content
stringlengths 1
1.04M
⌀ |
---|
entity agg1 is
end entity;
architecture test of agg1 is
type int_array is array (integer range <>) of integer;
begin
process is
variable x : integer;
variable v : int_array(1 to 3);
begin
x := 5;
v := ( 1, x, 2 );
assert v = ( 1, 5, 2 );
v := ( v(3), v(2), v(1) );
assert v = ( 2, 5, 1 );
wait;
end process;
end architecture;
|
--!
--! Copyright 2019 Sergey Khabarov, [email protected]
--!
--! Licensed under the Apache License, Version 2.0 (the "License");
--! you may not use this file except in compliance with the License.
--! You may obtain a copy of the License at
--!
--! http://www.apache.org/licenses/LICENSE-2.0
--!
--! Unless required by applicable law or agreed to in writing, software
--! distributed under the License is distributed on an "AS IS" BASIS,
--! WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
--! See the License for the specific language governing permissions and
--! limitations under the License.
--!
library ieee;
use ieee.std_logic_1164.all;
library techmap;
use techmap.gencomp.all;
use techmap.types_mem.all;
library commonlib;
use commonlib.types_common.all;
--! AMBA system bus specific library
library ambalib;
--! AXI4 configuration constants.
use ambalib.types_amba4.all;
entity Rom_tech is
generic (
memtech : integer := 0;
abits : integer;
sim_hexfile : string
);
port (
clk : in std_logic;
address : in global_addr_array_type;
data : out std_logic_vector(CFG_SYSBUS_DATA_BITS-1 downto 0)
);
end;
architecture rtl of Rom_tech is
component Rom_inferred is
generic (
abits : integer;
hex_filename : string
);
port (
clk : in std_ulogic;
address : in global_addr_array_type;
data : out std_logic_vector(CFG_SYSBUS_DATA_BITS-1 downto 0)
);
end component;
begin
genrom0 : if memtech = inferred or is_fpga(memtech) /= 0 generate
infer0 : Rom_inferred generic map (abits, sim_hexfile)
port map (clk, address, data);
end generate;
end;
|
architecture rtl of fifo is
begin
my_signal <= '1' when input = "00" else
my_signal2 or my_sig3 when input = "01" else
my_sig4 and my_sig5 when input = "10" else
'0';
my_signal <= '1' when input = "0000" else
my_signal2 or my_sig3 when input = "0100" and input = "1100" else
my_sig4 when input = "0010" else
'0';
my_signal <= '1' when input(1 downto 0) = "00" and func1(func2(G_VALUE1),
to_integer(cons1(37 downto 0))) = 256 else
'0' when input(3 downto 0) = "0010" else
'Z';
my_signal <= '1' when input(1 downto
0) = "00" and func1(func2(G_VALUE1),
to_integer(cons1(37 downto 0))) = 256 else
'0' when input(3 downto 0) = "0010" else
'Z';
my_signal <= '1' when a = "0000" and func1(345) or
b = "1000" and func2(567) and
c = "00" else
sig1 when a = "1000" and func2(560) and
b = "0010" else
'0';
my_signal <= '1' when input(1 downto
0) = "00" and func1(func2(G_VALUE1),
to_integer(cons1(37 downto 0))) = 256 else
my_signal when input(3 downto 0) = "0010" else
'Z';
-- Testing no code after assignment
my_signal <=
'1' when input(1 downto
0) = "00" and func1(func2(G_VALUE1),
to_integer(cons1(37 downto 0))) = 256 else
my_signal when input(3 downto 0) = "0010" else
'Z';
my_signal <=
(others => '0') when input(1 downto
0) = "00" and func1(func2(G_VALUE1),
to_integer(cons1(37 downto 0))) = 256 else
my_signal when input(3 downto 0) = "0010" else
'Z';
end architecture rtl;
|
------------------------------------------------------------------------------
-- This file is a part of the GRLIB VHDL IP LIBRARY
-- Copyright (C) 2003 - 2008, Gaisler Research
-- Copyright (C) 2008 - 2014, Aeroflex Gaisler
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-----------------------------------------------------------------------------
-- Package: gr1553b_pkg
-- File: gr1553b_pkg.vhd
-- Author: Magnus Hjorth - Aeroflex Gaisler
-- Description: Package for GR1553B top-level component and user-visible types
------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.ahb_mst_in_type;
use grlib.amba.ahb_mst_out_type;
use grlib.amba.apb_slv_in_type;
use grlib.amba.apb_slv_out_type;
library techmap;
use techmap.gencomp.all;
package gr1553b_pkg is
constant gr1553b_version: integer := 0;
constant gr1553b_cfgver: integer := 0;
-----------------------------------------------------------------------------
-- Types and top level component
type gr1553b_txout_type is record
busA_txP: std_logic;
busA_txN: std_logic;
busA_txen: std_logic;
busA_rxen: std_logic;
busB_txP: std_logic;
busB_txN: std_logic;
busB_txen: std_logic;
busB_rxen: std_logic;
-- For convenience, inverted versions of txen
busA_txin: std_logic;
busB_txin: std_logic;
end record;
type gr1553b_rxin_type is record
busA_rxP: std_logic;
busA_rxN: std_logic;
busB_rxP: std_logic;
busB_rxN: std_logic;
end record;
type gr1553b_auxin_type is record
extsync: std_logic;
rtaddr: std_logic_vector(4 downto 0);
rtpar: std_logic;
end record;
type gr1553b_auxout_type is record
rtsync: std_logic;
busreset: std_logic;
validcmdA: std_logic;
validcmdB: std_logic;
timedoutA: std_logic;
timedoutB: std_logic;
badreg: std_logic;
irqvec: std_logic_vector(7 downto 0);
end record;
constant gr1553b_rxin_zero: gr1553b_rxin_type :=
(busA_rxP=>'0', busA_rxN=>'0', busB_rxP=>'0', busB_rxN=>'0');
constant gr1553b_txout_zero: gr1553b_txout_type :=
('0','0','0','0','0','0','0','0','1','1');
constant gr1553b_auxin_zero: gr1553b_auxin_type :=
(extsync => '0', rtaddr => "00000", rtpar => '0');
constant gr1553b_auxout_zero: gr1553b_auxout_type :=
('0','0','0','0','0','0','0',x"00");
constant gr1553b_rxin_none: gr1553b_rxin_type := gr1553b_rxin_zero;
constant gr1553b_txout_none: gr1553b_txout_type := gr1553b_txout_zero;
constant gr1553b_auxin_none: gr1553b_auxin_type := gr1553b_auxin_zero;
constant gr1553b_auxout_none: gr1553b_auxout_type := gr1553b_auxout_zero;
component gr1553b is
generic(
hindex: integer := 0;
pindex : integer := 0;
paddr: integer := 0;
pmask : integer := 16#fff#;
pirq : integer := 0;
bc_enable: integer range 0 to 1 := 1;
rt_enable: integer range 0 to 1 := 1;
bm_enable: integer range 0 to 1 := 1;
bc_timer: integer range 0 to 2 := 1;
bc_rtbusmask: integer range 0 to 1 := 1;
extra_regkeys: integer range 0 to 1 := 0;
syncrst: integer range 0 to 2 := 1;
ahbendian: integer range 0 to 1 := 0;
bm_filters: integer range 0 to 1 := 1;
codecfreq: integer := 20;
sameclk: integer range 0 to 1 := 0
);
port(
clk: in std_logic;
rst: in std_logic;
ahbmi: in ahb_mst_in_type;
ahbmo: out ahb_mst_out_type;
apbsi: in apb_slv_in_type;
apbso: out apb_slv_out_type;
auxin: in gr1553b_auxin_type;
auxout: out gr1553b_auxout_type;
codec_clk: in std_logic;
codec_rst: in std_logic;
txout: out gr1553b_txout_type;
txout_fb: in gr1553b_txout_type;
rxin: in gr1553b_rxin_type
);
end component;
-----------------------------------------------------------------------------
-- Pads convenience component
component gr1553b_pads is
generic (
padtech: integer;
outen_pol: integer range 0 to 1;
level: integer := ttl;
slew: integer := 0;
voltage: integer := x33v;
strength: integer := 12;
filter: integer := 0
);
port (
txout: in gr1553b_txout_type;
rxin: out gr1553b_rxin_type;
busainen : out std_logic;
busainp : in std_logic;
busainn : in std_logic;
busaoutenin : out std_logic;
busaoutp : out std_logic;
busaoutn : out std_logic;
busbinen : out std_logic;
busbinp : in std_logic;
busbinn : in std_logic;
busboutenin : out std_logic;
busboutp : out std_logic;
busboutn : out std_logic
);
end component;
-----------------------------------------------------------------------------
-- Wrappers for netlists etc.
