exec_outcome
stringclasses
1 value
code_uid
stringlengths
32
32
file_name
stringclasses
111 values
prob_desc_created_at
stringlengths
10
10
prob_desc_description
stringlengths
63
3.8k
prob_desc_memory_limit
stringclasses
18 values
source_code
stringlengths
117
65.5k
lang_cluster
stringclasses
1 value
prob_desc_sample_inputs
stringlengths
2
802
prob_desc_time_limit
stringclasses
27 values
prob_desc_sample_outputs
stringlengths
2
796
prob_desc_notes
stringlengths
4
3k
lang
stringclasses
5 values
prob_desc_input_from
stringclasses
3 values
tags
sequencelengths
0
11
src_uid
stringlengths
32
32
prob_desc_input_spec
stringlengths
28
2.37k
difficulty
int64
-1
3.5k
prob_desc_output_spec
stringlengths
17
1.47k
prob_desc_output_to
stringclasses
3 values
hidden_unit_tests
stringclasses
1 value
PASSED
609809b3a1150e587ce58e66604d961f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Aa { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); int n = 0; int a = 0; int s = 0; int c = 0; for(int i=1;i<=t;i++){ n = scan.nextInt(); for(int j=1;j<=n;j++){ a = scan.nextInt(); s = (int)Math.sqrt(a); if(s*s != a) c++; } if(c>0) System.out.println("YES"); else System.out.println("NO"); c=0; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
784b975d6f5033807d2f2153879edbbd
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Main { public static void main(String args[]){ Scanner in = new Scanner(System.in); int t = in.nextInt(); while(t-->0){ int n = in.nextInt(); int a[] = new int[n]; for(int i = 0; i < n; i++){ a[i] = in.nextInt(); } boolean flag = true; for(int i = 0; i < n; i++){ long sqrt = (long)Math.sqrt(a[i]); if(sqrt*sqrt != a[i]){ System.out.println("YES"); flag = false; break; } } if(flag){ System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
b2fa78f88b883ca96af00e9d321f78ff
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
// package codeforces; import java.io.*; import java.util.*; public class Setup { static int nextInt() throws IOException { return Integer.parseInt(next()); } static long nextLong() throws IOException { return Long.parseLong(next()); } private static String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } static BufferedReader br; static StringTokenizer st; public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); Scanner scn=new Scanner(System.in); int t = nextInt(); while (t-- > 0) { int n=nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) { arr[i]=nextInt(); } // long m=1; boolean c=true; for(int i=0;i<n;i++) { // double a=Math.sqrt(arr[i]); // double b=arr[i]; // System.out.println(b); // if(a*a!=b) { // c=false; // break; // } if(!isPerfectSquare(arr[i])) { c=false; break; } } if(c) { bw.append("NO"+"\n"); }else { bw.append("YES"+"\n"); } } bw.close(); } public static boolean isPerfectSquare(int n) { for (int i = 1; i * i <= n; i++) { if ((n % i == 0) && (n / i == i)) { return true; } } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
0f48326050f14d642890709f4d70c34a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/****************************************************************************** Online Java Compiler. Code, Compile, Run and Debug java program online. Write your code in this editor and press "Run" button to execute it. *******************************************************************************/ //Keshav Agarwal import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.StringTokenizer; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void reverse(int a[], int n) { int[] b = new int[n]; int j = n; for (int i = 0; i < n; i++) { b[j - 1] = a[i]; j = j - 1; } for (int k = 0; k < n; k++) { System.out.print(b[k]+" "); } } public int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } static void print(int a[], int n){ for(int i=0;i<n;i++){ System.out.print(a[i]+" "); } } public static boolean PerfectSquare(int n) { int squareroot=(int)Math.sqrt(n); if(squareroot*squareroot==n) { return true; }else { return false; } } static boolean checkPerfectSquare(double number) { double sqrt=Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } public static void main(String[] args) { FastReader scn = new FastReader(); int t=scn.nextInt(); while(t-->0){ int n=scn.nextInt(); int []arr=new int[n]; //int []a=new int[n]; for(int i=0;i<n;i++){ arr[i]=scn.nextInt(); } boolean flag=true; for(int i=0;i<n;i++) { if(PerfectSquare(arr[i])==false){ flag=false; break; } } if(flag) { System.out.println("NO"); }else{ System.out.println("YES"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
2147adcb02db913709384fee3a3bad8f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/****************************************************************************** Online Java Compiler. Code, Compile, Run and Debug java program online. Write your code in this editor and press "Run" button to execute it. *******************************************************************************/ //Keshav Agarwal import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.StringTokenizer; public class Main { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static void reverse(int a[], int n) { int[] b = new int[n]; int j = n; for (int i = 0; i < n; i++) { b[j - 1] = a[i]; j = j - 1; } for (int k = 0; k < n; k++) { System.out.print(b[k]+" "); } } public int gcd(int a,int b) { if(b==0) { return a; } return gcd(b,a%b); } static void print(int a[], int n){ for(int i=0;i<n;i++){ System.out.print(a[i]+" "); } } public static boolean PerfectSquare(int n) { int squareroot=(int)Math.sqrt(n); if(squareroot*squareroot==n) { return true; }else { return false; } } static boolean checkPerfectSquare(double number) { double sqrt=Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } public static void main(String[] args) { FastReader scn = new FastReader(); int t=scn.nextInt(); while(t-->0){ int n=scn.nextInt(); int []arr=new int[n]; //int []a=new int[n]; for(int i=0;i<n;i++){ arr[i]=scn.nextInt(); } boolean flag=true; for(int i=0;i<n;i++) { if(checkPerfectSquare(arr[i])==false){ flag=false; break; } } if(flag) { System.out.println("NO"); }else{ System.out.println("YES"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
de33e386934a7a824cb29d34164e32ec
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int arr[] = new int[n]; for(int i=0;i<n;i++) { arr[i] = sc.nextInt(); } int flag = 0; for(int i=0;i<n;i++) { if(Math.pow(Math.floor(Math.sqrt(arr[i])),2) != arr[i]) { flag = 1; break; } } if(flag == 0) { System.out.println("NO"); } else { System.out.println("YES"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
db538c1c86ea3764515683248dc36ade
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/* package codechef; // don't place package name! */ import java.io.*; import java.lang.*; import java.util.*; import java.util.Collection; import static java.lang.Math.*; public class Main implements Runnable { public void run() { InputReader s = new InputReader(System.in); PrintWriter out = new PrintWriter(System.out); int t = s.nextInt(); while(t-->0) { int n = s.nextInt(); int[] arr = new int[n]; for(int i=0;i<n;i++) { arr[i] = s.nextInt(); } int count = 0; for(int i=0;i<n;i++) { int root = (int)Math.sqrt(arr[i]); if(root * root != arr[i]) { count++; } } if(count != 0) { out.println("YES"); } else { out.println("NO"); } } out.close(); } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars;; private SpaceCharFilter filter; private BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars==-1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if(numChars <= 0) return -1; } return buf[curChar++]; } public String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int nextInt() { int c = read(); while(isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if(c<'0'||c>'9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long nextLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public double nextDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, nextInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } public static void main(String args[]) throws Exception { new Thread(null, new Main(),"Main",1<<26).start(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
bc96380edd629a56778ed1e06f53c8d5
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class PerfectImperfectArray { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(br.readLine()); if (t < 1 || t > 100) return; for (int i = 0; i < t * 2; i += 2) { int n = Integer.parseInt(br.readLine()); if (n < 1 || n > 100) return; StringTokenizer tk = new StringTokenizer(br.readLine()); int[] arr = new int[n]; boolean hasImperfectSq = false; for (int j = 0; j < n; j++) { arr[j] = Integer.parseInt(tk.nextToken()); if (arr[j] < 1 || arr[j] > 10000) return; int sq = (int) Math.sqrt(arr[j]); if (sq * sq != arr[j]) { hasImperfectSq = true; break; } } if (hasImperfectSq) { System.out.println("YES"); } else { System.out.println("NO"); } } br.close(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
49a490683fc81db8baae2cc85503fd5e
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.StringTokenizer; public class TestMain { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public void solve(FastReader fr) { // FastReader fr = new FastReader(); int n = fr.nextInt(); boolean found = false; // System.out.println("N is" + n); int arr[] = new int[n]; for(int i=0; i<n; ++i){ arr[i] = fr.nextInt(); } for(int i=0; i<n; ++i){ int element = arr[i]; if(element == 1){ continue; } boolean psquare = false; for(int k=1; k<= element/2; ++k){ if(k*k == element){ psquare = true; break; } } if(!psquare){ found = true; } } if(found){ System.out.println("YES"); }else{ System.out.println("NO"); } } public static void main(String[] args) { int tc; FastReader fr = new FastReader(); tc = fr.nextInt(); while (tc>=1) { new TestMain().solve(fr); tc--; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
d9ea10527cfc5ac73e44ccbfdc81684c
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Main { public static void main(String args[])throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); int flag=0; for(int xyz=0; xyz<t ;xyz++) { flag=0; int n=Integer.parseInt(br.readLine()); int arr[]=new int[n]; String str=br.readLine(); StringTokenizer st=new StringTokenizer(str," "); for(int j=0; j<n; j++) { arr[j]=Integer.parseInt(st.nextToken()); } long sr=0; for(int j=0; j<n; j++) { sr=(long)Math.sqrt(arr[j]); if(sr*sr!=arr[j]) {flag=1; break; } } if(flag==1) { System.out.print("YES"); } else System.out.print("NO"); System.out.println(); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
40e4d794aa7c1265c609485b8b0e379f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { // your code goes here Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); boolean flag=true; while(n-->0){ int k=sc.nextInt(); if(Math.sqrt(k)!=(int)Math.sqrt(k) && flag){ System.out.println("YES"); flag=false; } } if(flag) System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
3c0a8e41be396b4b45e31eadc1098d4b
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class A { public static void main(String args[]) throws IOException { FastReader sc = new FastReader(); PrintWriter out = new PrintWriter(System.out); int tc, i, j; String s; char p; tc = sc.nextInt(); while (tc-- > 0) { int n = sc.nextInt(); int arr[] = sc.readArray(n); long prod=1; boolean flag=false; int count=0; for (i = 0; i < n; i++) { int temp= (int)Math.sqrt(arr[i]); if ((temp*temp)!=arr[i]){ flag=true; break; } } if (!flag) out.println("NO"); else out.println("YES"); } out.close(); } /*-------------------------------------------------------- ----------------------------------------------------------*/ //Pair Class public static class Pair implements Comparable<Pair> { int x, y; Pair(int x, int y) { this.x = x; this.y = y; } @Override public int compareTo(Pair o) { return this.x - o.x; } } /* FASTREADER */ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } /*DEFINED BY ME*/ //READING ARRAY int[] readArray(int n) { int arr[] = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } //COLLECTIONS SORT void sort(int arr[]) { ArrayList<Integer> l = new ArrayList<>(); for (int i : arr) l.add(i); Collections.sort(l); for (int i = 0; i < arr.length; i++) arr[i] = l.get(i); } //EUCLID'S GCD int gcd(int a, int b) { if (b != 0) return gcd(b, a % b); else return a; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
eb110e7f6b48ff8dd631cb1d87ca536c
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class A_Perfectly_Imperfect_Array { static Scanner in=new Scanner(); static PrintWriter out=new PrintWriter(System.out); static int testCase,n; static long a[]; static boolean isPerfectSquare(long x) { if (x >= 0) { long sr = (long) Math.sqrt(x); return ((sr * sr) == x); } return false; } static void solve(){ long mul=1,psq=0,psqn=0; for(long i: a){ if( !isPerfectSquare(i) ){ out.println("YES"); out.flush(); return; } } out.println("NO"); out.flush(); } public static void main(String[] amit) throws IOException { testCase=in.nextInt(); for(int t=0;t<testCase;t++){ n=in.nextInt(); a=new long[n]; for(int i=0;i<n;i++){ a[i]=in.nextLong(); } solve(); } } static class Scanner{ BufferedReader in; StringTokenizer st; public Scanner() { in=new BufferedReader( new InputStreamReader( System.in ) ); } String next() throws IOException{ while( st==null || !st.hasMoreElements() ){ st=new StringTokenizer( in.readLine() ); } return st.nextToken(); } String nextLine() throws IOException{ return in.readLine(); } int nextInt() throws IOException{ return Integer.parseInt( next() ); } long nextLong() throws IOException{ return Long.parseLong( next() ); } double nextDouble() throws IOException{ return Double.parseDouble( next() ); } } } /* 2 3 1 5 4 2 100 10000 */ /* 1 5 1 2 3 4 5 */ /* 1 2 1444 5452 */
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
e9c8561af2e0a4102002f4e7bdf48ecb
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; public class Main { public static void main(String[] args) throws IOException { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); int t = Integer.parseInt(bf.readLine()); if (t<1 || t>100) System.exit(0); for (int z = 0; z < t; z++) { int n = Integer.parseInt(bf.readLine()); if (n<1 || n>100) System.exit(0); String[] values = bf.readLine().split(" "); boolean answered = false; for (int i = 0; i < n; i++) { int holder = Integer.parseInt(values[i]);if (holder<1 || holder>10000) System.exit(0); if(isPerfectSquare(holder))continue; else { System.out.println("YES"); answered = true; break; } } if (!answered) System.out.println("NO"); } } static boolean isPerfectSquare(int x){ if (x >= 0) { int sr = (int)Math.sqrt(x); return ((sr * sr) == x); } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
cd9a12c8c184dd47f3e55be07470aac4
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t=sc.nextInt(); while (t-->0) { int n=sc.nextInt(); int a[]=new int[n]; int flag=0; double b[]=new double[n]; for(int i=0;i<n;i++) { a[i]=sc.nextInt(); b[i]=(double) a[i]; } for(int i=0;i<n;i++) { if(!isPerfectSquare(a[i])) { flag=1; break; } } if(flag==1) System.out.println("YES"); else System.out.println("NO"); } } static boolean isPerfectSquare(int x) { if (x >= 0) { // Find floating point value of // square root of x. int sr = (int) Math.sqrt(x); // if product of square root // is equal, then // return T/F return ((sr * sr) == x); } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
7750e1e0a86fcd69f0fda6617d909530
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Demo { public static void main(String[] args) { Scanner sc = new Scanner(System.in); // A. int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int a[] = new int[n]; for(int i=0; i<n; i++) a[i] = sc.nextInt(); int cnt=0; for(int i=0; i<n; i++) { int x = a[i]; // System.out.println(x); for(int j=1; j<=x; j++) { // System.out.println(j*j+" "+x); if(j*j==x) { ++cnt; break; } else if(j*j>x) { break; } } } if(cnt==n) System.out.println("NO"); else System.out.println("YES"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
9ec5d362bf47e7796aa0c3aeabaa1698
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.awt.image.AreaAveragingScaleFilter; import java.io.*; import java.math.BigInteger; import java.text.DecimalFormat; import java.util.*; public class Pratice { final long mod = 1000000007; static StringBuilder sb = new StringBuilder(); static int xn = (int) (2e5 + 10); static long ans; // calculate sqrt and cuberoot static Set<Long> set=new TreeSet<>(); static { long n=1000000001; for(int i=1;i*i<=n;i++) { long x=i*i; set.add(x); } // for(int i=1;i*i*i<=n;i++) // { // long x=i*i*i; // set.add(x); // } } public static void main(String[] args) throws IOException { Reader reader = new Reader(); int t = reader.nextInt(); while (t-- > 0) { int n=reader.nextInt(); int arr[]=new int[n]; for (int i = 0; i < n; i++) { arr[i]=reader.nextInt(); } boolean flag=true; for(int i=0;i<n;i++) { if(!set.contains((long)arr[i])) { flag=false; break; } } if (flag) { System.out.println("No"); } else { System.out.println("Yes"); } } } static void SieveOfEratosthenes(int n, boolean prime[], boolean primesquare[], int a[]) { // Create a boolean array "prime[0..n]" and // initialize all entries it as true. A value // in prime[i] will finally be false if i is // Not a prime, else true. for (int i = 2; i <= n; i++) prime[i] = true; /* Create a boolean array "primesquare[0..n*n+1]" and initialize all entries it as false. A value in squareprime[i] will finally be true if i is square of prime, else false.*/ for (int i = 0; i < ((n * n) + 1); i++) primesquare[i] = false; // 1 is not a prime number prime[1] = false; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true) { // Update all multiples of p for (int i = p * 2; i <= n; i += p) prime[i] = false; } } int j = 0; for (int p = 2; p <= n; p++) { if (prime[p]) { // Storing primes in an array a[j] = p; // Update value in // primesquare[p*p], // if p is prime. primesquare[p * p] = true; j++; } } } // Function to count divisors static int countDivisors(int n) { // If number is 1, then it will // have only 1 as a factor. So, // total factors will be 1. if (n == 1) return 1; boolean prime[] = new boolean[n + 1]; boolean primesquare[] = new boolean[(n * n) + 1]; // for storing primes upto n int a[] = new int[n]; // Calling SieveOfEratosthenes to // store prime factors of n and to // store square of prime factors of n SieveOfEratosthenes(n, prime, primesquare, a); // ans will contain total number // of distinct divisors int ans = 1; // Loop for counting factors of n for (int i = 0;; i++) { // a[i] is not less than cube root n if (a[i] * a[i] * a[i] > n) break; // Calculating power of a[i] in n. // cnt is power of prime a[i] in n. int cnt = 1; // if a[i] is a factor of n while (n % a[i] == 0) { n = n / a[i]; // incrementing power cnt = cnt + 1; } // Calculating the number of divisors // If n = a^p * b^q then total // divisors of n are (p+1)*(q+1) ans = ans * cnt; } // if a[i] is greater than cube root // of n // First case if (prime[n]) ans = ans * 2; // Second case else if (primesquare[n]) ans = ans * 3; // Third case else if (n != 1) ans = ans * 4; return ans; // Total divisors } public static long[] inarr(long n) throws IOException { Reader reader = new Reader(); long arr[]=new long[(int) n]; for (long i = 0; i < n; i++) { arr[(int) i]=reader.nextLong(); } return arr; } public static boolean checkPerfectSquare(int number) { int x=number % 10; if (x==2 || x==3 || x==7 || x==8) { return false; } for (int i=0; i<=number/2 + 1; i++) { if (i*i==number) { return true; } } return false; } // check number is prime or not public static boolean isPrime(int n) { return BigInteger.valueOf(n).isProbablePrime(1); } // return the gcd of two numbers public static long gcd(long a, long b) { BigInteger b1 = BigInteger.valueOf(a); BigInteger b2 = BigInteger.valueOf(b); BigInteger gcd = b1.gcd(b2); return gcd.longValue(); } // number of digits in the given number public static long numberOfDigits(long n) { long ans= (long) (Math.floor((Math.log10(n)))+1); return ans; } // return most significant bit in the number public static long mostSignificantNumber(long n) { double k=Math.log10(n); k=k-Math.floor(k); int ans=(int)Math.pow(10,k); return ans; } static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
