exec_outcome
stringclasses 1
value | code_uid
stringlengths 32
32
| file_name
stringclasses 111
values | prob_desc_created_at
stringlengths 10
10
| prob_desc_description
stringlengths 63
3.8k
| prob_desc_memory_limit
stringclasses 18
values | source_code
stringlengths 117
65.5k
| lang_cluster
stringclasses 1
value | prob_desc_sample_inputs
stringlengths 2
802
| prob_desc_time_limit
stringclasses 27
values | prob_desc_sample_outputs
stringlengths 2
796
| prob_desc_notes
stringlengths 4
3k
⌀ | lang
stringclasses 5
values | prob_desc_input_from
stringclasses 3
values | tags
sequencelengths 0
11
| src_uid
stringlengths 32
32
| prob_desc_input_spec
stringlengths 28
2.37k
⌀ | difficulty
int64 -1
3.5k
⌀ | prob_desc_output_spec
stringlengths 17
1.47k
⌀ | prob_desc_output_to
stringclasses 3
values | hidden_unit_tests
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PASSED | 0af5849a14f6be9b099418ec0c2700c4 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
public class Main
{
void Solve(long n){
ArrayList<Long>v=new ArrayList<Long>(0);
long mod=n;
long ans=1;
for(long i=1;i<n;i++){
if(__gcd(i,n)==1){
v.add(i);
ans*=i;
ans%=mod;
}
}
if(ans==1){
ans=-1;
}
long l=v.size();
if(ans!=-1){
l--;
}
System.out.println(l);
for(Long it:v){
if((long)it!=ans){
System.out.print(it+" ");
}
}
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int t;
t=1;
while((t--)!=0){
long n,k;
Main s=new Main();
n=sc.nextInt();
s.Solve(n);
}
}
public long getgcd(long a,long b){
if(a==0)
return b;
return getgcd(b%a,a);
}
public long __gcd(long a,long b){
if(a>b){
long c=b;
b=a;
a=b;
}
return getgcd(a,b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | f7926b5434b505e58cd7cf99e073ed8d | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class product1 {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws java.lang.Exception {
// your code goes here
FastReader scan = new FastReader();
int n = scan.nextInt();
List<Integer> ls = new ArrayList();
ls.add(1);
long mul = 1;
for (int i = 2; i < n - 1; i++) {
if (gcd(i, n) == 1) {
ls.add(i);
mul *= i;
mul %= n;
// System.out.println("line 1 " + i + " " + mul + " " + mul % n);
}
}
// System.out.println("line 2 " + mul + " " + mul % n);
if (n > 2) {
// System.out.println((mul * (n - 1)) % n + " line 3 ");
if ((mul * (n - 1)) % n == 1) {
ls.add(n - 1);
// System.out.println(n - 1 + " line 4 ");
}
}
System.out.println(ls.size());
for (int i : ls) {
System.out.print(i + " ");
}
}
public static int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 6c0d659290b736775d7dad7b52e70db5 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class a2oj {
static FastReader sc;
static PrintWriter out;
static int mod = 1000000007;
public static void main(String[] args) throws IOException {
if (System.getProperty("ONLINE_JUDGE") == null) {
File f1 = new File("input.txt");
File f2 = new File("output.txt");
Reader r = new FileReader(f1);
sc = new FastReader(r);
out = new PrintWriter(f2);
double prev = System.currentTimeMillis();
solve();
out.println("\n\nExecuted in : " + ((System.currentTimeMillis() - prev) / 1e3) + " sec");
} else {
sc = new FastReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
}
out.flush();
out.close();
}
static void solve() {
int t = 1;
StringBuilder ans = new StringBuilder("");
while (t-- > 0) {
int n = sc.nextInt();
ArrayList<Integer> arr = new ArrayList<>();
long prod = 1;
for (int i = 1; i < n; i++) {
if (gcd(i, n) == 1) {
arr.add(i);
prod = (prod * i) % n;
}
}
if (prod == 1) {
ans.append(arr.size() + "\n");
for (int i : arr) {
ans.append(i + " ");
}
ans.append("\n");
} else {
ans.append(arr.size() - 1 + "\n");
for (int i : arr) {
if (i == prod)
continue;
ans.append(i + " ");
}
ans.append("\n");
}
}
out.println(ans);
}
static long modInverse(long a) {
long g = gcd(a, mod);
if (g != 1)
return -1;
else {
return power(a, mod - 2L);
}
}
static long power(long x, long y) {
long res = 1;
x = x % mod;
if (x == 0)
return 0;
while (y > 0) {
if ((y & 1) != 0)
res = (res * x) % mod;
y = y >> 1;
x = (x * x) % mod;
}
return res;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
else
return gcd(b, a % b);
}
static boolean isPerfectSquare(double x) {
if (x >= 0) {
double sr = Math.sqrt(x);
return ((sr * sr) == x);
}
return false;
}
public static int digitsCount(long x) {
return (int) Math.floor(Math.log10(x)) + 1;
}
public static boolean isPowerTwo(long n) {
return (n & n - 1) == 0;
}
static void sieve(boolean[] prime, int n) { // Sieve Of Eratosthenes
for (int i = 1; i <= n; i++) {
prime[i] = true;
}
for (int i = 2; i * i <= n; i++) {
if (prime[i]) {
for (int j = 2; i * j <= n; j++) {
prime[i * j] = false;
}
}
}
}
static long nCr(int n, int r) { // Combinations
if (n < r)
return 0;
if (r > n - r) { // because nCr(n, r) == nCr(n, n - r)
r = n - r;
}
long ans = 1L;
for (int i = 0; i < r; i++) {
ans *= (n - i);
ans /= (i + 1);
}
return ans;
}
static long catalan(int n) { // n-th Catalan Number
long c = nCr(2 * n, n);
return c / (n + 1);
}
static class Pair implements Comparable<Pair> { // Pair Class
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Pair)) {
return false;
}
Pair pair = (Pair) o;
if (x != pair.x) {
return false;
}
if (y != pair.y) {
return false;
}
return true;
}
@Override
public int hashCode() {
long result = x;
result = 31 * result + y;
return (int) result;
}
@Override
public int compareTo(Pair o) {
return (int) (this.x - o.x);
}
}
static class Trip { // Triplet Class
long x;
long y;
long z;
Trip(long x, long y, long z) {
this.x = x;
this.y = y;
this.z = z;
}
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Trip)) {
return false;
}
Trip trip = (Trip) o;
if (x != trip.x) {
return false;
}
if (y != trip.y) {
return false;
}
if (z != trip.z) {
return false;
}
return true;
}
@Override
public int hashCode() {
long result = 62 * x + 31 * y + z;
return (int) result;
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader(Reader r) {
br = new BufferedReader(r);
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArrayI(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
return arr;
}
long[] readArrayL(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextLong();
}
return arr;
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/*
* ASCII Range--->(A-Z)--->[65,90]<<::>>(a-z)--->[97,122]
*/
/******************************************************************************************************************/
static void printArray(int[] arr) {
out.print("[");
for (int i = 0; i < arr.length; i++) {
if (i < arr.length - 1)
out.print(arr[i] + ",");
else
out.print(arr[i]);
}
out.print("]");
out.println();
}
static void printArray(long[] arr) {
out.print("[");
for (int i = 0; i < arr.length; i++) {
if (i < arr.length - 1)
out.print(arr[i] + ",");
else
out.print(arr[i]);
}
out.print("]");
out.println();
}
static void printArray(double[] arr) {
out.print("[");
for (int i = 0; i < arr.length; i++) {
if (i < arr.length - 1)
out.print(arr[i] + ",");
else
out.print(arr[i]);
}
out.print("]");
out.println();
}
/**********************************************************************************************************************/
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 7fb1aa39f3242770b3d428e5038afa34 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
ArrayList<Integer> ans = new ArrayList<>();
ans.add(1);
if(n != 2) {
long prod = 1;
for(int i=2; i<n-1; i++)
{
if( GCD(i, n) == 1 )
{
ans.add(i);
prod *= i;
prod = prod%n;
}
}
prod *= n-1;
if( prod % n == 1 )
ans.add(n-1);
// }
}
System.out.println(ans.size());
for(Integer ele : ans )
System.out.print(ele + " ");
}
public static int GCD(int a, int b)
{
if (b == 0)
return a;
return GCD(b, a % b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 254e1a0848ce596b4d6cd4ca3b39edf3 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
public class p717C {
public static void main(String[] args) {
Scanner scn=new Scanner(System.in);
long n=scn.nextLong();
long pro=1;
ArrayList<Long> arr=new ArrayList<Long>();
arr.add(1L);
for(long i=2;i<n;i++){
if(gcd(n,i)==1){
arr.add(i);
pro=pro*i;
pro=pro%n;
}
}
if(pro==1){
System.out.println(arr.size());
for(Long i:arr){
System.out.print(i+" ");
}
}
else{
System.out.println(arr.size()-1);
for(Long i:arr){
if(i!=pro){
System.out.print(i+" ");
}
}
}
}
public static long gcd(long a,long b){
if(a>=b){
while(b>0){
long m=a%b;
a=b;
b=m;
}
return(a);
}
else{
return(gcd(b,a));
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | f76768a0132cc6b2b915cd4a78f6bea2 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*; import java.io.*; import java.math.*;
public class Main{
//Don't have to see. start------------------------------------------
static class InputIterator{
ArrayList<String> inputLine = new ArrayList<>(1024);
int index = 0; int max; String read;
InputIterator(){
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
try{
while((read = br.readLine()) != null){
inputLine.addAll(Arrays.asList(read.split(" ")));
}
}catch(IOException e){}
max = inputLine.size();
}
boolean hasNext(){return (index < max);}
String next(){
if(hasNext()){
return inputLine.get(index++);
}else{
throw new IndexOutOfBoundsException("There is no more input");
}
}
}
static HashMap<Integer, String> CONVSTR = new HashMap<>();
static InputIterator ii = new InputIterator();//This class cannot be used in reactive problem.
static PrintWriter out = new PrintWriter(System.out);
static void flush(){out.flush();}
static void myout(Object t){out.println(t);}
static void myerr(Object t){System.err.print("debug:");System.err.println(t);}
static String next(){return ii.next();}
static boolean hasNext(){return ii.hasNext();}
static int nextInt(){return Integer.parseInt(next());}
static long nextLong(){return Long.parseLong(next());}
static double nextDouble(){return Double.parseDouble(next());}
static ArrayList<String> nextCharArray(){return myconv(next(), 0);}
static ArrayList<String> nextStrArray(int size){
ArrayList<String> ret = new ArrayList<>(size);
for(int i = 0; i < size; i++){
ret.add(next());
}
return ret;
}
static ArrayList<Integer> nextIntArray(int size){
ArrayList<Integer> ret = new ArrayList<>(size);
for(int i = 0; i < size; i++){
ret.add(Integer.parseInt(next()));
}
return ret;
}
static ArrayList<Long> nextLongArray(int size){
ArrayList<Long> ret = new ArrayList<>(size);
for(int i = 0; i < size; i++){
ret.add(Long.parseLong(next()));
}
return ret;
}
@SuppressWarnings("unchecked")
static String myconv(Object list, int no){//only join
String joinString = CONVSTR.get(no);
if(list instanceof String[]){
return String.join(joinString, (String[])list);
}else if(list instanceof ArrayList){
return String.join(joinString, (ArrayList)list);
}else{
throw new ClassCastException("Don't join");
}
}
static ArrayList<String> myconv(String str, int no){//only split
String splitString = CONVSTR.get(no);
return new ArrayList<String>(Arrays.asList(str.split(splitString)));
}
public static void main(String[] args){
CONVSTR.put(8, " "); CONVSTR.put(9, "\n"); CONVSTR.put(0, "");
solve();flush();
}
//Don't have to see. end------------------------------------------
static void solve(){//Here is the main function
int N = nextInt();
if(N == 2){
myout(1);
myout(1);
return;
}
if(isPrime(N)){
myout(N - 2);
String[] output = new String[N - 2];
for(int i = 1; i <= N - 2; i++){
output[i - 1] = String.valueOf(i);
}
myout(myconv(output, 8));
}else{
TreeMap<Long, Long> map = getPrimeFactorization((long)N);
ArrayList<Long> set = new ArrayList<>(map.keySet());
ArrayList<Integer> list = new ArrayList<>();
long test = 1;
list.add(1);
for(int i = 2; i < N; i++){
boolean isOK = true;
for(int j = 0; j < set.size(); j++){
if(i % set.get(j) == 0){
isOK = false;
break;
}
}
if(isOK){
list.add(i);
test *= i;
test %= N;
}
}
if(test != 1){
list.remove(list.size() - 1);
}
myout(list.size());
String[] output = new String[list.size()];
for(int i = 0; i < list.size(); i++){
output[i] = String.valueOf(list.get(i));
}
myout(myconv(output, 8));
}
}
//Method addition frame start
static boolean isPrime(long val){
if(val <= 1 || (val != 2 && val % 2 == 0)){
return false;
}else if(val == 2){
return true;
}
double root = Math.floor(Math.sqrt(val));
for(long i = 3; i <= root; i += 2){
if(val % i == 0){
return false;
}
}
return true;
}
static TreeMap<Long,Long> getPrimeFactorization(Long val){
TreeMap<Long,Long> primeList = new TreeMap<>();
if(isPrime(val)){
primeList.put(val, 1l);
return primeList;
}
long div = 2;
while(val != 1){
if(val % div == 0){
long count = 2;
while(val % (long)Math.pow(div, count) == 0){
count++;
}
if(primeList.containsKey(div)){
primeList.put(div, primeList.get(div) + (count - 1));
}else{
primeList.put(div, count - 1);
}
val /= (long)Math.pow(div, count - 1);
if(isPrime(val)){
if(primeList.containsKey(val)){
primeList.put(val, primeList.get(val) + 1);
}else{
primeList.put(val, 1l);
}
break;
}
}else{
div = (div == 2) ? div + 1 : div + 2;
}
}
return primeList;
}
//Method addition frame end
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 3aa6800af24788eaf0eb2589750c70ba | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
import java.lang.*;
public class Main{
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static long MOD = (long) (1e9 + 7);
// static long MOD = 998244353;
static long MOD2 = MOD * MOD;
static FastReader sc = new FastReader();
static int pInf = Integer.MAX_VALUE;
static int nInf = Integer.MIN_VALUE;
static long ded = (long)(1e17)+9;
public static void main(String[] args) throws Exception {
int test = 1;
// test = sc.nextInt();8
for (int i = 1; i <= test; i++){
// out.print("Case #"+i+": ");
solve();
}
out.flush();
out.close();
}
static void solve () throws Exception {
int n = sc.nextInt();
MOD = n;
ArrayList<Integer> A = new ArrayList<>();
long cur = 1;
for(int i = 1; i < n; i++){
if(gcd(i,n)==1){
A.add(i);
cur = mul(cur,i);
}
}
// out.println(A+" "+cur);
if(cur==1){
out.println(A.size());
for(int x: A){
out.print(x+" ");
}
out.println();
return;
}
int m = A.size();
long[] l = new long[A.size()];
long[] r = new long[A.size()];
l[0] = A.get(0);
r[m-1] = A.get(m-1);
for(int i = 1; i < m; i++){
l[i] = mul(l[i-1],A.get(i));
}
for(int i = m-2; i >= 0; i--){
r[i] = mul(r[i+1],A.get(i));
}
int key = -1;
for(int i = 1; i < m-1; i++){
long temp = mul(l[i-1],r[i+1]);
if(temp==1){
key = i;
break;
}
}
//endcases
if(l[m-2]==1){
key = m-1;
}
if(r[1]==1){
key = 0;
}
out.println(m-1);
for(int i = 0; i < m; i++){
if(i==key)continue;
out.print(A.get(i)+" ");
}
out.println();
}
static long[] facts, factInvs;
static long exp(long base, long e) {
if (e == 0) return 1;
long half = exp(base, e / 2);
if (e % 2 == 0) return mul(half, half);
return mul(half, mul(half, base));
}
static long modInv(long x) {
return exp(x, MOD - 2);
}
static void precomp(int n) {
facts = new long[n];
factInvs = new long[n];
factInvs[0] = facts[0] = 1;
for (int i = 1; i < facts.length; i++)
facts[i] = mul(facts[i - 1], i);
factInvs[facts.length - 1] = modInv(facts[facts.length - 1]);
for (int i = facts.length - 2; i >= 0; i--)
factInvs[i] = mul(factInvs[i + 1], i + 1);
}
static class Pair implements Comparable<Pair> {
int x;
int y;
public Pair(int x, int y) {
this.x = x;
this.y = y;
}
@Override
public int compareTo(Pair o){
if(this.y==o.y){
return -1*(this.x-o.x);
}
return (this.y-o.y);
}
@Override
public String toString() {
return "Pair{" + "x=" + x + ", y=" + y + '}';
}
public boolean equals(Pair o){
return this.x==o.x&&this.y==o.y;
}
}
public static long mul(long a, long b) {
return ((a % MOD) * (b % MOD)) % MOD;
}
public static long add(long a, long b) {
return ((a % MOD) + (b % MOD)) % MOD;
}
public static long c2(long n) {
if ((n & 1) == 0) {
return mul(n / 2, n - 1);
} else {
return mul(n, (n - 1) / 2);
}
}
//Shuffle Sort
static final Random random = new Random();
static void ruffleSort(int[] a) {
int n = a.length;//shuffle, then sort
for (int i = 0; i < n; i++) {
int oi = random.nextInt(n); int temp= a[oi];
a[oi] = a[i];
a[i] = temp;
}
Arrays.sort(a);
}
//Brian Kernighans Algorithm
static long countSetBits(long n) {
if (n == 0) return 0;
return 1 + countSetBits(n & (n - 1));
}
//Euclidean Algorithm
static long gcd(long A, long B) {
if (B == 0) return A;
return gcd(B, A % B);
}
//Modular Exponentiation
static long fastExpo(long x, long n) {
if (n == 0) return 1;
if ((n & 1) == 0) return fastExpo((x * x) % MOD, n / 2) % MOD;
return ((x % MOD) * fastExpo((x * x) % MOD, (n - 1) / 2)) % MOD;
}
//AKS Algorithm
static boolean isPrime(long n) {
if (n <= 1) return false;
if (n <= 3) return true;
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i <= Math.sqrt(n); i += 6)
if (n % i == 0 || n % (i + 2) == 0) return false;
return true;
}
public static long modinv(long x) {
return modpow(x, MOD - 2);
}
public static long modpow(long a, long b) {
if (b == 0) {
return 1;
}
long x = modpow(a, b / 2);
x = (x * x) % MOD;
if (b % 2 == 1) {
return (x * a) % MOD;
}
return x;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 2704a7d00005efc54d7dfd1b47b6b6c6 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Round716Div2C {
private static int gcd(int a, int b) {// a is larger
if(b==0)
return a;
return gcd(b,a%b);
}
public static void main(String[] args) throws NumberFormatException, IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(f.readLine());
long prod = 1;
int len = 0;
for (int i = 1; i < n; i++) {
if(gcd(n,i)!=1)
continue;
prod*=i;
prod%=n;
len++;
}
int inverse=0;
for (int i = 1; i < n; i++) {
if((prod*i)%n==1) {
inverse=i;
break;
}
}
assert (inverse!=0);
if(inverse!=1)
len--;
boolean started = false;
System.out.println(len);
if(prod==1) {
for (int i = 1; i < n; i++) {
if(gcd(n,i)!=1)
continue;
if(started)
System.out.print(" ");
started=true;
System.out.print(i);
}
System.out.println();
return;
}
for (int i = 1; i < n; i++) {
if(gcd(n,i)!=1)
continue;
if(i==inverse)
continue;
if(started)
System.out.print(" ");
started=true;
System.out.print(i);
}
System.out.println();
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | baaee324b6972fbf29c8e2c6793c164e | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.lang.*;
import java.io.*;
public class C
{
public static void main(String[] args) {
new Runner().run();
}
static class Runner {
FastReader in;
public void run() {
in = new FastReader();
//int T = in.nextInt();
StringBuffer sb = new StringBuffer();
//while(T-- > 0) {
int n = in.nextInt();
boolean[] done = new boolean[n];
Arrays.fill(done, true);
for(int i=1; i<n; i++) {
if(gcd(i, n) == 1) done[i] = false;
}
int cnt = 0;
List<Integer> v = new ArrayList<Integer>();
v.add(1);
List<Integer> v2 = new ArrayList<Integer>();
for(int i=2; i<n; i++) {
if(done[i]) continue;
done[i] = true;
int inv = modInverse(i, n);
//System.out.println(i + " " + inv);
done[inv] = true;
if(i == inv) {
v2.add(i);
continue;
}
v.add(i);
v.add(inv);
}
long d = 1L;
for(Integer i: v2) {
d = (i * d) %n;
}
if(d == 1) {
for(Integer i: v2) {
v.add(i);
}
}
sb.append(v.size() + "\n");
Collections.sort(v);
for(Integer i: v) {
sb.append(i + " ");
}
sb.append("\n");
//}
System.out.println(sb.toString());
}
int modInverse(int a, int m) {
int m0 = m;
int y = 0, x = 1;
if (m == 1) return 0;
while (a > 1) {
int q = a / m;
int t = m;
m = a % m;
a = t;
t = y;
y = x - q * y;
x = t;
}
if (x < 0)
x += m0;
return x;
}
int gcd(int a, int b) {
if(b==0) return a;
return gcd(b, a%b);
}
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 5e9decd665ee962a4c818ce19304bdec | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import static java.lang.Math.*;
import static java.math.BigInteger.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
import static java.util.stream.Collectors.*;
import java.io.*;
import java.math.*;
import java.util.*;
import java.util.stream.*;
public class C {
static BufferedReader in;
static PrintWriter out;
static StringTokenizer stk;
public static void main(String[] args) throws Exception {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
preproc();
/** Choose single or multiple */
single(0);
// multiple();
out.flush();
}
static void preproc() {
// add any preprocessing valid for all tests here
//
}
static long modPow(long n, long pow, long mod) {
return BigInteger.valueOf(n).modPow(BigInteger.valueOf(pow), BigInteger.valueOf(mod)).longValue();
}
static long modInv(long n, long mod, boolean isPrimeModuli) {
if (isPrimeModuli) {
return modPow(n, mod - 2, mod);
}
return BigInteger.valueOf(n).modInverse(BigInteger.valueOf(mod)).longValue();
}
static void single(int testId) throws Exception {
// add code here
//
int n = ni();
TreeSet<Integer> t = new TreeSet<>();
long r = 1;
for (int i = 1; i < n; i++) {
if (gcd(i, n) != 1) continue;
t.add(i);
r = (r * i) % n;
}
if (r != 1) {
int x = (int) modInv(r, n, false);
t.remove(x);
}
out.println(t.size());
boolean printed = false;
for(Integer e: t) {
if (printed) out.print(" ");
printed = true;
out.print(e);
}
out.println();
}
static void multiple() throws Exception {
// multiple tests in single file
int T = ni();
for (int t = 0; t < T; t++) {
single(t);
}
}
static void printf(String format, Object... args) {
out.printf(format, args);
}
static void println(String string) {
out.println(string);
}
static long toL(String s) {
return Long.parseLong(s);
}
static int toI(String s) {
return Integer.parseInt(s);
}
static double toD(String s) {
return Double.parseDouble(s);
}
static long toL(BigInteger n) {
return n.longValue();
}
static BigInteger toBI(long n) {
return BigInteger.valueOf(n);
}
static List<Integer> newli() {
return new ArrayList<Integer>();
}
static List<Long> newll() {
return new ArrayList<Long>();
}
static void nia(int[] a, int n) throws Exception {
for (var i = 0; i < n; i++) {
a[i] = ni();
}
}
static void nla(long[] a, int n) throws Exception {
for (var i = 0; i < n; i++) {
a[i] = nl();
}
}
static void nia(List<Integer> a, int n) throws Exception {
for (var i = 0; i < n; i++) {
a.add(ni());
}
}
static void nla(List<Long> a, int n) throws Exception {
for (var i = 0; i < n; i++) {
a.add(nl());
}
}
static int ni() throws Exception {
while (stk == null || !stk.hasMoreTokens()) {
stk = new StringTokenizer(in.readLine());
}
return Integer.parseInt(stk.nextToken());
}
static long nl() throws Exception {
while (stk == null || !stk.hasMoreTokens()) {
stk = new StringTokenizer(in.readLine());
}
return Long.parseLong(stk.nextToken());
}
static double nd() throws Exception {
while (stk == null || !stk.hasMoreTokens()) {
stk = new StringTokenizer(in.readLine());
}
return Double.parseDouble(stk.nextToken());
}
static String ns() throws Exception {
while (stk == null || !stk.hasMoreTokens()) {
stk = new StringTokenizer(in.readLine());
}
return stk.nextToken();
}
static int min(int a, int b) {
return a < b ? a : b;
}
static int max(int a, int b) {
return a > b ? a : b;
}
static long min(long a, long b) {
return a < b ? a : b;
}
static long max(long a, long b) {
return a > b ? a : b;
}
static double min(double a, double b) {
return a < b ? a : b;
}
static double max(double a, double b) {
return a > b ? a : b;
}
static int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 8b5cef083e53bb75697eba3593506478 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.PrintWriter;
import java.util.*;
public class C {
static Scanner sc;
static PrintWriter out;
public static void main(String[] args) throws Exception {
sc = new Scanner(System.in);
out = new PrintWriter(System.out);
//int t = sc.nextInt();
for(int i=0; i<1; i++) {
solve();
}
out.flush();
}
static void solve() {
int n = sc.nextInt();
boolean[] b = solve(n);
int c = 0;
for(boolean bb : b) {
if(bb) c++;
}
out.println(c);
boolean f = false;
for(int i=1; i<n; i++) {
if(b[i]) {
if(f) out.print(" ");
f = true;
out.print(i);
}
}
out.println();
}
static boolean[] solve(int n) {
boolean[] b = new boolean[n];
b[1] = true;
long prod = 1;
for(int i=1; i<n; i++) {
if(gcd(n, i) == 1) {
b[i]=true;
prod *= i;
prod %= n;
}
}
if(prod != 1) {
//out.println(n + ":" + prod);
b[(int)prod] = false;
}
return b;
}
static long gcd(long m, long n) {
if(m < n) return gcd(n, m);
if(n == 0) return m;
return gcd(n, m % n);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | c84b278dcfbe8590e23b65f44931a186 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.Arrays;
import java.util.StringTokenizer;
/**
* @author Peter Li
* @version 04/19/2021
*/
public class C {
private final static int[] list = new int[100000];
private static int gcd(int a, int b) {
if (a < b) {
return gcd(b, a);
}
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
private static int solve() {
int good = 0;
long prod = 1;
for (int i = 1; i < index; i++) {
prod = (prod * list[i]) % n;
if (prod == 1) {
good = i;
}
}
System.out.println(good + 1);
return good;
}
private static int n, index;
public static void main(String[] args) throws IOException {
n = ni();
index = 0;
for (int i = 1; i <= n; i++) {
if (gcd(n, i) == 1) {
list[index++] = i;
}
}
// System.out.println(Arrays.toString(list));
int good = solve();
for (int i = 0; i <= good; i++) {
System.out.print(list[i] + " ");
}
}
private static final String DELIMINATOR = " \n\r\f\t";
private final static BufferedReader br = new BufferedReader(new InputStreamReader(System.in), 1 << 15);
private static StringTokenizer st = new StringTokenizer("", DELIMINATOR);
private static boolean hasNext() {
makeStringTokenizerReady();
return st.hasMoreTokens();
}
private static void makeStringTokenizerReady() {
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine(), DELIMINATOR);
} catch (IOException e) {
e.printStackTrace();
}
}
}
private static String ns() {
makeStringTokenizerReady();
return st.nextToken();
}
private static long nl() {
return Long.parseLong(ns());
}
private static int ni() {
return (int) nl();
}
private static double nd() {
return Double.parseDouble(ns());
}
private static int[] na(int n) {
int[] ans = new int[n];
for (int i = 0; i < n; i++) {
ans[i] = ni();
}
return ans;
}
private static String[] nsa(int n) {
String[] ans = new String[n];
for (int i = 0; i < n; i++) {
ans[i] = ns();
}