component gr1553b_stdlogic is
generic (
bc_enable: integer range 0 to 1 := 1;
rt_enable: integer range 0 to 1 := 1;
bm_enable: integer range 0 to 1 := 1;
bc_timer: integer range 0 to 2 := 1;
bc_rtbusmask: integer range 0 to 1 := 1;
extra_regkeys: integer range 0 to 1 := 0;
syncrst: integer range 0 to 2 := 1;
ahbendian: integer range 0 to 1 := 0
);
port (
clk: in std_logic;
rst: in std_logic;
codec_clk: in std_logic;
codec_rst: in std_logic;
-- AHB interface
mi_hgrant : in std_logic; -- bus grant
mi_hready : in std_ulogic; -- transfer done
mi_hresp : in std_logic_vector(1 downto 0); -- response type
mi_hrdata : in std_logic_vector(31 downto 0); -- read data bus
mo_hbusreq: out std_ulogic; -- bus request
mo_htrans : out std_logic_vector(1 downto 0); -- transfer type
mo_haddr : out std_logic_vector(31 downto 0); -- address bus (byte)
mo_hwrite : out std_ulogic; -- read/write
mo_hsize : out std_logic_vector(2 downto 0); -- transfer size
mo_hburst : out std_logic_vector(2 downto 0); -- burst type
mo_hwdata : out std_logic_vector(31 downto 0); -- write data bus
-- APB interface
si_psel : in std_logic; -- slave select
si_penable: in std_ulogic; -- strobe
si_paddr : in std_logic_vector(7 downto 0); -- address bus (byte addr)
si_pwrite : in std_ulogic; -- write
si_pwdata : in std_logic_vector(31 downto 0); -- write data bus
so_prdata : out std_logic_vector(31 downto 0); -- read data bus
so_pirq : out std_logic; -- interrupt bus
-- Aux signals
bcsync : in std_logic;
rtsync : out std_logic;
busreset : out std_logic;
rtaddr : in std_logic_vector(4 downto 0);
rtaddrp : in std_logic;
-- 1553 transceiver interface
busainen : out std_logic;
busainp : in std_logic;
busainn : in std_logic;
busaouten : out std_logic;
busaoutp : out std_logic;
busaoutn : out std_logic;
busbinen : out std_logic;
busbinp : in std_logic;
busbinn : in std_logic;
busbouten : out std_logic;
busboutp : out std_logic;
busboutn : out std_logic
);
end component;
component gr1553b_nlw is
generic(
tech: integer := 0;
hindex: integer := 0;
pindex : integer := 0;
paddr: integer := 0;
pmask : integer := 16#fff#;
pirq : integer := 0;
bc_enable: integer range 0 to 1 := 1;
rt_enable: integer range 0 to 1 := 1;
bm_enable: integer range 0 to 1 := 1;
bc_timer: integer range 0 to 2 := 1;
bc_rtbusmask: integer range 0 to 1 := 1;
extra_regkeys: integer range 0 to 1 := 0;
syncrst: integer range 0 to 2 := 1
);
port(
clk: in std_logic;
rst: in std_logic;
ahbmi: in ahb_mst_in_type;
ahbmo: out ahb_mst_out_type;
apbsi: in apb_slv_in_type;
apbso: out apb_slv_out_type;
auxin: in gr1553b_auxin_type;
auxout: out gr1553b_auxout_type;
codec_clk: in std_logic;
codec_rst: in std_logic;
txout: out gr1553b_txout_type;
txout_fb: in gr1553b_txout_type;
rxin: in gr1553b_rxin_type
);
end component;
-----------------------------------------------------------------------------
-- APB Register definitions
constant REG_IRQSTATUS: std_logic_vector := x"00";
constant REG_IRQENABLE: std_logic_vector := x"04";
constant REG_BCSTATUS: std_logic_vector := x"40";
constant REG_BCACTION: std_logic_vector := x"44";
constant REG_BCSCHEMADDR: std_logic_vector := x"48";
constant REG_BCASYNCADDR: std_logic_vector := x"4C";
constant REG_BCTIME: std_logic_vector := x"50";
constant REG_BCWAKEUP: std_logic_vector := x"54";
constant REG_BCIRQSRC: std_logic_vector := x"58";
constant REG_BCRTBUSMASK: std_logic_vector := x"5C";
constant REG_BCSCHEMSLOT: std_logic_vector := x"68";
constant REG_BCASYNCSLOT: std_logic_vector := x"6C";
constant REG_RTSTATUS: std_logic_vector := x"80";
constant REG_RTCONFIG: std_logic_vector := x"84";
constant REG_RTBUSSTAT: std_logic_vector := x"88";
constant REG_RTBUSWORDS: std_logic_vector := x"8C";
constant REG_RTSYNC: std_logic_vector := x"90";
constant REG_RTTABLEADDR: std_logic_vector := x"94";
constant REG_RTMODECONFIG: std_logic_vector := x"98";
constant REG_RTTIMETAG: std_logic_vector := x"A4";
constant REG_RTLOGMASK: std_logic_vector := x"AC";
constant REG_RTLOGPOS: std_logic_vector := x"B0";
constant REG_RTIRQSRC: std_logic_vector := x"B4";
constant REG_BMSTATUS: std_logic_vector := x"C0";
constant REG_BMCONFIG: std_logic_vector := x"C4";
constant REG_BMADDRFILT: std_logic_vector := x"C8";
constant REG_BMSAFILT: std_logic_vector := x"CC";
constant REG_BMMCFILT: std_logic_vector := x"D0";
constant REG_BMBUFSTART: std_logic_vector := x"D4";
constant REG_BMBUFEND: std_logic_vector := x"D8";
constant REG_BMBUFPOS: std_logic_vector := x"DC";
constant REG_BMTIMETAG: std_logic_vector := x"E0";
-----------------------------------------------------------------------------
-- Embedded RT core
component grrt is
generic (
codecfreq: integer := 20;
sameclk : integer := 1;
syncrst : integer range 0 to 1 := 1
);
port (
-- Clock and reset
clk : in std_ulogic;
rst : in std_ulogic;
clk1553 : in std_ulogic;
rst1553 : in std_ulogic;
-- Control signals
rtaddr : in std_logic_vector(4 downto 0);
rtaddrp : in std_ulogic;
rtstat : in std_logic_vector(3 downto 0); -- 3=SR, 2=busy 1=SSF 0=TF
ad31en : in std_ulogic; -- 1=RT31 is normal addr, 0=RT31 is broadcast
rtsync : out std_ulogic;
rtreset : out std_ulogic;
stamp : out std_ulogic;
-- Front-end interface
phase : out std_logic_vector(1 downto 0);
transfer : out std_logic_vector(11 downto 0);
resp : in std_logic_vector(1 downto 0);
tfrerror : out std_ulogic;
txdata : in std_logic_vector(15 downto 0);
rxdata : out std_logic_vector(15 downto 0);
datardy : in std_ulogic;
datarw : out std_ulogic;
-- 1553 transceiver interface
aoutin : out std_ulogic;
aoutp : out std_ulogic;
aoutn : out std_ulogic;
ainen : out std_ulogic;
ainp : in std_ulogic;
ainn : in std_ulogic;
boutin : out std_ulogic;
boutp : out std_ulogic;
boutn : out std_ulogic;
binen : out std_ulogic;
binp : in std_ulogic;
binn : in std_ulogic;
-- Fail-safe timer feedback
aoutp_fb : in std_logic;
aoutn_fb : in std_logic;
boutp_fb : in std_logic;
boutn_fb : in std_logic
);
end component;
-----------------------------------------------------------------------------
-- Test signal generators
component gr1553b_tgapb is
generic(
pindex : integer := 0;
paddr: integer := 0;
pmask : integer := 16#fff#;
codecfreq: integer := 20;
extmodeen: integer range 0 to 1 := 0;
rawmodeen: integer range 0 to 1 := 0;
rawmemtech: integer := 0
);
port(
clk: in std_logic;
rst: in std_logic;
codec_clk: in std_logic;
codec_rst: in std_logic;
apbsi: in apb_slv_in_type;
apbso: out apb_slv_out_type;
txout_core: in gr1553b_txout_type;
rxin_core: out gr1553b_rxin_type;
txout_bus: out gr1553b_txout_type;
rxin_bus: in gr1553b_rxin_type;
testing: out std_logic
);
end component;
-----------------------------------------------------------------------------
-- Simulation types and components for test bench
-- U=Undefined, X=Unknown, 0=Zero, +=High, -=Low
type uwire1553 is ('U','X','0','+','-');
type uwire1553_array is array(natural range <>) of uwire1553;
function resolved (a: uwire1553_array) return uwire1553;
subtype wire1553 is resolved uwire1553;
component simtrans1553_single is
generic (
txdelay: time := 200 ns;
rxdelay: time := 450 ns
);
port (
buswire: inout wire1553;
rxen: in std_logic;
txin: in std_logic;
txP: in std_logic;
txN: in std_logic;
rxP: out std_logic;
rxN: out std_logic
);
end component;
component simtrans1553 is
generic (
txdelay: time := 200 ns;
rxdelay: time := 450 ns
);
port (
busA: inout wire1553;
busB: inout wire1553;
rxenA: in std_logic;
txinA: in std_logic;
txAP: in std_logic;
txAN: in std_logic;
rxAP: out std_logic;
rxAN: out std_logic;
rxenB: in std_logic;
txinB: in std_logic;
txBP: in std_logic;
txBN: in std_logic;
rxBP: out std_logic;
rxBN: out std_logic
);
end component;
component combine1553 is
port (
clk: in std_ulogic;
txin1,rxen1: in std_ulogic;
tx1P,tx1N: in std_ulogic;
rx1P,rx1N: out std_ulogic;
txin2,rxen2: in std_ulogic;
tx2P,tx2N: in std_ulogic;
rx2P,rx2N: out std_ulogic;
txin,rxen: out std_ulogic;
txP,txN: out std_ulogic;
rxP,rxN: in std_ulogic
);
end component;
end package;
package body gr1553b_pkg is
function resolved (a: uwire1553_array) return uwire1553 is
variable w,w2: uwire1553;
begin
w := a(a'left);
for q in a'range loop
w2 := a(q);
if w /= w2 then
case w is
when 'U' => w := 'X';
when 'X' => null;
when '0' => w := w2;
when '+' | '-' => if w2 /= '0' then w:='X'; end if;
end case;
end if;
end loop;
return w;
end;
end package body;
|
---------------------------------------------------------------------------
-- Copyright © 2010 Lawrence Wilkinson [email protected]
--
-- This file is part of LJW2030, a VHDL implementation of the IBM
-- System/360 Model 30.