6160d711e27dfabe3429f079a3411efe
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; import java.util.StringTokenizer; public class Hello { static long mod=(long) (Math.pow(10, 9)+7); public static void main(String[] args) { FastScanner sc=new FastScanner(); int t=sc.nextInt(); while(t-->0) { int n=sc.nextInt(); int[] arr=sc.readArray(n); Arrays.sort(arr); int cnt=0; for (int i = 0; i < arr.length; i++) { if(Math.sqrt(arr[i])-Math.floor(Math.sqrt(arr[i]))!=0) cnt++; } if(cnt>0) System.out.println("YES"); else System.out.println("NO"); } } public static void permute(String suffix,String pref) { if(suffix.length()==0) { System.out.println(pref); return; } for(int i=0;i<suffix.length();i++) { permute(suffix.substring(0,i)+suffix.substring(i+1),pref+suffix.charAt(i)); } } public static int gcd(int a,int b) { if(a==0) return b; return gcd(b%a,a); } static int pow(int a,int b) { int res=1; while(b>0) { if((b&1)==1) { res*=a; } a*=a; b>>=1; } return res; } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long nextLong() { return Long.parseLong(next()); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
dd14ae6bd3e0aaab6d39f00e9dad2125
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class A { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { int first, second; public Pair(int first, int second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(ob.second - second); } } static class Tuple implements Comparable<Tuple> { int first, second,third; public Tuple(int first, int second, int third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int[] parent; int[] rank; //Size of the trees is used as the rank public DSU(int n) { parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) //finding through path compression { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public boolean union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return false; //if they are already connected we exit by returning false. // if a's parent is less than b's parent if(rank[a] < rank[b]) { //then move a under b parent[a] = b; } //else if rank of j's parent is less than i's parent else if(rank[a] > rank[b]) { //then move b under a parent[b] = a; } //if both have the same rank. else { //move a under b (it doesnt matter if its the other way around. parent[b] = a; rank[a] = 1 + rank[a]; } return true; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static boolean isPrime(long n) { if(n == 1) { return false; } for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Long> SieveList(int n) { boolean prime[] = new boolean[(int)(n+1)]; Arrays.fill(prime, true); List<Long> l = new ArrayList<>(); for (long p=2; p*p<=n; p++) { if (prime[(int)(p)] == true) { for(long i=p*p; i<=n; i += p) { prime[(int)(p)] = false; } } } for (long p=2; p<=n; p++) { if (prime[(int)(p)] == true) { l.add(p); } } return l; } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static long lcm(long a, long b) { return (a / LongGCD(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long modPow(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return modPow(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } public static boolean isSq(long x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } public static long log2(long n) { long ans = (long)(log(n)/log(2)); return ans; } public static boolean isPow2(long n) { return (n != 0 && ((n & (n-1))) == 0); } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) * */ public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static void Sort(int[] a) { List<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); // Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(); int[] a = sc.readArray(n); boolean flag = false; for(int i = 0;i<n;i++) { if(!isSq(a[i])) { flag = true; break; } } fout.println((flag == true) ? "YES" : "NO"); } fout.close(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
8bd28b445321a03fbe824435a8802c1f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class A { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { long first, second; public Pair(long first, long second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(ob.second - second); } } static class Tuple implements Comparable<Tuple>{ long first, second,third; public Tuple(long first, long second, long third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int[] parent; int[] rank; //Size of the trees is used as the rank public DSU(int n) { parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) //finding through path compression { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public boolean union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return false; //if they are already connected we exit by returning false. // if a's parent is less than b's parent if(rank[a] < rank[b]) { //then move a under b parent[a] = b; } //else if rank of j's parent is less than i's parent else if(rank[a] > rank[b]) { //then move b under a parent[b] = a; } //if both have the same rank. else { //move a under b (it doesnt matter if its the other way around. parent[b] = a; rank[a] = 1 + rank[a]; } return true; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static boolean isPrime(long n) { if(n == 1) { return false; } for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Integer> SieveList(int n) { boolean prime[] = new boolean[n+1]; Arrays.fill(prime, true); ArrayList<Integer> l = new ArrayList<>(); for (int p=2; p*p<=n; p++) { if (prime[p] == true) { for(int i=p*p; i<=n; i += p) { prime[i] = false; } } } for (int p=2; p<=n; p++) { if (prime[p] == true) { l.add(p); } } return l; } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long modPow(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return modPow(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } public static void Sort(int[] a) { List<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } public static boolean isPow(int x) { long s = (long)Math.round(Math.sqrt(x)); return s*s==x; } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(); int[] a = sc.readArray(n); boolean ok = false; for(int i = 0;i<n;i++) { if(isPow(a[i]) == false) { ok = true; break; } } fout.println(((ok == true) ? "YES" : " NO")); } fout.close(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
a4bb8214463eab3ceaf6ab5343a43f43
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import static java.lang.Math.*; import static java.lang.System.out; import java.util.*; import java.io.PrintStream; import java.io.PrintWriter; import java.math.BigInteger; public class A { /* 10^(7) = 1s. * ceilVal = (a+b-1) / b */ static final int mod = 1000000007; static final long temp = 998244353; static final long MOD = 1000000007; static final long M = (long)1e9+7; static class Pair implements Comparable<Pair> { long first, second; public Pair(long first, long second) { this.first = first; this.second = second; } public int compareTo(Pair ob) { return (int)(ob.second - second); } } static class Tuple implements Comparable<Tuple>{ long first, second,third; public Tuple(long first, long second, long third) { this.first = first; this.second = second; this.third = third; } public int compareTo(Tuple o) { return (int)(o.third - this.third); } } public static class DSU { int[] parent; int[] rank; //Size of the trees is used as the rank public DSU(int n) { parent = new int[n]; rank = new int[n]; Arrays.fill(parent, -1); Arrays.fill(rank, 1); } public int find(int i) //finding through path compression { return parent[i] < 0 ? i : (parent[i] = find(parent[i])); } public boolean union(int a, int b) //Union Find by Rank { a = find(a); b = find(b); if(a == b) return false; //if they are already connected we exit by returning false. // if a's parent is less than b's parent if(rank[a] < rank[b]) { //then move a under b parent[a] = b; } //else if rank of j's parent is less than i's parent else if(rank[a] > rank[b]) { //then move b under a parent[b] = a; } //if both have the same rank. else { //move a under b (it doesnt matter if its the other way around. parent[b] = a; rank[a] = 1 + rank[a]; } return true; } } static class Reader { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); String next() { while (!st.hasMoreTokens()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } int[] readArray(int n) throws IOException { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } long[] longReadArray(int n) throws IOException { long[] a=new long[n]; for (int i=0; i<n; i++) a[i]=nextLong(); return a; } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static boolean isPrime(long n) { if(n == 1) { return false; } for(int i = 2;i*i<=n;i++) { if(n%i == 0) { return false; } } return true; } public static List<Integer> SieveList(int n) { boolean prime[] = new boolean[n+1]; Arrays.fill(prime, true); ArrayList<Integer> l = new ArrayList<>(); for (int p=2; p*p<=n; p++) { if (prime[p] == true) { for(int i=p*p; i<=n; i += p) { prime[i] = false; } } } for (int p=2; p<=n; p++) { if (prime[p] == true) { l.add(p); } } return l; } public static int gcd(int a, int b) { if(b == 0) return a; else return gcd(b,a%b); } public static int lcm(int a, int b) { return (a / gcd(a, b)) * b; } public static long LongGCD(long a, long b) { if(b == 0) return a; else return LongGCD(b,a%b); } public static long LongLCM(long a, long b) { return (a / LongGCD(a, b)) * b; } //Count the number of coprime's upto N public static long phi(long n) //euler totient/phi function { long ans = n; // for(long i = 2;i*i<=n;i++) // { // if(n%i == 0) // { // while(n%i == 0) n/=i; // ans -= (ans/i); // } // } // // if(n > 1) // { // ans -= (ans/n); // } for(long i = 2;i<=n;i++) { if(isPrime(i)) { ans -= (ans/i); } } return ans; } public static long fastPow(long x, long n) { if(n == 0) return 1; else if(n%2 == 0) return fastPow(x*x,n/2); else return x*fastPow(x*x,(n-1)/2); } public static long modPow(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if (y % 2 == 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static long modInverse(long n, long p) { return modPow(n, p - 2, p); } // Returns nCr % p using Fermat's little theorem. public static long nCrModP(long n, long r,long p) { if (n<r) return 0; if (r == 0) return 1; long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % p; return (fac[(int)(n)] * modInverse(fac[(int)(r)], p) % p * modInverse(fac[(int)(n - r)], p) % p) % p; } public static long fact(long n) { long[] fac = new long[(int)(n) + 1]; fac[0] = 1; for (long i = 1; i <= n; i++) fac[(int)(i)] = fac[(int)(i - 1)] * i; return fac[(int)(n)]; } public static long nCr(long n, long k) { long ans = 1; for(long i = 0;i<k;i++) { ans *= (n-i); ans /= (i+1); } return ans; } public static void Sort(int[] a) { List<Integer> l = new ArrayList<>(); for (int i : a) l.add(i); Collections.sort(l); Collections.reverse(l); //Use to Sort decreasingly for (int i=0; i<a.length; i++) a[i]=l.get(i); } public static void ssort(char[] a) { List<Character> l = new ArrayList<>(); for (char i : a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } //Modular Operations for Addition and Multiplication. public static long perfomMod(long x) { return ((x%M + M)%M); } public static long addMod(long a, long b) { return perfomMod(perfomMod(a)+perfomMod(b)); } public static long subMod(long a, long b) { return perfomMod(perfomMod(a)-perfomMod(b)); } public static long mulMod(long a, long b) { return perfomMod(perfomMod(a)*perfomMod(b)); } /* * * >= <= 0 1 2 3 4 5 6 7 5 5 5 6 6 6 7 7 lower_bound for 6 at index 3 (>=) upper_bound for 6 at index 6(To get six reduce by one) (<=) */ public static int LowerBound(int a[], int x) { int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } public static int UpperBound(int a[], int x) { int l=-1, r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } public static boolean isPow(int n) { double l = Math.ceil((double)(sqrt(n))); double r = Math.floor((double)Math.sqrt(n)); return (l == r); } public static void main(String[] args) throws Exception { Reader sc = new Reader(); PrintWriter fout = new PrintWriter(System.out); int t = sc.nextInt(); while(t-- > 0) { int n = sc.nextInt(); int[] a = sc.readArray(n); boolean ok = false; for(int i = 0;i<n;i++) { if(!isPow(a[i])) { ok = true; break; } } fout.println((ok == true) ? "YES" : "NO"); } fout.close(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
c91818955cdc95e4d513c2f1a88e2045
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.ArrayList; import java.util.Scanner; public class solution_codeforces { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int T = scan.nextInt(); while(T-- > 0){ int n = scan.nextInt(); int[] arr = new int[n]; for(int i = 0 ; i < n; i++){ arr[i] = scan.nextInt(); } boolean ans = false; for(int i = 0; i < arr.length; i++){ if(checkPerfectSquare((long)arr[i]) == false){ ans = true; break; } } if(ans){ System.out.println("YES"); }else{ System.out.println("NO"); } } } public static boolean checkPerfectSquare(long number) { double sqrt=Math.sqrt((double)number); return ((sqrt - Math.floor(sqrt)) == 0); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
bc382bf2f8cce3786f1fcde7d73bf8df
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class Main { public static void main(String[] args)throws java.lang.Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); while(t-->0) { String p=br.readLine(); String s[]=p.split(" "); String arr=br.readLine(); String ar[]=arr.split(" "); int n=Integer.parseInt(s[0]); int a[]=new int[n]; int c=1; int m=0; for(int i=0;i<n;i++) { a[i]=Integer.parseInt(ar[i]); int h=(int)(Math.sqrt(a[i])); if(((h*h)!=a[i]) && a[i]%h!=h) { c=0; break; } } if(c==0) { System.out.println("YES"); } else { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
f1479da867f6bc2893a980a0cef9c143
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.lang.reflect.Array; import java.util.*; import java.io.*; import java.util.regex.Matcher; import java.util.regex.Pattern; public class Main { public static void main(String[] args) { // write your code here PrintWriter out = new PrintWriter(System.out); FastReader scan = new FastReader(); Task solver = new Task(); solver.solve(1,scan,out); out.close(); } static class Task{ public void solve(int testNumber, FastReader scan, PrintWriter out) { int t = scan.nextInt(); for(int i=0; i<t;i++){ boolean isOk=false; int n = scan.nextInt(); ArrayList<Integer> list = new ArrayList<>(); for(int j=0; j<n;j++){ list.add(scan.nextInt()); } for(int j=0;j<n;j++){ int sqrt = (int)Math.sqrt(list.get(j)); if(sqrt*sqrt!=list.get(j)){ isOk=true; } } if(isOk){ out.println("YES"); }else{ out.println("NO"); } } } public static boolean isValid(int x, int y, int n){ if(x<0 || y<0 || x>=n || y>=n){ return false; } return true; } public static int factorial(int n){ if(n<=1){ return 1; }else{ return n*factorial(n-1); } } public static int DBD(int a, int b){ int answer=1; for(int i=1; i<=Math.min(a,b);i++){ if(a%i==0 && b%i==0){ answer=i; } } return answer; } public static boolean isPrime(int n){ if(n<2){ return false; } for(int i=2; i<Math.sqrt(n)+1 ;i++){ if(n%i==0){ return false; } } return true; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } public FastReader(String s) throws FileNotFoundException { br = new BufferedReader(new FileReader(new File(s))); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
5127700af6342b102545e3e44adca90e
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int i = 0; i < t; i++) { int n = sc.nextInt(); boolean ans = true; for (int j = 0; j < n; j++) { int a = sc.nextInt(); int srt = (int) Math.sqrt(a); if (srt * srt != a) { ans = false; } } if(!ans){ System.out.println("YES"); }else { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
142c029f3221b803b0ddbd04b8b6d8e0
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class Main { //input static out op = new out(); static inp ip = new inp(); static FastReader sc = new FastReader(); static BufferedWriter output = new BufferedWriter( new OutputStreamWriter(System.out)); //HashMap<Integer,Integer> map = new HashMap<>(); // for(int i=0;i<n;i++){ // } static void sol(boolean sq[]) throws Exception{ int n = ip.in(); int[] arr = ip.arrin(n); for(int e:arr) { if(!sq[e]){ op.yes(); return; } } op.no(); } static int gcd(int a,int b){ if(b==0) return a; return gcd(b,a%b); } public static void main(String[] args) throws Exception { int t = ip.in(); boolean[] pow = new boolean[10001]; for(int i=1;i*i<=10000;i++) pow[i*i] = true; while(t-- > 0){ sol(pow); } op.output.flush(); } static class Node /*implements Comparable<Node>*/{ int data[] = new int[26]; int val; Node left,right; Node(){ left = null; right = null; } Node(char ch){ left = null; right = null; } // @Override // // public int compareTo(Node o) { // // if(this.data == o.data) // // return this.ind - o.ind; // // // TODO Auto-generated method stub // // return o.data - this.data; // // } } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } class inp{ FastReader sc = new FastReader(); int in(){ int a = sc.nextInt(); return a; } long lin(){ long a = sc.nextLong(); return a; } char cin(){ char c = sc.next().charAt(0); return c; } char[] cain(){ char[] a = sc.nextLine().toCharArray(); return a; } int[] arrin(int n){ int [] arr = new int[n]; for(int i=0;i<n;i++) arr[i] = in(); return arr; } int[] mm_arr(int[] arr){ int max = Integer.MIN_VALUE; int min = Integer.MAX_VALUE; for(int i=0;i<arr.length;i++){ max = Math.max(max,arr[i]); min = Math.min(min,arr[i]); } int ans[] = {max,min}; return ans; } int[] srt(int[] arr){ Arrays.sort(arr); return arr; } long pow(long a,long b){ if(b == 0)return 1; long res = pow(a,b/2); //System.out.println(res + " " + b + " " + (b&1)); if((b&1) == 0)return res*res; return a*res*res; } boolean[] prime(){ boolean prime[] = new boolean[100000001]; Arrays.fill(prime,true); for (int p = 2; p * p <= 10000000; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true) { // Update all multiples // of p greater than or // equal to the square of it // numbers which are multiple // of p and are less than p^2 // are already been marked. for (int i = p * p; i <= 10000000; i += p) prime[i] = false; } } return prime; } } class out{ BufferedWriter output = new BufferedWriter( new OutputStreamWriter(System.out)); void sb(String s) throws IOException { output.write(s); } void sbln(Object s) throws IOException { output.write(s+"\n"); } void yes() throws IOException{ output.write("YES\n"); } void no() throws IOException{ output.write("NO\n"); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