return ans;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 11 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 33844833d6e29e5bb4ac4dde734488ff | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class dummy2
{
public static void main(String args[])throws IOException
{
BufferedReader x=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(x.readLine());
long p=1;
HashSet<Long> arr=new HashSet<Long>();
arr.add(p);
for(long i=2; i<n; i++)
{
if(gcd(i,n)==1)
{
arr.add(i);
p=(p*i)%n;
}
}
if(p!=1)arr.remove(p);
System.out.println(arr.size());
//System.out.println(p+" "+arr.contains(p));
for(long i=1; i<n; i++)if(arr.contains(i))System.out.print(i+" ");
/*int coprime[] = new int[n];
coprime[1] = 1;
long rem = 1; //product of coprimes
int ans = 1; //this is the size of coprimes
for(int i=2;i<n;i++) {
if(gcd(i,n) == 1){
coprime[i] = 1;
ans++;
rem = (rem*i)%n;
}
}
if(rem != 1){
ans--;
coprime[(int)rem] = 0;
}
System.out.println(ans);
for(int i=1;i<n;i++){
if(coprime[i]==1)System.out.print(i + " ");
}*/
}
static long gcd(long a, long b)
{
if(a==0)return b;
return gcd(b%a, a);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 330999ef3bf582312947ae02e634edd8 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class product1modulon {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = Integer.parseInt(f.readLine());
long[] coprimes = new long[n + 1];
int count = 0;
for(int i = 0; i < n / 2 + 1; i ++) {
if(gcd(n, i) == 1) {
coprimes[count] = i;
count ++;
if(i != n - i) {
coprimes[count] = n - i;
count ++;
}
}
}
long total = 1;
for(int i = 0; i < count; i ++) {
total *= coprimes[i];
total %= n;
}
if(total == 1) {
out.println(count);
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
out.println();
}
else {
out.println(count - 1);
if(total < n / 2) {
for(int i = 0; i < count; i += 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
}
else {
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
}
out.println();
}
out.flush();
}
static int gcd(int n1, int n2) {
if (n1 == 0) {
return n2;
}
if (n2 == 0) {
return n1;
}
int n;
for (n = 0; ((n1 | n2) & 1) == 0; n++) {
n1 >>= 1;
n2 >>= 1;
}
while ((n1 & 1) == 0) {
n1 >>= 1;
}
do {
while ((n2 & 1) == 0) {
n2 >>= 1;
}
if (n1 > n2) {
int temp = n1;
n1 = n2;
n2 = temp;
}
n2 = (n2 - n1);
} while (n2 != 0);
return n1 << n;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 7306e7955b79911762e2af7b15b02b0c | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class product1modulon {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = Integer.parseInt(f.readLine());
long[] coprimes = new long[n + 1];
int count = 0;
for(int i = 0; i < n / 2 + 1; i ++) {
if(gcd(n, i) == 1) {
coprimes[count] = i;
count ++;
if(i != n - i) {
coprimes[count] = n - i;
count ++;
}
}
}
long total = 1;
for(int i = 0; i < count; i ++) {
total *= coprimes[i];
total %= n;
}
if(total == 1) {
out.println(count);
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
out.println();
}
else {
out.println(count - 1);
if(total < n / 2) {
for(int i = 0; i < count; i += 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
}
else {
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
}
out.println();
}
out.flush();
}
static int gcd(int a, int b) {
while (b != 0) {
int t = a;
a = b;
b = t % b;
}
return a;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | aa14bd16ef0deaf3ecf6dd0934236610 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class product1modulon {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = Integer.parseInt(f.readLine());
int[] coprimes = new int[n + 1];
int count = 0;
for(int i = 0; i < n / 2 + 1; i ++) {
if(gcd(n, i) == 1) {
coprimes[count] = i;
count ++;
if(i != n - i) {
coprimes[count] = n - i;
count ++;
}
}
}
long total = 1;
for(int i = 0; i < count; i ++) {
total *= (long) coprimes[i];
total %= n;
}
if(total == 1) {
out.println(count);
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
out.println();
}
else {
out.println(count - 1);
if(total < n / 2) {
for(int i = 0; i < count; i += 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
}
else {
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
}
out.println();
}
out.flush();
}
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 1f488f9becb22e5daab1551eaeb63caa | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class product1modulon {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = Integer.parseInt(f.readLine());
int[] coprimes = new int[n + 1];
int count = 0;
for(int i = 0; i < n / 2 + 1; i ++) {
if(gcd(n, i) == 1) {
coprimes[count] = i;
count ++;
if(i != n - i) {
coprimes[count] = n - i;
count ++;
}
}
}
long total = 1;
for(int i = 0; i < count; i ++) {
total *= (long) coprimes[i];
total %= n;
}
if(total == 1) {
out.println(count);
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
out.println();
}
else {
out.println(count - 1);
if(total < n / 2) {
for(int i = 0; i < count; i += 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
out.print(coprimes[i] + " ");
}
}
else {
for(int i = 0; i < count; i += 2) {
out.print(coprimes[i] + " ");
}
for(int i = count - (count % 2) - 1; i >= 0; i -= 2) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
}
out.println();
}
out.flush();
}
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 74cb2241d074cf89fe333ff32ec40ac8 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class product1modulon {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
int n = Integer.parseInt(f.readLine());
int[] coprimes = new int[n + 1];
int count = 0;
for(int i = 0; i < n; i ++) {
if(gcd(n, i) == 1) {
coprimes[count] = i;
count ++;
}
}
long total = 1;
for(int i = 0; i < count; i ++) {
total *= (long) coprimes[i];
total %= n;
}
if(total == 1) {
out.println(count);
for(int i = 0; i < count; i ++) {
out.print(coprimes[i] + " ");
}
out.println();
}
else {
out.println(count - 1);
for(int i = 0; i < count; i ++) {
if(coprimes[i] != total) {
out.print(coprimes[i] + " ");
}
}
out.println();
}
out.flush();
}
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 5e7cdd5178052acd6e88162a08558523 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class product1modulon {
public static void main(String[] args) throws IOException {
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(f.readLine());
ArrayList<Integer> coprimes = new ArrayList<>();
int count = 0;
for(int i = 0; i < n; i ++) {
if(gcd(n, i) == 1) {
coprimes.add(i);
count ++;
}
}
long total = 1;
for(int i = 0; i < count; i ++) {
total *= (long) coprimes.get(i);
total %= n;
}
if(total == 1) {
System.out.println(count);
for(int i = 0; i < count; i ++) {
System.out.print(coprimes.get(i) + " ");
}
System.out.println();
}
else {
System.out.println(count - 1);
for(int i = 0; i < count; i ++) {
if(coprimes.get(i) != total) {
System.out.print(coprimes.get(i) + " ");
}
}
System.out.println();
}
}
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | ccf17351f69d1dcdd2b4cd71a6373690 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static int MAX_SIZE = 1000001 ;
public static Vector<Boolean> isprime = new Vector<Boolean>(MAX_SIZE);
public static Vector<Integer> primes = new Vector<Integer>(MAX_SIZE) ;
public static Vector<Integer> SPF = new Vector<Integer>(MAX_SIZE);
public static void sieve (int n ) {
isprime.set(0,false);
isprime.set(1, false) ;
for (int i = 2 ; i < n ; i ++ ) {
if (isprime.get(i)) {
primes.add(i);
SPF.add(i);
}
for (int j = 2 ; i*primes.get(j) <= n ; j +=i ) {
}
}
}
public static ArrayList<Stack<Integer>> as = new ArrayList<Stack<Integer>>();
public static int k ;
public static Stack<Integer>q=new Stack<Integer>();
public static void permutation (int [] a,int n , int mask, int taken) {
if (taken == n ) {
arr = q.toArray();
backtrack((int)arr[0],0, 1);
return ;
}
else {
for(int i = 0 ; i < n ; i++ ) {
if ((mask &(1 << i)) == 0 ) {
q.add((int)a[i]);
permutation(a,n, mask | (1 <<i) , taken+1);
q.pop();
}
}
}
}
public static boolean gsd(long x , int y) {
for(int i = 2 ; i <= Math.min(y, x) ; i ++ ) {
if (x%i == 0 && y%i == 0 ) return true;
}
return false;
}
public static int s(long x) {
int sum = 0 ;
do {
sum += x%10 ;
x /= 10;
}while(x >0 );
return sum;
}
public static int right(String s) {
int c = 0 ;
for(int i = s.length()-1 ; i>=0; i -- ) {
if(s.charAt(i) == 'a') c++ ;
else break;
}
return c;
}
public static int left(String s) {
int c = 0 ;
for(int i = 0 ; i<s.length(); i ++ ) {
if(s.charAt(i) == 'a') c++ ;
else break;
}
return c;
}
public static boolean onlyas (String s) {
for (int i = 0 ; i < s.length() ; i ++ ) {
if (s.charAt(i) != 'a') return false ;
}return true;
}
public static String convert(String s) {
StringBuilder sb = new StringBuilder();
for (int i = 0 ; i < s.length() ; i ++ ) {
if (s.charAt(i) == '1') sb.append("0");
else sb.append("1");
}
return sb.toString();
}
public static int check (String s) {
// boolean flag = false ;
for (int i = 0 ; i < s.length() ; i ++) {
if (Character.isDigit(s.charAt(i)) ) {
for (int j = i ; j <s.length() ; j ++ ) {
if (!Character.isDigit(s.charAt(j)))return 0 ;
}
return 1 ;
}
}
return 1;
}
public static String s26 (int n) {
StringBuilder st = new StringBuilder();
while (n >0) {
int x = n%26 ;
n /= 26 ;
if (x-1 <0 ) {
x = 26;n-- ;
}
st.insert(0, letters[x-1]);
}
return st.toString();
}
public static int sum = 0 ;
public static int tokens = 0 ;
public static Object arr [] = new Integer [5];
public static boolean flag = false ;
public static void backtrack (int ss , int idx , int tks) {
if (tks == 5 ) {
// System.out.println(ss + " ");
if (ss == 23 ) {//System.out.print(ss+" " );
flag = true ; return ;
}
}else {
backtrack(ss+ (int)arr[idx+1], idx+1, tks+1);
backtrack(ss*(int)arr[idx+1], idx+1, tks+1);
backtrack(ss-(int)arr[idx+1], idx+1, tks+1);
}
}
public static int length (int n) {
int l = 0 ;
while (n > 0 ) {
l ++ ;
n /=10 ;
}
return l ;
}
public static int GCD (int x , int y ) {
if (x == y ) return x ;
if (x > y ) return GCD(x-y , y ) ;
else return GCD(x , y -x);
}
public static int low (int k ) {
return (k)*(k+1)/2 ;
}
public static int high (int n , int k) {
return (k)*(2*n-k+1)/2 ;
}
public static char [] letters = {'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O'
,'P','Q','R','S','T','U','V','W','X','Y', 'Z'};
public static void main(String[] args) throws IOException, InterruptedException{
PrintWriter pw = new PrintWriter(System.out);
Scanner sc = new Scanner (System.in);
int n = sc.nextInt();
ArrayList<Integer> arr = new ArrayList<>();
long pro = 1 ;
for (int i = 1; i < n; i ++ ) {
if (GCD(i , n ) == 1 ) {
arr.add(i);
pro *= i ;
pro %= n ;
}
}
int u = arr.size();
if (pro != 1 ) {
pw.println(u-1);
for (int i : arr ) {if (i == pro )continue;;
pw.print(i+" " );
}
pw.close();;
}
pw.println(arr.size());
for (int i : arr ) {
pw.print(i+" " );
}
pw.close ();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
/*
while (true) {
int []a = new int [5];
for (int i = 0 ; i < 5 ; i ++ ) {
arr[i]= sc.nextInt();
a[i]= (int)arr[i];;
}
if (a[0] == 0) break ;
permutation(a, 5, 0, 0);
pw.println(flag ? "Possible":"Impossible");
}
*/ | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | d9aeb8de9f31ca818611b12f8b040dd2 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class Main {
public static int MAX_SIZE = 1000001 ;
public static Vector<Boolean> isprime = new Vector<Boolean>(MAX_SIZE);
public static Vector<Integer> primes = new Vector<Integer>(MAX_SIZE) ;
public static Vector<Integer> SPF = new Vector<Integer>(MAX_SIZE);
public static void sieve (int n ) {
isprime.set(0,false);
isprime.set(1, false) ;
for (int i = 2 ; i < n ; i ++ ) {
if (isprime.get(i)) {
primes.add(i);
SPF.add(i);
}
for (int j = 2 ; i*primes.get(j) <= n ; j +=i ) {
}
}
}
public static ArrayList<Stack<Integer>> as = new ArrayList<Stack<Integer>>();
public static int k ;
public static Stack<Integer>q=new Stack<Integer>();
public static void permutation (int [] a,int n , int mask, int taken) {
if (taken == n ) {
arr = q.toArray();
backtrack((int)arr[0],0, 1);
return ;
}
else {
for(int i = 0 ; i < n ; i++ ) {
if ((mask &(1 << i)) == 0 ) {
q.add((int)a[i]);
permutation(a,n, mask | (1 <<i) , taken+1);
q.pop();
}
}
}
}
public static boolean gsd(long x , int y) {
for(int i = 2 ; i <= Math.min(y, x) ; i ++ ) {
if (x%i == 0 && y%i == 0 ) return true;
}
return false;
}
public static int s(long x) {
int sum = 0 ;
do {
sum += x%10 ;
x /= 10;
}while(x >0 );
return sum;
}
public static int right(String s) {
int c = 0 ;
for(int i = s.length()-1 ; i>=0; i -- ) {
if(s.charAt(i) == 'a') c++ ;
else break;
}
return c;
}
public static int left(String s) {
int c = 0 ;
for(int i = 0 ; i<s.length(); i ++ ) {
if(s.charAt(i) == 'a') c++ ;
else break;
}
return c;
}
public static boolean onlyas (String s) {
for (int i = 0 ; i < s.length() ; i ++ ) {
if (s.charAt(i) != 'a') return false ;
}return true;
}
public static String convert(String s) {
StringBuilder sb = new StringBuilder();
for (int i = 0 ; i < s.length() ; i ++ ) {
if (s.charAt(i) == '1') sb.append("0");
else sb.append("1");
}
return sb.toString();
}
public static int check (String s) {
// boolean flag = false ;
for (int i = 0 ; i < s.length() ; i ++) {
if (Character.isDigit(s.charAt(i)) ) {
for (int j = i ; j <s.length() ; j ++ ) {
if (!Character.isDigit(s.charAt(j)))return 0 ;
}
return 1 ;
}
}
return 1;
}
public static String s26 (int n) {
StringBuilder st = new StringBuilder();
while (n >0) {
int x = n%26 ;
n /= 26 ;
if (x-1 <0 ) {
x = 26;n-- ;
}
st.insert(0, letters[x-1]);
}
return st.toString();
}
public static int sum = 0 ;
public static int tokens = 0 ;
public static Object arr [] = new Integer [5];
public static boolean flag = false ;
public static void backtrack (int ss , int idx , int tks) {
if (tks == 5 ) {
// System.out.println(ss + " ");
if (ss == 23 ) {//System.out.print(ss+" " );
flag = true ; return ;
}
}else {
backtrack(ss+ (int)arr[idx+1], idx+1, tks+1);
backtrack(ss*(int)arr[idx+1], idx+1, tks+1);
backtrack(ss-(int)arr[idx+1], idx+1, tks+1);
}
}
public static int length (int n) {
int l = 0 ;
while (n > 0 ) {
l ++ ;
n /=10 ;
}
return l ;
}
public static int GCD (int x , int y ) {
if (x == y ) return x ;
if (x > y ) return GCD(x-y , y ) ;
else return GCD(x , y -x);
}
public static int low (int k ) {
return (k)*(k+1)/2 ;
}
public static int high (int n , int k) {
return (k)*(2*n-k+1)/2 ;
}
public static char [] letters = {'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O'
,'P','Q','R','S','T','U','V','W','X','Y', 'Z'};
public static void main(String[] args) throws IOException, InterruptedException{
PrintWriter pw = new PrintWriter(System.out);
Scanner sc = new Scanner (System.in);
int n = sc.nextInt();
ArrayList<Integer> arr = new ArrayList<>();
long pro = 1 ;
for (int i = 1; i < n; i ++ ) {
if (GCD(i , n ) == 1 ) {
arr.add(i);
pro *= i ;
pro %= n ;
}
}
if (pro != 1 ) arr.remove(arr.size()-1);
pw.println(arr.size());
for (int i : arr ) {
pw.print(i+" " );
}
pw.close ();
}
static class Scanner {
StringTokenizer st;
BufferedReader br;
public Scanner(InputStream s) {
br = new BufferedReader(new InputStreamReader(s));
}
public Scanner(String file) throws FileNotFoundException {
br = new BufferedReader(new FileReader(file));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(br.readLine());
return st.nextToken();
}
public int nextInt() throws IOException {
return Integer.parseInt(next());
}
public long nextLong() throws IOException {
return Long.parseLong(next());
}
public String nextLine() throws IOException {
return br.readLine();
}
public double nextDouble() throws IOException {
return Double.parseDouble(next());
}
public boolean ready() throws IOException {
return br.ready();
}
}
}
/*
while (true) {
int []a = new int [5];
for (int i = 0 ; i < 5 ; i ++ ) {
arr[i]= sc.nextInt();
a[i]= (int)arr[i];;
}
if (a[0] == 0) break ;
permutation(a, 5, 0, 0);
pw.println(flag ? "Possible":"Impossible");
}
*/ | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 95a6f895fdfbc1452501dd502a854606 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import static java.lang.Math.*;
import static java.lang.System.out;
import java.util.*;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.math.BigInteger;
public class A {
/* 10^(7) = 1s.
* ceilVal = (a+b-1) / b */
static final int mod = 1000000007;
static final long temp = 998244353;
static final long MOD = 1000000007;
static final long M = (long)1e9+7;
static class Pair implements Comparable<Pair>
{
long first, second;
public Pair(long first, long second)
{
this.first = first;
this.second = second;
}
public int compareTo(Pair ob)
{
return (int)(ob.second - second);
}
}
static class Tuple implements Comparable<Tuple>{
long first, second,third;
public Tuple(long first, long second, long third)
{
this.first = first;
this.second = second;
this.third = third;
}
public int compareTo(Tuple o)
{
return (int)(o.third - this.third);
}
}
public static class DSU
{
int[] parent;
int[] rank; //Size of the trees is used as the rank
public DSU(int n)
{
parent = new int[n];
rank = new int[n];
Arrays.fill(parent, -1);
Arrays.fill(rank, 1);
}
public int find(int i) //finding through path compression
{
return parent[i] < 0 ? i : (parent[i] = find(parent[i]));
}
public boolean union(int a, int b) //Union Find by Rank
{
a = find(a);
b = find(b);
if(a == b) return false; //if they are already connected we exit by returning false.
// if a's parent is less than b's parent
if(rank[a] < rank[b])
{
//then move a under b
parent[a] = b;
}
//else if rank of j's parent is less than i's parent
else if(rank[a] > rank[b])
{
//then move b under a
parent[b] = a;
}
//if both have the same rank.
else
{
//move a under b (it doesnt matter if its the other way around.
parent[b] = a;
rank[a] = 1 + rank[a];
}
return true;
}
}
static class Reader {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) throws IOException {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] longReadArray(int n) throws IOException {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static boolean isPrime(long n)
{
if(n == 1)
{
return false;
}
for(int i = 2;i*i<=n;i++)
{
if(n%i == 0)
{
return false;
}
}
return true;
}
public static List<Integer> SieveList(int n)
{
boolean prime[] = new boolean[n+1];
Arrays.fill(prime, true);
ArrayList<Integer> l = new ArrayList<>();
for (int p=2; p*p<=n; p++)
{
if (prime[p] == true)
{
for(int i=p*p; i<=n; i += p)
{
prime[i] = false;
}
}
}
for (int p=2; p<=n; p++)
{
if (prime[p] == true)
{
l.add(p);
}
}
return l;
}
public static int gcd(int a, int b)
{
if(b == 0)
return a;
else
return gcd(b,a%b);
}
public static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
public static long LongGCD(long a, long b)
{
if(b == 0)
return a;
else
return LongGCD(b,a%b);
}
public static long LongLCM(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
//Count the number of coprime's upto N
public static long phi(long n) //euler totient/phi function
{
long ans = n;
// for(long i = 2;i*i<=n;i++)
// {
// if(n%i == 0)
// {
// while(n%i == 0) n/=i;
// ans -= (ans/i);
// }
// }
//
// if(n > 1)
// {
// ans -= (ans/n);
// }
for(long i = 2;i<=n;i++)
{
if(isPrime(i))
{
ans -= (ans/i);
}
}
return ans;
}
public static long fastPow(long x, long n)
{
if(n == 0)
return 1;
else if(n%2 == 0)
return fastPow(x*x,n/2);
else
return x*fastPow(x*x,(n-1)/2);
}
public static long modPow(long x, long y, long p)
{
long res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long modInverse(long n, long p)
{
return modPow(n, p - 2, p);
}
// Returns nCr % p using Fermat's little theorem.
public static long nCrModP(long n, long r,long p)
{
if (n<r)
return 0;
if (r == 0)
return 1;
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[(int)(n)] * modInverse(fac[(int)(r)], p)
% p * modInverse(fac[(int)(n - r)], p)
% p)
% p;
}
public static long fact(long n) {
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (long i = 1; i <= n; i++)
fac[(int)(i)] = fac[(int)(i - 1)] * i;
return fac[(int)(n)];
}
public static long nCr(long n, long k)
{
long ans = 1;
for(long i = 0;i<k;i++)
{
ans *= (n-i);
ans /= (i+1);
}
return ans;
}
public static void Sort(int[] a)
{
List<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
Collections.reverse(l); //Use to Sort decreasingly
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void ssort(char[] a)
{
List<Character> l = new ArrayList<>();
for (char i : a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//Modular Operations for Addition and Multiplication.
public static long perfomMod(long x)
{
return ((x%M + M)%M);
}
public static long addMod(long a, long b)
{
return perfomMod(perfomMod(a)+perfomMod(b));
}
public static long subMod(long a, long b)
{
return perfomMod(perfomMod(a)-perfomMod(b));
}
public static long mulMod(long a, long b)
{
return perfomMod(perfomMod(a)*perfomMod(b));
}
/*
*
* >= <=
0 1 2 3 4 5 6 7
5 5 5 6 6 6 7 7
lower_bound for 6 at index 3 (>=)
upper_bound for 6 at index 6(To get six reduce by one) (<=)
*/
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
public static void main(String[] args) throws Exception
{
Reader sc = new Reader();
PrintWriter fout = new PrintWriter(System.out);
int n = sc.nextInt();
long f = 1;
LinkedList<Integer> list = new LinkedList<>();
for(int i = 1;i<n;i++)
{
int curr = gcd(i,n);
if(curr == 1)
{
list.add(i);
f = (f * i)%n;
}
}
if(n > 2 && f == n-1)
{
list.pollLast();
f = 1;
}
fout.println(list.size());
for(int itc: list) fout.print(itc + " ");
fout.close();
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | ea0c415381882f37d808f3a2963efbab | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import static java.lang.Math.*;
import static java.lang.System.out;
import java.util.*;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.math.BigInteger;
public class A {
/* 10^(7) = 1s.
* ceilVal = (a+b-1) / b */
static final int mod = 1000000007;
static final long temp = 998244353;
static final long MOD = 1000000007;
static final long M = (long)1e9+7;
static class Pair implements Comparable<Pair>
{
long first, second;
public Pair(long first, long second)
{
this.first = first;
this.second = second;
}
public int compareTo(Pair ob)
{
return (int)(ob.second - second);
}
}
static class Tuple implements Comparable<Tuple>{
long first, second,third;
public Tuple(long first, long second, long third)
{
this.first = first;
this.second = second;
this.third = third;
}
public int compareTo(Tuple o)
{
return (int)(o.third - this.third);
}
}
public static class DSU
{
int[] parent;
int[] rank; //Size of the trees is used as the rank
public DSU(int n)
{
parent = new int[n];
rank = new int[n];
Arrays.fill(parent, -1);
Arrays.fill(rank, 1);
}
public int find(int i) //finding through path compression
{
return parent[i] < 0 ? i : (parent[i] = find(parent[i]));
}
public boolean union(int a, int b) //Union Find by Rank
{
a = find(a);
b = find(b);
if(a == b) return false; //if they are already connected we exit by returning false.
// if a's parent is less than b's parent
if(rank[a] < rank[b])
{
//then move a under b
parent[a] = b;
}
//else if rank of j's parent is less than i's parent
else if(rank[a] > rank[b])
{
//then move b under a
parent[b] = a;
}
//if both have the same rank.
else
{
//move a under b (it doesnt matter if its the other way around.
parent[b] = a;
rank[a] = 1 + rank[a];
}
return true;
}
}
static class Reader {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) throws IOException {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long[] longReadArray(int n) throws IOException {
long[] a=new long[n];
for (int i=0; i<n; i++) a[i]=nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static boolean isPrime(long n)
{
if(n == 1)
{
return false;
}
for(int i = 2;i*i<=n;i++)
{
if(n%i == 0)
{
return false;
}
}
return true;
}
public static List<Integer> SieveList(int n)
{
boolean prime[] = new boolean[n+1];
Arrays.fill(prime, true);
ArrayList<Integer> l = new ArrayList<>();
for (int p=2; p*p<=n; p++)
{
if (prime[p] == true)
{
for(int i=p*p; i<=n; i += p)
{
prime[i] = false;
}
}
}
for (int p=2; p<=n; p++)
{
if (prime[p] == true)
{
l.add(p);
}
}
return l;
}
public static int gcd(int a, int b)
{
if(b == 0)
return a;
else
return gcd(b,a%b);
}
public static int lcm(int a, int b)
{
return (a / gcd(a, b)) * b;
}
public static long LongGCD(long a, long b)
{
if(b == 0)
return a;
else
return LongGCD(b,a%b);
}
public static long LongLCM(long a, long b)
{
return (a / LongGCD(a, b)) * b;
}
//Count the number of coprime's upto N
public static long phi(long n) //euler totient/phi function
{
long ans = n;
// for(long i = 2;i*i<=n;i++)
// {
// if(n%i == 0)
// {
// while(n%i == 0) n/=i;
// ans -= (ans/i);
// }
// }
//
// if(n > 1)
// {
// ans -= (ans/n);
// }
for(long i = 2;i<=n;i++)
{
if(isPrime(i))
{
ans -= (ans/i);
}
}
return ans;
}
public static long fastPow(long x, long n)
{
if(n == 0)
return 1;
else if(n%2 == 0)
return fastPow(x*x,n/2);
else
return x*fastPow(x*x,(n-1)/2);
}
public static long modPow(long x, long y, long p)
{
long res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long modInverse(long n, long p)
{
return modPow(n, p - 2, p);
}
// Returns nCr % p using Fermat's little theorem.
public static long nCrModP(long n, long r,long p)
{
if (n<r)
return 0;
if (r == 0)
return 1;
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[(int)(n)] * modInverse(fac[(int)(r)], p)
% p * modInverse(fac[(int)(n - r)], p)
% p)
% p;
}
public static long fact(long n) {
long[] fac = new long[(int)(n) + 1];
fac[0] = 1;
for (long i = 1; i <= n; i++)
fac[(int)(i)] = fac[(int)(i - 1)] * i;
return fac[(int)(n)];
}
public static long nCr(long n, long k)
{
long ans = 1;
for(long i = 0;i<k;i++)
{
ans *= (n-i);
ans /= (i+1);
}
return ans;
}
public static void Sort(int[] a)
{
List<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
Collections.reverse(l); //Use to Sort decreasingly
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
public static void ssort(char[] a)
{
List<Character> l = new ArrayList<>();
for (char i : a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
//Modular Operations for Addition and Multiplication.