--
-- LJW2030 is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 3 of the License, or
-- (at your option) any later version.
--
-- LJW2030 is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with LJW2030 . If not, see <http://www.gnu.org/licenses/>.
--
---------------------------------------------------------------------------
--
-- File: FMD2030_5-05B.vhd
-- Creation Date: 22:26:31 18/04/05
-- Description:
-- M & N register (MSAR) assembly
-- Page references like "5-01A" refer to the IBM Maintenance Diagram Manual (MDM)
-- for the 360/30 R25-5103-1
-- References like "02AE6" refer to coordinate "E6" on page "5-02A"
-- Logic references like "AB3D5" refer to card "D5" in board "B3" in gate "A"
-- Gate A is the main logic gate, B is the second (optional) logic gate,
-- C is the core storage and X is the CCROS unit
--
-- Revision History:
-- Revision 1.0 2010-07-13
-- Initial Release
--
--
---------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
library work;
use work.Gates_package.all;
use work.Buses_package.all;
ENTITY MNAssem IS
port
(
-- Inputs
MAIN_STORAGE_CP : IN STD_LOGIC; -- 04D
SX_2_BUMP_SW_GT : IN STD_LOGIC; -- 13C
USE_CPU_DECODER : IN STD_LOGIC; -- 05C
E_SEL_SW_BUS : IN E_SW_BUS_Type; -- 04C
SALS : IN SALS_Bus; -- 01C
MEM_SEL : IN STD_LOGIC; -- 03D
USE_MAN_DECODER_PWR : IN STD_LOGIC; -- 03D
N1401_MODE : IN STD_LOGIC; -- 05A
USE_MANUAL_DECODER : IN STD_LOGIC; -- 03D
SX_2_R_W_CTRL : IN STD_LOGIC; -- 14D
SX_2_SHARE_CYCLE : IN STD_LOGIC; -- 14D
SX_2_GATE : IN STD_LOGIC; -- 13C
SX_1_R_W_CTRL : IN STD_LOGIC; -- 12D
SX_1_SHARE_CYCLE : IN STD_LOGIC; -- 12D
SX_1_GATE : IN STD_LOGIC; -- 13C
XXH : IN STD_LOGIC; -- 08C
CU_DECODE_UCW : IN STD_LOGIC; -- 04D
FORCE_M_REG_123 : IN STD_LOGIC; -- 04D
XH,XL : IN STD_LOGIC; -- 08C
CU_SAL_0_BIT : IN STD_LOGIC; -- 01C
MACH_RST_2A : IN STD_LOGIC; -- 06B
ABCD_SW_BUS : IN STD_LOGIC_VECTOR(0 to 15); -- 04B
AB_SW_P,CD_SW_P : IN STD_LOGIC; -- 04B
I,U,T,V,J,L,GU,GV,HU,HV : IN STD_LOGIC_VECTOR(0 to 7);
I_P,U_P,T_P,V_P,J_P,L_P,GU_P,GV_P,HU_P,HV_P : IN STD_LOGIC;
IJ_SEL, UV_SEL : IN STD_LOGIC; -- 04C
-- Outputs
GT_T_TO_MN_REG : OUT STD_LOGIC; -- 08B
GT_CK_TO_MN_REG : OUT STD_LOGIC; -- 08B
GT_V_TO_N_REG : OUT STD_LOGIC; -- 03B
GT_J_TO_N_REG : OUT STD_LOGIC; -- 03B
M_BUS,N_BUS : OUT STD_LOGIC_VECTOR(0 to 7);
M_BUS_P,N_BUS_P : OUT STD_LOGIC
);
END MNAssem;
ARCHITECTURE FMD OF MNAssem IS
signal GT_ABCD_SWS_TO_MN : STD_LOGIC;
signal GT_I_TO_M_REG,GT_U_TO_M_REG : STD_LOGIC;
signal CK_BUS : STD_LOGIC_VECTOR(0 to 7);
signal CK_BUS_P : STD_LOGIC;
signal GATE_L_REG_TO_M_BUS : STD_LOGIC;
signal GT_GUV_OR_HUV_TO_MN : STD_LOGIC;
signal GT_HUV_TO_MN,GT_GUV_TO_MN : STD_LOGIC;
signal M_BUSP,N_BUSP : STD_LOGIC_VECTOR(0 to 8); -- 8 is P
signal sGT_T_TO_MN_REG : STD_LOGIC;
signal sGT_CK_TO_MN_REG : STD_LOGIC;
signal sGT_V_TO_N_REG : STD_LOGIC;
signal sGT_J_TO_N_REG : STD_LOGIC;
BEGIN
-- Fig 5-05B
GT_ABCD_SWS_TO_MN <= MEM_SEL and USE_MAN_DECODER_PWR; -- AC1F3
GT_I_TO_M_REG <= IJ_SEL or (MAIN_STORAGE_CP and USE_CPU_DECODER and not SALS.SALS_CM(0) and SALS.SALS_CM(1) and SALS.SALS_CM(2)); -- AA1H2,AA1H7,AA1J7 CM=011
GT_U_TO_M_REG <= (MAIN_STORAGE_CP and USE_CPU_DECODER and SALS.SALS_CM(0) and not SALS.SALS_CM(1) and not SALS.SALS_CM(2)) or UV_SEL; -- AA1H7,AA1H2,AA1J7 CM=100
sGT_T_TO_MN_REG <= USE_CPU_DECODER and SALS.SALS_CM(0) and not SALS.SALS_CM(1) and SALS.SALS_CM(2); -- AB3E2,AB3F7-removed?? CM=101
GT_T_TO_MN_REG <= sGT_T_TO_MN_REG;
sGT_CK_TO_MN_REG <= USE_CPU_DECODER and SALS.SALS_CM(0) and SALS.SALS_CM(1) and not SALS.SALS_CM(2); -- AB3E2,AB3F7-removed?? CM=110
GT_CK_TO_MN_REG <= sGT_CK_TO_MN_REG;
CK_BUS(0) <= '1';
CK_BUS(1) <= '0';
CK_BUS(2) <= SALS.SALS_CN(0) or SX_2_BUMP_SW_GT; -- AB1C6
CK_BUS(3) <= SALS.SALS_CK(0);
CK_BUS(4) <= '1';
CK_BUS(5) <= SALS.SALS_CK(1);
CK_BUS(6) <= SALS.SALS_CK(2);
CK_BUS(7) <= SALS.SALS_CK(3);
CK_BUS_P <= (not SALS.SALS_PK or SALS.SALS_CM(0) or not CK_BUS(2)) and (not SALS.SALS_PK or SX_2_BUMP_SW_GT); -- AB1C6
sGT_V_TO_N_REG <= UV_SEL or (SALS.SALS_CM(0) and not SALS.SALS_CM(1) and not SALS.SALS_CM(2) and USE_CPU_DECODER); -- AB3C2 CM=100
GT_V_TO_N_REG <= sGT_V_TO_N_REG;
sGT_J_TO_N_REG <= (not SALS.SALS_CM(0) and SALS.SALS_CM(1) and SALS.SALS_CM(2) and USE_CPU_DECODER) or IJ_SEL; -- AB3C2 CM=011
GT_J_TO_N_REG <= sGT_J_TO_N_REG;
GT_GUV_OR_HUV_TO_MN <= USE_CPU_DECODER and SALS.SALS_CM(0) and SALS.SALS_CM(1) and SALS.SALS_CM(2); -- AB3C2 CM=111
GT_HUV_TO_MN <= (USE_MANUAL_DECODER and E_SEL_SW_BUS.E_SEL_SW_HUV_HCD) or (not SX_2_R_W_CTRL and SX_2_SHARE_CYCLE) or (SX_2_GATE and GT_GUV_OR_HUV_TO_MN); -- AE1D5
GT_GUV_TO_MN <= (USE_MANUAL_DECODER and E_SEL_SW_BUS.E_SEL_SW_GUV_GCD) or (not SX_1_R_W_CTRL and SX_1_SHARE_CYCLE) or (GT_GUV_OR_HUV_TO_MN and SX_1_GATE); -- AD1H6
GATE_L_REG_TO_M_BUS <= N1401_MODE and MAIN_STORAGE_CP and sGT_T_TO_MN_REG; -- AB2B3
M_BUSP <= ((0 to 8 => GT_HUV_TO_MN) and HU & HU_P) or -- AB1D2
((0 to 8 => GT_ABCD_SWS_TO_MN) and ABCD_SW_BUS(0 to 7) & AB_SW_P) or -- AB1D2
((0 to 8 => GATE_L_REG_TO_M_BUS) and L & L_P) or -- AB1D2
((0 to 8 => GT_GUV_TO_MN) and GU & GU_P) or -- AB1C2
((0 to 8 => GT_I_TO_M_REG) and I & I_P) or -- AB1C2
((0 to 8 => GT_U_TO_M_REG) and U & U_P) or -- AB1C2
(0 => '0', 1 => (XXH and CU_DECODE_UCW) or (CU_DECODE_UCW and N1401_MODE) or FORCE_M_REG_123, 2 to 8 => '0') or -- AA1B4
(0 to 1 => '0', 2 => (CU_DECODE_UCW and XH and not N1401_MODE) or FORCE_M_REG_123, 3 to 8 => '0') or -- AB1B3,AA1J4
(0 to 2 => '0', 3 => (CU_DECODE_UCW and XL) or (FORCE_M_REG_123 and not N1401_MODE) or (N1401_MODE and CU_SAL_0_BIT and USE_CPU_DECODER), 4 to 8 => '0') or -- AA1B4
(0 to 7 => '0', 8 => (not N1401_MODE and sGT_T_TO_MN_REG) or MACH_RST_2A or sGT_CK_TO_MN_REG); -- AB1G2
M_BUS <= M_BUSP(0 to 7);
M_BUS_P <= M_BUSP(8);
N_BUSP <= ((0 to 8 => GT_ABCD_SWS_TO_MN) and ABCD_SW_BUS(8 to 15) & CD_SW_P) or -- AB1D4
((0 to 8 => sGT_CK_TO_MN_REG) and CK_BUS & CK_BUS_P) or -- AB1D4
(0 to 7 => '0', 8 => MACH_RST_2A) or -- AB1D4
((0 to 8 => sGT_T_TO_MN_REG) and T & T_P) or -- AB1C4
((0 to 8 => sGT_V_TO_N_REG) and V & V_P) or -- AB1C4
((0 to 8 => sGT_J_TO_N_REG) and J & J_P) or -- AB1C4
((0 to 8 => GT_HUV_TO_MN) and HV & HV_P) or -- AB1E4
((0 to 8 => GT_GUV_TO_MN) and GV & GV_P); -- AB1E4
N_BUS <= N_BUSP(0 to 7);
N_BUS_P <= N_BUSP(8);
END FMD;
|
----------------------------------------------------------------------------------
-- Company: Brigham Young University
-- Engineer: Andrew Wilson
--
-- Create Date: 02/10/2017 11:07:04 AM
-- Design Name: Pass-through filter
-- Module Name: Video_Box - Behavioral
-- Project Name:
-- Tool Versions: Vivado 2016.3
-- Description: This design is for a partial bitstream to be programmed
-- on Brigham Young Univeristy's Video Base Design.
-- This filter passes the video signals from input to output.
--
-- Revision:
-- Revision 1.0