f602b0ebfe7d2a9af6eb7cd9c377075f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Map; import java.util.Scanner; import java.lang.Math; public class Account { public static void main (String[] args) { Scanner sc= new Scanner(System.in) ; int t= sc.nextInt() ; while(t-- > 0) { int n= sc.nextInt() ; int[] arr= new int[n] ; boolean flag= false ; for(int i=0 ;i<n ;i++ ) { arr[i]= sc.nextInt() ; if(isPerfectSquare(arr[i]) == false && flag == false) { flag= true ; // break ; } } if(flag == true) { System.out.println("YES"); }else { System.out.println("NO"); } } } static boolean isPerfectSquare(int x) { if (x >= 0) { int sr = (int) Math.sqrt(x); return ((sr * sr) == x); } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
4266568b137a4214f71c2e051627e0af
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; import java.math.*; public class B { public static void main(String[] args) throws IOException { //StringBuffer sb=new StringBuffer(""); Scanner sc=new Scanner(System.in); int ttt=sc.nextInt(); while(ttt-->0) {int ans=0; int a=sc.nextInt();int n[]=new int[a];long p=1; for(int i=0;i<a;i++) { n[i]=sc.nextInt(); p=n[i]; if(Math.floor(Math.sqrt(p))!=Math.ceil(Math.sqrt(p))) ans=1; } if(ans==1) System.out.println("yes"); else { System.out.println("no"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
c0ed5de55305b6b3c8cc741404f3ddff
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Problem{ public static void main(String[] args) { Scanner input = new Scanner(System.in); int t = input.nextInt(); for (int i =0 ; i< t; i++){ int n = input.nextInt(); boolean a = false; for (int j = 0; j<n; j++){ int x = input.nextInt(); if (Math.sqrt(x) != (int) Math.sqrt(x)){ a = true; } } if (a){ System.out.println("YES"); } else { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
6e17d8c1ecf8cc3c6dc03f28c7559bae
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.lang.*; import java.util.*; public class a { static class FastScanner { InputStreamReader is; BufferedReader br; StringTokenizer st; public FastScanner() { is = new InputStreamReader(System.in); br = new BufferedReader(is); } String next() throws Exception { while (st == null || !st.hasMoreElements()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(next()); } long nextLong() throws Exception { return Long.parseLong(next()); } int[] readArray(int num) throws Exception { int arr[]=new int[num]; for(int i=0;i<num;i++) arr[i]=nextInt(); return arr; } String nextLine() throws Exception { return br.readLine(); } } public static boolean power_of_two(int a) { if((a&(a-1))==0) { return true; } return false; } public static void main(String args[]) throws java.lang.Exception { FastScanner sc=new FastScanner(); int t=sc.nextInt(); while(t--> 0) { int n=sc.nextInt(); int count=0; for(int i=0;i<n;i++) { boolean ans=ck(sc.nextInt()); if(ans) count++; } if(count==n) { System.out.println("NO"); continue; } System.out.println("YES"); } } public static boolean ck(int n) { if (Math.ceil((double)Math.sqrt(n)) == Math.floor((double)Math.sqrt(n))){ return true; } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
3233ad9e3a48515470dd51ff0ccb2252
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.lang.*; import java.util.*; public class a { static class FastScanner { InputStreamReader is; BufferedReader br; StringTokenizer st; public FastScanner() { is = new InputStreamReader(System.in); br = new BufferedReader(is); } String next() throws Exception { while (st == null || !st.hasMoreElements()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } int nextInt() throws Exception { return Integer.parseInt(next()); } long nextLong() throws Exception { return Long.parseLong(next()); } int[] readArray(int num) throws Exception { int arr[]=new int[num]; for(int i=0;i<num;i++) arr[i]=nextInt(); return arr; } String nextLine() throws Exception { return br.readLine(); } } public static boolean power_of_two(int a) { if((a&(a-1))==0) { return true; } return false; } public static void main(String args[]) throws java.lang.Exception { FastScanner sc=new FastScanner(); int t=sc.nextInt(); while(t--> 0) { int n=sc.nextInt(); int count=0; for(int i=0;i<n;i++) { boolean ans=ck(sc.nextInt()); if(ans) count++; } if(count==n) { System.out.println("NO"); continue; } System.out.println("YES"); } } public static boolean ck(int n) { if (Math.ceil((double)Math.sqrt(n)) == Math.floor((double)Math.sqrt(n))){ return true; } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
2e950bf0aa858b09cd8c94a319b109ad
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.lang.Math; import java.util.*; public class Main { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); int test = Integer.parseInt(br.readLine()); for (int t = 0; t < test; t++) { int n = Integer.parseInt(br.readLine()); List<Integer> a = new ArrayList<Integer>(n); StringTokenizer st = new StringTokenizer(br.readLine()); while (st.hasMoreTokens()) a.add(Integer.parseInt(st.nextToken())); loop: for (int i = 0; i < n; i++) { for (int j = i+1; j < n; j++) { int sq = a.get(i)*a.get(j), sqrt = (int) Math.sqrt(sq); if (Math.pow(sqrt, 2) != sq) { //If not perfect square pw.println("YES"); break loop; } } if (Math.pow((int) Math.sqrt(a.get(i)), 2) != a.get(i)) { pw.println("YES"); break; } if (i == n-1) { pw.println("NO"); } } } pw.close(); return; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
ee66a83690df701c48f24a19135a228a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.StringTokenizer; public class cp { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static int GCD(int a,int b){ if(b==0)return a; return GCD(b%a,a); } public static void main(String[] args) { FastReader s = new FastReader(); int t=s.nextInt(); while(t-->0){ int n=s.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++){ arr[i]=s.nextInt(); } boolean flag=false; for(int i:arr){ //double temp=Math.sqrt(i); if(!isPerfectSquare(i))flag=true; } System.out.println(flag?"YES":"NO"); } } static boolean isPerfectSquare(int n) { for (int i = 1; i * i <= n; i++) { // If (i * i = n) if ((n % i == 0) && (n / i == i)) { return true; } } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
ecce48946c965e42a0f04f7ffc372464
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; public class Solution { public static void main (String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for(int k=1;k<=t;k++) { int n = sc.nextInt(); int[] a = new int[n]; for(int i=0;i<n;i++) {a[i]=sc.nextInt();} int ctr=0; for(int i=0;i<n;i++) { //double sr = Math.sqrt(a[i]); if(Math.ceil((double)Math.sqrt(a[i])) != Math.floor((double)Math.sqrt(a[i]))) { ctr=1;break;} } if(ctr==1) System.out.println("YES"); else System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
58d34574116f0adf56f020efdde52178
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class MyClass{ static boolean perfs(int x){ int p=(int)Math.sqrt(x); return p*p==x; } static void solve(int a[],int n){ for(int i=0;i<n;i++) { if(!perfs(a[i])) {System.out.println("YES"); return ; }} System.out.println("NO"); } public static void main(String[] args){ Scanner in=new Scanner(System.in); int t=in.nextInt(); while(t-->0){ int sq=0; int n=in.nextInt(); int[] a=new int[n]; for(int i=0;i<n;i++) a[i]=in.nextInt(); solve(a,n); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
440cefe9769b7154858cd0b41e7b3b7a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.lang.*; public class Main{ static boolean isPerfectSquare(double x) { if (x >= 0) { double sr = Math.sqrt(x); sr=(int)Math.ceil(sr); return ((sr * sr) == (int)x); } return false; } public static void main(String args[]){ Scanner sc =new Scanner(System.in); int t=sc.nextInt(); int i; while(t-->0){ int n=sc.nextInt(); double arr[]=new double[n]; int c=0; for(i=0;i<n;i++){ arr[i]=sc.nextDouble(); if (isPerfectSquare(arr[i])==true){ c++; } } if(c==n){ System.out.println("NO");} else{ System.out.println("YES"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
a410dc7e64c1d44b5d71b121177a86d0
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/****************************************************************************** Online Java Compiler. Code, Compile, Run and Debug java program online. Write your code in this editor and press "Run" button to execute it. *******************************************************************************/ import java.io.*; import java.util.*; public class Main { public static void main(String[] args) { Scanner sc= new Scanner(System.in); long t= sc.nextLong(); while(t-- > 0) { long n = sc.nextLong(); long[] arr = new long[(int)n]; for(int i=0;i<n;i++) { arr[i] = sc.nextLong(); } boolean check = false; for(int i=0;i<n;i++) { if(!isPerSqar(arr[i])) { System.out.println("YES"); check = true; break; } } if(!check) System.out.println("NO"); } } public static boolean isPerSqar(long n) { long sr = (long)Math.sqrt(n); return ((sr * sr) == n); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
37f0922b3c961be891027fc5460cb40b
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class CP { static class FastIO { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } int nextInt () { return Integer.parseInt(next()); } } public static void main(String[] args) throws Exception { FastIO in = new FastIO(); int t= in.nextInt(); while(t-- > 0) { int n = in.nextInt(); int arr[] = in.readArray(n); boolean ok = false; for (int i = 0; i < arr.length; i++) { int x = (int) Math.floor(Math.sqrt(arr[i])); if(x*x != arr[i]) { ok = true; break; } } if(ok) System.out.println("YES"); else System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
3ef5d20f797ee821e2b6e665bfd08e87
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.math.BigInteger; import java.util.*; public class Stack1 { static class Reader { final private int BUFFER_SIZE = 1 << 16; private DataInputStream din; private byte[] buffer; private int bufferPointer, bytesRead; public Reader() { din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public Reader(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String readLine() throws IOException { byte[] buf = new byte[64]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int nextInt() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nextLong() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nextDouble() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') { while ((c = read()) >= '0' && c <= '9') { ret += (c - '0') / (div *= 10); } } if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } static Reader sc = new Reader(); static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out)); public static void main(String[] args) throws IOException { /* * For integer input: int n=inputInt(); * For long input: long n=inputLong(); * For double input: double n=inputDouble(); * For String input: String s=inputString(); * Logic goes here * For printing without space: print(a+""); where a is a variable of any datatype * For printing with space: printSp(a+""); where a is a variable of any datatype * For printing with new line: println(a+""); where a is a variable of any datatype */ Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for (int i = 0; i < t; i++) { int n = sc.nextInt(); boolean check = false; for (int j = 0; j < n; j++) { int num = sc.nextInt(); double ans = Math.sqrt(num); double a1 = Math.ceil(ans); //System.out.println(a1+" "+ans); if (a1 != ans) { check = true; // break; } } if (check) { System.out.println("YES"); } else { System.out.println("NO"); } } bw.flush(); bw.close(); } public static void dfs1(List<List<Integer>> g, boolean[] visited, Stack<Integer> stack, int num) { visited[num] = true; for (Integer integer : g.get(num)) { if (!visited[integer]) { dfs1(g, visited, stack, integer); } } stack.push(num); } public static void dfs2(List<List<Integer>> g, boolean[] visited, List<Integer> list, int num, int c, int[] raj) { visited[num] = true; for (Integer integer : g.get(num)) { if (!visited[integer]) { dfs2(g, visited, list, integer, c, raj); } } raj[num] = c; list.add(num); } public static int inputInt() throws IOException { return sc.nextInt(); } public static long inputLong() throws IOException { return sc.nextLong(); } public static double inputDouble() throws IOException { return sc.nextDouble(); } public static String inputString() throws IOException { return sc.readLine(); } public static void print(String a) throws IOException { bw.write(a); } public static void printSp(String a) throws IOException { bw.write(a + " "); } public static void println(String a) throws IOException { bw.write(a + "\n"); } public static long getAns(int[] ar, int c, long[][] dp, int i, int sign) { if (i < 0) { return 1; } if (c <= 0) { return 1; } dp[i][c] = Math.max(dp[i][c], Math.max(ar[i] * getAns(ar, c - 1, dp, i - 1, sign), getAns(ar, c, dp, i - 1, 1))); return dp[i][c]; } public static long power(long a, long b, long c) { long ans = 1; while (b != 0) { if (b % 2 == 1) { ans = ans * a; ans %= c; } a = a * a; a %= c; b /= 2; } return ans; } public static long power1(long a, long b, long c) { long ans = 1; while (b != 0) { if (b % 2 == 1) { ans = multiply(ans, a, c); } a = multiply(a, a, c); b /= 2; } return ans; } public static long multiply(long a, long b, long c) { long res = 0; a %= c; while (b > 0) { if (b % 2 == 1) { res = (res + a) % c; } a = (a + a) % c; b /= 2; } return res % c; } public static long totient(long n) { long result = n; for (long i = 2; i * i <= n; i++) { if (n % i == 0) { //sum=sum+2*i; while (n % i == 0) { n /= i; // sum=sum+n; } result -= result / i; } } if (n > 1) { result -= result / n; } return result; } public static long gcd(long a, long b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } public static boolean[] primes(int n) { boolean[] p = new boolean[n + 1]; p[0] = false; p[1] = false; for (int i = 2; i <= n; i++) { p[i] = true; } for (int i = 2; i * i <= n; i++) { if (p[i]) { for (int j = i * i; j <= n; j += i) { p[j] = false; } } } return p; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
3f0d06854097faed34f0e47b0520d14a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Random; import java.util.Stack; import java.util.StringTokenizer; import java.util.TreeMap; public final class CFPS { static FastReader fr = new FastReader(); static PrintWriter out = new PrintWriter(System.out); static final int gigamod = 1000000007; static final int mod = 998244353; static int t = 1; static boolean[] isPrime; static int[] smallestFactorOf; static final int UP = 0, LEFT = 1, DOWN = 2, RIGHT = 3; static long cmp; @SuppressWarnings({"unused"}) public static void main(String[] args) throws Exception { t = fr.nextInt(); OUTER: for (int tc = 0; tc < t; tc++) { int n = fr.nextInt(); int[] arr = fr.nextIntArray(n); // one non-square element for (int i = 0; i < n; i++) { long prod = arr[i]; long sqrt = (long) Math.sqrt(prod); if (sqrt * sqrt != prod) { YES(); continue OUTER; } } NO(); } out.close(); } static class Pair implements Comparable<Pair> { int first, second; int idx; Pair() { first = second = 0; } Pair (int ff, int ss) {first = ff; second = ss;} Pair (int ff, int ss, int ii) { first = ff; second = ss; idx = ii; } public int compareTo(Pair that) { cmp = first - that.first; if (cmp == 0) cmp = second - that.second; return (int) cmp; } } // (range add - segment min) segTree static int nn; static int[] arr; static int[] tree; static int[] lazy; static void build(int node, int leftt, int rightt) { if (leftt == rightt) { tree[node] = arr[leftt]; return; } int mid = (leftt + rightt) >> 1; build(node << 1, leftt, mid); build(node << 1 | 1, mid + 1, rightt); tree[node] = Math.min(tree[node << 1], tree[node << 1 | 1]); } static void segAdd(int node, int leftt, int rightt, int segL, int segR, int val) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (leftt != rightt) { lazy[node << 1] += lazy[node]; lazy[node << 1 | 1] += lazy[node]; } lazy[node] = 0; } if (segL > rightt || segR < leftt) return; if (segL <= leftt && rightt <= segR) { tree[node] += val; if (leftt != rightt) { lazy[node << 1] += val; lazy[node << 1 | 1] += val; } lazy[node] = 0; return; } int mid = (leftt + rightt) >> 1; segAdd(node << 1, leftt, mid, segL, segR, val); segAdd(node << 1 | 1, mid + 1, rightt, segL, segR, val); tree[node] = Math.min(tree[node << 1], tree[node << 1 | 1]); } static int minQuery(int node, int leftt, int rightt, int segL, int segR) { if (lazy[node] != 0) { tree[node] += lazy[node]; if (leftt != rightt) { lazy[node << 1] += lazy[node]; lazy[node << 1 | 1] += lazy[node]; } lazy[node] = 0; } if (segL > rightt || segR < leftt) return Integer.MAX_VALUE / 10; if (segL <= leftt && rightt <= segR) return tree[node]; int mid = (leftt + rightt) >> 1; return Math.min(minQuery(node << 1, leftt, mid, segL, segR), minQuery(node << 1 | 1, mid + 1, rightt, segL, segR)); } static class Segment { int li, ri, wi, id; Segment(int ll, int rr, int ww, int ii) { li = ll; ri = rr; wi = ww; id = ii; } } static void compute_automaton(String s, int[][] aut) { s += '#'; int n = s.length(); int[] pi = prefix_function(s.toCharArray()); for (int i = 0; i < n; i++) { for (int c = 0; c < 26; c++) { int j = i; while (j > 0 && 'A' + c != s.charAt(j)) j = pi[j-1]; if ('A' + c == s.charAt(j)) j++; aut[i][c] = j; } } } static void timeDFS(int current, int from, UGraph ug, int[] time, int[] tIn, int[] tOut) { tIn[current] = ++time[0]; for (int adj : ug.adj(current)) if (adj != from) timeDFS(adj, current, ug, time, tIn, tOut); tOut[current] = ++time[0]; } static boolean areCollinear(long x1, long y1, long x2, long y2, long x3, long y3) { // we will check if c3 lies on line through (c1, c2) long a = x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2); return a == 0; } static int[] treeDiameter(UGraph ug) { int n = ug.V(); int farthest = -1; int[] distTo = new int[n]; diamDFS(0, -1, 0, ug, distTo); int maxDist = -1; for (int i = 0; i < n; i++) if (maxDist < distTo[i]) { maxDist = distTo[i]; farthest = i; } distTo = new int[n + 1]; diamDFS(farthest, -1, 0, ug, distTo); distTo[n] = farthest; return distTo; } static void diamDFS(int current, int from, int dist, UGraph ug, int[] distTo) { distTo[current] = dist; for (int adj : ug.adj(current)) if (adj != from) diamDFS(adj, current, dist + 1, ug, distTo); } static class TreeDistFinder { UGraph ug; int n; int[] depthOf; LCA lca; TreeDistFinder(UGraph ug) { this.ug = ug; n = ug.V(); depthOf = new int[n]; depthCalc(0, -1, ug, 0, depthOf); lca = new LCA(ug, 0); } TreeDistFinder(UGraph ug, int a) { this.ug = ug; n = ug.V(); depthOf = new int[n]; depthCalc(a, -1, ug, 0, depthOf); lca = new LCA(ug, a); } private void depthCalc(int current, int from, UGraph ug, int depth, int[] depthOf) { depthOf[current] = depth; for (int adj : ug.adj(current)) if (adj != from) depthCalc(adj, current, ug, depth + 1, depthOf); } public int dist(int a, int b) { int lc = lca.lca(a, b); return (depthOf[a] - depthOf[lc] + depthOf[b] - depthOf[lc]); } } public static long[][] GCDSparseTable(long[] a) { int n = a.length; int b = 32-Integer.numberOfLeadingZeros(n); long[][] ret = new long[b][]; for(int i = 0, l = 1;i < b;i++, l*=2) { if(i == 0) { ret[i] = a; } else { ret[i] = new long[n-l+1]; for(int j = 0;j < n-l+1;j++) { ret[i][j] = gcd(ret[i-1][j], ret[i-1][j+l/2]); } } } return ret; } public static long sparseRangeGCDQ(long[][] table, int l, int r) { // [a,b) if(l > r)return 1; // 1:0, 2:1, 3:1, 4:2, 5:2, 6:2, 7:2, 8:3 int t = 31-Integer.numberOfLeadingZeros(r-l); return gcd(table[t][l], table[t][r-(1<<t)]); } static class Trie { TrieNode root; Trie(char[][] strings) { root = new