public static long perfomMod(long x)
{
return ((x%M + M)%M);
}
public static long addMod(long a, long b)
{
return perfomMod(perfomMod(a)+perfomMod(b));
}
public static long subMod(long a, long b)
{
return perfomMod(perfomMod(a)-perfomMod(b));
}
public static long mulMod(long a, long b)
{
return perfomMod(perfomMod(a)*perfomMod(b));
}
/*
*
* >= <=
0 1 2 3 4 5 6 7
5 5 5 6 6 6 7 7
lower_bound for 6 at index 3 (>=)
upper_bound for 6 at index 6(To get six reduce by one) (<=)
*/
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
public static void main(String[] args) throws Exception
{
Reader sc = new Reader();
PrintWriter fout = new PrintWriter(System.out);
int n = sc.nextInt();
long f = 1;
List<Integer> list = new ArrayList<>();
for(int i = 1;i<n;i++)
{
int curr = gcd(i,n);
if(curr == 1)
{
list.add(i);
f = (f * i)%n;
}
}
if(n > 2 && f == n-1)
{
list.remove(list.size()-1);
f = 1;
}
fout.println(list.size());
for(int itc: list) fout.print(itc + " ");
fout.close();
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | ae5d7ebd65dfa1812494913233d02e5d | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class C {
static class FastScanner {
int idk;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] nextArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static class FastWriter extends PrintWriter {
FastWriter() {
super(System.out);
}
void println(int[] array) {
for (int i = 0; i < array.length; i++) {
print(array[i] + " ");
}
println();
}
void println(long[] array) {
long ans[]=new long[10];
for (int i = 0; i < array.length; i++) {
print(array[i] + " ");
}
println();
}
}
public static void main(String[] args) {
// Yo bitch !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
FastScanner in = new FastScanner();
FastWriter out = new FastWriter();
int n=in.nextInt();
ArrayList<Integer> list=new ArrayList<>();
long ans=1;
for(int i=1;i<n;i++){
if(gcd(i,n)==1){
ans*=i;ans%=n;
list.add(i);
}
}
if(ans!=1){
list.remove(list.size()-1);
}
out.println(list.size());
for (int i = 0; i < list.size(); i++) {
out.print(list.get(i)+" ");
}
out.println();
out.close();
}
static long gcd(long a, long b) {
if(b > a) return gcd(b, a);
else if(b == 0) return a;
else return gcd(b, a % b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 09cb284b6430afb0f907857775d9ee29 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class codeforces1514C {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
StringBuilder ans = new StringBuilder();
int answer = 0;
long mod = 1;
ArrayList<Integer> set = new ArrayList<>();
for (int i = 1; i<n;i++)
{
if (gcd(i,n)==1)
{
mod*=i;
mod%=n;
set.add(i);
}
}
if (mod!=1)
{
for (int i = 0; i<set.size();i++)
{
if (set.get(i) == mod)
{
set.remove(i);
}
}
}
for (int i = 0; i<set.size();i++) {
ans.append(set.get(i)+" ");
answer++;
}
System.out.println(answer);
System.out.println(ans);
}
static int gcd(int a, int b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | fdf346738bcd863619f9fc26be10c63c | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Solution
{
static int mod=1000000007;
static FastReader sc=new FastReader();
public static long gcd(long a,long b)
{
if(b==0)return a;
else
{
return(gcd(b,a%b));
}
}
public static void main (String[] args) throws java.lang.Exception
{
long n=sc.nextLong();
long mul=1;
ArrayList<Long> al=new ArrayList<Long>();
for(long i=1;i<n-1;++i)
{
if(gcd(i,n)==1)
{
al.add(i);
mul=(mul*i)%n;
}
}
if((mul*(n-1))%n==1)
{
al.add(n-1);
}
System.out.println(al.size());
for(long i:al)
{
System.out.print(i+" ");
}
System.out.println();
}
static void printintarray(int[] arr)
{
int n=arr.length;
for(int i=0;i<n;++i)
{
System.out.print(arr[i]+" ");
}
System.out.println();
}
static void printlongarray(long[] arr)
{
int n=arr.length;
for(int i=0;i<n;++i)
{
System.out.print(arr[i]+" ");
}
System.out.println();
}
static int[] arrayintinput(int n)
{
int arr[]=new int[n];
for(int i=0;i<n;++i)
{
arr[i]=sc.nextInt();
}
return arr;
}
static long[] arraylonginput(int n)
{
long arr[]=new long[n];
for(int i=0;i<n;++i)
{
arr[i]=sc.nextLong();
}
return arr;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
// System.out.println("Case #"+(y+1)+": "+ans);
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | f4b4d223cfc05257f08c0a848aaef303 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | /* package codechef; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Solution
{
static int mod=1000000007;
static FastReader sc=new FastReader();
public static long gcd(long a,long b)
{
if(b==0)return a;
else
{
return(gcd(b,a%b));
}
}
public static long multiply(long a,long b)
{
return((a%mod * b%mod)%mod);
}
public static void main (String[] args) throws java.lang.Exception
{
StringBuilder sb=new StringBuilder();
long n=sc.nextLong();
long mul=1;
int count=0;
ArrayList<Long> al=new ArrayList<Long>();
for(long i=1;i<n-1;++i)
{
if(gcd(i,n)==1)
{
al.add(i);
++count;
sb.append(i+" ");
mul=(mul*i)%n;
}
}
if((mul*(n-1))%n==1)
{
++count;
sb.append((n-1)+" ");
}
System.out.println(count);
System.out.println(sb.toString());
}
static void printintarray(int[] arr)
{
int n=arr.length;
for(int i=0;i<n;++i)
{
System.out.print(arr[i]+" ");
}
System.out.println();
}
static void printlongarray(long[] arr)
{
int n=arr.length;
for(int i=0;i<n;++i)
{
System.out.print(arr[i]+" ");
}
System.out.println();
}
static int[] arrayintinput(int n)
{
int arr[]=new int[n];
for(int i=0;i<n;++i)
{
arr[i]=sc.nextInt();
}
return arr;
}
static long[] arraylonginput(int n)
{
long arr[]=new long[n];
for(int i=0;i<n;++i)
{
arr[i]=sc.nextLong();
}
return arr;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
// System.out.println("Case #"+(y+1)+": "+ans);
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | bcf92b587dd149c87fd19fc59294223e | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | //package competition.cf.cf716;
import java.util.Scanner;
//public class C {
// private final static Scanner scanner = new Scanner(System.in);
// private final static long MOD = 1000000007L;
//
// public static void main(String[] args){ //素数筛
//
//
// int n = scanner.nextInt();
// boolean[] isPrime = new boolean[n + 1];
// int[] prime = new int[n + 1];
//
// for(int i = 0 ; i <= n ; i++) isPrime[i] = true;
//
// isPrime[0] = isPrime[1] = false;
// int tot = 0;
// for(int i = 2 ; i <= n ; i++){ //和n不能有相同的质数因子,因为会将n约小
// if(isPrime[i]) prime[tot++] = i;
// for(int j = 0 ; j < tot && i * prime[j] <= n ; j++){
// isPrime[i*prime[j]]=false;
// if((i % prime[j]) == 0) break;
// }
// }
//
//
// int cnt = 0;
// int[] cntArray = new int[n];
// for (int i = 0; i < tot; i++) {
// if((n % prime[i]) == 0) cntArray[cnt++] = prime[i];
// }
//
// long a = 1;
// int len = 0;
// int[] ans = new int[n];
// for (int i = 1 , j ; i < n - 1; i++) {
// for (j = 0; j < cnt; j++) {
// if((i % cntArray[j]) == 0) break;
// }
// if(j >= cnt){
// a = (a * i) % n;
// ans[len++] = i;
// }
// }
// if(((a * (n - 1)) % n) == 1){
// ans[len++] = (n - 1);
// a = (a * (n - 1)) % n;
// }
//
//
// System.out.println(len);
// for (int i = 0; i < len; i++) {
// System.out.print(ans[i]);
// if(i != len - 1) System.out.print(" ");
// else System.out.println();
// }
// }
//}
public class C {
private final static Scanner scanner=new Scanner(System.in);
private static int[] array = new int[100000+5];
public static void main(String[] args){
// int[] a=new int[100];
int n=scanner.nextInt();
int[] prime = new int[n + 1];
array[0] = 1;
array[1] = 1;
int tot=0;
for (int i = 2; i <=n; i++) {
if(array[i]!=1) prime[tot++] = i;
if (array[i] == 0) {
for (int j = i ; j <= n; j += i) {
array[j] = 1;
}
}
}
int cnt = 0;
int[] cntArray = new int[n];
for (int i = 0; i < tot; i++) {
if((n % prime[i]) == 0) cntArray[cnt++] = prime[i];
}
long a = 1;
int len = 0;
int[] ans = new int[n];
for (int i = 1 , j ; i < n - 1; i++) {
for (j = 0; j < cnt; j++) {
if((i % cntArray[j]) == 0) break;
}
if(j >= cnt){
a = (a * i) % n;
ans[len++] = i;
}
}
if(((a * (n - 1)) % n) == 1){
ans[len++] = (n - 1);
a = (a * (n - 1)) % n;
}
System.out.println(len);
for (int i = 0; i < len; i++) {
System.out.print(ans[i]);
if(i != len - 1) System.out.print(" ");
else System.out.println();
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 2daf05a84221f9283a8b4f5bbaa7d3e7 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.util.Scanner;
public class C {
private final static Scanner scanner = new Scanner(System.in);
private final static long MOD = 1000000007L;
public static void main(String[] args){ //素数筛
int n = scanner.nextInt();
boolean[] isPrime = new boolean[n + 1];
int[] prime = new int[n + 1];
for(int i = 0 ; i <= n ; i++) isPrime[i] = true;
isPrime[0] = isPrime[1] = false;
int tot = 0;
for(int i = 2 ; i <= n ; i++){
if(isPrime[i]) prime[tot++] = i;
for(int j = 0 ; j < tot && i * prime[j] <= n ; j++){
isPrime[i*prime[j]]=false;
if((i % prime[j]) == 0) break;
}
}
int cnt = 0;
int[] cntArray = new int[n];
for (int i = 0; i < tot; i++) {
if((n % prime[i]) == 0) cntArray[cnt++] = prime[i];
}
long a = 1;
int len = 0;
int[] ans = new int[n];
for (int i = 1 , j ; i < n - 1; i++) {
for (j = 0; j < cnt; j++) {
if((i % cntArray[j]) == 0) break;
}
if(j >= cnt){
a = (a * i) % n;
ans[len++] = i;
}
}
if(((a * (n - 1)) % n) == 1){
ans[len++] = (n - 1);
a = (a * (n - 1)) % n;
}
System.out.println(len);
for (int i = 0; i < len; i++) {
System.out.print(ans[i]);
if(i != len - 1) System.out.print(" ");
else System.out.println();
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 0628a02e31681464df7b5088c34ed3ae | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
private static final MyWriter writer = new MyWriter();
private static final MyReader scan = new MyReader();
public static void main(String[] args) throws Exception {
Main main = new Main();
// int q = scan.nextInt(); while (q-- > 0)
main.solve(); writer.close();
}
void solve() throws Exception {
int n = scan.nextInt();
ArrayList<Integer> res = new ArrayList<>();
res.add(1);
long sum = 1;
for (int i = 2; i < n; i++) {
if (gcd(n, i) != 1) continue;
res.add(i);
sum *= i;
sum %= n;
}
int abandon = sum == 1l ? -1 : (int)sum;
writer.println(abandon == -1 ? res.size() : res.size() - 1);
for (int i = 0; i < res.size(); i++) {
if (res.get(i) != abandon) writer.print(res.get(i) + " ");
}
}
int gcd(int a, int b) {
return a % b == 0 ? b : gcd(b, a % b);
}
}
class MyWriter implements Closeable {
private BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out));
public void print(Object object) throws IOException { writer.write(object.toString()); }
public void println(Object object) throws IOException { writer.write(object.toString());writer.write(System.lineSeparator()); }
public void close() throws IOException { writer.close(); }
}
class MyReader {
private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer tokenizer = new StringTokenizer("");
private String innerNextLine() { try { return reader.readLine(); } catch (IOException ex) { return null;}}
public boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String nextLine = innerNextLine();if (nextLine == null) return false;tokenizer = new StringTokenizer(nextLine); }return true; }
public String nextLine() { tokenizer = new StringTokenizer("");return innerNextLine(); }
public String next() { hasNext();return tokenizer.nextToken(); }
public int nextInt() { return Integer.parseInt(next()); }
public long nextLong() { return Long.parseLong(next()); }
public double nextDouble() { return Double.parseDouble(next()); }
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 89b0c38222a2f9e3704bad03afde5329 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
private static final MyReader scan = new MyReader();
private static final MyWriter writer = new MyWriter();
public static void main(String[] args) throws IOException {
// int q = scan.nextInt(); while (q-- > 0)
solve(); writer.close();
}
private static void solve() throws IOException {
int n = scan.nextInt();
ArrayList<Integer> res = new ArrayList<>();
long sum = 1;
for(int i = 1 ; i < n ; i ++) {
if (gcd(n, i) == 1) {
res.add(i);
sum *= i;
sum %= n;
}
}
if (sum % n != 1) {
res.remove(res.indexOf((int)(sum % n)));
}
writer.println(res.size());
for (int i = 0; i < res.size(); i++) {
writer.print(res.get(i) + " ");
}
writer.println("");
}
private static int gcd(int a, int b) {
return a % b == 0 ? b : gcd(b, a % b);
}
}
class MyReader {
private BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
private StringTokenizer tokenizer = new StringTokenizer("");
private String innerNextLine() { try { return reader.readLine(); } catch (IOException ex) { return null; } }
public boolean hasNext() { while (!tokenizer.hasMoreTokens()) { String nextLine = innerNextLine();if (nextLine == null) { return false; }tokenizer = new StringTokenizer(nextLine); }return true; }
public String nextLine() { tokenizer = new StringTokenizer("");return innerNextLine(); }
public String next() { hasNext();return tokenizer.nextToken(); }
public int nextInt() { return Integer.parseInt(next()); }
public Long nextLong() { return Long.parseLong(next()); }
public double nextDouble() { return Double.parseDouble(next()); }
}
class MyWriter implements Closeable {
private BufferedWriter writer = new BufferedWriter(new OutputStreamWriter(System.out));
public void print(Object object) throws IOException { writer.write(object.toString()); }
public void println(Object object) throws IOException { writer.write(object.toString());writer.write(System.lineSeparator()); }
@Override
public void close() throws IOException { writer.close(); }
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 9d713f990adc853d64f6c75fce682cbe | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class C {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
PrintWriter pw = new PrintWriter(System.out);
int n = in.nextInt();
ArrayList<Integer> ans = solve(n);
pw.println(ans.size());
for (int i = 0; i < ans.size(); i++) {
pw.print(ans.get(i) + " ");
}
pw.close();
}
static ArrayList<Integer> solve(int n) {
long ans = 0;
ArrayList<Integer> list = new ArrayList<>();
long p = 1;
for (int i = 1; i < n; i++) {
if (gcd(i, n) == 1){
list.add(i);
p = p * i % n;
}
}
ArrayList<Integer> res = new ArrayList<>();
if (p % n == 1) return list;
for (Integer v: list) {
if (p % n == v) continue;
res.add(v);
}
return res;
}
static int gcd(int a, int b) {
if (a == 0) return b;
else return gcd(b % a, a);
}
static void debug(Object... obj) {
System.err.println(Arrays.deepToString(obj));
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | eeab3bca7d3e09a982fc6e75b52207f2 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class ProductOneModN {
static final int MAXN = 1000_006;
static final long MOD = (long) 1e9 + 7;
public static void main(String[] args) throws Exception {
MyScanner s = new MyScanner();
Print p = new Print();
Helper hp = new Helper();
int n = s.nextInt();
int[] arr = new int[100005];
long prod = 1;
int cou = 0;
for (int i = 1; i < n; i++) {
if (hp.gcd(n, i) == 1) {
arr[i] = 1;
prod = (prod * (long) i) % (long) n;
}
}
if (prod != 1) {
arr[(int) prod] = 0;
}
for (int i = 1; i < n; i++) {
if (arr[i] == 1)
cou++;
}
System.out.println(cou);
for(int i=1; i<n; i++) {
if(arr[i] == 1) {
System.out.print(i + " ");
}
}
}
public static class Pair implements Comparable<Pair> {
int first;
int second;
public Pair(int a, int b) {
this.first = a;
this.second = b;
}
@Override
public int compareTo(Pair o) {
// TODO Auto-generated method stub
return o.first - first;
}
}
public static class Helper {
long MOD = (long) 1e9 + 7;
int MAXN = 1000_006;;
Random rnd;
public Helper(long mod, int maxn) {
MOD = mod;
MAXN = maxn;
rnd = new Random();
}
public Helper() {
}
public static int[] sieve;
public static ArrayList<Integer> primes;
public void setSieve() {
primes = new ArrayList<>();
sieve = new int[MAXN];
int i, j;
for (i = 2; i < MAXN; ++i)
if (sieve[i] == 0) {
primes.add(i);
for (j = i; j < MAXN; j += i) {
sieve[j] = i;
}
}
}
public static long[] factorial;
public void setFactorial() {
factorial = new long[MAXN];
factorial[0] = 1;
for (int i = 1; i < MAXN; ++i)
factorial[i] = factorial[i - 1] * i % MOD;
}
public long getFactorial(int n) {
if (factorial == null)
setFactorial();
return factorial[n];
}
public long ncr(int n, int r) {
if (r > n)
return 0;
if (factorial == null)
setFactorial();
long numerator = factorial[n];
long denominator = factorial[r] * factorial[n - r] % MOD;
return numerator * pow(denominator, MOD - 2, MOD) % MOD;
}
public long[] getLongArray(int size, MyScanner s) throws Exception {
long[] ar = new long[size];
for (int i = 0; i < size; ++i)
ar[i] = s.nextLong();
return ar;
}
public int[] getIntArray(int size, MyScanner s) throws Exception {
int[] ar = new int[size];
for (int i = 0; i < size; ++i)
ar[i] = s.nextInt();
return ar;
}
public int[] getIntArray(String s) throws Exception {
s = s.trim().replaceAll("\\s+", " ");
String[] strs = s.split(" ");
int[] arr = new int[strs.length];
for (int i = 0; i < strs.length; i++) {
arr[i] = Integer.parseInt(strs[i]);
}
return arr;
}
public long gcd(long a, long b) {
return b == 0 ? a : gcd(b, a % b);
}
public int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public long max(long[] ar) {
long ret = ar[0];
for (long itr : ar)
ret = Math.max(ret, itr);
return ret;
}
public int max(int[] ar) {
int ret = ar[0];
for (int itr : ar)
ret = Math.max(ret, itr);
return ret;
}
public long min(long[] ar) {
long ret = ar[0];
for (long itr : ar)
ret = Math.min(ret, itr);
return ret;
}
public int min(int[] ar) {
int ret = ar[0];
for (int itr : ar)
ret = Math.min(ret, itr);
return ret;
}
public long sum(long[] ar) {
long sum = 0;
for (long itr : ar)
sum += itr;
return sum;
}
public long sum(int[] ar) {
long sum = 0;
for (int itr : ar)
sum += itr;
return sum;
}
public long pow(long base, long exp, long MOD) {
base %= MOD;
long ret = 1;
while (exp > 0) {
if ((exp & 1) == 1)
ret = ret * base % MOD;
base = base * base % MOD;
exp >>= 1;
}
return ret;
}
static void swap(int ar[], int i, int j) {
int temp = ar[i];
ar[i] = ar[j];
ar[j] = temp;
}
static void findNext(int ar[], int n) {
int i;
for (i = n - 1; i > 0; i--) {
if (ar[i] > ar[i - 1]) {
break;
}
}
if (i == 0) {
Arrays.sort(ar);
} else {
int x = ar[i - 1], min = i;
for (int j = i + 1; j < n; j++) {
if (ar[j] > x && ar[j] < ar[min]) {
min = j;
}
}
swap(ar, i - 1, min);
Arrays.sort(ar, i, n);
}
}
}
static class Print {
private BufferedWriter bw;
public Print() {
this.bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(Object object) throws IOException {
bw.append("" + object);
}
public void println(Object object) throws IOException {
print(object);
bw.append("\n");
}
public void close() throws IOException {
bw.close();
}
}
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | a11f348b23710d1356f6f785bcaa8cd3 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | /*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
import java.util.*;
/**
*
* @author Anand
*/
public class Solution2 {
/**
* @param args the command line arguments
*/
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n= scan.nextInt();
long prod=1;
List<Integer> res = new ArrayList();
for(int i=1;i<n;i++){
if(gcd(i,n)==1){
prod*=i;
prod%=n;
res.add(i);
}
}
if(prod==1){
System.out.println(res.size());
}else{
System.out.println(res.size()-1);
}
for(int x : res){
if(prod!=1&&x==prod) continue;
System.out.print(x+" ");
}
System.out.println();
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 21886f8ad8becf9365739be3f81e0a48 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
public static void main(String args[])
{
FastReader input=new FastReader();
PrintWriter out=new PrintWriter(System.out);
int T=1;
while(T-->0)
{
int n=input.nextInt();
long p=1;
ArrayList<Integer> set=new ArrayList<>();
for(int i=1;i<n;i++)
{
int g=gcd(i,n);
if(g==1)
{
p=(p*(long)i)%(long)n;
set.add(i);
}
}
if(p!=1)
{
for(int i=0;i<set.size();i++)
{
if(set.get(i)==p)
{
set.remove(i);
break;
}
}
}
out.println(set.size());
for(int i=0;i<set.size();i++)
{
out.print(set.get(i)+" ");
}
out.println();
}
out.close();
}
public static int gcd(int a, int b)
{
if(a==0)
{
return b;
}
else
{
return gcd(b%a,a);
}
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 5dff37818129ec5b38e19b9554718bf5 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.math.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Coder {
static int n;
static int ok[] = new int[(int)1e5+5];
static StringBuilder str = new StringBuilder("");
static int gcd(int a, int b){
if(b==0) return a;
return gcd(b, a%b);
}
static void solve() {
long prod=1;
int cnt=0;
for(int i=1;i<n;i++){
if(gcd(i, n)==1){
ok[i]=1;
prod=(prod *i)%n;
}
}
if(prod!=1) ok[(int)prod]=0;
for(int i=1;i<n;i++) if(ok[i]==1) cnt++;
str.append(cnt).append("\n");
for(int i=1;i<n;i++) if(ok[i]==1) str.append(i).append(" ");
}
public static void main(String[] args) throws java.lang.Exception {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
// int t = Integer.parseInt(bf.readLine().trim());
// while (t-- > 0) {
n=Integer.parseInt(bf.readLine().trim());
solve();
// }
System.out.print(str);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 48ec87ed9b046af4dc17df2b4861bf6c | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
import java.io.*;
import java.util.*;
import java.util.StringTokenizer;
import static java.lang.Math.*;
public class C {
static class FastScanner {
public BufferedReader reader;
public StringTokenizer tokenizer;
public FastScanner() {
reader = new BufferedReader(new InputStreamReader(System.in), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
public int[] readIntArray(int n){
int[] arr=new int[n];
for(int i=0;i<n;i++){
arr[i]=nextInt();
}
return arr;
}
public long[] readLongArray(int n){
long[] arr=new long[n];
for(int i=0;i<n;i++){
arr[i]=nextLong();
}
return arr;
}
}
public static int[] sort(int[] arr){
ArrayList<Integer> temp = new ArrayList<>();
for(int x:arr) temp.add(x);
Collections.sort(temp);
int i=0;
for(int x:temp){
arr[i++]=x;
}
return arr;
}
public static int gcd(int a,int b){
if(b==0) return a;
return gcd(b,a%b);
}
public static void main(String args[]) throws Exception {
FastScanner sc = new FastScanner();
int T = 1;
// T = sc.nextInt();
PrintWriter pw = new PrintWriter(System.out);
StringBuilder sb = new StringBuilder();
while (T-- > 0) {
solve(sc, pw, sb);
}
pw.print(sb);
pw.close();
}
public static void solve(FastScanner sc, PrintWriter pw, StringBuilder sb) throws Exception {
int n=sc.nextInt();
TreeSet<Long> ans = new TreeSet<>();
long prod=1;
for(int i=1;i<=n;i++){
if(gcd(i,n)==1){
ans.add((long)i);
prod=(prod*i)%n;
}
}
if(prod!=1) {
ans.remove(prod%n);
}
sb.append(ans.size()+"\n");
for(long x:ans) sb.append(x+" ");
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 76ade297e0786180ec346b045394e82f | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | /*
"जय श्री कृष्णा"
*/
import java.util.*;
import java.io.*;
public class Product_1_modulo_name implements Runnable {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] nextIntArray(int size) {
int[] arr = new int[size];
for (int i = 0; i < size; ++i)
arr[i] = nextInt();
return arr;
}
long[] nextLongArray(int size) {
long[] arr = new long[size];
for (int i = 0; i < size; ++i)
arr[i] = nextLong();
return arr;
}
double[] nextDoubleArray(int size) {
double[] arr = new double[size];
for (int i = 0; i < size; ++i)
arr[i] = nextDouble();
return arr;
}
}
static int mod = (int) (1e9 + 7),N = (int) (1e5);
static final PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
static final FastReader fr = new FastReader();
// static final FastReader fr = new FastReader("/home/atish/Java_Text_editor/input.txt");
// static PrintWriter out;
public static void main(String[] args) throws java.lang.Exception {
// try {
// out = new PrintWriter(new File("/home/atish/Java_Text_editor/output.txt"));
// } catch (Exception e) {
// e.printStackTrace();
// }
new Thread(null, new Product_1_modulo_name(), "Main", 1 << 26).start();
}
void solve() {
int n = fr.nextInt();
List<Integer> al = new ArrayList<>();
long pod = 1;
for (int i = 1; i < n; i++) {
if (CP.i_gcd(n, i) == 1) {
pod = (pod * i) % n;
al.add(i);
}
}
if (pod != 1) {
al.remove(al.size() - 1);
}
out.print(al.size() + "\n");
for (int x : al)
out.print(x + " ");
}
@Override
public void run() {
long start = System.nanoTime(); // Program Start
boolean testcase = false;
int t = testcase ? fr.nextInt() : 1;
while (t-- > 0) {
solve();
out.print("\n");
out.flush();
}
long end = System.nanoTime(); // Program End
// System.err.println("Time taken: " + (end - start) / 1000000 + " ms");
}
static class CP {
static boolean isPrime(long n) {
if (n <= 1)
return false;
if (n == 2 || n == 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
static List<Integer> sieve(int size) {
ArrayList<Integer> pr=new ArrayList<Integer>();
boolean prime[] = new boolean[size];
for(int i=2;i<prime.length;i++) prime[i] = true;
for(int i=2; i*i< prime.length; i++) {
if(prime[i]) {
for(int j=i*i; j<prime.length; j+=i) {
prime[j]=false;
}
}
}
for(int i=2; i<prime.length; i++) if(prime[i]) pr.add(i);
return pr;
}
static long binary_Expo(long a, long b) { // calculating a^b
long res = 1;
while (b != 0) {
if ((b & 1) == 1) {
res *= a;
--b;
}
a *= a;
b /= 2;
}
return res;
}
static long Modular_Expo(long a, long b) {
long res = 1;
while (b != 0) {
if ((b & 1) == 1) {
res = (res * a) % mod;
--b;
}
a = (a * a) % mod;
b /= 2;
}
return res;
}
static int i_gcd(int a, int b) {// iterative way to calculate gcd.
while (true) {
if (b == 0)
return a;
int c = a;
a = b;
b = c % b;
}
}
static long gcd(long a, long b) {// here b is the remainder
if (b == 0)
return a; //because each time b will divide a.
return gcd(b, a % b);
}
static long ceil_div(long a, long b) { // a numerator b denominator
return (a + b - 1) / b;
}
static int getIthBitFromInt(int bits, int i) {
return (bits >> (i - 1)) & 1;
}
static int upper_Bound(int a[], int x) {//closest to the left+1
int l = -1, r = a.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (a[m] <= x)
l = m;
else
r = m;
}
return l + 1;
}
static int lower_Bound(int a[], int x) {//closest to the right
int l = -1, r = a.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (a[m] >= x)
r = m;
else
l = m;
}
return r;
}
static void sort(int a[]) {
PriorityQueue<Integer> q = new PriorityQueue<>();
for (int i = 0; i < a.length; i++)
q.add(a[i]);
for (int i = 0; i < a.length; i++)
a[i] = q.poll();
}
static int getMax(int arr[], int n) {
int mx = arr[0];
for (int i = 1; i < n; i++)
if (arr[i] > mx)
mx = arr[i];
return mx;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | de6ae28e0d526153b7df9735c96c1764 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | /*
"जय श्री कृष्णा"
*/
import java.util.*;
import java.io.*;
public class Product_1_mod_n_716 implements Runnable {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public FastReader(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] nextIntArray(int size) {
int[] arr = new int[size];
for (int i = 0; i < size; ++i)
arr[i] = nextInt();
return arr;
}
long[] nextLongArray(int size) {
long[] arr = new long[size];
for (int i = 0; i < size; ++i)
arr[i] = nextLong();
return arr;
}
double[] nextDoubleArray(int size) {
double[] arr = new double[size];
for (int i = 0; i < size; ++i)
arr[i] = nextDouble();
return arr;
}
}
static int mod = (int) (1e9 + 7);
static FastReader fr = new FastReader();
static PrintWriter out = new PrintWriter(System.out, true);
// static FastReader fr = new
// FastReader("D://DP/src/Codeforces/dp_1700/dp1700.txt");
public static void main(String[] args) throws java.lang.Exception {
new Thread(null, new Product_1_mod_n_716(), "Main", 1 << 26).start();
}
void solve() {
int n = fr.nextInt();
List<Integer> al = new ArrayList<>();
long pod = 1;
for (int i = 1; i < n; i++) {
if (CP.i_gcd(n, i) == 1) {
pod = (pod * i) % n;
al.add(i);
}
}
if (pod != 1) {
al.remove(al.size() - 1);
}
out.print(al.size() + "\n");
for (int x : al)
out.print(x + " ");
}
@Override
public void run() {
long start = System.nanoTime(); // Program Start
boolean testcase = false;
int t = testcase ? fr.nextInt() : 1;
while (t-- > 0) {
solve();
out.print("\n");
out.flush();
}
long end = System.nanoTime(); // Program End
System.err.println("Time taken: " + (end - start) / 1000000 + " ms");
}
static class CP {
static boolean isPrime(long n) {
if (n <= 1)
return false;
if (n == 2 || n == 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i += 6) {
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
static List<Integer> sieve(int size) {
ArrayList<Integer> pr = new ArrayList<Integer>();
boolean prime[] = new boolean[size];
for (int i = 2; i < prime.length; i++)
prime[i] = true;
for (int i = 2; i * i < prime.length; i++) {
if (prime[i]) {
for (int j = i * i; j < prime.length; j += i) {
prime[j] = false;
}
}
}
for (int i = 2; i < prime.length; i++)
if (prime[i])
pr.add(i);
return pr;
}
static long binary_Expo(long a, long b) { // calculating a^b
long res = 1;
while (b != 0) {
if ((b & 1) == 1) {
res *= a;
--b;
}
a *= a;
b /= 2;
}
return res;
}
static long Modular_Expo(long a, long b) {
long res = 1;
while (b != 0) {
if ((b & 1) == 1) {
res = (res * a) % mod;
--b;
}
a = (a * a) % mod;
b /= 2;
}
return res;
}
static int i_gcd(int a, int b) {// iterative way to calculate gcd.
while (true) {
if (b == 0)
return a;
int c = a;
a = b;
b = c % b;
}
}
static long gcd(long a, long b) {// here b is the remainder
if (b == 0)
return a; // because each time b will divide a.
return gcd(b, a % b);
}
static long ceil_div(long a, long b) { // a numerator b denominator
return (a + b - 1) / b;
}
static int getIthBitFromInt(int bits, int i) {
return (bits >> (i - 1)) & 1;
}
static int upper_Bound(int a[], int x) {// closest to the left+1
int l = -1, r = a.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (a[m] <= x)
l = m;
else
r = m;
}
return l + 1;
}
static int lower_Bound(int a[], int x) {// closest to the right
int l = -1, r = a.length;
while (l + 1 < r) {
int m = (l + r) >>> 1;
if (a[m] >= x)
r = m;
else
l = m;
}
return r;
}
static void l_sort(int a[]) {
ArrayList<Integer> al = new ArrayList<>();
for (int x : a)
al.add(x);
Collections.sort(al);
for (int i = 0; i < a.length; i++)
a[i] = al.get(i);
}
static void heap_sort(int a[]) { // heap sort
PriorityQueue<Integer> q = new PriorityQueue<>();
for (int i = 0; i < a.length; i++)
q.add(a[i]);
for (int i = 0; i < a.length; i++)
a[i] = q.poll();
}
static void ruffle_sort(int[] a) {
// random_shuffle
Random r = new Random();
int n = a.length;
for (int i = 0; i < n; i++) {
int oi = r.nextInt(n);
int temp = a[i];
a[i] = a[oi];
a[oi] = temp;
}
// sort
Arrays.sort(a);
}
static int getMax(int arr[], int n) {
int mx = arr[0];
for (int i = 1; i < n; i++)
if (arr[i] > mx)
mx = arr[i];
return mx;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 8494713e13b44dee77a7e1bf435e10f4 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import javafx.util.Pair;
public class Main
{
public static long GCD(Long n1, Long n2)
{
if (n1 == 0) {
return n2;
}
return GCD(n2 % n1, n1);
}
public static void main(String args[])
{
FastScanner input = new FastScanner();
TreeSet<Long> set = new TreeSet<>();
long n = input.nextLong();
long pro = 1;
for (long i = 1; i <n; i++) {
if(GCD(n, i)==1)
{
pro = (pro*i)%n;
set.add(i);
}
}
if(pro!=1)
{
set.remove(pro);
}
StringBuilder ans = new StringBuilder();
ans.append(set.size()+"\n");
for (Long long1 : set) {
ans.append(long1+" ");
}
System.out.println(ans);
}
static class FastScanner
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next()
{
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine() throws IOException
{
return br.readLine();
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 9b0c0ca42834bacbae3708c07fae9484 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
import javafx.util.Pair;
public class Main
{
public static long GCD(Long n1, Long n2)
{
if (n1 == 0) {
return n2;
}
return GCD(n2 % n1, n1);
}
public static void main(String args[])
{
FastScanner input = new FastScanner();
TreeSet<Long> set = new TreeSet<>();
long n = input.nextLong();
long pro = 1;
for (long i = 1; i <n; i++) {
if(GCD(n, i)==1)
{
pro = (pro*i)%n;
set.add(i);
}
}
if(pro!=1)
{
set.remove(pro);
}
System.out.println(set.size());
for (Long long1 : set) {
System.out.print(long1+" ");
}
System.out.println("");
}
static class FastScanner
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next()
{
while (!st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine() throws IOException
{
return br.readLine();
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 59f59e05d3e145dd17a55c65bdf825c5 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.StringTokenizer;
import java.util.TreeMap;
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
solve(in, out);
out.close();
}
static String reverse(String s) {
return (new StringBuilder(s)).reverse().toString();
}
static void sieveOfEratosthenes(int n, int factors[])
{
n=1000000001;
factors[1]=1;
for(int p = 2; p*p <=n; p++)
{
if(factors[p] == 0)
{
factors[p]=p;
for(int i = p*p; i <= n; i += p)
factors[i] = p;
}
}
}
static void sort(int ar[]) {
int n = ar.length;
ArrayList<Integer> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static void sort1(long ar[]) {
int n = ar.length;
ArrayList<Long> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static long ncr(long n, long r, long mod) {
if (r == 0)
return 1;
long val = ncr(n - 1, r - 1, mod);
val = (n * val) % mod;
val = (val * modInverse(r, mod)) % mod;
return val;
}
public static int convert(String a, String b)
{
int T=0;
if(b.charAt(0)=='P')
{
if(a.charAt(0)=='1'&&a.charAt(1)=='2') T=12;
else
T=(a.charAt(0)-'0')*10+(a.charAt(1)-'0')+12;
}
else if(b.charAt(0)=='A')
{
if(a.charAt(0)=='1'&&a.charAt(1)=='2') T=0;
else
T=(a.charAt(0)-'0')*10+(a.charAt(1)-'0');
}
T=T*100+(a.charAt(3)-'0')*10+(a.charAt(4)-'0');
return T;
}
static boolean areBracketsBalanced(String expr)
{
// Using ArrayDeque is faster than using Stack class
Deque<Character> stack
= new ArrayDeque<Character>();
// Traversing the Expression
for (int i = 0; i < expr.length(); i++)
{
char x = expr.charAt(i);
if (x == '(' || x == '[' || x == '{')
{
// Push the element in the stack
stack.push(x);
continue;
}
// IF current current character is not opening
// bracket, then it must be closing. So stack
// cannot be empty at this point.