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Video_Box is
generic (
-- Width of S_AXI data bus
C_S_AXI_DATA_WIDTH : integer := 32;
-- Width of S_AXI address bus
C_S_AXI_ADDR_WIDTH : integer := 11
);
port (
S_AXI_ARESETN : in std_logic;
slv_reg_wren : in std_logic;
slv_reg_rden : in std_logic;
S_AXI_WSTRB : in std_logic_vector((C_S_AXI_DATA_WIDTH/8)-1 downto 0);
axi_awaddr : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
axi_araddr : in std_logic_vector(C_S_AXI_ADDR_WIDTH-1 downto 0);
reg_data_out : out std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
--Bus Clock
S_AXI_ACLK : in std_logic;
--Video
RGB_IN : in std_logic_vector(23 downto 0); -- Parallel video data (required)
VDE_IN : in std_logic; -- Active video Flag (optional)
HS_IN : in std_logic; -- Horizontal sync signal (optional)
VS_IN : in std_logic; -- Veritcal sync signal (optional)
-- additional ports here
RGB_OUT : out std_logic_vector(23 downto 0); -- Parallel video data (required)
VDE_OUT : out std_logic; -- Active video Flag (optional)
HS_OUT : out std_logic; -- Horizontal sync signal (optional)
VS_OUT : out std_logic; -- Veritcal sync signal (optional)
PIXEL_CLK : in std_logic;
X_Coord : in std_logic_vector(15 downto 0);
Y_Coord : in std_logic_vector(15 downto 0)
);
end Video_Box;
--Begin Pass-through architecture
architecture Behavioral of Video_Box is
constant ADDR_LSB : integer := (C_S_AXI_DATA_WIDTH/32)+ 1;
constant OPT_MEM_ADDR_BITS : integer := C_S_AXI_ADDR_WIDTH-ADDR_LSB-1;
signal slv_reg0 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal slv_reg1 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal slv_reg2 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal slv_reg3 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal slv_reg4 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal slv_reg5 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal slv_reg6 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal slv_reg7 :std_logic_vector(C_S_AXI_DATA_WIDTH-1 downto 0);
signal RGB_IN_reg, RGB_OUT_reg: std_logic_vector(23 downto 0):= (others=>'0');
signal X_Coord_reg,Y_Coord_reg : std_logic_vector(15 downto 0):= (others=>'0');
signal VDE_IN_reg,VDE_OUT_reg,HS_IN_reg,HS_OUT_reg,VS_IN_reg,VS_OUT_reg : std_logic := '0';
signal USER_LOGIC : std_logic_vector(23 downto 0);
begin
--the user can edit the rgb values here
USER_LOGIC <= RGB_IN_reg;
-- Just pass through all of the video signals
RGB_OUT <= RGB_OUT_reg;
VDE_OUT <= VDE_OUT_reg;
HS_OUT <= HS_OUT_reg;
VS_OUT <= VS_OUT_reg;
process(PIXEL_CLK) is
begin
if (rising_edge (PIXEL_CLK)) then
-- Video Input Signals
RGB_IN_reg <= RGB_IN;
X_Coord_reg <= X_Coord;
Y_Coord_reg <= Y_Coord;
VDE_IN_reg <= VDE_IN;
HS_IN_reg <= HS_IN;
VS_IN_reg <= VS_IN;
-- Video Output Signals
RGB_OUT_reg <= USER_LOGIC;
VDE_OUT_reg <= VDE_IN_reg;
HS_OUT_reg <= HS_IN_reg;
VS_OUT_reg <= VS_IN_reg;
end if;
end process;
process (S_AXI_ACLK)
variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);
begin
if rising_edge(S_AXI_ACLK) then
if S_AXI_ARESETN = '0' then
slv_reg0 <= (others => '0');
slv_reg1 <= (others => '0');
slv_reg2 <= (others => '0');
slv_reg3 <= (others => '0');
slv_reg4 <= (others => '0');
slv_reg5 <= (others => '0');
slv_reg6 <= (others => '0');
slv_reg7 <= (others => '0');
else
loc_addr := axi_awaddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);
if (slv_reg_wren = '1') then
case loc_addr is
when b"000000000" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 0
slv_reg0(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"000000001" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 1
slv_reg1(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"000000010" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 2
slv_reg2(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"000000011" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 3
slv_reg3(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"000000100" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 4
slv_reg4(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"000000101" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 5
slv_reg5(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"000000110" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 6
slv_reg6(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when b"000000111" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8-1) loop
if ( S_AXI_WSTRB(byte_index) = '1' ) then
-- Respective byte enables are asserted as per write strobes
-- slave registor 7
slv_reg7(byte_index*8+7 downto byte_index*8) <= S_AXI_WDATA(byte_index*8+7 downto byte_index*8);
end if;
end loop;
when others =>
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
slv_reg4 <= slv_reg4;
slv_reg5 <= slv_reg5;
slv_reg6 <= slv_reg6;
slv_reg7 <= slv_reg7;
end case;
end if;
end if;
end if;
end process;
process (slv_reg0, slv_reg1, slv_reg2, slv_reg3, slv_reg4, slv_reg5, slv_reg6, slv_reg7, axi_araddr, S_AXI_ARESETN, slv_reg_rden)
variable loc_addr :std_logic_vector(OPT_MEM_ADDR_BITS downto 0);
begin
-- Address decoding for reading registers
loc_addr := axi_araddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB);
case loc_addr is
when b"000000000" =>
reg_data_out <= slv_reg0;
when b"000000001" =>
reg_data_out <= slv_reg1;
when b"000000010" =>
reg_data_out <= slv_reg2;
when b"000000011" =>
reg_data_out <= slv_reg3;
when b"000000100" =>
reg_data_out <= slv_reg4;
when b"000000101" =>
reg_data_out <= slv_reg5;
when b"000000110" =>
reg_data_out <= slv_reg6;
when b"000000111" =>
reg_data_out <= slv_reg7;
when others =>
reg_data_out <= (others => '0');
end case;
end process;
end Behavioral;
--End Pass-through architecture |
library ieee;
library work;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity phase_accumulator_tb is
generic
(
ACCUM_BITS_N : positive := 32;
TUNING_WORD_N : positive := 22
);
end entity;
architecture rtl of phase_accumulator_tb is
-- Clock frequency is 100 MHz
constant CLK_PERIOD : time := 1 sec / 10e8;
signal clk : std_logic := '0';
signal reset : std_logic;
signal tuning_word_in : unsigned(TUNING_WORD_N - 1 downto 0);
signal sig_out : std_logic;
begin
DUT_inst: entity work.phase_accumulator(rtl)
generic map
(
ACCUM_BITS_N => ACCUM_BITS_N,
TUNING_WORD_N => TUNING_WORD_N
)
port map
(
clk => clk,
reset => reset,
tuning_word_in => tuning_word_in,
sig_out => sig_out
);
reset <= '1', '0' after 500 ns;
clk_gen: process(clk)
begin
clk <= not clk after CLK_PERIOD / 2;
end process;
tuning_word_gen: process(clk)
begin
if reset = '1' then
tuning_word_in <= to_unsigned(2**TUNING_WORD_N - 1, TUNING_WORD_N);
elsif rising_edge(clk) then
tuning_word_in <= tuning_word_in - 1;
end if;
end process;
end;
|
--
--
-- FPGA Display Handler IP Core By Mehran Ahadi (http://mehran.ahadi.me)
-- This IP allows you to draw shapes and print texts on VGA screen.
