --> Never use '=' to compare to Integer data types, instead use 'equals()' --> -4 % 3 = -1, actually it should be 2, so add '+n' to modulo result */ import java.io.*; import java.util.*; public class CodeForces { public static void main(String[] args) throws IOException { openIO(); int testCase = 1; // testCase = sc. nextInt(); for (int i = 1; i <= testCase; i++) solve(i); closeIO(); } /*-------------------------------------------EDITING CODE STARTS HERE-------------------------------------------*/ public static void solve(int tCase) throws IOException { int n = sc.nextInt(); List<Integer> ans = new ArrayList<>(); long prod = 1; for(int i=1;i<=n-1;i++) { if (_gcd(i, n) == 1){ ans.add(i); prod *= i; prod %=n; } } int j = ans.size()-1; while (prod %n !=1){ prod /= ans.get(j--); } out.println(j+1); for(int i=0;i<=j;i++)out.println(ans.get(i)); // memo(1,1,n,""); // out.println(ss); } private static String ss = ""; private static void memo(int i,long curr,int n,String str){ if(i==n){ if(curr % n==1)if(str.length() > ss.length())ss = str; return; } memo(i+1,curr,n,str); memo(i+1,curr*i % n,n,str+", "+i); } /*-------------------------------------------EDITING CODE ENDS HERE-------------------------------------------*/ public static int mod = (int) 1e9 + 7; // public static int mod = 998244353; public static int inf_int = (int) 2e9; public static long inf_long = (long) 2e18; public static void _sort(int[] arr, boolean isAscending) { int n = arr.length; List<Integer> list = new ArrayList<>(); for (int ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } public static void _sort(long[] arr, boolean isAscending) { int n = arr.length; List<Long> list = new ArrayList<>(); for (long ele : arr) list.add(ele); Collections.sort(list); if (!isAscending) Collections.reverse(list); for (int i = 0; i < n; i++) arr[i] = list.get(i); } // time : O(1), space : O(1) public static int _digitCount(long num,int base){ // this will give the # of digits needed for a number num in format : base return (int)(1 + Math.log(num)/Math.log(base)); } // time : O(n), space: O(n) public static long _fact(int n){ // simple factorial calculator long ans = 1; for(int i=2;i<=n;i++) ans = ans * i % mod; return ans; } // time for pre-computation of factorial and inverse-factorial table : O(nlog(mod)) public static long[] factorial , inverseFact; public static void _ncr_precompute(int n){ factorial = new long[n+1]; inverseFact = new long[n+1]; factorial[0] = inverseFact[0] = 1; for (int i = 1; i <=n; i++) { factorial[i] = (factorial[i - 1] * i) % mod; inverseFact[i] = _modExpo(factorial[i], mod - 2); } } // time of factorial calculation after pre-computation is O(1) public static int _ncr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[r] % mod * inverseFact[n - r] % mod); } public static int _npr(int n,int r){ if(r > n)return 0; return (int)(factorial[n] * inverseFact[n - r] % mod); } // euclidean algorithm time O(max (loga ,logb)) public static long _gcd(long a, long b) { while (a>0){ long x = a; a = b % a; b = x; } return b; // if (a == 0) // return b; // return _gcd(b % a, a); } // lcm(a,b) * gcd(a,b) = a * b public static long _lcm(long a, long b) { return (a / _gcd(a, b)) * b; } // binary exponentiation time O(logn) public static long _modExpo(long x, long n) { long ans = 1; while (n > 0) { if ((n & 1) == 1) { ans *= x; ans %= mod; n--; } else { x *= x; x %= mod; n >>= 1; } } return ans; } public static long _modInv(long a,long b){ return (a * _modExpo(b,mod-2)) % mod; } //sieve or first divisor time : O(mx * log ( log (mx) ) ) public static int[] _seive(int mx){ int[] firstDivisor = new int[mx+1]; for(int i=0;i<=mx;i++)firstDivisor[i] = i; for(int i=2;i*i<=mx;i++) if(firstDivisor[i] == i) for(int j = i*i;j<=mx;j+=i) firstDivisor[j] = i; return firstDivisor; } // check if x is a prime # of not. time : O( n ^ 1/2 ) private static boolean _isPrime(long x){ for(long i=2;i*i<=x;i++) if(x%i==0)return false; return true; } static class Pair<K, V>{ K ff; V ss; public Pair(K ff, V ss) { this.ff = ff; this.ss = ss; } @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || this.getClass() != o.getClass()) return false; Pair<?, ?> pair = (Pair<?, ?>) o; return ff.equals(pair.ff) && ss.equals(pair.ss); } @Override public int hashCode() { return Objects.hash(ff, ss); } @Override public String toString(){ return ff.toString()+" "+ss.toString(); } } static FastestReader sc; static PrintWriter out; private static void openIO() throws IOException { sc = new FastestReader(); out = new PrintWriter(System.out); } /*-------------------------------------------FAST INPUT STARTS HERE---------------------------------------------*/ public static void closeIO() throws IOException { out.flush(); out.close(); sc.close(); } private static final class FastestReader { private static final int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public FastestReader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public FastestReader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } private static boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() throws IOException { int b; //noinspection StatementWithEmptyBody while ((b = read()) != -1 && isSpaceChar(b)) { } return b; } public String next() throws IOException { int b = skip(); final StringBuilder sb = new StringBuilder(); while (!isSpaceChar(b)) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) { return -ret; } return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') { c = read(); } final boolean neg = c == '-'; if (neg) { c = read(); } do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) { buffer[0] = -1; } } private byte read() throws IOException { if (bufferPointer == bytesRead) { fillBuffer(); } return buffer[bufferPointer++]; } public void close() throws IOException { din.close(); } } /*---------------------------------------------FAST INPUT ENDS HERE ---------------------------------------------*/ }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
ce0ee64149c0b7899572e6843cf86bb1
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class cp23 { static BufferedReader sc = new BufferedReader(new InputStreamReader(System.in)); static int mod = 1000000007; static String toReturn = ""; static int steps = Integer.MAX_VALUE; static int maxlen = 1000005; /*MATHEMATICS FUNCTIONS START HERE MATHS MATHS MATHS MATHS*/ static long gcd(long a, long b) { if(b == 0) return a; else return gcd(b, a % b); } static long powerMod(long x, long y, int mod) { if(y == 0) return 1; long temp = powerMod(x, y / 2, mod); temp = ((temp % mod) * (temp % mod)) % mod; if(y % 2 == 0) return temp; else return ((x % mod) * (temp % mod)) % mod; } static long modInverse(long n, int p) { return powerMod(n, p - 2, p); } static long nCr(int n, int r, int mod, long [] fact, long [] ifact) { return ((fact[n] % mod) * ((ifact[r] * ifact[n - r]) % mod)) % mod; } static boolean isPrime(long a) { if(a == 1) return false; else if(a == 2 || a == 3 || a== 5) return true; else if(a % 2 == 0 || a % 3 == 0) return false; for(int i = 5; i * i <= a; i = i + 6) { if(a % i == 0 || a % (i + 2) == 0) return false; } return true; } static int [] seive(int a) { int [] toReturn = new int [a + 1]; for(int i = 0; i < a; i++) toReturn[i] = 1; toReturn[0] = 0; toReturn[1] = 0; toReturn[2] = 1; for(int i = 2; i * i <= a; i++) { if(toReturn[i] == 0) continue; for(int j = 2 * i; j <= a; j += i) toReturn[j] = 0; } return toReturn; } /*MATHS MATHS MATHS MATHS MATHEMATICS FUNCTIONS END HERE */ /*SWAP FUNCTION START HERE SWAP SWAP SWAP SWAP */ static void swap(int i, int j, int [] arr) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } /*SWAP SWAP SWAP SWAP SWAP FUNCTION END HERE*/ /*BINARY SEARCH METHODS START HERE * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH */ static boolean BinaryCheck(long test, long [] arr, long health) { for(int i = 0; i <= arr.length - 1; i++) { if(i == arr.length - 1) health -= test; else if(arr[i + 1] - arr[i] > test) { health = health - test; }else { health = health - (arr[i + 1] - arr[i]); } if(health <= 0) return true; } return false; } static long binarySearchModified(long n, long [] arr) { long start = 0, end = n, ans = n; while(start < end) { long mid = (start + end) / 2; if(BinaryCheck(mid, arr, n)) { ans = Math.min(ans, mid); end = mid; }else { start = mid + 1; } } return ans; } /*BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH * BINARY SEARCH BINARY SEARCH METHODS END HERE*/ /*RECURSIVE FUNCTION START HERE * RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE */ static int recurse(int x, int y, int n, int steps1, Integer [][] dp) { if(x > n || y > n) return 0; if(dp[x][y] != null) { return dp[x][y]; } else if(x == n || y == n) { return steps1; } return dp[x][y] = Math.max(recurse(x + y, y, n, steps1 + 1, dp), recurse(x, x + y, n, steps1 + 1, dp)); } /*RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE * RECURSIVE RECURSIVE FUNCTION END HERE*/ /*GRAPH FUNCTIONS START HERE * GRAPH * GRAPH * GRAPH * GRAPH * */ static class edge{ int from, to, weight; public edge(int x, int y, int z) { this.from = x; this.to = y; this.weight = z; } } static void addEdge(ArrayList<ArrayList<edge>> graph, int from, int to, int weight) { edge temp = new edge(from, to, weight); edge temp1 = new edge(to, from, weight); graph.get(from).add(temp); graph.get(to).add(temp1); } static int ans = 0; static void dfs(ArrayList<ArrayList<edge>> graph, int vertex, boolean [] visited, int [] toReturn, int weight) { //System.out.println(graph.get(vertex).size()); if(visited[vertex]) return; visited[vertex] = true; if(graph.get(vertex).size() > 2) return; for(int i = 0; i < graph.get(vertex).size(); i++) { edge temp = graph.get(vertex).get(i); if(!visited[temp.to]) { //System.out.println(temp.to); toReturn[temp.weight] = weight; dfs(graph, temp.to, visited, toReturn, 5 - weight); weight = 5 - weight; } } } static void bfs(ArrayList<ArrayList<edge>> graph, int vertex, boolean [] visited, int [] toReturn, Queue<Integer> q, int weight) { if(visited[vertex]) return; visited[vertex] = true; if(graph.get(vertex).size() > 2) return; int first = weight; for(int i = 0; i < graph.get(vertex).size(); i++) { edge temp = graph.get(vertex).get(i); if(!visited[temp.to]) { q.add(temp.to); toReturn[temp.weight] = weight; weight = 5 - weight; } } if(!q.isEmpty())bfs(graph, q.poll(), visited, toReturn, q, 5 - first); } static void topoSort(ArrayList<ArrayList<Integer>> graph, int vertex, boolean [] visited, ArrayList<Integer> toReturn) { if(visited[vertex]) return; visited[vertex] = true; for(int i = 0; i < graph.get(vertex).size(); i++) { if(!visited[graph.get(vertex).get(i)]) topoSort(graph, graph.get(vertex).get(i), visited, toReturn); } toReturn.add(vertex); } static boolean isCyclicDirected(ArrayList<ArrayList<Integer>> graph, int vertex, boolean [] visited, boolean [] reStack) { if(reStack[vertex]) return true; if(visited[vertex]) return false; reStack[vertex] = true; visited[vertex] = true; for(int i = 0; i < graph.get(vertex).size(); i++) { if(isCyclicDirected(graph, graph.get(vertex).get(i), visited, reStack)) return true; } reStack[vertex] = false; return false; } /*GRAPH FUNCTIONS END HERE * GRAPH * GRAPH * GRAPH * GRAPH */ /*disjoint Set START HERE * disjoint Set * disjoint Set * disjoint Set * disjoint Set */ static int [] rank; static int [] parent; static int parent(int [] parent, int x) { if(parent[x] == x) return x; else return parent[x] = parent(parent, parent[x]); } static void union(int x, int y, int [] rank, int [] parent) { if(parent(parent, x) == parent(parent, y)) { return; } if(rank[x] > rank[y]) { swap(x, y, rank); } rank[x] += rank[y]; parent[x] = y; } /*disjoint Set END HERE * disjoint Set * disjoint Set * disjoint Set * disjoint Set */ /*INPUT START HERE * INPUT * INPUT * INPUT * INPUT * INPUT */ static int nexInt() throws NumberFormatException, IOException { return Integer.parseInt(sc.readLine()); } static long nexLong() throws NumberFormatException, IOException { return Long.parseLong(sc.readLine()); } static long [] inputLongArr() throws NumberFormatException, IOException{ String [] s = sc.readLine().split(" "); long [] toReturn = new long[s.length]; for(int i = 0; i < s.length; i++) { toReturn[i] = Long.parseLong(s[i]); } return toReturn; } static int [] inputIntArr() throws NumberFormatException, IOException{ String [] s = sc.readLine().split(" "); int [] toReturn = new int[s.length]; for(int i = 0; i < s.length; i++) { toReturn[i] = Integer.parseInt(s[i]); } return toReturn; } /*INPUT * INPUT * INPUT * INPUT * INPUT * INPUT END HERE */ static void solve() throws IOException { int n = nexInt(); ArrayList<Integer> toReturn = new ArrayList<Integer>(); for(int i = 1; i <= n; i++) { if(gcd((long)i, (long)n) == 1) toReturn.add(i); } long product = 1; for(int i = 0; i < toReturn.size(); i++) { product = (product * toReturn.get(i)) % n; } if(product % n != 1) { System.out.println(toReturn.size() - 1); for(int i = 0; i < toReturn.size() - 1; i++) System.out.print(toReturn.get(i) + " "); }else { System.out.println(toReturn.size()); for(int i = 0; i < toReturn.size(); i++) System.out.print(toReturn.get(i) + " "); } } public static void main(String[] args) throws IOException { // TODO Auto-generated method stub //int t = Integer.parseInt(sc.readLine()); for(int i = 0; i < t; i++) solve(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
276f18359f945c382ec17d4fe7a63e71
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class Main { static long gcd(long a, long b){ if(b == 0) return a; return gcd(b, a % b); } public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); ArrayList<Integer> arr = new ArrayList<>(); long product = 1; for(int i = 1; i < n; i++){ if(gcd(n, i) == 1) { arr.add(i); product *= i; product %= n; } } int sub = 0; //System.out.println(product); if(product != 1) sub = 1; System.out.println(arr.size() - sub); for(int i = 0; i < arr.size() - sub; i++) System.out.print(arr.get(i) + " "); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
73783aa965b25c7ba8b8c0ea3f5d6c3b
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class product1 { public static void main(String[] args) { // System.out.println(gcd(111,221)); //Scanner sc = new Scanner(System.in); FastReader sc = new FastReader(); int n = sc.nextInt(); int [] arr = new int[n]; for(int i = 0 ; i<n;i++) { arr[i] = i+1; } ArrayList<Integer> al = new ArrayList<>(); al.add(1); for(int i = 1 ; i<n;i++) { if(gcd(arr[i],n)==1) { al.add(arr[i]); } } int m = al.size(); long ans = 1; for(int i = 1 ; i<m;i++) { ans = ans*al.get(i) % n; } //System.out.println(ans); if(ans == 1) { System.out.println(m); for(int i = 0 ; i<m;i++) { System.out.print(al.get(i) + " "); } System.out.println(); }else { // int x = Collections.binarySearch(al, ans); al.remove(m-1); System.out.println(m-1); for(int i = 0 ; i<m-1;i++) { System.out.print(al.get(i)+ " "); } System.out.println(); } } public static int gcd(int a , int b) { if(a==0) { return b; } return gcd(b%a,a); } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
f308eb3012930605439644f7fbbc78ac
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * multiplication of all co-prime numbers of n is also co-prime. * */ public class Main { static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { FastReader fs = new FastReader(); long n = fs.nextLong(); //co prime numbers //and then modulo n //if ans 1 good, else if ans p then remove p List<Long> list = new ArrayList<>(); long i = 1; long product = 1; while(i < n) { if(gcd(n,i)==1) { list.add(i); product *= i; product %= n; //System.out.println("product: " + product); } i++; } if(product > 1) { list.remove(product); } System.out.println(list.size()); for (Long integer : list) System.out.print(integer + " "); } public static long gcd(long a, long b) { if(b==0) return a; return gcd(b,a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
3b59f9355f1f2b7955be9b6d57f473d8
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; /** * multiplication of all co-prime numbers of n is also co-prime. */ public class Main { static class FastReader{ BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } long nextLong() { return Long.parseLong(next()); } } public static void main(String[] args) { FastReader fs = new FastReader(); long n = fs.nextLong(); //co prime numbers //and then modulo n //if ans 1 good, else if ans p then remove p List<Long> list = new ArrayList<>(); long i = 1; long product = 1; while(i < n) { if(gcd(n,i)==1) { list.add(i); product *= i; product %= n; //System.out.println("product: " + product); } i++; } if(product > 1) { for(int j = 0; j < list.size(); j++) { if(list.get(j) == product) { list.remove(product); break; } } } System.out.println(list.size()); for (Long integer : list) System.out.print(integer + " "); } public static long gcd(long a, long b) { if(b==0) return a; return gcd(b,a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
33975c1379ffffe3627f4b81043aeef7
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; public class Product1_ModuloN { public static int find_GCD(int a, int b) { if (a == 0) return b; return find_GCD(b % a, a); } public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(in.readLine()); boolean[] coprimes = new boolean[n]; coprimes[1] = true; int count = 1; long product = 1; for (int i = 2; i < n; i++) { coprimes[i] = find_GCD(i, n) == 1; if (coprimes[i]) { product = (product * i) % n; count++; } } StringBuilder result = new StringBuilder(); if (product != 1) { coprimes[(int) product] = false; count--; } for (int i = 1; i < n; i++) { if (coprimes[i]) { result.append(i).append(" "); } } System.out.println(count); System.out.println(result); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
199cff20a029538ca7cfdb683783ba71
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/*input 8 */ import java.io.*; import java.util.*; public class Main2{ static int ok[] = new int[100005]; public static void main(String[] args) throws Exception { MyScanner scn = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); /* int n = sc.nextInt(); // read input as integer long k = sc.nextLong(); // read input as long double d = sc.nextDouble(); // read input as double String str = sc.next(); // read input as String String s = sc.nextLine(); // read whole line as String int result = 3*n; out.println(result); // print via PrintWriter */ //The Code Starts here StringBuilder sb = new StringBuilder(); int n = scn.nextInt(); long prod = 1; int last = 0; for(int i=1;i<n;i++){ if(gcd(i,n) == 1){ ok[i] = 1; prod = (prod*i)%n; last = i; } } if(prod != 1){ ok[n-1] = 0; } int count = 0; for(int i=1;i<n;i++){ if(ok[i] == 1){ count++; } } sb.append(count + "\n"); for(int i=1;i<n;i++){ if(ok[i] == 1){ sb.append(i + " "); } } System.out.print(sb); //The Code Ends here out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public int[][] nextInt2DArray(int m, int n) { int[][] arr = new int[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) arr[i][j] = nextInt(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } public static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } public static class Pair implements Comparable<Pair> { long u; long v; public Pair(long u, long v) { this.u = u; this.v = v; } public int hashCode() { int hu = (int) (u ^ (u >>> 32)); int hv = (int) (v ^ (v >>> 32)); return 31 * hu + hv; } public boolean equals(Object o) { Pair other = (Pair) o; return u == other.u && v == other.v; } public int compareTo(Pair other) { return Long.compare(u, other.u) != 0 ? Long.compare(u, other.u) : Long.compare(v, other.v); } public String toString() { return "[u=" + u + ", v=" + v + "]"; } } //is number prime upto N numbers static int N = 10; static boolean[] prime_seive = new boolean[N+1]; public static void seive(){ Arrays.fill(prime_seive, true); prime_seive[0] = false; prime_seive[1] = false; for(int i=2;i*i<N;i++){ if(prime_seive[i] == true){ for(int j=i*i;j<=N;j+=i){ prime_seive[j] = false; } } } } public static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // //-------------------------------------------------------- }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
6605c0e5f6f3ffef84bacbbdeea86fda
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/*input 8 */ import java.io.*; import java.util.*; public class Main2{ static int ok[] = new int[100005]; public static void main(String[] args) throws Exception { MyScanner scn = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); /* int n = sc.nextInt(); // read input as integer long k = sc.nextLong(); // read input as long double d = sc.nextDouble(); // read input as double String str = sc.next(); // read input as String String s = sc.nextLine(); // read whole line as String int result = 3*n; out.println(result); // print via PrintWriter */ //The Code Starts here StringBuilder sb = new StringBuilder(); int n = scn.nextInt(); long prod = 1; int last = 0; for(int i=1;i<n;i++){ if(gcd(i,n) == 1){ ok[i] = 1; prod = (prod*i)%n; last = i; } } if(prod != 1){ ok[last] = 0; } int count = 0; for(int i=1;i<n;i++){ if(ok[i] == 1){ count++; } } sb.append(count + "\n"); for(int i=1;i<n;i++){ if(ok[i] == 1){ sb.append(i + " "); } } System.out.print(sb); //The Code Ends here out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public int[][] nextInt2DArray(int m, int n) { int[][] arr = new int[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) arr[i][j] = nextInt(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } public static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } public static class Pair implements Comparable<Pair> { long u; long v; public Pair(long u, long v) { this.u = u; this.v = v; } public int hashCode() { int hu = (int) (u ^ (u >>> 32)); int hv = (int) (v ^ (v >>> 32)); return 31 * hu + hv; } public boolean equals(Object o) { Pair other = (Pair) o; return u == other.u && v == other.v; } public int compareTo(Pair other) { return Long.compare(u, other.u) != 0 ? Long.compare(u, other.u) : Long.compare(v, other.v); } public String toString() { return "[u=" + u + ", v=" + v + "]"; } } //is number prime upto N numbers static int N = 10; static boolean[] prime_seive = new boolean[N+1]; public static void seive(){ Arrays.fill(prime_seive, true); prime_seive[0] = false; prime_seive[1] = false; for(int i=2;i*i<N;i++){ if(prime_seive[i] == true){ for(int j=i*i;j<=N;j+=i){ prime_seive[j] = false; } } } } public static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // //-------------------------------------------------------- }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
eb612f203cb6f2598b3cfd29a1db1ffd
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/*input 8 */ import java.io.*; import java.util.*; public class Main2{ static int ok[] = new int[100005]; public static void main(String[] args) throws Exception { MyScanner scn = new MyScanner(); out = new PrintWriter(new BufferedOutputStream(System.out)); /* int n = sc.nextInt(); // read input as integer long k = sc.nextLong(); // read input as long double d = sc.nextDouble(); // read input as double String str = sc.next(); // read input as String String s = sc.nextLine(); // read whole line as String int result = 3*n; out.println(result); // print via PrintWriter */ //The Code Starts here StringBuilder sb = new StringBuilder(); int n = scn.nextInt(); long prod = 1; for(int i=1;i<n;i++){ if(gcd(i,n) == 1){ ok[i] = 1; prod = (prod*i)%n; } } if(prod != 1){ ok[(int)prod] = 0; } int count = 0; for(int i=1;i<n;i++){ if(ok[i] == 1){ count++; } } sb.append(count + "\n"); for(int i=1;i<n;i++){ if(ok[i] == 1){ sb.append(i + " "); } } sb.append("\n"); System.out.print(sb); //The Code Ends here out.close(); } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = nextInt(); } return arr; } public long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nextLong(); } return arr; } public int[][] nextInt2DArray(int m, int n) { int[][] arr = new int[m][n]; for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) arr[i][j] = nextInt(); } return arr; } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } } public static void debug(Object... o) { System.out.println(Arrays.deepToString(o)); } public static class Pair implements Comparable<Pair> { long u; long v; public Pair(long u, long v) { this.u = u; this.v = v; } public int hashCode() { int hu = (int) (u ^ (u >>> 32)); int hv = (int) (v ^ (v >>> 32)); return 31 * hu + hv; } public boolean equals(Object o) { Pair other = (Pair) o; return u == other.u && v == other.v; } public int compareTo(Pair other) { return Long.compare(u, other.u) != 0 ? Long.compare(u, other.u) : Long.compare(v, other.v); } public String toString() { return "[u=" + u + ", v=" + v + "]"; } } //is number prime upto N numbers static int N = 10; static boolean[] prime_seive = new boolean[N+1]; public static void seive(){ Arrays.fill(prime_seive, true); prime_seive[0] = false; prime_seive[1] = false; for(int i=2;i*i<N;i++){ if(prime_seive[i] == true){ for(int j=i*i;j<=N;j+=i){ prime_seive[j] = false; } } } } public static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } // //-------------------------------------------------------- }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
4e34a0ce3a1a8271d8a5623f2d7b1848
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
// package com.prituladima; import java.io.*; import java.util.Arrays; import java.util.StringTokenizer; import java.util.stream.IntStream; public final class Template { private void solve() { //https://math.stackexchange.com/questions/441667/the-product-of-integers-relatively-prime-to-n-congruent-to-pm-1-pmod-n int n = nextInt(); if (false) { //long mul = 1; int maxMask = -1; for (int mask = 0; mask < (1 << n); mask++) { long local = 1; for (int bit = 0; bit < n; bit++) { //[0, n) -> [1, n] // local *= !on(mask, bit) ? 1 : (bit + 1); } if (local % n == 1) { maxMask = mask; } } println(Integer.bitCount(maxMask)); for (int bit = 0; bit < n; bit++) { //[0, n) -> [1, n] // if (on(maxMask, bit)) { print(bit + 1); print(' '); } } } else { boolean[] ans = new boolean[n + 20]; long mul = 1; int cnt = 0 ; for (int i = 1; i <= n; i++) { if(gcd(i, n) == 1) { mul *= i; mul %= n; ans[i] = true; cnt++; // println(">>> " + mul); } } if (mul != 1) { ans[(int)mul] = false; cnt--; } println(cnt); for (int i = 1; i <= n; i++) { if (ans[i]) { print(i); print(' '); } } } } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } private boolean on(int mask, int bit) { return (mask & (1 << bit)) > 0; } public static void main(String[] args) { new Template().run(); } private BufferedReader reader; private StringTokenizer tokenizer; private PrintWriter writer; private void run() { try (BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); PrintWriter writer = new PrintWriter(new OutputStreamWriter(System.out))) { this.reader = reader; this.writer = writer; this.tokenizer = null; solve(); } catch (Exception e) { e.printStackTrace(); System.exit(1); } } private int nextInt(int radix) { return Integer.parseInt(nextToken(), radix); } private int nextInt() { return Integer.parseInt(nextToken()); } private long nextLong(int radix) { return Long.parseLong(nextToken(), radix); } private long nextLong() { return Long.parseLong(nextToken()); } private double nextDouble() { return Double.parseDouble(nextToken()); } private int[] nextArr(int size) { return Arrays.stream(new int[size]).map(c -> nextInt()).toArray(); } private long[] nextArrL(int size) { return Arrays.stream(new long[size]).map(c -> nextLong()).toArray(); } private double[] nextArrD(int size) { return Arrays.stream(new double[size]).map(c -> nextDouble()).toArray(); } private char[][] nextCharMatrix(int n) { return IntStream.range(0, n).mapToObj(i -> nextToken().toCharArray()).toArray(char[][]::new); } private int[][] nextIntMatrix(final int n, final int m) { return IntStream.range(0, n).mapToObj(i -> nextArr(m)).toArray(int[][]::new); } private double[][] nextDoubleMatrix(final int n, final int m) { return IntStream.range(0, n).mapToObj(i -> nextArrD(m)).toArray(double[][]::new); } private String nextToken() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } private void printf(String format, Object... args) { writer.printf(format, args); } private void print(Object o) { writer.print(o); } private void println() { writer.println(); } private void println(Object o) { print(o); println(); } private void flush() { writer.flush(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c7123769c1caed5fca0b0806fc668fdc