TrieNode('A', false); construct(root, strings); } public Stack<String> set(TrieNode root) { Stack<String> set = new Stack<>(); StringBuilder sb = new StringBuilder(); for (TrieNode next : root.next) collect(sb, next, set); return set; } private void collect(StringBuilder sb, TrieNode node, Stack<String> set) { if (node == null) return; sb.append(node.character); if (node.isTerminal) set.add(sb.toString()); for (TrieNode next : node.next) collect(sb, next, set); if (sb.length() > 0) sb.setLength(sb.length() - 1); } private void construct(TrieNode root, char[][] strings) { // we have to construct the Trie for (char[] string : strings) { if (string.length == 0) continue; root.next[string[0] - 'a'] = put(root.next[string[0] - 'a'], string, 0); if (root.next[string[0] - 'a'] != null) root.isLeaf = false; } } private TrieNode put(TrieNode node, char[] string, int idx) { boolean isTerminal = (idx == string.length - 1); if (node == null) node = new TrieNode(string[idx], isTerminal); node.character = string[idx]; node.isTerminal |= isTerminal; if (!isTerminal) { node.isLeaf = false; node.next[string[idx + 1] - 'a'] = put(node.next[string[idx + 1] - 'a'], string, idx + 1); } return node; } class TrieNode { char character; TrieNode[] next; boolean isTerminal, isLeaf; boolean canWin, canLose; TrieNode(char c, boolean isTerminallll) { character = c; isTerminal = isTerminallll; next = new TrieNode[26]; isLeaf = true; } } } static class Edge implements Comparable<Edge> { int from, to; long weight, ans; int id; // int hash; Edge(int fro, int t, long wt, int i) { from = fro; to = t; id = i; weight = wt; // hash = Objects.hash(from, to, weight); } /*public int hashCode() { return hash; }*/ public int compareTo(Edge that) { return Long.compare(this.id, that.id); } } public static long[][] minSparseTable(long[] a) { int n = a.length; int b = 32-Integer.numberOfLeadingZeros(n); long[][] ret = new long[b][]; for(int i = 0, l = 1;i < b;i++, l*=2) { if(i == 0) { ret[i] = a; }else { ret[i] = new long[n-l+1]; for(int j = 0;j < n-l+1;j++) { ret[i][j] = Math.min(ret[i-1][j], ret[i-1][j+l/2]); } } } return ret; } public static long sparseRangeMinQ(long[][] table, int l, int r) { // [a,b) if(l >= r)return Integer.MAX_VALUE; // 1:0, 2:1, 3:1, 4:2, 5:2, 6:2, 7:2, 8:3 int t = 31-Integer.numberOfLeadingZeros(r-l); return Math.min(table[t][l], table[t][r-(1<<t)]); } public static long[][] maxSparseTable(long[] a) { int n = a.length; int b = 32-Integer.numberOfLeadingZeros(n); long[][] ret = new long[b][]; for(int i = 0, l = 1;i < b;i++, l*=2) { if(i == 0) { ret[i] = a; }else { ret[i] = new long[n-l+1]; for(int j = 0;j < n-l+1;j++) { ret[i][j] = Math.max(ret[i-1][j], ret[i-1][j+l/2]); } } } return ret; } public static long sparseRangeMaxQ(long[][] table, int l, int r) { // [a,b) if(l >= r)return Integer.MIN_VALUE; // 1:0, 2:1, 3:1, 4:2, 5:2, 6:2, 7:2, 8:3 int t = 31-Integer.numberOfLeadingZeros(r-l); return Math.max(table[t][l], table[t][r-(1<<t)]); } static class LCA { int[] height, first, segtree; ArrayList<Integer> euler; boolean[] visited; int n; LCA(UGraph ug, int root) { n = ug.V(); height = new int[n]; first = new int[n]; euler = new ArrayList<>(); visited = new boolean[n]; dfs(ug, root, 0); int m = euler.size(); segtree = new int[m * 4]; build(1, 0, m - 1); } void dfs(UGraph ug, int node, int h) { visited[node] = true; height[node] = h; first[node] = euler.size(); euler.add(node); for (int adj : ug.adj(node)) { if (!visited[adj]) { dfs(ug, adj, h + 1); euler.add(node); } } } void build(int node, int b, int e) { if (b == e) { segtree[node] = euler.get(b); } else { int mid = (b + e) / 2; build(node << 1, b, mid); build(node << 1 | 1, mid + 1, e); int l = segtree[node << 1], r = segtree[node << 1 | 1]; segtree[node] = (height[l] < height[r]) ? l : r; } } int query(int node, int b, int e, int L, int R) { if (b > R || e < L) return -1; if (b >= L && e <= R) return segtree[node]; int mid = (b + e) >> 1; int left = query(node << 1, b, mid, L, R); int right = query(node << 1 | 1, mid + 1, e, L, R); if (left == -1) return right; if (right == -1) return left; return height[left] < height[right] ? left : right; } int lca(int u, int v) { int left = first[u], right = first[v]; if (left > right) { int temp = left; left = right; right = temp; } return query(1, 0, euler.size() - 1, left, right); } } static class FenwickTree { long[] array; // 1-indexed array, In this array We save cumulative information to perform efficient range queries and updates public FenwickTree(int size) { array = new long[size + 1]; } public long rsq(int ind) { assert ind > 0; long sum = 0; while (ind > 0) { sum += array[ind]; //Extracting the portion up to the first significant one of the binary representation of 'ind' and decrementing ind by that number ind -= ind & (-ind); } return sum; } public long rsq(int a, int b) { assert b >= a && a > 0 && b > 0; return rsq(b) - rsq(a - 1); } public void update(int ind, long value) { assert ind > 0; while (ind < array.length) { array[ind] += value; //Extracting the portion up to the first significant one of the binary representation of 'ind' and incrementing ind by that number ind += ind & (-ind); } } public int size() { return array.length - 1; } } static class Point implements Comparable<Point> { long x; long y; long z; long id; // private int hashCode; Point() { x = z = y = 0; // this.hashCode = Objects.hash(x, y, cost); } Point(Point p) { this.x = p.x; this.y = p.y; this.z = p.z; this.id = p.id; // this.hashCode = Objects.hash(x, y, cost); } Point(long x, long y, long z, long id) { this.x = x; this.y = y; this.z = z; this.id = id; // this.hashCode = Objects.hash(x, y, id); } Point(long a, long b) { this.x = a; this.y = b; this.z = 0; // this.hashCode = Objects.hash(a, b); } Point(long x, long y, long id) { this.x = x; this.y = y; this.id = id; } @Override public int compareTo(Point o) { if (this.x < o.x) return -1; if (this.x > o.x) return 1; if (this.y < o.y) return -1; if (this.y > o.y) return 1; if (this.z < o.z) return -1; if (this.z > o.z) return 1; return 0; } @Override public boolean equals(Object that) { return this.compareTo((Point) that) == 0; } } static class BinaryLift { // FUNCTIONS: k-th ancestor and LCA in log(n) int[] parentOf; int maxJmpPow; int[][] binAncestorOf; int n; int[] lvlOf; // How this works? // a. For every node, we store the b-ancestor for b in {1, 2, 4, 8, .. log(n)}. // b. When we need k-ancestor, we represent 'k' in binary and for each set bit, we // lift level in the tree. public BinaryLift(UGraph tree) { n = tree.V(); maxJmpPow = logk(n, 2) + 1; parentOf = new int[n]; binAncestorOf = new int[n][maxJmpPow]; lvlOf = new int[n]; for (int i = 0; i < n; i++) Arrays.fill(binAncestorOf[i], -1); parentConstruct(0, -1, tree, 0); binConstruct(); } // TODO: Implement lvlOf[] initialization public BinaryLift(int[] parentOf) { this.parentOf = parentOf; n = parentOf.length; maxJmpPow = logk(n, 2) + 1; binAncestorOf = new int[n][maxJmpPow]; lvlOf = new int[n]; for (int i = 0; i < n; i++) Arrays.fill(binAncestorOf[i], -1); UGraph tree = new UGraph(n); for (int i = 1; i < n; i++) tree.addEdge(i, parentOf[i]); binConstruct(); parentConstruct(0, -1, tree, 0); } private void parentConstruct(int current, int from, UGraph tree, int depth) { parentOf[current] = from; lvlOf[current] = depth; for (int adj : tree.adj(current)) if (adj != from) parentConstruct(adj, current, tree, depth + 1); } private void binConstruct() { for (int node = 0; node < n; node++) for (int lvl = 0; lvl < maxJmpPow; lvl++) binConstruct(node, lvl); } private int binConstruct(int node, int lvl) { if (node < 0) return -1; if (lvl == 0) return binAncestorOf[node][lvl] = parentOf[node]; if (node == 0) return binAncestorOf[node][lvl] = -1; if (binAncestorOf[node][lvl] != -1) return binAncestorOf[node][lvl]; return binAncestorOf[node][lvl] = binConstruct(binConstruct(node, lvl - 1), lvl - 1); } // return ancestor which is 'k' levels above this one public int ancestor(int node, int k) { if (node < 0) return -1; if (node == 0) if (k == 0) return node; else return -1; if (k > (1 << maxJmpPow) - 1) return -1; if (k == 0) return node; int ancestor = node; int highestBit = Integer.highestOneBit(k); while (k > 0 && ancestor != -1) { ancestor = binAncestorOf[ancestor][logk(highestBit, 2)]; k -= highestBit; highestBit = Integer.highestOneBit(k); } return ancestor; } public int lca(int u, int v) { if (u == v) return u; // The invariant will be that 'u' is below 'v' initially. if (lvlOf[u] < lvlOf[v]) { int temp = u; u = v; v = temp; } // Equalizing the levels. u = ancestor(u, lvlOf[u] - lvlOf[v]); if (u == v) return u; // We will now raise level by largest fitting power of two until possible. for (int power = maxJmpPow - 1; power > -1; power--) if (binAncestorOf[u][power] != binAncestorOf[v][power]) { u = binAncestorOf[u][power]; v = binAncestorOf[v][power]; } return ancestor(u, 1); } } static class DFSTree { // NOTE: The thing is made keeping in mind that the whole // input graph is connected. UGraph tree; UGraph backUG; int hasBridge; int n; Edge backEdge; DFSTree(UGraph ug) { this.n = ug.V(); tree = new UGraph(n); hasBridge = -1; backUG = new UGraph(n); treeCalc(0, -1, new boolean[n], ug); } private void treeCalc(int current, int from, boolean[] marked, UGraph ug) { if (marked[current]) { // This is a backEdge. backUG.addEdge(from, current); backEdge = new Edge(from, current, 1, 0); return; } if (from != -1) tree.addEdge(from, current); marked[current] = true; for (int adj : ug.adj(current)) if (adj != from) treeCalc(adj, current, marked, ug); } public boolean hasBridge() { if (hasBridge != -1) return (hasBridge == 1); // We have to determine the bridge. bridgeFinder(); return (hasBridge == 1); } int[] levelOf; int[] dp; private void bridgeFinder() { // Finding the level of each node. levelOf = new int[n]; levelDFS(0, -1, 0); // Applying DP solution. // dp[i] -> Highest level reachable from subtree of 'i' using // some backEdge. dp = new int[n]; Arrays.fill(dp, Integer.MAX_VALUE / 100); dpDFS(0, -1); // Now, we will check each edge and determine whether its a // bridge. for (int i = 0; i < n; i++) for (int adj : tree.adj(i)) { // (i -> adj) is the edge. if (dp[adj] > levelOf[i]) hasBridge = 1; } if (hasBridge != 1) hasBridge = 0; } private void levelDFS(int current, int from, int lvl) { levelOf[current] = lvl; for (int adj : tree.adj(current)) if (adj != from) levelDFS(adj, current, lvl + 1); } private int dpDFS(int current, int from) { dp[current] = levelOf[current]; for (int back : backUG.adj(current)) dp[current] = Math.min(dp[current], levelOf[back]); for (int adj : tree.adj(current)) if (adj != from) dp[current] = Math.min(dp[current], dpDFS(adj, current)); return dp[current]; } } static class UnionFind { // Uses weighted quick-union with path compression. private int[] parent; // parent[i] = parent of i private int[] size; // size[i] = number of sites in tree rooted at i // Note: not necessarily correct if i is not a root node private int count; // number of components public UnionFind(int n) { count = n; parent = new int[n]; size = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; size[i] = 1; } } // Number of connected components. public int count() { return count; } // Find the root of p. public int find(int p) { while (p != parent[p]) p = parent[p]; return p; } public boolean connected(int p, int q) { return find(p) == find(q); } public int numConnectedTo(int node) { return size[find(node)]; } // Weighted union. public void union(int p, int q) { int rootP = find(p); int rootQ = find(q); if (rootP == rootQ) return; // make smaller root point to larger one if (size[rootP] < size[rootQ]) { parent[rootP] = rootQ; size[rootQ] += size[rootP]; } else { parent[rootQ] = rootP; size[rootP] += size[rootQ]; } count--; } public static int[] connectedComponents(UnionFind uf) { // We can do this in nlogn. int n = uf.size.length; int[] compoColors = new int[n]; for (int i = 0; i < n; i++) compoColors[i] = uf.find(i); HashMap<Integer, Integer> oldToNew = new HashMap<>(); int newCtr = 0; for (int i = 0; i < n; i++) { int thisOldColor = compoColors[i]; Integer thisNewColor = oldToNew.get(thisOldColor); if (thisNewColor == null) thisNewColor = newCtr++; oldToNew.put(thisOldColor, thisNewColor); compoColors[i] = thisNewColor; } return compoColors; } } static class UGraph { // Adjacency list. private HashSet<Integer>[] adj; private static final String NEWLINE = "\n"; private int E; @SuppressWarnings("unchecked") public UGraph(int V) { adj = (HashSet<Integer>[]) new HashSet[V]; E = 0; for (int i = 0; i < V; i++) adj[i] = new HashSet<Integer>(); } public void addEdge(int from, int to) { if (adj[from].contains(to)) return; E++; adj[from].add(to); adj[to].add(from); } public HashSet<Integer> adj(int from) { return adj[from]; } public int degree(int v) { return adj[v].size(); } public int V() { return adj.length; } public int E() { return E; } public String toString() { StringBuilder s = new StringBuilder(); s.append(V() + " vertices, " + E() + " edges " + NEWLINE); for (int v = 0; v < V(); v++) { s.append(v + ": "); for (int w : adj[v]) { s.append(w + " "); } s.append(NEWLINE); } return s.toString(); } public static void dfsMark(int current, boolean[] marked, UGraph g) { if (marked[current]) return; marked[current] = true; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, marked, g); } public static void dfsMark(int current, int from, long[] distTo, boolean[] marked, UGraph g, ArrayList<Integer> endPoints) { if (marked[current]) return; marked[current] = true; if (from != -1) distTo[current] = distTo[from] + 1; HashSet<Integer> adj = g.adj(current); int alreadyMarkedCtr = 0; for (int adjc : adj) { if (marked[adjc]) alreadyMarkedCtr++; dfsMark(adjc, current, distTo, marked, g, endPoints); } if (alreadyMarkedCtr == adj.size()) endPoints.add(current); } public static void bfsOrder(int current, UGraph g) { } public static void dfsMark(int current, int[] colorIds, int color, UGraph g) { if (colorIds[current] != -1) return; colorIds[current] = color; Iterable<Integer> adj = g.adj(current); for (int adjc : adj) dfsMark(adjc, colorIds, color, g); } public static int[] connectedComponents(UGraph g) { int n = g.V(); int[] componentId = new int[n]; Arrays.fill(componentId, -1); int colorCtr = 0; for (int i = 0; i < n; i++) { if (componentId[i] != -1) continue; dfsMark(i, componentId, colorCtr, g); colorCtr++; } return componentId; } public static boolean hasCycle(UGraph ug) { int n = ug.V(); boolean[] marked = new boolean[n]; boolean[] hasCycleFirst = new boolean[1]; for (int i = 0; i < n; i++) { if (marked[i]) continue; hcDfsMark(i, ug, marked, hasCycleFirst, -1); } return hasCycleFirst[0]; } // Helper for hasCycle. private static void hcDfsMark(int current, UGraph ug, boolean[] marked, boolean[] hasCycleFirst, int parent) { if (marked[current]) return; if (hasCycleFirst[0]) return; marked[current] = true; HashSet<Integer> adjc = ug.adj(current); for (int adj : adjc) { if (marked[adj] && adj != parent && parent != -1) { hasCycleFirst[0] = true; return; } hcDfsMark(adj, ug, marked, hasCycleFirst, current); } } } static class Digraph { // Adjacency list. private HashSet<Integer>[] adj; private static final String NEWLINE = "\n"; private int E; @SuppressWarnings("unchecked") public Digraph(int V) { adj = (HashSet<Integer>[]) new HashSet[V]; E = 0; for (int i = 0; i < V; i++) adj[i] = new HashSet<Integer>(); } public void addEdge(int from, int to) { if (adj[from].contains(to)) return; E++; adj[from].add(to); } public HashSet<Integer> adj(int from) { return adj[from]; } public int V() { return adj.length; } public int E() { return E; } public Digraph reversed() { Digraph dg = new Digraph(V()); for (int i = 0; i < V(); i++) for (int adjVert : adj(i)) dg.addEdge(adjVert, i); return dg; } public String toString() { StringBuilder s = new StringBuilder(); s.append(V() + " vertices, " + E() + " edges " + NEWLINE); for (int v = 0; v < V(); v++) { s.append(v + ": "); for (int w : adj[v]) { s.append(w + " "); } s.append(NEWLINE); } return s.toString(); } public static int[] KosarajuSharirSCC(Digraph dg) { int[] id = new int[dg.V()]; Digraph reversed = dg.reversed(); // Gotta perform topological sort on this one to get the stack. Stack<Integer> revStack = Digraph.topologicalSort(reversed); // Initializing id and idCtr. id = new int[dg.V()]; int idCtr = -1; // Creating a 'marked' array. boolean[] marked = new boolean[dg.V()]; while (!revStack.isEmpty()) { int vertex = revStack.pop(); if (!marked[vertex]) sccDFS(dg, vertex, marked, ++idCtr, id); } return id; } private static void sccDFS(Digraph dg, int source, boolean[] marked, int idCtr, int[] id) { marked[source] = true; id[source] = idCtr; for (Integer adjVertex : dg.adj(source)) if (!marked[adjVertex]) sccDFS(dg, adjVertex, marked, idCtr, id); } public static Stack<Integer> topologicalSort(Digraph dg) { // dg has to be a directed acyclic graph. // We'll have to run dfs on the digraph and push the deepest nodes on stack first. // We'll need a Stack<Integer> and a int[] marked. Stack<Integer> topologicalStack = new Stack<Integer>(); boolean[] marked = new boolean[dg.V()]; // Calling dfs for (int i = 0; i < dg.V(); i++) if (!marked[i]) runDfs(dg, topologicalStack, marked, i); return topologicalStack; } static void runDfs(Digraph dg, Stack<Integer> topologicalStack, boolean[] marked, int source) { marked[source] = true; for (Integer adjVertex : dg.adj(source)) if (!marked[adjVertex]) runDfs(dg, topologicalStack, marked, adjVertex); topologicalStack.add(source); } } static class FastReader { private BufferedReader bfr; private StringTokenizer st; public FastReader() { bfr = new BufferedReader(new InputStreamReader(System.in)); } String next() { if (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(bfr.