if (stack.isEmpty())
return false;
char check;
switch (x) {
case ')':
check = stack.pop();
if (check == '{' || check == '[')
return false;
break;
case '}':
check = stack.pop();
if (check == '(' || check == '[')
return false;
break;
case ']':
check = stack.pop();
if (check == '(' || check == '{')
return false;
break;
}
}
// Check Empty Stack
return (stack.isEmpty());
}
public static int hr(String s)
{
int hh=0;
hh=(s.charAt(0)-'0')*10+(s.charAt(1)-'0');
return hh;
}
public static int mn(String s)
{
int mm=0;
mm=(s.charAt(3)-'0')*10+(s.charAt(4)-'0');
return mm;
}
/*
* public static void countNumberOfPrimeFactors(){ boolean flag[]=new
* boolean[N]; Arrays.fill(flag,true); for(int i=2;i<N;i++){ if(flag[i]){
* for(int j=i;j<N;j+=i) { prime[j]++; flag[j]=false; } } } // prime[1]=1; }
*/
public static String rev(String s)
{
char[] temp=s.toCharArray();
for(int i=0;i<s.length()/2;i++)
{
char tmp=temp[i];
temp[i]=temp[s.length()-1-i];
temp[s.length()-1-i]=tmp;
}
String str="";
for(char ch: temp)
{
str+=ch;
}
return str;
}
static boolean isP(String str)
{
// Pointers pointing to the beginning
// and the end of the string
int i = 0, j = str.length() - 1;
// While there are characters to compare
while (i < j) {
// If there is a mismatch
if (str.charAt(i) != str.charAt(j))
return false;
// Increment first pointer and
// decrement the other
i++;
j--;
}
// Given string is a palindrome
return true;
}
public static boolean isSorted(List<Integer> l)
{
int n=l.size(),i=0;
for(i=1;i<l.size();i++)
{
if(l.get(i-1)<l.get(i)) return false;
}
return true;
}
public static boolean ln(long n, int c)
{
int l=0;
long t=n;
while(t!=0)
{
t/=10;
l++;
}
return l==c;
}
public static void solve(InputReader sc, PrintWriter pw) {
// int t=sc.nextInt();
// while(t-->0) {
int n=sc.nextInt();
List<Integer> l=new ArrayList<>();
StringBuilder sb=new StringBuilder();
long ans=1;
l.add(1);
for(int i=2;i<n;i++)
{
if(_gcd(n,i)==1)
{
l.add(i);
ans=(ans*i)%n;
}
}
if(ans!=1) {l.remove(l.size()-1);}
sb.append(l.size()).append("\n");
for(Integer x: l) sb.append(x).append(" ");
pw.print(sb.toString());
// }
}
static class Pair1 {
long a;
long b;
Pair1(long a, long b) {
this.a = a;
this.b = b;
}
}
static class Pair implements Comparable<Pair> {
int a;
int b;
Pair(int a, int b) {
this.a = a;
this.b = b;
}
public int compareTo(Pair p) {
if(a!=p.a)
return p.a-a;
return b-p.b;
}
}
static boolean isPrime(long n) {
if (n <= 1)
return false;
if (n <= 3)
return true;
if (n % 2 == 0 || n % 3 == 0)
return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static int _gcd(int a, int b) {
if (b == 0)
return a;
return _gcd(b, a % b);
}
static long fast_pow(long base, long n, long M) {
if (n == 0)
return 1;
if (n == 1)
return base % M;
long halfn = fast_pow(base, n / 2, M);
if (n % 2 == 0)
return (halfn * halfn) % M;
else
return (((halfn * halfn) % M) * base) % M;
}
static long modInverse(long n, long M) {
return fast_pow(n, M - 2, M);
}
public static int LowerBound(int a[], int x)
{
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
public static int UpperBound(int a[], int x)
{
int l=-1, r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String nextLine() {
return null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 1a996f6f54867da022016b0044d16e3c | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | // package codeforces;
import java.util.*;
public class C1514 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
long mul = 1;
// long [] dp = new long[n+1];
// 1 2 3 4 5 6 7 8 9
// 1, ...,n-2, n-1 n^2 - 3n + 2;
// kn + 1
int[] set = new int[n];
List<Long> arr = new ArrayList<>();
for (int i = 1; i < n; i++) {
if (gcd(i, n) == 1) {
mul = (mul * i) % n;
arr.add((long)i);
}
}
// System.out.println(mul);
if (mul != 1)
arr.remove((long)mul);
// int [] ans = new int[arr.size()];
System.out.println(arr.size());
for (int i = 0; i < arr.size(); i++) {
// ans[i] = arr.get(i);
System.out.print(arr.get(i) + " ");
// if (i == 78460)
// System.out.println("asdasd");
}
// System.out.println(mul);
// while (mul)
}
private static int gcd(int a, int b) {
if (b == 0) {
return a;
}
return gcd(b, a%b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 81845fe7586db5e31a1fa96aa1362621 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
public class c716c
{
//By shwetank_verma
public static void main(String[] args)
{
FastReader sc=new FastReader();
int t=1;
// t=sc.nextInt();
while(t-->0){
int n=sc.nextInt();
int a[]=new int[n-1];
for(int i=1;i<n;i++){
a[i-1]=i;
}
long v=n;
TreeSet<Integer> res=new TreeSet<>();
long p=1;
for(int i:a) {
if(gcd(i,n)==1) {
res.add(i);
p=((p%n)*(i%n))%n;
}
}
if(p!=1)
res.remove((int)p);
StringBuilder sb=new StringBuilder();
System.out.println(res.size());
for(int i:res) {
sb.append(i+" ");
}
System.out.println(sb);
}
}
static void ruffleSort(long[] a) {
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
long oi=r.nextInt(n), temp=a[i];
a[i]=a[(int)oi];
a[(int)oi]=temp;
}
Arrays.sort(a);
}
static void ruffleSort(int[] a) {
int n=a.length;
Random r=new Random();
for (int i=0; i<a.length; i++) {
int oi=r.nextInt(n), temp=a[i];
a[i]=a[oi];
a[oi]=temp;
}
Arrays.sort(a);
}
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static int mod=1000000007;
static boolean primes[]=new boolean[1000007];
static ArrayList<Integer> b=new ArrayList<>();
static boolean seive(int n){
Arrays.fill(primes,true);
primes[0]=primes[1]=false;
for(int i=2;i*i<=n;i++){
if(primes[i]==true){
for(int p=i*i;p<=n;p+=i){
primes[p]=false;
}
}
}
if(n<1000007){
for(int i=2;i<=n;i++) {
if(primes[i])
b.add(i);
}
return primes[n];
}
return false;
}
static int gcd(int a,int b){
if(b==0)
return a;
return gcd(b,a%b);
}
static long GCD(long a,long b){
if(b==0)
return a;
return GCD(b,a%b);
}
static ArrayList<Integer> segseive(int l,int r){
ArrayList<Integer> isprime=new ArrayList<Integer>();
boolean p[]=new boolean[r-l+1];
Arrays.fill(p, true);
for(int i=0;b.get(i)*b.get(i)<=r;i++) {
int currprime=b.get(i);
int base=(l/currprime)*currprime;
if(base<l) {
base+=currprime;
}
for(int j=base;j<=r;j+=currprime) {
p[j-l]=false;
}
if(base==currprime) {
p[base-l]=true;
}
}
for(int i=0;i<=r-l;i++) {
if(p[i])
isprime.add(i+l);
}
return isprime;
}
static int LowerBound(int a[], int x) { // x is the target value or key
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]>=x) r=m;
else l=m;
}
return r;
}
static int UpperBound(int a[], int x) {// x is the key or target value
int l=-1,r=a.length;
while(l+1<r) {
int m=(l+r)>>>1;
if(a[m]<=x) l=m;
else r=m;
}
return l+1;
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 479c6b5d3516d9b9905b7fcce6b5bf23 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.StringTokenizer;
/**
*
* @author eslam
*/
public class IceCave {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
static FastReader input = new FastReader();
static int grid[][] = {{0, 0, 1, -1, 1, 1, -1, -1}, {1, -1, 0, 0, 1, -1, 1, -1}};
static BufferedWriter log = new BufferedWriter(new OutputStreamWriter(System.out));
static int dp[][] = new int[2009][2009];
public static void main(String[] args) throws IOException {
long n = input.nextInt();
ArrayList<Long> a = new ArrayList<>();
ArrayList<Long> b = new ArrayList<>();
int size = 1;
for (long i = 1; i < n; i++) {
if (GCD(n, i) == 1) {
a.add(i);
b.add(i);
}
}
for (int i = 1; i < a.size(); i++) {
a.set(i, (a.get(i) * a.get(i - 1)) % n);
}
for (int i = 1; i < a.size(); i++) {
if (a.get(i) == 1) {
size = i + 1;
}
}
log.write(size + "\n");
for (int i = 0; i < size; i++) {
log.write(b.get(i)+" ");
}
log.write("\n");
log.flush();
}
public static long binaryToDecimal(String w) {
long r = 0;
long l = 0;
for (int i = w.length() - 1; i > -1; i--) {
long x = (w.charAt(i) - '0') * (long) Math.pow(2, l);
r = r + x;
l++;
}
return r;
}
public static String decimalToBinary(long n) {
String w = "";
while (n > 0) {
w = n % 2 + w;
n /= 2;
}
return w;
}
//my Algo
public static boolean isSorted(int[] a) {
for (int i = 0; i < a.length - 1; i++) {
if (a[i] > a[i + 1]) {
return false;
}
}
return true;
}
public static void print(int a[]) throws IOException {
for (int i = 0; i < a.length; i++) {
log.write(a[i] + " ");
}
log.write("\n");
}
public static void read(long[] a) {
for (int i = 0; i < a.length; i++) {
a[i] = input.nextInt();
}
}
static class pair {
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
public static long GCD(long x, long y) {
if (y == 0) {
return x;
}
return GCD(y, x % y);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 5569ef75b455678e13a3ba65d6681d83 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class test {
public static void main(String[] args) throws Exception{
FastScanner fs = new FastScanner();
int T = 1;
/// System.out.println(gcd(14,56));
//T=fs.nextInt();
for (int tt = 0; tt < T; tt++) {
long n = fs.nextLong();
StringBuilder sb = new StringBuilder();
ArrayList<Long>s = new ArrayList<>();
long p=1;
s.add(1l);
for(long i=2;i<n;i++ ){
if(gcd(i,n)==1){
s.add(i);
p=(p*i)%n;
}
}
if(p==1){
System.out.println(s.size());
for(long i:s){
System.out.print(i+" ");
}
}else{
// System.out.println(p);
// System.out.println(s);
int cnt=0;
for(long i:s){
if(i==p)continue;
sb.append(i+" ");
cnt+=1;
}
System.out.println(cnt);
System.out.println(sb.toString());
}
}
}
static long gcd(long a,long b){
if(a==0){
return b;
}
if(b==0){
return a;
}
if(b>a){
return gcd(b,a);
}
return gcd(b,a%b);
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long[] readArray(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 11525d4058300ab08c4ca2d8f2811dee | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Scanner;
import java.util.StringTokenizer;
import java.util.*;
public class codeforcesD{
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static int gcd(int a,int b){if(b==0){return a;}return gcd(b,a%b);}
public static void main(String args[]){
FastReader sc=new FastReader();
int n=sc.nextInt();
StringBuilder sb=new StringBuilder();
Set<Integer> set=new HashSet<>();
for(int i=1;i<=n;i++){set.add(i);}
for(int i=2;i<=n;i++){
if(gcd(i,n)!=1){set.remove(i);}
}
long ans=1;
for(int w:set){ans=(ans*w)%n;}
ans=ans%n;
List<Integer> list=new ArrayList<>();
if(ans!=1){set.remove((int)ans);}
for(int w:set){list.add(w);}
Collections.sort(list);
for(int w:list){sb.append(w+" ");}
System.out.println(set.size());
System.out.println(sb.toString());
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 88a27c9f8f0f5a650ce6db290739252d | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class C {
public static BufferedReader br;
public static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));
public static void main(String[] args) throws IOException {
readInput();
out.close();
}
static long inv(long a, long b) {return 1 < a ? b - inv(b%a,a) * b/a:1;}
static long gcd(long a, long b) {
while (b != 0) {
long t = a;
a = b;
b = t % b;
}
return a;
}
public static void readInput() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
// br = new BufferedReader(new FileReader("in.in"));
int n =Integer.parseInt(br.readLine());
List<Long> ans = new ArrayList<Long>();
long sol = 1;
for (long i = 1; i <= n; i++) if (gcd(i,n) == 1) {
ans.add(i);
sol *= i;
sol %= n;
}
if (sol != 1) ans.remove(Long.valueOf(sol));
out.println(ans.size());
for (long x: ans) out.print(x + " ");
out.println();
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | dc83ae1cf314ef8bd9405a3c6eb41732 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.util.Map.Entry;
import java.io.*;
import java.math.*;
import static java.util.stream.Collectors.*;
import static java.util.Map.Entry.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Main
{
public static void main (String[] args) throws IOException
{
final long mod=(long) (1e9+7);
Reader s=new Reader();
PrintWriter pt=new PrintWriter(System.out);
// BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
// int T=s.nextInt();
// int T=Integer.parseInt(br.readLine());
int T=1;
while(T-->0)
{
int n=s.nextInt();
TreeSet<Integer> ts=new TreeSet<Integer>();
for(int i=1;i<n;i++){
if(gcd(i, n)==1){
ts.add(i);
}
}
long p=1;
for(int i:ts){
p=(p*i)%n;
}
if(p>1)
ts.remove((int)p);
pt.println(ts.size());
for(int i:ts){
pt.print(i+" ");
}
pt.println();
}
pt.close();
}
static int setBit(int S, int j) { return S | 1 << j; }
static int clearBit(int S, int j) { return S & ~(1 << j); }
static int toggleBit(int S, int j) { return S ^ 1 << j; }
static boolean isOn(int S, int j) { return (S & 1 << j) != 0; }
static int turnOnLastZero(int S) { return S | S + 1; }
static int turnOnLastConsecutiveZeroes(int S) { return S | S - 1; }
static int turnOffLastBit(int S) { return S & S - 1; }
static int turnOffLastConsecutiveBits(int S) { return S & S + 1; }
static int lowBit(int S) { return S & -S; }
static int setAll(int N) { return (1 << N) - 1; }
static int modulo(int S, int N) { return (S & N - 1); } //S%N, N is a power of 2
static boolean isPowerOfTwo(int S) { return (S & S - 1) == 0; }
static boolean isWithin(long x, long y, long d, long k) {
return x*k*x*k + y*k*y*k <= d*d;
}
static long modFact(long n,
long p)
{
if (n >= p)
return 0;
long result = 1;
for (int i = 1; i <= n; i++)
result = (result * i) % p;
return result;
}
static int sum(int[] arr, int n)
{
int inc[]=new int[n+1];
int dec[]=new int[n+1];
inc[0] = arr[0];
dec[0] = arr[0];
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (arr[j] > arr[i]) {
dec[i] = max(dec[i], inc[j] + arr[i]);
}
else if (arr[i] > arr[j]) {
inc[i] = max(inc[i], dec[j] + arr[i]);
}
}
}
return max(inc[n - 1], dec[n - 1]);
}
static long nc2(long a) {
return a*(a-1)/2;
}
public static int numberOfprimeFactors(int n)
{
// Print the number of 2s that divide n
HashSet<Integer> hs = new HashSet<Integer>();
while (n%2==0)
{
hs.add(2);
n /= 2;
}
// n must be odd at this point. So we can
// skip one element (Note i = i +2)
for (int i = 3; i <= Math.sqrt(n); i+= 2)
{
// While i divides n, print i and divide n
while (n%i == 0)
{
hs.add(i);
n /= i;
}
}
// This condition is to handle the case whien
// n is a prime number greater than 2
if (n > 2)
hs.add(n);
return hs.size();
}
static int gcd(int a, int b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
static void reverse(int arr[],int start, int end)
{
int temp;
while (start < end)
{
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
static void reverse(long arr[],int start, int end)
{
long temp;
while (start < end)
{
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
static boolean isPrime(int n)
{
// Corner cases
if (n <= 1) return false;
if (n <= 3) return true;
// This is checked so that we can skip
// middle five numbers in below loop
if (n % 2 == 0 || n % 3 == 0) return false;
for (int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false;
return true;
}
static int p2(int n) {
int k=0;
while(n>1) {
if(n%2!=0)
return k;
n/=2;
k++;
}
return k;
}
static boolean isp2(int n) {
while(n>1) {
if(n%2==1)
return false;
n/=2;
}
return true;
}
static int binarySearch(int arr[], int first, int last, int key){
int mid = (first + last)/2;
while( first <= last ){
if ( arr[mid] < key ){
first = mid + 1;
}else if ( arr[mid] == key ){
return mid;
}else{
last = mid - 1;
}
mid = (first + last)/2;
}
return -1;
}
static void print(int a[][]) {
for(int i=0;i<a.length;i++)
{
for(int j=0;j<a[0].length;j++)
System.out.print(a[i][j]+" ");
System.out.println();
}
}
static int max (int x, int y) {
return (x > y)? x : y;
}
static int search(Pair[] p, Pair pair) {
int l=0, r=p.length;
while (l <= r) {
int m = l + (r - l) / 2;
if (p[m].compareTo(pair)==0)
return m;
if (p[m].compareTo(pair)<0)
l = m + 1;
else
r = m - 1;
}
return -1;
}
static void pa(int a[])
{
for(int i=0;i<a.length;i++)
System.out.print(a[i]+" ");
System.out.println();
}
static void pa(long a[])
{
for(int i=0;i<a.length;i++)
System.out.print(a[i]+" ");
System.out.println();
}
static void reverseArray(int arr[],
int start, int end)
{
int temp;
while (start < end)
{
temp = arr[start];
arr[start] = arr[end];
arr[end] = temp;
start++;
end--;
}
}
static boolean isPalindrome(String s) {
int l=s.length();
for(int i=0;i<l/2;i++)
{
if(s.charAt(i)!=s.charAt(l-i-1))
return false;
}
return true;
}
static long nc2(long n, long m) {
return (n*(n-1)/2)%m;
}
static long c(long a) {
return a*(a+1)/2;
}
static int next(long[] arr, long target)
{
int start = 0, end = arr.length - 1;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
// Move to right side if target is
// greater.
if (arr[mid] < target) {
start = mid + 1;
}
// Move left side.
else {
ans = mid;
end = mid - 1;
}
}
return ans;
}
static int prev(long[] arr, long target)
{
int start = 0, end = arr.length - 1;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
// Move to left side if target is
// lesser.
if (arr[mid] > target) {
end = mid - 1;
}
// Move right side.
else {
ans = mid;
start = mid + 1;
}
}
return ans;
}
static long power(long x, long y, long p)
{
long res = 1;
x = x % p;
while (y > 0)
{
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}
static long modInverse(long n, long p)
{
return power(n, p-2, p);
}
static long nCrModP(long n, long r,
long p)
{
if(r>n)
return 0;
if (r == 0)
return 1;
long[] fac = new long[(int) (n+1)];
fac[0] = 1;
for (int i = 1 ;i <= n; i++)
fac[i] = fac[i-1] * i % p;
return (fac[(int) n]* modInverse(fac[(int) r], p)
% p * modInverse(fac[(int) (n-r)], p)
% p) % p;
}
static String reverse(String str)
{
return new StringBuffer(str).reverse().toString();
}
static long fastpow(long x, long y, long m)
{
if (y == 0)
return 1;
long p = fastpow(x, y / 2, m) % m;
p = (p * p) % m;
if (y % 2 == 0)
return p;
else
return (x * p) % m;
}
static boolean isPerfectSquare(long l)
{
return Math.pow((long)Math.sqrt(l),2)==l;
}
static void merge(long[] arr, int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
long L[] = new long [n1];
long R[] = new long [n2];
/*Copy data to temp arrays*/
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
static void sort(int arr[], int l, int r)
{
if (l < r)
{
// Find the middle point
int m = (l+r)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
static void merge(int arr[], int l, int m, int r)
{
// Find sizes of two subarrays to be merged
int n1 = m - l + 1;
int n2 = r - m;
/* Create temp arrays */
int L[] = new int [n1];
int R[] = new int [n2];
/*Copy data to temp arrays*/
for (int i=0; i<n1; ++i)
L[i] = arr[l + i];
for (int j=0; j<n2; ++j)
R[j] = arr[m + 1+ j];
/* Merge the temp arrays */
// Initial indexes of first and second subarrays
int i = 0, j = 0;
// Initial index of merged subarry array
int k = l;
while (i < n1 && j < n2)
{
if (L[i] <= R[j])
{
arr[k] = L[i];
i++;
}
else
{
arr[k] = R[j];
j++;
}
k++;
}
/* Copy remaining elements of L[] if any */
while (i < n1)
{
arr[k] = L[i];
i++;
k++;
}
/* Copy remaining elements of R[] if any */
while (j < n2)
{
arr[k] = R[j];
j++;
k++;
}
}
// Main function that sorts arr[l..r] using
// merge()
static void sort(long arr[], int l, int r)
{
if (l < r)
{
// Find the middle point
int m = (l+r)/2;
// Sort first and second halves
sort(arr, l, m);
sort(arr , m+1, r);
// Merge the sorted halves
merge(arr, l, m, r);
}
}
static class Pair implements Comparable<Pair>{
int a;
int b;
Pair(int a,int b){
this.a=a;
this.b=b;
}
public int compareTo(Pair p){
if(a>p.a)
return 1;
if(a==p.a)
return (b-p.b);
return -1;
}
}
static class Reader
{
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader()
{
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException
{
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException
{
byte[] buf = new byte[128]; // line length
int cnt = 0, c;
while ((c = read()) != -1)
{
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException
{
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do
{
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException
{
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException
{
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.')