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class ProdMod { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); Queue<Integer> fl = new LinkedList<Integer>(); fl.add(1); String ans = "1 "; boolean arr[] = new boolean[n]; int size = 1; long prod = 1; for(int i = 2; i <= n-2; i++) { if(arr[i] == true) continue; else if(n % i == 0) { for(int j = i; j <= n-2; j += i) arr[j] = true; } else{ //ans = ans + i + " "; fl.add(i); size++; prod = (prod*i % n); } } if(prod == n-1 && n != 2) { size++; //ans = ans + (n-1) + " "; fl.add(n-1); } System.out.println(size); //System.out.println(ans); for(int i = 0; i < size; i++) { System.out.print(fl.poll()+ " "); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
197b70e9ce1cf9d84c3825134f1d6e71
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; /** * @Author: * @Date: 2021/4/26 22:27 */ public class Product1ModuloN { public static void main(String[] args) { FastScanner fs = new FastScanner(); int n = fs.nextInt(); boolean [] used = new boolean[n]; int mul = 1; int sz = 0; for(int i = 1; i<=n-1; i++){ if(gcd(i, n)==1){ used[i] = true; mul = (int)(((long)mul*(long)i)%n); sz++; } } if (mul!=1){ used[mul] = false; sz--; } System.out.println(sz); for(int i = 1; i<=n-1;i++){ if(used[i]){ System.out.print(i+" "); } } } static int gcd(int a, int b){ if(b==0){ return a; } return gcd(b, a%b); } static class FastScanner{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next(){ while (!st.hasMoreTokens()){ try { st = new StringTokenizer(br.readLine()); }catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
e861bda57a8421de58c104636b85199a
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class Main { public static int gcd(int a, int b){ if(b == 0){ return a; } return gcd(b,a%b); } public static void solve1(int n){ boolean[] arr = new boolean[n]; long prod = 1; for(int i = 1 ; i < n ; i++){ if(gcd(i,n) == 1){ arr[i] = true; prod = (prod * i) % n; } else{ arr[i] = false; } } if(prod != 1){ arr[(int) prod] = false; } int count = 0; for(int i = 1 ; i < n ; i++){ count += (arr[i]) ? 1 : 0; } System.out.println(count); for(int i = 1 ; i < n ; i++){ if(arr[i]){ System.out.print(i + " "); } } } public static void main(String[] args){ Scanner sc = new Scanner(System.in); int t = 1; while(t-- > 0) { int n = sc.nextInt(); solve1(n); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
88b9ff9ce01a9d8144cc3a06d7bfc120
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.math.BigInteger; import java.util.ArrayList; import java.util.StringTokenizer; public class C{ public static void main(String[] args){ FastReader sc = new FastReader(); int n=sc.nextInt(); long pro=1; ArrayList<Integer> a = new ArrayList<>(); for(int i=1;i<n;i++) { if(gcd(i,n)==1) { a.add(i); pro=(pro*i)%n; } } if(pro!=1) { for(int i=0;i<a.size();i++) { if(a.get(i)==pro) { a.remove(i); } } } System.out.println(a.size()); for(int i:a)System.out.print(i+" "); } static int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
ed0aa25a075aa308e1b0bfd10a88864f
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; import java.util.Collections; import java.util.Map.Entry; public class div2_716_C implements Runnable { public void run() { InputReader sc = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = 1; while(t-- > 0) { int n = sc.nextInt(); ArrayList<Long> al = new ArrayList<>(); long res=1; for(int i=1;i<n;i++) { if(gcd(i,n)==1) { al.add((long)i); res = (res*i)%n; } } if(res!=1) { al.remove(res); } System.out.println(al.size()); for(int i=0;i<al.size();i++) { System.out.print(al.get(i)+" "); } } } boolean isPerfectSquare(int x) { if (x >= 0) { int sr = (int)Math.sqrt(x); return ((sr * sr) == x); } return false; } boolean ispalindrome(char ch[]) { int i=0,j=ch.length-1; while(i<j) { if(ch[i]==ch[j]) { i++; j--; } else { return false; } } return true; } static class sortintarray { public static void sort(int[] arr) { int n = arr.length, mid, h, s, l, i, j, k; int[] res = new int[n]; n--; for (s = 1; s <= n; s <<= 1) { for (l = 0; l < n; l += (s << 1)) { h = Math.min(l + (s << 1) - 1, n); mid = Math.min(l + s - 1, n); i = l; j = mid + 1; k = l; while (i <= mid && j <= h) res[k++] = (arr[i] <= arr[j] ? arr[i++] : arr[j++]); while (i <= mid) res[k++] = arr[i++]; while (j <= h) res[k++] = arr[j++]; for (k = l; k <= h; k++) arr[k] = res[k]; } } } } static class sortchararray { public static void sort(char[] arr) { int n = arr.length, mid, h, s, l, i, j, k; char[] res = new char[n]; n--; for (s = 1; s <= n; s <<= 1) { for (l = 0; l < n; l += (s << 1)) { h = Math.min(l + (s << 1) - 1, n); mid = Math.min(l + s - 1, n); i = l; j = mid + 1; k = l; while (i <= mid && j <= h) res[k++] = (arr[i] <= arr[j] ? arr[i++] : arr[j++]); while (i <= mid) res[k++] = arr[i++]; while (j <= h) res[k++] = arr[j++]; for (k = l; k <= h; k++) arr[k] = res[k]; } } } } long gcd(long a, long b){return (b==0)?a:gcd(b,a%b);} int gcd(int a, int b){return (b==0)?a:gcd(b,a%b);} long factorial(long n){ if (n == 0) return 1; else return(n * factorial(n-1)); } boolean isPrime(int n) { if (n <= 1){ return false; } for (int i = 2; i < n; i++){ if (n % i == 0){ return false; } } return true; } long ceil(long a,long b) { if(a%b==0) { return a/b; } else { return (a/b)+1; } } int ceil(int a,int b) { if(a%b==0) { return a/b; } else { return (a/b)+1; } } public static class Pair<U extends Comparable<U>, V extends Comparable<V>> implements Comparable<Pair<U, V>> { public U x; public V y; public Pair(U x, V y) { this.x = x; this.y = y; } public int hashCode() { return (x == null ? 0 : x.hashCode() * 31) + (y == null ? 0 : y.hashCode()); } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<U, V> p = (Pair<U, V>) o; return (x == null ? p.x == null : x.equals(p.x)) && (y == null ? p.y == null : y.equals(p.y)); } public int compareTo(Pair<U, V> b) { int cmpU = x.compareTo(b.x); return cmpU != 0 ? cmpU : y.compareTo(b.y); } public String toString() { return String.format("(%s, %s)", x.toString(), y.toString()); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new div2_716_C(),"Main",1<<27).start(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
7676c1e28a66984e60e343d2675df109
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/*input 4 */ import java.util.*; import java.lang.*; import java.io.*; public class Main { static PrintWriter out; static int MOD = 1000000007; static FastReader scan; /*-------- I/O using short named function ---------*/ public static String ns(){return scan.next();} public static int ni(){return scan.nextInt();} public static long nl(){return scan.nextLong();} public static double nd(){return scan.nextDouble();} public static String nln(){return scan.nextLine();} public static void p(Object o){out.print(o);} public static void ps(Object o){out.print(o + " ");} public static void pn(Object o){out.println(o);} /*-------- for output of an array ---------------------*/ static void iPA(int arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void lPA(long arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void sPA(String arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } static void dPA(double arr []){ StringBuilder output = new StringBuilder(); for(int i=0; i<arr.length; i++)output.append(arr[i] + " ");out.println(output); } /*-------------- for input in an array ---------------------*/ static void iIA(int arr[]){ for(int i=0; i<arr.length; i++)arr[i] = ni(); } static void lIA(long arr[]){ for(int i=0; i<arr.length; i++)arr[i] = nl(); } static void sIA(String arr[]){ for(int i=0; i<arr.length; i++)arr[i] = ns(); } static void dIA(double arr[]){ for(int i=0; i<arr.length; i++)arr[i] = nd(); } /*------------ for taking input faster ----------------*/ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } // Method to check if x is power of 2 static boolean isPowerOfTwo (int x) { return x!=0 && ((x&(x-1)) == 0);} //Method to return lcm of two numbers static int gcd(int a, int b){return a==0?b:gcd(b % a, a); } //Method to count digit of a number static int countDigit(long n){return (int)Math.floor(Math.log10(n) + 1);} //Method for sorting static void ruffle_sort(int[] a) { //shandom_ruffle Random r=new Random(); int n=a.length; for (int i=0; i<n; i++) { int oi=r.nextInt(n); int temp=a[i]; a[i]=a[oi]; a[oi]=temp; } //sort Arrays.sort(a); } //Method for checking if a number is prime or not static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } public static void main (String[] args) throws java.lang.Exception { OutputStream outputStream =System.out; out =new PrintWriter(outputStream); scan =new FastReader(); //for fast output sometimes StringBuilder sb = new StringBuilder(); int t = 1; while(t-->0){ int n = ni(); boolean check[] = new boolean[n]; long p = 1; for(int i=1; i<n; i++){ if(gcd(n, i) == 1){ check[i] = true; p*=i; p %= n; } } if(p != 1){ check[(int)p] = false; } int count = 0; for(int i=1; i<n; i++) if(check[i]){ count++; sb.append(i + " "); } pn(count); pn(sb); } out.flush(); out.close(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
0872a4f257703553378ec14b386b7034
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); ArrayList<Integer> ans = new ArrayList<>(); ans.add(1); if( n!= 2) { long prod = 1; for(int i=2; i<n-1; i++) { if( GCD(i, n) == 1 ) { ans.add(i); prod *= i; prod = prod%n; } } prod *= n-1; if( prod % n == 1 ) ans.add(n-1); } System.out.println(ans.size()); for(Integer ele : ans ) System.out.print(ele + " "); } public static int GCD(int a, int b) { if (b == 0) return a; return GCD(b, a % b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
f05ff9e08b987a004ab37931bf6ea44e
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*;import java.io.*;import java.math.*; public class Main { public static void process()throws IOException { int n=ni(); ArrayList<Integer>l1=new ArrayList<>(); for(int i=1;i<=n-1;i++) { if(gcd(n,i)==1) l1.add(i); } long prod=1; int ind=0; for(int i=0;i<l1.size();i++) { prod=(prod*l1.get(i))%n; if(prod==1) ind=i+1; } pn(ind); for(int i=0;i<ind;i++) p(l1.get(i)+" "); pn(""); } static long mod=(long)1e9+7l; static AnotherReader sc; static PrintWriter out; public static void main(String[]args)throws IOException { boolean oj = System.getProperty("ONLINE_JUDGE") != null; if(oj){sc=new AnotherReader();out=new PrintWriter(System.out);} else{sc=new AnotherReader(100);out=new PrintWriter("output.txt");} int t=1; // t=ni(); while(t-->0) {process();} out.flush();out.close(); } static void pn(Object o){out.println(o);} static void p(Object o){out.print(o);} static void pni(Object o){out.println(o);out.flush();} static int ni()throws IOException{return sc.nextInt();} static long nl()throws IOException{return sc.nextLong();} static double nd()throws IOException{return sc.nextDouble();} static String nln()throws IOException{return sc.nextLine();} static int[] nai(int N)throws IOException{int[]A=new int[N];for(int i=0;i!=N;i++){A[i]=ni();}return A;} static long[] nal(int N)throws IOException{long[]A=new long[N];for(int i=0;i!=N;i++){A[i]=nl();}return A;} static long gcd(long a, long b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int gcd(int a, int b)throws IOException{return (b==0)?a:gcd(b,a%b);} static int bit(long n)throws IOException{return (n==0)?0:(1+bit(n&(n-1)));} ///////////////////////////////////////////////////////////////////////////////////////////////////////// static class AnotherReader{BufferedReader br; StringTokenizer st; AnotherReader()throws FileNotFoundException{ br=new BufferedReader(new InputStreamReader(System.in));} AnotherReader(int a)throws FileNotFoundException{ br = new BufferedReader(new FileReader("input.txt"));} String next()throws IOException{ while (st == null || !st.hasMoreElements()) {try{ st = new StringTokenizer(br.readLine());} catch (IOException e){ e.printStackTrace(); }} return st.nextToken(); } int nextInt() throws IOException{ return Integer.parseInt(next());} long nextLong() throws IOException {return Long.parseLong(next());} double nextDouble()throws IOException { return Double.parseDouble(next()); } String nextLine() throws IOException{ String str = ""; try{ str = br.readLine();} catch (IOException e){ e.printStackTrace();} return str;}} ///////////////////////////////////////////////////////////////////////////////////////////////////////////// }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
571290bb33dfc74aa8ec64d9cffc6d5e
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/* 5 */ import java.util.*; import java.io.*; public class Main { public static long N; public static ArrayList<Long> relativelyPrime = new ArrayList<Long>(); public static void main(String[] args) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); N = Long.parseLong(br.readLine()); long mult = 1; for(long i = 1; i < N; i++){ if(gcd(N, i) == 1){ relativelyPrime.add(i); mult = (mult * i) % N; } } if(mult > 1) relativelyPrime.remove(mult); System.out.println(relativelyPrime.size()); for(long item : relativelyPrime) System.out.print(item + " "); System.out.println(); br.close(); } public static long gcd(long x, long y){ // x > y if(x % y == 0) return y; return gcd(y, x % y); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c7e3f8e9347b82500d6ab7374aa68d92
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.TreeSet; public class prod { static int gcdAlg(int n1, int n2) { if (n2 == 0) { return n1; } return gcdAlg(n2, n1 % n2); } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); boolean[] ans = new boolean[n]; int count = 0; long curp = 1; for (int i = 1; i < n; i++) { if(gcdAlg(i, n) == 1){ count++; ans[i] = true; curp = (curp * ((long)i)) % ((long)n); } } if(curp != 1){ ans[(int) curp] = false; count--; } System.out.println(count); for (int i = 1; i < n; i++) { if(ans[i]) System.out.print(i + " "); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
406f5efc718522f1e1c2ac63cacc4487
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; import static java.util.Arrays.*; public class cf1514c { public static void main(String[] args) throws IOException { int n = ri(); long cur = 1; List<Integer> coprimes = new ArrayList<>(); for (int i = 1; i < n; ++i) { if (gcd(i, n) == 1) { coprimes.add(i); cur *= i; cur %= n; } } if (cur != 1) { coprimes.remove(Integer.valueOf((int) cur)); } prln(coprimes.size()); prln(coprimes); close(); } static BufferedReader __i = new BufferedReader(new InputStreamReader(System.in)); static PrintWriter __o = new PrintWriter(new OutputStreamWriter(System.out)); static StringTokenizer input; static Random __r = new Random(); // references // IBIG = 1e9 + 7 // IMAX ~= 2e9 // LMAX ~= 9e18 // constants static final int IBIG = 1000000007; static final int IMAX = 2147483647; static final long LMAX = 9223372036854775807L; // math util static int minof(int a, int b, int c) {return min(a, min(b, c));} static int minof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); int min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static long minof(long a, long b, long c) {return min(a, min(b, c));} static long minof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return min(x[0], x[1]); if (x.length == 3) return min(x[0], min(x[1], x[2])); long min = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] < min) min = x[i]; return min;} static int maxof(int a, int b, int c) {return max(a, max(b, c));} static int maxof(int... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); int max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static long maxof(long a, long b, long c) {return max(a, max(b, c));} static long maxof(long... x) {if (x.length == 1) return x[0]; if (x.length == 2) return max(x[0], x[1]); if (x.length == 3) return max(x[0], max(x[1], x[2])); long max = x[0]; for (int i = 1; i < x.length; ++i) if (x[i] > max) max = x[i]; return max;} static int powi(int a, int b) {if (a == 0) return 0; int ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static long powl(long a, int b) {if (a == 0) return 0; long ans = 1; while (b > 0) {if ((b & 1) > 0) ans *= a; a *= a; b >>= 1;} return ans;} static int fli(double d) {return (int) d;} static int cei(double d) {return (int) ceil(d);} static long fll(double d) {return (long) d;} static long cel(double d) {return (long) ceil(d);} static int gcd(int a, int b) {return b == 0 ? a : gcd(b, a % b);} static long gcd(long a, long b) {return b == 0 ? a : gcd(b, a % b);} static int[] exgcd(int a, int b) {if (b == 0) return new int[] {1, 0}; int[] y = exgcd(b, a % b); return new int[] {y[1], y[0] - y[1] * (a / b)};} static long[] exgcd(long a, long b) {if (b == 0) return new long[] {1, 0}; long[] y = exgcd(b, a % b); return new long[] {y[1], y[0] - y[1] * (a / b)};} static int randInt(int min, int max) {return __r.nextInt(max - min + 1) + min;} static long mix(long x) {x += 0x9e3779b97f4a7c15L; x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9L; x = (x ^ (x >> 27)) * 0x94d049bb133111ebL; return x ^ (x >> 31);} // array util static void reverse(int[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {int swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(long[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {long swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(double[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {double swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void reverse(char[] a) {for (int i = 0, n = a.length, half = n / 2; i < half; ++i) {char swap = a[i]; a[i] = a[n - i - 1]; a[n - i - 1] = swap;}} static void shuffle(int[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); int swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(long[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); long swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void shuffle(double[] a) {int n = a.length - 1; for (int i = 0; i < n; ++i) {int ind = randInt(i, n); double swap = a[i]; a[i] = a[ind]; a[ind] = swap;}} static void rsort(int[] a) {shuffle(a); sort(a);} static void rsort(long[] a) {shuffle(a); sort(a);} static void rsort(double[] a) {shuffle(a); sort(a);} static int[] copy(int[] a) {int[] ans = new int[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static long[] copy(long[] a) {long[] ans = new long[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static double[] copy(double[] a) {double[] ans = new double[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} static char[] copy(char[] a) {char[] ans = new char[a.length]; for (int i = 0; i < a.length; ++i) ans[i] = a[i]; return ans;} // input static void r() throws IOException {input = new StringTokenizer(rline());} static int ri() throws IOException {return Integer.parseInt(rline());} static long rl() throws IOException {return Long.parseLong(rline());} static double rd() throws IOException {return Double.parseDouble(rline());} static int[] ria(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni(); return a;} static void ria(int[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = ni();} static int[] riam1(int n) throws IOException {int[] a = new int[n]; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1; return a;} static void riam1(int[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = ni() - 1;} static long[] rla(int n) throws IOException {long[] a = new long[n]; r(); for (int i = 0; i < n; ++i) a[i] = nl(); return a;} static void rla(long[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = nl();} static double[] rda(int n) throws IOException {double[] a = new double[n]; r(); for (int i = 0; i < n; ++i) a[i] = nd(); return a;} static void rda(double[] a) throws IOException {int n = a.length; r(); for (int i = 0; i < n; ++i) a[i] = nd();} static char[] rcha() throws IOException {return rline().toCharArray();} static void rcha(char[] a) throws IOException {int n = a.length, i = 0; for (char c : rline().toCharArray()) a[i++] = c;} static String rline() throws IOException {return __i.readLine();} static String n() {return input.nextToken();} static int rni() throws IOException {r(); return ni();} static int ni() {return Integer.parseInt(n());} static long rnl() throws IOException {r(); return nl();} static long nl() {return Long.parseLong(n());} static double rnd() throws IOException {r(); return nd();} static double nd() {return Double.parseDouble(n());} // output static void pr(int i) {__o.print(i);} static void prln(int i) {__o.println(i);} static void pr(long l) {__o.print(l);} static void prln(long l) {__o.println(l);} static void pr(double d) {__o.print(d);} static void prln(double d) {__o.println(d);} static void pr(char c) {__o.print(c);} static void prln(char c) {__o.println(c);} static void pr(char[] s) {__o.print(new String(s));} static void prln(char[] s) {__o.println(new String(s));} static void pr(String s) {__o.print(s);} static void prln(String s) {__o.println(s);} static void pr(Object o) {__o.print(o);} static void prln(Object o) {__o.println(o);} static void prln() {__o.println();} static void pryes() {prln("yes");} static void pry() {prln("Yes");} static void prY() {prln("YES");} static void prno() {prln("no");} static void prn() {prln("No");} static void prN() {prln("NO");} static boolean pryesno(boolean b) {prln(b ? "yes" : "no"); return b;}; static boolean pryn(boolean b) {prln(b ? "Yes" : "No"); return b;} static boolean prYN(boolean b) {prln(b ? "YES" : "NO"); return b;} static void prln(int... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(long... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static void prln(double... a) {for (int i = 0, len = a.length - 1; i < len; pr(a[i]), pr(' '), ++i); if (a.length > 0) prln(a[a.length - 1]); else prln();} static <T> void prln(Collection<T> c) {int n = c.size() - 1; Iterator<T> iter = c.iterator(); for (int i = 0; i < n; pr(iter.next()), pr(' '), ++i); if (n >= 0) prln(iter.next()); else prln();} static void h() {prln("hlfd"); flush();} static void flush() {__o.flush();} static void close() {__o.close();} }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
fd9b6f6b2d9575277d3b79c170f36d79
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashSet; import java.util.StringTokenizer; import java.io.Writer; import java.io.OutputStreamWriter; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); CProduct1ModuloN solver = new CProduct1ModuloN(); solver.solve(1, in, out); out.close(); } static class CProduct1ModuloN { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(); long prod = 1; ArrayList<Integer> list = new ArrayList<>(); HashSet<Integer> set = new HashSet<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { prod = (prod * i) % n; list.add(i); set.add(i); } } int s = list.size(); if (prod == 1) { prod = -1; } else { s--; } out.println(s); for (int a : list) { if (a != prod) { out.print(a + " "); } } } public static int gcd(int a, int b) { return b == 0 ? (a < 0 ? -a : a) : gcd(b, a % b); } } static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void close() { writer.close(); } public void println(int i) { writer.println(i); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c42ab8cd779c5662f50b95b7fdb1ed76
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Contest716C { static class InputReader { BufferedReader reader; StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } String next() { // reads in the next string while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { // reads in the next int return Integer.parseInt(next()); } public long nextLong() { // reads in the next long return Long.parseLong(next()); } public double nextDouble() { // reads in the next double return Double.parseDouble(next()); } } static InputReader r = new InputReader(System.in); static PrintWriter pw = new PrintWriter(System.out); public static void main(String[] args) { int N = r.nextInt(); int count = 0; ArrayList<Integer> al = new ArrayList<Integer>(); long prod = 1; for (int i = 1; i < Math.max(2,N - 1); i ++) { if (gcd(i,N) == 1) { al.add(i); count ++; prod *= i; prod %= N; } } if (prod != 1) { al.add(N - 1); count ++; } pw.println(count); for (int i: al) { pw.print(i); pw.print(" "); } pw.close(); } static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
ae1afee2ed3a998d75f1d2fb419624f4