-- Copyright (C) 2015-2016 Mehran Ahadi
-- This work is released under MIT License.
--
-- Display Component Main Fille
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity MainComponent is
Generic (
w_pixels: integer;
w_fp: integer;
w_synch: integer;
w_bp: integer;
w_syncval: std_logic;
h_pixels: integer;
h_fp: integer;
h_synch: integer;
h_bp: integer;
h_syncval: std_logic;
display_clk_m: integer;
display_clk_d: integer
);
Port (
CLK: in STD_LOGIC;
R : out STD_LOGIC_VECTOR(7 downto 0);
G : out STD_LOGIC_VECTOR(7 downto 0);
B : out STD_LOGIC_VECTOR(7 downto 0);
PIXEL_CLK : out STD_LOGIC;
COMP_SYNCH : out STD_LOGIC;
OUT_BLANK_Z : out STD_LOGIC;
HSYNC : out STD_LOGIC;
VSYNC : out STD_LOGIC;
MEMCLK: in std_logic;
MEMDIN: in std_logic_vector (0 to 0);
MEMDOUT: out std_logic_vector (0 to 0);
MEMADDR: in std_logic_vector(19 downto 0);
MEMWE: in std_logic
);
end MainComponent;
architecture Behavioral of MainComponent is
-- ## Define Components
-- DisplayOut
component DisplayOut
Generic (
w_pixels: integer;
w_fp: integer;
w_synch: integer;
w_bp: integer;
w_syncval: std_logic;
h_pixels: integer;
h_fp: integer;
h_synch: integer;
h_bp: integer;
h_syncval: std_logic
);
Port (
PIXEL_CLK :in STD_LOGIC;
COMP_SYNCH : out STD_LOGIC;
OUT_BLANK_Z : out STD_LOGIC;
HSYNC : out STD_LOGIC;
VSYNC : out STD_LOGIC;
R : out STD_LOGIC_VECTOR(7 downto 0);
G : out STD_LOGIC_VECTOR(7 downto 0);
B : out STD_LOGIC_VECTOR(7 downto 0);
MEMORY_ADDRESS: OUT std_logic_VECTOR(19 downto 0);
MEMORY_OUT: IN std_logic_VECTOR(0 downto 0)
);
end component;
-- ClockMaker
component ClockMaker is
generic (
multiplier : integer;
divider : integer
);
port ( CLKIN_IN : in std_logic;
RST_IN : in std_logic;
CLKFX_OUT : out std_logic;
CLKIN_IBUFG_OUT : out std_logic;
LOCKED_OUT : out std_logic
);
end component;
-- Dual Port Memory
component DisplayMemoryDual
port (
addra: IN std_logic_VECTOR(19 downto 0);
addrb: IN std_logic_VECTOR(19 downto 0);
clka: IN std_logic;
clkb: IN std_logic;
dina: IN std_logic_VECTOR(0 downto 0);
dinb: IN std_logic_VECTOR(0 downto 0);
douta: OUT std_logic_VECTOR(0 downto 0);
doutb: OUT std_logic_VECTOR(0 downto 0);
wea: IN std_logic;
web: IN std_logic
);
end component;
-- ## Define Signals
signal displayClockSignal : std_logic;
signal displayClockReset : std_logic;
signal displayClockBuffer : std_logic;
signal displayClockLocked : std_logic;
signal memoryReadAddress: std_logic_VECTOR(19 downto 0);
signal memoryOut: std_logic_VECTOR(0 downto 0);
-- ## Define Constants
-- 640x480@60hz
-- constant displayClockDivider: integer := 8;
-- constant displayClockMultiplier: integer := 2;
--
-- constant displayWidthPixels: integer := 640;
-- constant displayWidthFP: integer := 16;
-- constant displayWidthSynch: integer := 96;
-- constant displayWidthBP: integer := 48;
-- constant displayWidthSyncVal: std_logic := '0';
--
-- constant displayHeightPixels: integer := 480;
---- constant displayHeightFP: integer := 10;
---- constant displayHeightSynch: integer := 2;
---- constant displayHeightBP: integer := 33;
-- constant displayHeightFP: integer := 9;
-- constant displayHeightSynch: integer := 2;
-- constant displayHeightBP: integer := 29;
-- constant displayHeightSyncVal: std_logic := '0';
-- 800x600@60hz
-- constant displayClockDivider: integer := 10;
-- constant displayClockMultiplier: integer := 4;
--
-- constant displayWidthPixels: integer := 800;
-- constant displayWidthFP: integer := 40;
-- constant displayWidthSynch: integer := 128;
-- constant displayWidthBP: integer := 88;
-- constant displayWidthSyncVal: std_logic := '1';
--
-- constant displayHeightPixels: integer := 600;
-- constant displayHeightFP: integer := 1;
-- constant displayHeightSynch: integer := 4;
-- constant displayHeightBP: integer := 23;
-- constant displayHeightSyncVal: std_logic := '1';
-- 1024*768@60hz
-- constant displayClockDivider: integer := 20;
-- constant displayClockMultiplier: integer := 13;
--
-- constant displayWidthPixels: integer := 1024;
-- constant displayWidthFP: integer := 24;
-- constant displayWidthSynch: integer := 136;
-- constant displayWidthBP: integer := 160;
-- constant displayWidthSyncVal: std_logic := '0';
--
-- constant displayHeightPixels: integer := 768;
-- constant displayHeightFP: integer := 3;
-- constant displayHeightSynch: integer := 6;
-- constant displayHeightBP: integer := 29;
-- constant displayHeightSyncVal: std_logic := '0';
constant displayClockDivider: integer := display_clk_d;
constant displayClockMultiplier: integer := display_clk_m;