{
while ((c = read()) >= '0' && c <= '9')
{
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException
{
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException
{
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException
{
if (din == null)
return;
din.close();
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 819679cc3e3ce695317d9ed99dd72102 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
public class C{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
boolean a[] = new boolean[n];
a[1] = true;
long product = 1l;
for(int i = 1 ; i<n ; i++){
if(gcd(i,n) == 1){
a[i] = true;
product = (product*i) % n;
}
}
int count = 0;
if(product != 1){a[(int)product] = false;}
StringBuilder sb = new StringBuilder();
for(int i = 1 ; i < n ; i++){
if(a[i] == true) {
count++;
sb.append(i+" ");
}
}
System.out.println(count);
System.out.println(sb.toString());
}
public static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | d7879d90eacb4ea293ce9c28dcef01f9 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | //package practice;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.math.BigInteger;
import java.text.SimpleDateFormat;
import java.time.Instant;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.LocalTime;
import java.util.*;
public class Main {
//
// static long MAXSIEVE =100000000;
// static long MAXSIEVEHALF = (MAXSIEVE/2);
// static long MAXSQRT =5000;
// static char a[]=new char[(int)MAXSIEVE/16+2];
//
// static long isPrime(long n) {
// return (a[(int)(n)>>4]&(1<<(((n)>>1)&7)));
// }
//
// int i,j;
//
// memset(a,255,sizeof(a));
// a[0]=0xFE; // 254
// for(i=1;i<MAXSQRT;i++)
// if (a[i>>3]&(1<<(i&7)))
// for(j=i+i+i+1;j<MAXSIEVEHALF;j+=i+i+1)
// a[(int)j>>3]&=~(1<<(j&7));
static FastReader sc=new FastReader();
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
}
static int gcd(int a,int b) {
if(b<=0) {
return a;
}
return gcd(b,a%b);
}
static int digSum(int n)
{
if (n == 0)
return 0;
return (n % 9 == 0) ? 9 : (n % 9);
}
static Set<Integer> list=new HashSet<>();
static void sieveOfEratosthenes(int n)
{
boolean prime[] = new boolean[n+1];
for(int i=0;i<n;i++)
prime[i] = true;
for(int p = 2; p*p <=n; p++)
{
if(prime[p] == true)
{
for(int i = p*p; i <= n; i += p)
prime[i] = false;
}
}
// Print all prime numbers
for(int i = 2; i <= n; i++)
{
if(prime[i] == true) {
list.add(i);
}
}
}
public static void main(String[] args) throws IOException {
FastReader sc=new FastReader();
int n = sc.nextInt();
List<Integer> list=new ArrayList<>();
long product=1;
int len=0;
for(int i=1;i<n;i++) {
if(gcd(i, n)==1) {
list.add(i);
product =(product*i)%n;
if(product==1) {
len=list.size();
}
}
}
System.out.println(len);
StringBuilder sb=new StringBuilder();
for(int i=0;i<len;i++) {
sb.append(list.get(i)+" ");
}
System.out.println(sb);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 776bf06cb623d0a1634e1b5ae0f89b01 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class product1ModuloN {
public static void main(String[] args) throws Exception {
Scanner sc = new Scanner(new BufferedReader(new InputStreamReader(System.in)));
int n = sc.nextInt();
int[] visited = new int[n-1];
int count = 0;
long product = 1;
for(int i=0;i<n-1;i++){
if(gcd(n,i+1)!=1){
visited[i]=1;
}else{
count++;
product *= i+1;
product %= n;
}
}
if(product!=1){
count --;
visited[(int)product-1] = 1;
}
System.out.println(count);
for(int i=0;i<n-1;i++){
if(visited[i]==0){
System.out.print((i+1)+" ");
}
}
System.out.println();
}
public static int gcd(int a, int b){
if(b==0){
return a;
}
return gcd(b,a%b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 3669e00f5125cd3a1f8e34d7f341a3eb | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | //package graphs;
import java.util.*;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
public class PW {
public static FastReader s = new FastReader();
public static void main(String[] args) {
// TODO Auto-generated method stub
int t=1;
//int k=0;
while(t-- >0)
{
int n=s.nextInt();
//n++;
if(n <= 4 || n == 6){
System.out.println(1);
System.out.println(1);
}
else{
ArrayList<Integer> l=new ArrayList<>();
for(int i = 1 ; i < n ; i++){
long x = gcd(i, n);
if(x == 1)
l.add(i);
}
long pdt = 1;
for(int x: l){
pdt = (pdt*x) % n;
// cout << x <<" ";
}
if(pdt == 1)
{
System.out.println(l.size());
for(int x: l){
System.out.print(x+" ");
}
}
else{
l.remove(l.size()-1);
System.out.println(l.size());
for(int x: l){
System.out.print(x+" ");
}
}
System.out.println();
}
}
}
// public static long fastExpo(long a, long n, long mod) {
// long result = 1;
// while (n > 0) {
// if ((n & 1)>0)
// result = (result * a) % mod;
// a = (a * a) % mod;
// n >>= 1;
// }
// return result;
// }
// 1 4 8
public static long get(long arr[])
{
int N = arr.length;
long r = 2;
long dist = 2;
long curradj = (arr[1] - arr[0]);
long prevadj = (arr[1] - arr[0]);
for (int i = 2; i < N; i++) {
curradj = arr[i] - arr[i - 1];
if (curradj == prevadj) {
dist++;
}
else {
prevadj = curradj;
r = Math.max(r, dist);
dist = 2;
}
}
r = Math.max(r, dist);
return r;
}
public static boolean solve(int a[],int k) {
if(k<=2)
return true;
//int d=a[1]-a[0];
for(int i=0;i<a.length-1;i++)
{
int d=a[i+1]-a[i],flag=0;
//System.out.println(d);
HashMap<Integer,Integer> map=new HashMap<>();
for(int j=i+1;j<i+k;j++)
{
if(j>=a.length)
{
flag=1;
break;
}
if(map.containsKey(a[j]-a[j-1]))
{
map.put(a[j]-a[j-1],map.get(a[j]-a[j-1])+1);
}
else
map.put(a[j]-a[j-1],1);
}
int f=0;
for(int nb:map.keySet())
{
//System.out.println(k+" "+nb+" "+map.get(nb));
if(map.get(nb)>1)
{
f++;
if(f==2)
break;
//f++;
}
}
if(f<=1 && flag!=1)
return true;
}
return false;
}
public static int count(int b[]){
int s = 0;
for (int i = 0; i < 32; i++) {
if(b[i]>0){
s |= (1<<i);
}
}
return s;
}
public static void remove(int b[], int val){
for (int i = 0; i < 32; i++) {
if(((val>>i)&1)==1)
b[i]--;
}
}
public static void add(int b[], int val){
for (int i = 0; i < 32; i++) {
if(((val>>i)&1)==1)
b[i]++;
}
}
public static String largestNumber( List<String> ab) {
// List<String> ab= new ArrayList<>();
// for(int i=0;i<A.size();i++)
// {
// ab.add(String.valueOf(A.get(i)));
// }
Collections.sort(ab, new Comparator<String>(){
public int compare(String X, String Y) {
// first append Y at the end of X
String XY=X + Y;
// then append X at the end of Y
String YX=Y + X;
// Now see which of the two formed numbers
// is greater
return XY.compareTo(YX)>0?-1:1;
}
});
StringBuilder abc= new StringBuilder();
for(int i=0;i<ab.size();i++)
{
abc.append(ab.get(i));
}
if(abc.length()==0)
return abc.toString();
if(abc.charAt(0)=='0')
return "0";
else
return abc.toString();
}
public static boolean pal(String s)
{
int i=0;
int j=s.length()-1;
while(i<=j)
{
if(s.charAt(i)!=s.charAt(j))
return false;
i++;
j--;
}
return true;
}
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
}
catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() { return Integer.parseInt(next()); }
long nextLong() { return Long.parseLong(next()); }
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try {
str = br.readLine();
}
catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static long solve(int n, int r)
{
long p = 1, k = 1;
if (n - r < r) {
r = n - r;
}
if (r != 0) {
while (r > 0) {
p *= n;
k *= r;
long m = __gcd(p, k);
p /= m;
k /= m;
n--;
r--;
}
}
else {
p = 1;
}
//System.out.println(p);
return p;
}
public static long gcd(long a,long b)
{
if(a==0||b==0)
return a+b;
return gcd(b,(a%b));
}
public static long __gcd(long n1, long n2)
{
long gcd = 1;
for (int i = 1; i <= n1 && i <= n2; ++i) {
// Checks if i is factor of both integers
if (n1 % i == 0 && n2 % i == 0) {
gcd = i;
}
}
return gcd;
}
public static boolean prime(int n)
{
if(n<=2)
return true;
for(int i=2;i<=Math.sqrt(n);i++)
{
if(n%i==0)
return false;
}
return true;
}
public static long fastExpo(long a,long n,long mod){
if (n == 0)
return 1;
else{
long x = fastExpo(a,n/2,mod);
if ((n&1) == 1){
return (((a*x)%mod)*x)%mod;
}
else{
return (((x%mod)*(x%mod))%mod)%mod;
}
}
}
}
class pair{
//public:
int f;
int s;
pair(int x,int y)
{
f=x;
s=y;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 6411f23d71515d4360dcd3d87f7a3b35 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class n716C {
public static void main(String[] args) {
FastScanner sc = new FastScanner();
int n = sc.ni();
if (n % 2 != 0) {
long result = 1;
int count = 0;
for (int i = 2; i < n; i++) {
if (gcd(n, i) != 1)
count++;
else
result = (result * i) % n;
}
if (result == 1) {
result = 0;
System.out.println(n - 1 - count);
} else {
System.out.println(n - 2 - count);
}
System.out.print(1 + " ");
for (int i = 2; i < n; i++) {
if (gcd(n, i) == 1 && i != result)
System.out.print(i + " ");
}
} else {
long result = 1;
int count = 0;
for (int i = 3; i < n; i += 2) {
if (gcd(n, i) != 1)
count++;
else
result = (result * i) % n;
}
if (result == 1) {
result = 0;
System.out.println(n / 2 - count);
} else {
System.out.println(n / 2 - 1 - count);
}
System.out.print(1 + " ");
for (int i = 3; i < n; i += 2) {
if (gcd(n, i) == 1 && i != result)
System.out.print(i + " ");
}
}
}
static int gcd(int a, int b) {
while (a >= 1 & b >= 1) {
if (a % b == 0)
return b;
a = a % b;
if (a < b) {
int tmp = a;
a = b;
b = tmp;
}
}
return 1;
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in), 32768);
st = null;
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
int[][] graph(int N, int[][] edges) {
int[][] graph = new int[N][];
int[] sz = new int[N];
for (int[] e : edges) {
sz[e[0]] += 1;
sz[e[1]] += 1;
}
for (int i = 0; i < N; i++) {
graph[i] = new int[sz[i]];
}
int[] cur = new int[N];
for (int[] e : edges) {
graph[e[0]][cur[e[0]]] = e[1];
graph[e[1]][cur[e[1]]] = e[0];
cur[e[0]] += 1;
cur[e[1]] += 1;
}
return graph;
}
int[] intArray(int N, int mod) {
int[] ret = new int[N];
for (int i = 0; i < N; i++)
ret[i] = ni() + mod;
return ret;
}
long nl() {
return Long.parseLong(next());
}
long[] longArray(int N, long mod) {
long[] ret = new long[N];
for (int i = 0; i < N; i++)
ret[i] = nl() + mod;
return ret;
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 357c2795503aeb4a3f3d792eb6969daf | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | //package clipse;
import java.util.*;
import java.util.function.Function;
import java.util.stream.Collectors;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Random;
import java.util.StringTokenizer;
import java.io.*;
import java.math.*;
public class A
{
static StringBuilder sb;
static dsu dsu;
static int prime[];
static ArrayList<Integer>l=new ArrayList<>();
static void solve()
{
int n=i();
//System.out.println((105)%8);
ArrayList<Integer>l=new ArrayList<>();
long prod=1;
for(int i=1;i<=n-2;i++)
{
if(gcd(i,n)==1)
{
l.add(i);
prod=(prod*i)%n;
}
}
if(prod*(n-1)%n==1)
l.add(n-1);
System.out.println(l.size());
for(int a:l)
System.out.print(a+" ");
System.out.println();
}
public static void main(String[] args)
{
prime=new int[1000000+1];
Arrays.fill(prime, 1);
prime[0]=prime[1]=-1;
for(int p=2;p*p<prime.length;p++)
{
if(prime[p]==1)
{
for(int j=p*p;j<prime.length;j=j+p)
{
prime[j]=-1;
}
}
}
for(int i=2;i<prime.length;i++)
{
if(prime[i]==1)
l.add(i);
}
sb=new StringBuilder();
int test=1;
while(test-->0)
{
solve();
}
System.out.println(sb);
}
//*********************************Disjoint set union*************************//
static class dsu
{
int parent[];
int size[];
dsu(int n)
{
parent=new int[n];
size=new int[n];
Arrays.fill(size,-1);
for(int i=0;i<n;i++)
parent[i]=-1;
}
int find(int a)
{
if(parent[a]<0)
return a;
else
{
int x=find(parent[a]);
parent[a]=x;
return x;
}
}
void merge(int a,int b)
{
a=find(a);
b=find(b);
if(a==b)
return;
parent[b]=a;
size[a]+=size[b];
}
}
//*******************************************PRIME FACTORIZE *****************************************************************************************************//
static TreeMap<Integer,Integer> prime(long n)
{
TreeMap<Integer,Integer>h=new TreeMap<>();
long num=n;
for(int i=2;i<=Math.sqrt(num);i++)
{
if(n%i==0)
{
int nt=0;
while(n%i==0) {
n=n/i;
nt++;
}
h.put(i, nt);
}
}
if(n!=1)
h.put((int)n, 1);
return h;
}
//*************CLASS PAIR ***********************************************************************************************************************************************
static class pair implements Comparable<pair>
{
int x;
int y;
pair(int x, int y) {
this.x = x;
this.y = y;
}
public int compareTo(pair o)
{
return x-o.x==0?y-o.y:x-o.x;
}
}
//*************CLASS PAIR *****************************************************************************************************************************************************
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int Int() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String String() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return String();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
static InputReader in = new InputReader(System.in);
static OutputWriter out = new OutputWriter(System.out);
static int modulus = (int) 1e7;
public static int[] sort(int[] a) {
int n = a.length;
ArrayList<Integer> l = new ArrayList<>();
for (int i : a)
l.add(i);
Collections.sort(l);
for (int i = 0; i < l.size(); i++)
a[i] = l.get(i);
return a;
}
public static long pow(long x, long y) {
long res = 1;
while (y > 0) {
if (y % 2 != 0) {
res = (res * x) % modulus;
y--;
}
x = (x * x) % modulus;
y = y / 2;
}
return res;
}
//GCD___+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
public static long gcd(long x, long y) {
if (x == 0)
return y;
else
return gcd(y % x, x);
}
//****************LOWEST COMMON MULTIPLE *************************************************************************************************************************************
public static long lcm(long x, long y) {
return (x * (y / gcd(x, y)));
}
//INPUT PATTERN******************************************************************************************************************************************************************
public static int i() {
return in.Int();
}
public static long l() {
String s = in.String();
return Long.parseLong(s);
}
public static String s() {
return in.String();
}
public static int[] readArray(int n) {
int A[] = new int[n];
for (int i = 0; i < n; i++) {
A[i] = i();
}
return A;
}
public static long[] readArray(long n) {
long A[] = new long[(int) n];
for (int i = 0; i < n; i++) {
A[i] = l();
}
return A;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 9f551d8c1e1d4bad45486f5aa0e18a3b | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.*;
public class CF1514_D2_C {
public static void main(String[] args) {
FastScanner scanner = new FastScanner();
int n = scanner.nextInt();
// if(n <= 4) {
// System.out.println(1);
// System.out.println(1);
// return;
// }
// boolean[] prime = new boolean[n];
// Arrays.fill(prime, true);
// for (int i = 2; i < n; i++) {
// if (prime[i]) {
// for (int j = i * 2; j < n; j += i) {
// prime[j] = false;
// }
// }
// }
StringBuilder out = new StringBuilder();
int count = 1;
long p = 1;
ArrayList<Integer> list = new ArrayList<>();
for (int i = 1; i < n; i++) {
if (gcd(i, n) == 1) {
p = p * i;
p = p % n;
list.add(i);
}
}
if (p != 1) {
for (int i = 0; i < list.size(); i++) {
if (p != list.get(i)) {
out.append(list.get(i)).append(' ');
}
}
System.out.println(list.size() - 1);
System.out.println(out);
} else {
for (int i = 0; i < list.size(); i++) {
out.append(list.get(i)).append(' ');
}
System.out.println(list.size());
System.out.println(out);
}
// out.append(1).append(' ');
// HashSet<Integer> set = primeFactors(n);
// for (int i = 2; i < n; i++) {
// if (prime[i] && !set.contains(i)) {
// count++;
// out.append(i).append(' ');
// }
// }
// System.out.println(count);
// System.out.println(out);
}
static int gcd(int n1, int n2) {
if (n2 == 0) {
return n1;
}
return gcd(n2, n1 % n2);
}
static HashSet<Integer> divisors(int n) {
HashSet<Integer> list = new HashSet<>();
for (int i = 1; i * i <= n; i++) {
if (n % i == 0) {
if (n / i == i) {
list.add(i);
} else {
list.add(i);
list.add(n / i);
}
}
}
return list;
}
public static LinkedHashSet<Integer> primeFactors(int n) {
LinkedHashSet<Integer> set = new LinkedHashSet<>();
// set.add(1L);
while (n % 2 == 0) {
set.add(2);
n /= 2;
}
for (int i = 3; i * i <= n; i += 2) {
while (n % i == 0) {
set.add(i);
n /= i;
}
}
if (n > 2)
set.add(n);
return set;
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] nextArray(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
Integer[] nextArray(int n, boolean object) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++) {
arr[i] = nextInt();
}
return arr;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 2aef55ca5223a93e812bca0cfa986517 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class product_1_modulo_n {
public static int gcd(int i, int j) {
if(i == 0 || j == 0) {
return i + j;
}
if(i > j) {
return gcd(i % j, j);
}
return gcd(i, j % i);
}
public static void main(String[]args){
Kattio io = new Kattio();
int n = io.nextInt();
long product = 1L;
ArrayList<Integer>arr = new ArrayList<Integer>();
for(int i = 1; i < n; i++) {
if(gcd(n,i) == 1) {
product = ((long)product * i) % n;
arr.add(i);
}
}
if(product == n-1 && n != 2) {
arr.remove(arr.size() - 1);
}
io.println(arr.size());
for(int i = 0; i < arr.size(); i++) {
io.print(arr.get(i) + " ");
}
io.close();
}
static class Kattio extends PrintWriter {
private BufferedReader r;
private StringTokenizer st;
// standard input
public Kattio() { this(System.in, System.out); }
public Kattio(InputStream i, OutputStream o) {
super(o);
r = new BufferedReader(new InputStreamReader(i));
}
// USACO-style file input
public Kattio(String problemName) throws IOException {
super(problemName + ".out");
r = new BufferedReader(new FileReader(problemName + ".in"));
}
// returns null if no more input
public String next() {
try {
while (st == null || !st.hasMoreTokens())
st = new StringTokenizer(r.readLine());
return st.nextToken();
} catch (Exception e) { }
return null;
}
public int nextInt() { return Integer.parseInt(next()); }
public double nextDouble() { return Double.parseDouble(next()); }
public long nextLong() { return Long.parseLong(next()); }
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 4e1e27e0ec1b54be448b4efcdfa9afad | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.StringTokenizer;
public class Product1ModuloN {
static class Pair {
int f;
int s; //
Pair() {
}
Pair(int f, int s) {
this.f = f;
this.s = s;
}
}
static class Fast {
BufferedReader br;
StringTokenizer st;
public Fast() {
br = new BufferedReader(
new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
int[] readArray(int n) {
int a[] = new int[n];
for (int i = 0; i < n; i++)
a[i] = nextInt();
return a;
}
long[] readArray1(int n) {
long a[] = new long[n];
for (int i = 0; i < n; i++)
a[i] = nextLong();
return a;
}
String nextLine() {
String str = "";
try {
str = br.readLine().trim();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
/* static long noOfDivisor(long a)
{
long count=0;
long t=a;
for(long i=1;i<=(int)Math.sqrt(a);i++)
{
if(a%i==0)
count+=2;
}
if(a==((long)Math.sqrt(a)*(long)Math.sqrt(a)))
{
count--;
}
return count;
}*/
static boolean isPrime(long a) {
for (long i = 2; i <= (long) Math.sqrt(a); i++) {
if (a % i == 0)
return false;
}
return true;
}
static void primeFact(int n) {
int temp = n;
HashMap<Integer, Integer> h = new HashMap<>();
for (int i = 2; i * i <= n; i++) {
if (temp % i == 0) {
int c = 0;
while (temp % i == 0) {
c++;
temp /= i;
}
h.put(i, c);
}
}
if (temp != 1)
h.put(temp, 1);
}
static void reverseArray(int a[]) {
int n = a.length;
for (int i = 0; i < n / 2; i++) {
a[i] = a[i] ^ a[n - i - 1];
a[n - i - 1] = a[i] ^ a[n - i - 1];
a[i] = a[i] ^ a[n - i - 1];
}
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static int max(int a, int b) {
return a > b ? a : b;
}
static int min(int a, int b) {
return a < b ? a : b;
}
public static int[] constructST(int arr[], int n) {
// Add your code here
int st[] = new int[4 * n];
build(arr, 0, n - 1, 0, st);
return st;
}
static int build(int arr[], int l, int r, int idx, int st[]) {
if (l == r) {
return st[idx] = arr[l] & 1;
}
int mid = (l + r) / 2;
int p1 = build(arr, l, mid, 2 * idx + 1, st);
int p2 = build(arr, mid + 1, r, 2 * idx + 2, st);
if (p1 == p2 && p1 != -1)
return st[idx] = p1 & p2;
else if (p1 == -1 || p2 == -1)
return st[idx] = -1;
else
return st[idx] = -1;
}
/* The functions returns the
min element in the range
from l and r */
public static int RMQ(int st[], int n, int l, int r) {
// Add your code here
return solve(st, l, r, 0, n - 1, 0);
}
static int solve(int st[], int l, int r, int low1, int high1, int idx) {
if (low1 >= l && high1 <= r)//lies // we need to find min number in range [l,r] low,high is range in segment tree.. consider the first case
return st[idx];
if (high1 < l || low1 > r)//not lie
return Integer.MAX_VALUE;
int mid = (low1 + high1) / 2;
int left = solve(st, l, r, low1, mid, 2 * idx + 1);
int right = solve(st, l, r, mid + 1, high1, 2 * idx + 2);
if (left == right && left != -1 && left != Integer.MAX_VALUE)
return left;
else if (left == -1 || right == -1)
return -1;
else if (left != right && left != Integer.MAX_VALUE && right != Integer.MAX_VALUE)
return -1;
else if (left == Integer.MAX_VALUE)
return right;
else
return left;
}
static void swap(int a1[],int a,int b)
{
a1[a]=a1[a]^a1[b];a1[b]=a1[a]^a1[b];a1[a]=a1[a]^a1[b];
}
static long give(long a)
{
return (a*(a+1))/2;
}
static int gcd(int a,int b)
{
if(b%a==0)
return a;
return gcd(b%a,a);
}
public static void main(String args[]) throws IOException {
Fast sc = new Fast();
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt();
int a[]=new int[n];
long p=1;
for(int i=1;i<n;i++) {
if(gcd(i,n)==1)
a[i]=i;
p=p*(a[i]!=0?a[i]:1)%n;
}
if(p!=1)
a[(int)p]=0;
/* out.println(p);
for(int i=1;i<n;i++)
if(a[i]==0)
out.println(i);*/
int c=0;
for(int ne:a)
if(ne!=0)
c++;
out.println(c);
for(int ne:a)
if(ne!=0)
out.print(ne+" ");
out.println();
out.close();
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 2a7056725275cac4a8b9c8ba00ad3d92 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class prod1mod {
public static int gcd(int a, int b) {
if (b==0) return a;
return gcd(b,a%b);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long prod = 1;
ArrayList<Integer> subsequence = new ArrayList<>();
for (int i = 1; i < n; i++) {
if (gcd(i, n) == 1) {
subsequence.add(i);
prod *= i;
prod %= n;
}
}
if (prod == 1) {
System.out.println(subsequence.size());
for (int e : subsequence) {
System.out.print(e + " ");
}
}
if (prod != 1) {
subsequence.remove(Integer.valueOf((int) prod));
System.out.println(subsequence.size());
for (int e : subsequence) {
System.out.print(e + " ");
}
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 884e21725844513d467052c569e5e704 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | //package codeforces;
import java.io.*;
import java.util.*;
public class Solution {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(next());
}
long nl() {
return Long.parseLong(next());
}
double nd() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static void main(String[] args) throws java.lang.Exception {
FastReader fr = new FastReader();
PrintWriter out = new PrintWriter(System.out);
int n = fr.ni();
ArrayList<Integer> ans = new ArrayList<>();
long mul = 1;
for(int i = 1 ; i < n ; i++) {
int gcd = gcd(i,n);
if(gcd == 1) {
ans.add(i);
mul *= i;
mul %= n;
}
}
if(mul == 1) {
out.println(ans.size());
for(int i : ans)out.print(i+ " ");
}else {
out.println(ans.size() -1);
for(int i = 0 ; i < ans.size() ; i++) {
if(ans.get(i) != mul)out.print(ans.get(i) + " ");
}
}
out.close();
}
public static int gcd(int a ,int b) {
if(b == 0)return a;
return gcd(b , a%b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 08c901f7746f393fa8d0ba6b17d2c3f5 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
import java.lang.Math;
public class C_Product_1_Modulo_N {
static class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
int[] readintarray(int n) {
int res[] = new int[n];
for (int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
long[] readlongarray(int n) {
long res[] = new long[n];
for (int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
}
static long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}
// static int lcm(long a, long b) {
// return (a / gcd(a, b)) * b;
// }
public static void main(String args[]) throws IOException {
FastReader s = new FastReader();
int t;
// t =s.nextInt();
long n = s.nextLong();
Vector<Long> ans = new Vector<Long>();
long product = 1;
long modulo=1;
for (long i = 1; i < n; i++) {
if (gcd(i, n) == 1) {
product *= i;
modulo=(modulo*i)%n;
ans.add(i);
}
}
modulo%=n;
// System.out.println(modulo);
if (modulo!= 1)
ans.removeElement(modulo);
System.out.println(ans.size());
for(int i=0;i<ans.size();i++){
System.out.print(ans.get(i)+" ");
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | ba888f8521f5f746e2d0c516026ef87e | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main{
public static void main(String[] args) throws IOException {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
PrintWriter out = new PrintWriter(outputStream);
InputReader in = new InputReader(inputStream);
// for(int i=6;i<=6;i++) {
/// InputStream uinputStream = new FileInputStream("2.in");
// String f = "Input"+i+".txt";
// String of = "boards.out";
// InputStream uinputStream = new FileInputStream(f);
/// InputReader in = new InputReader(uinputStream);
// PrintWriter out = new PrintWriter(new BufferedWriter(new FileWriter(of)));
// Task t = new Task();
// t.solve(in, out);
// out.close();
// }
Task t = new Task();
t.solve(in, out);
out.close();
}
static class Task{
public void solve(InputReader in, PrintWriter out) throws IOException {
int n = in.nextInt();
long x = 1;
ArrayList<Integer> arr = new ArrayList<Integer>();
for(int i=1;i<n;i++) {
if(GCD(i,n)==1) {
x*=i;
x%=n;
arr.add(i);
}
}
//Dumper.print(x);
if(x==1) {
out.println(arr.size());
for(int i:arr) {
out.print(i+" ");
}
}else {
out.println(arr.size()-1);
for(int i:arr) {
if(x!=i)out.print(i+" ");
}
}
out.println();
}
class edge implements Comparable<edge>{
int id,f,t; int len;
public edge(int a, int b, int c, int d) {
f=a;t=b;len=c;id=d;
}
@Override
public int compareTo(edge t) {
if(this.len-t.len>0) return 1;
else if(this.len-t.len<0) return -1;
return 0;
}
}
public int minMoves(int[] nums, int k) {
int n = 0;
for(int i:nums) n+=i;
int arr[] = new int[n];
for(int i=0,j=0;i<nums.length;i++) {
if(nums[i]==1) arr[j++] = i;
}
int sum[] = new int[n];
for(int i=0;i<n;i++) {
sum[i] = arr[i];
if(i>0) sum[i]+=sum[i-1];
}
int ret = Integer.MAX_VALUE;
for(int i=0;i+k-1<n;i++) {
int j = i+k-1;
int mid = (i+j)/2;
int lnum = mid-i;
int left = arr[mid]*lnum-(mid-1>=0?sum[mid-1]:0)+(i>0?sum[i-1]:0)-(1+lnum)*lnum/2;
int rnum = j-mid;
int right = sum[j]-sum[mid]-rnum*arr[mid]-(1+rnum)*rnum/2;
ret = Math.min(ret, left+right);
}
return ret;
}
class pair implements Comparable<pair>{
int idx;
int bit_pos;
public pair(int a, int b) {
idx=a;bit_pos=b;
}
@Override
public int compareTo(pair t) {
return t.idx-this.idx;
}
}
public List<List<Integer>> findCriticalAndPseudoCriticalEdges(int n, int[][] edges) {
int idx = 0;
int m = edges.length;
ArrayList<edge> all = new ArrayList<edge>();
for(int x[]:edges) {
int f = x[0];
int t = x[1];
int w = x[2];
edge tmp1 = new edge(f,t,w,idx++);
all.add(tmp1);
}
DSU ds = new DSU(n+1);
Collections.sort(all);
Set<Integer> crit = new HashSet<Integer>();
Set<Integer> no_use = new HashSet<Integer>();
int p = 0;
boolean vis[] = new boolean[n];
while(p<m) {
edge t = all.get(p);
ArrayList<edge> tmp = new ArrayList<edge>();
tmp.add(t);
p++;
while(p<m&&all.get(p).len==t.len) {
tmp.add(all.get(p++));
}
int cnt[] = new int[n];
Arrays.fill(cnt, -1);
for(edge v:tmp) {
if(ds.find(v.f)==ds.find(v.t)) {
no_use.add(v.id);
continue;
}
if(!vis[v.f]) {
if(cnt[v.f]==-1) {
cnt[v.f] = v.id;
}else {
cnt[v.f] = -2;
}
}
if(!vis[v.t]) {
if(cnt[v.t]==-1) {
cnt[v.t] = v.id;
}else {
cnt[v.t] = -2;
}
}
}
for(int i=0;i<n;i++) {
if(cnt[i]>=0) crit.add(cnt[i]);
}
for(edge v:tmp) {
ds.union(v.f, v.t);
vis[v.f] = true;
vis[v.t] = true;
}
}
List<List<Integer>> ret = new ArrayList<List<Integer>>();
List<Integer> r1 = new ArrayList<Integer>();
List<Integer> r2 = new ArrayList<Integer>();
for(int i=0;i<m;i++) {
if(crit.contains(i)) r1.add(i);
else if(!no_use.contains(i)) {
r2.add(i);
}
}
ret.add(r1);ret.add(r2);
return ret;
}
class pair2 implements Comparable<pair2>{
long val; int idx;
public pair2(long a, int b) {
val = a;
idx = b;
}
@Override
public int compareTo(pair2 t) {
if(this.val-t.val>0) return 1;
else if(this.val-t.val<0) return -1;
return 0;
}
}
static class sgt{
sgt lt;
sgt rt;
int l,r;
int sum, max, min, lazy;
int min_idx;
public sgt(int L, int R, int arr[]) {
l=L;r=R;
if(l==r-1) {
sum = max = min = arr[l];
lazy = 0;
min_idx = l;
return;
}
lt = new sgt(l, l+r>>1, arr);
rt = new sgt(l+r>>1, r, arr);
pop_up();
}
void pop_up() {
this.sum = lt.sum + rt.sum;
this.max = Math.max(lt.max, rt.max);
this.min = Math.min(lt.min, rt.min);
if(lt.min<rt.min)
this.min_idx = lt.min_idx;
else if(lt.min>rt.min) this.min_idx = rt.min_idx;
else this.min_idx = Math.min(lt.min_idx, rt.min_idx);
}
void push_down() {
if(this.lazy!=0) {
lt.sum+=lazy;
rt.sum+=lazy;
lt.max+=lazy;
lt.min+=lazy;
rt.max+=lazy;
rt.min+=lazy;
lt.lazy+=this.lazy;
rt.lazy+=this.lazy;
this.lazy = 0;
}
}
void change(int L, int R, int v) {
if(R<=l||r<=L) return;
if(L<=l&&r<=R) {
this.max+=v;
this.min+=v;
this.sum+=v*(r-l);
this.lazy+=v;
return;
}
push_down();
lt.change(L, R, v);
rt.change(L, R, v);
pop_up();
}
int query_max(int L, int R) {
if(L<=l&&r<=R) return this.max;
if(r<=L||R<=l) return Integer.MIN_VALUE;
push_down();
return Math.max(lt.query_max(L, R), rt.query_max(L, R));
}
int query_min(int L, int R) {
if(L<=l&&r<=R) return this.min;
if(r<=L||R<=l) return Integer.MAX_VALUE;
push_down();
return Math.min(lt.query_min(L, R), rt.query_min(L, R));
}
int query_sum(int L, int R) {
if(L<=l&&r<=R) return this.sum;
if(r<=L||R<=l) return 0;
push_down();
return lt.query_sum(L, R) + rt.query_sum(L, R);
}
int query_min_idx(int L, int R) {
if(L<=l&&r<=R) {
return this.min_idx;
}
if(r<=L||R<=l) return Integer.MAX_VALUE;
int a = lt.query_min_idx(L, R);
int b = rt.query_min_idx(L, R);
int aa = lt.query_min(L, R);
int bb = rt.query_min(L, R);
int ret = 0;
if(aa<bb) ret = a;
else if(aa>bb) ret = b;
else ret = Math.min(a,b);
return ret;
}
}
// List<List<String>> convert(String arr[][]){
// int n = arr.length;
// List<List<String>> ret = new ArrayList<>();
// for(int i=0;i<n;i++) {
// ArrayList<String> tmp = new ArrayList<String>();
// for(int j=0;j<arr[i].length;j++) tmp.add(arr[i][j]);
// ret.add(tmp);
// }
// return ret;
// }
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) { val = x; }
}
public int GCD(int a, int b) {
if (b==0) return a;
return GCD(b,a%b);
}
public long GCD(long a, long b) {
if (b==0) return a;
return GCD(b,a%b);
}
}
static class ArrayUtils {
static final long seed = System.nanoTime();
static final Random rand = new Random(seed);
public static void sort(int[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void shuffle(int[] a) {
for (int i = 0; i < a.length; i++) {
int j = rand.nextInt(i + 1);
int t = a[i];
a[i] = a[j];
a[j] = t;
}
}
public static void sort(long[] a) {
shuffle(a);
Arrays.sort(a);
}
public static void shuffle(long[] a) {
for (int i = 0; i < a.length; i++) {
int j = rand.nextInt(i + 1);
long t = a[i];
a[i] = a[j];
a[j] = t;
}
}
}
static class BIT{
int arr[];
int n;
public BIT(int a) {
n=a;
arr = new int[n];
}
int sum(int p) {
int s=0;
while(p>0) {
s+=arr[p];
p-=p&(-p);
}
return s;
}
void add(int p, int v) {
while(p<n) {
arr[p]+=v;
p+=p&(-p);
}
}
}
static class DSU{
int[] arr;
int[] sz;
public DSU(int n) {
arr = new int[n];
sz = new int[n];
for(int i=0;i<n;i++) arr[i] = i;
Arrays.fill(sz, 1);
}
public int find(int a) {
if(arr[a]!=a) arr[a] = find(arr[a]);
return arr[a];
}
public void union(int a, int b) {
int x = find(a);
int y = find(b);
if(x==y) return;
arr[y] = x;
sz[x] += sz[y];
}
public int size(int x) {
return sz[find(x)];
}
}
static class MinHeap<Key> implements Iterable<Key> {
private int maxN;
private int n;
private int[] pq;
private int[] qp;
private Key[] keys;
private Comparator<Key> comparator;
public MinHeap(int capacity){
if (capacity < 0) throw new IllegalArgumentException();
this.maxN = capacity;
n=0;
pq = new int[maxN+1];
qp = new int[maxN+1];
keys = (Key[]) new Object[capacity+1];
Arrays.fill(qp, -1);
}
public MinHeap(int capacity, Comparator<Key> c){
if (capacity < 0) throw new IllegalArgumentException();
this.maxN = capacity;
n=0;
pq = new int[maxN+1];
qp = new int[maxN+1];
keys = (Key[]) new Object[capacity+1];
Arrays.fill(qp, -1);
comparator = c;
}
public boolean isEmpty() { return n==0; }
public int size() { return n; }
public boolean contains(int i) {
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
return qp[i] != -1;
}
public int peekIdx() {
if (n == 0) throw new NoSuchElementException("Priority queue underflow");
return pq[1];
}
public Key peek(){
if(isEmpty()) throw new NoSuchElementException("Priority queue underflow");
return keys[pq[1]];
}
public int poll(){
if(isEmpty()) throw new NoSuchElementException("Priority queue underflow");
int min = pq[1];
exch(1,n--);
down(1);
assert min==pq[n+1];
qp[min] = -1;
keys[min] = null;
pq[n+1] = -1;
return min;
}
public void update(int i, Key key) {
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
if (!contains(i)) {
this.add(i, key);
}else {
keys[i] = key;
up(qp[i]);
down(qp[i]);
}
}
private void add(int i, Key x){
if (i < 0 || i >= maxN) throw new IllegalArgumentException();
if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue");
n++;
qp[i] = n;
pq[n] = i;
keys[i] = x;
up(n);
}
private void up(int k){
while(k>1&&less(k,k/2)){
exch(k,k/2);
k/=2;
}
}
private void down(int k){
while(2*k<=n){
int j=2*k;
if(j<n&&less(j+1,j)) j++;
if(less(k,j)) break;
exch(k,j);
k=j;
}
}
public boolean less(int i, int j){
if (comparator == null) {
return ((Comparable<Key>) keys[pq[i]]).compareTo(keys[pq[j]]) < 0;
}
else {
return comparator.compare(keys[pq[i]], keys[pq[j]]) < 0;
}
}
public void exch(int i, int j){
int swap = pq[i];
pq[i] = pq[j];
pq[j] = swap;
qp[pq[i]] = i;
qp[pq[j]] = j;
}
@Override
public Iterator<Key> iterator() {
// TODO Auto-generated method stub
return null;
}
}
private static class InputReader
{
private InputStream stream;
private byte[] buf = new byte[1024];
private int zcurChar;
private int znumChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream)
{
this.stream = stream;
}
public int read()
{
if (znumChars == -1)
throw new InputMismatchException();
if (zcurChar >= znumChars)
{
zcurChar = 0;
try
{
znumChars = stream.read(buf);
} catch (IOException e)
{
throw new InputMismatchException();
}
if (znumChars <= 0)
return -1;
}
return buf[zcurChar++];
}
public int nextInt()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
int res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String nextString()
{
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do
{
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public double nextDouble()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.')