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.PriorityQueue; import java.util.Queue; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; public class hacker49 { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { OutputStream outputStream =System.out; PrintWriter out =new PrintWriter(outputStream); FastReader s=new FastReader(); long n=s.nextLong(); ArrayList<Long> e=new ArrayList<>(); for(long i=1;i<=n-1;i++) { if(GCD(i,n)==1) { e.add(i); } } long d=1; int count=0; int c=-1; ArrayList<Long> r=new ArrayList<>(); out:for(int i=0;i<e.size();i++) { d*=e.get(i); d=(d%n); r.add(e.get(i)); if(d==1 && i!=0) { c=i; count++; // break out; } } if(count==0) { out.println(1); out.println(1); }else { out.println(c+1); for(int i=0;i<=c;i++) { out.print(e.get(i)+" "); } } out.close(); } static ArrayList<Integer>[] f1=new ArrayList[200001]; static ArrayList<Integer>[] f2=new ArrayList[401]; static int vis1[]=new int[200001]; static int vis2[]=new int[401]; static int len1[]=new int[200001]; static int len2[]=new int[401]; static void bfs1(int node) { vis1[node]=1; PriorityQueue<pair> q=new PriorityQueue<>(); q.add(new pair(node,0)); int h=0; while(!q.isEmpty()) { pair f=q.poll(); for(int i=0;i<f1[f.a].size();i++) { if(vis1[f1[f.a].get(i)]==0) { q.add(new pair(f1[f.a].get(i),f.b+1)); vis1[f1[f.a].get(i)]=1; len1[f1[f.a].get(i)]=f.b+1; } } } } static void bfs2(int node) { vis2[node]=1; PriorityQueue<pair> q=new PriorityQueue<>(); q.add(new pair(node,0)); int h=0; while(!q.isEmpty()) { pair f=q.poll(); for(int i=0;i<f2[f.a].size();i++) { if(vis2[f2[f.a].get(i)]==0) { q.add(new pair(f2[f.a].get(i),f.b+1)); vis2[f2[f.a].get(i)]=1; len2[f2[f.a].get(i)]=f.b+1; } } } } public static int[] Create(int[] a,int n) { int[] b=new int[n+1]; for(int i=1;i<=n;i++) { int j=i; int h=a[i]; while(i<=n) { b[i]+=h; i=get_next(i); } i=j; } return b; } public static int get_next(int a) { return a+(a&-a); } public static int get_parent(int a) { return a-(a&-a); } public static int query_1(int[] b,int index) { int sum=0; if(index<=0) { return 0; } while(index>0) { sum+=b[index]; index=get_parent(index); } return sum; } public static int query(int[] b,int n,int l,int r) { int sum=0; sum+=query_1(b,r); sum-=query_1(b,l-1); return sum; } public static void update(int[] a,int[] b,int n,int index,int val) { int diff=val-a[index]; a[index]+=diff; while(index<=n) { b[index]+=diff; index=get_next(index); } } // public static void Create(int[] a,pair[] segtree,int low,int high,int pos) { // if(low>high) { // return; // } // if(low==high) { // segtree[pos].b.add(a[low]); // return ; // } // int mid=(low+high)/2; // Create(a,segtree,low,mid,2*pos); // Create(a,segtree,mid+1,high,2*pos+1); // segtree[pos].b.addAll(segtree[2*pos].b); // segtree[pos].b.addAll(segtree[2*pos+1].b); // } // public static void update(pair[] segtree,int low,int high,int index,int pos,int val,int prev) { // if(index>high || index<low) { // return ; // } // if(low==high && low==index) { // segtree[pos].b.remove(prev); // segtree[pos].b.add(val); // return; // } // int mid=(high+low)/2; // update(segtree,low,mid,index,2*pos,val,prev); // update(segtree,mid+1,high,index,2*pos+1,val,prev); // segtree[pos].b.clear(); // segtree[pos].b.addAll(segtree[2*pos].b); // segtree[pos].b.addAll(segtree[2*pos+1].b); // // } // public static pair query(pair[] segtree,int low,int high,int qlow,int qhigh ,int pos) { // if(low>=qlow && high<=qhigh) { // return segtree[pos]; // } // if(qhigh<low || qlow>high) { // return new pair(); // } // int mid=(low+high)/2; // pair a1=query(segtree,low,mid,qlow,qhigh,2*pos); // pair a2=query(segtree,mid+1,high,qlow,qhigh,2*pos+1); // pair a3=new pair(); // a3.b.addAll(a1.b); // a3.b.addAll(a2.b); // return a3; // // } // // public static int nextPowerOf2(int n) // { // n--; // n |= n >> 1; // n |= n >> 2; // n |= n >> 4; // n |= n >> 8; // n |= n >> 16; // n++; // return n; // } // //// static class pair implements Comparable<pair>{ //// private int a; //// private long b; ////// private long c; //// pair(int a,long b){ //// this.a=a; //// this.b=b; ////// this.c=c; //// } //// public int compareTo(pair o) { ////// if(this.a!=o.a) { ////// return Long.compare(this.a, o.a); ////// }else { //// return Long.compare(o.b,this.b); ////// } //// } //// } static class pair implements Comparable<pair>{ private int a; private int b; pair(int a,int b){ // this.b=new HashSet<>(); this.a=a; this.b=b; } public int compareTo(pair o) { return Integer.compare(this.b, o.b); } } public static int lower_bound(ArrayList<Long> a ,int n,long x) { int l=0; int r=n; while(r>l+1) { int mid=(l+r)/2; if(a.get(mid)<=x) { l=mid; }else { r=mid; } } return l; } public static int[] is_prime=new int[1000001]; public static ArrayList<Long> primes=new ArrayList<>(); public static void sieve() { long maxN=1000000; for(long i=1;i<=maxN;i++) { is_prime[(int) i]=1; } is_prime[0]=0; is_prime[1]=0; for(long i=2;i*i<=maxN;i++) { if(is_prime[(int) i]==1) { // primes.add((int) i); for(long j=i*i;j<=maxN;j+=i) { is_prime[(int) j]=0; } } } for(long i=0;i<=maxN;i++) { if(is_prime[(int) i]==1) { primes.add(i); } } } // public static pair[] merge_sort(pair[] A, int start, int end) { // if (end > start) { // int mid = (end + start) / 2; // pair[] v = merge_sort(A, start, mid); // pair[] o = merge_sort(A, mid + 1, end); // return (merge(v, o)); // } else { // pair[] y = new pair[1]; // y[0] = A[start]; // return y; // } // } // public static pair[] merge(pair a[], pair b[]) { // pair[] temp = new pair[a.length + b.length]; // int m = a.length; // int n = b.length; // int i = 0; // int j = 0; // int c = 0; // while (i < m && j < n) { // if (a[i].b >= b[j].b) { // temp[c++] = a[i++]; // // } else { // temp[c++] = b[j++]; // } // } // while (i < m) { // temp[c++] = a[i++]; // } // while (j < n) { // temp[c++] = b[j++]; // } // return temp; // } public static long im(long a) { return binary_exponentiation_1(a,mod-2)%mod; } public static long binary_exponentiation_1(long a,long n) { long res=1; while(n>0) { if(n%2!=0) { res=((res)%(1000000007) * (a)%(1000000007))%(1000000007); n--; }else { a=((a)%(1000000007) *(a)%(1000000007))%(1000000007); n/=2; } } return (res)%(1000000007); } public static long bn(long a,long n) { long res=1; while(n>0) { if(n%2!=0) { res=res*a; n--; }else { a*=a; n/=2; } } return res; } public static long[] fac=new long[100001]; public static void find_factorial() { fac[0]=1; fac[1]=1; for(int i=2;i<=100000;i++) { fac[i]=(fac[i-1]*i)%(mod); } } static long mod=1000000007; public static long GCD(long a,long b) { if(b==(long)0) { return a; } return GCD(b , a%b); } static long c=0; }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
5195dab3e2730835617cddb83fa46628
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//package product1modulon; import java.util.*; import java.io.*; public class product1modulon { public static boolean isCoprime(int a, int b) { for(int i = 2; i <= Math.min(a, b); i++) { if(a % i == 0 && b % i == 0) { return false; } while(a % i == 0) { a /= i; } while(b % i == 0) { b /= i; } } return true; } public static boolean isPrime(int a) { for(int i = 2; i < a; i++) { if(a % i == 0) { return false; } } return true; } public static void main(String[] args) throws IOException { BufferedReader fin = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(fin.readLine()); TreeSet<Integer> nums = new TreeSet<Integer>(); boolean isPrime = isPrime(n); long prod = 1; for(int i = 1; i < n; i++) { //System.out.println(i); if(isPrime || isCoprime(i, n)) { nums.add(i); prod *= (long) i; prod %= n; } } int noGood = (int) prod; StringBuilder fout = new StringBuilder(); fout.append(nums.size() - (noGood != 1? 1 : 0)).append("\n"); for(int i : nums) { if(i != noGood || noGood == 1) { fout.append(i).append(" "); } } System.out.println(fout); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
7b9a229a0373deb713917e195011dc3a
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//https://codeforces.com/contest/1514/problem/C //C. Product 1 Modulo N import java.util.*; import java.io.*; public class CF_1514_C{ static int gcd(int a, int b){ if(b==0) return a; return gcd(b, a%b); } public static void main(String[] args) throws Exception{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out)); StringBuilder sb = new StringBuilder(); StringTokenizer st; int n = Integer.parseInt(br.readLine()); boolean coprime[] = new boolean[n]; long product = 1; for(int i=1;i<n;i++){ if(gcd(n, i)==1){ coprime[i] = true; product = product*i%n; } } if(product!=1) coprime[(int)product] = false; int count = 0; for(int i=1;i<n;i++) if(coprime[i]){ count++; sb.append(i+" "); } pw.print(count+"\n"); pw.print(sb); pw.flush(); pw.close(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
a33b08ec4ac6e5c6c82ee2e643bde1a8
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class Solve{ public static void main(String[] args){ Scanner sc=new Scanner(System.in); int n=sc.nextInt(); ArrayList<Integer> al=new ArrayList<>(); long p=1; for(int i=1;i<n;i++){ if(gcd(i,n)==1){ p=(p*(long)i)%n; al.add(i); } } if(p%n!=1){ System.out.println(al.size()-1); for(int i=0;i<al.size()-1;i++)System.out.print(al.get(i)+" "); } else{ System.out.println(al.size()); for(int a:al)System.out.print(a+" "); } } static int gcd(int a,int b){ if(b==0) return a; else return gcd(b,a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
b1d7df1474170e36237a5fe5a656f9b0
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void main (String[] args) { // Scanner scan = new Scanner(System.in); FastScanner scan = new FastScanner(); long n = scan.nextInt(); List<Long> ls = new ArrayList<>(); long prod = 1; for(long i = 1; i <= n - 2; i++) { if(gcd(n, i) == 1) { ls.add(i); prod = ((prod % n) * (i % n) % n); } } prod = ((prod % n) * (n - 1)) % n; if(prod % n == 1) { ls.add(n - 1); } System.out.println(ls.size()); for(long i : ls) System.out.print(i + " "); System.out.println(); } static long gcd(long n1, long n2) { while(n1 != n2) { if(n1 > n2) { n1 -= n2; } else { n2 -= n1; } } return n1; } /* int n = scan.nextInt(); int[] arr = scan.readArray(n); int n = scan.nextInt(); int m = scan.nextInt(); int[][] arr = new int[n][m]; for(int i = 0; i < n; i++) { for(int j = 0; j < m; j++) { arr[i][j] = scan.nextInt(); } } */ static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
372082282e5dce74d7e20d4ff110d415
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; import static java.lang.Math.*; public class Main { public static void main(String[] args) { new Main().solve(new InputReader(System.in), new PrintWriter(System.out)); } private void solve(InputReader in, PrintWriter pw) { int tt = 1; // int tt = in.nextInt(); while (tt-- > 0) { int n = in.nextInt(); // 1 modulo n => target%n==1 or target=a*n+1 long sz = 0, j = 1; boolean[] st = new boolean[n + 1]; for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { j = (j * i) % n; st[i] = true; sz++; } } if (j != 1) { st[(int) j] = false; sz--; } pw.println(sz); for (int i = 1; i < n; i++) { if (st[i]) { pw.print(i + " "); } } pw.println(); } pw.close(); } private int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } } class InputReader { private final BufferedReader reader; private StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public String nextLine() { String str; try { str = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } return str; } public boolean hasNext() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { String nextLine = null; try { nextLine = reader.readLine(); } catch (IOException e) { throw new RuntimeException(e); } if (nextLine == null) return false; tokenizer = new StringTokenizer(nextLine); } return true; } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public int[] nextArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; ++i) { a[i] = nextInt(); } return a; } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
a345d8b6744b612e25fbdb07a17dbc24
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.lang.*; import java.util.*; public class Main { public static int mod = (int)1e9 + 7; // **** -----> Disjoint Set Union(DSU) Start ********** public static int findPar(int node, int[] parent) { if (parent[node] == node) return node; return parent[node] = findPar(parent[node], parent); } public static boolean union(int u, int v, int[] rank, int[] parent) { u = findPar(u, parent); v = findPar(v, parent); if(u == v) return false; if (rank[u] < rank[v]) parent[u] = v; else if (rank[u] > rank[v]) parent[v] = u; else { parent[u] = v; rank[v]++; } return true; } // **** DSU Ends *********** //Pair with int int public static class Pair{ public int a; public int b; Pair(int a , int b){ this.a = a; this.b = b; } @Override public String toString(){ return a + " -> " + b; } } public static String toBinary(int n) {return Integer.toBinaryString(n);} public static boolean isPalindrome(String s) {int i = 0, j = s.length() - 1;while (i < j) {if (s.charAt(i) != s.charAt(j))return false;i++;j--;}return true;} public static boolean isPalindrome(int[] arr) {int i = 0, j = arr.length - 1;while (i < j) {if (arr[i] != arr[j])return false;}return true;} public static int pow(int x, int y) {int res = 1;x = x % mod;if (x == 0)return 0;while (y > 0) {if ((y & 1) != 0)res = (res * x) % mod;y = y >> 1;x = (x * x) % mod;}return res;} public static int gcd(int a, int b) {if (b == 0)return a;return gcd(b, a % b);} public static long gcd(long a, long b) {if (b == 0)return a;return gcd(b, a % b);} public static void sort(long[] a) {Random rnd = new Random();for (int i = 0; i < a.length; i++) {int pos = i + rnd.nextInt(a.length - i);long temp = a[i];a[i] = a[pos];a[pos] = temp;}Arrays.sort(a);} public static void reverse(int a[]) {int i, k, t, n = a.length;for (i = 0; i < n / 2; i++) {t = a[i];a[i] = a[n - i - 1];a[n - i - 1] = t;}} public static void sort(int[] a) {Random rnd = new Random();for (int i = 0; i < a.length; i++) {int pos = i + rnd.nextInt(a.length - i);int temp = a[i];a[i] = a[pos];a[pos] = temp;}Arrays.sort(a);} public static void revSort(int[] a) {Random rnd = new Random();for (int i = 0; i < a.length; i++) {int pos = i + rnd.nextInt(a.length - i);int temp = a[i];a[i] = a[pos];a[pos] = temp;}Arrays.sort(a);reverse(a);} public static long LCM(long a, long b) {if (a > b) {long t = a;a = b;b = t;}a /= gcd(a, b);return (a * b);} public static int findMax(int[] a, int left, int right) {int res = left;int max = a[left];for (int i = left + 1; i <= right; i++) {if (a[i] > max) {max = a[i];res = i;}}return res;} public static long findClosest(long arr[], long target) {int n = arr.length;if (target <= arr[0])return arr[0];if (target >= arr[n - 1])return arr[n - 1];int i = 0, j = n, mid = 0;while (i < j) {mid = (i + j) / 2;if (arr[mid] == target)return arr[mid];if (target < arr[mid]) {if (mid > 0 && target > arr[mid - 1])return getClosest(arr[mid - 1], arr[mid], target);j = mid;} else {if (mid < n - 1 && target < arr[mid + 1])return getClosest(arr[mid], arr[mid + 1], target);i = mid + 1;}}return arr[mid];} public static long getClosest(long val1, long val2, long target) {if (target - val1 >= val2 - target)return val2;else return val1;} public static int findClosest(int arr[], int target) { int n = arr.length; if (target <= arr[0]) return arr[0]; if (target >= arr[n - 1]) return arr[n - 1]; int i = 0, j = n, mid = 0; while (i < j) { mid = (i + j) / 2; if (arr[mid] == target) return arr[mid];if (target < arr[mid]) {if (mid > 0 && target > arr[mid - 1])return getClosest(arr[mid - 1], arr[mid], target);j = mid;} else {if (mid < n - 1 && target < arr[mid + 1])return getClosest(arr[mid], arr[mid + 1], target);i = mid + 1;}}return arr[mid];} public static int getClosest(int val1, int val2, int target) {if (target - val1 >= val2 - target)return val2;else return val1;} public static String reverse(String str) {StringBuilder sb = new StringBuilder(str);sb.reverse();return sb.toString();} public static boolean isPrime(int n){if (n <= 1)return false;if (n <= 3)return true;if (n % 2 == 0 || n % 3 == 0)return false;for (int i = 5; i * i <= n; i = i + 6)if (n % i == 0 || n % (i + 2) == 0)return false;return true;} public static int xorSum(int arr[], int n){int bits = 0;for (int i = 0; i < n; ++i)bits |= arr[i];int ans = bits * (int)Math.pow(2, n-1);return ans;} public static ArrayList<Integer> primeFactors(int n) { ArrayList<Integer> res = new ArrayList<>();while (n%2 == 0) { res.add(2); n = n/2; } for (int i = 3; i <= Math.sqrt(n); i = i+2) { while (n%i == 0) { res.add(i); n = n/i; } } if (n > 2) res.add(n);return res;} public static ArrayList<Long> primeFactors(long n) { ArrayList<Long> res = new ArrayList<>();while (n%2 == 0) { res.add(2L); n = n/2; } for (long i = 3; i <= Math.sqrt(n); i = i+2) { while (n%i == 0) { res.add(i); n = n/i; } } if (n > 2) res.add(n);return res;} static int lower_bound(int array[], int low, int high, int key){ int mid; while (low < high) { mid = low + (high - low) / 2; if (key <= array[mid]) high = mid; else low = mid + 1; } if (low < array.length && array[low] < key) low++; return low; } static long fastPower(long a, long b, long mod){ long ans = 1 ; while (b > 0) { if ((b&1) != 0) ans = (ans%mod * a%mod) %mod; b >>= 1 ; a = (a%mod * a%mod)%mod ; } return ans ; } /********************************* Start Here ***********************************/ // int mod = 1000000007; static HashMap<String, Integer> map; static Set<Integer> set1, set2; static boolean[] vis; public static void main(String[] args) throws java.lang.Exception { if (System.getProperty("ONLINE_JUDGE") == null) { PrintStream ps = new PrintStream(new File("output.txt")); System.setOut(ps); } FastScanner sc = new FastScanner("input.txt"); StringBuilder result = new StringBuilder(); // sieveOfEratosthenes(1000000); // int T = sc.nextInt(); int T = 1; for(int test = 1; test <= T; test++){ int n = sc.nextInt(); List<Long> list = new ArrayList<>(); long prod = 1; for(long i=1;i<=n;i++) { if(gcd(n, i) == 1) { list.add(i); prod = (prod*i)%n; } } StringBuilder ans = new StringBuilder(); if(prod != 1) { List<Long> temp = new ArrayList<>(); for(long x:list) { if(x == prod) continue; temp.add(x); } list = temp; } for(int i=0;i<list.size();i++) { ans.append(list.get(i) + " "); } result.append(list.size()+"\n"+ans+"\n"); } System.out.println(result); System.out.close(); } public static long solve(long[] a, long[] b, long[] pre, int i, int j){ long dif = 0; long sum = 0; while(i >= 0 && j < a.length){ sum += a[i]*b[j]; if(i != j) sum += a[j]*b[i]; dif = Math.max(dif, sum-(pre[j]-pre[i]+a[i]*b[i])); i--; j++; } return pre[a.length-1]+dif; } // static void sieveOfEratosthenes(int n){ // boolean prime[] = new boolean[n + 1]; // for (int i = 0; i <= n; i++) // prime[i] = true; // for (int p = 2; p * p <= n; p++){ // if (prime[p] == true){ // for (int i = p * p; i <= n; i += p) // prime[i] = false; // } // } // for (int i = 2; i <= n; i++){ // if (prime[i] == true) // set.add(i); // } // } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { br = new BufferedReader(new InputStreamReader(System.in)); } } String nextToken() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } return st.nextToken(); } public String nextLine() { if (st == null || !st.hasMoreTokens()) { try { return br.readLine(); } catch (IOException e) { throw new RuntimeException(e); } } return st.nextToken("\n"); } public String[] readStringArray(int n) { String[] a = new String[n]; for (int i = 0; i < n; i++) { a[i] = next(); } return a; } int nextInt() { return Integer.parseInt(nextToken()); } String next() { return nextToken(); } long nextLong() { return Long.parseLong(nextToken()); } double nextDouble() { return Double.parseDouble(nextToken()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } int[][] read2dArray(int n, int m) { int[][] a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = nextInt(); } } return a; } long[][] read2dlongArray(int n, int m) { long[][] a = new long[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = nextLong(); } } return a; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
6b8cb719fa88c1ab7981d2956420c3e5
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.lang.Math; import java.util.*; public final class Codechef { static BufferedReader br = new BufferedReader( new InputStreamReader(System.in) ); static BufferedWriter bw = new BufferedWriter( new OutputStreamWriter(System.out) ); static StringTokenizer st; static int mod = 1000000000; /*write your constructor and global variables here*/ static class sortCond implements Comparator<Pair<Integer, Integer>> { @Override public int compare(Pair<Integer, Integer> p1, Pair<Integer, Integer> p2) { if (p1.a <= p2.a) { return -1; } else { return 1; } } } static class sortCond1 implements Comparator<Integer> { @Override public int compare(Integer p1, Integer p2) { if (p1 <= p2) { return 1; } else { return -1; } } } static class Rec { int a; int b; long c; Rec(int a, int b, long c) { this.a = a; this.b = b; this.c = c; } } static class Pair<f, s> { f a; s b; Pair(f a, s b) { this.a = a; this.b = b; } } interface modOperations { int mod(int a, int b, int mod); } static int findBinaryExponentian(int a, int pow, int mod) { if (pow == 1) { return a; } else if (pow == 0) { return 1; } else { int retVal = findBinaryExponentian(a, (int) pow / 2, mod); int val = (pow % 2 == 0) ? 1 : a; return modMul.mod(modMul.mod(retVal, retVal, mod), val, mod); } } static int findPow(int a, int b, int mod) { if (b == 1) { return a % mod; } else if (b == 0) { return 1; } else { int res = findPow(a, (int) b / 2, mod); return modMul.mod(res, modMul.mod(res, (b % 2 == 1 ? a : 1), mod), mod); } } static int bleft(int ele, int[] arr) { int l = 0; int h = arr.length - 1; int ans = -1; while (l <= h) { int mid = l + (int) (h - l) / 2; int val = arr[mid]; if (ele > val) { l = mid + 1; } else if (ele < val) { h = mid - 1; } else { ans = mid; h = mid - 1; } } return ans; } static int gcd(int a, int b) { int div = b; int rem = a % b; while (rem != 0) { int temp = rem; rem = div % rem; div = temp; } return div; } static long[] log(long no, long n) { long i = 1; int cnt = 0; long sum = 0l; long arr[] = new long[2]; while (i < no) { sum += i; cnt++; if (sum == n) { arr[0] = 1l * cnt; arr[1] = sum; break; } i *= 2l; } if (arr[0] == 0) { arr[0] = cnt; arr[1] = sum; } return arr; } static modOperations modAdd = (int a, int b, int mod) -> { return (a % mod + b % mod) % mod; }; static modOperations modSub = (int a, int b, int mod) -> { return (int) ((1l * a % mod - 1l * b % mod + 1l * mod) % mod); }; static modOperations modMul = (int a, int b, int mod) -> { return (int) ((1l * (a % mod) * 1l * (b % mod)) % (1l * mod)); }; static modOperations modDiv = (int a, int b, int mod) -> { return modMul.mod(a, findBinaryExponentian(b, mod - 1, mod), mod); }; static HashSet<Integer> primeList(int MAXI) { int[] prime = new int[MAXI + 1]; HashSet<Integer> obj = new HashSet<>(); for (int i = 2; i <= (int) Math.sqrt(MAXI) + 1; i++) { if (prime[i] == 0) { obj.add(i); for (int j = i * i; j <= MAXI; j += i) { prime[j] = 1; } } } for (int i = (int) Math.sqrt(MAXI) + 1; i <= MAXI; i++) { if (prime[i] == 0) { obj.add(i); } } return obj; } static int[] factorialList(int MAXI, int mod) { int[] factorial = new int[MAXI + 1]; factorial[0] = factorial[1] = 1; factorial[2] = 2; for (int i = 3; i < MAXI + 1; i++) { factorial[i] = modMul.mod(factorial[i - 1], i, mod); } return factorial; } static void put(HashMap<Integer, Integer> cnt, int key) { if (cnt.containsKey(key)) { cnt.replace(key, cnt.get(key) + 1); } else { cnt.put(key, 1); } } static long arrSum(ArrayList<Long> arr) { long tot = 0; for (int i = 0; i < arr.size(); i++) { tot += arr.get(i); } return tot; } static int ord(char b) { return (int) b - (int) 'a'; } static int optimSearch(int[] cnt, int lower_bound, int pow, int n) { int l = lower_bound + 1; int h = n; int ans = 0; while (l <= h) { int mid = l + (h - l) / 2; if (cnt[mid] - cnt[lower_bound] == pow) { return mid; } else if (cnt[mid] - cnt[lower_bound] < pow) { ans = mid; l = mid + 1; } else { h = mid - 1; } } return ans; } static Pair<Long, Integer> ret_ans(ArrayList<Integer> ans) { int size = ans.size(); int mini = 1000000000 + 1; long tit = 0l; for (int i = 0; i < size; i++) { tit += 1l * ans.get(i); mini = Math.min(mini, ans.get(i)); } return new Pair<>(tit - mini, mini); } static int factorList( HashMap<Integer, Integer> maps, int no, int maxK, int req ) { int i = 1; while (i * i <= no) { if (no % i == 0) { if (i != no / i) { put(maps, no / i); } put(maps, i); if (maps.get(i) == req) { maxK = Math.max(maxK, i); } if (maps.get(no / i) == req) { maxK = Math.max(maxK, no / i); } } i++; } return maxK; } static ArrayList<Integer> getKeys(HashMap<Integer, Integer> maps) { ArrayList<Integer> vals = new ArrayList<>(); for (Map.Entry<Integer, Integer> map : maps.entrySet()) { vals.add(map.getKey()); } return vals; } static ArrayList<Integer> getValues(HashMap<Integer, Integer> maps) { ArrayList<Integer> vals = new ArrayList<>(); for (Map.Entry<Integer, Integer> map : maps.entrySet()) { vals.add(map.getValue()); } return vals; } static int getMax(ArrayList<Integer> arr) { int max = arr.get(0); for (int i = 1; i < arr.size(); i++) { if (arr.get(i) > max) { max = arr.get(i); } } return max; } static int getMin(ArrayList<Integer> arr) { int max = arr.get(0); for (int i = 1; i < arr.size(); i++) { if (arr.get(i) < max) { max = arr.get(i); } } return max; } static void bitRep(int n, int no) throws IOException { int curr = (int) Math.pow(2, n - 1); for (int i = n - 1; i >= 0; i--) { if ((curr & no) != 0) { bw.write("1"); } else { bw.write("0"); } curr /= 2; } bw.write("\n"); } static ArrayList<Integer> retPow(int MAXI) { long curr = 1l; ArrayList<Integer> arr = new ArrayList<>(); for (int i = 1; i <= MAXI; i++) { curr *= 2l; curr = curr % mod; arr.add((int) curr); } return arr; } static String is(int no) { return Integer.toString(no); } static String ls(long no) { return Long.toString(no); } static int pi(String s) { return Integer.parseInt(s); } static long pl(String s) { return Long.parseLong(s); } /*write your methods and classes here*/ public static void main(String[] args) throws IOException { int cases = 1, n, i; while (cases-- != 0) { n = pi(br.readLine()); if (n == 2 || n == 3) { bw.write("1\n1\n"); } else { ArrayList<Integer> arr = new ArrayList<>(); long pro = 1l; for (i = 1; i < n; i++) { if (gcd(n, i) == 1) { pro = (pro * 1l * i) % n; arr.add(i); } } //bw.write(is(arr.size()) + "\n"); ArrayList<Integer> res = new ArrayList<>(); for (i = 0; i < arr.size(); i++) { if (pro == 1 || pro != arr.get(i)) { res.add(arr.get(i)); } } bw.write(is(res.size()) + "\n"); for (i = 0; i < res.size(); i++) { bw.write(is(res.get(i)) + " "); } bw.write("\n"); } } bw.flush(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
2135a65e4e9dde1040b0ac59c3e6455f
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class practise { static boolean multipleTC = false; final static int Mod = 1000000007; final static int Mod2 = 998244353; final double PI = 3.14159265358979323846; int MAX = 1000000007; void pre() throws Exception { } void DFSUtil(int v, boolean[] visited, ArrayList<Integer> al, List<Integer> adj[]) { visited[v] = true; al.add(v); // System.out.print(v + " "); Iterator<Integer> it = adj[v].iterator(); while (it.hasNext()) { int n = it.next(); if (!visited[n]) DFSUtil(n, visited, al, adj); } } void DFS(List<Integer> adj[], ArrayList<ArrayList<Integer>> components, int V) { boolean[] visited = new boolean[V]; for (int i = 0; i < V; i++) { ArrayList<Integer> al = new ArrayList<>(); if (!visited[i]) { DFSUtil(i, visited, al, adj); components.add(al); } } } long gcd(long a, long b) { if(b == 0) return a; return gcd(b, a%b); } void solve(int t) throws Exception { long n = nl(); List<Long> list = new ArrayList<>(); long prod = 1; for(long i=1;i<=n;i++) { if(gcd(n, i) == 1) { list.add(i); prod = (prod*i)%n; } } StringBuilder ans = new StringBuilder(); if(prod != 1) { List<Long> temp = new ArrayList<>(); for(long x:list) { if(x == prod) continue; temp.add(x); } list = temp; } for(int i=0;i<list.size();i++) { ans.append(list.get(i) + " "); } pn(list.size()); pn(ans); } double dist(int x1, int y1, int x2, int y2) { double a = x1 - x2, b = y1 - y2; return Math.sqrt((a * a) + (b * b)); } long xor_sum_upton(long n) { if (n % 4 == 0) return n; if (n % 4 == 1) return 1; if (n % 4 == 2) return n + 1; return 0; } int[] readArr(int n) throws Exception { int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } void sort(int arr[], int left, int right) { ArrayList<Integer> list = new ArrayList<>(); for (int i = left; i <= right; i++) list.add(arr[i]); Collections.sort(list); for (int i = left; i <= right; i++) arr[i] = list.get(i - left); } void sort(int arr[]) { ArrayList<Integer> list = new ArrayList<>(); for (int i = 0; i < arr.length; i++) list.add(arr[i]); Collections.sort(list); for (int i = 0; i < arr.length; i++) arr[i] = list.get(i); } public long max(long... arr) { long max = arr[0]; for (long itr : arr) max = Math.max(max, itr); return max; } public int max(int... arr) { int max = arr[0]; for (int itr : arr) max = Math.max(max, itr); return max; } public long min(long... arr) { long min = arr[0]; for (long itr : arr) min = Math.min(min, itr); return min; } public int min(int... arr) { int min = arr[0]; for (int itr : arr) min = Math.min(min, itr); return min; } public long sum(long... arr) { long sum = 0; for (long itr : arr) sum += itr; return sum; } public long sum(int... arr) { long sum = 0; for (int itr : arr) sum += itr; return sum; } String bin(long n) { return Long.toBinaryString(n); } String bin(int n) { return Integer.toBinaryString(n); } static int bitCount(int x) { return x == 0 ? 0 : (1 + bitCount(x & (x - 1))); } static void dbg(Object... o) { System.err.println(Arrays.deepToString(o)); } int bit(long n) { return (n == 0) ? 0 : (1 + bit(n & (n - 1))); } int abs(int a) { return (a < 0) ? -a : a; } long abs(long a) { return (a < 0) ? -a : a; } void p(Object o) { out.print(o); } void pn(Object o) { out.println(o); } void pni(Object o) { out.println(o); out.flush(); } void pn(int[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } void pn(long[] arr) { int n = arr.length; StringBuilder sb = new StringBuilder(); for (int i = 0; i < n; i++) { sb.append(arr[i] + " "); } pn(sb); } String n() throws Exception { return in.next(); } String nln() throws Exception { return in.nextLine(); } char c() throws Exception { return in.next().charAt(0); } int ni() throws Exception { return Integer.parseInt(in.next()); } long nl() throws Exception { return Long.parseLong(in.next()); } double nd() throws Exception { return Double.parseDouble(in.next()); } public static void main(String[] args) throws Exception { new practise().run(); } FastReader in; PrintWriter out; void run() throws Exception { in = new FastReader(); out = new PrintWriter(System.out); int T = (multipleTC) ? ni() : 1; pre(); for (int t = 1; t <= T; t++) solve(t); out.flush(); out.close(); } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws Exception { br = new BufferedReader(new FileReader(s)); } String next() throws Exception { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { throw new Exception(e.toString()); } } return st.nextToken(); } String nextLine() throws Exception { String str = ""; try { str = br.readLine(); } catch (IOException e) { throw new Exception(e.toString()); } return str; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