constant displayWidthPixels: integer := w_pixels;
constant displayWidthFP: integer := w_fp;
constant displayWidthSynch: integer := w_synch;
constant displayWidthBP: integer := w_bp;
constant displayWidthSyncVal: std_logic := w_syncval;
constant displayHeightPixels: integer := h_pixels;
constant displayHeightFP: integer := h_fp;
constant displayHeightSynch: integer := h_synch;
constant displayHeightBP: integer := h_bp;
constant displayHeightSyncVal: std_logic := h_syncval;
begin
-- ## Connecting Components together
PIXEL_CLK <= displayClockSignal;
-- ClockMaker
displayClock: ClockMaker
generic map (
DIVIDER => displayClockDivider,
MULTIPLIER => displayClockMultiplier
)
port map (
CLKIN_IN => CLK,
RST_IN => displayClockReset,
CLKFX_OUT => displayClockSignal,
CLKIN_IBUFG_OUT => displayClockBuffer,
LOCKED_OUT => displayClockLocked
);
-- DisplayOut
display: DisplayOut
generic map (
w_pixels => displayWidthPixels,
w_fp => displayWidthFP,
w_synch => displayWidthSynch,
w_bp => displayWidthBP,
w_syncval => displayWidthSyncVal,
h_pixels => displayHeightPixels,
h_fp => displayHeightFP,
h_synch => displayHeightSynch,
h_bp => displayHeightBP,
h_syncval => displayHeightSyncVal
)
port map (
PIXEL_CLK => displayClockSignal,
COMP_SYNCH => COMP_SYNCH,
OUT_BLANK_Z => OUT_BLANK_Z,
HSYNC => HSYNC,
VSYNC => VSYNC,
R => R,
G => G,
B => B,
MEMORY_ADDRESS => memoryReadAddress,
MEMORY_OUT => memoryOut
);
-- Display Memory
memory: DisplayMemoryDual
port map (
clka => MEMCLK,
dina => MEMDIN,
douta => MEMDOUT,
addra => MEMADDR,
wea => MEMWE,
clkb => displayClockSignal,
addrb => memoryReadAddress,
doutb => memoryOut,
dinb => "0",
web => '0'
);
end Behavioral;
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2014"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
lz3B4KHX5z7HJK6kHiZGMmcEnUqLtTRT/n7HdY7szClNEEBtVq2UQW/wdwwMN27AnOLZPVfuS67c
Y2O4fk1xOw==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OUoXLY9rVEqAKiJgtR19Q8FIQUm9wPmLFXF2sem6w9gJVRflCYIHWjOAqv6eppRvqeqcjaja3KKN
iRxsDXzkmdVb18CNyYXYPgZU4MySqAPoAE8BZ3alC446EKqG5bo3Faah4iFiaQ2fsSYQDhznQFWV
FIedseAJGSJjdgeT43M=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2014_03", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
bHuGx6phwwi065A2gw0E1Tqc2OLDUoohEHY7mOoJcUQwvr9OEJ4yz01Uls3wx2UOc24N+ANXe8aM
YdyfwspjYSBviz8nI/XUT5fPMjNbtL8HFChLorcX+K00Sc+A9m1I9+5W+Wd6GLSKBCVYKnWRn9Os
rc68y/GTowadTW08aEEccqOavDD8XG+R6gQqGpi5C8xq75oqBRmE5yNpxpBXxQRz9mmAsJcZ773H
BpObF8UUngkYlRzDjfxz3vzf6lVAPrLm55l1zEsel1LRtdqlRT8kBTrz1kke43v4c6xNv0u+i1Y0
dvxmNCEmLNrwBuVbcA8l6Jjp0k0WZScEgrEOCA==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
4sCk5d4E+rPjLUhUiUrzCNkXo2ztvWgfU4Ic3n3YDGHZzWC7cjzTKSJroiCXwtIaQEIL5FpdrGOo
eHf9JlqikZvG/pLSpSZr6BTZioOpsjgI4CJq9n0wGhpyClKm24hGzYEPH8AkBs4wVmgt4sOHvyYc
mYqTUQDFFlehrx6Wh0E=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
cjjanW9F+fseEMt2SDd6R3KYZVrfLHKeq8ULFHbP0E7BiwY4Vkec6zVJkc5FOAAhZdR5Ywc2FOnS
jk9bJ37QuAeSdAcrSzysHiIJYxA3kbMVuIa63kiSn3dKlLmPc1gZ2/UtM3HTBff0RPQzxl944kH8
SUid8bQM/bx+7wxLnTLuo6uTok/+c8ipzvZZ5iJ9DgzZyHiiuOtKu8JWNRVw1P5d1QqQT3EZ7Q8j
fnqcUNAmoR2w1hlmAhXTJgZbpiKUcMF+Y9/twpUzFl3rdEE6PKGzb5YQ/Re4uf+MJU96/KSTzmBR
Xfe8WjI4zLk+NlEm8eNku5cgYGTA1pkwApl+6w==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 82816)
`protect data_block
PKlpisMKFINH4hoELw81Ae+vpIr0xr/BIQZISQh02QmAYRngfWchi+A+2gXJ0ErM+PWm3fbvLHaf
UADT/opvnHMCrmwuOuQX48J/a1y0sztlHgsA7XTu3se9+qgRV127UsInIis4R+Arq69Sq2p8iQGa
1PD0yZk9bi6uA/bjwC/f0K4UDBZkBXzLgK8AKLyDRJmdnfTtG8KKVneUKGDkFJT/39R+ORlmjO1K
XG/kacw4HFvvx7d5zMmCVk65vch85G59cYj3oe9/dp+HeiNRQLeMPV8FtUC0j0/RKxrMAO+QOmF0
ERBQCHzifcxvPU4x/b51WVf9/zo5hEy7xHsvq6Gr/13z/wDwkNa+YPTJyWFr0XuiAw+KF9ipUo4x
gH1etQv38h/IUdmUpOcxElZzljx39pYb18ji+xL+nhrZ1Ac6sJjE7pdZiri/9xL7H1szzwA4RcCz
yyuOZXt8EURJ9h82hCDThzRDyluIzrwN/ciAVptMgYO6ozB7grEBz/iup4xRWP2gv89ezT0rg6vR
496XDHiQy8HsHmOlpPavfboF7FGgYJQZqrKfeqsoQHmz+dGTQ+1EC+sWnmqIHiwqGOWBHo9DXIsy
nSKVQmVA34iNf/mCOMeUFIjslHhMfuS6kS08B7zoWwoNLrzd0WEgVwsjy1qK84Ck/BfC8nYq9eOU
MvGQvNIzinz71GbUM79wlIdGOtkJszEKsR/hEWC2F339ASr//5+Qp5c4bRPBlgopO61i6ru+t3XK
YXb1pSColJ5eWLwqwgL+xJqNMuDULtXnREaaNx9pQm0D8HihoJXYwKfVN/QHqW5V1DCGCnmkHiBA
wIp+DY5kePLolhMmNJDLhl+BmT8VaWRmMwQBFQUlVDrBpQiWbpABx3xIKDMg323XW7mETqSrdipG
apggRa3y7ra85AHQgLyi/NvVT6TjJBlUhPpQcO+VkUXSC6F8hiHnpIhQKTJ26KSaaICSdR6rochg
RSk/PxvD12im8tj0fb/zT20G2Fah+omaNG6ayEVO00uLw2BdSeFyOiI+67MvIjzu0yLEgrBBSnJ6
CGAoN/7vwoPzxIjeDoKwdsFUCiKAjFMffXf8On6unogQud23p8iZyvdi5fzPgaWasp6lcVy6+EDN
cipbCcAHFWy9v+mCF7kaYiUjj5X1DXRFnNfSvWazczEmCv8gk6LPFgr/+kM9fxoJw/JFAzH533rC