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } char nextChar() { return next().toCharArray()[0]; } String nextString() { return next(); } int[] nextIntArray(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) arr[i] = nextInt(); return arr; } double[] nextDoubleArray(int n) { double[] arr = new double[n]; for (int i = 0; i < arr.length; i++) arr[i] = nextDouble(); return arr; } long[] nextLongArray(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) arr[i] = nextLong(); return arr; } int[][] nextIntGrid(int n, int m) { int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) grid[i][j] = fr.nextInt(); } return grid; } } @SuppressWarnings("serial") static class CountMap<T> extends TreeMap<T, Integer>{ CountMap() { } CountMap(Comparator<T> cmp) { } CountMap(T[] arr) { this.putCM(arr); } public Integer putCM(T key) { return super.put(key, super.getOrDefault(key, 0) + 1); } public Integer removeCM(T key) { int count = super.getOrDefault(key, -1); if (count == -1) return -1; if (count == 1) return super.remove(key); else return super.put(key, count - 1); } public Integer getCM(T key) { return super.getOrDefault(key, 0); } public void putCM(T[] arr) { for (T l : arr) this.putCM(l); } } static long dioGCD(long a, long b, long[] x0, long[] y0) { if (b == 0) { x0[0] = 1; y0[0] = 0; return a; } long[] x1 = new long[1], y1 = new long[1]; long d = dioGCD(b, a % b, x1, y1); x0[0] = y1[0]; y0[0] = x1[0] - y1[0] * (a / b); return d; } static boolean diophantine(long a, long b, long c, long[] x0, long[] y0, long[] g) { g[0] = dioGCD(Math.abs(a), Math.abs(b), x0, y0); if (c % g[0] > 0) { return false; } x0[0] *= c / g[0]; y0[0] *= c / g[0]; if (a < 0) x0[0] = -x0[0]; if (b < 0) y0[0] = -y0[0]; return true; } static long[][] prod(long[][] mat1, long[][] mat2) { int n = mat1.length; long[][] prod = new long[n][n]; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) // determining prod[i][j] // it will be the dot product of mat1[i][] and mat2[][i] for (int k = 0; k < n; k++) prod[i][j] += mat1[i][k] * mat2[k][j]; return prod; } static long[][] matExpo(long[][] mat, long power) { int n = mat.length; long[][] ans = new long[n][n]; if (power == 0) return null; if (power == 1) return mat; long[][] half = matExpo(mat, power / 2); ans = prod(half, half); if (power % 2 == 1) { ans = prod(ans, mat); } return ans; } static int KMPNumOcc(char[] text, char[] pat) { int n = text.length; int m = pat.length; char[] patPlusText = new char[n + m + 1]; for (int i = 0; i < m; i++) patPlusText[i] = pat[i]; patPlusText[m] = '^'; // Seperator for (int i = 0; i < n; i++) patPlusText[m + i] = text[i]; int[] fullPi = piCalcKMP(patPlusText); int answer = 0; for (int i = 0; i < n + m + 1; i++) if (fullPi[i] == m) answer++; return answer; } static int[] piCalcKMP(char[] s) { int n = s.length; int[] pi = new int[n]; for (int i = 1; i < n; i++) { int j = pi[i - 1]; while (j > 0 && s[i] != s[j]) j = pi[j - 1]; if (s[i] == s[j]) j++; pi[i] = j; } return pi; } static boolean[] prefMatchesSuff(char[] s) { int n = s.length; boolean[] res = new boolean[n + 1]; int[] pi = prefix_function(s); res[0] = true; for (int p = n; p != 0; p = pi[p]) res[p] = true; return res; } static int[] prefix_function(char[] s) { int n = s.length; int[] pi = new int[n]; for (int i = 1; i < n; i++) { int j = pi[i-1]; while (j > 0 && s[i] != s[j]) j = pi[j-1]; if (s[i] == s[j]) j++; pi[i] = j; } return pi; } static long hash(long key) { long h = Long.hashCode(key); h ^= (h >>> 20) ^ (h >>> 12) ^ (h >>> 7) ^ (h >>> 4); return h & (gigamod-1); } static void Yes() {out.println("Yes");}static void YES() {out.println("YES");}static void yes() {out.println("Yes");}static void No() {out.println("No");}static void NO() {out.println("NO");}static void no() {out.println("no");} static int mapTo1D(int row, int col, int n, int m) { // Maps elements in a 2D matrix serially to elements in // a 1D array. return row * m + col; } static int[] mapTo2D(int idx, int n, int m) { // Inverse of what the one above does. int[] rnc = new int[2]; rnc[0] = idx / m; rnc[1] = idx % m; return rnc; } static long mapTo1D(long row, long col, long n, long m) { // Maps elements in a 2D matrix serially to elements in // a 1D array. return row * m + col; } static boolean[] primeGenerator(int upto) { // Sieve of Eratosthenes: isPrime = new boolean[upto + 1]; smallestFactorOf = new int[upto + 1]; Arrays.fill(smallestFactorOf, 1); Arrays.fill(isPrime, true); isPrime[1] = isPrime[0] = false; for (long i = 2; i < upto + 1; i++) if (isPrime[(int) i]) { smallestFactorOf[(int) i] = (int) i; // Mark all the multiples greater than or equal // to the square of i to be false. for (long j = i; j * i < upto + 1; j++) { if (isPrime[(int) j * (int) i]) { isPrime[(int) j * (int) i] = false; smallestFactorOf[(int) j * (int) i] = (int) i; } } } return isPrime; } static HashMap<Integer, Integer> smolNumPrimeFactorization(int num) { if (smallestFactorOf == null) primeGenerator(num + 1); HashMap<Integer, Integer> fnps = new HashMap<>(); while (num != 1) { fnps.put(smallestFactorOf[num], fnps.getOrDefault(smallestFactorOf[num], 0) + 1); num /= smallestFactorOf[num]; } return fnps; } static HashMap<Long, Integer> primeFactorization(long num) { // Returns map of factor and its power in the number. HashMap<Long, Integer> map = new HashMap<>(); while (num % 2 == 0) { num /= 2; Integer pwrCnt = map.get(2L); map.put(2L, pwrCnt != null ? pwrCnt + 1 : 1); } for (long i = 3; i * i <= num; i += 2) { while (num % i == 0) { num /= i; Integer pwrCnt = map.get(i); map.put(i, pwrCnt != null ? pwrCnt + 1 : 1); } } // If the number is prime, we have to add it to the // map. if (num != 1) map.put(num, 1); return map; } static HashSet<Long> divisors(long num) { HashSet<Long> divisors = new HashSet<Long>(); divisors.add(1L); divisors.add(num); for (long i = 2; i * i <= num; i++) { if (num % i == 0) { divisors.add(num/i); divisors.add(i); } } return divisors; } static void coprimeGenerator(int m, int n, ArrayList<Point> coprimes, int limit, int numCoprimes) { if (m > limit) return; if (m <= limit && n <= limit) coprimes.add(new Point(m, n)); if (coprimes.size() > numCoprimes) return; coprimeGenerator(2 * m - n, m, coprimes, limit, numCoprimes); coprimeGenerator(2 * m + n, m, coprimes, limit, numCoprimes); coprimeGenerator(m + 2 * n, n, coprimes, limit, numCoprimes); } static long nCr(long n, long r, long[] fac) { long p = gigamod; if (r == 0) return 1; return (fac[(int)n] * modInverse(fac[(int)r], p) % p * modInverse(fac[(int)n - (int)r], p) % p) % p; } static long modInverse(long n, long p) { return power(n, p - 2, p); } static long modDiv(long a, long b){return mod(a * power(b, mod - 2, mod), mod);} static long power(long x, long y, long p) { long res = 1; x = x % p; while (y > 0) { if ((y & 1)==1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } static int logk(long n, long k) { return (int)(Math.log(n) / Math.log(k)); } static long gcd(long a, long b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } static int gcd(int a, int b) { if (b == 0) { return a; } else { return gcd(b, a % b); } } static long gcd(long[] arr) { int n = arr.length; long gcd = arr[0]; for (int i = 1; i < n; i++) { gcd = gcd(gcd, arr[i]); } return gcd; } static int gcd(int[] arr) { int n = arr.length; int gcd = arr[0]; for (int i = 1; i < n; i++) { gcd = gcd(gcd, arr[i]); } return gcd; } static long lcm(long[] arr) { long lcm = arr[0]; int n = arr.length; for (int i = 1; i < n; i++) { lcm = (lcm * arr[i]) / gcd(lcm, arr[i]); } return lcm; } static long lcm(long a, long b) { return (a * b)/gcd(a, b); } static boolean less(int a, int b) { return a < b ? true : false; } static boolean isSorted(int[] a) { for (int i = 1; i < a.length; i++) { if (less(a[i], a[i - 1])) return false; } return true; } static boolean isSorted(long[] a) { for (int i = 1; i < a.length; i++) { if (a[i] < a[i - 1]) return false; } return true; } static void swap(int[] a, int i, int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(long[] a, int i, int j) { long temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(double[] a, int i, int j) { double temp = a[i]; a[i] = a[j]; a[j] = temp; } static void swap(char[] a, int i, int j) { char temp = a[i]; a[i] = a[j]; a[j] = temp; } static void sort(int[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(char[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(long[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void sort(double[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); } static void reverseSort(int[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(char[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverse(char[] arr) { int n = arr.length; for (int i = 0; i < n / 2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(long[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void reverseSort(double[] arr) { shuffleArray(arr, 0, arr.length - 1); Arrays.sort(arr); int n = arr.length; for (int i = 0; i < n/2; i++) swap(arr, i, n - 1 - i); } static void shuffleArray(long[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { long tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(int[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { int tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(double[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { double tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static void shuffleArray(char[] arr, int startPos, int endPos) { Random rnd = new Random(); for (int i = startPos; i < endPos; ++i) { char tmp = arr[i]; int randomPos = i + rnd.nextInt(endPos - i); arr[i] = arr[randomPos]; arr[randomPos] = tmp; } } static boolean isPrime(long n) {if (n<=1)return false;if(n<=3)return true;if(n%2==0||n%3==0)return false;for(long i=5;i*i<=n;i=i+6)if(n%i==0||n%(i+2)==0)return false;return true;} static String toString(int[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+" ");return sb.toString();} static String toString(boolean[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+" ");return sb.toString();} static String toString(long[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+" ");return sb.toString();} static String toString(char[] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++)sb.append(dp[i]+"");return sb.toString();} static String toString(int[][] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++){for(int j=0;j<dp[i].length;j++){sb.append(dp[i][j]+" ");}sb.append('\n');}return sb.toString();} static String toString(long[][] dp){StringBuilder sb=new StringBuilder();for(int i=0;i<dp.length;i++){for(int j=0;j<dp[i].length;j++) {sb.append(dp[i][j]+" ");}sb.append('\n');}return sb.toString();} static String toString(double[][] dp){StringBuilder sb=new StringBuilder();for(int i = 0;i<dp.length;i++){for(int j = 0;j<dp[i].length;j++){sb.append(dp[i][j]+" ");}sb.append('\n');}return sb.toString();} static String toString(char[][] dp){StringBuilder sb = new StringBuilder();for(int i = 0;i<dp.length;i++){for(int j = 0;j<dp[i].length;j++){sb.append(dp[i][j]+"");}sb.append('\n');}return sb.toString();} static long mod(long a, long m){return(a%m+1000000L*m)%m;} } /* * * int[] arr = new int[] {1810, 1700, 1710, 2320, 2000, 1785, 1780 , 2130, 2185, 1430, 1460, 1740, 1860, 1100, 1905, 1650}; int n = arr.length; sort(arr); int bel1700 = 0, bet1700n1900 = 0, abv1900 = 0; for (int i = 0; i < n; i++) if (arr[i] < 1700) bel1700++; else if (1700 <= arr[i] && arr[i] < 1900) bet1700n1900++; else if (arr[i] >= 1900) abv1900++; out.println("COUNT: " + n); out.println("PERFS: " + toString(arr)); out.println("MEDIAN: " + arr[n / 2]); out.println("AVERAGE: " + Arrays.stream(arr).average().getAsDouble()); out.println("[0, 1700): " + bel1700 + "/" + n); out.println("[1700, 1900): " + bet1700n1900 + "/" + n); out.println("[1900, 2400): " + abv1900 + "/" + n); * * */ // NOTES: // ASCII VALUE OF 'A': 65 // ASCII VALUE OF 'a': 97 // Range of long: 9 * 10^18 // ASCII VALUE OF '0': 48 // Primes upto 'n' can be given by (n / (logn)).
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
4bcf3cdca519f3e3920d997e263c53b1
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/*package whatever //do not write package name here */ import java.util.*; public class GFG { public static void main (String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int o=0;o<t;o++){ HashSet<Integer> hs=new HashSet<>(); for(int i=1;i<10000;i++){ hs.add(i*i); } int n=sc.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); boolean flag=false; for(int i=0;i<n;i++){ if(hs.contains(arr[i])==false) flag=true; } if(flag==true) System.out.println("YES"); else System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
bb04697acecdc4e76f631f1dca4068d8
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/*package whatever //do not write package name here */ import java.util.*; public class GFG { public static void main (String[] args) { Scanner sc=new Scanner(System.in); HashSet<Integer> hs=new HashSet<>(); for(int i=1;i<10000;i++){ hs.add(i*i); } int t=sc.nextInt(); for(int o=0;o<t;o++){ int n=sc.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); boolean flag=false; for(int i=0;i<n;i++){ if(hs.contains(arr[i])==false) flag=true; } if(flag==true) System.out.println("YES"); else System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
c39f849328f903c131707d09e9ed2311
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/*package whatever //do not write package name here */ import java.util.*; public class GFG { public static void main (String[] args) { Scanner sc=new Scanner(System.in); HashSet<Integer> hs=new HashSet<>(); for(int i=1;i<100000;i++){ hs.add(i*i); } int t=sc.nextInt(); for(int o=0;o<t;o++){ int n=sc.nextInt(); int[] arr=new int[n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); boolean flag=false; for(int i=0;i<n;i++){ if(hs.contains(arr[i])==false) flag=true; } if(flag==true) System.out.println("YES"); else System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
186dc03cee091a9384e2ee00ccd9904c
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class Main{ static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static long fac(long num) { long ans = 1; int mod = (int)1e9+7; for(long i = 2;i<=num;i++) { ans = (ans*i)%mod; } return ans; } public static int get(HashSet<Integer> set , char arr[]) { int n = 0; for(int i =0;i<arr.length;i++) { if(set.contains(i)) continue; n = n*10 + (arr[i] -'0'); } return n; } public static String fun(String s , int l) { String ans = ""; while(l-- > 0) { ans += s; } return ans; } public static int getDivisor(int n) { for(int i =n/2;i>=1;i--) { if(n%i==0) return i; } return 1; } public static void main(String[] args)throws IOException { FastReader sc = new FastReader(); int testCase = sc.nextInt(); while(testCase-- > 0 ) { int n = sc.nextInt(); int arr[] = new int[n]; boolean ans = false; for(int i =0;i<n;i++) { arr[i] = sc.nextInt(); int x = (int)Math.sqrt(arr[i]); if(x*x!=arr[i]) ans = true; } if(ans) System.out.println("YES"); else System.out.println("NO"); } } public static long fn(long n ) { for(int i = 2;i<=n;i++) { if(n%i==0) return i; } return n; } public static boolean isPowerOfTwo (long x) { return x!=0 && ((x&(x-1)) == 0); } public static int[] getans(int num) { int ans[] = new int[2]; int index =0; for(int i =2;i<=num/2;i+=1) { if(num%i==0)ans[index++] = i; if(index==2 ) break; } return ans; } public static boolean isPrime(long num) { if(num==1) return false; if(num<=3) return true; if(num%2==0||num%3==0) return false; for(long i =5;i*i<=num;i+=6) { if(num%i==0) return false; } return true; } public static boolean isPrime(int num) { if(num==1) return false; if(num<=3) return true; if(num%2==0||num%3==0) return false; for(int i =5;i*i<=num;i+=6) { if(num%i==0) return false; } return true; } public static int gcd(int a , int b) { if (b == 0) return a; return gcd(b, a % b); } public static long gcd(long a , long b) { if (b == 0) return a; return gcd(b, a % b); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
b31920004c7c8f1d039016e8d892cdf5
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class A_Perfectly_imperfect_array { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(); int[] arr=new int[n]; for (int i = 0; i < n; i++) { arr[i]=sc.nextInt(); } int count=0; for (int i = 0; i < n; i++) { int sqr=(int) Math.sqrt(arr[i]); if((sqr*sqr)==arr[i]){ count++; } } if(count==n){ System.out.println("NO"); } else { System.out.println("YES"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
763143657396caabc5c3ed573b796c20
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class CodeForces800_3 { static Scanner sc; public static void main(String[] args) { sc=new Scanner(System.in); int t=sc.nextInt(); while(t>0){ System.out.println(Process()); t--; } } public static String Process(){ int n=sc.nextInt(); int arr[]=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); } for(int i=0;i<n;i++){ double temp=Math.sqrt(arr[i]); if(temp-Math.floor(temp)!=0) return "YES"; } return "NO"; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
4cd9e21b68065299703f8361a8a87d26
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class A{ public static FastReader sc=new FastReader(); public static PrintWriter out = new PrintWriter(System.out); public static void taskSolver(){ int n=sc.nextInt(); int arr[]=new int[n]; for(int i=0;i<n;i++)arr[i]=sc.nextInt(); boolean b=false; for(int i=0;i<n;i++){ if(Math.ceil(Math.sqrt(arr[i]))!=Math.floor(Math.sqrt(arr[i]))){ b=true;break; } } if(b)out.println("YES"); else out.println("NO"); } public static void main(String args[]) throws java.lang.Exception{ int t=sc.nextInt(); while(t-->0) taskSolver(); out.close(); } class Pair{ int x,y; Pair(int x,int y){ this.x=x;this.y=y; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
ab4176b4c68b552ab5f9e918e795e688
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class A{ public static FastReader sc=new FastReader(); public static PrintWriter out = new PrintWriter(System.out); public static void taskSolver(){ int n=sc.nextInt(); int arr[]=new int[n]; for(int i=0;i<n;i++)arr[i]=sc.nextInt(); boolean b=false; for(int i=0;i<n;i++){ if(arr[i]!=(int)Math.sqrt(arr[i])*(int)Math.sqrt(arr[i])){ b=true;break; } } if(b)out.println("YES"); else out.println("NO"); } public static void main(String args[]) throws java.lang.Exception{ int t=sc.nextInt(); while(t-->0) taskSolver(); out.close(); } class Pair{ int x,y; Pair(int x,int y){ this.x=x;this.y=y; } } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
9bc4bd44311dcfa7d4a13680727535eb
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.lang.*; public class Student { public static void main(String [] args) { Scanner scan = new Scanner(System.in); int t = scan.nextInt(); for(int i=0 ; i<t ; i++) { boolean x = true; int n = scan.nextInt(); int []arr = new int[n]; for(int l=0 ; l<n ; l++) { arr[l] = scan.nextInt(); } for(int k=0; k<n ; k++) { long z = (long)Math.sqrt(arr[k]); long zz = z*z; if(zz!=arr[k]) { x = false; System.out.println("YES"); break; } } if(x==true) { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
6a77679941f7da83185529ec63763332
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Map; import java.util.Scanner; import java.lang.Math; public class Account { public static void main (String[] args) { Scanner sc= new Scanner(System.in) ; int t= sc.nextInt() ; while(t-- > 0) { int n= sc.nextInt() ; int[] arr= new int[n] ; boolean flag= false ; for(int i=0 ;i<n ;i++ ) { arr[i]= sc.nextInt() ; if(isPerfectSquare(arr[i]) == false && flag == false) { flag= true ; // break ; } } if(flag == true) { System.out.println("YES"); }else { System.out.println("NO"); } } } static boolean isPerfectSquare(int x) { if (x >= 0) { int sr = (int) Math.sqrt(x); return ((sr * sr) == x); } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
20f0b736e66f6507ee933b49bc76391a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Map; import java.util.Scanner; import java.lang.Math; public class Account { public static void main (String[] args) { Scanner sc= new Scanner(System.in) ; int t= sc.nextInt() ; while(t-- > 0) { int n= sc.nextInt() ; int[] arr= new int[n] ; boolean flag= false ; for(int i=0 ;i<n ;i++ ) { arr[i]= sc.nextInt() ; int sqrt= (int) Math.sqrt(arr[i]) ; if(sqrt*sqrt != arr[i]) { flag= true ; // break ; } } if(flag == true) { System.out.println("YES"); }else { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
5a0c9a9d6fd9434ea2dfdc793039db8b
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Main { public static void main (String[] args) { Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t --> 0) { int n = in.nextInt(); int[] arr = new int[n]; boolean perf = true; for (int i = 0; i < n; i++) { arr[i] = in.nextInt(); int k = (int)Math.sqrt(arr[i]); if (k * k != arr[i]) { perf = false; } } if (perf) { System.out.println("NO"); } else System.out.println("YES"); } in.close(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
7fcb3909d5a208ed59c05c9afd1937a6