067c4eb5064228f4767d6895da0818b9
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.*; import java.util.function.BiFunction; import java.util.function.Function; public class Main { static BiFunction<Integer, Integer, Integer> ADD = (x, y) -> (x + y); static BiFunction<ArrayList<Integer>, ArrayList<Integer>, ArrayList<Integer>> ADD_ARRAY_LIST = (x, y) -> { x.addAll(y); return x; }; static Function<Pair<Integer, Integer>, Integer> GET_FIRST = (x) -> (x.first); static Function<Pair<Integer, Integer>, Integer> GET_SECOND = (x) -> (x.second); static Comparator<Pair<Integer, Integer>> C = Comparator.comparing(x -> x.first + x.second); static long MOD = 1_000_000_000 + 7; public static void main(String[] args) throws Exception { long startTime = System.nanoTime(); int t = 1; while (t-- > 0) { solve(); } long endTime = System.nanoTime(); err.println("Execution Time : +" + (endTime - startTime) / 1000000 + " ms"); exit(0); } static void solve() { int n = in.nextInt(); long prod = 1; Set<Long> res = new TreeSet<>(); for (long i = 1; i < n; i++) { if (gcd(i, n) == 1) { res.add(i); prod *= i; prod %= n; } } if (prod > 1) { res.remove(prod); } out.println(res.size()); for (long a : res) { out.print(a + " "); } out.println(""); } static ArrayList<Integer> divisors(int a) { ArrayList<Integer> div = new ArrayList<Integer>(); for (int i = 2; i * i <= a; i++) { if (a % i == 0) { div.add(i); if (i * i != a) { div.add(a / i); } } } return div; } static void debug(Object... args) { for (Object a : args) { out.println(a); } } static int dist(Pair<Integer, Integer> a, Pair<Integer, Integer> b) { return Math.abs(a.first - b.first) + Math.abs(a.second - b.second); } static void y() { out.println("YES"); } static void n() { out.println("NO"); } static int[] stringToArray(String s) { return s.chars().map(x -> Character.getNumericValue(x)).toArray(); } static <T> T min(T a, T b, Comparator<T> C) { if (C.compare(a, b) <= 0) { return a; } return b; } static <T> T max(T a, T b, Comparator<T> C) { if (C.compare(a, b) >= 0) { return a; } return b; } static void fail() { out.println("-1"); } static class Pair<T, R> { public T first; public R second; public Pair(T first, R second) { this.first = first; this.second = second; } @Override public boolean equals(final Object o) { if (this == o) { return true; } if (o == null || getClass() != o.getClass()) { return false; } final Pair<?, ?> pair = (Pair<?, ?>) o; return Objects.equals(first, pair.first) && Objects.equals(second, pair.second); } @Override public int hashCode() { return Objects.hash(first, second); } @Override public String toString() { return "Pair{" + "a=" + first + ", b=" + second + '}'; } public T getFirst() { return first; } public R getSecond() { return second; } } static <T, R> Pair<T, R> make_pair(T a, R b) { return new Pair<>(a, b); } static long mod_inverse(long a, long m) { Number x = new Number(0); Number y = new Number(0); extended_gcd(a, m, x, y); return (m + x.v % m) % m; } static long extended_gcd(long a, long b, Number x, Number y) { long d = a; if (b != 0) { d = extended_gcd(b, a % b, y, x); y.v -= (a / b) * x.v; } else { x.v = 1; y.v = 0; } return d; } static class Number { long v = 0; public Number(long v) { this.v = v; } } static long lcm(long a, long b, long c) { return lcm(a, lcm(b, c)); } static long lcm(long a, long b) { long p = 1L * a * b; return p / gcd(a, b); } static long gcd(long a, long b) { while (b != 0) { long t = b; b = a % b; a = t; } return a; } static long gcd(long a, long b, long c) { return gcd(a, gcd(b, c)); } static class ArrayUtils { static void swap(int[] a, int i, int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(char[] a, int i, int j) { char temp = a[i]; a[i] = a[j]; a[j] = temp; } static void print(char[] a) { for (char c : a) { out.print(c); } out.println(""); } static int[] reverse(int[] data) { int[] p = new int[data.length]; for (int i = 0, j = data.length - 1; i < data.length; i++, j--) { p[i] = data[j]; } return p; } static void prefixSum(long[] data) { for (int i = 1; i < data.length; i++) { data[i] += data[i - 1]; } } static void prefixSum(int[] data) { for (int i = 1; i < data.length; i++) { data[i] += data[i - 1]; } } static long[] reverse(long[] data) { long[] p = new long[data.length]; for (int i = 0, j = data.length - 1; i < data.length; i++, j--) { p[i] = data[j]; } return p; } static char[] reverse(char[] data) { char[] p = new char[data.length]; for (int i = 0, j = data.length - 1; i < data.length; i++, j--) { p[i] = data[j]; } return p; } static int[] MergeSort(int[] A) { if (A.length > 1) { int q = A.length / 2; int[] left = new int[q]; int[] right = new int[A.length - q]; System.arraycopy(A, 0, left, 0, q); System.arraycopy(A, q, right, 0, A.length - q); int[] left_sorted = MergeSort(left); int[] right_sorted = MergeSort(right); return Merge(left_sorted, right_sorted); } else { return A; } } static int[] Merge(int[] left, int[] right) { int[] A = new int[left.length + right.length]; int i = 0; int j = 0; for (int k = 0; k < A.length; k++) { // To handle left becoming empty if (i == left.length && j < right.length) { A[k] = right[j]; j++; continue; } // To handle right becoming empty if (j == right.length && i < left.length) { A[k] = left[i]; i++; continue; } if (left[i] <= right[j]) { A[k] = left[i]; i++; } else { A[k] = right[j]; j++; } } return A; } static long[] MergeSort(long[] A) { if (A.length > 1) { int q = A.length / 2; long[] left = new long[q]; long[] right = new long[A.length - q]; System.arraycopy(A, 0, left, 0, q); System.arraycopy(A, q, right, 0, A.length - q); long[] left_sorted = MergeSort(left); long[] right_sorted = MergeSort(right); return Merge(left_sorted, right_sorted); } else { return A; } } static long[] Merge(long[] left, long[] right) { long[] A = new long[left.length + right.length]; int i = 0; int j = 0; for (int k = 0; k < A.length; k++) { // To handle left becoming empty if (i == left.length && j < right.length) { A[k] = right[j]; j++; continue; } // To handle right becoming empty if (j == right.length && i < left.length) { A[k] = left[i]; i++; continue; } if (left[i] <= right[j]) { A[k] = left[i]; i++; } else { A[k] = right[j]; j++; } } return A; } static int upper_bound(int[] data, int num, int start) { int low = start; int high = data.length - 1; int mid = 0; int ans = -1; while (low <= high) { mid = (low + high) / 2; if (data[mid] < num) { low = mid + 1; } else if (data[mid] >= num) { high = mid - 1; ans = mid; } } if (ans == -1) { return 100000000; } return data[ans]; } static int lower_bound(int[] data, int num, int start) { int low = start; int high = data.length - 1; int mid = 0; int ans = -1; while (low <= high) { mid = (low + high) / 2; if (data[mid] <= num) { low = mid + 1; ans = mid; } else if (data[mid] > num) { high = mid - 1; } } if (ans == -1) { return 100000000; } return data[ans]; } } static boolean[] primeSieve(int n) { boolean[] primes = new boolean[n + 1]; Arrays.fill(primes, true); primes[0] = false; primes[1] = false; for (int i = 2; i <= Math.sqrt(n); i++) { if (primes[i]) { for (int j = i * i; j <= n; j += i) { primes[j] = false; } } } return primes; } // Iterative Version static HashMap<Integer, Boolean> subsets_sum_iter(int[] data) { HashMap<Integer, Boolean> temp = new HashMap<Integer, Boolean>(); temp.put(data[0], true); for (int i = 1; i < data.length; i++) { HashMap<Integer, Boolean> t1 = new HashMap<Integer, Boolean>(temp); t1.put(data[i], true); for (int j : temp.keySet()) { t1.put(j + data[i], true); } temp = t1; } return temp; } static HashMap<Integer, Integer> subsets_sum_count(int[] data) { HashMap<Integer, Integer> temp = new HashMap<>(); temp.put(data[0], 1); for (int i = 1; i < data.length; i++) { HashMap<Integer, Integer> t1 = new HashMap<>(temp); t1.merge(data[i], 1, ADD); for (int j : temp.keySet()) { t1.merge(j + data[i], temp.get(j) + 1, ADD); } temp = t1; } return temp; } static class Graph { ArrayList<Integer>[] g; boolean[] visited; ArrayList<Integer>[] graph(int n) { g = new ArrayList[n]; visited = new boolean[n]; for (int i = 0; i < n; i++) { g[i] = new ArrayList<>(); } return g; } void BFS(int s) { Queue<Integer> Q = new ArrayDeque<>(); visited[s] = true; Q.add(s); while (!Q.isEmpty()) { int v = Q.poll(); for (int a : g[v]) { if (!visited[a]) { visited[a] = true; Q.add(a); } } } } } static class SparseTable { int[] log; int[][] st; public SparseTable(int n, int k, int[] data, BiFunction<Integer, Integer, Integer> f) { log = new int[n + 1]; st = new int[n][k + 1]; log[1] = 0; for (int i = 2; i <= n; i++) { log[i] = log[i / 2] + 1; } for (int i = 0; i < data.length; i++) { st[i][0] = data[i]; } for (int j = 1; j <= k; j++) for (int i = 0; i + (1 << j) <= data.length; i++) st[i][j] = f.apply(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]); } public int query(int L, int R, BiFunction<Integer, Integer, Integer> f) { int j = log[R - L + 1]; return f.apply(st[L][j], st[R - (1 << j) + 1][j]); } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 2048); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public int[] readAllInts(int n) { int[] p = new int[n]; for (int i = 0; i < n; i++) { p[i] = in.nextInt(); } return p; } public int[] readAllInts(int n, int s) { int[] p = new int[n + s]; for (int i = s; i < n + s; i++) { p[i] = in.nextInt(); } return p; } public long[] readAllLongs(int n) { long[] p = new long[n]; for (int i = 0; i < n; i++) { p[i] = in.nextLong(); } return p; } public long[] readAllLongs(int n, int s) { long[] p = new long[n + s]; for (int i = s; i < n + s; i++) { p[i] = in.nextLong(); } return p; } public double nextDouble() { return Double.parseDouble(next()); } } static void exit(int a) { out.close(); err.close(); System.exit(a); } static InputStream inputStream = System.in; static OutputStream outputStream = System.out; static OutputStream errStream = System.err; static InputReader in = new InputReader(inputStream); static PrintWriter out = new PrintWriter(outputStream); static PrintWriter err = new PrintWriter(errStream); static BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
9e4e3186b4a4cf090d678639f0efe7db
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class Main{ public static void main(String[] args){ Solve Flamboyance=new Solve(); } } class Solve{ int gcd(int a, int b){ if(b==0) return a; return gcd(b,a%b); } Solve(){ FastReader in=new FastReader(); int n=in.nextInt(); long pr=1; Vector<Integer> v=new Vector<Integer>(); for(int i=1; i<n; i++){ if(gcd(n,i)==1){ pr=(pr*(long)i)%n; v.add(i); } } pr=pr%n; if(pr!=1){ for(int i=0; i<v.size(); i++) if(pr==v.get(i)) {v.remove(i); break;} } System.out.println(v.size()); for(int i=0; i<v.size(); i++){ System.out.print(v.get(i)+" "); } } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader(){ br = new BufferedReader( new InputStreamReader(System.in)); } String next(){ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } int nextInt(){ return Integer.parseInt(next()); } long nextLong(){ return Long.parseLong(next()); } double nextDouble(){ return Double.parseDouble(next()); } String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
459cfd149509b0f14c229d8d67eb9e0a
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import javax.swing.event.TreeSelectionEvent; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.PriorityQueue; import java.util.Queue; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; import java.util.TreeSet; import java.math.BigInteger; public class Main { static long mod = 1000000007; public static void main(String[] args) { FastScanner fs = new FastScanner(); int n = fs.nextInt(); ArrayList <Integer> ar = new ArrayList <>(); long pro = 1; for(int i = 1; i < n; i++) { if(gcd(n,i) == 1) { pro = ((pro % n)*(i % n)) % n; ar.add(i); } } //System.out.println(pro); if(pro == 1) { System.out.println(ar.size()); for(int i = 0; i < ar.size(); i++) { System.out.print(ar.get(i) + " "); } } else { System.out.println(ar.size()-1); for(int i = 0; i < ar.size()-1; i++) { System.out.print(ar.get(i) + " "); } } } static int gcd(int a, int b) { if(b == 0) return a; return gcd(b, a%b); } static class pair <Key, Value> { private Key key; private Value value; public pair() { } public pair(Key key,Value value) { this.key = key; this.value = value; } } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
16891ba8081056ce4487550a0c6374d3
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Div21514C { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); long n = Integer.parseInt(br.readLine()); ArrayList<Long> vals = new ArrayList<Long>(); vals.add(1L); long test = 1; for(long i = 2; i < n; i++) { if(gcd(n, i) == 1) { vals.add(i); test *= i; test %= n; } } if(test != 1) vals.remove(new Long(test)); System.out.println(vals.size()); vals.forEach(val -> System.out.print(val + " ")); } static long gcd (long a, long b) { if (b == 0) return a; else return gcd (b, a % b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
ec9a0e1978b68c37eac82ab9730f4975
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/* TASK: template LANG: JAVA */ import java.io.*; import java.lang.*; import java.util.*; public class C1514 { public static void main(String[] args) throws IOException{ StringBuffer ans = new StringBuffer(); StringTokenizer st; BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(f.readLine()); int n = Integer.parseInt(st.nextToken()); long prod = 1; ArrayList<Long> arrl = new ArrayList<>(); for(long i = 1; i <= n; i++){ if(gcdByEuclidsAlgorithm(i, n) == 1){ prod*=i; prod%=n; arrl.add(i); } } f.close(); int index = 0; for(int i = 0; i < arrl.size(); i++) if(arrl.get(i) == prod) index = i; if(prod != 1){ arrl.remove(index); } ans.append(arrl.size()).append("\n"); for(Long i : arrl) ans.append(i).append(" "); System.out.println(ans); } public static long gcdByEuclidsAlgorithm(long n1, long n2) { if (n2 == 0) { return n1; } return gcdByEuclidsAlgorithm(n2, n1 % n2); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
e3f2fd3db0210240455d8e204b9a33dd
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
// The product of all the numbers co-prime with n is also co-prime with n. // If (product%n)!=1 , then we remove (product%n) from our list or the last element of the list if the list is sorted in asc order. import java.io.*; import java.util.*; public class ProductOneModuloN { static long gcd(long a, long b) { if(a==0) return b; return gcd(b%a,a); } public static void main(String[] args) { Scanner sc =new Scanner(System.in); long n=sc.nextLong(); List<Long> list=new ArrayList<>(); long mul=1; for(long i=1;i<n;i++) { if(gcd(i,n)==1) { list.add(i); mul*=i; mul%=n; } } if(mul%n==1) { System.out.println(list.size()); for(int i=0;i<list.size();i++) System.out.print(list.get(i)+" "); System.out.println(); } else { System.out.println((list.size()-1)); for(int i=0;i<list.size()-1;i++) System.out.print(list.get(i)+" "); System.out.println(); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
ee60b0d27f0680745786b22ebe9e43cf
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class cf1519_Div2_C { public static void main(String args[]) throws IOException { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); long p = 1; boolean[] valid = new boolean[n]; int c = 0; for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { p = (p * i) % n; valid[i] = true; c++; } } if (p != 1) { valid[(int)p] = false; c--; } out.println(c); for (int i = 0; i < n; i++) if (valid[i]) out.print(i + " "); out.println(); out.close(); } public static int gcd(int a, int b) { if (b == 0) return a; return gcd(b, a % b); } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream i) { br = new BufferedReader(new InputStreamReader(i)); st = new StringTokenizer(""); } public String next() throws IOException { if(st.hasMoreTokens()) return st.nextToken(); else st = new StringTokenizer(br.readLine()); return next(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } //# public long nextLong() throws IOException { return Long.parseLong(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } //$ } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
656caf71e0d297bd271d115bdecdee7d
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//import kotlin.reflect.jvm.internal.impl.load.kotlin.JvmType; import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.InputStream; /* @author kalZor */ public class TaskC { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastReader in = new FastReader(inputStream); PrintWriter out = new PrintWriter(outputStream); Solver solver = new Solver(); int testCount = 1; // testCount = Integer.parseInt(in.next()); for (int i = 1; i <= testCount; i++) solver.solve(i, in, out); out.close(); } static class Solver { public int gcd(int a,int b){ if(a==0) return b; else return gcd(b%a,a); } public void solve(int testNumber, FastReader in, PrintWriter out) { int n = in.nextInt(); ArrayList<Integer> a = new ArrayList<>(); a.add(1); long prd = 1; for(int i=2;i<n;i++){ if(gcd(i,n)==1){ prd = (prd*i)%n; a.add(i); } } if(prd!=1){ out.println(a.size()-1); for(int x:a){ if(x!=prd) out.print(x+" "); } out.println(); return; } out.println(a.size()); for(int x:a) out.print(x+" "); out.println(); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader(InputStream stream){ br = new BufferedReader(new InputStreamReader(stream)); } public String next(){ while (st == null || !st.hasMoreElements()){ try{ st = new StringTokenizer(br.readLine()); } catch (IOException e){ e.printStackTrace(); } } return st.nextToken(); } public int nextInt(){ return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble(){ return Double.parseDouble(next()); } public String nextLine(){ String str = ""; try{ str = br.readLine(); } catch (IOException e){ e.printStackTrace(); } return str; } public int[] nextArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c0ca2a8c0ff70e14169dd0ec13a21a3b
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; public class Problem_3 { public static void main(String args[]) { // System.out.println(getGcd(98765, 92077)); FastScanner sc = new FastScanner(); int n = sc.nextInt(); List<Integer> num = new ArrayList<>(); long p = 1; boolean finding = true; for (int i = 1; i < n; i++) { if (getGcd(n, i) == 1) { num.add(i); if (p != 0 && (p * i) % n == 0) { System.out.println("i : " + i + ", p : " + p); } p = (p * i) % n; } } // System.out.println("p : " + p); int remove = -1; if (p != 1) { for (int i = 0; i < num.size(); i++) { if (num.get(i) == p) { p = 1; remove = i; } } num.remove(remove); } System.out.println(num.size()); for (int i = 0; i < num.size(); i++) { System.out.print(num.get(i) + " "); } } public static int getGcd(int a, int b) { if (a == b) { return a; } if (a < b) { int temp = a; a = b; b = temp; } if (b == 0) { return a; } return getGcd(a % b, b); } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
e071598e9ff746d79671ef94cd6dc5d6
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.*; import java.io.BufferedReader; import java.io.InputStreamReader; public class First { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); //int a = 1; int t; //t = in.nextInt(); t = 1; while (t > 0) { //out.print("Case #"+(a++)+": "); solver.call(in,out); t--; } out.close(); } static class TaskA { public void call(InputReader in, PrintWriter out) { int n , b = 1; long a = 1; n = in.nextInt(); for (int i = 1; i < n; i++) { if (gcd(i, n) != 1) { continue; } a = (a % n * (long) i % n) % n; if (a == 1) { b = i; } } ArrayList<Integer> arrayList = new ArrayList<>(); for (int i = 1; i <= b; i++) { if(gcd(i,n)==1){ arrayList.add(i); } } out.println(arrayList.size()); for (Integer i:arrayList) { out.print(i+" "); } } } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } static class answer implements Comparable<answer>{ int a; int b; public answer(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(answer o) { return o.a - this.a; } @Override public boolean equals(Object o){ if(o instanceof answer){ answer c = (answer)o; return a == c.a && b == c.b; } return false; } } static class answer1 implements Comparable<answer1>{ int a, b, c; public answer1(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } @Override public int compareTo(answer1 o) { if(o.c==this.c){ return this.a - o.a; } return o.c - this.c; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static final Random random=new Random(); static void shuffleSort(int[] a) { int n=a.length; for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong(){ return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
4b0c2947c3f67bd8bcf7e4c2f2b35c6d
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class Solve { static final int MOD = 1000000007; public static void main(String[] args) { Reader in = new Reader(); PrintWriter out = new PrintWriter(System.out); int t = 1; while (t-- > 0) solve(in, out); out.close(); } private static void solve(Reader in, PrintWriter out) { int n=in.readInt(); ArrayList<Integer> set=new ArrayList<>(); long product=1; for(int i=1;i<n;i++){ if(gcd(i, n)==1){ set.add(i); product = (product*i)%n; } } if(product!=1) { for(int i=0;i<set.size();i++) { if(set.get(i)==product) { set.remove(i); } } } System.out.println(set.size()); for(int i:set)System.out.print(i+" "); } private static int upperBound(int[] arr, int key) { int low = 0; int high = arr.length - 1; while (low < high) { int mid = low + (high - low) / 2; if (arr[mid] <= key) { low = mid + 1; } else high = mid; } return low; } private static long power(long n, long p, long m) { long result = 1; while (p > 0) { if (p % 2 == 1) result = (result * n) % m; n = (n * n) % m; p >>= 1; } return result; } private static long gcd(long a, long b) { if (b == 0) return a; else return gcd(b, a % b); } private static void shuffleSort(int a[]) { Random random = new Random(); int n = a.length; for (int i = 0; i < n; i++) { int t = random.nextInt(n); int x = a[t]; a[t] = a[i]; a[i] = x; } Arrays.sort(a); } private static void sieve(int n) { boolean[] prime = new boolean[n]; for (int i = 0; i < n; i++) prime[i] = true; for (int i = 2; i * i < n; i++) { if (prime[i]) { for (int j = i * i; j < n; j += i) prime[j] = false; } } for (int i = 2; i < prime.length; i++) { if (prime[i]) System.out.print(i + " "); } } private static void segmentedSieve(int low, int high) { int sqrt = (int) Math.sqrt(high); int[] prime = new int[sqrt + 1]; boolean[] arr = new boolean[sqrt + 1]; for (int i = 0; i <= sqrt; i++) arr[i] = true; int k = 0; for (int i = 2; i <= sqrt; i++) { // generate all prime numbers till square root of high if (arr[i]) { prime[k] = i; k++; for (int j = i * i; j <= sqrt; j += i) arr[j] = false; } } // System.out.println(Arrays.toString(prime)); int diff = high - low + 1; // arr size of required length arr = new boolean[diff]; for (int i = 0; i < diff; i++) arr[i] = true; for (int i = 0; i < k; i++) { // mark false to multiple of prime numbers in the range of low to high int div = (low / prime[i]) * prime[i]; // It gives multiple of prime[i] nearest to low if (div < low || div == prime[i]) div += prime[i]; for (int j = div; j <= high; j += prime[i]) { if (j != prime[i]) arr[j - low] = false; } } for (int i = 0; i < diff; i++) { // print prime numbers in the given segment if (arr[i] && (i + low) != 1) { System.out.print(i + low + " "); } } System.out.println(); } static class Pair implements Comparable<Pair> { int a; int b; public Pair(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(Pair o) { if (this.a > o.a) return this.a - o.a; else if (this.a < o.a) return this.b - o.b; else return 0; } } static class Reader { BufferedReader br; StringTokenizer st; public Reader() { br = new BufferedReader(new InputStreamReader(System.in)); } String read() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int readInt() { return Integer.parseInt(read()); } String readLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } long readLong() { return Long.parseLong(read()); } float readFloat(){ return Float.parseFloat(read()); } double readDouble() { return Double.parseDouble(read()); } int[] readIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = readInt(); return arr; } long[] readLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = readLong(); return arr; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
39caadbb94f58d41b877a4c0aaa0a9ce
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class C { public static void main(String[] args) { Scanner scn = new Scanner(System.in); int n = scn.nextInt(); long product = 1; List<Integer> ans = new ArrayList<>(); for (int i = 0; i < n; i++) { if (gcd(i, n) == 1) { ans.add(i); product *= i; product %= n; } } if (product == 1) System.out.println(ans.size()); else System.out.println(ans.size() - 1); for (int i : ans) { if (i != product || i == 1) System.out.print(i + " "); } } static int gcd(int a, int b) { while (b != 0) { int temp = b; b = a % b; a = temp; } return a; } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
36b8321ad734b59ca67fcb9fda0acdc5
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Sol{ public static void main(String []args){ FastReader sc=new FastReader(System.in); int t=1; while(t-->0){ int n=sc.nextInt(); StringBuilder s1=new StringBuilder();int j=0; for(int i=1;i<=n-1;i++){if(gcd(n,i)==1){j++;}} int res[]=new int[j];j=0; for(int i=1;i<=n-1;i++){if(gcd(n,i)==1){res[j]=i;j++;}} long ans=1;for(int i=0;i<j;i++){ans*=res[i];ans%=n;} if(ans==1){System.out.println(j);for(int i=0;i<j;i++){System.out.print(res[i]+" ");}} else{System.out.println(j-1);for(int i=0;i<j;i++){if(res[i]!=ans)System.out.print(res[i]+" ");}} System.out.println(); } } static int gcd(int x,int y){if(y==0)return x;else return gcd(y,x%y);} } class FastReader { BufferedReader br; StringTokenizer st; public FastReader(InputStream in) { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } public double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
c52a9eed69e58589d855ab77073b607e
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//package contest19april; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.StringTokenizer; public class C { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static long gcd(long a,long b) { if(b==0) { return a; } return gcd(b,a%b); } public static void main(String[] args) { // TODO Auto-generated method stub FastReader sc=new FastReader(); int n=sc.nextInt(); ArrayList<Long> a=new ArrayList<>(); long prod=1; for(long i=1;i<n;i++) { if(gcd(i,n)==1) { a.add(i); prod=(prod*i)%n; } } if(prod!=1) { a.remove(Long.valueOf(prod)); } System.out.println(a.size()); for(long x:a) { System.out.print(x+" "); } System.out.println(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
79456e87b1f68354698869dd54bf3cb3