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.')
{
c = read();
double m = 1;
while (!isSpaceChar(c))
{
if (c == 'e' || c == 'E')
return res * Math.pow(10, nextInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
public long nextLong()
{
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-')
{
sgn = -1;
c = read();
}
long res = 0;
do
{
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c)
{
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next()
{
return nextString();
}
public interface SpaceCharFilter
{
public boolean isSpaceChar(int ch);
}
public int[] readIntArray(int n) {
int[] ret = new int[n];
for (int i = 0; i < n; i++) {
ret[i] = nextInt();
}
return ret;
}
}
static class Dumper {
static void print_int_arr(int[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_char_arr(char[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_double_arr(double[] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
System.out.println("---------------------");
}
static void print_2d_arr(int[][] arr, int x, int y) {
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
System.out.println();
System.out.println("---------------------");
}
static void print_2d_arr(boolean[][] arr, int x, int y) {
for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {
System.out.print(arr[i][j] + " ");
}
System.out.println();
}
System.out.println();
System.out.println("---------------------");
}
static void print(Object o) {
System.out.println(o.toString());
}
static void getc() {
System.out.println("here");
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | d91eedf804269f3631886bbce386ed37 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | // package codeforces.Practice;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class Div2_716_C {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
//n*a+1 형태
//1,2,...n-1까지의 수를 선택 가능
//가장 짧은 답은 {1}
//n으로 나눠떨어지게 되면 일단 안되고
int n= Integer.parseInt(br.readLine());
List<Integer> list = new ArrayList<>();
for(int i=1;i<=n;i++){
if(gcd(i,n)==1) list.add(i);
}
//System.out.println(list);
long prod=1;
for(int x:list){
prod*=x;
prod%=n;
}
if(prod!=1){
long finalProd = prod;
list.removeIf(x->(x== finalProd));
}
System.out.println(list.size());
for(int x:list) System.out.print(x+" ");
}
private static int gcd(int a,int b){
if(a%b!=0) return gcd(b,a%b);
else return b;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | f596b16a186db0d637b6fe84f61342d9 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.InputMismatchException;
import java.util.List;
import java.util.StringJoiner;
import java.util.TreeMap;
public class C {
public static void main(String[] args) {
Print print = new Print();
Scan scan = new Scan();
// for (int i = 2; i <= 20; i += 1) {
// brute_force(i);
// }
int n = scan.scanInt();
solve(print, n);
print.close();
}
private static void brute_force(int i) {
int[] arr = new int[i - 1];
for (int j = 1; j <= arr.length; j++) {
arr[j - 1] = j;
}
TreeMap<Integer, String> m = new TreeMap<>();
int k = arr.length + 1;
for (int l = (1 << k) - 1; l >= 0; l--) {
long v = 1;
for (int g = 0; g < arr.length; g++) {
if (((l >> g) & 1) == 1) {
v = (v * arr[g]) % k;
}
}
if (v == 1) {
int count = 0;
StringJoiner sj = new StringJoiner(" ");
for (int g = 0; g < arr.length; g++) {
if (((l >> g) & 1) == 1) {
count++;
sj.add(Integer.toString(arr[g]));
}
}
m.put(count, sj.toString());
}
}
System.out.printf("for num = %d , max length is : %d %n", i, m.lastKey());
System.out.println(m.get(m.lastKey()));
}
private static void solve(Print print, int n) {
long co = 1;
StringJoiner sj = new StringJoiner(" ");
sj.add("1");
List<Long> li = new ArrayList<>();
long p = 1;
for (long i = 2; i < n; i++) {
if (gcd(i, n) == 1) {
co++;
li.add(i);
p = (p * i) % n;
}
}
if (p != 1) {
li.remove(li.get(li.size() - 1));
co--;
}
for (long x : li) {
sj.add(Long.toString(x));
}
print.printLine(Long.toString(co));
print.printLine(sj.toString());
}
static long gcd(long a, long b) {
while (b != 0) {
long t = a;
a = b;
b = t % b;
}
return a;
}
static int modInverse(int a, int m) {
int m0 = m;
int y = 0, x = 1;
if (m == 1) {
return 0;
}
while (a > 1) {
// q is quotient
int q = a / m;
int t = m;
// m is remainder now, process
// same as Euclid's algo
m = a % m;
a = t;
t = y;
// Update x and y
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0) {
x += m0;
}
return x;
}
static long add(long a, long b, long MOD) {
return (a % MOD + b % MOD) % MOD;
}
static long multiply(long a, long b, long MOD) {
return (a % MOD * b % MOD) % MOD;
}
static long subtract(long a, long b, long MOD) {
return ((a % MOD - b % MOD) % MOD + MOD) % MOD;
}
static long inverse(long a, long MOD) {
return pow(a, MOD - 2, MOD);
}
static long divide(long a, long b, long MOD) {
return multiply(a, inverse(b, MOD), MOD);
}
static long pow(long a, long n, long MOD) {
if (n == 0) {
return 1;
}
long x = pow(a, n / 2, MOD);
if (n % 2 == 1) {
return multiply(multiply(x, x, MOD), a, MOD);
} else {
return multiply(x, x, MOD);
}
}
static class Scan {
private byte[] buf = new byte[1024];
private int index;
private InputStream in;
private int total;
public Scan() {
in = System.in;
}
public int scan() {
if (total < 0) {
throw new InputMismatchException();
}
if (index >= total) {
index = 0;
try {
total = in.read(buf);
} catch (IOException ignored) {
}
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
public int scanInt() {
int integer = 0;
int n = scan();
while (isWhiteSpace(n)) {
n = scan();
}
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
integer *= 10;
integer += n - '0';
n = scan();
} else {
throw new InputMismatchException();
}
}
return neg * integer;
}
public double scanDouble() {
double doub = 0;
int n = scan();
while (isWhiteSpace(n)) {
n = scan();
}
int neg = 1;
if (n == '-') {
neg = -1;
n = scan();
}
while (!isWhiteSpace(n) && n != '.') {
if (n >= '0' && n <= '9') {
doub *= 10;
doub += n - '0';
n = scan();
} else {
throw new InputMismatchException();
}
}
if (n == '.') {
n = scan();
double temp = 1;
while (!isWhiteSpace(n)) {
if (n >= '0' && n <= '9') {
temp /= 10;
doub += (n - '0') * temp;
n = scan();
} else {
throw new InputMismatchException();
}
}
}
return doub * neg;
}
public String scanString() {
StringBuilder sb = new StringBuilder();
int n = scan();
while (isWhiteSpace(n)) {
n = scan();
}
while (!isWhiteSpace(n)) {
sb.append((char) n);
n = scan();
}
return sb.toString();
}
private boolean isWhiteSpace(int n) {
if (n == ' ' || n == '\n' || n == '\r' || n == '\t' || n == -1) {
return true;
}
return false;
}
}
static class Print {
private final BufferedWriter bw;
public Print() {
bw = new BufferedWriter(new OutputStreamWriter(System.out));
}
public void print(String str) {
try {
bw.append(str);
} catch (IOException ignored) {
}
}
public void printLine(String str) {
print(str);
try {
bw.append("\n");
} catch (IOException ignored) {
}
}
public void close() {
try {
bw.close();
} catch (IOException ignored) {
}
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 73ac7e5b128a83fbdafdfbfd35b70a66 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main {
public static void main(String args[]) throws IOException {
Scanner sc = new Scanner(System.in);
int n =sc.nextInt();
int[] ok = new int[n];
long x=1;
for(int i=1;i<n;i++)
{ if(gcdExtended(i,n,1,1)==1)
{ok[i]=1;
x=(x*i)%n;
}
}
int p=(int)x;
if(p!=1){
// System.out.println(p);
ok[p]=0;
}
int count=0;
for(int i=1;i<n;i++)
if(ok[i]==1)
count++;
System.out.println(count);
for(int i=1;i<n;i++)
if(ok[i]==1)
System.out.print(i+" ");
System.out.println();
}
// public static int gcd(int a, int b)
// {
// if (a == 0)
// return b;
// return gcd(b%a, a);
// }
public static int gcdExtended(int a, int b, int x, int y)
{
// Base Case
if (a == 0)
{
x = 0;
y = 1;
return b;
}
int x1=1, y1=1; // To store results of recursive call
int gcd = gcdExtended(b%a, a, x1, y1);
// Update x and y using results of recursive
// call
x = y1 - (b/a) * x1;
y = x1;
return gcd;
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 8f92b6f00a4fa0a0b76e554cd5171c2b | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.util.*;
import java.io.*;
import java.lang.*;
public class cfpract {
static int mod=10000_00007;
public static void solve() throws Exception{
InputStreamReader ip=new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(ip);
// int t = Integer.parseInt(br.readLine());
StringBuilder asb=new StringBuilder();
// while(t-->0){
long n =Integer.parseInt(br.readLine());
// String[] strs=(br.readLine()).trim().split(" ");
// int n=Integer.parseInt(strs[0]),l=Integer.parseInt(strs[1]),r=Integer.parseInt(strs[2]),s=Integer.parseInt(strs[3]);
// String str=(br.readLine()).trim();
ArrayList<Long> list=new ArrayList<>();
long v=1;
for(long i=1;i<n;i++){
long g=gcd(i, n);
if(g==1){
list.add(i);
v=(v*i)%n;
}
}
if(n>2 && v==n-1){
list.remove(list.size()-1);
v=1;
}
System.out.println(list.size());
for(long val:list){
System.out.print(val+" ");
}
// }
// System.out.println(asb);
}
//******************************************************************************************************************** */
public static void main(String[] args) throws Exception{
solve();
// sec();
}
public static void solve2() throws Exception{
InputStreamReader ip=new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(ip);
int t = Integer.parseInt(br.readLine());
StringBuilder asb=new StringBuilder();
while(t-->0){
// int n =Integer.parseInt(br.readLine());
// String[] strs=(br.readLine()).trim().split(" ");
// int n=Integer.parseInt(strs[0]),l=Integer.parseInt(strs[1]),r=Integer.parseInt(strs[2]),s=Integer.parseInt(strs[3]);
// String str=(br.readLine()).trim();
}
}
//binexp
public static long binexp(long a,long b){
if(b==0)return 1;
long res=binexp(a, b/2);
if(b%2==1){
return (((res*res))*a); //%mod;
}else return (res*res);
}
//gcd
public static long gcd(long a,long b){ //gcd using division method
if(b==0)return a;
else return gcd(b, a%b);
}
public static int isprime(int n){
for(int i=2;i<=Math.sqrt(n);i++){
if(n%i==0)return i;
}
return -1;
}
//sort
public static void sort(long[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = (int) Math.random() * n;
long temp = arr[i]; arr[i] = arr[idx]; arr[idx] = temp; //swap
}
Arrays.sort(arr);
}
public static void sort(int[] arr) {
int n = arr.length;
for (int i = 0; i < n; i++) {
int idx = (int) Math.random() * n;
int temp = arr[i]; arr[i] = arr[idx]; arr[idx] = temp; //swap
}
Arrays.sort(arr);
}
//1d print
public static void print(int[] dp) {
for (int val : dp) {
System.out.print(val + " ");
}
System.out.println();
}
public static void print(long[] dp) {
for (long val : dp) {
System.out.print(val + " ");
}
System.out.println();
}
//2d print
public static void print(long[][] dp) {
for (long[] a : dp) {
for (long val : a) {
System.out.print(val + " ");
}
System.out.println();
}
}
public static void print(int[][] dp) {
for (int[] a : dp) {
for (int val : a) {
System.out.print(val + " ");
}
System.out.println();
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 8cd735f41acba087b9a30c24e7c05643 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class C {
static class Reader{
private BufferedReader reader;
private StringTokenizer tokenizer;
Reader(InputStream input)
{
this.reader = new BufferedReader(new InputStreamReader(input));
this.tokenizer = new StringTokenizer("");
}
public String next() throws IOException {
while(!tokenizer.hasMoreTokens())
{
tokenizer = new StringTokenizer(reader.readLine());
}
return tokenizer.nextToken();
}
public int nextInt() throws IOException
{
return Integer.parseInt(next());
}
public double nextDouble() throws IOException
{
return Double.parseDouble(next());
}
public long nextLong() throws IOException
{
return Long.parseLong(next());
}
}
static class solution
{
public int GCD(int a, int b)
{
while(a!=b && a>0 && b>0)
{
int min = Math.min(a,b);
int max = Math.max(a, b);
a = max%min;
b = min;
}
if(a==0)return b;
if(b==0)return a;
if(a==b)return a;
return b;
}
public boolean isPerfectSquare(int n)
{
int i = (int)Math.floor(Math.sqrt(n));
// for (int i = 1; i * i <= n; i++) {
// if ((n % i == 0) && (n / i == i)) {
// return true;
// }
// }
if(i*i==n)return true;
return false;
}
public boolean isPrime(int n)
{
for(int i=2;i<=Math.sqrt(n);i++)
{
if(n%i==0)return false;
}
return true;
}
public String solve(int N)
{
StringBuffer sb = new StringBuffer();
int length = 0;
long prod = 1;
for(int i=1;i<=N-2;i++){
if(GCD(i,N)==1)
{
sb.append(i+" ");
prod = (prod*i)%N;
length++;
}
}
if(prod==N-1)
{
sb.append(N-1);
length++;
}
return length+"\n"+sb.toString();
}
}
public static void main(String[] args) throws IOException{
Reader scan = new Reader(System.in);
BufferedOutputStream b = new BufferedOutputStream(System.out);
// int a = scan.nextInt();
int N = scan.nextInt();
solution sol = new solution();
// System.out.println(sol.GCD(a, N));
String ans = sol.solve(N);
b.write((ans).getBytes());
b.flush();
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 0a6b7ebb215af079d2aeb2044015dfc4 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
public class Poster {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
ArrayList<Integer> al = new ArrayList<>();
long sum = 1;
int max = 0;
for(int i=1;i<n;i++) {
if(gcd(i,n) == 1) {
al.add(i);
sum = sum*i%n;
if(sum == 1) {
max = al.size();
}
}
}
System.out.println(max);
for(int i=0;i<max;i++) {
System.out.print(al.get(i));
System.out.print(' ');
}
}
static int gcd(int a,int b) {
while(b>0) {
int c = a % b;
a = b;
b = c;
}
return a;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | af7902142e3ec30197844f324857bbcc | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.util.*;
import java.io.*;
public class main {
class FastScanner{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while(!st.hasMoreTokens()) {
try {
st=new StringTokenizer(br.readLine());
}
catch(IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}}
static boolean check(int n){
return Math.ceil(Math.sqrt(n))==Math.floor(Math.sqrt(n));
}
static long power(long a,long b,long mod){
long ans=1;
while(b!=0){
if((b&1)==1){
ans=(ans*a)%mod;
}
a=(a*a)%mod;
b>>=1;
}
return ans;
}
// 2 5
//
static long gcd(long a,long b){
if(a==0){
return b;
}
return gcd(b%a,a);
}
static boolean bl[]=new boolean[2000];
public static void main(String[] args) {
FastScanner scan=new main().new FastScanner();
int t=scan.nextInt();
ArrayList<Long>A=new ArrayList<>();
A.add(1l);
long mul=1l;
for(int i=2;i<t;++i){
if(gcd(i,t)==1){
A.add((long)i);
mul=(mul*i)%t;
}
}
//System.out.println(mul);
if(mul!=1){
A.remove(new Long(mul%t));
}
{
System.out.println(A.size());
for(int i=0;i<A.size();++i){
System.out.print(A.get(i)+" ");
}
}
}} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 81b9e73209f53036b31686d826d9dc57 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public final class Solution {
static PrintWriter out = new PrintWriter(System.out);
static FastReader in = new FastReader();
static long mod = (long) 1e9 + 7;
static Pair[] moves = new Pair[]{new Pair(-1, 0), new Pair(1, 0), new Pair(0, -1), new Pair(0, 1)};
// 111
// 0 7 7 7 7 -5
// 1 6 7 7 7 -20
// 2 5 7 7 7 -20
// 3 4 7 7 7 -20
// 5 3 6 7 7
public static void main(String[] args) {
int t = 1;
out:
while (t-- > 0) {
int n = i();
List<Integer> list = new ArrayList<>();
long product = 1;
for (int i = 1; i < n; i++) {
if (GCD(i, n) == 1) {
list.add(i);
product *= i;
product %= n;
}
}
if (product == 1L) {
out.println(list.size());
for (int a : list) {
out.print(a + " ");
}
} else {
out.println(list.size() - 1);
for (int a : list) {
if (a != product) {
out.print(a + " ");
}
}
}
}
out.flush();
}
public static boolean isPS(int x) {
if (x == 1) {
return true;
}
for (int i = 2; i <= x / 2; i++) {
if (i * i == x) {
return true;
}
}
return false;
}
public static long calc(int type, long X, long K) {
if (type == 1) {
return (X + 99999) / 100000 + K;
} else {
return (K * X + 99999) / 100000;
}
}
static int sd(long i) {
int d = 0;
while (i > 0) {
d += i % 10;
i = i / 10;
}
return d;
}
static int lower(long A[], long x) {
int l = -1, r = A.length;
while (r - l > 1) {
int m = (l + r) / 2;
if (A[m] >= x) {
r = m;
} else {
l = m;
}
}
return r;
}
static int upper(long A[], long x) {
int l = -1, r = A.length;
while (r - l > 1) {
int m = (l + r) / 2;
if (A[m] <= x) {
l = m;
} else {
r = m;
}
}
return l;
}
static void swap(int A[], int a, int b) {
int t = A[a];
A[a] = A[b];
A[b] = t;
}
static int lowerBound(int A[], int low, int high, int x) {
if (low > high) {
if (x >= A[high]) {
return A[high];
}
}
int mid = (low + high) / 2;
if (A[mid] == x) {
return A[mid];
}
if (mid > 0 && A[mid - 1] <= x && x < A[mid]) {
return A[mid - 1];
}
if (x < A[mid]) {
return lowerBound(A, low, mid - 1, x);
}
return lowerBound(A, mid + 1, high, x);
}
static long pow(long a, long b) {
long pow = 1;
long x = a;
while (b != 0) {
if ((b & 1) != 0) {
pow = (pow * x) % mod;
}
x = (x * x) % mod;
b /= 2;
}
return pow;
}
static boolean isPrime(long N) {
if (N <= 1) {
return false;
}
if (N <= 3) {
return true;
}
if (N % 2 == 0 || N % 3 == 0) {
return false;
}
for (int i = 5; i * i <= N; i = i + 6) {
if (N % i == 0 || N % (i + 2) == 0) {
return false;
}
}
return true;
}
static void print(char A[]) {
for (char c : A) {
out.print(c);
}
out.println();
}
static void print(boolean A[]) {
for (boolean c : A) {
out.print(c + " ");
}
out.println();
}
static void print(int A[]) {
for (int c : A) {
out.print(c + " ");
}
out.println();
}
static void print(long A[]) {
for (long i : A) {
out.print(i + " ");
}
out.println();
}
static void print(List<Integer> A) {
for (int a : A) {
out.print(a + " ");
}
}
static int i() {
return in.nextInt();
}
static long l() {
return in.nextLong();
}
static String s() {
return in.nextLine();
}
static int[] input(int N) {
int A[] = new int[N];
for (int i = 0; i < N; i++) {
A[i] = in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[] = new long[N];
for (int i = 0; i < A.length; i++) {
A[i] = in.nextLong();
}
return A;
}
static int GCD(int a, int b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
static long GCD(long a, long b) {
if (b == 0) {
return a;
} else {
return GCD(b, a % b);
}
}
}
class SegmentTree {
long[] t;
public SegmentTree(int n) {
t = new long[n + n];
Arrays.fill(t, Long.MIN_VALUE);
}
public long get(int i) {
return t[i + t.length / 2];
}
public void add(int i, long value) {
i += t.length / 2;
t[i] = value;
for (; i > 1; i >>= 1) {
t[i >> 1] = Math.max(t[i], t[i ^ 1]);
}
}
// max[a, b]
public long max(int a, int b) {
long res = Long.MIN_VALUE;
for (a += t.length / 2, b += t.length / 2; a <= b; a = (a + 1) >> 1, b = (b - 1) >> 1) {
if ((a & 1) != 0) {
res = Math.max(res, t[a]);
}
if ((b & 1) == 0) {
res = Math.max(res, t[b]);
}
}
return res;
}
}
class Pair {
int i, j;
Pair(int i, int j) {
this.i = i;
this.j = j;
}
}
class FastReader {
BufferedReader br;
StringTokenizer st;
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 59c2c4f4741128332888dd0463627c05 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.LinkedList;
import java.util.List;
public class Div2 {
public static void main(String[] args) throws IOException {
BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
String[] s;
StringBuilder sb = new StringBuilder();
Div2 div2 = new Div2();
s = reader.readLine().split(" ");
int n = Integer.parseInt(s[0]);
List<Integer> list = new LinkedList<>();
list.add(1);
long product = 1;
for (int i = 2; i < n; i++) {
if (div2.gcd(n, i) == 1) {
list.add(i);
product = (product * i) % n;
}
}
if (product != 1) {
list.remove(list.size() - 1);
}
sb.append(list.size()).append("\n");
for (Integer num : list) {
sb.append(num).append(" ");
}
System.out.println(sb.toString());
}
private int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a % b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | fa270315a16735b45b51c1319ced4ca8 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
public class Product1ModuloN {
private static StreamTokenizer st;
private static int nextInt()throws IOException{
st.nextToken();
return (int)st.nval;
}
public static void main(String[] args) throws IOException{
st = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
int n = nextInt();
boolean invalid[] = new boolean[n];
int temp = n;
for(int i = 1; i < n; ++i) {
if(gcd(i,n)!=1)invalid[i] = true;
}
if(temp!=1)for(int j = 1; temp*j < n; ++j) invalid[temp*j] = true;
PrintWriter pw = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
long ans = 1;
int cnt = 0;
for(int i = 1; i < n; ++i) {
if(invalid[i])continue;
ans = ((ans*i)%n+n)%n;
++cnt;
}
if(ans!=1) {
invalid[(int)ans] = true;
--cnt;
}
pw.println(cnt);
for(int i = 1; i < n; ++i)if(!invalid[i])pw.print(i + " ");
pw.close();
}
private static int gcd(int a, int b) { //logn
if(b == 0)return a;
return gcd(b,a%b);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 8207b2a43090d61183e01cb30f662797 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class A {
static FastScanner fs;
public static void main(String[] args) {
fs = new FastScanner();
// int t = fs.nextInt();
// while (t-->0)
solve();
}
public static void solve() {
int n = fs.nextInt();
TreeSet<Integer> ans = new TreeSet<>();
for (int i = 1; i < n; i++) if (gcd(i, n) == 1) ans.add(i);
long prod = 1;
for (int i : ans) {
prod *= i;
prod %= n;
}
if (prod != 1)
ans.remove((int)prod);
System.out.println(ans.size());
for (int i : ans) System.out.print(i + " ");
System.out.println();
}
static int gcd(int a, int b) {
if (a==0) return b;
return gcd(b%a, a);
}
static void ruffleSort(int[] a) {
int n=a.length;//shuffle, then sort
for (int i=0; i<n; i++) {
int oi=random.nextInt(n), temp=a[oi];
a[oi]=a[i]; a[i]=temp;
}
Arrays.sort(a);
}
static final Random random =new Random();
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a=new int[n];
for (int i=0; i<n; i++) a[i]=nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
static int[] reverse(int[] a) {
int n=a.length;
int[] res=new int[n];
for (int i=0; i<n; i++) res[i]=a[n-1-i];
return res;
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 6502456c0a3dda12ea8945082c9f89e3 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Product{
static long mod = 1000000007L;
static MyScanner sc = new MyScanner();
static void solve() {
int n = sc.nextInt();
ArrayList<Integer> ans = new ArrayList<>();
long prod = 1;
for(int i = 1;i<=n;i++){
if(gcd(i,n)==1){
prod *=i;
prod%=n;
ans.add(i);
}
}
if(prod==1){
out.println(ans.size());
}else{
out.println(ans.size()-1);
}
for(int i = 0;i<ans.size();i++){
if(prod!=1 && prod!=ans.get(i)){
out.print(ans.get(i)+" ");
}else if(prod==1){
out.print(ans.get(i)+" ");
}
}
out.println();
}
static long find(long arr[],long brr[],int s,int t){
int i = s;
int j = t;
long sum = 0;
while(i<=j){
sum+= arr[i]*brr[j];
i++;
j--;
}
return sum;
}
static class Pair implements Comparable<Pair>{
long a;
long b;
Pair(long aa,long bb){
a = aa;
b = bb;
}
public int compareTo(Pair p){
return Long.compare(this.b,p.b);
}
}
static void reverse(int arr[]){
int i = 0;int j = arr.length-1;
while(i<j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
}
static long pow(long a, long b) {
if (b == 0) return 1;
long res = pow(a, b / 2);
res = (res * res) % 1_000_000_007;
if (b % 2 == 1) {
res = (res * a) % 1_000_000_007;
}
return res;
}
static int lis(int arr[],int n){
int lis[] = new int[n];
lis[0] = 1;
for(int i = 1;i<n;i++){
lis[i] = 1;
for(int j = 0;j<i;j++){
if(arr[i]>arr[j]){
lis[i] = Math.max(lis[i],lis[j]+1);
}
}
}
int max = Integer.MIN_VALUE;
for(int i = 0;i<n;i++){
max = Math.max(lis[i],max);
}
return max;
}
static boolean isPali(String str){
int i = 0;
int j = str.length()-1;
while(i<j){
if(str.charAt(i)!=str.charAt(j)){
return false;
}
i++;
j--;
}
return true;
}
static long gcd(long a,long b){
if(b==0) return a;
return gcd(b,a%b);
}
static String reverse(String str){
char arr[] = str.toCharArray();
int i = 0;
int j = arr.length-1;
while(i<j){
char temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
i++;
j--;
}
String st = new String(arr);
return st;
}
static boolean isprime(int n){
if(n==1) return false;
if(n==3 || n==2) return true;
if(n%2==0 || n%3==0) return false;
for(int i = 5;i*i<=n;i+= 6){
if(n%i== 0 || n%(i+2)==0){
return false;
}
}
return true;
}
public static void main(String[] args) {
out = new PrintWriter(new BufferedOutputStream(System.out));
// int t = sc.nextInt();
int t= 1;
while(t-- >0){
solve();
// solve2();
// solve3();
}
// Stop writing your solution here. -------------------------------------
out.close();
}
//-----------PrintWriter for faster output---------------------------------
public static PrintWriter out;
//-----------MyScanner class for faster input----------
public static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int[] readIntArray(int n){
int arr[] = new int[n];
for(int i = 0;i<n;i++){
arr[i] = Integer.parseInt(next());
}
return arr;
}
int[] reverse(int arr[]){
int n= arr.length;
int i = 0;
int j = n-1;
while(i<j){
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
j--;i++;
}
return arr;
}
long[] readLongArray(int n){
long arr[] = new long[n];
for(int i = 0;i<n;i++){
arr[i] = Long.parseLong(next());
}
return arr;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
private static void sort(int[] arr) {
List<Integer> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
private static void sort(long[] arr) {
List<Long> list = new ArrayList<>();
for (int i=0; i<arr.length; i++){
list.add(arr[i]);
}
Collections.sort(list); // collections.sort uses nlogn in backend
for (int i = 0; i < arr.length; i++){
arr[i] = list.get(i);
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | f56e563f8e9754fbff6b5beb5449335e | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStreamWriter;
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map.Entry;
import java.util.PriorityQueue;
import java.util.Random;
import java.util.TreeSet;
public final class CF_716_D2_C {
static boolean verb=true;
static void log(Object X){if (verb) System.err.println(X);}
static void log(Object[] X){if (verb) {for (Object U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X){if (verb) {for (int U:X) System.err.print(U+" ");System.err.println("");}}
static void log(int[] X,int L){if (verb) {for (int i=0;i<L;i++) System.err.print(X[i]+" ");System.err.println("");}}
static void log(long[] X){if (verb) {for (long U:X) System.err.print(U+" ");System.err.println("");}}
static void logWln(Object X){if (verb) System.err.print(X);}
static void info(Object o){ System.out.println(o);}
static void output(Object o){outputWln(""+o+"\n"); }
static void outputWln(Object o){try {out.write(""+ o);} catch (Exception e) {}}
// Global vars
static BufferedWriter out;
static InputReader reader;
static long powerMod(long b,long e,long m){
long x=1;
while (e>0) {
if (e%2==1)
x=(b*x)%m;
b=(b*b)%m;
e=e/2;
}
return x;
}
static int pickRandom(TreeSet<Integer> ts) {
Random r=new Random();
int tt=r.nextInt(ts.size());
int id=0;
for (int v:ts) {
id=v;
tt--;
if (tt==0)
break;
}
return id;
}
static void test() {
log("testing");
Random r=new Random();
int NTESTS=10000;
int NMAX=1000;
int MMAX=100;
int VMAX=10000;
for (int n=2;n<=100000;n++) {
ArrayList<Integer> lst=solve(n);
long ans=1;
for (long x:lst) {
ans*=x;
ans%=n;
}
if (ans!=1) {
log("Error");
log(n);
log(ans);
return;
}
}
log("done");
}
static int sign(long x){
if (x==0)
return 0;
if (x>0)
return 1;
return -1;
}
static class Composite implements Comparable<Composite>{
int v;
int idx;
public int compareTo(Composite X) {
if (v<X.v)
return 1;
if (v>X.v)
return -1;
return idx-X.idx;
}
public Composite(int v, int idx) {
this.v = v;
this.idx = idx;
}
}
static int pgcd(int a,int b){
if (a<b)
return pgcd(b,a);
while (b!=0){
int c=b;
b=a%b;
a=c;
}
return a;
}
static ArrayList<Integer> solve(int n){
ArrayList<Integer> lst=new ArrayList<Integer>();
long ans=1;
for (int u=1;u<n;u++) {
if (pgcd(u,n)==1) {
lst.add(u);
ans*=u;
ans%=n;
}
}
if (ans!=1)
lst.remove(lst.size()-1);
return lst;
}
static long mod=1000000007;
static void process() throws Exception {
out = new BufferedWriter(new OutputStreamWriter(System.out));
reader=new InputReader(System.in);
int n=reader.readInt();
ArrayList<Integer> lst=solve(n);
output(lst.size());
StringBuffer sb=new StringBuffer();
for (int x:lst)
sb.append(x+" ");
output(sb);
try {
out.close();
}
catch (Exception EX){}
}
public static void main(String[] args) throws Exception {
process();
}
static final class InputReader {
private final InputStream stream;
private final byte[] buf = new byte[1024];
private int curChar;
private int numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read(buf);
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public final String readString() throws IOException {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
StringBuilder res=new StringBuilder();
do {
res.append((char)c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public final int readInt() throws IOException {
int c = read();
boolean neg=false;
while (isSpaceChar(c)) {
c = read();
}
char d=(char)c;
//log("d:"+d);
if (d=='-') {
neg=true;