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { boolean flag=false; int n=sc.nextInt(); for(int i=0;i<n;i++) { int a=sc.nextInt(); int sq=(int)Math.sqrt(a); if(sq*sq!=a) flag=true; } System.out.println(flag?"YES":"NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
8d2f715a62d7aa67455573217d084a9c
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static boolean checkPerfectSquare(double number){ double sqrt=Math.sqrt(number); return ((sqrt - Math.floor(sqrt)) == 0); } public static void main (String[] args) throws java.lang.Exception { Scanner s = new Scanner(System.in); int t = s.nextInt(); while(t-- != 0){ int n = s.nextInt(); int[] arr = new int[n]; for(int i= 0; i < n; i++){ arr[i] = s.nextInt(); } int i; for(i = 0; i < n; i++){ if(!checkPerfectSquare(arr[i])){ System.out.println("YES"); break; } } if(i == n){ System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
a6e08f9329156a52c0e97fab07de145e
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class CodeTest { public static String check(int arr[]){ for(int i : arr){ if(Math.sqrt(i) - Math.floor(Math.sqrt(i)) != 0){ return "YES"; } } return "NO"; } public static void main(String[] args) { Scanner sc = new Scanner(System.in); int numberTestCase = sc.nextInt(); for(int i = 1; i <= numberTestCase; i++){ int length = sc.nextInt(); int[] arr = new int[length]; for(int j = 0; j < length; j++){ arr[j] = sc.nextInt(); } System.out.println(check(arr)); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
9f5a2160d7875d216a0d6edc712fcb58
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class A{ public static void main(String[] args){ Scanner in = new Scanner(System.in); int T = in.nextInt(); for (int t=0; t<T; t++) { int N = in.nextInt(); boolean found = false; for (int n=0; n<N; n++) { int a = in.nextInt(); int sqrt = (int) Math.sqrt(a); found |= (sqrt*sqrt != a); } System.out.println(found ? "YES" : "NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
de373b769c5ab4826edba3fc090f7931
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class cupballet { static int[] B,A; static int n,m; static int[][] DP; static boolean IsSquare(int N) { int i; for(i=1; N>0; i+=2) //变化步长为2, 初值为1,一直减到N大于0 { N-=i; } if(N==0) return true; //如果N减到最后,恰好等于0,就是平方数 else return false; //否则,就不是平方数 } public static void main(String[] args)throws IOException { // TODO Auto-generated method stub Scanner in = new Scanner(System.in); n = in.nextInt(); for(int x=0;x<n;x++) { m = in.nextInt(); boolean flag = true; for(int i=0;i<m;i++) { int a = in.nextInt(); if(!IsSquare(a)&&flag==true) { System.out.println("YES"); flag = false; } } if(flag==true) { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
99331f33c0e69be26badf15226d7e6de
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.*; public class cupballet { static int[] B,A; static int n,m; static int[][] DP; static boolean IsSquare(int N) { int i; for(i=1; N>0; i+=2) //变化步长为2, 初值为1,一直减到N大于0 { N-=i; } if(N==0) return true; //如果N减到最后,恰好等于0,就是平方数 else return false; //否则,就不是平方数 } public static void main(String[] args)throws IOException { // TODO Auto-generated method stub Scanner in = new Scanner(System.in); n = in.nextInt(); for(int x=0;x<n;x++) { m = in.nextInt(); boolean flag = true; for(int i=0;i<m;i++) { int a = in.nextInt(); if(!IsSquare(a)&&flag==true) { System.out.println("YES"); flag = false; } } if(flag==true) { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
7bd5efef76e59c94422bfbf3076779ad
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Solution { public static void main(String[] args) { Scanner sc = new Scanner(System.in); Integer t = Integer.valueOf(sc.nextLine()); for (int i = 0; i < t; i++){ Integer s = Integer.valueOf(sc.nextLine()); String[] s1 = sc.nextLine().split(" "); boolean f = false; for (int j = 0; j < s; j++){ int val= Integer.valueOf(s1[j]); if (!isPerfectSq(val)){ f = true; break; } } if (f) System.out.println("YES"); else System.out.println("NO"); } } public static boolean isPerfectSq(long n) { if (n < 0) { return false; } switch((int)(n & 0xF)) { case 0: case 1: case 4: case 9: long tst = (long)Math.sqrt(n); return tst*tst == n; default: return false; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
01d6ce4e75a1cbcaa0ed4704b7bd10bd
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scan = new Scanner(System.in); int T = scan.nextInt(); while(T -->0){ int n = scan.nextInt(); int[] a = new int[n]; for(int i=0;i<n;i++){ a[i] = scan.nextInt(); } boolean flag = false; for(int i=0;i<n;i++){ if((int)Math.sqrt(a[i]) * (int)Math.sqrt(a[i]) != a[i]){ System.out.println("Yes"); flag = true; break; } } if(!flag){ System.out.println("No"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
beb0124ea21980e04175486a6c84e286
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public final class Solution { static PrintWriter out = new PrintWriter(System.out); static FastReader in = new FastReader(); static long mod = (long) 1e9 + 7; static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(1, 0), new Pair(0, -1), new Pair(0, 1)}; public static void main(String[] args) { int t = i(); out: while (t-- > 0) { int n = i(); int[] arr = input(n); for (int x : arr) { if (!isPS(x)) { out.println("YES"); continue out; } } out.println("NO"); } out.flush(); } public static boolean isPS(int x) { if (x == 1) { return true; } for (int i = 2; i <= x / 2; i++) { if (i * i == x) { return true; } } return false; } public static long calc(int type, long X, long K) { if (type == 1) { return (X + 99999) / 100000 + K; } else { return (K * X + 99999) / 100000; } } static int sd(long i) { int d = 0; while (i > 0) { d += i % 10; i = i / 10; } return d; } static int lower(long A[], long x) { int l = -1, r = A.length; while (r - l > 1) { int m = (l + r) / 2; if (A[m] >= x) { r = m; } else { l = m; } } return r; } static int upper(long A[], long x) { int l = -1, r = A.length; while (r - l > 1) { int m = (l + r) / 2; if (A[m] <= x) { l = m; } else { r = m; } } return l; } static void swap(int A[], int a, int b) { int t = A[a]; A[a] = A[b]; A[b] = t; } static int lowerBound(int A[], int low, int high, int x) { if (low > high) { if (x >= A[high]) { return A[high]; } } int mid = (low + high) / 2; if (A[mid] == x) { return A[mid]; } if (mid > 0 && A[mid - 1] <= x && x < A[mid]) { return A[mid - 1]; } if (x < A[mid]) { return lowerBound(A, low, mid - 1, x); } return lowerBound(A, mid + 1, high, x); } static long pow(long a, long b) { long pow = 1; long x = a; while (b != 0) { if ((b & 1) != 0) { pow = (pow * x) % mod; } x = (x * x) % mod; b /= 2; } return pow; } static boolean isPrime(long N) { if (N <= 1) { return false; } if (N <= 3) { return true; } if (N % 2 == 0 || N % 3 == 0) { return false; } for (int i = 5; i * i <= N; i = i + 6) { if (N % i == 0 || N % (i + 2) == 0) { return false; } } return true; } static void print(char A[]) { for (char c : A) { out.print(c); } out.println(); } static void print(boolean A[]) { for (boolean c : A) { out.print(c + " "); } out.println(); } static void print(int A[]) { for (int c : A) { out.print(c + " "); } out.println(); } static void print(long A[]) { for (long i : A) { out.print(i + " "); } out.println(); } static void print(ArrayList<Integer> A) { for (int a : A) { out.print(a + " "); } } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static String s() { return in.nextLine(); } static int[] input(int N) { int A[] = new int[N]; for (int i = 0; i < N; i++) { A[i] = in.nextInt(); } return A; } static long[] inputLong(int N) { long A[] = new long[N]; for (int i = 0; i < A.length; i++) { A[i] = in.nextLong(); } return A; } static int GCD(int a, int b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } static long GCD(long a, long b) { if (b == 0) { return a; } else { return GCD(b, a % b); } } } class SegmentTree { long[] t; public SegmentTree(int n) { t = new long[n + n]; Arrays.fill(t, Long.MIN_VALUE); } public long get(int i) { return t[i + t.length / 2]; } public void add(int i, long value) { i += t.length / 2; t[i] = value; for (; i > 1; i >>= 1) { t[i >> 1] = Math.max(t[i], t[i ^ 1]); } } // max[a, b] public long max(int a, int b) { long res = Long.MIN_VALUE; for (a += t.length / 2, b += t.length / 2; a <= b; a = (a + 1) >> 1, b = (b - 1) >> 1) { if ((a & 1) != 0) { res = Math.max(res, t[a]); } if ((b & 1) == 0) { res = Math.max(res, t[b]); } } return res; } } class Pair { int i, j; Pair(int i, int j) { this.i = i; this.j = j; } } class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
b1e32d9af1d5fcbd4beb4f1dff7df074
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class A_Perfectly_Imperfect_Array{ static void main() throws Exception{ int n=sc.nextInt(); int[]in=sc.intArr(n); for(int i=0;i<n;i++) { for(int p=2;p*p<=in[i];p++) { if(in[i]%p!=0)continue; int cnt=0; while(in[i]%p==0) { cnt^=1; in[i]/=p; } if(cnt==1) { pw.println("YES"); return; } } if(in[i]>1) { pw.println("YES"); return; } } pw.println("NO"); } public static void main(String[] args) throws Exception{ sc=new MScanner(System.in); pw = new PrintWriter(System.out); int tc=1; tc=sc.nextInt(); for(int i=1;i<=tc;i++) { // pw.printf("Case #%d:", i); main(); } pw.flush(); } static PrintWriter pw; static MScanner sc; static class MScanner { StringTokenizer st; BufferedReader br; public MScanner(InputStream system) { br = new BufferedReader(new InputStreamReader(system)); } public MScanner(String file) throws Exception { br = new BufferedReader(new FileReader(file)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] intArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public long[] longArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public int[] intSortedArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); shuffle(in); Arrays.sort(in); return in; } public long[] longSortedArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); shuffle(in); Arrays.sort(in); return in; } public Integer[] IntegerArr(int n) throws IOException { Integer[]in=new Integer[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public Long[] LongArr(int n) throws IOException { Long[]in=new Long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } public String nextLine() throws IOException { return br.readLine(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public char nextChar() throws IOException { return next().charAt(0); } public long nextLong() throws IOException { return Long.parseLong(next()); } public boolean ready() throws IOException { return br.ready(); } public void waitForInput() throws InterruptedException { Thread.sleep(3000); } } static void sort(int[]in) { shuffle(in); Arrays.sort(in); } static void sort(long[]in) { shuffle(in); Arrays.sort(in); } static void shuffle(int[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); int tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } static void shuffle(long[]in) { for(int i=0;i<in.length;i++) { int idx=(int)(Math.random()*in.length); long tmp=in[i]; in[i]=in[idx]; in[idx]=tmp; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
9e92aac9baa94f718fe35db8e83f4621
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class MyCpClass { static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static void main(String[] args) { FastReader fs=new FastReader(); int t = fs.nextInt(); while(t-- > 0){ int n = fs.nextInt(); int []a = new int[n]; for(int i=0; i<n; i++) a[i] = fs.nextInt(); String ans = "NO"; for(int i=0; i<n; i++){ int rt = (int)Math.sqrt(a[i]); if(rt*rt != a[i]){ ans = "YES"; break; } } System.out.println(ans); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
8b02427f7aedb58ccf4c54038d567d12
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { boolean flag=false; int n=sc.nextInt(); for(int i=0;i<n;i++) { int a=sc.nextInt(); int sq=(int)Math.sqrt(a); if(sq*sq!=a) flag=true; } System.out.println(flag?"YES":"NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
985b010c5be1bfcbc630f5a23ff84d8a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.sql.Array; import java.util.ArrayList; import java.math.*; import java.util.Scanner; import static java.lang.Math.sqrt; public class Main { public static void main(String []args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while((--t)>=0) { int n = sc.nextInt(); int[] arr = new int[n]; for(int i=0;i<n;i++) arr[i] = sc.nextInt(); int f=0; for(int i=0;i<n;i++) { int d = (int)Math.sqrt(arr[i]); if(d*d !=arr[i]) { f=1; break; } } if(f==1) System.out.println("YES"); else System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
5bd8bd4b73b550b2d10342b1d60aeb22
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/* package codechef; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { static boolean checkPerfectSquare(int x) { double zz = (double)x; // finding the square root of given number double sq = Math.sqrt(zz); /* Math.floor() returns closest integer value, for * example Math.floor of 984.1 is 984, so if the value * of sq is non integer than the below expression would * be non-zero. */ return ((sq - Math.floor(sq)) == 0); } public static void main (String[] args) throws java.lang.Exception { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-- != 0){ int n = sc.nextInt(); int a[] = new int [n]; long p = 1; int fla = -1; for(int i = 0 ; i < n ; i++){ a[i] = sc.nextInt(); if(!checkPerfectSquare(a[i])){ fla = 1; } p *= a[i]; } if(fla == 1){ System.out.println("YES"); }else{ System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
913712a2f7b7c9833947e92674c92cce
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Experiment { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while (t-- > 0) { int n = sc.nextInt(); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } if (Check(arr, n) == true) { System.out.println("YES"); } else { System.out.println("NO"); } } } public static boolean Check(int[] arr, int n) { for (int i = 0; i < n; i++) { double count = (int) Math.sqrt(arr[i]); // System.out.println(count); // System.out.println(count * count); if (count * count != arr[i]) { return true; } } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
7f816e9da9b789fec044b169e1eff2c8
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Main { public static void main(String args[]) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0){ int n= sc.nextInt(); int[] arr = new int[n]; for(int i=0;i<n;i++){ arr[i] = sc.nextInt(); } if(!solve(arr, n)) System.out.println("YES"); else System.out.println("NO"); } } public static boolean solve(int[] arr, int n){ for(int i=0;i<n;i++){ int rt = (int)Math.sqrt(arr[i]); if(rt*rt != arr[i]) return false; } return true; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
60cebd5d40b4653868c9ecbad81f9563
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class A { static class Reader{ private BufferedReader reader; private StringTokenizer tokenizer; Reader(InputStream input) { this.reader = new BufferedReader(new InputStreamReader(input)); this.tokenizer = new StringTokenizer(""); } public String next() throws IOException { while(!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } public static void main(String[] args) throws IOException{ Reader scan = new Reader(System.in); BufferedOutputStream b = new BufferedOutputStream(System.out); StringBuffer sb = new StringBuffer(); int Test = scan.nextInt(); while(Test-->0) { int N = scan.nextInt(); int[] arr = new int[N]; for(int i=0; i<N;i++) { arr[i] = scan.nextInt(); } sb.append(solve(arr,N)); } b.write((sb.toString()).getBytes()); b.flush(); } private static String solve(int[] arr, int n) { for(int i:arr) { if(isPerfectSquare(i)==false)return "YES\n"; } return "NO\n"; } public static boolean isPerfectSquare(int n) { for (int i = 1; i * i <= n; i++) { if ((n % i == 0) && (n / i == i)) { return true; } } return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
07a2f76c59fb0448aeeca2c5536fe6c4
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
// package CODEFORCES_716_DIV_2; import java.util.*; import java.io.*; public class A { static class Reader{ private BufferedReader reader; private StringTokenizer tokenizer; Reader(InputStream input) { this.reader = new BufferedReader(new InputStreamReader(input)); this.tokenizer = new StringTokenizer(""); } public String next() throws IOException { while(!tokenizer.hasMoreTokens()) { tokenizer = new StringTokenizer(reader.readLine()); } return tokenizer.nextToken(); } public int nextInt() throws IOException { return Integer.parseInt(next()); } public double nextDouble() throws IOException { return Double.parseDouble(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } } public static void main(String[] args) throws IOException{ Reader scan = new Reader(System.in); BufferedOutputStream b = new BufferedOutputStream(System.out); StringBuffer sb = new StringBuffer(); int Test = scan.nextInt(); while(Test-->0) { int N = scan.nextInt(); int[] arr = new int[N]; for(int i=0; i<N;i++) { arr[i] = scan.nextInt(); } sb.append(solve(arr,N)); } b.write((sb.toString()).getBytes()); b.flush(); } private static String solve(int[] arr, int n) { for(int i:arr) { if(isPerfectSquare(i)==false)return "YES\n"; } return "NO\n"; } public static boolean isPerfectSquare(int n) { int i = (int)Math.floor(Math.sqrt(n)); // for (int i = 1; i * i <= n; i++) { // if ((n % i == 0) && (n / i == i)) { // return true; // } // } if(i*i==n)return true; return false; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
9198a81f6ee04d4bcfbf553cc0606dc3
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/** * * @author aditya */ import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class PerfectlyImperfect { public static void main(String[] args) { FastScanner fs=new FastScanner(); int T=fs.nextInt(); PrintWriter out=new PrintWriter(System.out); for (int tt=0; tt<T; tt++) { boolean flag=false; int n = fs.nextInt(); int arr[] = fs.readArray(n); for(int i=0;i<n;i++){ if(!isPerfectSquare(arr[i])) flag=true; } if(!flag) out.println("NO"); else out.println("YES"); } out.close(); } static boolean isPerfectSquare(int num){ long left = 1, right = num; while (left <= right){ long mid = (left + right) / 2; if (mid * mid == num){ return true; } if (mid * mid < num){ left = mid + 1; } else{ right = mid - 1; } } return false; } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } int[] readArray(int n) { int[] a=new int[n]; for (int i=0; i<n; i++) a[i]=nextInt(); return a; } int nextInt () { return Integer.parseInt(next()); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
617de2250b04d4dff98d5b22d72be5ca
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/****************************************************************************** Online Java Compiler. Code, Compile, Run and Debug java program online. Write your code in this editor and press "Run" button to execute it. *******************************************************************************/ import java.util.*; public class Main { public static void main(String[] args) { Scanner scan=new Scanner(System.in); int t=scan.nextInt(); while(t>0){ int n=scan.nextInt(); int a[]=new int[n]; for(int i=0;i<n;i++){ a[i]=scan.nextInt(); } boolean flag=false; //long val=1; for(int i=0;i<n;i++){ //val*=a[i]; if(Math.sqrt(a[i])!=(int)Math.sqrt(a[i])){ flag=true; break; } } if(!flag){ System.out.println("NO"); }else{ System.out.println("YES"); } t--; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
ee53eda8cbb32c1d1f0d95c91dd8e2ac