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class mod { public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int n; n=sc.nextInt(); ArrayList<Integer> list = new ArrayList<>(); long pro=1; for(int i=1;i<=n;i++) { if(gcd(n,i)==1) { list.add(i); pro=(pro*i)%n; } } if(pro==1) { System.out.println(list.size()); int[] arr = list.stream().mapToInt(i->i).toArray(); for(int i=0;i<arr.length;i++) { System.out.print(arr[i]+" "); } } else { System.out.println(list.size()-1); int[] arr = list.stream().mapToInt(i->i).toArray(); for(int i=0;i<arr.length;i++) { if(arr[i]==pro) { continue; } System.out.print(arr[i]+" "); } } } static int gcd(int a, int b) { // Everything divides 0 if (a == 0) return b; if (b == 0) return a; // base case if (a == b) return a; // a is greater if (a > b) return gcd(a-b, b); return gcd(a, b-a); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
061d92e4e8c9c026fd74791311188112
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.stream.Collectors; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public void solve(int testNumber, InputReader in, PrintWriter out) { long n = in.nextLong(); LinkedList<BigInteger> bigIntegers = new LinkedList<>(); BigInteger bigInteger = BigInteger.valueOf(1); for (long i = 1; i < n; i++) { if (BigInteger.valueOf(n).gcd(BigInteger.valueOf(i)).equals(BigInteger.ONE)) { bigInteger = bigInteger.multiply(BigInteger.valueOf(i)); bigInteger = bigInteger.mod(BigInteger.valueOf(n)); bigIntegers.add(BigInteger.valueOf(i)); } } if (BigInteger.valueOf(bigInteger.longValue()).equals(BigInteger.ONE)) { int bs = bigIntegers.size(); out.println(bs); for (BigInteger integer : bigIntegers) { out.print(integer + " "); } } else { bigIntegers.remove(bigInteger); int bs = bigIntegers.size(); out.println(bs); for (BigInteger integer : bigIntegers) { out.print(integer + " "); } } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
5c23d053e8554bd90678179829d52afe
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.math.*; import java.util.*; import java.io.*; public class main { static Map<String,Integer> map=new HashMap<>(); public static void main(String[] args) { InputReader in = new InputReader(System.in); PrintWriter pw = new PrintWriter(System.out); final int mod=1000000007; int test_case =1; StringBuilder sb=new StringBuilder(); for(int t1=0;t1<test_case;t1++) { int n=in.nextInt(); List<Integer> ls=new ArrayList(); ls.add(1); long mul=1; for(int i=2;i<n-1;i++) { if(GCD(i,n)==1) { ls.add(i); mul*=i; mul%=n; // System.out.println(i+" "+mul+" "+mul%n); } } // System.out.println(mul+" "+mul%n); if(n>2){ // System.out.println((mul*(n-1))%n); if((mul*(n-1))%n==1) { ls.add(n-1); // System.out.println(n-1); } } System.out.println(ls.size()); for(int i:ls) { System.out.print(i+" "); } } pw.flush(); pw.close(); } static int factorial(int n,int mod) { long res = 1; for (int i=2; i<=n; i++) res=((res%mod)*(i%mod))%mod; return (int)res; } static int length(long l) { int c=0; while(l>0) { c++; l/=2; } return c; } static int CeilIndex(int A[], int l, int r, int key) { while (r - l > 1) { int m = l + (r - l) / 2; if (A[m] <= key) r = m; else l = m; } return r; } static int LongestIncreasingSubsequenceLength(int A[], int size) { // Add boundary case, when array size is one int[] tailTable = new int[size]; int len; // always points empty slot tailTable[0] = A[0]; len = 1; for (int i = 1; i < size; i++) { if (A[i] > tailTable[0]) tailTable[0] = A[i]; else if (A[i] <= tailTable[len - 1]) tailTable[len++] = A[i]; else tailTable[CeilIndex(tailTable, -1, len - 1, A[i])] = A[i]; } return len; } static int[] next(int arr[], int n) { Stack<Integer> S = new Stack<>(); int[] next=new int[n]; for (int i = n-1; i >= 0; i--) { while (!S.empty() && arr[S.peek()] <= arr[i]) { S.pop(); } if (S.empty()) { next[i]=-1; } else { next[i]=S.peek(); } S.push(i); } return next; } static int[] back(int arr[], int n) { Stack<Integer> S = new Stack<>(); int[] back=new int[n]; for (int i = 0; i < n; i++) { while (!S.empty() && arr[S.peek()] < arr[i]) { S.pop(); } if (S.empty()) { back[i]=-1; } else { back[i]=S.peek(); } S.push(i); } return back; } static class InputReader { private final InputStream stream; private final byte[] buf = new byte[8192]; private int curChar, snumChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int snext() { if (snumChars == -1) throw new InputMismatchException(); if (curChar >= snumChars) { curChar = 0; try { snumChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (snumChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } int sgn = 1; if (c == '-') { sgn = -1; c = snext(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = snext(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int n) { int a[] = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public long[] nextlongArray(int n) { long a[] = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } public String readString() { int c = snext(); while (isSpaceChar(c)) { c = snext(); } StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isSpaceChar(c)); return res.toString(); } public String nextLine() { int c = snext(); while (isSpaceChar(c)) c = snext(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = snext(); } while (!isEndOfLine(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static long mod = 1000000007; public static int d; public static int p; public static int q; public static int[] suffle(int[] a,Random gen) { int n = a.length; for(int i=0;i<n;i++) { int ind = gen.nextInt(n-i)+i; int temp = a[ind]; a[ind] = a[i]; a[i] = temp; } return a; } public static void swap(int a, int b){ int temp = a; a = b; b = temp; } public static HashSet<Integer> primeFactorization(int n) { HashSet<Integer> a =new HashSet<Integer>(); for(int i=2;i*i<=n;i++) { while(n%i==0) { a.add(i); n/=i; } } if(n!=1) a.add(n); return a; } public static void sieve(boolean[] isPrime,int n) { for(int i=1;i<n;i++) isPrime[i] = true; isPrime[0] = false; isPrime[1] = false; for(int i=2;i*i<n;i++) { if(isPrime[i] == true) { for(int j=(2*i);j<n;j+=i) isPrime[j] = false; } } } public static int GCD(int a,int b) { if(b==0) return a; else return GCD(b,a%b); } public static long GCD(long a,long b) { if(b==0) return a; else return GCD(b,a%b); } public static void extendedEuclid(int A,int B) { if(B==0) { d = A; p = 1 ; q = 0; } else { extendedEuclid(B, A%B); int temp = p; p = q; q = temp - (A/B)*q; } } public static long LCM(long a,long b) { return (a*b)/GCD(a,b); } public static int LCM(int a,int b) { return (a*b)/GCD(a,b); } public static int binaryExponentiation(int x,int n) { int result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r - l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } public static long binaryExponentiation(long x,long n) { long result=1; while(n>0) { if(n % 2 ==1) result=result * x; x=x*x; n=n/2; } return result; } public static int modularExponentiation(int x,int n,int M) { int result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static long modularExponentiation(long x,long n,long M) { long result=1; while(n>0) { if(n % 2 ==1) result=(result * x)%M; x=(x*x)%M; n=n/2; } return result; } public static int modInverse(int A,int M) { return modularExponentiation(A,M-2,M); } public static long modInverse(long A,long M) { return modularExponentiation(A,M-2,M); } public static boolean isPrime(int n) { if (n <= 1) return false; if (n <= 3) return true; if (n%2 == 0 || n%3 == 0) return false; for (int i=5; i*i<=n; i=i+6) { if (n%i == 0 || n%(i+2) == 0) return false; } return true; } static class Pair { long x; int y; } static class pair implements Comparable<pair> { Integer x, y; pair(int x,int y) { this.x=x; this.y=y; } public int compareTo(pair o) { int result = x.compareTo(o.x); if(result==0) result = y.compareTo(o.y); return result; } public String toString() { return x+" "+y; } public boolean equals(Object o) { if (o instanceof pair) { pair p = (pair)o; return (Math.abs(p.x-x)==0 && Math.abs(p.y-y)==0); } return false; } public int hashCode() { return new Long(x).hashCode()*31 + new Long(y).hashCode(); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
2fe88b04886749aa2d19257ed47793a0
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.StringTokenizer; import java.util.*; public class C { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { FastScanner f = new FastScanner(); PrintWriter p = new PrintWriter(System.out); int n = f.nextInt(); boolean ans[] = new boolean[n + 1]; long pr = 1; int count = 0; for (int i = 1; i <= n; i++) { if (gcd(i, n) == 1) { ans[i] = true; pr = (pr * i) % n; count++; } } if (pr == 1) { p.println(count); for (int i = 1; i < n; i++) { if (ans[i] == true) { p.print(i + " "); } } } else { ans[(int) pr] = false; p.println(count - 1); for (int i = 1; i < n; i++) { if (ans[i] == true) { p.print(i + " "); } } } p.close(); } // ------------------------------------------------------------------------------------------------ // makes the prefix sum array static long[] prefixSum(long arr[], int n) { long psum[] = new long[n]; psum[0] = arr[0]; for (int i = 1; i < n; i++) { psum[i] = psum[i - 1] + arr[i]; } return psum; } // ------------------------------------------------------------------------------------------------ // makes the suffix sum array static long[] suffixSum(long arr[], int n) { long ssum[] = new long[n]; ssum[n - 1] = arr[n - 1]; for (int i = n - 2; i >= 0; i--) { ssum[i] = ssum[i + 1] + arr[i]; } return ssum; } //------------------------------------------------------------------------------------------ // BINARY EXPONENTIATION OF A NUMBER MODULO M FASTER METHOD WITHOUT RECURSIVE // OVERHEADS static long m = (long) (1e9 + 7); static long binPower(long a, long n, long m) { if (n == 0) return 1; long res = 1; while (n > 0) { if ((n & 1) != 0) { res *= a; } a *= a; n >>= 1; } return res; } //------------------------------------------------------------------------------------------- // gcd static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } //------------------------------------------------------------------------------------------ // lcm static long lcm(long a, long b) { return a / gcd(a, b) * b; } //------------------------------------------------------------------------------------------ // BRIAN KERNINGHAM TO CHECK NUMBER OF SET BITS // O(LOGn) static int setBits(int n) { int count = 0; while (n > 0) { n = n & (n - 1); count++; } return count; } //------------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------------ // 0 based indexing static boolean KthBitSet(int n, int k) { int mask = 1; mask = mask <<= k; if ((mask & n) != 0) return true; else return false; } //------------------------------------------------------------------------------------------ // EXTENDED EUCLIDEAN THEOREM // TO REPRESENT GCD IN TERMS OF A AND B // gcd(a,b) = a.x + b.y where x and y are integers static long x = -1; static long y = -1; static long gcdxy(long a, long b) { if (b == 0) { x = 1; y = 0; return a; } else { long d = gcdxy(b, a % b); long x1 = y; long y1 = x - (a / b) * y; x = x1; y = y1; return d; } } //-------------------------------------------------------------------------------------------------F }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
6e8c697b12ab2837fd04444d9ca03459
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/** * Created by Himanshu **/ import java.util.*; import java.io.*; import java.math.*; public class C1514 { public static void main(String[] args) throws IOException { PrintWriter out = new PrintWriter(System.out); Reader s = new Reader(); int n = s.i(); ArrayList<Integer> list1 = new ArrayList<>(); ArrayList<Integer> list2 = new ArrayList<>(); list1.add(1); list2.add(1); for (int i = 2; i < n ; i++) { int x = gcd(n, i); if (x == 1) { long y = ((long) (i)) * i; if (y % n != 1) list1.add(i); else list2.add(i); } } boolean val1 = fun(list1,n); boolean val2 = fun(list2,n); if (val1 && val2) { int i=1 , j = 0; out.println(list1.size()+list2.size()-1); while (i < list1.size() && j < list2.size()) { int x = list1.get(i); int y = list2.get(j); if (x < y) { out.print(x + " "); i++; } else { out.print(y + " "); j++; } } while (i < list1.size()) { int x = list1.get(i); out.print(x + " "); i++; } while (j < list2.size()) { int y = list2.get(j); out.print(y + " "); j++; } } else if (val1) { int i=0; out.println(list1.size()); while (i < list1.size()) { int x = list1.get(i); out.print(x + " "); i++; } } else if (val2) { int j=0; out.println(list2.size()); while (j < list2.size()) { int y = list2.get(j); out.print(y + " "); j++; } } else { out.println(1); out.println(1); } // if (list1.size() > list2.size()) { // // if (val == 1) { // out.println(list1.size()); // for (int x : list1) out.print(x + " "); // } else { // val = 1; // for (int x : list2) val = (val*x)%n; // if (val == 1) { // out.println(list2.size()); // for (int x : list2) out.print(x + " "); // } else { // out.println(1); // out.println(1); // } // } // } else { // long val = 1; // for (int x : list2) val = (val*x)%n; // if (val == 1) { // out.println(list2.size()); // for (int x : list2) out.print(x + " "); // } else { // val = 1; // for (int x : list1) val = (val*x)%n; // if (val == 1) { // out.println(list1.size()); // for (int x : list1) out.print(x + " "); // } else { // out.println(1); // out.println(1); // } // } // } out.flush(); } private static boolean fun(ArrayList<Integer> list , int n) { long val = 1; for (int x : list) val = (val*x)%n; return val == 1; } public static void shuffle(long[] arr) { int n = arr.length; Random rand = new Random(); for (int i = 0; i < n; i++) { long temp = arr[i]; int randomPos = i + rand.nextInt(n - i); arr[i] = arr[randomPos]; arr[randomPos] = temp; } } private static int gcd(int a, int b) { if(b == 0) return a; return gcd(b,a%b); } public static long nCr(long[] fact, long[] inv, int n, int r, long mod) { if (n < r) return 0; return ((fact[n] * inv[n - r]) % mod * inv[r]) % mod; } private static void factorials(long[] fact, long[] inv, long mod, int n) { fact[0] = 1; inv[0] = 1; for (int i = 1; i <= n; ++i) { fact[i] = (fact[i - 1] * i) % mod; inv[i] = power(fact[i], mod - 2, mod); } } private static long power(long a, long n, long p) { long result = 1; while (n > 0) { if (n % 2 == 0) { a = (a * a) % p; n /= 2; } else { result = (result * a) % p; n--; } } return result; } private static long power(long a, long n) { long result = 1; while (n > 0) { if (n % 2 == 0) { a = (a * a); n /= 2; } else { result = (result * a); n--; } } return result; } private static long query(long[] tree, int in, int start, int end, int l, int r) { if (start >= l && r >= end) return tree[in]; if (end < l || start > r) return 0; int mid = (start + end) / 2; long x = query(tree, 2 * in, start, mid, l, r); long y = query(tree, 2 * in + 1, mid + 1, end, l, r); return x + y; } private static void update(int[] arr, long[] tree, int in, int start, int end, int idx, int val) { if (start == end) { tree[in] = val; arr[idx] = val; return; } int mid = (start + end) / 2; if (idx > mid) update(arr, tree, 2 * in + 1, mid + 1, end, idx, val); else update(arr, tree, 2 * in, start, mid, idx, val); tree[in] = tree[2 * in] + tree[2 * in + 1]; } private static void build(int[] arr, long[] tree, int in, int start, int end) { if (start == end) { tree[in] = arr[start]; return; } int mid = (start + end) / 2; build(arr, tree, 2 * in, start, mid); build(arr, tree, 2 * in + 1, mid + 1, end); tree[in] = (tree[2 * in + 1] + tree[2 * in]); } static class Reader { private InputStream mIs; private byte[] buf = new byte[1024]; private int curChar, numChars; public Reader() { this(System.in); } public Reader(InputStream is) { mIs = is; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = mIs.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isEndOfLine(c)); return res.toString(); } public String s() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public long l() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int i() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double d() throws IOException { return Double.parseDouble(s()); } public boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public boolean isEndOfLine(int c) { return c == '\n' || c == '\r' || c == -1; } public int[] arr(int n) { int[] ret = new int[n]; for (int i = 0; i < n; i++) { ret[i] = i(); } return ret; } public long[] arrLong(int n) { long[] ret = new long[n]; for (int i = 0; i < n; i++) { ret[i] = l(); } return ret; } } // static class pairLong implements Comparator<pairLong> { // long first, second; // // pairLong() { // } // // pairLong(long first, long second) { // this.first = first; // this.second = second; // } // // @Override // public int compare(pairLong p1, pairLong p2) { // if (p1.first == p2.first) { // if(p1.second > p2.second) return 1; // else return -1; // } // if(p1.first > p2.first) return 1; // else return -1; // } // } // static class pair implements Comparator<pair> { // int first, second; // // pair() { // } // // pair(int first, int second) { // this.first = first; // this.second = second; // } // // @Override // public int compare(pair p1, pair p2) { // if (p1.first == p2.first) return p1.second - p2.second; // return p1.first - p2.first; // } // } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
aa8ac074ca68ace7a606d3b277ef66c3
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.ArrayList; public class C_Rnd716_Product_faster { static int n; static boolean debug = false; public static void main(String[] args) throws NumberFormatException, IOException { BufferedReader scan = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); if(debug) runtest(); n = Integer.parseInt(scan.readLine()); ArrayList<Integer> factors = run(n); out.println(factors.size()); out.print(factors.get(0)); for(int i = 1; i < factors.size(); i++) out.print(" " + factors.get(i)); out.println(); out.flush(); } public static ArrayList<Integer> run(int n) { ArrayList<Integer> factors = new ArrayList<Integer>(); for(int i = 1; i < n; i++) { factors.add(i); } solve(factors); return factors; } private static void solve(ArrayList<Integer> list) { long remainder = 1; for(int i = list.size() - 1; i >= 0; i--) if(gcd(n, list.get(i)) != 1) list.remove(i); for(int i = 0; i < list.size(); i++) remainder = (remainder * list.get(i)) % n; if(remainder != 1) { if(debug) System.out.println("\tHad to update " + n); list.remove(list.size() - 1); } } private static int gcd(int a, int b) { if(a == b || b == 0) return a; return gcd(b, a%b); } public static void runtest() { for(int i = 2; i <= 100000; i++) { System.out.println("Running test #" + i); run((n = i)); } System.out.println("Got through the test without exiting"); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
715f1a8fa73553a5efab12f12bf5dab1
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public final class C { public static long gcd(long a, long b) { return b == 0 ? a : gcd(b, a % b); } private static long[] bezout(long a, long b) { if (b == 0) { return new long[] { 1, 0 }; } final long[] res = bezout(b, a % b); return new long[] { res[1], res[0] - a / b * res[1] }; } private static long modInverse(long a, long mod) { return (a + mod) % mod; } public static void main(String[] args) { final FastScanner fs = new FastScanner(); final int n = fs.nextInt(); long total = 1; final boolean[] added = new boolean[n]; int count = 0; for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { count++; added[i] = true; total = (total * i) % n; } } if (total != 1) { for (int i = 0; i < n; i++) { if (added[i]) { final long modInverse = modInverse(bezout(i, n)[0], n); if ((modInverse * total) % n == 1) { count--; added[i] = false; break; } } } } final StringBuilder sb = new StringBuilder(); sb.append(count); sb.append('\n'); for (int i = 0; i < n; i++) { if (added[i]) { sb.append(i); sb.append(' '); } } System.out.println(sb); // for (int mask = 0; mask < (1 << 6); mask ++) { // int curr = 1; // for (int i = 0; i < 6; i++) { // if((mask & (1 << i)) != 0) { // curr *= (i + 1); // } // } // System.out.println(curr + " " + (curr % 7) + " " + Integer.bitCount(mask) + " " + Integer.toBinaryString(mask)); // } // for (int test = 0; test < t; test++) { // final int n = fs.nextInt(); // System.out.println(n); // } } static final class Utils { private static class Shuffler { private static void shuffle(int[] x) { final Random r = new Random(); for (int i = 0; i <= x.length - 2; i++) { final int j = i + r.nextInt(x.length - i); swap(x, i, j); } } private static void shuffle(long[] x) { final Random r = new Random(); for (int i = 0; i <= x.length - 2; i++) { final int j = i + r.nextInt(x.length - i); swap(x, i, j); } } private static void swap(int[] x, int i, int j) { final int t = x[i]; x[i] = x[j]; x[j] = t; } private static void swap(long[] x, int i, int j) { final long t = x[i]; x[i] = x[j]; x[j] = t; } } public static void shuffleSort(int[] arr) { Shuffler.shuffle(arr); Arrays.sort(arr); } public static void shuffleSort(long[] arr) { Shuffler.shuffle(arr); Arrays.sort(arr); } private Utils() {} } static class FastScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(""); private String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { //noinspection CallToPrintStackTrace e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] nextIntArray(int n) { final int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } long[] nextLongArray(int n) { final long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = nextLong(); } return a; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
77de5d60ff0ec99d75f7d3c838a4e3ed
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class product1ModuloN { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); List<Long> al = new ArrayList<>(); long p = (long)1; for(int i =1; i<n; i++) { if(GCD(i, n)==1) { al.add((long)i); p = (((long)p%(long)n)*((long)i%(long)n))%(long)n; } } if(p!=(long)1) { int ans = al.size()-1; System.out.println(ans); for(int i =0; i<al.size(); i++) { if(al.get(i)==p) { } else{ System.out.print(al.get(i)+" "); } } System.out.println(); } else { System.out.println(al.size()); for(int i =0; i<al.size(); i++) { System.out.print(al.get(i)+" "); } System.out.println(); } } static int GCD(int a, int b) { if (b == 0) { return a; } return GCD(b, a % b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
d857b0d4891ca8b1dffd9365757b2a46
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class CF1514C { public static void main(String[] args) throws Exception { BufferedReader in = new BufferedReader (new InputStreamReader(System.in)); int n = Integer.parseInt(in.readLine()); ArrayList<Integer> A = new ArrayList<>(); long rem = 1; for (int i = 1; i < n; i++) { if (gcd(i,n) == 1) { A.add(i); rem = (rem*i)%n; } } int k = A.size(); System.out.println((rem == 1)?k:(k-1)); for (int i : A) { if (i == 1 || i != rem) System.out.print(i+" "); } System.out.println(); } static int gcd(int a, int b) { return b == 0 ? a : gcd(b,a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
7f3cef3251bd1d149677738cc1653dd6
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; public class B { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int n = Integer.parseInt(br.readLine()); // sieve int[] sieve = new int[n+1]; for (int i = 2; i <= n; i++) { if (sieve[i] == 0) { for (int j = i; j <= n; j += i) { sieve[j] = i; } } } int num = n; boolean[] cannotUse = new boolean[n+1]; ArrayList<Integer> factors = new ArrayList<>(); while (num != 1) { factors.add(sieve[num]); System.err.println(num + " " + sieve[num]); num /= sieve[num]; } for (int factor : factors) { for (int i = factor; i <= n; i += factor) { cannotUse[i] = true; } } long product = 1; ArrayList<Integer> ans = new ArrayList<>(); for (int i = 1; i < n; i++) { if (!cannotUse[i]) { product *= i; ans.add(i); product %= n; } } Collections.sort(ans); if (product != 1) ans.remove(Collections.binarySearch(ans, (int)product)); pw.println(ans.size()); for (int i = 0; i < ans.size(); i++) { if (i == ans.size() - 1) pw.println(ans.get(i)); else pw.print(ans.get(i) + " "); } pw.close(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
7263d5da4e940f3d818d827c1dc0fac7
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//Utilities import java.io.*; import java.util.*; public class a { static int t; static int n; static int[] fac, inv; static ArrayList<Integer> res; static boolean[] vis; public static void main(String[] args) throws IOException { t = 1; while (t-- > 0) { n = in.iscan(); res = new ArrayList<Integer>(); long product = 1; for (int i = 1; i < n; i++) { if (UTILITIES.gcd(i, n) == 1) { res.add(i); product = product * i % n; } } if (product == n-1) { res.remove(res.get(res.size()-1)); product = 1; } if (res.isEmpty()) { res.add(1); } out.println(res.size()); for (int x : res) { out.print(x + " "); } out.println(); } out.close(); } static INPUT in = new INPUT(System.in); static PrintWriter out = new PrintWriter(System.out); private static class INPUT { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar, numChars; public INPUT (InputStream stream) { this.stream = stream; } public INPUT (String file) throws IOException { this.stream = new FileInputStream (file); } public int cscan () throws IOException { if (curChar >= numChars) { curChar = 0; numChars = stream.read (buf); } if (numChars == -1) return numChars; return buf[curChar++]; } public int iscan () throws IOException { int c = cscan (), sgn = 1; while (space (c)) c = cscan (); if (c == '-') { sgn = -1; c = cscan (); } int res = 0; do { res = (res << 1) + (res << 3); res += c - '0'; c = cscan (); } while (!space (c)); return res * sgn; } public String sscan () throws IOException { int c = cscan (); while (space (c)) c = cscan (); StringBuilder res = new StringBuilder (); do { res.appendCodePoint (c); c = cscan (); } while (!space (c)); return res.toString (); } public double dscan () throws IOException { int c = cscan (), sgn = 1; while (space (c)) c = cscan (); if (c == '-') { sgn = -1; c = cscan (); } double res = 0; while (!space (c) && c != '.') { if (c == 'e' || c == 'E') return res * UTILITIES.fast_pow (10, iscan ()); res *= 10; res += c - '0'; c = cscan (); } if (c == '.') { c = cscan (); double m = 1; while (!space (c)) { if (c == 'e' || c == 'E') return res * UTILITIES.fast_pow (10, iscan ()); m /= 10; res += (c - '0') * m; c = cscan (); } } return res * sgn; } public long lscan () throws IOException { int c = cscan (), sgn = 1; while (space (c)) c = cscan (); if (c == '-') { sgn = -1; c = cscan (); } long res = 0; do { res = (res << 1) + (res << 3); res += c - '0'; c = cscan (); } while (!space (c)); return res * sgn; } public boolean space (int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } } public static class UTILITIES { static final double EPS = 10e-6; public static void sort(int[] a, boolean increasing) { ArrayList<Integer> arr = new ArrayList<Integer>(); int n = a.length; for (int i = 0; i < n; i++) { arr.add(a[i]); } Collections.sort(arr); for (int i = 0; i < n; i++) { if (increasing) { a[i] = arr.get(i); } else { a[i] = arr.get(n-1-i); } } } public static void sort(long[] a, boolean increasing) { ArrayList<Long> arr = new ArrayList<Long>(); int n = a.length; for (int i = 0; i < n; i++) { arr.add(a[i]); } Collections.sort(arr); for (int i = 0; i < n; i++) { if (increasing) { a[i] = arr.get(i); } else { a[i] = arr.get(n-1-i); } } } public static void sort(double[] a, boolean increasing) { ArrayList<Double> arr = new ArrayList<Double>(); int n = a.length; for (int i = 0; i < n; i++) { arr.add(a[i]); } Collections.sort(arr); for (int i = 0; i < n; i++) { if (increasing) { a[i] = arr.get(i); } else { a[i] = arr.get(n-1-i); } } } public static int lower_bound (int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= x) high = mid; else low = mid + 1; } return low; } public static int upper_bound (int[] arr, int x) { int low = 0, high = arr.length, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] > x) high = mid; else low = mid + 1; } return low; } public static void updateMap(HashMap<Integer, Integer> map, int key, int v) { if (!map.containsKey(key)) { map.put(key, v); } else { map.put(key, map.get(key) + v); } if (map.get(key) == 0) { map.remove(key); } } public static long gcd (long a, long b) { return b == 0 ? a : gcd (b, a % b); } public static long lcm (long a, long b) { return a * b / gcd (a, b); } public static long fast_pow_mod (long b, long x, int mod) { if (x == 0) return 1; if (x == 1) return b; if (x % 2 == 0) return fast_pow_mod (b * b % mod, x / 2, mod) % mod; return b * fast_pow_mod (b * b % mod, x / 2, mod) % mod; } public static long fast_pow (long b, long x) { if (x == 0) return 1; if (x == 1) return b; if (x % 2 == 0) return fast_pow (b * b, x / 2); return b * fast_pow (b * b, x / 2); } public static long choose (long n, long k) { k = Math.min (k, n - k); long val = 1; for (int i = 0; i < k; ++i) val = val * (n - i) / (i + 1); return val; } public static long permute (int n, int k) { if (n < k) return 0; long val = 1; for (int i = 0; i < k; ++i) val = (val * (n - i)); return val; } // start of permutation and lower/upper bound template public static void nextPermutation(int[] nums) { //find first decreasing digit int mark = -1; for (int i = nums.length - 1; i > 0; i--) { if (nums[i] > nums[i - 1]) { mark = i - 1; break; } } if (mark == -1) { reverse(nums, 0, nums.length - 1); return; } int idx = nums.length-1; for (int i = nums.length-1; i >= mark+1; i--) { if (nums[i] > nums[mark]) { idx = i; break; } } swap(nums, mark, idx); reverse(nums, mark + 1, nums.length - 1); } public static void swap(int[] nums, int i, int j) { int t = nums[i]; nums[i] = nums[j]; nums[j] = t; } public static void reverse(int[] nums, int i, int j) { while (i < j) { swap(nums, i, j); i++; j--; } } static int lower_bound (int[] arr, int hi, int cmp) { int low = 0, high = hi, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] >= cmp) high = mid; else low = mid + 1; } return low; } static int upper_bound (int[] arr, int hi, int cmp) { int low = 0, high = hi, mid = -1; while (low < high) { mid = (low + high) / 2; if (arr[mid] > cmp) high = mid; else low = mid + 1; } return low; } // end of permutation and lower/upper bound template } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