c = read();
}
int res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
//log("res:"+res);
if (neg)
return -res;
return res;
}
public final long readLong() throws IOException {
int c = read();
boolean neg=false;
while (isSpaceChar(c)) {
c = read();
}
char d=(char)c;
//log("d:"+d);
if (d=='-') {
neg=true;
c = read();
}
long res = 0;
do {
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
//log("res:"+res);
if (neg)
return -res;
return res;
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
}
/*
9
9854 -8459
5972 4125
8148 3404
8382 9003
2861 -3242
-4217 6054
-7410 -5410
-9398 3130
1957 3500
*/
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 12e8bbfbfa641e238a8a97eb513538bb | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | /*==========================================================================
* AUTHOR: RonWonWon
* CREATED: 02.06.2021 01:05:22
/*==========================================================================*/
import java.io.*;
import java.util.*;
public class C {
public static void main(String[] args) {
int n = in.nextInt();
List<Integer> ans = new ArrayList<>();
long p = 1;
for(int i=1;i<n;i++)
if(gcd(i,n)==1){
p *= i; p %= n;
ans.add(i);
}
int len = ans.size();
if(p!=1){
len--;
}
out.println(len);
for(int i=0;i<len;i++) out.print(ans.get(i)+" ");
out.println();
out.flush();
}
static int lcm(int a, int b) {
return (a*b)/gcd(a,b);
}
static int gcd(int a, int b) {
if(b==0) return a;
else return gcd(b,a%b);
}
static long lcm(long a, long b) {
return (a*b)/gcd(a,b);
}
static long gcd(long a, long b) {
if(b==0) return a;
else return gcd(b,a%b);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while(!st.hasMoreTokens())
try { st = new StringTokenizer(br.readLine()); }
catch(IOException e) {}
return st.nextToken();
}
String nextLine(){
try{ return br.readLine(); }
catch(IOException e) { } return "";
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int a[] = new int[n];
for(int i=0;i<n;i++) a[i] = nextInt();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
long[] readArrayL(int n) {
long a[] = new long[n];
for(int i=0;i<n;i++) a[i] = nextLong();
return a;
}
double nextDouble() {
return Double.parseDouble(next());
}
double[] readArrayD(int n) {
double a[] = new double[n];
for(int i=0;i<n;i++) a[i] = nextDouble();
return a;
}
}
static FastScanner in = new FastScanner();
static PrintWriter out = new PrintWriter(System.out);
static int oo = 1_000_000_000;
static final Random random = new Random();
static void ruffleSort(int[] a){
int n = a.length;
for(int i=0;i<n;i++){
int j = random.nextInt(n), temp = a[j];
a[j] = a[i]; a[i] = temp;
}
Arrays.sort(a);
}
static void ruffleSortL(long[] a){
int n = a.length;
for(int i=0;i<n;i++){
int j = random.nextInt(n);
long temp = a[j];
a[j] = a[i]; a[i] = temp;
}
Arrays.sort(a);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | fab81627df2de357aac556d2d3b11a73 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Product1 {
//--------------------------INPUT READER--------------------------------//
static class fs {
public BufferedReader br;
StringTokenizer st = new StringTokenizer("");
public fs() { this(System.in); }
public fs(InputStream is) {
br = new BufferedReader(new InputStreamReader(is));
}
String next() {
while (!st.hasMoreTokens()) {
try { st = new StringTokenizer(br.readLine()); }
catch (IOException e) { e.printStackTrace(); }
}
return st.nextToken();
}
int ni() { return Integer.parseInt(next()); }
long nl() { return Long.parseLong(next()); }
double nd() { return Double.parseDouble(next()); }
String ns() { return next(); }
int[] na(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = ni();
return a;
}
}
//-----------------------------------------------------------------------//
//---------------------------PRINTER-------------------------------------//
static class Printer {
static PrintWriter w;
public Printer() {this(System.out);}
public Printer(OutputStream os) {
w = new PrintWriter(os);
}
public void p(int i) {w.println(i);};
public void p(long l) {w.println(l);};
public void p(double d) {w.println(d);};
public void p(String s) { w.println(s);};
public void pr(int i) {w.println(i);};
public void pr(long l) {w.print(l);};
public void pr(double d) {w.print(d);};
public void pr(String s) { w.print(s);};
public void pl() {w.println();};
public void close() {w.close();};
}
//------------------------------------------------------------------------//
//--------------------------VARIABLES------------------------------------//
static fs sc = new fs();
static OutputStream outputStream = System.out;
static Printer w = new Printer(outputStream);
//-----------------------------------------------------------------------//
//--------------------------ADMIN_MODE-----------------------------------//
private static void ADMIN_MODE() throws IOException {
if (System.getProperty("ONLINE_JUDGE") == null) {
w = new Printer(new FileOutputStream("output.txt"));
sc = new fs(new FileInputStream("input.txt"));
}
}
//-----------------------------------------------------------------------//
//----------------------------START--------------------------------------//
public static void main(String[] args)
throws IOException {
ADMIN_MODE();
// int t = sc.ni();
// while(t-->0)
solve();
w.close();
}
static int[] primes;
static int n;
static void solve() throws IOException {
n = sc.ni();
long pro = 1;
List<Integer> l = new ArrayList<>();
for(int i = 1; i < n; i++) {
if(gcd(n, i)==1) {
l.add(i);
pro *= i;
pro%=n;
}
}
if(pro%n!=1) {
l.remove(l.size()-1);
}
w.p(l.size());
for(int i = 0; i < l.size(); i++) {
w.pr(l.get(i)+" ");
}
w.pl();
}
static long gcd(long a, long b) {
return b == 0 ? (a < 0L ? -a: a) : gcd(b, a%b);
}
static long lcm(long a, long b) {
return a/gcd(a, b)*b;
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 91c8a12d02ef709961f8479240994cf7 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.*;
import java.util.*;
public class Main{
public static long mod = (long)1e9+7;
public static ArrayList<Integer>[] graph;
public static void sort(int[] arr){
ArrayList<Integer> list = new ArrayList<>();
for(int u:arr) list.add(u);
Collections.sort(list);
for (int i = 0; i < arr.length; i++) {
arr[i] = list.get(i);
}
}
public static void sort(long[] arr){
ArrayList<Long> list = new ArrayList<>();
for(long u:arr) list.add(u);
Collections.sort(list);
for (int i = 0; i < arr.length; i++) {
arr[i] = list.get(i);
}
}
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
int t = 1;
// t = in.nextInt();
for(int i = 1;i<=t ;i++){
solve(in,out);
}
out.close();
}
static boolean[] visited;
static StringBuilder res;
private static void solve(InputReader in, PrintWriter out) {
int n = in.nextInt();
boolean[] possible = new boolean[n+1];
long prod = 1;
res = new StringBuilder("");
for (int i = 1; i < n; i++) {
if(gcd(i,n)==1){
possible[i] = true;
prod = prod*i;
if(prod>=n) prod%=n;
}
}
if(prod !=1 ) possible[(int)prod] =false;
prod = 0;
for (int i = 1; i < n; i++) {
if(possible[i]){
prod++;
res.append(i).append(" ");
}
}
out.println(prod);
out.println(res);
}
private static int gcd(int i, int n) {
if(n==0) return i;
else return gcd(n,i%n);
}
private static void dfs(int i) {
visited[i] = true;
for(int u:graph[i]){
if(visited[u]) continue;
res.append(i+" "+u);
dfs(u);
}
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public double nextDouble(){
return Double.parseDouble(next());
}
public int[] readIntArray(int size){
int[] list = new int[size];
for(int i = 0;i<size;i++) list[i] = nextInt();
return list;
}
public long[] readLongArray(int size){
long[] list = new long[size];
for(int i = 0;i<size;i++) list[i] = nextLong();
return list;
}
public double[] readDoubleArray(int size){
double[] list = new double[size];
for(int i = 0;i<size;i++) list[i] = nextDouble();
return list;
}
public String linereader() {
String s = null;
try{
s = reader.readLine();
}
catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
}
class Pair<T extends Comparable<T>,K extends Comparable<K> > implements Comparable<Pair<T,K>>{
T first;
K second;
public Pair(T first, K second){
this.first = first;
this.second = second;
}
@Override
public String toString(){
return first+" "+second;
}
@Override
public int compareTo(Pair<T,K> o) {
// TODO Auto-generated method stub
if((first).compareTo(o.first)!=0) return first.compareTo(o.first);
else return second.compareTo(o.second);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 17697619a6be07d35d7700a3a816a998 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.math.BigInteger;
import java.util.*;
import java.util.stream.Collectors;
public class CF1514C {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
List<Integer> coPrimeNumbers = new ArrayList<>();
for (int i = 1; i < n; i++) {
boolean isRelativelyPrime = gcd(i, n) == 1;
if (isRelativelyPrime) {
coPrimeNumbers.add(i);
}
}
BigInteger res = BigInteger.ONE;
for (Integer i : coPrimeNumbers) {
res = res.multiply(BigInteger.valueOf(i)).mod(BigInteger.valueOf(n));
}
if (res.compareTo(BigInteger.ONE) == 0) {
String output = coPrimeNumbers.stream().map(e -> String.valueOf(e)).collect(Collectors.joining(" "));
System.out.println(coPrimeNumbers.size());
System.out.println(output);
}else{
BigInteger finalRes = res;
String output = coPrimeNumbers.stream()
.filter(e -> finalRes.intValue() != e)
.map(e -> String.valueOf(e)).collect(Collectors.joining(" "));
System.out.println(coPrimeNumbers.size() - 1);
System.out.println(output);
}
}
public static int gcd(int a, int b) {
if (a == 0) {
return b;
}
return gcd(b % a, a);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 448068ff117172c5039352d5dfd61e32 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.util.ArrayList;
import java.util.Scanner;
public class Product1ModuloN {
static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
public static void main(String args[]) {
Scanner scan = new Scanner(System.in);
long n = scan.nextInt();
ArrayList<Integer> ar = new ArrayList<Integer>();
for (int i = 1; i <= n; i++) {
if (gcd(n, i) == 1) {
ar.add(i);
}
}
long g = 1;
for (int i = 0; i < ar.size(); i++) {
g = ((g % n) * (ar.get(i) % n)) % n;
}
long r = g % n;
if (r == 1) {
System.out.println(ar.size());
for (int i = 0; i < ar.size(); i++) {
System.out.print(ar.get(i) + " ");
}
System.out.println();
} else {
System.out.println(ar.size() - 1);
for (int i = 0; i < ar.size(); i++) {
if (ar.get(i) == r) {
continue;
}
System.out.print(ar.get(i) + " ");
}
System.out.println();
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 97e2db70aaa3d6310341689416f30156 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.util.TreeSet;
import javax.management.RuntimeErrorException;
public class Main {
int gcd_impl(int a, int b) {
if (a == 0) return b;
return gcd_impl(b % a, a);
}
int gcd (int a, int b) {
if (a > b) {
return gcd_impl(b, a);
} else {
return gcd_impl(a, b);
}
}
private void solve() throws Exception {
int n = nextInt();
int phi = 0;
long result = 1;
TreeSet<Integer> answer = new TreeSet<>();
for(int i = 1; i < n; i++) {
if (gcd(i, n) == 1) {
phi++;
result = (result * i) % n;
answer.add(i);
}
}
if (result != 1) {
int inv = binpow(result, phi - 1, n);
// System.out.println("invert for " + result + " = " + inv);
if (!answer.contains(inv)) {
// all coprime numbers are in the set
// the result is also coprime
// so the inv is coprime and must be present in the list
throw new RuntimeException();
}
answer.remove(inv);
}
Integer array[] = answer.toArray(new Integer[0]);
out.println(array.length);
for(int i = 0; i < array.length; i++) {
if(i != 0) out.print(" ");
out.print(array[i]);
}
out.println();
}
private int binpow(long value, int pow, long mod) {
long base = value;
long result = 1;
while (pow > 0) {
if (pow % 2 != 0) {
result = (result * base) % mod;
}
pow /= 2;
base = (base * base) % mod;
}
return (int) result;
}
void run() throws Exception {
// int cnt_test = nextInt();
// for (int test = 0; test < cnt_test; test++) {
solve();
// }
}
public static void main(String[] args) throws Exception {
Main instance = new Main();
instance.initStreams();
instance.run();
instance.closeStreams();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st = new StringTokenizer("");
void initStreams() throws FileNotFoundException {
if (new File("input.txt").exists()) {
try {
System.setIn(new FileInputStream("input.txt"));
} catch (FileNotFoundException e1) {
e1.printStackTrace();
}
}
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
}
void closeStreams() throws IOException {
in.close();
out.close();
}
String nextString() throws IOException {
while (!st.hasMoreTokens())
st = new StringTokenizer(in.readLine());
return st.nextToken();
}
long nextLong() throws IOException {
return Long.parseLong(nextString());
}
int nextInt() throws IOException {
return Integer.parseInt(nextString());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextString());
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | e1d8d9a4bd172b818bf3bcc65e943ce5 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.Scanner;
import java.util.ArrayList;
public class C_Product_1_Modulo_N{
public static void main(String[] args) {
Scanner s= new Scanner(System.in);
int n=s.nextInt();
boolean array[]= new boolean[n];
ArrayList<Integer> list = new ArrayList<Integer>();
list.add(1);
for(int i=2;i<n;i++){
if(array[i]==true){
continue;
}
if(n%i!=0){
list.add(i);
continue;
}
array[i]=true;
int k=2;
while((k*i)<=(n-1)){
array[k*i]=true;
k++;
}
}
long res=1;
for(int i=0;i<list.size();i++){
res=res*list.get(i);
res=res%n;
}
if(res%n==1){
System.out.println(list.size());
for(int i=0;i<list.size();i++){
System.out.print(list.get(i)+" ");
}
}
else{
long alpha=res%n;
System.out.println(list.size()-1);
for(int i=0;i<list.size();i++){
if(list.get(i)!=alpha){
System.out.print(list.get(i)+" ");
}
}
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | d74472b6979c278b5d62311f969d65b2 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.*;
import java.lang.*;
import java.math.BigInteger;
import java.util.*;
public class Main{
static Scanner scanner=new Scanner(System.in);
public static void main(String[] args) {
int n=scanner.nextInt();
boolean b[]=new boolean [n];
long ans=1;
for(int i=1;i<n;i++) {
if(Gcd(n, i)!=1) {
b[i]=true;
}else {
ans*=i;
ans%=n;
}
}
if(ans!=1)b[(int)ans]=true;
StringBuilder sb=new StringBuilder();
ans=0;
for(int i=1;i<n;i++) {
if(!b[i]) {
ans++;
sb.append(i+" ");
}
}
System.out.println(ans);
System.out.println(sb);
}
static int Gcd(int x,int y) {
return y==0?x:Gcd(y, x%y);
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | ce29f6db2e353f9aa56af9df2736737d | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.LinkedList;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
LinkedList<Integer> primeFactors = primeFactorize(n);
int[] array = new int[n-1];
for(int k = 1; k<n; k++){
array[k-1] = k;
for (Integer i:
primeFactors) {
if(k % i == 0){
array[k-1] = 1;
}
}
}
long modN = 1;
for(int i:
array){
modN = (long)(i*modN) % n;
}
if(modN != 1){
array[(int)modN-1] = 1;
}
int subSetLength = n;
for (int i:
array) {
if(i==1){
subSetLength--;
}
}
System.out.println(subSetLength);
System.out.print(1 + " ");
for (int i:
array) {
if(i != 1){
System.out.print(i + " ");
}
}
}
public static LinkedList<Integer> primeFactorize(int n){
LinkedList<Integer> primeFactors = new LinkedList<Integer>();
if (n != 1) {
for (int i = 2; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
primeFactors = primeFactorize(i);
primeFactors.addAll(primeFactorize(n / i));
return primeFactors;
}
}
primeFactors.add(n);
}
return primeFactors;
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 9b89acd7292033c7414c1be7b816f113 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.util.Scanner;
public class Main {
public static int gcd(int a,int b) {
if(b == 0) return a;
return gcd(b,a % b);
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int t = 1;
int[] a = new int[100010];
int n = sc.nextInt();
long ans = 1;
for(int i = 1;i <= n; ++i)
if(gcd(i,n) == 1) {
a[t++] = i;
ans = ans * i % n;
}
if(ans != 1) {
boolean f = false;
System.out.println(t - 2);
for(int i = 1;i < t; ++i) {
if(a[i] == ans) continue;
if(f == true) System.out.print(" ");
f = true;
System.out.print(a[i]);
}
System.out.println();
}
else {
System.out.println(t - 1);
for(int i = 1;i < t; ++i)
System.out.print(a[i] + ((i == t - 1)?"\n":" "));
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 249d3929b48377cb5915042edd00a89f | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.util.Queue;
import java.util.LinkedList;
public class ProdMod {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
long N = Long.parseLong(br.readLine());
Queue<Long> numbers = new LinkedList<Long>();
long MOD = 1;
for (long i = 1; i < N-1; i++) {
if (GCD(N, i) == 1) { numbers.add(i); MOD = (MOD * i) % N; }
}
if (MOD == N-1) { numbers.add(N-1); }
System.out.println(numbers.size());
while (numbers.size() > 1) { System.out.print(numbers.poll() + " "); }
System.out.println(numbers.poll());
}
static long GCD(long a,long b) {
if (b == 0) return a;
return GCD(b, a % b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 82e8f0cca6cc2b55927e1dfbc3889dfe | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) {
new C().solve(System.in, System.out);
}
public void solve(InputStream in, OutputStream out) {
InputReader inputReader = new InputReader(in);
PrintWriter writer = new PrintWriter(new BufferedOutputStream(out));
int n = inputReader.nextInt();
List<Integer> result = solve(n);
writer.println(result.size());
for (Integer res : result) {
writer.print(res + " ");
}
writer.close();
}
public List<Integer> solve(int n) {
List<Integer> result = new ArrayList<>();
long mod = 1;
for (int i = 1; i < n - 1; i++) {
if (nod(i, n) == 1) {
result.add(i);
mod = (mod * i) % n;
}
}
if ((mod * (n - 1)) % n == 1) {
result.add(n - 1);
}
return result;
}
private int nod(int x, int y) {
while (true) {
int mod = x % y;
if (mod == 0) {
return y;
}
x = y;
y = mod;
}
}
public List<Integer> primeSieve(int n) {
boolean[] isPrime = new boolean[n + 1];
for (int i = 0; i <= n; i++) {
isPrime[i] = true;
}
int bound = (int) Math.sqrt(n) + 1;
for (int i = 2; i <= bound; i++) {
if (!isPrime[i]) {
continue;
}
for (int j = i * i; j <= n; j += i) {
isPrime[j] = false;
}
}
List<Integer> result = new ArrayList<>();
for (int i = 2; i <= n; i++) {
if (isPrime[i]) {
result.add(i);
}
}
return result;
}
private static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 483f677cd820365a3c0f70f5ccd6b6c1 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Lynn
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
Scanner in = new Scanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskC solver = new TaskC();
solver.solve(1, in, out);
out.close();
}
static class TaskC {
Scanner in;
PrintWriter out;
public void solve(int testNumber, Scanner in, PrintWriter out) {
this.in = in;
this.out = out;
run();
}
void run() {
int n = in.nextInt();
boolean[] coprime = new boolean[n];
long prod = 1;
int cnt = 0;
for (int i = 1; i < n; i++) {
if (Num.gcd(n, i) == 1) {
coprime[i] = true;
prod = (prod * (long) i) % n;
cnt++;
}
}
if (prod != 1) {
coprime[(int) prod] = false;
cnt--;
}
out.println(cnt);
for (int i = 1; i < n; i++) {
if (coprime[i] == true) {
out.print(i);
out.print(' ');
}
}
out.println("");
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
eat("");
}
private void eat(String s) {
st = new StringTokenizer(s);
}
public String nextLine() {
try {
return br.readLine();
} catch (IOException e) {
return null;
}
}
public boolean hasNext() {
while (!st.hasMoreTokens()) {
String s = nextLine();
if (s == null)
return false;
eat(s);
}
return true;
}
public String next() {
hasNext();
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
static class Num {
public static int gcd(int a, int b) {
while (b != 0) {
int c = a;
a = b;
b = c % b;
}
if (a < 0) a = -a;
return a;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 6f1a4ac39c99675e95df08f68948c7cf | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.BitSet;
import java.util.Calendar;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.PriorityQueue;
import java.util.SortedSet;
import java.util.Stack;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.TreeSet;
/**
* #
*
* @author pttrung
*/
public class C_Round_716_Div2 {
public static long MOD = 1000000007;
static long[][] dp;
public static void main(String[] args) throws FileNotFoundException {
// PrintWriter out = new PrintWriter(new FileOutputStream(new File(
// "output.txt")));
PrintWriter out = new PrintWriter(System.out);
Scanner in = new Scanner();
int n = in.nextInt();
long st = 1;
int total = 1;
for (long i = 2; i < n; i++) {
if (gcd(i, n) != 1) {
continue;
}
total++;
st *= i;
st %= n;
}
total -= (st != 1) ? 1 : 0;
out.println(total);
for (int i = 1; i < n; i++) {
if (gcd(i, n) != 1) {
continue;
}
if (st != 1 && st == i) {
continue;
}
out.print(i + " ");
}
out.close();
}
static boolean check(String a, String re) {
int x = 0;
for (int i = 0; i < re.length() && x < a.length(); i++) {
if (re.charAt(i) == a.charAt(x)) {
x++;
}
}
return x == a.length();
}
static String cal(String a, String b, boolean one) {
//System.out.println(a + " " + b + " " + one );
StringBuilder builder = new StringBuilder();
int x = 0;
int y = 0;
int need = one ? 1 : 0;
while (x < a.length() && y < b.length()) {
int i = a.charAt(x++) - '0';
while (i != need) {
builder.append(i);
//System.out.println(i + ' ' + x);
if (x < a.length()) {
i = a.charAt(x++) - '0';
} else {
i = -1;
break;
}
}
int j = b.charAt(y++) - '0';
while (j != need) {
builder.append(j);
if (y < b.length()) {
j = b.charAt(y++) - '0';
} else {
j = -1;
break;
}
}
//System.out.println(x + " " + y + " " + i + " " + j + " " + builder.toString());
if (i == j && i == need) {
builder.append(need);
} else {
if (i != -1) {
builder.append(i);
}
if (j != -1) {
builder.append(j);
}
break;
}
}
while (x < a.length()) {
builder.append(a.charAt(x++));
}
while (y < b.length()) {
builder.append(b.charAt(y++));
}
return builder.toString();
}
public static int[] KMP(String val) {
int i = 0;
int j = -1;
int[] result = new int[val.length() + 1];
result[0] = -1;
while (i < val.length()) {
while (j >= 0 && val.charAt(j) != val.charAt(i)) {
j = result[j];
}
j++;
i++;
result[i] = j;
}
return result;
}
public static boolean nextPer(int[] data) {
int i = data.length - 1;
while (i > 0 && data[i] < data[i - 1]) {
i--;
}
if (i == 0) {
return false;
}
int j = data.length - 1;
while (data[j] < data[i - 1]) {
j--;
}
int temp = data[i - 1];
data[i - 1] = data[j];
data[j] = temp;
Arrays.sort(data, i, data.length);
return true;
}
public static int digit(long n) {
int result = 0;
while (n > 0) {
n /= 10;
result++;
}
return result;
}
public static double dist(long a, long b, long x, long y) {
double val = (b - a) * (b - a) + (x - y) * (x - y);
val = Math.sqrt(val);
double other = x * x + a * a;
other = Math.sqrt(other);
return val + other;
}
public static class Point implements Comparable<Point> {
int x;
String y;
public Point(int start, String end) {
this.x = start;
this.y = end;
}
@Override
public int compareTo(Point o) {
return Integer.compare(x, o.x);
}
}
public static class FT {
long[] data;
FT(int n) {
data = new long[n];
}
public void update(int index, long value) {
while (index < data.length) {
data[index] += value;
index += (index & (-index));
}
}
public long get(int index) {
long result = 0;
while (index > 0) {
result += data[index];
index -= (index & (-index));
}
return result;
}
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
public static long pow(long a, int b) {
if (b == 0) {
return 1;
}
if (b == 1) {
return a;
}
long val = pow(a, b / 2);
if (b % 2 == 0) {
return val * val;
} else {
return val * (val * a);
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() throws FileNotFoundException {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
//br = new BufferedReader(new InputStreamReader(new FileInputStream(new File("input.txt"))));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 75a3f8b6af27a4a180fc91c9436ac155 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
public class Main
{
public static int gcd(int a,int b)
{
if(b==0)
{
return a;
}
return gcd(b,a%b);
}
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
ArrayList<Integer> f = new ArrayList<Integer>();
f.add(1);
long pro = 1L;
for(int i=2;i<n;i++)
{
if(gcd(n,i)==1)
{
f.add(i);
pro = (pro*i)%n;
}
}
if(pro!=1)
{
f.remove(f.size()-1);
}
System.out.println(f.size());
for(int i:f)
{
System.out.print(i+" ");
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 0f717cf4eadf6e3978150b056e815aff | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
public class Main
{
PrintWriter out;
FastReader sc;
long mod=(long)(1e9+7);
long maxlong=Long.MAX_VALUE;
long minlong=Long.MIN_VALUE;
/******************************************************************************************
*****************************************************************************************/
public void sol(){
int n=ni();
TreeSet<Integer> h=new TreeSet<>();
h.add(1);
long pro=1;
for(int i=2;i<n;i++) {
if(gcd(i,n)==1) {
h.add(i);
pro=(pro*i)%n;
}
}
if(pro%n!=1) {
h.remove(n-1);
}
StringBuilder sb=new StringBuilder();
for(int i:h) {
sb.append(i+" ");
}pl(h.size());
pl(sb);
}
public static void main(String[] args)
{
Main g=new Main();
g.out=new PrintWriter(System.out);
g.sc=new FastReader();
int t=1;
// t=g.ni();
while(t-->0)
g.sol();
g.out.flush();
}
/****************************************************************************************
*****************************************************************************************/
static class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br = new BufferedReader(new
InputStreamReader(System.in));
}
String next()
{
while (st == null || !st.hasMoreElements())
{
try
{
st = new StringTokenizer(br.readLine());
}
catch (IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str = "";
try
{
str = br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} public int ni(){
return sc.nextInt();
}public long nl(){
return sc.nextLong();
}public double nd(){
return sc.nextDouble();
}public char[] rl(){
return sc.nextLine().toCharArray();
}public String rl1(){
return sc.nextLine();
}
public void pl(Object s){
out.println(s);
}public void ex(){
out.println();
}
public void pr(Object s){
out.print(s);
}public String next(){
return sc.next();
}public long abs(long x){
return Math.abs(x);
}
public int abs(int x){
return Math.abs(x);
}
public double abs(double x){
return Math.abs(x);
}public long min(long x,long y){
return (long)Math.min(x,y);
}
public int min(int x,int y){
return (int)Math.min(x,y);
}
public double min(double x,double y){
return Math.min(x,y);
}public long gcd(long a, long b) {
if (a == 0)
return b;
return gcd(b % a, a);
}public long lcm(long a, long b) {
return (a / gcd(a, b)) * b;
}
void sort1(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) {
l.add(i);
}
Collections.sort(l,Collections.reverseOrder());
for (int i = 0; i < a.length; i++) {
a[i] = l.get(i);
}
}
void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) {
l.add(i);
}
Collections.sort(l);
for (int i = 0; i < a.length; i++) {
a[i] = l.get(i);
}
}void sort(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) {
l.add(i);
}
Collections.sort(l);
for (int i = 0; i < a.length; i++) {
a[i] = l.get(i);
}
}void sort1(long[] a) {
ArrayList<Long> l = new ArrayList<>();
for (long i : a) {
l.add(i);
}
Collections.sort(l,Collections.reverseOrder());
for (int i = 0; i < a.length; i++) {
a[i] = l.get(i);
}
}
void sort(double[] a) {
ArrayList<Double> l = new ArrayList<>();
for (double i : a) {
l.add(i);
}
Collections.sort(l);
for (int i = 0; i < a.length; i++) {
a[i] = l.get(i);
}
}long pow(long a,long b){
if(b==0){
return 1;
}long p=pow(a,b/2);
if(b%2==0) return (p*p)%mod;
else return (((p*p)%mod)*a)%mod;
}
int swap(int a,int b){
return a;
}long swap(long a,long b){
return a;
}double swap(double a,double b){
return a;
}
boolean isPowerOfTwo (int x)
{
return x!=0 && ((x&(x-1)) == 0);
}boolean isPowerOfTwo (long x)
{
return x!=0 && ((x&(x-1)) == 0);
}public long max(long x,long y){
return (long)Math.max(x,y);
}
public int max(int x,int y){
return (int)Math.max(x,y);
}
public double max(double x,double y){
return Math.max(x,y);
}long sqrt(long x){
return (long)Math.sqrt(x);
}int sqrt(int x){
return (int)Math.sqrt(x);
}void input(int[] ar,int n){
for(int i=0;i<n;i++)ar[i]=ni();
}void input(long[] ar,int n){
for(int i=0;i<n;i++)ar[i]=nl();
}void fill(int[] ar,int k){
Arrays.fill(ar,k);
}void yes(){
pl("YES");
}void no(){
pl("NO");
}
long[] sieve(int n)
{
long[] k=new long[n+1];
boolean[] pr=new boolean[n+1];
for(int i=1;i<=n;i++){
k[i]=i;
pr[i]=true;
}for(int i=2;i<=n;i++){
if(pr[i]){
for(int j=i+i;j<=n;j+=i){
pr[j]=false;
if(k[j]==j){
k[j]=i;
}
}
}
}return k;
}
int strSmall(int[] arr, int target)
{
int start = 0, end = arr.length-1;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr[mid] >= target) {
end = mid - 1;
}
else {
ans = mid;
start = mid + 1;
}