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.lang.*; import java.io.*; /* Name of the class has to be "Main" only if the class is public. */ public class Codechef { public static void main (String[] args) throws java.lang.Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int t=Integer.parseInt(br.readLine()); while(t-->0) { int n=Integer.parseInt(br.readLine()); String[] st=br.readLine().split(" "); int[] a=new int[n]; for(int i=0;i<st.length;i++) { a[i]=Integer.parseInt(st[i]); } boolean fl=false; for(int i=0;i<st.length;i++) { int x=(int)Math.floor(Math.sqrt(a[i])); if(x*x!=a[i]) { fl=true; break; } } if(fl) System.out.println("YES"); else System.out.println("NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
904aca787ad9b37f7fc6ceac879d89d7
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class div_2_716_a { public static void main(String args[]){ FScanner in = new FScanner(); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); while(t-->0) { int n=in.nextInt(); int a[]=in.readArray(n); double sum=1; boolean flag=false; for(int i=0;i<n;i++) { sum=sum*a[i]; } if (Math.ceil((double)Math.sqrt(sum)) ==Math.floor((double)Math.sqrt(sum))) { for(int i=0;i<n;i++) { if (Math.ceil((double)Math.sqrt(a[i])) ==Math.floor((double)Math.sqrt(a[i]))) flag=true; else {flag=false; break;} } if(flag==true) out.println("No"); else out.println("Yes"); } else out.println("Yes"); } out.close(); } static class FScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer sb = new StringTokenizer(""); String next(){ while(!sb.hasMoreTokens()){ try{ sb = new StringTokenizer(br.readLine()); } catch(IOException e){ } } return sb.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt(){ return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } float nextFloat(){ return Float.parseFloat(next()); } double nextDouble(){ return Double.parseDouble(next()); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
db193978a2f6222504351463a151607c
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int t = scanner.nextInt(); for(int i=0;i<t;i++) { int n = scanner.nextInt(); boolean flag = false; for(int j=0;j<n;j++) { int a = scanner.nextInt(); int sa = (int)Math.sqrt((double)a); if(a!=sa*sa && !flag) { flag = true; System.out.println("YES"); } } if(!flag) { System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
dfb22ab94abbe04afa52986aed75f02e
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class A71 { public static void main(String[] args) { Scanner s=new Scanner(System.in); int i = s.nextInt(); while (i!=0) { int n = s.nextInt(); boolean set = true; while (n!=0) { if (Math.sqrt((double) s.nextInt())%1!=0) { set = false; } n--; } if (set) { System.out.println("NO"); } else { System.out.println("YES"); } i--; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
b3c90fe0f9e535695d1cd34bc67a216e
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class A { private final static Scanner scanner=new Scanner(System.in); public static void main(String[] args){ int a; int t=scanner.nextInt(); while (t--!=0){ int n=scanner.nextInt(); boolean flag=false; for(int i=0;i<n;i++){ a=scanner.nextInt(); int s= (int) Math.sqrt(a); if(s*s!=a){ //有一个数不是完全平方数,那么肯定存在 flag=true; continue; } } if(flag){ System.out.println("YES"); }else{ System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
acc0b83614e1a3c8462991a3d481d7ce
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.Arrays; import java.util.HashMap; import java.util.LinkedList; import java.util.Scanner; import java.util.StringTokenizer; public class A { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); for(int i=0;i<t;i++) { int n = sc.nextInt(); boolean go = true; int j=0; while(go) { int a = sc.nextInt(); if(Math.sqrt(a)!=Math.floor(Math.sqrt(a))) { System.out.println("YES"); go=false; sc.nextLine(); } else if(j==n-1) { System.out.println("NO"); go=false; } j++; } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
c6726f0d8b00b8579042a4e111e502d8
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.math.*; public class ImperfectArray { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int runs = sc.nextInt(); while(runs-->0) { int n = sc.nextInt(); double[] arr = new double[n]; for(int i = 0;i<n;i++) arr[i] = sc.nextDouble(); boolean fl = false; outer:for(int i = 0;i<n;i++) { double answer = Math.sqrt(arr[i]); if(answer-Math.floor(answer)!=0) { fl = true; break; } } System.out.println(fl?"YES":"NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
fe343d4f0ee703b06cf2d568bbdcb215
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class Main { static int size; static int[] arr; static boolean isSquare(int num) { double doubleSqrt = Math.sqrt(num); int sqrt = (int) doubleSqrt; return doubleSqrt == sqrt; } static boolean solve(int[] arr) { for(int d : arr) { if(!isSquare(d)) return false; } return true; } public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringBuilder sb = new StringBuilder(); int T = Integer.parseInt(br.readLine()); for(int t = 1; t <= T; t++) { StringTokenizer st; size = Integer.parseInt(br.readLine()); arr = new int[size]; st = new StringTokenizer(br.readLine()); for(int idx = 0; idx < size; idx++) { arr[idx] = Integer.parseInt(st.nextToken()); } sb.append(solve(arr) ? "NO" : "YES").append("\n"); } System.out.println(sb); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
1a10728b61ebbd6dc2b3df863a70ea09
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Scanner; import java.util.StringTokenizer; import java.util.*; public class c716a { //By shwetank_verma static boolean pref(double x) { if (x >= 0) { // Find floating point value of // square root of x. double sr = Math.sqrt(x); // if product of square root // is equal, then // return T/F return ((sr * sr) == x); } return false; } public static void main(String[] args) { FastReader sc=new FastReader(); try{ int t=1; t=sc.nextInt(); tsl: while(t-->0){ int n=sc.nextInt(); long a[]=new long[n]; boolean f=false; int cnt=0; for(int i=0;i<n;i++){ a[i]=sc.nextInt(); double v=Math.sqrt(a[i]); if(Math.ceil(v)==Math.floor(v)) { cnt++; } } if(cnt==n) System.out.println("NO"); else System.out.println("YES"); } }catch(Exception e){ return; } } static void ruffleSort(long[] a) { int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { long oi=r.nextInt(n), temp=a[i]; a[i]=a[(int)oi]; a[(int)oi]=temp; } Arrays.sort(a); } static void ruffleSort(int[] a) { int n=a.length; Random r=new Random(); for (int i=0; i<a.length; i++) { int oi=r.nextInt(n), temp=a[i]; a[i]=a[oi]; a[oi]=temp; } Arrays.sort(a); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } static int mod=1000000007; static boolean primes[]=new boolean[1000007]; static ArrayList<Integer> b=new ArrayList<>(); static boolean seive(int n){ Arrays.fill(primes,true); primes[0]=primes[1]=false; for(int i=2;i*i<=n;i++){ if(primes[i]==true){ for(int p=i*i;p<=n;p+=i){ primes[p]=false; } } } if(n<1000007){ for(int i=2;i<=n;i++) { if(primes[i]) b.add(i); } return primes[n]; } return false; } static int gcd(int a,int b){ if(b==0) return a; return gcd(b,a%b); } static long GCD(long a,long b){ if(b==0) return a; return GCD(b,a%b); } static ArrayList<Integer> segseive(int l,int r){ ArrayList<Integer> isprime=new ArrayList<Integer>(); boolean p[]=new boolean[r-l+1]; Arrays.fill(p, true); for(int i=0;b.get(i)*b.get(i)<=r;i++) { int currprime=b.get(i); int base=(l/currprime)*currprime; if(base<l) { base+=currprime; } for(int j=base;j<=r;j+=currprime) { p[j-l]=false; } if(base==currprime) { p[base-l]=true; } } for(int i=0;i<=r-l;i++) { if(p[i]) isprime.add(i+l); } return isprime; } static int LowerBound(int a[], int x) { // x is the target value or key int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]>=x) r=m; else l=m; } return r; } static int UpperBound(int a[], int x) {// x is the key or target value int l=-1,r=a.length; while(l+1<r) { int m=(l+r)>>>1; if(a[m]<=x) l=m; else r=m; } return l+1; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
3f77fbda41c6e4596021f975728b1763
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class Main { public static void main(String args[]) { FastReader input=new FastReader(); PrintWriter out=new PrintWriter(System.out); int T=input.nextInt(); while(T-->0) { int n=input.nextInt(); int a[]=new int[n]; int flag=0; int v=0; HashSet<Integer> set=new HashSet<>(); for(int i=0;i<n;i++) { a[i]=input.nextInt(); set.add(a[i]); int q=(int)Math.sqrt(a[i]); if(q*q!=a[i]) { v=a[i]; flag=1; } } if(flag==1) { out.println("YES"); } else { out.println("NO"); } } out.close(); } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
8c0a344d366fc47004ab0cf4480cd74f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.ArrayList; import java.util.Scanner; public class A1514 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int T = sc.nextInt(); while(T--!=0){ boolean flag = true; int size = sc.nextInt(); while(size--!=0) { int temp = sc.nextInt(); if(!isPerfect(temp)) flag = false; } if(!flag) System.out.println("YES"); else System.out.println("NO"); } } public static boolean isPerfect(int ele) { return(Math.ceil(Math.sqrt(ele)) == Math.floor(Math.sqrt(ele))); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
cfdf2656b3376948e88a8656d89d4a3b
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; import java.util.Map.Entry; public class Codechef { static ArrayList<Integer> adj[]; static long ans = 0; static long above = 0; static List<Integer> factors = new ArrayList<>(); static FastReader f = new FastReader(); static int mod = 1000000007; public static void solve() { int n = f.nextInt(); int a[] = new int[n]; for(int i = 0 ; i < n ; i++) { a[i] = f.nextInt(); } for(int i = 0 ; i < n ; i++) { if(!checkPerfectSquare(a[i])) { System.out.println("YES"); return; } } System.out.println("NO"); } public static void main(String[] args) throws IOException { // FastReader f = new FastReader(); int t = f.nextInt(); // int t = 1; for (int i = 0; i < t; i++) { solve(); } } public static Map<Integer, Integer> primeFactors(int n) { // Print the number of 2s that divide n Map<Integer, Integer> map = new HashMap<>(); int count = 0; while (n%2==0) { // System.out.print(2 + " "); count++; n /= 2; } if(count > 0) map.put(2, count); // n must be odd at this point. So we can // skip one element (Note i = i +2) for (int i = 3; i <= Math.sqrt(n); i+= 2) { // While i divides n, print i and divide n count = 0; while (n%i == 0) { // System.out.print(i + " "); count++; n /= i; } if(count > 0) map.put(i, count); } // This condition is to handle the case when // n is a prime number greater than 2 if (n > 2) map.put(n, map.getOrDefault(n, 0) + 1); return map; } static List<Integer> sieveOfEratosthenes(int n) { List<Integer> list = new ArrayList(); boolean prime[] = new boolean[n + 1]; for (int i = 0; i <= n; i++) prime[i] = true; for (int p = 2; p * p <= n; p++) { // If prime[p] is not changed, then it is a // prime if (prime[p] == true) { // Update all multiples of p for (int i = p * p; i <= n; i += p) prime[i] = false; } } // Print all prime numbers for (int i = 2; i <= n; i++) { if (prime[i] == true) { list.add(i); } } return list; } public static int mex(List<Integer> a) { int prev = 0; int n = a.size(); for(int i = 0 ; i < n ; i++) { int curr = a.get(i); if(curr == prev || curr == prev + 1) { prev = curr; } else { return curr; } } return a.get(n - 1)+1; } // static List<Integer> getDivisors(long n) { List<Integer> ans = new ArrayList(); for (int i = 1; i * i <= n; i++) { if (n % i == 0) { ans.add(i); ans.add((int) (n / i)); } } return ans; } static void allFactors(int n) { for (int i = 1; i <= Math.sqrt(n); i++) { if (n % i == 0) { if (n / i == i) factors.add(i); // divisors are equal then add only one of them. else { factors.add(i); // divisors are different thus add i, and n/i because i * n/i = n factors.add(n / i); } } } } public static boolean isLucky(int n) { boolean flag = true; int nn = n; while (n > 0) { if (n % 10 != 4 && n % 10 != 7) { flag = false; break; } n /= 10; } return flag; } public static boolean helper(long arr[], int n, long target) { int i = 0, start = i + 1, end = n - 1; while (start < end) { long val = arr[i] + arr[start] + arr[end]; if (val < target) { start++; } else if (val > target) { end--; } else { return true; } } return false; } static boolean checkPerfectSquare(double number) { // calculating the square root of the given number double sqrt = Math.sqrt(number); // finds the floor value of the square root and comparing it with zero return ((sqrt - Math.floor(sqrt)) == 0); } public static long smallestDivisor(long n) { // if divisible by 2 if (n % 2 == 0) return 2; // iterate from 3 to sqrt(n) for (int i = 3; i * i <= n; i += 2) { if (n % i == 0) return i; } return n; } public static boolean isPrime(long n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so that we can skip // middle five numbers in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (long i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static long factorize(long n) { long ans = 0; // count the number of times 2 divides while (!(n % 2 > 0)) { // equivalent to n=n/2; n >>= 1; ans++; } if (ans > 0) ans = 1; // if 2 divides it // if (count > 0) { // System.out.println("2" + " " + count); // } // check for all the possible // numbers that can divide it for (long i = 3; i <= (long) Math.sqrt(n); i += 2) { int count = 0; while (n % i == 0) { count++; n = n / i; } // if (count > 0) { // System.out.println(i + " " + count); // } ans += count; } // if n at the end is a prime number. if (n > 2) { ans++; } return ans; } static int countSetBits(long n) { int count = 0; while (n > 0) { n &= (n - 1); count++; } return count; } public static long gcd(long a, long b) { if (a == 0) // returns y is x==0 return b; // calling function that returns GCD return gcd(b % a, a); } static long lcm(long a, long b) { // returns the LCM return (a / gcd(a, b)) * b; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
d8bc264b148605f72aa820bcfc89b33d
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int t = sc.nextInt(); while(t-->0){ int n = sc.nextInt(); boolean notPerfect = false; while(n-->0){ int input = sc.nextInt(); if(Math.sqrt(input) % 1 != 0){ notPerfect = true; } } if(!notPerfect){ System.out.println("NO"); } else { System.out.println("YES"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
17a60784bdac8dc1c5dde94c62a010fa
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
/*----->Hope Can Set You Free<-----*/ import java.util.*; public class PerfactlyInperfectArray { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0){ int n=sc.nextInt(),cnt=0,sq=0; int[] arr=new int[n]; for(int i=0;i<n;i++){ arr[i]=sc.nextInt(); sq=(int)Math.sqrt(arr[i]); if((sq*sq)!=arr[i]){ cnt++; } } if(cnt>0){ System.out.println("YES"); }else{ System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
677cb53ef1e47817a4e834c4d8f63f7c
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class PerfectlyImperfectArray { static boolean chk(int[] a) { for (int i = 0; i < a.length; i++) if ((int) Math.sqrt(a[i]) != Math.sqrt(a[i])) return true; return false; } public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(System.in); PrintWriter pw = new PrintWriter(System.out); int t = sc.nextInt(); while(t-->0) { int n = sc.nextInt(); int[] a = new int[n]; for(int i=0; i<n ;i++) a[i] = sc.nextInt(); if(chk(a)) pw.println("YES"); else pw.println("NO"); } pw.flush(); } static int gcd(int a, int b) { if (a == 0) return b; return gcd(b % a, a); } static class Scanner { StringTokenizer st; BufferedReader br; public Scanner(FileReader r) { br = new BufferedReader(r); } public Scanner(InputStream s) { br = new BufferedReader(new InputStreamReader(s)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(br.readLine()); return st.nextToken(); } public int[] nextIntArr(int n) throws IOException { int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } return a; } public int nextInt() throws IOException { return Integer.parseInt(next()); } public long nextLong() throws IOException { return Long.parseLong(next()); } public String nextLine() throws IOException { return br.readLine(); } public double nextDouble() throws IOException { String x = next(); StringBuilder sb = new StringBuilder("0"); double res = 0, f = 1; boolean dec = false, neg = false; int start = 0; if (x.charAt(0) == '-') { neg = true; start++; } for (int i = start; i < x.length(); i++) if (x.charAt(i) == '.') { res = Long.parseLong(sb.toString()); sb = new StringBuilder("0"); dec = true; } else { sb.append(x.charAt(i)); if (dec) f *= 10; } res += Long.parseLong(sb.toString()) / f; return res * (neg ? -1 : 1); } public boolean ready() throws IOException { return br.ready(); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
2e9f609d9aa309f7683803102e3c4c7f
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.StringTokenizer; public class Main { BufferedReader in; PrintWriter out; Main() { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } void close() throws IOException { in.close(); out.flush(); out.close(); } public static void main(String[] args) throws IOException { Main m = new Main(); m.solve(); m.close(); } void solve() throws IOException { int t = Integer.parseInt(in.readLine()); while (t > 0) { t--; int n = Integer.parseInt(in.readLine()); int[] a = new int[n]; StringTokenizer st = new StringTokenizer(in.readLine()); for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(st.nextToken()); } boolean ok = true; for (int i = 0; i < n; i++) { double si = Math.sqrt(a[i]); if (Math.abs(si - Math.round(si)) > 1e-10) { ok = false; break; } } if (ok) { out.append("NO\n"); } else { out.append("YES\n"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
88923ccdf2f958bbc8300dba20596e42
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; public class test { public static void main(String[] args) { Scanner in = new Scanner(System.in); int t = in.nextInt(); while(t-- > 0){ int a = in.nextInt(); int[] arr = new int[a]; boolean b = true; for (int i = 0; i < a; i++) { arr[i] = in.nextInt(); } for (int i = 0; i < a; i++) { if(((int)(Math.sqrt(arr[i]))*((int)(Math.sqrt(arr[i]))) != arr[i])){ b = false; break; } } if(b) System.out.println("NO"); else System.out.println("YES"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
e9f6e7e30e4b806dec8dfdeef2c2471a