YuOb5f6X5X0EPTdJ/xJNgQq33F2u5288g/LqiR3U+KvcKww9O/bzUei9xJPbdHGz1QXyDl6x45UD
mtF7Tx1BncNanvMkj28TyOHSdnZznRjHnZ+C4mIpR8oElrZ/kNBtjfX6uB40NK+xWzK5lSd4enja
8QVrKkQmfpbsFaYVxU6JJ1K8RdsRzIEfLKPKQgPlLCEtEvqe71Ob4VhcaldeizHxPHT7emlb+UpF
csLtBsu23jf6GMkltI7CHWGCMt5v4bGnt8V5W6pvfRo7Uzc45O1RUcLYETkJVTNOA0f0oZIwzzG6
oLrdF4u4A1nd4em8yz8erQHt+JWRZjuNOCvU0FrexgI4ye9hvYdGRtnqWECUEmC+9bAaTNhpz0RK
zpppgXZQNf3PhPRjcdV18C9kHr8xvK9TLmLqmzoUq2BtslvJtUzxPlLiBDbVkHiDBa2quq3uN/bX
6e3RU/OZflLx63FMA8Ly/mYcaApdDre/wj9U8rVky1xnqoAVYd63pwAeg1e5VN6dEkbGvA4Ilze1
1zlXwqjPrXFFTkchsMoYk/U+SvgqSEoQC4oWTr/wN1mbu3UoI+EpZtK45pXOQkMdS8ExqiIpITIZ
iWodd2/MAiAyhkayopiCWPEy1jj9uknlRRi1jQy/oBHpDRrekYmRMAVMwQtF4btRnv7BXW8INNE9
ln1hYwDJ+kKEUwG6OENJ3jOcSqroUquo6FuiX5HMg1XEUOcPyXt9XX85Au8i5Q1JdVw8BAeore7m
5q9ggtwf7Z6KmvE+6PnMPrfyMAiO+TO+z2jp/nbSm3mtLAoKAELcFXJ/NtXUwl7iE9HIDxpvgD9d
iFXaqQa7V/Q7ECPsqMALzfqmi1uJpCYIbOhaiunf4GY8el7eljC2CSvEi8LuKsPoYe6e2XbSFBas
2kiaw4o8G9YcUxyBJGkJSE7IngOTRDpXTKOEZ05btmg9iQMpQgkQRLUIKBiOnuHlWUpmE7xu6I4z
Tf3TxMAjGbO0sC8J+dxBzeVRDi9hxH2hVV5tNkErq1+87+BnhVHm2MmD/pymKNxi5cNX/FexiLLK
wjt58y2HmhcPuYib1+7czTXV7eP1aQkHrg2+mFmaxYy9X76du1DjC31Bi2TZCG2ilC0caCfcdg3e
JKg+aPtxCoijjNB7W61o0d3plpwnJQZsptKlLmtXP96GKCD8a32/WlVIrMFWp5SUbf6ggWqEusTW
MdxTbBcw8kDDIubMZjymOABdYFosaWfhmRap7HBodohX95I9pw8B8vmWll9icw2fd2hU9gkjzWuF
xVvkRuWsIuT7c/x8Hki3zaaDfTarVw1DinqLnn1f6IZfqNaqHhpA31oi3cfITJwleHS5wYNovj5f
erHd2jyxLdvB/4vkoy3InDw3n7x4w9YC0kweEyaHjbK8Q/1TTPEQf4Di+o3TMmLMScbxJMAF5gqK
gDbUR/AdJrLjTzOO1kpeXPhUlqaUvQBXne1F/N+oQj9KARG2LKii38ZRzl4wzFeJLbaHrlnRM8jR
lf00OwX/GvQJS7+aBoTdy8pbf3WMTRgyW1onApjm2JwZEmVLNB58CHtvj9HrOEx2hf8deEa/c9r/
ghS7Tva9ypnBZS1TKkCBamOysNwjLAtSFPedJqNIsXjDvdYX4T25ZMJWwfcKH6i22Sj7CFPhgUQg
BNOGvXttR1wGbCMmdh6Krdq2e+VcQijvArkt2tRTLx4GCp95T+oZ/CZo8dNj66cKNdMjL+exAcLC
zzlKsqpAVebefwCul3JVG1YLB3Ntpw1+i6hCc4ggsMR83MlP2T/B0A9Tk/o3h+CRDU3un2mAYKcw
ZbiCcpnoEuPWUbxdxN31az5xSewxsNkFPMqCcFW5uZHvFuRV55mMDeEJTxpDqIXiPHdSTUm+P2BL
bDcozga1rhoiqEsjCWIfptUBuVwdg9Xgb9dNx2s7YWVLgisJk2nEHQONBxyEStBJNhRh8YFVOYyw
/N+Wx9v/pyZFQyK3BMx4aJk8PqYECZKS3kDT8gxo96HGZu9Qv3a2iKakWdfVLuTyV3Ug4kaQBR81
zXIAUQo3uLHfwwITDjVJ363ZZ6xAre3Q51Ryndeqnp/9kZKtv9koF3gyLPSsUUrfXJVQNwMCgQu5
TtvT8EFBZ1I+LE5Ehlm4U50fxkDhCGFLLdr3EWvehcxjTkbJLqZIj2ZWuLVMB78bmQSUHmtFSAwu
sdNfj2l9NrUl+J0QAonF/qKVBV6u07e/w3Sibj6ruM5k37QA4BC5Dpjnksuys7BLBvFLM45YR1XX
JxQn6NMD08yFMz22Sp1VUDwnCjchS7wobrHTPMonTBGWEMEV/hbK573hquFoRFyTGVGBoeSgSfN+
DDcXIm2qoicZWezBQcsr2J9H6Y7qyGhDAvp6PDW6BQqD28yj/0mgo8cnxlQ5btPzvSqhzm2D6o8B
tVRLHbJAANknQ+8RSWH2POMFT10aqftNbe1zm2V40ooBxbN+kxKc640IYEiScSAEhPULLRXAHspd
QpkT0BZkB47K01kPf5a5d1N6Yr1E/xORHAb64nn4NHkEyuTusno6hHlqQDKfq5CDFNJmr1qAmkE5
Bxkjft9wL/JigRN01Psr/pX/3RNdaycs3lTKbSXofOmL7TzHNY1wmHzLNBVULt7ewmvFWo3lxBUV
55eWilrReGlk8hBO/tBGI4fedqQ8AXg0jjIMi0DmQUFBfdugV7qntf5lwPW7D216aMex0KRwEMup
GOqdTkW70Pv2HSJYc6eN45q5pS8TP1szMna+KP0nKezHHJorWa+j97qcHIGlQzUdD3oi7VG9AjsP
0vLZb84N65CPn4DvdILC3EHuttTZaNWzl+FMBjln1WEyFhWTvOwEDlHnhJlC35m48d+7GZzudu1e
opdUPGDRm29j17/tVysn46sFExzvyo5XTsgNHmoRZNwimAmXn43T3qTLOfsiOvdzCHr3dhV/N8RP
X7Llah7gW1ciRZ7Ljwsd6T6H24B2bEzV2qH1KIV/WdqPGK07rM0joYzB4hXrpOkZnKxEYRlFoIR/
ARCCOlX59he853aq39Oc5SAAXSHsohw7Ktq6CAJnFYqN2uA7y4TOZTCQi0KJj23sEZZ90bjglR2d
lXoBiaH7KeNUNra5aN+ICVa7lrb7IieqV3pmBi53xcHPM+NqX7c3KmEKv+8wNiqK4mI8Oggwo5xU
sJGa8aBXYEmcKw2qCbllHLMz1bZTBwVFtPgwZH5EHxphmvRk7p/BwNPzgFv1AgjyGyzX2WcLvnAl
CbINUV6Y9s1n4FoWyZKBVHsRt4MgTVoddmylXo6uS5oPI982oM+ifIKwZMQFQ+9ijUekSxnoKE8V
/MHE+OahSVRf0zM4rJmk8qdA/GsLDz8UUkKjRlxQKhh2HTEL/q+rDfX1Z0mnTb7PFywwT0zfnOLk
Jg5neZ5eBPh3zmFAjj19G41T5QHHfSlVxkhqHIufpcYnwlq0NO6fM6u6GK7d6NDaIHszskOujnuX
n7xRgZmA5aVZzgBwYM43y2jLZG2u9xds8RW69UrI0IpJ+w+prRebwwfN0OVvk2yKgxe1r6dWpN+q
6Vnm0L9nrH/pgP7J/78rRhPPkd87pYukJt+UH0n5+c5akxNNqcXjvw4VwIzoFfJHi2eahO8b+OYv
DzWsFy0G+zGTgPB2PjntUrFehdC9WmiUIqYGm/je5lxXXJCLRzMGSzsYsKG5ruUPewa8+BSotrbl
diyZV0jdoI7pnpbix6VKEklLOfvC2TogcQd7tPRK9kiIX6nfQvfFpRFi8pPzlVkzpM90Ne7WnMtG
i2p/IhF0beNsBKJOR8lxv7UkUNMvwjLIoC6JlpZzyMBjC9vu4O9twOaS9t0qsIO0PWuTaygICJWF
EJI3EUzVVXmkGsNtbUB9RPv43UHex05WvNiEIcQJ6Zi9g8jxtbMxCOKV1F4Y4qUIDH1C7LG8yVy8
/PB5oUEPolkbFoZVcKbUP9YggmeGXFKnoWn7fA93wb49K64t2UStaBleGNFdwKaI3O7YX2JwrZdu
V/6WJ46bEcfQ48DrVquvAsDu/Qte18hwq6AI8Q8wwBtc3yDMTgQ/F4o3hsKx2fKtwF45KS0N7gxk
3MDhygVlnV/n5EG0T4y2PuTcxiNRnYXNWHC7g4mEMK8J0i5HIfMKVGinj7FxfjeWeJnuwOLIbvWp
4or3GyP6gBIpQb+PHzc9B9Cskxt3toHQeQh3H/KAvEL/uTp4+N941dAU63HPmFAzGDJIHwUKKyEL
7Efc7jxL2AMJ+54irCxUXixt/Mf4EFUFeRX9Usfe3c3/0mu9d/Sn3kMEunIogqBdUTdAnDDO/DoZ
uNww22SXb9UlAdEgJAvek4cVX13GAHFrVKU6yPtUJTux8qTCvKgxRNBuM/h3KbVdm4P2ljhPVvon
YCUBNGXdjQD6LKha3CusIet0Ekwlu8ZLnCdgHEAqfT/z+WvzHKFvDo1qb1QA15XFo9EXcFE+lQuF