0822b074f5188a8a1bf0acbcbda3c09e
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class prod1modn { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); ArrayList<Integer> rp = new ArrayList<>(); for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { rp.add(i); } } long[] pref = new long[rp.size()]; pref[0] = 1; for (int i = 1; i < rp.size(); i++) { pref[i] = (pref[i - 1] * rp.get(i)) % n; } int ans = 1; for (int i = 0; i < rp.size(); i++) { if (pref[i] == 1) { ans = i + 1; } } pw.println(ans); for (int i = 0; i < ans; i++) { pw.print(rp.get(i) + " "); } pw.close(); } public static int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
00b5c14845a802ed16a0a1b2c2462225
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//package com.company; import java.io.*; import java.lang.reflect.Array; import java.util.*; public class Main{ static boolean[] primecheck; static ArrayList<Integer>[] adj; static int[] vis; static int[] parent = new int[101]; static int[] rank = new int[101]; static int mod = (int)1e9 + 7; public static void main(String[] args) { OutputStream outputStream = System.out; FastReader in = new FastReader(); PrintWriter out = new PrintWriter(outputStream); PROBLEM solver = new PROBLEM(); int t = 1; //t = in.ni(); for (int i = 0; i < t; i++) { //out.print("Case #" + (i+1) + ": "); solver.solve(in, out); } out.close(); } static class PROBLEM { public void solve(FastReader in, PrintWriter out) { int n = in.ni(); ArrayList<Integer> al = new ArrayList<>(); long ctr = 0, prod = 1; for (int i = 1; i < n; i++) { if(gcd(i,n) == 1){ al.add(i); ctr++; prod=(prod*i)%n; } } if(prod != 1) ctr--; out.println(ctr); for(int i : al){ if(i != 1 && i == prod) continue; out.print(i + " "); } } } static int find(int u){ if(u == parent[u]) return u; return parent[u] = find(parent[u]); } static void union(int u, int v){ int a = find(u), b = find(v); if(a == b) return; if(rank[a] > rank[b]){ parent[b] = a; rank[a] += rank[b]; }else{ parent[a] = b; rank[b] += rank[a]; } } static void dsu(){ for (int i = 0; i < 101; i++) { parent[i] = i; rank[i] = 1; } } static void dfs(int i, int ans){ vis[i] = 1; for(int j : adj[i]) { if (vis[j] == 0){ dfs(j, ans+1); } } } static boolean isPalindrome(char[] s){ boolean b = true; for (int i = 0; i < s.length / 2; i++) { if(s[i] != s[s.length-1-i]){ b = false; break; } } return b; } static void output(boolean b, PrintWriter out){ if(b) out.println("YES"); else out.println("NO"); } static void pa(int[] a, PrintWriter out){ for (int j : a) { out.print(j + " "); } out.println(); } static void pa(long[] a, PrintWriter out){ for (long j : a) { out.print(j + " "); } out.println(); } public static void sortbyColumn(int arr[][], int col) { // Using built-in sort function Arrays.sort Arrays.sort(arr, new Comparator<int[]>() { @Override // Compare values according to columns public int compare(final int[] entry1, final int[] entry2) { // To sort in descending order revert // the '>' Operator if (entry1[col] > entry2[col]) return 1; else return -1; } }); // End of function call sort(). } static boolean isPoT(long n){ return ((n&(n-1)) == 0); } static long sigmaK(long k){ return (k*(k+1))/2; } static void swap(int[] a, int l, int r) { int temp = a[l]; a[l] = a[r]; a[r] = temp; } static int binarySearch(int[] a, int l, int r, int x){ if(r>=l){ int mid = l + (r-l)/2; if(a[mid] == x) return mid; if(a[mid] > x) return binarySearch(a, l, mid-1, x); else return binarySearch(a,mid+1, r, x); } return -1; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long lcm(long a, long b){ return (a / gcd(a, b)) * b; } static int ceil(int a, int b){ return (a+b-1)/b; } static long ceil(long a, long b){ return (a+b-1)/b; } static boolean isSquare(double a) { boolean isSq = false; double b = Math.sqrt(a); double c = Math.sqrt(a) - Math.floor(b); if (c == 0) isSq = true; return isSq; } static long fast_pow(long a, long b) { //Jeel bhai OP if(b == 0) return 1L; long val = fast_pow(a, b / 2); if(b % 2 == 0) return val * val % mod; else return val * val % mod * a % mod; } static int exponentMod(int A, int B, int C) { // Base cases if (A == 0) return 0; if (B == 0) return 1; // If B is even long y; if (B % 2 == 0) { y = exponentMod(A, B / 2, C); y = (y * y) % C; } // If B is odd else { y = A % C; y = (y * exponentMod(A, B - 1, C) % C) % C; } return (int) ((y + C) % C); } // static class Pair implements Comparable<Pair>{ // // int x; // int y; // // Pair(int x, int y){ // this.x = x; // this.y = y; // } // // public int compareTo(Pair o){ // // int ans = Integer.compare(x, o.x); // if(o.x == x) ans = Integer.compare(y, o.y); // // return ans; // //// int ans = Integer.compare(y, o.y); //// if(o.y == y) ans = Integer.compare(x, o.x); //// //// return ans; // } // } static class Tuple implements Comparable<Tuple>{ int x, y, id; Tuple(int x, int y, int id){ this.x = x; this.y = y; this.id = id; } public int compareTo(Tuple o){ int ans = Integer.compare(x, o.x); if(o.x == x) ans = Integer.compare(y, o.y); return ans; } } public static class Pair<U extends Comparable<U>, V extends Comparable<V>> implements Comparable<Pair<U, V>> { public U x; public V y; public Pair(U x, V y) { this.x = x; this.y = y; } public int hashCode() { return (x == null ? 0 : x.hashCode() * 31) + (y == null ? 0 : y.hashCode()); } public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Pair<U, V> p = (Pair<U, V>) o; return (x == null ? p.x == null : x.equals(p.x)) && (y == null ? p.y == null : y.equals(p.y)); } public int compareTo(Pair<U, V> b) { int cmpU = x.compareTo(b.x); return cmpU != 0 ? cmpU : y.compareTo(b.y); } public int compareToY(Pair<U, V> b) { int cmpU = y.compareTo(b.y); return cmpU != 0 ? cmpU : x.compareTo(b.x); } public String toString() { return String.format("(%s, %s)", x.toString(), y.toString()); } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } char nc() { return next().charAt(0); } boolean nb() { return !(ni() == 0); } // boolean nextBoolean(){return Boolean.parseBoolean(next());} String nline() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int[] ra(int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = ni(); return array; } } private static int[] mergeSort(int[] array) { //array.length replaced with ctr int ctr = array.length; if (ctr <= 1) { return array; } int midpoint = ctr / 2; int[] left = new int[midpoint]; int[] right; if (ctr % 2 == 0) { right = new int[midpoint]; } else { right = new int[midpoint + 1]; } for (int i = 0; i < left.length; i++) { left[i] = array[i]; } for (int i = 0; i < right.length; i++) { right[i] = array[i + midpoint]; } left = mergeSort(left); right = mergeSort(right); int[] result = merge(left, right); return result; } private static int[] merge(int[] left, int[] right) { int[] result = new int[left.length + right.length]; int leftPointer = 0, rightPointer = 0, resultPointer = 0; while (leftPointer < left.length || rightPointer < right.length) { if (leftPointer < left.length && rightPointer < right.length) { if (left[leftPointer] < right[rightPointer]) { result[resultPointer++] = left[leftPointer++]; } else { result[resultPointer++] = right[rightPointer++]; } } else if (leftPointer < left.length) { result[resultPointer++] = left[leftPointer++]; } else { result[resultPointer++] = right[rightPointer++]; } } return result; } public static void Sieve(int n) { Arrays.fill(primecheck, true); primecheck[0] = false; primecheck[1] = false; for (int i = 2; i * i < n + 1; i++) { if (primecheck[i]) { for (int j = i * 2; j < n + 1; j += i) { primecheck[j] = false; } } } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
e8f51d2fe51d9412ad6e8c32cd273a6a
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.text.DecimalFormat; import java.util.*; public class Main { static class Pair { long l; char c; public Pair(long l,char c) { this.l = l; this.c=c; } public String toString() { return l +" "+c; } } static final int INF = 1 << 30; static final long INFL = 1L << 60; static final long NINF = INFL * -1; static final long mod = (long) 1e9 + 7; static final long mod2 = 998244353; static DecimalFormat df = new DecimalFormat("0.00000000000000"); public static final double PI = 3.141592653589793d, eps = 1e-9; public static void main(String[] args) throws IOException { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); TaskC solver = new TaskC(); solver.solve(1, in, out); out.close(); } static class TaskC { public static void solve(int testNumber, InputReader in, OutputWriter out) { int t1=1; while (t1-->0) { long n=in.nextLong(); long num=1; if(n<=4) { out.printLine(1); out.printLine(1); continue; } ArrayList<Long> al=new ArrayList<>(); al.add(1L); for(long i=2;i<n;i++) { if(CP.gcd(i,n)==1) { al.add(i); num=(num%n*i%n)%n; } } if(num%n!=1) { al.remove(al.size()-1); } out.printLine(al.size()); for(int i=0;i<al.size();++i) { out.print(al.get(i)+" "); } out.printLine(); } } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public int[] nextIntArray(int arraySize) { int[] array = new int[arraySize]; for (int i = 0; i < arraySize; i++) { array[i] = readInt(); } return array; } private int skip() { int b; while ((b = read()) != -1 && isSpaceChar(b)) ; return b; } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' ') sb.appendCodePoint(b); b = read(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n && !(isSpaceChar(b))) { buf[p++] = (char) b; b = read(); } return n == p ? buf : Arrays.copyOf(buf, p); } public String readString() { int c = read(); while (isSpaceChar(c)) { c = read(); } StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) { res.appendCodePoint(c); } c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isNewLine(int c) { return c == '\n'; } public String nextLine() { int c = read(); StringBuilder result = new StringBuilder(); do { result.appendCodePoint(c); c = read(); } while (!isNewLine(c)); return result.toString(); } public long nextLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sign = 1; if (c == '-') { sign = -1; c = read(); } long result = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } result *= 10; result += c & 15; c = read(); } while (!isSpaceChar(c)); return result * sign; } public long[] nextLongArray(int arraySize) { long array[] = new long[arraySize]; for (int i = 0; i < arraySize; i++) { array[i] = nextLong(); } return array; } public double nextDouble() { double ret = 0, div = 1; byte c = (byte) read(); while (c <= ' ') { c = (byte) read(); } boolean neg = (c == '-'); if (neg) { c = (byte) read(); } do { ret = ret * 10 + c - '0'; } while ((c = (byte) read()) >= '0' && c <= '9'); if (c == '.') { while ((c = (byte) read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) { return -ret; } return ret; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static class CP { static boolean isPrime(long n) { if (n <= 1) return false; if (n == 2 || n == 3) return true; if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; (long) i * i <= n; i += 6) { if (n % i == 0 || n % (i + 2) == 0) return false; } return true; } public static int log2(int N) { int result = (int) (Math.log(N) / Math.log(2)); return result; } public static long pow(long a, long n, long mod) { // a %= mod; long ret = 1; int x = 63 - Long.numberOfLeadingZeros(n); for (; x >= 0; x--) { ret = ret * ret % mod; if (n << 63 - x < 0) ret = ret * a % mod; } return ret; } public static boolean isComposite(long n) { if (n < 2) return true; if (n == 2 || n == 3) return false; if (n % 2 == 0 || n % 3 == 0) return true; for (long i = 6L; i * i <= n; i += 6) if (n % (i - 1) == 0 || n % (i + 1) == 0) return true; return false; } static int ifnotPrime(int[] prime, int x) { return (prime[x / 64] & (1 << ((x >> 1) & 31))); } static int log2(long n) { return (int) (Math.log10(n) / Math.log10(2)); } static void makeComposite(int[] prime, int x) { prime[x / 64] |= (1 << ((x >> 1) & 31)); } public static String swap(String a, int i, int j) { char temp; char[] charArray = a.toCharArray(); temp = charArray[i]; charArray[i] = charArray[j]; charArray[j] = temp; return String.valueOf(charArray); } public static int[] sieveEratosthenes(int n) { if (n <= 32) { int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}; for (int i = 0; i < primes.length; i++) { if (n < primes[i]) { return Arrays.copyOf(primes, i); } } return primes; } int u = n + 32; double lu = Math.log(u); int[] ret = new int[(int) (u / lu + u / lu / lu * 1.5)]; ret[0] = 2; int pos = 1; int[] isnp = new int[(n + 1) / 32 / 2 + 1]; int sup = (n + 1) / 32 / 2 + 1; int[] tprimes = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31}; for (int tp : tprimes) { ret[pos++] = tp; int[] ptn = new int[tp]; for (int i = (tp - 3) / 2; i < tp << 5; i += tp) ptn[i >> 5] |= 1 << (i & 31); for (int j = 0; j < sup; j += tp) { for (int i = 0; i < tp && i + j < sup; i++) { isnp[j + i] |= ptn[i]; } } } // 3,5,7 // 2x+3=n int[] magic = {0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13, 31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14}; int h = n / 2; for (int i = 0; i < sup; i++) { for (int j = ~isnp[i]; j != 0; j &= j - 1) { int pp = i << 5 | magic[(j & -j) * 0x076be629 >>> 27]; int p = 2 * pp + 3; if (p > n) break; ret[pos++] = p; if ((long) p * p > n) continue; for (int q = (p * p - 3) / 2; q <= h; q += p) isnp[q >> 5] |= 1 << q; } } return Arrays.copyOf(ret, pos); } static int digit(long s) { int brute = 0; while (s > 0) { s /= 10; brute++; } return brute; } public static int[] primefacs(int n, int[] primes) { int[] ret = new int[15]; int rp = 0; for (int p : primes) { if (p * p > n) break; int i; for (i = 0; n % p == 0; n /= p, i++) ; if (i > 0) ret[rp++] = p; } if (n != 1) ret[rp++] = n; return Arrays.copyOf(ret, rp); } static ArrayList<Integer> bitWiseSieve(int n) { ArrayList<Integer> al = new ArrayList<>(); int prime[] = new int[n / 64 + 1]; for (int i = 3; i * i <= n; i += 2) { if (ifnotPrime(prime, i) == 0) for (int j = i * i, k = i << 1; j < n; j += k) makeComposite(prime, j); } al.add(2); for (int i = 3; i <= n; i += 2) if (ifnotPrime(prime, i) == 0) al.add(i); return al; } public static long[] sort(long arr[]) { List<Long> list = new ArrayList<>(); for (long n : arr) { list.add(n); } Collections.sort(list); for (int i = 0; i < arr.length; i++) { arr[i] = list.get(i); } return arr; } public static long[] revsort(long[] arr) { List<Long> list = new ArrayList<>(); for (long n : arr) { list.add(n); } Collections.sort(list, Collections.reverseOrder()); for (int i = 0; i < arr.length; i++) { arr[i] = list.get(i); } return arr; } public static int[] revsort(int[] arr) { List<Integer> list = new ArrayList<>(); for (int n : arr) { list.add(n); } Collections.sort(list, Collections.reverseOrder()); for (int i = 0; i < arr.length; i++) { arr[i] = list.get(i); } return arr; } public static ArrayList<Integer> reverse( ArrayList<Integer> data, int left, int right) { // Reverse the sub-array while (left < right) { int temp = data.get(left); data.set(left++, data.get(right)); data.set(right--, temp); } // Return the updated array return data; } static ArrayList<Integer> sieve(long size) { ArrayList<Integer> pr = new ArrayList<Integer>(); boolean prime[] = new boolean[(int) size]; for (int i = 2; i < prime.length; i++) prime[i] = true; for (int i = 2; i * i < prime.length; i++) { if (prime[i]) { for (int j = i * i; j < prime.length; j += i) { prime[j] = false; } } } for (int i = 2; i < prime.length; i++) if (prime[i]) pr.add(i); return pr; } static ArrayList<Integer> segmented_sieve(int l, int r, ArrayList<Integer> primes) { ArrayList<Integer> al = new ArrayList<>(); if (l == 1) ++l; int max = r - l + 1; int arr[] = new int[max]; for (int p : primes) { if (p * p <= r) { int i = (l / p) * p; if (i < l) i += p; for (; i <= r; i += p) { if (i != p) { arr[i - l] = 1; } } } } for (int i = 0; i < max; ++i) { if (arr[i] == 0) { al.add(l + i); } } return al; } static boolean isfPrime(long n, int iteration) { if (n == 0 || n == 1) return false; if (n == 2) return true; if (n % 2 == 0) return false; Random rand = new Random(); for (int i = 0; i < iteration; i++) { long r = Math.abs(rand.nextLong()); long a = r % (n - 1) + 1; if (modPow(a, n - 1, n) != 1) return false; } return true; } static long modPow(long a, long b, long c) { long res = 1; for (int i = 0; i < b; i++) { res *= a; res %= c; } return res % c; } private static long binPower(long a, long l, long mod) { long res = 0; while (l > 0) { if ((l & 1) == 1) { res = mulmod(res, a, mod); l >>= 1; } a = mulmod(a, a, mod); } return res; } private static long mulmod(long a, long b, long c) { long x = 0, y = a % c; while (b > 0) { if (b % 2 == 1) { x = (x + y) % c; } y = (y * 2L) % c; b /= 2; } return x % c; } static long binary_Expo(long a, long b) { long res = 1; while (b != 0) { if ((b & 1) == 1) { res *= a; --b; } a *= a; b /= 2; } return res; } static void swap(int a, int b) { int tp = b; b = a; a = tp; } static long Modular_Expo(long a, long b, long mod) { long res = 1; while (b != 0) { if ((b & 1) == 1) { res = (res * a) % mod; --b; } a = (a * a) % mod; b /= 2; } return res % mod; } static int i_gcd(int a, int b) { while (true) { if (b == 0) return a; int c = a; a = b; b = c % b; } } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long ceil_div(long a, long b) { return (a + b - 1) / b; } static int getIthBitFromInt(int bits, int i) { return (bits >> (i - 1)) & 1; } private static TreeMap<Long, Long> primeFactorize(long n) { TreeMap<Long, Long> pf = new TreeMap<>(Collections.reverseOrder()); long cnt = 0; long total = 1; for (long i = 2; (long) i * i <= n; ++i) { if (n % i == 0) { cnt = 0; while (n % i == 0) { ++cnt; n /= i; } pf.put(cnt, i); //total*=(cnt+1); } } if (n > 1) { pf.put(1L, n); //total*=2; } return pf; } //less than or equal private static int lower_bound(List<Integer> list, int val) { int ans = -1, lo = 0, hi = list.size() - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } private static int lower_bound(int[] arr, int val) { int ans = -1, lo = 0, hi = arr.length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } private static int lower_bound(long[] arr, long val) { int ans = -1, lo = 0, hi = arr.length - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] <= val) { ans = mid; lo = mid + 1; } else { hi = mid - 1; } } return ans; } // greater than or equal private static int upper_bound(List<Integer> list, int val) { int ans = list.size(), lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (list.get(mid) >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } private static int upper_bound(int[] arr, int val) { int ans = arr.length, lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } private static int upper_bound(long[] arr, long val) { int ans = arr.length, lo = 0, hi = ans - 1; while (lo <= hi) { int mid = (lo + hi) / 2; if (arr[mid] >= val) { ans = mid; hi = mid - 1; } else { lo = mid + 1; } } return ans; } // ==================== LIS & LNDS ================================ private static int LIS(int arr[], int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) { int idx = find1(list, arr[i]); if (idx < list.size()) list.set(idx, arr[i]); else list.add(arr[i]); } return list.size(); } private static int find1(List<Integer> list, int val) { int ret = list.size(), i = 0, j = list.size() - 1; while (i <= j) { int mid = (i + j) / 2; if (list.get(mid) >= val) { ret = mid; j = mid - 1; } else { i = mid + 1; } } return ret; } private static int LNDS(int[] arr, int n) { List<Integer> list = new ArrayList<>(); for (int i = 0; i < n; i++) { int idx = find2(list, arr[i]); if (idx < list.size()) list.set(idx, arr[i]); else list.add(arr[i]); } return list.size(); } private static int find2(List<Integer> list, int val) { int ret = list.size(), i = 0, j = list.size() - 1; while (i <= j) { int mid = (i + j) / 2; if (list.get(mid) <= val) { i = mid + 1; } else { ret = mid; j = mid - 1; } } return ret; } private static long nCr(long n, long r) { if (n - r > r) r = n - r; long ans = 1L; for (long i = r + 1; i <= n; i++) ans *= i; for (long i = 2; i <= n - r; i++) ans /= i; return ans; } private static boolean isPalindrome(String str) { int i = 0, j = str.length() - 1; while (i < j) if (str.charAt(i++) != str.charAt(j--)) return false; return true; } private static String reverseString(String str) { StringBuilder sb = new StringBuilder(str); return sb.reverse().toString(); } private static String sortString(String str) { int[] arr = new int[256]; for (char ch : str.toCharArray()) arr[ch]++; StringBuilder sb = new StringBuilder(); for (int i = 0; i < 256; i++) while (arr[i]-- > 0) sb.append((char) i); return sb.toString(); } static boolean isSquarefactor(int x, int factor, int target) { int s = (int) Math.round(Math.sqrt(x)); return factor * s * s == target; } static boolean isSquare(int x) { int s = (int) Math.round(Math.sqrt(x)); return x * x == s; } static int bs(ArrayList<Integer> al, int val) { int l = 0, h = al.size() - 1, mid = 0, ans = -1; while (l <= h) { mid = (l + h) >> 1; if (al.get(mid) == val) { return mid; } else if (al.get(mid) > val) { h = mid - 1; } else { l = mid + 1; } } return ans; } static void sort(int a[]) // heap sort { PriorityQueue<Integer> q = new PriorityQueue<>(); for (int i = 0; i < a.length; i++) q.add(a[i]); for (int i = 0; i < a.length; i++) a[i] = q.poll(); } static void shuffle(int[] in) { for (int i = 0; i < in.length; i++) { int idx = (int) (Math.random() * in.length); fast_swap(in, idx, i); } } public static int[] radixSort2(int[] a) { int n = a.length; int[] c0 = new int[0x101]; int[] c1 = new int[0x101]; int[] c2 = new int[0x101]; int[] c3 = new int[0x101]; for (int v : a) { c0[(v & 0xff) + 1]++; c1[(v >>> 8 & 0xff) + 1]++; c2[(v >>> 16 & 0xff) + 1]++; c3[(v >>> 24 ^ 0x80) + 1]++; } for (int i = 0; i < 0xff; i++) { c0[i + 1] += c0[i]; c1[i + 1] += c1[i]; c2[i + 1] += c2[i]; c3[i + 1] += c3[i]; } int[] t = new int[n]; for (int v : a) t[c0[v & 0xff]++] = v; for (int v : t) a[c1[v >>> 8 & 0xff]++] = v; for (int v : a) t[c2[v >>> 16 & 0xff]++] = v; for (int v : t) a[c3[v >>> 24 ^ 0x80]++] = v; return a; } static int[] computeLps(String pat) { int len = 0, i = 1, m = pat.length(); int lps[] = new int[m]; lps[0] = 0; while (i < m) { if (pat.charAt(i) == pat.charAt(len)) { ++len; lps[i] = len; ++i; } else { if (len != 0) { len = lps[len - 1]; } else { lps[i] = len; ++i; } } } return lps; } static ArrayList<Integer> kmp(String s, String pat) { ArrayList<Integer> al = new ArrayList<>(); int n = s.length(), m = pat.length(); int lps[] = computeLps(pat); int i = 0, j = 0; while (i < n) { if (s.charAt(i) == pat.charAt(j)) { i++; j++; if (j == m) { al.add(i - j); j = lps[j - 1]; } } else { if (j != 0) { j = lps[j - 1]; } else { i++; } } } return al; } static void reverse_ruffle_sort(int a[]) { shuffle(a); Arrays.sort(a); for (int l = 0, r = a.length - 1; l < r; ++l, --r) fast_swap(a, l, r); } static void ruffle_sort(int a[]) { shuffle(a); Arrays.sort(a); } static int getMax(int arr[], int n) { int mx = arr[0]; for (int i = 1; i < n; i++) if (arr[i] > mx) mx = arr[i]; return mx; } static ArrayList<Long> primeFactors(long n) { ArrayList<Long> al = new ArrayList<>(); al.add(1L); while (n % 2 == 0) { if (!al.contains(2L)) { al.add(2L); } n /= 2L; } for (long i = 3; (long) i * i <= n; i += 2) { while ((n % i == 0)) { if (!al.contains((long) i)) { al.add((long) i); } n /= i; } } if (n > 2) { if (!al.contains(n)) { al.add(n); } } return al; } public static long totFactors(long n) { long cnt = 0, tot = 1; while (n % 2 == 0) { n /= 2; ++cnt; } tot *= (cnt + 1); for (int i = 3; i <= Math.sqrt(n); i += 2) { cnt = 0; while (n % i == 0) { n /= i; ++cnt; } tot *= (cnt + 1); } if (n > 2) { tot *= 2; } return tot; } static int[] z_function(String s) { int n = s.length(), z[] = new int[n]; for (int i = 1, l = 0, r = 0; i < n; ++i) { if (i <= r) z[i] = Math.min(z[i - l], r - i + 1); while (i + z[i] < n && s.charAt(z[i]) == s.charAt(i + z[i])) ++z[i]; if (i + z[i] - 1 > r) { l = i; r = i + z[i] - 1; } } return z; } static void fast_swap(int[] a, int idx1, int idx2) { if (a[idx1] == a[idx2]) return; a[idx1] ^= a[idx2]; a[idx2] ^= a[idx1]; a[idx1] ^= a[idx2]; } static void fast_swap(long[] a, int idx1, int idx2) { if (a[idx1] == a[idx2]) return; a[idx1] ^= a[idx2]; a[idx2] ^= a[idx1]; a[idx1] ^= a[idx2]; } public static void fast_sort(long[] array) { ArrayList<Long> copy = new ArrayList<>(); for (long i : array) copy.add(i); Collections.sort(copy); for (int i = 0; i < array.length; i++) array[i] = copy.get(i); } static int factorsCount(int n) { boolean hash[] = new boolean[n + 1]; Arrays.fill(hash, true); for (int p = 2; p * p < n; p++) if (hash[p] == true) for (int i = p * 2; i < n; i += p) hash[i] = false; int total = 1; for (int p = 2; p <= n; p++) { if (hash[p]) { int count = 0; if (n % p == 0) { while (n % p == 0) { n = n / p; count++; } total = total * (count + 1); } } } return total; } static long binomialCoeff(long n, long k) { long res = 1; if (k > n - k) k = n - k; for (int i = 0; i < k; ++i) { res = (res * (n - i)); res /= (i + 1); } return res; } static long nck(long fact[], long inv[], long n, long k) { if (k > n) return 0; long res = fact[(int) n]; res = (int) ((res * inv[(int) k])); res = (int) ((res * inv[(int) (n - k)])); return res % mod; } public static long fact(long x) { long fact = 1; for (int i = 2; i <= x; ++i) { fact = fact * i; } return fact; } public static ArrayList<Long> getFact(long x) { ArrayList<Long> facts = new ArrayList<>(); for (long i = 2; i * i <= x; ++i) { if (x % i == 0) { facts.add(i); if (i != x / i) { facts.add(x / i); } } } return facts; } static void matrix_ex(long n, long[][] A, long[][] I) { while (n > 0) { if (n % 2 == 0) { Multiply(A, A); n /= 2; } else { Multiply(I, A); n--; } } } static void Multiply(long[][] A, long[][] B) { int n = A.length, m = A[0].length, p = B[0].length; long[][] C = new long[n][p]; for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { for (int k = 0; k < m; k++) { C[i][j] += ((A[i][k] % mod) * (B[k][j] % mod)) % mod; C[i][j] = C[i][j] % mod; } } } for (int i = 0; i < n; i++) { for (int j = 0; j < p; j++) { A[i][j] = C[i][j]; } } } public static HashMap<Character, Integer> sortMapDesc(HashMap<Character, Integer> map) { List<Map.Entry<Character, Integer>> list = new LinkedList<>(map.entrySet()); Collections.sort(list, (o1, o2) -> o2.getValue() - o1.getValue()); HashMap<Character, Integer> temp = new LinkedHashMap<>(); for (Map.Entry<Character, Integer> i : list) { temp.put(i.getKey(), i.getValue()); } return temp; } public static HashMap<Integer, Integer> sortMapAsc(HashMap<Integer, Integer> map) { List<Map.Entry<Integer, Integer>> list = new LinkedList<>(map.entrySet()); Collections.sort(list, (o1, o2) -> o1.getValue() - o2.getValue()); HashMap<Integer, Integer> temp = new LinkedHashMap<>(); for (Map.Entry<Integer, Integer> i : list) { temp.put(i.getKey(), i.getValue()); } return temp; } public static long lcm(long l, long l2) { long val = gcd(l, l2); return (l * l2) / val; } public static int isSubsequence(String s, String t) { int n = s.length(); int m = t.length(); if (m > n) { return Integer.MAX_VALUE; } int i = 0, j = 0, skip = 0; while (i < n && j < m) { if (s.charAt(i) == t.charAt(j)) { --skip; ++j; } ++skip; ++i; } while (i < n) { ++i; ++skip; } if (j != m) { skip = Integer.MAX_VALUE; } return skip; } static class TreeMultiSet<T> implements Iterable<T> { private final TreeMap<T, Integer> map; private int size; public TreeMultiSet() { map = new TreeMap<>(); size = 0; } public TreeMultiSet(boolean reverse) { if (reverse) map = new TreeMap<>(Collections.reverseOrder()); else map = new TreeMap<>(); size = 0; } public void clear() { map.clear(); size = 0; } public int size() { return size; } public int setSize() { return map.size(); } public boolean contains(T a) { return map.containsKey(a); } public boolean isEmpty() { return size == 0; } public Integer get(T a) { return map.getOrDefault(a, 0); } public void add(T a, int count) { int cur = get(a); map.put(a, cur + count); size += count; if (cur + count == 0) map.remove(a); } public void addOne(T a) { add(a, 1); } public void remove(T a, int count) { add(a, Math.max(-get(a), -count)); } public void removeOne(T a) { remove(a, 1); } public void removeAll(T a) { remove(a, Integer.MAX_VALUE - 10); } public T ceiling(T a) { return map.ceilingKey(a); } public T floor(T a) { return map.floorKey(a); } public T first() { return map.firstKey(); } public T last() { return map.lastKey(); } public T higher(T a) { return map.higherKey(a); } public T lower(T a) { return map.lowerKey(a); } public T pollFirst() { T a = first(); removeOne(a); return a; } public T pollLast() { T a = last(); removeOne(a); return a; } public Iterator<T> iterator() { return new Iterator<T>() { private final Iterator<T> iter = map.keySet().iterator(); private int count = 0; private T curElement; public boolean hasNext() { return iter.hasNext() || count > 0; } public T next() { if (count == 0) { curElement = iter.next(); count = get(curElement); } count--; return curElement; } }; } } public static long[][] combination(int l, int r) { long[][] pascal = new long[l + 1][r + 1]; pascal[0][0] = 1; for (int i = 1; i <= l; ++i) { pascal[i][0] = 1; for (int j = 1; j <= r; ++j) { pascal[i][j] = pascal[i - 1][j - 1] + pascal[i - 1][j]; } } return pascal; } public static long gcd(long... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = gcd(ret, array[i]); return ret; } public static long lcm(int... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = lcm(ret, array[i]); return ret; } public static int min(int a, int b) { return a < b ? a : b; } public static int min(int... array) { int ret = array[0]; for (int i = 1; i < array.length; ++i) ret = min(ret, array[i]); return ret; } public static long min(long a, long b) { return a < b ? a : b; } public static long min(long... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = min(ret, array[i]); return ret; } public static int max(int a, int b) { return a > b ? a : b; } public static int max(int... array) { int ret = array[0]; for (int i = 1; i < array.length; ++i) ret = max(ret, array[i]); return ret; } public static long max(long a, long b) { return a > b ? a : b; } public static long max(long... array) { long ret = array[0]; for (int i = 1; i < array.length; ++i) ret = max(ret, array[i]); return ret; } public static long sum(int... array) { long ret = 0; for (int i : array) ret += i; return ret; } public static long sum(long... array) { long ret = 0; for (long i : array) ret += i; return ret; } public static int modinv(long x, long mod) { return (int) (CP.Modular_Expo(x, mod - 2, mod) % mod); } public static int lcs(String s, String t) { int n = s.length(), m = t.length(); int dp[][] = new int[n + 1][m + 1]; for (int i = 0; i <= n; ++i) { for (int j = 0; j <= m; ++j) { if (i == 0 || j == 0) { dp[i][j] = 0; } else if (s.charAt(i - 1) == t.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return dp[n][m]; } } //segment tree public static class SegmentTree { int n; int[] arr, tree, lazy; SegmentTree(int arr[]) { this.arr = arr; this.n = arr.length; this.tree = new int[(n << 2)]; this.lazy = new int[(n << 2)]; build(1, 0, n - 1); } void build(int id, int start, int end) { if (start == end) tree[id] = arr[start]; else { int mid = (start + end) / 2, left = (id << 1), right = left + 1; build(left, start, mid); build(right, mid + 1, end); tree[id] = tree[left] + tree[right]; } } void update(int l, int r, int val) { update(1, 0, n - 1, l, r, val); } void update(int id, int start, int end, int l, int r, int val) { distribute(id, start, end); if (end < l || r < start) return; if (start == end) tree[id] += val; else if (l <= start && end <= r) { lazy[id] += val; distribute(id, start, end); } else { int mid = (start + end) / 2, left = (id << 1), right = left + 1; update(left, start, mid, l, r, val); update(right, mid + 1, end, l, r, val); tree[id] = tree[left] + tree[right]; } } int query(int l, int r) { return query(1, 0, n - 1, l, r); } int query(int id, int start, int end, int l, int r) { if (end < l || r < start) return 0; distribute(id, start, end); if (start == end) return tree[id]; else if (l <= start && end <= r) return tree[id]; else { int mid = (start + end) / 2, left = (id << 1), right = left + 1; return query(left, start, mid, l, r) + query(right, mid + 1, end, l, r); } } void distribute(int id, int start, int end) { if (start == end) tree[id] += lazy[id]; else { tree[id] += lazy[id] * (end - start + 1); lazy[(id << 1)] += lazy[id]; lazy[(id << 1) + 1] += lazy[id]; } lazy[id] = 0; } } //TRIE static class Trie { class Node { Node[] children; boolean isEnd; Node() { children = new Node[26]; } } Node root; Trie() { root = new Node(); } public void insert(String word) { Node curr = root; for (char ch : word.toCharArray()) { if (curr.children[ch - 'a'] == null) curr.children[ch - 'a'] = new Node(); curr = curr.children[ch - 'a']; } curr.isEnd = true; } public boolean find(String word) { Node curr = root; for (char ch : word.toCharArray()) { if (curr.children[ch - 'a'] == null) return false; curr = curr.children[ch - 'a']; } return curr.isEnd; } } //fenwick tree static class FT { long[] tree; int n; FT(int n) { this.n = n; this.tree = new long[n + 1]; } FT(int[] arr, int n) { this.n = n; this.tree = new long[n + 1]; for (int i = 1; i <= n; i++) { update(i, arr[i - 1]); } } void update(int idx, int val) { while (idx <= n) { tree[idx] += val; idx += idx & -idx; } } long query(int l, int r) { return getSum(r) - getSum(l - 1); } long getSum(int idx) { long ans = 0L; while (idx > 0) { ans += tree[idx]; idx -= idx & -idx; } return ans; } } //binary indexed tree static class BIT { long[][] tree; int n, m; BIT(int[][] mat, int n, int m) { this.n = n; this.m = m; tree = new long[n + 1][m + 1]; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { update(i, j, mat[i - 1][j - 1]); } } } void update(int x, int y, int val) { while (x <= n) { int t = y; while (t <= m) { tree[x][t] += val; t += t & -t; } x += x & -x; } } long query(int x1, int y1, int x2, int y2) { return getSum(x2, y2) - getSum(x1 - 1, y2) - getSum(x2, y1 - 1) + getSum(x1 - 1, y1 - 1); } long getSum(int x, int y) { long ans = 0L; while (x > 0) { int t = y; while (t > 0) { ans += tree[x][t]; t -= t & -t; } x -= x & -x; } return ans; } } static class BSTCustom<T extends Comparable<? super T>> { private Node<T> __root; private Node<T> __tempnode; private Node<T> __tempnode1; private long __size; private boolean __multi; public BSTCustom() { __root = null; __size = 0; __multi = false; } public BSTCustom(boolean __multi) { __root = null; __size = 0; this.__multi = __multi; } public long lower_bound(T data) { __tempnode = __root; long index = 0; while (__tempnode != null) { int _comparator = data.compareTo(__tempnode.data); if (_comparator < 0) { __tempnode = __tempnode._left; } else if (_comparator > 0) { index += (__tempnode.count + __tempnode._leftside); __tempnode = __tempnode._right; } else { index += (__tempnode._leftside); break; } } return index; } private Node<T> remove(Node<T> temp, T data, long count) { if (temp == null) return temp; int _comparator = data.compareTo(temp.data); if (_comparator < 0) temp._left = remove(temp._left, data, count); else if (_comparator > 0) temp._right = remove(temp._right, data, count); else { if (__multi && count < temp.count && temp.count > 1) { __size -= count; temp.count -= count; } else { __size -= temp.count; if (temp._left == null && temp._right == null) return null; else if (temp._left == null) return temp._right; else if (temp._right == null) return temp._left; else { __tempnode = minValue(temp._right); temp.data = __tempnode.data; temp.count = __tempnode.count; temp._right = remove(temp._right, __tempnode.data, __tempnode.count); __size += temp.count; } } } // for __leftside and _rightside count if (temp._left != null) temp._leftside = temp._left._leftside + temp._left._rightside + temp._left.count; else temp._leftside = 0; if (temp._right != null) temp._rightside = temp._right._leftside + temp._right._rightside + temp._right.count; else temp._rightside = 0; temp._height = Math.max(getheight(temp._left), getheight(temp._right)) + 1; //Balancing long diff = getDiff(temp); if (diff > 1) { if (getDiff(temp._left) >= 0) { temp = rightRotate(temp); } else { temp._left = leftRotate(temp._left); temp = rightRotate(temp); } } else if (diff < -1) { if (getDiff(temp._right) <= 0) { temp = leftRotate(temp); } else { temp._right = rightRotate(temp._right); temp = leftRotate(temp); } } return temp; } public T get(long index) { __tempnode = __root; long current = 0; while (__tempnode != null) { if (__tempnode._left == null) { if (__tempnode.count + current > index) return __tempnode.data; else { current += __tempnode.count; __tempnode = __tempnode._right; } } else { if (current + __tempnode._leftside > index) __tempnode = __tempnode._left; else if (current + __tempnode._leftside + __tempnode.count > index) return __tempnode.data; else { current += __tempnode.count + __tempnode._leftside; __tempnode = __tempnode._right; } } } return null; } private Node<T> minValue(Node<T> temp) { __tempnode = temp; while (__tempnode._left != null) __tempnode = __tempnode._left; return __tempnode; } public void insert(T data, long... count) { if (count.length == 0) __root = insert(__root, data, 1); else if (count[0] > 0) __root = insert(__root, data, count[0]); } public void remove(T data, long... count) { if (count.length == 0) __root = remove(__root, data, 1); else if (count[0] > 0) __root = remove(__root, data, count[0]); } private Node<T> insert(Node<T> temp, T data, long count) { if (temp == null) { if (__multi) { __size += count; return new Node<>(data, count); } else { __size++; return new Node<>(data); } } int _comparator = data.compareTo(temp.data); if (_comparator < 0) temp._left = insert(temp._left, data, count); else if (_comparator > 0) temp._right = insert(temp._right, data, count); else if (__multi) { __size += count; temp.count += count; } // for __leftside and _rightside count if (temp._left != null) temp._leftside = temp._left._leftside + temp._left._rightside + temp._left.count; else temp._leftside = 0; if (temp._right != null) temp._rightside = temp._right._leftside + temp._right._rightside + temp._right.count; else temp._rightside = 0; temp._height = Math.max(getheight(temp._left), getheight(temp._right)) + 1; //Balancing long diff = getDiff(temp); if (diff > 1) { if (data.compareTo(temp._left.data) < 0) { temp = rightRotate(temp); } else if (data.compareTo(temp._left.data) > 0) { temp._left = leftRotate(temp._left); temp = rightRotate(temp); } } else if (diff < -1) { if (data.compareTo(temp._right.data) > 0) { temp = leftRotate(temp); } else if (data.compareTo(temp._right.data) < 0) { temp._right = rightRotate(temp._right); temp = leftRotate(temp); } } return temp; } private Node<T> rightRotate(Node<T> temp) { __tempnode = temp._left; __tempnode1 = __tempnode._right; __tempnode._right = temp; temp._left = __tempnode1; //height updation temp._height = Math.max(getheight(temp._left), getheight(temp._right)) + 1; __tempnode._height = Math.max(getheight(__tempnode._left), getheight(__tempnode._right)) + 1; //count updation if (temp._left != null) temp._leftside = temp._left._leftside + temp._left._rightside + temp._left.count; else temp._leftside = 0; if (temp._right != null) temp._rightside = temp._right._leftside + temp._right._rightside + temp._right.count; else temp._rightside = 0; if (__tempnode._left != null) __tempnode._leftside = __tempnode._left._leftside + __tempnode._left._rightside + __tempnode._left.count; else __tempnode._leftside = 0; if (__tempnode._right != null) __tempnode._rightside = __tempnode._right._leftside + __tempnode._right._rightside + __tempnode._right.count; else __tempnode._rightside = 0; return __tempnode; } private Node<T> leftRotate(Node<T> temp) { __tempnode = temp._right; __tempnode1 = __tempnode._left; __tempnode._left = temp; temp._right = __tempnode1; //height updation temp._height = Math.max(getheight(temp._left), getheight(temp._right)) + 1; __tempnode._height = Math.max(getheight(__tempnode._left), getheight(__tempnode._right)) + 1; //count updation if (temp._left != null) temp._leftside = temp._left._leftside + temp._left._rightside + temp._left.count; else temp._leftside = 0; if (temp._right != null) temp._rightside = temp._right._leftside + temp._right._rightside + temp._right.count; else temp._rightside = 0; if (__tempnode._left != null) __tempnode._leftside = __tempnode._left._leftside + __tempnode._left._rightside + __tempnode._left.count; else __tempnode._leftside = 0; if (__tempnode._right != null) __tempnode._rightside = __tempnode._right._leftside + __tempnode._right._rightside + __tempnode._right.count; else __tempnode._rightside = 0; return __tempnode; } private long getDiff(Node<T> temp) { if (temp == null) return 0; return getheight(temp._left) - getheight(temp._right); } public long getheight(Node<T> temp) { if (temp == null) return 0; return temp._height; } public long size() { return this.__size; } private class Node<T> { T data; Node<T> _left; Node<T> _right; long _leftside; long _rightside; long _height; long count; public Node(T data) { this.data = data; this._left = null; this._right = null; this._leftside = 0; this._rightside = 0; this._height = 1; this.count = 1; } public Node(T data, long count) { this.data = data; this._left = null; this._right = null; this._leftside = 0; this._rightside = 0; this._height = 1; this.count = count; } } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(int[] array) { for (int i = 0; i < array.length; i++) { if (i != 0) { writer.print(' '); } writer.print(array[i]); } } public void printLine(int[] array) { print(array); writer.println(); } public void close() { writer.close(); } public void printLine(long i) { writer.println(i); } public void printLine(int i) { writer.println(i); } public void printLine(char c) { writer.println(c); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } void flush() { writer.flush(); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
8d19ed8e14d248a36005f3ba05ee3d5b
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/* "Everything in the universe is balanced. Every disappointment you face in life will be balanced by something good for you! Keep going, never give up." Just have Patience + 1... */ import javax.management.InstanceNotFoundException; import java.util.*; import java.lang.*; import java.io.*; public class Solution { public static void main(String[] args) throws java.lang.Exception { out = new PrintWriter(new BufferedOutputStream(System.out)); sc = new FastReader(); int test = 1; for (int t = 0; t < test; t++) { solve(); } out.close(); } private static void solve() { int n = sc.nextInt(); long curr = 1; List<Integer> subseq = new ArrayList<>(); subseq.add(1); for (int i = 2; i < n; i++) { if (gcd(i, n) == 1) { subseq.add(i); curr *= i; curr %= n; } } int length = subseq.size(); if (curr != 1) { length--; } out.println(length); for (int i = 0; i < length; i++) { out.print(subseq.get(i) + " "); } out.println(); } private static int gcd(int a, int b) { if (b == 0) { return a; } return gcd(b,a % b); } public static FastReader sc; public static PrintWriter out; static class FastReader { BufferedReader br; StringTokenizer str; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (str == null || !str.hasMoreElements()) { try { str = new StringTokenizer(br.readLine()); } catch (IOException end) { end.printStackTrace(); } } return str.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException end) { end.printStackTrace(); } return str; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
903e6b7a84d39b42bf79ddea116aa9ee
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class product1 { static class FastIO extends PrintWriter { private InputStream stream; private byte[] buf = new byte[1 << 16]; private int curChar; private int numChars; // standard input public FastIO() { this(System.in, System.out); } public FastIO(InputStream i, OutputStream o) { super(o); stream = i; } // file input public FastIO(String i, String o) throws IOException { super(new FileWriter(o)); stream = new FileInputStream(i); } // throws InputMismatchException() if previously detected end of file private int nextByte() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars == -1) { return -1; // end of file } } return buf[curChar++]; } // to read in entire lines, replace c <= ' ' // with a function that checks whether c is a line break public String next() { int c; do { c = nextByte(); } while (c <= ' '); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = nextByte(); } while (c > ' '); return res.toString(); } public int nextInt() { // nextLong() would be implemented similarly int c; do { c = nextByte(); } while (c <= ' '); int sgn = 1; if (c == '-') { sgn = -1; c = nextByte(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res = 10 * res + c - '0'; c = nextByte(); } while (c > ' '); return res * sgn; } public double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args){ FastIO io = new FastIO(); int x = io.nextInt(); boolean[] elements = new boolean[x]; ArrayList<Integer> primes = primeDivisors(x); for(int p: primes){ for(int i = 0; i < x; i += p){ elements[i] = true; } } long product = 1; int count = 0; for(int i = 1; i < x; i++){ if(!elements[i]){ product *= i; product %= x; count++; } } if(product != 1){ elements[(int) product] = true; count--; } io.println(count); for(int i = 1; i < x; i++){ if(!elements[i]){ io.print(i + " "); } } io.close(); } static ArrayList<Integer> primeDivisors(int x){ ArrayList<Integer> primeList = new ArrayList<>(); int y = x; for(int i = 2; i * i <= y; i++){ if(y % i == 0){ primeList.add(i); while(y % i == 0){ y /= i; } } } if(y > 1){ primeList.add(y); } return primeList; } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
8029c548ad2d889f9e2b7d76a1dcc44c
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//some updates in import stuff import static java.lang.Math.max; import static java.lang.Math.min; import static java.lang.Math.abs; import java.util.*; import java.io.*; import java.math.*; //update this bad boi too public class Main{ static int mod = (int) (Math.pow(10, 9)+7); static final int dx[] = { -1, 0, 1, 0 }, dy[] = { 0, -1, 0, 1 }; static final int[] dx8 = { -1, -1, -1, 0, 0, 1, 1, 1 }, dy8 = { -1, 0, 1, -1, 1, -1, 0, 1 }; static final int[] dx9 = { -1, -1, -1, 0, 0, 0, 1, 1, 1 }, dy9 = { -1, 0, 1, -1, 0, 1, -1, 0, 1 }; static final double eps = 1e-10; static List<Integer> primeNumbers = new ArrayList<>(); public static void main(String[] args) throws IOException{ MyScanner sc = new MyScanner(); //changes in this line of code out = new PrintWriter(new BufferedOutputStream(System.out)); // out = new PrintWriter(new BufferedWriter(new FileWriter("output.out"))); //WRITE YOUR CODE IN HERE long n = sc.nextInt(); long product = 1; ArrayList<Long> ans = new ArrayList<>(); for(long i = 1 ; i <= n; i++){ if(gcd(i, n) == 1){ ans.add(i); product = (product * i)%n; } } if(product % n != 1){ ans.remove(ans.size()-1); } out.println(ans.size()); for(long i : ans){ out.print(i + " "); } out.println(); out.close(); } //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //Updation Required //Fenwick Tree (customisable) //Segment Tree (customisable) //-----CURRENTLY PRESENT-------// //Graph //DSU //powerMODe //power //Segment Tree (work on this one) //Prime Sieve //Count Divisors //Next Permutation //Get NCR //isVowel //Sort (int) //Sort (long) //Binomial Coefficient //Pair //Triplet //lcm (int & long) //gcd (int & long) //gcd (for binomial coefficient) //swap (int & char) //reverse //Fast input and output //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //------------------------------------------------------------------- //GRAPH (basic structure) public static class Graph{ public int V; public ArrayList<ArrayList<Integer>> edges; //2 -> [0,1,2] (current) Graph(int V){ this.V = V; edges = new ArrayList<>(V+1); for(int i= 0; i <= V; i++){ edges.add(new ArrayList<>()); } } public void addEdge(int from , int to){ edges.get(from).add(to); } } //DSU (path and rank optimised) public static class DisjointUnionSets { int[] rank, parent; int n; public DisjointUnionSets(int n) { rank = new int[n]; parent = new int[n]; Arrays.fill(rank, 1); Arrays.fill(parent,-1); this.n = n; } public int find(int curr){ if(parent[curr] == -1) return curr; //path compression optimisation return parent[curr] = find(parent[curr]); } public void union(int a, int b){ int s1 = find(a); int s2 = find(b); if(s1 != s2){ if(rank[s1] < rank[s2]){ parent[s1] = s2; rank[s2] += rank[s1]; }else{ parent[s2] = s1; rank[s1] += rank[s2]; } } } } //with mod public static long powerMOD(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ x %= mod; res %= mod; res = (res * x)%mod; } // y must be even now y = y >> 1; // y = y/2 x%= mod; x = (x * x)%mod; // Change x to x^2 } return res%mod; } //without mod public static long power(long x, long y) { long res = 1L; while (y > 0) { // If y is odd, multiply x with result if ((y & 1) != 0){ res = (res * x); } // y must be even now y = y >> 1; // y = y/ x = (x * x); } return res; } public static class segmentTree{ public long[] arr; public long[] tree; public long[] lazy; segmentTree(long[] array){ int n = array.length; arr = new long[n]; for(int i= 0; i < n; i++) arr[i] = array[i]; tree = new long[4*n + 1]; lazy = new long[4*n + 1]; } public void build(int[]arr, int s, int e, int[] tree, int index){ if(s == e){ tree[index] = arr[s]; return; } //otherwise divide in two parts and fill both sides simply int mid = (s+e)/2; build(arr, s, mid, tree, 2*index); build(arr, mid+1, e, tree, 2*index+1); //who will build the current position dude tree[index] = Math.min(tree[2*index], tree[2*index+1]); } public int query(int sr, int er, int sc, int ec, int index, int[] tree){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(sc != ec){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap if(sr > ec || sc > er) return Integer.MAX_VALUE; //found the index baby if(sr <= sc && ec <= er) return tree[index]; //finding the index on both sides hehehehhe int mid = (sc + ec)/2; int left = query(sr, er, sc, mid, 2*index, tree); int right = query(sr, er, mid+1, ec, 2*index + 1, tree); return Integer.min(left, right); } //now we will do point update implementation //it should be simple then we expected for sure public void update(int index, int indexr, int increment, int[] tree, int s, int e){ if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] = lazy[index]; lazy[2*index] = lazy[index]; } lazy[index] = 0; } //no overlap if(indexr < s || indexr > e) return; //found the required index if(s == e){ tree[index] += increment; return; } //search for the index on both sides int mid = (s+e)/2; update(2*index, indexr, increment, tree, s, mid); update(2*index+1, indexr, increment, tree, mid+1, e); //now update the current range simply tree[index] = Math.min(tree[2*index+1], tree[2*index]); } public void rangeUpdate(int[] tree , int index, int s, int e, int sr, int er, int increment){ //if not at all in the same range if(e < sr || er < s) return; //complete then also move forward if(s == e){ tree[index] += increment; return; } //otherwise move in both subparts int mid = (s+e)/2; rangeUpdate(tree, 2*index, s, mid, sr, er, increment); rangeUpdate(tree, 2*index + 1, mid+1, e, sr, er, increment); //update current range too na //i always forget this step for some reasons hehehe, idiot tree[index] = Math.min(tree[2*index], tree[2*index + 1]); } public void rangeUpdateLazy(int[] tree, int index, int s, int e, int sr, int er, int increment){ //update lazy values //resolve lazy value before going down if(lazy[index] != 0){ tree[index] += lazy[index]; if(s != e){ lazy[2*index+1] += lazy[index]; lazy[2*index] += lazy[index]; } lazy[index] = 0; } //no overlap case if(sr > e || s > er) return; //complete overlap if(sr <= s && er >= e){ tree[index] += increment; if(s != e){ lazy[2*index+1] += increment; lazy[2*index] += increment; } return; } //otherwise go on both left and right side and do your shit int mid = (s + e)/2; rangeUpdateLazy(tree, 2*index, s, mid, sr, er, increment); rangeUpdateLazy(tree, 2*index + 1, mid+1, e, sr, er, increment); tree[index] = Math.min(tree[2*index+1], tree[2*index]); return; } } //prime sieve public static void primeSieve(int n){ BitSet bitset = new BitSet(n+1); for(long i = 0; i < n ; i++){ if (i == 0 || i == 1) { bitset.set((int) i); continue; } if(bitset.get((int) i)) continue; primeNumbers.add((int)i); for(long j = i; j <= n ; j+= i) bitset.set((int)j); } } //number of divisors public static int countDivisors(long number){ if(number == 1) return 1; List<Integer> primeFactors = new ArrayList<>(); int index = 0; long curr = primeNumbers.get(index); while(curr * curr <= number){ while(number % curr == 0){ number = number/curr; primeFactors.add((int) curr); } index++; curr = primeNumbers.get(index); } if(number != 1) primeFactors.add((int) number); int current = primeFactors.get(0); int totalDivisors = 1; int currentCount = 2; for (int i = 1; i < primeFactors.size(); i++) { if (primeFactors.get(i) == current) { currentCount++; } else { totalDivisors *= currentCount; currentCount = 2; current = primeFactors.get(i); } } totalDivisors *= currentCount; return totalDivisors; } //now adding next permutation function to java hehe public static boolean next_permutation(int[] p) { for (int a = p.length - 2; a >= 0; --a) if (p[a] < p[a + 1]) for (int b = p.length - 1;; --b) if (p[b] > p[a]) { int t = p[a]; p[a] = p[b]; p[b] = t; for (++a, b = p.length - 1; a < b; ++a, --b) { t = p[a]; p[a] = p[b]; p[b] = t; } return true; } return false; } //finding the value of NCR in O(RlogN) time and O(1) space public static long getNcR(int n, int r) { long p = 1, k = 1; if (n - r < r) r = n - r; if (r != 0) { while (r > 0) { p *= n; k *= r; long m = __gcd(p, k); p /= m; k /= m; n--; r--; } } else { p = 1; } return p; } //is vowel function public static boolean isVowel(char c) { return (c=='a' || c=='A' || c=='e' || c=='E' || c=='i' || c=='I' || c=='o' || c=='O' || c=='u' || c=='U'); } //to sort the array with better method public static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //sort long public static void sort(long[] a) { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //for calculating binomialCoeff public static int binomialCoeff(int n, int k) { int C[] = new int[k + 1]; // nC0 is 1 C[0] = 1; for (int i = 1; i <= n; i++) { // Compute next row of pascal // triangle using the previous row for (int j = Math.min(i, k); j > 0; j--) C[j] = C[j] + C[j - 1]; } return C[k]; } //Pair with int int public static class Pair{ public int a; public int b; Pair(int a , int b){ this.a = a; this.b = b; } @Override public String toString(){ return a + " -> " + b; } } //Triplet with int int int public static class Triplet{ public int a; public int b; public int c; Triplet(int a , int b, int c){ this.a = a; this.b = b; this.c = c; } @Override public String toString(){ return a + " -> " + b; } } //Shortcut function public static long lcm(long a , long b){ return a * (b/gcd(a,b)); } //let's make one for calculating lcm basically public static int lcm(int a , int b){ return (a * b)/gcd(a,b); } //int version for gcd public static int gcd(int a, int b){ if(b == 0) return a; return gcd(b , a%b); } //long version for gcd public static long gcd(long a, long b){ if(b == 0) return a; return gcd(b , a%b); } //for ncr calculator(ignore this code) public static long __gcd(long n1, long n2) { long gcd = 1; for (int i = 1; i <= n1 && i <= n2; ++i) { // Checks if i is factor of both integers if (n1 % i == 0 && n2 % i == 0) { gcd = i; } } return gcd; } //swapping two elements in an array public static void swap(int[] arr, int left , int right){ int temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //for char array public static void swap(char[] arr, int left , int right){ char temp = arr[left]; arr[left] = arr[right]; arr[right] = temp; } //reversing an array public static void reverse(int[] arr){ int left = 0; int right = arr.length-1; while(left <= right){ swap(arr, left,right); left++; right--; } } //-----------PrintWriter for faster output--------------------------------- public static PrintWriter out; //-----------MyScanner class for faster input---------- public static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } // public MyScanner() throws FileNotFoundException { // br = new BufferedReader(new FileReader("input.in")); // } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } //-------------------------------------------------------- }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