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class AAA { //--------------------------INPUT READER--------------------------------// static class fs { public BufferedReader br; StringTokenizer st = new StringTokenizer(""); public fs() { this(System.in); } public fs(InputStream is) { br = new BufferedReader(new InputStreamReader(is)); } String next() { while (!st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(next()); } long nl() { return Long.parseLong(next()); } double nd() { return Double.parseDouble(next()); } String ns() { return next(); } int[] na(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = ni(); return a; } } //-----------------------------------------------------------------------// //---------------------------PRINTER-------------------------------------// static class Printer { static PrintWriter w; public Printer() {this(System.out);} public Printer(OutputStream os) { w = new PrintWriter(os); } public void p(int i) {w.println(i);}; public void p(long l) {w.println(l);}; public void p(double d) {w.println(d);}; public void p(String s) { w.println(s);}; public void pr(int i) {w.println(i);}; public void pr(long l) {w.print(l);}; public void pr(double d) {w.print(d);}; public void pr(String s) { w.print(s);}; public void pl() {w.println();}; public void close() {w.close();}; } //------------------------------------------------------------------------// //--------------------------VARIABLES------------------------------------// static fs sc = new fs(); static OutputStream outputStream = System.out; static Printer w = new Printer(outputStream); //-----------------------------------------------------------------------// //--------------------------ADMIN_MODE-----------------------------------// private static void ADMIN_MODE() throws IOException { if (System.getProperty("ONLINE_JUDGE") == null) { w = new Printer(new FileOutputStream("output.txt")); sc = new fs(new FileInputStream("input.txt")); } } //-----------------------------------------------------------------------// //----------------------------START--------------------------------------// public static void main(String[] args) throws IOException { ADMIN_MODE(); int t = sc.ni(); while(t-->0) solve(); w.close(); } static void solve() throws IOException { int n = sc.ni(); int[] arr = sc.na(n); for(int i = 0; i < n; i++) { int sqrt = (int)Math.sqrt(arr[i]); if(sqrt*sqrt != arr[i]) { w.p("YES"); return; } } w.p("NO"); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
004192bee15b47fc0797e84e0f58f8b0
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Perfect { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); while(t-->0) { boolean flag=false; int n=sc.nextInt(); for(int i=0;i<n;i++) { int a=sc.nextInt(); int sq=(int)Math.sqrt(a); if(sq*sq!=a) flag=true; } System.out.println(flag?"YES":"NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
14c3f3843d23a59bcf9e928a0912de42
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; public class Main { static long startTime = System.currentTimeMillis(); // for global initializations and methods starts here // global initialisations and methods end here static void run() { boolean tc = true; AdityaFastIO r = new AdityaFastIO(); //FastReader r = new FastReader(); try (OutputStream out = new BufferedOutputStream(System.out)) { //long startTime = System.currentTimeMillis(); int testcases = tc ? r.ni() : 1; int tcCounter = 1; // Hold Here Sparky------------------->>> // Solution Starts Here start: while (testcases-- > 0) { long n = r.nl(); boolean ff = false; for (int i = 0; i < n; i++) { long a = r.nl(); long x = (int)Math.sqrt(a); ff = ff || x * x != a; } out.write((ff ? "YES" : "NO" + " ").getBytes()); out.write(("\n").getBytes()); } // Solution Ends Here } catch (IOException e) { e.printStackTrace(); } } static class AdityaFastIO { final private int BUFFER_SIZE = 1 << 16; private final DataInputStream din; private final byte[] buffer; private int bufferPointer, bytesRead; public BufferedReader br; public StringTokenizer st; public AdityaFastIO() { br = new BufferedReader(new InputStreamReader(System.in)); din = new DataInputStream(System.in); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public AdityaFastIO(String file_name) throws IOException { din = new DataInputStream(new FileInputStream(file_name)); buffer = new byte[BUFFER_SIZE]; bufferPointer = bytesRead = 0; } public String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } public String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public String readLine() throws IOException { byte[] buf = new byte[100000001]; // line length int cnt = 0, c; while ((c = read()) != -1) { if (c == '\n') break; buf[cnt++] = (byte) c; } return new String(buf, 0, cnt); } public int ni() throws IOException { int ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public long nl() throws IOException { long ret = 0; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (neg) return -ret; return ret; } public double nd() throws IOException { double ret = 0, div = 1; byte c = read(); while (c <= ' ') c = read(); boolean neg = (c == '-'); if (neg) c = read(); do { ret = ret * 10 + c - '0'; } while ((c = read()) >= '0' && c <= '9'); if (c == '.') while ((c = read()) >= '0' && c <= '9') ret += (c - '0') / (div *= 10); if (neg) return -ret; return ret; } private void fillBuffer() throws IOException { bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE); if (bytesRead == -1) buffer[0] = -1; } private byte read() throws IOException { if (bufferPointer == bytesRead) fillBuffer(); return buffer[bufferPointer++]; } public void close() throws IOException { if (din == null) return; din.close(); } } public static void main(String[] args) throws Exception { run(); } static long mod = 998244353; static long modInv(long base, long e) { long result = 1; base %= mod; while (e > 0) { if ((e & 1) > 0) result = result * base % mod; base = base * base % mod; e >>= 1; } return result; } static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String word() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } String line() { String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } int ni() { return Integer.parseInt(word()); } long nl() { return Long.parseLong(word()); } double nd() { return Double.parseDouble(word()); } } static int MOD = (int) (1e9 + 7); static long powerLL(long x, long n) { long result = 1; while (n > 0) { if (n % 2 == 1) result = result * x % MOD; n = n / 2; x = x * x % MOD; } return result; } static long powerStrings(int i1, int i2) { String sa = String.valueOf(i1); String sb = String.valueOf(i2); long a = 0, b = 0; for (int i = 0; i < sa.length(); i++) a = (a * 10 + (sa.charAt(i) - '0')) % MOD; for (int i = 0; i < sb.length(); i++) b = (b * 10 + (sb.charAt(i) - '0')) % (MOD - 1); return powerLL(a, b); } static long gcd(long a, long b) { if (a == 0) return b; else return gcd(b % a, a); } static long lcm(long a, long b) { return (a * b) / gcd(a, b); } static long lower_bound(List<Long> list, long k) { int s = 0; int e = list.size(); while (s != e) { int mid = (s + e) >> 1; if (list.get(mid) < k) s = mid + 1; else e = mid; } if (s == list.size()) return -1; return s; } static int upper_bound(List<Long> list, long k) { int s = 0; int e = list.size(); while (s != e) { int mid = (s + e) >> 1; if (list.get(mid) <= k) s = mid + 1; else e = mid; } if (s == list.size()) return -1; return s; } static void addEdge(ArrayList<ArrayList<Integer>> graph, int edge1, int edge2) { graph.get(edge1).add(edge2); graph.get(edge2).add(edge1); } public static class Pair implements Comparable<Pair> { int first; int second; public Pair(int first, int second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(Pair o) { // TODO Auto-generated method stub if (this.first != o.first) return (int) (this.first - o.first); else return (int) (this.second - o.second); } } public static class PairC<X, Y> implements Comparable<PairC> { X first; Y second; public PairC(X first, Y second) { this.first = first; this.second = second; } public String toString() { return "(" + first + "," + second + ")"; } public int compareTo(PairC o) { // TODO Auto-generated method stub return o.compareTo((PairC) first); } } static boolean isCollectionsSorted(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) <= list.get(i - 1)) return false; return true; } static boolean isCollectionsSortedReverseOrder(List<Long> list) { if (list.size() == 0 || list.size() == 1) return true; for (int i = 1; i < list.size(); i++) if (list.get(i) >= list.get(i - 1)) return false; return true; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
6a46535e4c035317ab9a37cbbcc2f195
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; import java.math.*; import java.math.BigInteger; //import javafx.util.*; public final class B { static StringBuilder ans=new StringBuilder(); static FastReader in=new FastReader(); static ArrayList<ArrayList<Integer>> g; static long mod=1000000007; static int D1[],D2[],par[]; static boolean set[]; static long INF=Long.MAX_VALUE; public static void main(String args[])throws IOException { int T=i(); outer:while(T-->0) { int N=i(); int A[]=input(N); for(int i=0; i<N; i++) { long p=A[i]; if(Math.ceil(Math.sqrt(p))!=Math.floor(Math.sqrt(p))) { System.out.println("YES"); continue outer; } } System.out.println("NO"); } } static boolean reverse(long A[],int l,int r) { while(l<r) { long t=A[l]; A[l]=A[r]; A[r]=t; l++; r--; } if(isSorted(A))return true; else return false; } static boolean isSorted(long A[]) { for(int i=1; i<A.length; i++)if(A[i]<A[i-1])return false; return true; } static boolean isPalindrome(char X[],int l,int r) { while(l<r) { if(X[l]!=X[r])return false; l++; r--; } return true; } static long min(long a,long b,long c) { return Math.min(a, Math.min(c, b)); } static void print(int a) { System.out.println("! "+a); } static int ask(int a,int b) { System.out.println("? "+a+" "+b); return i(); } static int find(int a) { if(par[a]<0)return a; return par[a]=find(par[a]); } static void union(int a,int b) { a=find(a); b=find(b); if(a!=b) { par[a]+=par[b]; //transfers the size par[b]=a; //changes the parent } } static void swap(char A[],int a,int b) { char ch=A[a]; A[a]=A[b]; A[b]=ch; } static void sort(long[] a) //check for long { ArrayList<Long> l=new ArrayList<>(); for (long i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static void setGraph(int N) { g=new ArrayList<ArrayList<Integer>>(); for(int i=0; i<=N; i++) { g.add(new ArrayList<Integer>()); } } static long pow(long a,long b) { long mod=1000000007; long pow=1; long x=a; while(b!=0) { if((b&1)!=0)pow=(pow*x)%mod; x=(x*x)%mod; b/=2; } return pow; } static long toggleBits(long x)//one's complement || Toggle bits { int n=(int)(Math.floor(Math.log(x)/Math.log(2)))+1; return ((1<<n)-1)^x; } static int countBits(long a) { return (int)(Math.log(a)/Math.log(2)+1); } static void sort(int[] a) { ArrayList<Integer> l=new ArrayList<>(); for (int i:a) l.add(i); Collections.sort(l); for (int i=0; i<a.length; i++) a[i]=l.get(i); } static boolean isPrime(long N) { if (N<=1) return false; if (N<=3) return true; if (N%2 == 0 || N%3 == 0) return false; for (int i=5; i*i<=N; i=i+6) if (N%i == 0 || N%(i+2) == 0) return false; return true; } static long GCD(long a,long b) { if(b==0) { return a; } else return GCD(b,a%b ); } //Debugging Functions Starts static void print(char A[]) { for(char c:A)System.out.print(c+" "); System.out.println(); } static void print(boolean A[]) { for(boolean c:A)System.out.print(c+" "); System.out.println(); } static void print(int A[]) { for(int a:A)System.out.print(a+" "); System.out.println(); } static void print(long A[]) { for(long i:A)System.out.print(i+ " "); System.out.println(); } static void print(ArrayList<Integer> A) { for(int a:A)System.out.print(a+" "); System.out.println(); } //Debugging Functions END //---------------------- //IO FUNCTIONS STARTS static HashMap<Integer,Integer> Hash(int A[]) { HashMap<Integer,Integer> mp=new HashMap<>(); for(int a:A) { int f=mp.getOrDefault(a,0)+1; mp.put(a, f); } return mp; } static int i() { return in.nextInt(); } static long l() { return in.nextLong(); } static int[] input(int N){ int A[]=new int[N]; for(int i=0; i<N; i++) { A[i]=in.nextInt(); } return A; } static long[] inputLong(int N) { long A[]=new long[N]; for(int i=0; i<A.length; i++)A[i]=in.nextLong(); return A; } //IO FUNCTIONS END } //class pair implements Comparable<pair>{ // int index; long a; // pair(long a,int index) // { // this.a=a; // this.index=index; // } // public int compareTo(pair X) // { // if(this.a>X.a)return 1; // if(this.a==X.a)return this.index-X.index; // return -1; // } //} //Code For FastReader //Code For FastReader //Code For FastReader //Code For FastReader class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br=new BufferedReader(new InputStreamReader(System.in)); } String next() { while(st==null || !st.hasMoreElements()) { try { st=new StringTokenizer(br.readLine()); } catch(IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } //gey double nextDouble() { return Double.parseDouble(next()); } String nextLine() { String str=""; try { str=br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
ddb5b7565c54d5a0d2bc9c56dcd20bff
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class main { public static void main(String[] args) throws IOException { Scanner sc = new Scanner(System.in); long kk = sc.nextLong(); while(kk-->0) { int length = sc.nextInt(); int[] arr = new int[length]; boolean flag = true; for(int i = 0; i < length; i++) { arr[i] = sc.nextInt(); } for(int i : arr) { if(Math.sqrt(i)%1!=0) { flag=false; break; } } System.out.println(!flag?"YES":"NO"); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
10e614226890a3daf824e9f6ac66a520
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; public class Question4{ public static void main(String args[]){ Scanner In = new Scanner(System.in); int t = In.nextInt(); while(t>0) { int n = In.nextInt(); long a[] = new long[n]; int l = 7; for(int i=0;i<n;i++) { a[i] = In.nextLong(); double c1 = (double)Math.pow(a[i],0.5); long test = (long)Math.pow(a[i],0.5); double c2 = (double)test; if(c1!=c2) { l=1; } } if(l==1) { System.out.println("YES"); } else { System.out.println("NO"); } t--; } In.close(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
15318767c68be66aea8b581e1ee619ff
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.Scanner; import java.lang.Math; public class Main{ static boolean isPerfectSquare(double x){ if(x>=0){ long sr = (long) Math.sqrt(x); return (sr*sr==x); } return false; } public static void main(String[] args){ Scanner s = new Scanner(System.in); int T = s.nextInt(); for(int i=0; i<T; i++){ int n = s.nextInt(); boolean br = false; for(int j=0; j<n;j++){ int x = s.nextInt(); if(!isPerfectSquare(x)){ br = true; } } if(br==true){ System.out.println("YES"); } else{ System.out.println("NO"); } } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
923a418922b477aa869cea42ac69cb93
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.util.*; import java.io.*; import java.lang.*; public class Solution{ public static void main(String[] args) { Scanner sc=new Scanner(System.in); int t=sc.nextInt(); for(int x=0; x<t; x++) { int n=sc.nextInt(); int[] arr=new int[n]; for(int i=0; i<n; i++) arr[i]= sc.nextInt(); System.out.println(solve(arr,n)); } } public static String solve(int[] arr,int n){ int i=0; while(i<n){ if(Math.sqrt(arr[i])!= Math.floor(Math.sqrt(arr[i]))) return "YES"; i++; } return "NO"; } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
104f0daf6ee52efbe91c2502e3c61323
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
// Piyush Nagpal import java.util.*; import java.io.*; public class C{ static int MOD=1000000007; static PrintWriter pw; static FastReader sc; static class FastReader { BufferedReader br; StringTokenizer st; public FastReader() { br = new BufferedReader( new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble(){return Double.parseDouble(next());} public char nextChar() throws IOException {return next().charAt(0);} String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } public int[] intArr(int n) throws IOException { int[]in=new int[n];for(int i=0;i<n;i++)in[i]=nextInt(); return in; } public long[] longArr(int n) throws IOException { long[]in=new long[n];for(int i=0;i<n;i++)in[i]=nextLong(); return in; } } public static long gcd(long a,long b){if( b>a ){return gcd(b,a);}if( b==0 ){return a;} return gcd(b,a%b);} public static ArrayList<Long> Sieve(int n){ boolean [] arr= new boolean[n+1]; Arrays.fill(arr, true); ArrayList<Long> list= new ArrayList<>(); for(int i=2;i<=n;i++){ if( arr[i]==true ){ list.add((long)i); } for(int j=2*i;j<=n;j+=i){ arr[j]=false; } } return list; } public static void printarr(int [] arr){ for(int i=0;i<arr.length;i++){ pw.print(arr[i]+" "); } } // int [] arr=sc.intArr(n); static void solve() throws Exception{ int n=sc.nextInt(); int [] arr= sc.intArr(n); for(int i=0;i<n;i++){ if( Math.sqrt(arr[i])%1!=0 ){ pw.println( "YES" ); return; } } pw.println("NO"); } public static void main(String[] args) throws Exception{ try { System.setIn(new FileInputStream("input.txt")); System.setOut(new PrintStream(new FileOutputStream("output.txt"))); } catch (Exception e) { System.err.println("Error"); } sc= new FastReader(); pw = new PrintWriter(System.out); int tc=1; tc=sc.nextInt(); for(int i=1;i<=tc;i++) { // pw.printf("Case #%d: ", i); solve(); } pw.flush(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
da85c9a1563c62edc220e18f93beaf81
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.*; import java.util.*; public class PerfectlyImperfectArray { public static void main(String args[]){ FScanner in = new FScanner(); PrintWriter out = new PrintWriter(System.out); int t = in.nextInt(); while(t-->0) { int n=in.nextInt(); int f=0; for(int i=0;i<n;i++) { long a=in.nextLong(); long b=(int)Math.sqrt(a); if(a!=b*b) f=1; } if(f==1) out.println("YES"); else out.println("NO"); } out.close(); } static class FScanner { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer sb = new StringTokenizer(""); String next(){ while(!sb.hasMoreTokens()){ try{ sb = new StringTokenizer(br.readLine()); } catch(IOException e){ } } return sb.nextToken(); } String nextLine(){ try{ return br.readLine(); } catch(IOException e) { } return ""; } int nextInt(){ return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } int[] readArray(int n) { int a[] = new int[n]; for(int i=0;i<n;i++) a[i] = nextInt(); return a; } float nextFloat(){ return Float.parseFloat(next()); } double nextDouble(){ return Double.parseDouble(next()); } } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output
PASSED
687e15f82164eed38faefc429d82e9f8
train_110.jsonl
1618839300
Given an array $$$a$$$ of length $$$n$$$, tell us whether it has a non-empty subsequence such that the product of its elements is not a perfect square.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly zero) elements.
256 megabytes
import java.io.PrintWriter; import java.util.*; import java.lang.*; public class Main { static int po(int n){ int a=2; int res=1; while(n>0){ if(n%2==0){ res*=a; n--; }else{ a*=a; n/=2; } } return res; } public static void main(String[] args) { PrintWriter out1=new PrintWriter(System.out); Scanner sc=new Scanner(System.in); int t=sc.nextInt(); //sc.nextLine(); while(t-->0){ int n=sc.nextInt(); int[] a=new int[n]; int flag=0; for(int i=0;i<n;i++){ a[i]=sc.nextInt(); } for(int i=0;i<n;i++){ int p=a[i]; if (Math.ceil((double)Math.sqrt(p)) == Math.floor((double)Math.sqrt(p))) { continue; } else { flag=1; break; } } if(flag==1){ out1.println("yes"); }else{ out1.println("no"); } } out1.flush(); out1.close(); } }
Java
["2\n3\n1 5 4\n2\n100 10000"]
1 second
["YES\nNO"]
NoteIn the first example, the product of the whole array ($$$20$$$) isn't a perfect square.In the second example, all subsequences have a perfect square product.
Java 8
standard input
[ "math", "number theory" ]
33a31edb75c9b0cf3a49ba97ad677632
The first line contains an integer $$$t$$$ ($$$1 \le t \le 100$$$) — the number of test cases. The description of the test cases follows. The first line of each test case contains an integer $$$n$$$ ($$$1 \le n \le 100$$$) — the length of the array $$$a$$$. The second line of each test case contains $$$n$$$ integers $$$a_1$$$, $$$a_2$$$, $$$\ldots$$$, $$$a_{n}$$$ ($$$1 \le a_i \le 10^4$$$) — the elements of the array $$$a$$$.
800
If there's a subsequence of $$$a$$$ whose product isn't a perfect square, print "YES". Otherwise, print "NO".
standard output