}
return ans;
} int strSmall(ArrayList<Integer> arr, int target)
{
int start = 0, end = arr.size()-1;
int ans = -1;
while (start <= end) {
int mid = (start + end) / 2;
if (arr.get(mid) > target) {
start = mid + 1;
ans=start;
}
else {
end = mid - 1;
}
}
return ans;
}long mMultiplication(long a,long b)
{
long res = 0;
a %= mod;
while (b > 0)
{
if ((b & 1) > 0)
{
res = (res + a) % mod;
}
a = (2 * a) % mod;
b >>= 1;
}
return res;
}long nCr(int n, int r ,int p)
{
if (n<r)
return 0;
if (r == 0)
return 1;
long[] fac = new long[n + 1];
fac[0] = 1;
for (int i = 1; i <= n; i++)
fac[i] = fac[i - 1] * i % p;
return (fac[n] * modInverse(fac[r], p)
% p * modInverse(fac[n - r], p)
% p)
% p;
}long power(long x, long y, long p)
{
long res = 1;
x = x % p;
while (y > 0) {
if (y % 2 == 1)
res = (res * x) % p;
y = y >> 1;
x = (x * x) % p;
}
return res;
}long modInverse(long n, long p)
{
return power(n, p - 2, p);
}
int[][] floydWarshall(int graph[][],int INF,int V)
{
int dist[][] = new int[V][V];
int i, j, k;
for (i = 0; i < V; i++)
for (j = 0; j < V; j++)
dist[i][j] = graph[i][j];
for (k = 0; k < V; k++)
{
for (i = 0; i < V; i++)
{
for (j = 0; j < V; j++)
{
if (dist[i][k] + dist[k][j] < dist[i][j])
dist[i][j] = dist[i][k] + dist[k][j];
}
}
}return dist;
}
public static class Pair implements Comparable<Pair> {
long x;
long y;
public Pair(long x, long y) {
this.x = x;
this.y = y;
}
public int compareTo(Pair other) {
if (this.x == other.x) {
return Long.compare(this.y, other.y);
}
return Long.compare(this.x, other.x);
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | cec661179f86477036d81745c5d2f5ab | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.*;
//_________________________________________________________________
public class Main {
public static void main(String[] args) throws IOException {
// File file = new File("input.txt");
FastScanner sc = new FastScanner();
// Scanner sc= new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
// int t=sc.nextInt();
// outer:while (t-->=1){
// }
int n=sc.nextInt();
ArrayList<Integer> list = new ArrayList<>();
long pro=1;
for (int i=1;i<n;i++){
if (gcdInt(i,n)==1){
list.add(i);
pro*=i;
pro%=n;
}
}
if (pro==1){
System.out.println(list.size());
for (int i:list){
System.out.print(i+" ");
}
System.out.println();
}
else{
System.out.println(list.size()-1);
for (int i=0;i<list.size()-1;i++){
System.out.print(list.get(i)+" ");
}
System.out.println();
}
out.flush();
}
//------------------------------------if-------------------------------------------------------------------------------------------------------------------------------------------------
//sieve
static void primeSieve(int a[]){
//mark all odd number as prime
for (int i=3;i<=1000000;i+=2){
a[i]=1;
}
for (long i=3;i<=1000000;i+=2){
//if the number is marked then it is prime
if (a[(int) i]==1){
//mark all muliple of the number as not prime
for (long j=i*i;j<=1000000;j+=i){
a[(int)j]=0;
}
}
}
a[2]=1;
a[1]=a[0]=0;
}
static void sort(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
Collections.sort(l);
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static String sortString(String s) {
char temp[] = s.toCharArray();
Arrays.sort(temp);
return new String(temp);
}
static class Pair implements Comparable<Pair> {
int a;
int b;
public Pair(int a, int b) {
this.a = a;
this.b = b;
}
// to sort first part
// public int compareTo(Pair other) {
// if (this.a == other.a) return other.b > this.b ? -1 : 1;
// else if (this.a > other.a) return 1;
// else return -1;
// }
// public int compareTo(Pair other) {
// if (this.b == other.b) return 0;
// if (this.b < other.b) return 1;
// else return -1;
// }
//sort on the basis of first part only
public int compareTo(Pair other) {
if (this.a == other.a) return 0;
else if (this.a > other.a) return 1;
else return -1;
}
}
static int[] frequency(String s){
int fre[]= new int[26];
for (int i=0;i<s.length();i++){
fre[s.charAt(i)-'a']++;
}
return fre;
}
static int mod =(int)(1e9+7);
static long mod(long x) {
return ((x % mod + mod) % mod);
}
static long add(long x, long y) {
return mod(mod(x) + mod(y));
}
static long mul(long x, long y) {
return mod(mod(x) * mod(y));
}
//Fast Power(logN)
static long BinaryExponentiation(long a,long b){
long ans=1;
while (b>0){
if (b%2==1){
ans=(ans*a)%mod;
}
a=(a*a)%mod;
b/=2;
}
return ans;
}
static int[] find(int n, int start, int diff) {
int a[] = new int[n];
a[0] = start;
for (int i = 1; i < n; i++) a[i] = a[i - 1] + diff;
return a;
}
static void swap(int a, int b) {
int c = a;
a = b;
b = c;
}
static void printArray(int a[]) {
for (int i = 0; i < a.length; i++) {
System.out.print(a[i] + " ");
}
}
static boolean sorted(int a[]) {
int n = a.length;
boolean flag = true;
for (int i = 0; i < n - 1; i++) {
if (a[i] > a[i + 1]) flag = false;
}
if (flag) return true;
else return false;
}
public static int findlog(long n) {
if (n == 0)
return 0;
if (n == 1)
return 0;
if (n == 2)
return 1;
double num = Math.log(n);
double den = Math.log(2);
if (den == 0)
return 0;
return (int) (num / den);
}
public static long gcd(long a, long b) {
if (b % a == 0)
return a;
return gcd(b % a, a);
}
public static int gcdInt(int a, int b) {
if (b % a == 0)
return a;
return gcdInt(b % a, a);
}
static void sortReverse(int[] a) {
ArrayList<Integer> l = new ArrayList<>();
for (int i : a) l.add(i);
// Collections.sort.(l);
Collections.sort(l, Collections.reverseOrder());
for (int i = 0; i < a.length; i++) a[i] = l.get(i);
}
static class FastScanner {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer("");
String next() {
while (!st.hasMoreTokens())
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
int[] readArray(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) a[i] = nextInt();
return a;
}
long[] readArrayLong(long n) {
long[] a = new long[(int) n];
for (int i = 0; i < n; i++) a[i] = nextLong();
return a;
}
long nextLong() {
return Long.parseLong(next());
}
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | da7d75f2e00f385457ecf4b4f4ca1427 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
import java.math.*;
import java.math.BigInteger;
//import javafx.util.*;
public final class B
{
static StringBuilder ans=new StringBuilder();
static FastReader in=new FastReader();
static ArrayList<ArrayList<Integer>> g;
static long mod=1000000007;
static int D1[],D2[],par[];
static boolean set[];
static long INF=Long.MAX_VALUE;
public static void main(String args[])throws IOException
{
int N=i();
ArrayList<Integer> A=new ArrayList<>();
A.add(1);
long p=1;
for(long i=2; i<N; i++)
{
if(GCD(i,N)==1)
{
p=((p%N)*(i))%N;
A.add((int)i);
}
}
if(p!=1)A.remove(A.size()-1);
System.out.println(A.size());
for(int a:A)ans.append(a+" ");
System.out.println(ans);
}
static long fact(long N)
{
long num=1L;
while(N>=1)
{
num=((num%mod)*(N%mod))%mod;
N--;
}
return num;
}
static boolean reverse(long A[],int l,int r)
{
while(l<r)
{
long t=A[l];
A[l]=A[r];
A[r]=t;
l++;
r--;
}
if(isSorted(A))return true;
else return false;
}
static boolean isSorted(long A[])
{
for(int i=1; i<A.length; i++)if(A[i]<A[i-1])return false;
return true;
}
static boolean isPalindrome(char X[],int l,int r)
{
while(l<r)
{
if(X[l]!=X[r])return false;
l++; r--;
}
return true;
}
static long min(long a,long b,long c)
{
return Math.min(a, Math.min(c, b));
}
static void print(int a)
{
System.out.println("! "+a);
}
static int ask(int a,int b)
{
System.out.println("? "+a+" "+b);
return i();
}
static int find(int a)
{
if(par[a]<0)return a;
return par[a]=find(par[a]);
}
static void union(int a,int b)
{
a=find(a);
b=find(b);
if(a!=b)
{
par[a]+=par[b]; //transfers the size
par[b]=a; //changes the parent
}
}
static void swap(char A[],int a,int b)
{
char ch=A[a];
A[a]=A[b];
A[b]=ch;
}
static void sort(long[] a) //check for long
{
ArrayList<Long> l=new ArrayList<>();
for (long i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static void setGraph(int N)
{
g=new ArrayList<ArrayList<Integer>>();
for(int i=0; i<=N; i++)
{
g.add(new ArrayList<Integer>());
}
}
static long pow(long a,long b)
{
long mod=1000000007;
long pow=1;
long x=a;
while(b!=0)
{
if((b&1)!=0)pow=(pow*x)%mod;
x=(x*x)%mod;
b/=2;
}
return pow;
}
static long toggleBits(long x)//one's complement || Toggle bits
{
int n=(int)(Math.floor(Math.log(x)/Math.log(2)))+1;
return ((1<<n)-1)^x;
}
static int countBits(long a)
{
return (int)(Math.log(a)/Math.log(2)+1);
}
static void sort(int[] a) {
ArrayList<Integer> l=new ArrayList<>();
for (int i:a) l.add(i);
Collections.sort(l);
for (int i=0; i<a.length; i++) a[i]=l.get(i);
}
static boolean isPrime(long N)
{
if (N<=1) return false;
if (N<=3) return true;
if (N%2 == 0 || N%3 == 0) return false;
for (int i=5; i*i<=N; i=i+6)
if (N%i == 0 || N%(i+2) == 0)
return false;
return true;
}
static long GCD(long a,long b)
{
if(b==0)
{
return a;
}
else return GCD(b,a%b );
}
//Debugging Functions Starts
static void print(char A[])
{
for(char c:A)System.out.print(c+" ");
System.out.println();
}
static void print(boolean A[])
{
for(boolean c:A)System.out.print(c+" ");
System.out.println();
}
static void print(int A[])
{
for(int a:A)System.out.print(a+" ");
System.out.println();
}
static void print(long A[])
{
for(long i:A)System.out.print(i+ " ");
System.out.println();
}
static void print(ArrayList<Integer> A)
{
for(int a:A)System.out.print(a+" ");
System.out.println();
}
//Debugging Functions END
//----------------------
//IO FUNCTIONS STARTS
static HashMap<Integer,Integer> Hash(int A[])
{
HashMap<Integer,Integer> mp=new HashMap<>();
for(int a:A)
{
int f=mp.getOrDefault(a,0)+1;
mp.put(a, f);
}
return mp;
}
static int i()
{
return in.nextInt();
}
static long l()
{
return in.nextLong();
}
static int[] input(int N){
int A[]=new int[N];
for(int i=0; i<N; i++)
{
A[i]=in.nextInt();
}
return A;
}
static long[] inputLong(int N) {
long A[]=new long[N];
for(int i=0; i<A.length; i++)A[i]=in.nextLong();
return A;
}
//IO FUNCTIONS END
}
//class pair implements Comparable<pair>{
// int index; long a;
// pair(long a,int index)
// {
// this.a=a;
// this.index=index;
// }
// public int compareTo(pair X)
// {
// if(this.a>X.a)return 1;
// if(this.a==X.a)return this.index-X.index;
// return -1;
// }
//}
//Code For FastReader
//Code For FastReader
//Code For FastReader
//Code For FastReader
class FastReader
{
BufferedReader br;
StringTokenizer st;
public FastReader()
{
br=new BufferedReader(new InputStreamReader(System.in));
}
String next()
{
while(st==null || !st.hasMoreElements())
{
try
{
st=new StringTokenizer(br.readLine());
}
catch(IOException e)
{
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt()
{
return Integer.parseInt(next());
}
long nextLong()
{
return Long.parseLong(next());
}
//gey
double nextDouble()
{
return Double.parseDouble(next());
}
String nextLine()
{
String str="";
try
{
str=br.readLine();
}
catch (IOException e)
{
e.printStackTrace();
}
return str;
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 4bb96d01e6e8c6caac311c0c40af8d81 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.*;
public class Main {
static class FastReader{
BufferedReader br;
StringTokenizer st;
public FastReader(){br = new BufferedReader(new InputStreamReader(System.in));}
String next(){while (st == null || !st.hasMoreElements()){try{st = new StringTokenizer(br.readLine());}
catch (IOException e){e.printStackTrace();}}return st.nextToken();}
int nextInt(){ return Integer.parseInt(next());}long nextLong(){return Long.parseLong(next());}double nextDouble(){return Double.parseDouble(next());}
String nextLine(){String str = ""; try{str = br.readLine(); } catch (IOException e) {e.printStackTrace();} return str; }
}
static FastReader sc = new FastReader();
static long mod = (long) (1e9+7);
public static void main (String[] args){
PrintWriter out = new PrintWriter(System.out);
int t = 1;
// t = sc.nextInt();
z :while(t-->0){
int n = sc.nextInt();
List<Integer> ans = new ArrayList<>();
long p = 1;
for(int i=1;i<n;i++) {
if(gcd(i,n) == 1) {
ans.add(i);
p = p*i%n;
}
}
List<Integer> res = new ArrayList<>();
if(p!=1) {
for(int x:ans) {
if(x != p) res.add(x);
}
ans = res;
}
out.write(ans.size()+"\n");
for(int val : ans) out.write(val+" ");
}
out.close();
}
private static int gcd(int a, int b) {
if(b == 0) return a;
return gcd(b,a%b);
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 5c5d223c84dc7d03ae977dea7c6c3343 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Stack1 {
static class Reader {
final private int BUFFER_SIZE = 1 << 16;
private DataInputStream din;
private byte[] buffer;
private int bufferPointer, bytesRead;
public Reader() {
din = new DataInputStream(System.in);
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public Reader(String file_name) throws IOException {
din = new DataInputStream(new FileInputStream(file_name));
buffer = new byte[BUFFER_SIZE];
bufferPointer = bytesRead = 0;
}
public String readLine() throws IOException {
byte[] buf = new byte[64]; // line length
int cnt = 0, c;
while ((c = read()) != -1) {
if (c == '\n')
break;
buf[cnt++] = (byte) c;
}
return new String(buf, 0, cnt);
}
public int nextInt() throws IOException {
int ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
} while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public long nextLong() throws IOException {
long ret = 0;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (neg)
return -ret;
return ret;
}
public double nextDouble() throws IOException {
double ret = 0, div = 1;
byte c = read();
while (c <= ' ')
c = read();
boolean neg = (c == '-');
if (neg)
c = read();
do {
ret = ret * 10 + c - '0';
}
while ((c = read()) >= '0' && c <= '9');
if (c == '.') {
while ((c = read()) >= '0' && c <= '9') {
ret += (c - '0') / (div *= 10);
}
}
if (neg)
return -ret;
return ret;
}
private void fillBuffer() throws IOException {
bytesRead = din.read(buffer, bufferPointer = 0, BUFFER_SIZE);
if (bytesRead == -1)
buffer[0] = -1;
}
private byte read() throws IOException {
if (bufferPointer == bytesRead)
fillBuffer();
return buffer[bufferPointer++];
}
public void close() throws IOException {
if (din == null)
return;
din.close();
}
}
static Reader sc = new Reader();
static BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(System.out));
public static void main(String[] args) throws IOException {
/*
* For integer input: int n=inputInt();
* For long input: long n=inputLong();
* For double input: double n=inputDouble();
* For String input: String s=inputString();
* Logic goes here
* For printing without space: print(a+""); where a is a variable of any datatype
* For printing with space: printSp(a+""); where a is a variable of any datatype
* For printing with new line: println(a+""); where a is a variable of any datatype
*/
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
long mul=1;
long count=0;
long lastindex=0;
List<Integer> list=new ArrayList<>();
for(int j=1;j<=n;j++){
long gcd=gcd(j,n);
if(gcd==1){
mul=mul%n*j%n;
// System.out.println(mul%n);
if(mul%n==1){
count++;
list.add(j);
lastindex=count;
}else {
count++;
list.add(j);
}
}
}
System.out.println(lastindex);
for(int j=0;j<lastindex;j++){
System.out.println(list.get(j));
}
bw.flush();
bw.close();
}
public static void dfs1(List<List<Integer>> g, boolean[] visited, Stack<Integer> stack, int num) {
visited[num] = true;
for (Integer integer : g.get(num)) {
if (!visited[integer]) {
dfs1(g, visited, stack, integer);
}
}
stack.push(num);
}
public static void dfs2(List<List<Integer>> g, boolean[] visited, List<Integer> list, int num, int c, int[] raj) {
visited[num] = true;
for (Integer integer : g.get(num)) {
if (!visited[integer]) {
dfs2(g, visited, list, integer, c, raj);
}
}
raj[num] = c;
list.add(num);
}
public static int inputInt() throws IOException {
return sc.nextInt();
}
public static long inputLong() throws IOException {
return sc.nextLong();
}
public static double inputDouble() throws IOException {
return sc.nextDouble();
}
public static String inputString() throws IOException {
return sc.readLine();
}
public static void print(String a) throws IOException {
bw.write(a);
}
public static void printSp(String a) throws IOException {
bw.write(a + " ");
}
public static void println(String a) throws IOException {
bw.write(a + "\n");
}
public static long getAns(int[] ar, int c, long[][] dp, int i, int sign) {
if (i < 0) {
return 1;
}
if (c <= 0) {
return 1;
}
dp[i][c] = Math.max(dp[i][c], Math.max(ar[i] * getAns(ar, c - 1, dp, i - 1, sign), getAns(ar, c, dp, i - 1, 1)));
return dp[i][c];
}
public static long power(long a, long b, long c) {
long ans = 1;
while (b != 0) {
if (b % 2 == 1) {
ans = ans * a;
ans %= c;
}
a = a * a;
a %= c;
b /= 2;
}
return ans;
}
public static long power1(long a, long b, long c) {
long ans = 1;
while (b != 0) {
if (b % 2 == 1) {
ans = multiply(ans, a, c);
}
a = multiply(a, a, c);
b /= 2;
}
return ans;
}
public static long multiply(long a, long b, long c) {
long res = 0;
a %= c;
while (b > 0) {
if (b % 2 == 1) {
res = (res + a) % c;
}
a = (a + a) % c;
b /= 2;
}
return res % c;
}
public static long totient(long n) {
long result = n;
for (long i = 2; i * i <= n; i++) {
if (n % i == 0) {
//sum=sum+2*i;
while (n % i == 0) {
n /= i;
// sum=sum+n;
}
result -= result / i;
}
}
if (n > 1) {
result -= result / n;
}
return result;
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
} else {
return gcd(b, a % b);
}
}
public static boolean[] primes(int n) {
boolean[] p = new boolean[n + 1];
p[0] = false;
p[1] = false;
for (int i = 2; i <= n; i++) {
p[i] = true;
}
for (int i = 2; i * i <= n; i++) {
if (p[i]) {
for (int j = i * i; j <= n; j += i) {
p[j] = false;
}
}
}
return p;
}
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 09241bf01f1e60e86c1a8df86a4d6bb7 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.util.*;
import java.io.*;
//import java.math.*;
public class Task{
// ..............code begins here..............
static long mod=(long)1e9+7,inf=(long)1e17;
static int modInverse(int a, int m)
{
int m0 = m;
int y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
int q = a / m;
int t = m;
m = a % m;
a = t;
t = y;
y = x - q * y;
x = t;
}
if (x < 0){x += m0;}
return x;
}
static void solve() throws IOException {
int n=int_v(read());
boolean[] b=new boolean[n];
List<Integer> l=new ArrayList<>();
l.add(1);b[1]=true;
for(int i=2;i<n;i++){
if(b[i]) continue;
if(gcd(i,n)==1){
int inv=modInverse(i,n);
if(inv<n&&!b[inv]&&i!=inv){
l.add(i);l.add(inv);
b[i]=b[inv]=true;
}
}
else b[i]=true;
}
List<Integer> l1=new ArrayList<>();
for(int i=2;i<n;i++){
if(!b[i]){
l1.add(i);
//out.write(i+", ");
}
}
if(l1.size()>1)for(int z:l1)l.add(z);
Collections.sort(l);
out.write(l.size()+"\n");
for(int z:l)out.write(z+" ");
}
//
public static void main(String[] args) throws IOException{
assign();
int t=1;//int_v(read()),cn=1;
while(t--!=0){
//out.write("Case #"+cn+": ");
solve();
//cn++;
}
out.flush();
}
// taking inputs
static BufferedReader s1;
static BufferedWriter out;
static String read() throws IOException{String line="";while(line.length()==0){line=s1.readLine();continue;}return line;}
static int int_v (String s1){return Integer.parseInt(s1);}
static long long_v(String s1){return Long.parseLong(s1);}
static void sort(int[] a){List<Integer> l=new ArrayList<>();for(int x:a){l.add(x);}Collections.sort(l);for(int i=0;i<a.length;i++){a[i]=l.get(i);}}
static int[] int_arr() throws IOException{String[] a=read().split(" ");int[] b=new int[a.length];for(int i=0;i<a.length;i++){b[i]=int_v(a[i]);}return b;}
static long[] long_arr() throws IOException{String[] a=read().split(" ");long[] b=new long[a.length];for(int i=0;i<a.length;i++){b[i]=long_v(a[i]);}return b;}
static void assign(){s1=new BufferedReader(new InputStreamReader(System.in));out=new BufferedWriter(new OutputStreamWriter(System.out));}
//static String setpreciosion(double d,int k){BigDecimal d1 = new BigDecimal(Double.toString(d));return d1.setScale(k,RoundingMode.HALF_UP).toString();}//UP DOWN HALF_UP
static int add(int a,int b){int z=a+b;if(z>=mod)z-=mod;return z;}
static long gcd(long a,long b){if(b==0){return a;}return gcd(b,a%b);}
static long Modpow(long a,long p,long m){long res=1;while(p>0){if((p&1)!=0){res=(res*a)%m;}p >>=1;a=(a*a)%m;}return res%m;}
static long Modmul(long a,long b,long m){return ((a%m)*(b%m))%m;}
static long ModInv(long a,long m){return Modpow(a,m-2,m);}
//static long nck(int n,int r,long m){if(r>n){return 0l;}return Modmul(f[n],ModInv(Modmul(f[n-r],f[r],m),m),m);}
//static long[] f;
} | Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | d66de85448b92b6e72ed95d41e356878 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Pranay2516
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastReader in = new FastReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
CProduct1ModuloN solver = new CProduct1ModuloN();
solver.solve(1, in, out);
out.close();
}
static class CProduct1ModuloN {
public void solve(int testNumber, FastReader in, PrintWriter out) {
long n = in.nextInt();
ArrayList<Long> ans = new ArrayList<>();
long pro = 1;
for (long i = 1; i < n; ++i) {
if (func.gcd(i, n) == 1) {
ans.add(i);
pro = func.modMul(pro, i, n);
}
}
if (pro % n != 1) {
ans.remove(ans.size() - 1);
}
out.println(ans.size());
for (Long e : ans) {
out.print(e + " ");
}
out.println();
}
}
static class FastReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private FastReader.SpaceCharFilter filter;
public FastReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class func {
public static long gcd(long a, long b) {
return (b == 0) ? a : gcd(b, a % b);
}
public static long modMul(long a, long b, long m) {
a %= m;
b %= m;
return ((a * b) % m + m) % m;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | e5ace6060be6d804a6c0b1c70f69c731 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.math.BigInteger;
import java.util.*;
public class Main {
private static boolean gcd(int i, int j){
int max = Math.max(i,j);
int min = Math.min(i,j);
while(min != 0){
int now = min;
min = max%min;
max = now;
}
return max == 1;
}
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int i = sc.nextInt();
long sum = 1;
List<Integer> list = new ArrayList<>();
for(int j = 1; j < i; j++){
if(gcd(i,j)){
list.add(j);
sum = sum * j % i;
}
}
if(sum != 1){
list.remove(list.size() - 1);
}
System.out.println(list.size());
for(int j = 0; j < list.size(); j++){
if(j != 0){
System.out.print(" ");
}
System.out.print(list.get(j));
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | 8c2a9e38c2b9450ae2a77af1b6f7d895 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | //Utilities
import java.io.*;
import java.util.*;
public class Main {
static int n;
static boolean[] used;
static ArrayList<Integer> res, extra;
public static void main(String[] args) throws IOException {
n = in.iscan(); res = new ArrayList<Integer>(); extra = new ArrayList<Integer>();
res.add(1);
used = new boolean[n];
for (int i = 2; i <= n-1; i++) {
if (UTILITIES.gcd(i, n) != 1 || used[i]) {
continue;
}
int need = modInverse(i, n);
if (need != i) {
res.add(i);
res.add(need);
used[i] = used[need] = true;
}
else {
extra.add(i);
used[i] = true;
}
}
if (extra.size() > 1) {
res.addAll(extra);
}
out.println(res.size());
Collections.sort(res);
for (int x : res) {
out.print(x + " ");
}
out.println();
out.close();
}
// helper function from GeeksForGeeks
static int modInverse(int a, int m)
{
int m0 = m;
int y = 0, x = 1;
if (m == 1)
return 0;
while (a > 1) {
// q is quotient
int q = a / m;
int t = m;
// m is remainder now, process
// same as Euclid's algo
m = a % m;
a = t;
t = y;
// Update x and y
y = x - q * y;
x = t;
}
// Make x positive
if (x < 0)
x += m0;
return x;
}
static INPUT in = new INPUT(System.in);
static PrintWriter out = new PrintWriter(System.out);
private static class INPUT {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar, numChars;
public INPUT (InputStream stream) {
this.stream = stream;
}
public INPUT (String file) throws IOException {
this.stream = new FileInputStream (file);
}
public int cscan () throws IOException {
if (curChar >= numChars) {
curChar = 0;
numChars = stream.read (buf);
}
if (numChars == -1)
return numChars;
return buf[curChar++];
}
public int iscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
int res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public String sscan () throws IOException {
int c = cscan ();
while (space (c))
c = cscan ();
StringBuilder res = new StringBuilder ();
do {
res.appendCodePoint (c);
c = cscan ();
}
while (!space (c));
return res.toString ();
}
public double dscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
double res = 0;
while (!space (c) && c != '.') {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
res *= 10;
res += c - '0';
c = cscan ();
}
if (c == '.') {
c = cscan ();
double m = 1;
while (!space (c)) {
if (c == 'e' || c == 'E')
return res * UTILITIES.fast_pow (10, iscan ());
m /= 10;
res += (c - '0') * m;
c = cscan ();
}
}
return res * sgn;
}
public long lscan () throws IOException {
int c = cscan (), sgn = 1;
while (space (c))
c = cscan ();
if (c == '-') {
sgn = -1;
c = cscan ();
}
long res = 0;
do {
res = (res << 1) + (res << 3);
res += c - '0';
c = cscan ();
}
while (!space (c));
return res * sgn;
}
public boolean space (int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
}
public static class UTILITIES {
static final double EPS = 10e-6;
public static int lower_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] >= x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static int upper_bound (int[] arr, int x) {
int low = 0, high = arr.length, mid = -1;
while (low < high) {
mid = (low + high) / 2;
if (arr[mid] > x)
high = mid;
else
low = mid + 1;
}
return low;
}
public static int gcd (int a, int b) {
return b == 0 ? a : gcd (b, a % b);
}
public static int lcm (int a, int b) {
return a * b / gcd (a, b);
}
public static long fast_pow_mod (long b, long x, int mod) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow_mod (b * b % mod, x / 2, mod) % mod;
return b * fast_pow_mod (b * b % mod, x / 2, mod) % mod;
}
public static int fast_pow (int b, int x) {
if (x == 0) return 1;
if (x == 1) return b;
if (x % 2 == 0) return fast_pow (b * b, x / 2);
return b * fast_pow (b * b, x / 2);
}
public static long choose (long n, long k) {
k = Math.min (k, n - k);
long val = 1;
for (int i = 0; i < k; ++i)
val = val * (n - i) / (i + 1);
return val;
}
public static long permute (int n, int k) {
if (n < k) return 0;
long val = 1;
for (int i = 0; i < k; ++i)
val = (val * (n - i));
return val;
}
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output | |
PASSED | d269163b0bc7cf1e1dc48bbbf506a6d7 | train_110.jsonl | 1618839300 | Now you get Baby Ehab's first words: "Given an integer $$$n$$$, find the longest subsequence of $$$[1,2, \ldots, n-1]$$$ whose product is $$$1$$$ modulo $$$n$$$." Please solve the problem.A sequence $$$b$$$ is a subsequence of an array $$$a$$$ if $$$b$$$ can be obtained from $$$a$$$ by deleting some (possibly all) elements. The product of an empty subsequence is equal to $$$1$$$. | 256 megabytes | import java.io.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Scanner;
public class Codeforces {
private static final Scanner sc = new Scanner(System.in);
private static final BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static final long MOD = (long) (1e9 + 7);
private static PrintWriter out = new PrintWriter(System.out);
private static BufferedWriter output = new BufferedWriter(new OutputStreamWriter(System.out));
/** Optimal(Maximum,Minimum) Answers
* 1. Binary search
* 2. Prefix Suffix
* 3. Greedy (sorting searching)
* 4. DP
**/
public static void solve(int T) throws IOException {
int n = sc.nextInt();
boolean[] sieve = new boolean[n + 1];
Arrays.fill(sieve,true);
for (int i = 2; i <= n - 1; i++) {
if (n%i == 0) {
sieve[i] = false;
for (int j = 2 * i; j <= n - 1; j += i) {
sieve[j] = false;
}
}
}
ArrayList<Integer> ans = new ArrayList<>();
for (int i = 1; i <= n - 1; i++) {
if (sieve[i]) {
ans.add(i);
}
}
long prod = 1;
for (int x : ans) {
prod = (x * prod) % n;
}
if (prod != 1) {
ans.remove(ans.size()-1);
}
System.out.println(ans.size());
for (int x : ans) {
System.out.print(x + " ");
}
System.out.println();
}
public static void main(String[] args) throws IOException {
int t = 1;
// t = sc.nextInt();
while (t-- > 0){
solve(t);
}
System.gc();
}
}
| Java | ["5", "8"] | 1 second | ["3\n1 2 3", "4\n1 3 5 7"] | NoteIn the first example, the product of the elements is $$$6$$$ which is congruent to $$$1$$$ modulo $$$5$$$. The only longer subsequence is $$$[1,2,3,4]$$$. Its product is $$$24$$$ which is congruent to $$$4$$$ modulo $$$5$$$. Hence, the answer is $$$[1,2,3]$$$. | Java 8 | standard input | [
"greedy",
"number theory"
] | d55afdb4a83aebdfce5a62e4ec934adb | The only line contains the integer $$$n$$$ ($$$2 \le n \le 10^5$$$). | 1,600 | The first line should contain a single integer, the length of the longest subsequence. The second line should contain the elements of the subsequence, in increasing order. If there are multiple solutions, you can print any. | standard output |
Subsets and Splits