8cb8f83d4356bc5a2b25ed0de027d4a8
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
// \(≧▽≦)/ import java.io.*; import java.util.*; public class tank { static final FastScanner fs = new FastScanner(); //static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int t = 1; while(t-- > 0) { run_case(); } //out.close(); } static void run_case() { int n = fs.nextInt(), an = 0; if(n == 2) { System.out.println(1 + "\n" + 1); return; } ArrayList<Integer> a = new ArrayList<>(); long p = 1; for (int i = 1; i < n; i++) { if(gcd(i, n) == 1) { a.add(i); p = (p * i) % n; } } StringBuilder sb = new StringBuilder(); for(int i: a) { if(p == n - 1 && p == i) continue; sb.append(i).append(' '); an++; } System.out.println(an); System.out.println(sb); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } String nextLine(){ try { return br.readLine(); } catch (IOException e) { e.printStackTrace(); } return ""; } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
ed88171089c229ca4b264f74dd0e894b
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
//package Practise; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Random; import java.util.StringTokenizer; public class Product1ModuloN { public static void main(String args[]) { FastScanner fs=new FastScanner(); int n=fs.nextInt(); int []arr=new int[n]; long product=1; for(int i=1;i<n;i++) { //System.out.println(i+" "+gcd(i,n)); if(gcd(i,n)==1) { arr[i]=1; product=(product*i)%n; } } //System.out.println("product "+product); if(product!=1) { arr[(int)product]=0; } int count=0; for(int i=0;i<n;i++) { if(arr[i]==1) count++; } System.out.println(count); for(int i=0;i<n;i++) { if(arr[i]==1) System.out.print(i+" "); } //System.out.println(); } public static int gcd(int a,int b) { if(b==0) return a; return gcd(b,a%b); } static final Random random=new Random(); static void ruffleSort(int[] a) { int n=a.length;//shuffle, then sort for (int i=0; i<n; i++) { int oi=random.nextInt(n), temp=a[oi]; a[oi]=a[i]; a[i]=temp; } Arrays.sort(a); } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
a2d595abeeb65fb1135f3afc04cda302
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class Practice { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextInt(); long product = 1; ArrayList<Long> set = new ArrayList<>(); set.add(1L); for(long i=2;i<n;i++){ long gcd = findGcd(i,n); if(gcd==1){ set.add(i); product = product * i; product %= n; } } if(product!=1) { set.remove(product); } StringBuilder sb = new StringBuilder(); for(long x: set) { sb.append(x); sb.append(" "); } System.out.println(set.size()); System.out.println(sb.toString().trim()); } private static long findGcd(long a, long b) { if(b==0) return a; return findGcd(b, a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
451d8f98d6d91960404b3ff1cc529a75
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); long prod = 1; List<Long> output = new ArrayList<>(); for(long k = 1; k < n; k++) { if(gcd(n,k) == 1) { prod = (prod*k) % n; output.add(k); } } if(prod == 1) { System.out.println(output.size()); for(long u: output) { System.out.print(u + " "); } } else { System.out.println(output.size() - 1 ); for(long u: output) { if(u != (prod+n) % n) { System.out.print(u + " "); } } } } public static long gcd(long a, long b) { if (b==0) return a; return gcd(b,a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
485822625757012204aad0dcc94c24b8
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
/* JAI MATA DI */ import java.util.*; //import javax.print.attribute.HashAttributeSet; import java.io.*; import java.math.BigInteger; import java.sql.Array; public class CP { static class FR{ BufferedReader br; StringTokenizer st; public FR() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static int mod = 1000000007; static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static boolean[] prime(int num) { boolean[] bool = new boolean[num]; for (int i = 0; i< bool.length; i++) { bool[i] = true; } for (int i = 2; i< Math.sqrt(num); i++) { if(bool[i] == true) { for(int j = (i*i); j<num; j = j+i) { bool[j] = false; } } } if(num >= 0) { bool[0] = false; bool[1] = false; } return bool; } static class Pair implements Comparable<Pair>{ int x; int y; Pair(int key , int value){ this.x = key; this.y = value; } @Override public int compareTo(Pair o) { return this.x - o.x; } // @Override // public int hashCode(){ // return val + ind; // } } public static void main(String args[]) { FR sc = new FR(); int n = sc.nextInt(); ArrayList<Long> al = new ArrayList<>(); long prod = 1; for(int i = 1; i <n-1 ; i++) { if(gcd(i, n) == 1) { prod *= i; prod %= n; al.add((long)i); } } if(prod*(n-1)%n == 1) al.add((long)n-1); StringBuilder sb = new StringBuilder(); for(long e:al) sb.append(e+" "); System.out.println(al.size()); System.out.println(sb); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
7cc4a32c6787c1db22e2d662229ec416
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.InputMismatchException; import java.util.List; public class Main { private static final String NO = "NO"; private static final String YES = "YES"; InputStream is; PrintWriter out; String INPUT = ""; private static final long MOD = 1000000007; private static final int MAXN = 100000; void solve() { int T = 1;//ni(); for (int i = 0; i < T; i++) { solve(i); } } void solve(int T) { int n = ni(); boolean b[] = new boolean[n]; long ans = 1; int cnt = 0; for (int i = 1; i < n; i++) { if (gcd(i, n) == 1) { b[i] = true; ans = (ans * i) % n; cnt++; } } if (ans != 1) { b[(int) ans] = false; cnt--; } out.println(cnt); for (int i = 1; i < n; i++) { if (b[i]) out.print(i + " "); } out.println(); } // a^b long power(long a, long b) { long x = 1, y = a; while (b > 0) { if (b % 2 != 0) { x = (x * y) % MOD; } y = (y * y) % MOD; b /= 2; } return x % MOD; } private long gcd(long a, long b) { while (a != 0) { long tmp = b % a; b = a; a = tmp; } return b; } void run() throws Exception { is = INPUT.isEmpty() ? System.in : new ByteArrayInputStream(INPUT.getBytes()); out = new PrintWriter(System.out); long s = System.currentTimeMillis(); solve(); out.flush(); if (!INPUT.isEmpty()) tr(System.currentTimeMillis() - s + "ms"); } public static void main(String[] args) throws Exception { new Main().run(); } private byte[] inbuf = new byte[1024]; public int lenbuf = 0, ptrbuf = 0; private int readByte() { if (lenbuf == -1) throw new InputMismatchException(); if (ptrbuf >= lenbuf) { ptrbuf = 0; try { lenbuf = is.read(inbuf); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return -1; } return inbuf[ptrbuf++]; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private int skip() { int b; while ((b = readByte()) != -1 && isSpaceChar(b)) ; return b; } private double nd() { return Double.parseDouble(ns()); } private char nc() { return (char) skip(); } private String ns() { int b = skip(); StringBuilder sb = new StringBuilder(); while (!(isSpaceChar(b))) { // when nextLine, (isSpaceChar(b) && b != ' // ') sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } private char[] ns(int n) { char[] buf = new char[n]; int b = skip(), p = 0; while (p < n) { if (!(isSpaceChar(b))) buf[p++] = (char) b; b = readByte(); } return n == p ? buf : Arrays.copyOf(buf, p); } private char[][] nm(int n, int m) { char[][] map = new char[n][]; for (int i = 0; i < n; i++) map[i] = ns(m); return map; } private int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } private List<Integer> na2(int n) { List<Integer> a = new ArrayList<Integer>(); for (int i = 0; i < n; i++) a.add(ni()); return a; } private int[][] na(int n, int m) { int[][] a = new int[n][]; for (int i = 0; i < n; i++) a[i] = na(m); return a; } private int ni() { int num = 0, b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private long[] nl(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nl(); return a; } private long[][] nl(int n, int m) { long[][] a = new long[n][]; for (int i = 0; i < n; i++) a[i] = nl(m); return a; } private long nl() { long num = 0; int b; boolean minus = false; while ((b = readByte()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = readByte(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = readByte(); } } private static void tr(Object... o) { System.out.println(Arrays.deepToString(o)); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
2df5014949e60deb207cfb3f2c97d9ce
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class MyClass { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static final long mod=(long)1e9+7; public static long pow(long a,int p) { long res=1; while(p>0) { if(p%2==1) { p--; res*=a; res%=mod; } else { a*=a; a%=mod; p/=2; } } return res; } public static void main(String args[]) { FastReader fs=new FastReader(); PrintWriter pw=new PrintWriter(System.out); int n=fs.nextInt(); if(n==2) { pw.println(1); pw.println(1); } else { TreeSet<Integer> ts=new TreeSet<>(); for(int i=1;i<n;i++) ts.add(i); for(int i=2;i<=n;i++) { if(n%i==0&&ts.contains(i)) { for(int j=i;j<n;j+=i) ts.remove(j); } } long prod=1; for(int i:ts) prod=(prod*i)%n; if(prod!=1) ts.pollLast(); pw.println(ts.size()); for(int i:ts) pw.print(i+" "); } pw.flush(); pw.close(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
26669e3a77ae66028bb9808a3b0c3928
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; import java.util.Map.Entry; public class Main{ static final int inf=Integer.MAX_VALUE; static final int mod=(int)1e9+7; //divide into cases, brute force //sort, greedy, binary search //transform into graph static void solve(Reader in, Writer out){ int n=in.ni(); TreeSet<Long> st=new TreeSet<>(); long pro=1; for(long i=1; i<n; ++i){ if(gcd(i,n)==1){ st.add(i); pro*=i; pro%=n; } } if(pro!=1){ st.remove(pro); } out.println(st.size()); for(long i: st){ out.print(i+" "); } out.println(); } public static void main(String[] args) throws IOException { Writer out=new Writer(System.out); Reader in=new Reader(System.in); int ts=1; // ts=in.ni(); while(ts-->0) { solve(in, out); } out.close(); } static long ppow(long n, long m){ if(m==0) return 1; long tmp=ppow(n,m/2); tmp=tmp*tmp%mod; return m%2==0 ? tmp : tmp*n %mod; } static long gcd(long n, long m){ return m==0 ? n : gcd(m, n%m); } static long lcm(long n, long m){ return n/gcd(n,m)*m; } static int smaller(long [] a, long k){ if(a[0]>k) return 0; int t=0; for(int j=a.length; j>=1; j/=2){ while(t+j<a.length && a[t+j]<k) t+=j; } return t+1; } static void reverse(int a[]){ ArrayList<Integer> al=new ArrayList<>(); for(int i: a) al.add(i); Collections.reverse(al); for(int i=0; i<al.size(); ++i) a[i]=al.get(i); } static void sort(long a[]) { ArrayList<Long> al=new ArrayList<>(); for(long i: a) al.add(i); Collections.sort(al); for(int i=0; i<a.length; ++i) a[i]=al.get(i); } static void sort(pair [] p){ ArrayList<pair> pl=new ArrayList<>(); for(pair pa: p) pl.add(pa); Collections.sort(pl, (p1, p2)->{ return Long.compare(p1.u, p2.u)==0 ? Long.compare(p1.v,p2.v): Long.compare(p1.u,p2.u); }); for(int i=0; i<p.length; ++i) p[i]=pl.get(i); } static void reverse(pair[] p){ int n=p.length; for(int i=0; i<p.length/2; ++i){ pair tmp=new pair(0,0); tmp.copy(p[i]); p[i].copy(p[n-1-i]); p[n-1-i].copy(tmp); } } static class pair{ long u, v; pair(long g, long h){u=g; v=h;} void copy(pair p){u=p.u; v=p.v;}; } static class Reader{ BufferedReader br; StringTokenizer to; Reader(InputStream stream){ br=new BufferedReader(new InputStreamReader(stream)); to=new StringTokenizer(""); } String nextLine() { String line=""; try { line=br.readLine(); }catch(IOException e) {}; return line; } String ns() { while(!to.hasMoreTokens()) { try { to=new StringTokenizer(br.readLine()); }catch(IOException e) {} } return to.nextToken(); } int ni() { return Integer.parseInt(ns()); } long nl() { return Long.parseLong(ns()); } int [] ra(int n) { int a[]=new int[n]; for(int i=0; i<n; i++) a[i]=ni(); return a; } long [] rla(int n) { long [] a =new long[n]; for(int i=0; i<n; ++i) a[i]=nl(); return a; } } static class Writer extends PrintWriter{ Writer(OutputStream stream){ super(stream); } void println(pair p){ println(p.u+" "+p.v); } void println(int a[]){ for(int i: a) print(i+" "); println(); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
3bb5dfa46fc23ade79afc39f0cf18d72
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.lang.*; public final class CodeForces { static FastScanner scan = new FastScanner(); static StringBuffer output = new StringBuffer(); static final long MOD = (long) (1e9 + 7); public static void main(String[] args) throws IOException { int t = 1; //t = scan.nextInt(); while (t-- > 0) { solve(); } System.out.println(output); } static void solve() throws IOException { int n = scan.nextInt(); boolean[] selected = new boolean[n]; int count = 0; long product = 1; for(int i=1;i<n;i++) { if(gcd(i, n) == 1) { selected[i] = true; count ++; product = (product * i) % n; } } if(product != 1) { selected[(int) product] = false; count --; } output.append(count).append("\n"); for(int i=1;i<n;i++) { if(selected[i]) output.append(i).append(" "); } } static int gcd(int a, int b) { return (b == 0) ? a : gcd(b, a%b); } static class FastScanner { String line; String[] values; int position; BufferedReader bufferedReader; FastScanner() { bufferedReader = new BufferedReader(new InputStreamReader(System.in)); } FastScanner(Boolean test) { InputStream inputStream = CodeForces.class.getResourceAsStream("test.txt"); InputStreamReader inputStreamReader = new InputStreamReader(inputStream); bufferedReader = new BufferedReader(inputStreamReader); } void readLine() throws IOException { if (values == null || position == values.length) { line = bufferedReader.readLine(); values = line.trim().split(" "); position = 0; } } String next() throws IOException { readLine(); return values[position++]; } Integer nextInt() throws IOException { return Integer.parseInt(next()); } Long nextLong() throws IOException { return Long.parseLong(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
63f05dc0796385897d0555ea2aba64b7
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.PriorityQueue; import java.util.StringTokenizer; import java.io.*; public class Product1Mod { private static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static int gcd(int a, int b) { if(b==0) return a; return gcd(b,a%b); } public static void solution(int n) { ArrayList<Integer> list = new ArrayList<>(); for(int i = 1; i<=n-1; i++) { if(gcd(i,n)==1) list.add(i); } long pro = 1; for(int i = 0; i<list.size(); i++) pro = (pro%n * list.get(i)%n)%n; if(pro==1) { out.println(list.size()); for(int i = 0; i<list.size(); i++) out.print(list.get(i)+" "); return; } out.println(list.size()-1); for(int i = 0; i<list.size(); i++) { if(list.get(i)!=pro) out.print(list.get(i)+" "); } return; } private static PrintWriter out = new PrintWriter(System.out); public static void main (String[] args) { MyScanner s = new MyScanner(); int n = s.nextInt(); solution(n); out.flush(); out.close(); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
5c85ec38e951900ec31c99e7a4944e65
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.*; import java.io.*; public class Main { static InputReader scn = new InputReader(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] HastaLaVistaLa) { // Running Number Of TestCases (t) int t = 1; while(t-- > 0) solve(); out.close(); } public static void dummy(){ int n = scn.nextInt(); out.println(n); } static int max = 0; static int[] dp; static int MOD = 100; public static void solve() { // Main Solution (AC) int n = scn.nextInt(); List<Integer> ans = new ArrayList<>(); for(int i = 1; i < n; i++) { if(gcd(i, n) == 1) ans.add(i); } while(true) { long prod = 1; for(int i = 0; i < ans.size(); i++) { prod *= ans.get(i); prod %= n; } if(prod == 1) { out.println(ans.size()); for(int i : ans) out.print(i + " "); break; }else ans.remove(ans.get(ans.size() - 1)); } } public static long binpow(long n, long m, long mod) { long res = 1; while (m > 0) { if (m % 2 == 1) { res *= n; res %= mod; m--; } n *= n; n %= mod; m /= 2; } return res; } public static HashMap<Integer, Integer> CountFrequencies(int[] arr) { HashMap<Integer, Integer> map = new HashMap<>(); for (int i : arr) { if (map.containsKey(i)) map.put(i, map.get(i) + 1); else map.put(i, 1); } return map; } public static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static long sum(int[] arr) { long sum = 0; for(int i : arr) sum += i; return sum; } // Number of Divisor for Range [l, r] public static int[] NumberOFDivisors(int l, int r) { int[] arr = new int[l - r + 1]; for(int i = l; i <= r; i++) { for(int j = i; j <= r; j += i) arr[j]++; } return arr; } public static int LowerBound(int a[], int x) { // x is the target value or key int l = -1,r = a.length; while(l + 1 < r) { int m = (l + r) >>> 1; if(a[m] >= x) r = m; else l = m; } return r; } static boolean[] prime; public static void sieveOfEratosthenes(int n) { prime = new boolean[n+1]; for(int i=0;i<n;i++) prime[i] = true; for(int p = 2; p*p <=n; p++) { if(prime[p] == true) { for(int i = p*p; i <= n; i += p) prime[i] = false; } } } public static int UpperBound(long a[], long x) {// x is the key or target value int l = -1,r = a.length; while(l + 1 < r) { int m = (l + r) >>> 1; if(a[m] <= x) l = m; else r = m; } return l + 1; } public static long lcm(long a, long b) { return (a * b) / gcd(a, b); } public static void sort(int[] arr) { Random rand = new Random(); int n = arr.length; for(int i = 0; i<n; i++) { swap(arr, i, rand.nextInt(n)); } Arrays.sort(arr); } public static void swap(int[] arr, int i, int j) { if(i!=j) { arr[i] ^= arr[j]; arr[j] ^= arr[i]; arr[i] ^= arr[j]; } } public static void sortbyColumn(int[][] arr, int col) { Arrays.sort(arr, new Comparator<int[]>() { public int compare(final int[] entry1, final int[] entry2) { if (entry1[col] > entry2[col]) return 1; else return -1; } }); } public static void ArraySort2D(double[][] arr, int xy) { // xy == 0, for sorting wrt X-Axis // xy == 1, for sorting wrt Y-Axis Arrays.sort(arr, Comparator.comparingDouble(o -> o[xy])); } public static int binarySearch(int arr[], int l, int r, int x) { if (r >= l) { int mid = l + (r - l) / 2; if (arr[mid] == x) return mid; if (arr[mid] > x) return binarySearch(arr, l, mid - 1, x); return binarySearch(arr, mid + 1, r, x); } return -1; } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int[] readIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = scn.nextInt(); } return a; } public long[] readLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) { a[i] = scn.nextLong(); } return a; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String nextLine() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return nextLine(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
39071726dcb42be67bd1a5c365a3f4f9
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.ArrayList; import java.util.Scanner; public class A{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); long MOD = 1000000007; int t = 1; outer: for(int z=0; z<t; z++) { int n = sc.nextInt(); ArrayList<Integer> list = new ArrayList<>(); long val = 1; for(int i=1; i<n; i++) { if(gcd(i,n)==1) { list.add(i); val *= i; val %= n; } } if(val%n!=1) list.remove(list.size()-1); System.out.println(list.size()); for(int i: list) System.out.print(i + " "); } sc.close(); } public static int gcd(int a, int b) { if(b==0) return a; return gcd(b,a%b); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
7ec4aa32f4c0a966a5e6234805dcb40c
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class Codeforces { static FastScanner sc; static PrintWriter out; static int mod = (int) (1e9+7); public static void main(String[] args){ sc = new FastScanner(); out = new PrintWriter(System.out); int t = 1; while(t-- > 0){ solve(); } out.close(); } private static void solve() { int n = sc.nextInt(); ArrayList<Integer> arr = new ArrayList<>(); long product = 1l; for(int i=1; i<n; i++){ if(findGcd(i, n) == 1) { arr.add(i); product %= n; product *= i%n; } } int val = (int) (product%n); if(val != 1){ out.println(arr.size()-1); for(int i=0; i<arr.size(); i++){ if(arr.get(i) == val) continue; out.print(arr.get(i) + " "); } } else{ out.println(arr.size()); for(int i=0; i<arr.size(); i++){ out.print(arr.get(i) + " "); } } out.println(); } public static int nCr(int n, int k) { int C[] = new int[k + 1]; // nC0 is 1 C[0] = 1; for (int i = 1; i <= n; i++) { // Compute next row of pascal // triangle using the previous row for (int j = Math.min(i, k); j > 0; j--) C[j] = (C[j]%mod + C[j - 1]%mod)%mod; } return C[k]%mod; } private static int findLcm(int n, int m) { return n*m/findGcd(Math.min(n, m), Math.max(n, m)); } private static int findGcd(int n, int m) { if(n == 0) return m; return findGcd(m%n, n); } private static long findLcm(long n, long m) { return n*m/findGcd(Math.min(n, m), Math.max(n, m)); } private static long findGcd(long n, long m) { if(n == 0) return m; return findGcd(m%n, n); } public static void intSort (int[] arr) { //First ruffle int n = arr.length; Random r = new Random(); for (int i=0; i<arr.length; i++) { int j = r.nextInt(n); int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } //then sort Arrays.sort(arr); } public static void longSort (long[] arr) { //First ruffle int n = arr.length; Random r = new Random(); for (int i=0; i<arr.length; i++) { int j = r.nextInt(n); long temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } //then sort Arrays.sort(arr); } public static void sort2dArray (long[][] arr) { Arrays.sort(arr, (a, b) -> { if (a[0] == b[0]) return (int) (a[1] - b[1]); return (int) (a[0] - b[0]); }); // Arrays.sort(arr, (a, b) -> { // if (a[1] == b[1]) // return (int) (a[0] - b[0]); // return (int) (a[1] - b[1]); // }); } public static void sort2dArray (int[][] arr) { // Arrays.sort(arr, (a, b) -> { // if (a[1] == b[1]) // return (int) (a[0] - b[0]); // return (int) (a[1] - b[1]); // }); Arrays.sort(arr, (a, b) -> { if (a[0] == b[0]) return (int) (a[1] - b[1]); return (int) (a[0] - b[0]); }); } public static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
95a69ec31658b5ff5e84b9ccf1f19c74
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class C { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int n=scan.nextInt(); long ans=1; List<Integer>list=new ArrayList<>(); for(int i=1;i<n;i++){ if(gcd(i,n)==1){ list.add(i); ans=ans*i%n; } } if(ans!=1){ list.remove(list.size()-1); ans=1; for(int i=0;i<list.size();i++){ ans=ans*list.get(i)%n; } } //System.out.println(ans); System.out.println(list.size()); for(int x:list){ System.out.printf("%d ",x); } System.out.println(); } private static int ksm(int a,int b,int mod){ if(b==1)return a%mod; if(b==0)return 1%mod; int ans=ksm(a,b/2,mod); ans=ans*ans%mod; if(b%2==1)ans=ans*a%mod; return ans; } private static int gcd(int x,int y){ return y==0?x:gcd(y,x%y); } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output
PASSED
b4256e6d2794b97081c53a20bef14d36
train_110.jsonl
1618839300
Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$.
256 megabytes
import java.io.*; import java.util.*; import java.lang.*; public class Main { static long mod=(long) Math.pow(10,9) + 7; public static void main(String[] args) throws IOException { FastReader sc = new FastReader(); StringBuilder fout = new StringBuilder(); int t =1; while (t-- != 0) { int k = sc.nextInt(); Solve(k); } /*System.out.println(fout);*/ } public static void Solve(int n) { ArrayList<Integer> a=new ArrayList(); long val=1; for(int i=1;i<n;i++) { if(gcd(i,n)==1) { val*=i; val%=n; a.add(i); } } ArrayList<Integer> res=new ArrayList(); for(int i=0;i<a.size();i++) { if(a.get(i)==val && val!=1) continue; res.add(a.get(i)); } System.out.println(res.size()); for(int i=0;i<res.size();i++) System.out.print(res.get(i)+" "); } static void no() { System.out.println("No"); } static void yes() { System.out.println("Yes"); } static long gcd(long a, long b) { if (a == 0) return b; return gcd(b % a, a); } public static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["5", "8"]
1 second
["3\n1 2 3", "4\n1 3 5 7"]
NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$.
Java 11
standard input
[ "greedy", "number theory" ]
d55afdb4a83aebdfce5a62e4ec934adb
The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$).
1,600
The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any.
standard output