QTSvtb4Wo1lAb22E5sO7I2FZWmdqR6v7skvCnzT8btNQmbZitkIcFm4l4aqVuhB/QhsWLD0jvEt7
t7X6UzkRHs1NWtO4zSaDu5aFt0QR352AaUDzKBzSB1qdQfLp5JcXN4vwcwrJPNi13hgVQMAoOU8S
osgsTvP1b8QTzoO8ixR6xU02RPM4PZLO7gGrx0ykMrY34fnm5Ff+KKmLUdWStLwy11nandXepuxo
fP9bLHjW9QdAW0yrmYip/G3rkD9i/OzjWkhr9e8/dwIiuNGt9QfCBIQwc5HMNcH1vTsf8takLld/
/oFkvWHfxqw5xkiUJ5/8J1AcbZP9MBjjZ6XDztz/COro05yjbNenJGeBi0krvbvE1s+G3EvsCN4G
BLmmnuzGsEDJw37L1/a78qTMif+zUkfqHsZjLnI7Bvwo9EgiackDcpeU6KOh4vp6ygA6VbFKd2EN
YdREefq7BBZYKvbU2a5dQmuwjXrPLqPgLAZQ4gmLayoj8XDSOf1Ksvb7Sok26ptqyj++iwt6RwBj
/YsmDf+bEzFYAO+8e0hqrpOqylfeMN+JdSPLS+tFbBCQq0wtPPxilOzIbhaFwMMb9ZfIoxcY7qvG
YWC85mF8KXrRZKOFdR+ejw2jPdP9zNKXjlVFnIA2nw5T1F4ARmArbk+rSvujjZc15jsE56be0its
U5EsLpR/iUdQH+lmpm+51z8SSJVviYAmSsPiYm8hJoohgZH3b61qPgoIVBu0TmdQmb47Mv1uHbZJ
u2XVnCiK5y9gMkc8sRAIizunal/2jYYBDDL8E6r3KA/q+eIJyCD5kmGFKDb/vBfZeLPEtNaFTvVa
sX4hj58ndGYKTfHEetLwLu0hjRt4wFG6+S2jsS0Rf6ApIhDr5nHT+pqzaJhORoaix4HJtvjzgzhL
eDwBOqAfyRiJvTSwxTik/fGnX1YRyUeDOhIv5IXw1ZScGEvdIWb0RpKbl6uCFefIBSPbSEW1hMRj
wkSm0C4jCBJ2jogVxAf13pGUeV5t/IYtETyynHRtssHUuDgjpD3Fc1G8/KNUbYD07X++Lav4iH5V
LrCR9Gxrl+tHfKc1s3/RyQ08Nfjh5zTEClHS2my7PDpf38e6QwQDwq5l3OCZxWjztI9pAZqzEUcs
0uMiADDOxBBtFr6MRvfY9xJoIyb2xINI8RtWDdpx5U3rBTHjRUFlK8xiGaipFnom0XBfmNPfFREZ
U3ZrHWwGea0c55S5/134dNhlQT8SRnklMpKel0kCEMx/v3QC2V4fkL030oeLqUc5cfE43Uz3XD/X
JX3dZwidB7LN4eEgAOTHn/WsW288rXkBJAApGZr9QNzj2z3EijzlfSuvrhTY3IudYSvPbolq7uZq
ZUgddFnu0Z1DdRneCmTRIXpl/TOszFel9I1qcT9WUID86yCqXmAstwTP67djxrBQxL88iABniItY
GUYDdyEVO1Eth4G6oI0r/uJYzxj2ekEr1y90bnB3eETYaMU8LbyxUqZ5p79HeWmG9UO18848HO+Z
oHe+dF96apaQoiOnw4HNNLjrg87Fy6RqRjKXbIwQsYOUwOYUtIh7R4RtGs3sc+8o7pprFqwY2I0W
BYu9VLn9f5ZiaXgz7kJVmKNtdESAP7ZK9A+qlfGKEGF/A60GoQhHWSxlpJNidkdYHWf7dHm4KE0x
5PmNdSKB1GKNi0bH0r+Cng0RbkBP400tkZURLLxhI/40kBEoW88tTMC3WEkoNYz0j7FQBMZaOEix
UI2peq4kFnNKSgYkJl8NScOxX5ZHWrH4/aDws6zHczxNceoQJ9uL+CUifQoJKecew6Im8OTW7rPj
L33KCsouDuAc2ou89ekHahblEWAjIhYGuV2TqEmeCFHYtXxpta2Q5ZgYm/MTbrY4ndNgixT6tcZK
aPDHjUKMhjKJYfFBx1nmtKNgj28dcZ1xzdyPXRmyu4f5PS7hfhCdIDapZKcpOH3krS1eaoBqrPaH
EzJ/5xGhx0IsNtdLvOmNVY1odHOYrYMXQatws+xecoBD3NyghMEle1xc7gYe9F8TaYR2bFNz6kqQ
arN/bNuCtIdrKEIOguFIJev1/XTr/wixnLH+r1MwZZ+RQ1XW/GPqeSVduXo7BGEYUo7hCBIDJ+Aj
aOL3eNQYaqEmuWqZoTcPn6+u7S6Cp3gaj5YGdmpwxFptcy6kS31scDvOwFlKnBVKAZdkqS0ObGMH
RTgZcvyRS6O/WPgiQKas1+Qvw59gEDkwexG5XCs/wV88C9QyUqGZm+UZ7h6RsecO5xl2an5udfwx
BSA0NB+OKsP2RbG40oHvSDsNsDxpTKdPx8LM4NGwOo7shB1z3+57ObX4wSnIvInCsD2L4vsfh1K+
fzRYUBPNgKV/XWIk+MKk0TaldbyLyVzCXafyvUdjGsmgLtoRaXnzT3XDWpDmvClprJdgf558QuAy
+rcPrwMrZh6inr74HJ7rIUKZuIxdCnLynyloHSsFvZfOMq5/uyYcn818/gaNlLqITW2ayENgTcom
v5GJL3yBtVxAJhhH9eGFiiqBn05RLFGuqj120cvNK/KyRIic0q0o8cWKFBe6JrJ2AsP7/YvEJslm
ykdsSbaYUKi5ujcp5jO37sLWCs2BZtR26cPz5aubb8Lz1mv/9rNfPpl6kVKMdhWyxCWBFAl40IFJ
mdWYmfWh7L+cZVzjy09iS6h98uDJy+8YsslU0Sii21PnT86Aa2+LnEQRtYyawO3fayrFffV2h5uV
KKL1SxpaNthRLFRwAVjAkm+FMvFaSzlt12db1pommbcR64mNzAwwfI0Od366USZf1ndSzhbpTlXM
bQWRITeSNEjlx46KGGWB94EpbcnPXKsHMujKiSPLONY00dWArnoyJMgZ4POq94JOxC77PcAdu674
gYKo+/5A7n1tnSDB4+aJMLxQx5InYlPAeZYC9v5DWnfitYOiDi5QaS7WR/T3GAjhaU2GBDOPErlv
IV3hz6ZqnkA372K7R69ZFBpf38CCczvMsqg0FEhBYj8L55NsWa0trB+D6/Qn4TjKHM+cGYpHWHmD
6vJAGuh5Wl+hUeCL93HYXX1dOI+2a+YbbMFvNmtVObkr/fLW5oWkZXNYxiSpfXJMvy//ECx6Id6+
035AH0WDQf/Co2zFHWwMAp/1CkVGYaoy7HF1RsxQyA07fOuZLjCBwT+6r7vcF8aBrL/RZYpRt01Z
CDvIi2j7qf5km08E4bvfkIWdQUCW1ZcIPDlL7U8ky58aOp8NIofpjM43CwGhKwPtJtUjFHwWov3/
eevef1J0mrXAzG9XuLRChuDw9to1k2eWYUHWO2Yrl+ESrCqPAuGaCIhDrhIxbB3Np3EDd/3MQzSg
bnzH1cg5LP29hRm45+nQmtOZ5q4OpzpROCIZaueW4T6FHAlMJvz++e36vTSS8fxz2OAGtqKfFovx
x2Zpxxxubuoj/v+zE3KruZV7FIvc6DCT3EH4+GD/b7Ytq4A5VG5DixoxUc3Mq8CJFh15J7jWeCbO
jc3r3l1IjNUOjMenHyaY4gXEzr6a+xZzvJbpaojHC/tVpGTIBAmx4nkSsoMNoR/qv6B1uehkt0H5
GceF++3TDUpO6VsWhWzNSFNeCVXQIURbUD8SUFdNW+CJNjpSCfzfNooVSFgwZRDt9GydSHa6u7zt
SjK/Gc44EQ/Av4LxvHptvu1FurKi8Ld0sHJXcNvIi3SwSkdjX04OCFlZezws+0yNdnl0z7o90oKC
gOiwk/60T+jtIh0gzwiu7BeAL/+gvz3Aj0G8Y78mCUEuOQ075A57QMZ/o2TeNgEIqNh2ovEAALua
DG1qMMAhjtgVlIgfG5XYcvUfzGUBJTFb1fX8y77IeA3h0XPvV5dh2QzQ51T290kA+JcCgmqghaIq
iPhVGAz+01HqQ4EAF+3KbIPR1zzjtvlsV9O0txPhBkaNmsxxZQ5+oMhdjC67U/QQsx81yOQZkfvk
ASu0Ul6C2eiD+GaNLNc/ntyUgpV1W6KAareX2kxvBnC+HioFNrrgieO9K2MdspeM9i8ZWaHHFdx0
EuxuNrRTYnhal07PWa90cHlYxDrxOMExVT4HBRKxZN0gqLyUDTnUZI9U3uZbdndOLI3xU4J1ppbx
F5TqDJVTn7Gu/Efm2UTYZRZsJzGHYLrlg0W2lX80iZcgwYiqR7Pz4glUQ/kB1awqUYNGhca5QSug
omJiTF3GDQFJ6CoVIbZVCho7OREj0Cyq5lxgdzmvnyJAXCiU7Y0/naAz/MHbTpqJ/RgmVWmlwbdE
+KhrRSYS4xaIvRJpRmZnsLdG+zpNJOvXcHGu/9UA1bIV65Ui5af/ZRIQc+oNFTgR6dQRlsglA6/j
MyX1jtNXhyNFcXG3H29hNBe0JOi0bRHyzpsrlmOhzQKJVEnAO1cuUHG8Jt4XBPm0eQF/lyb4O8TJ
inXQCN/uerEYJ6T7KiHjXsPz8mJfeHuw4Vs37NbIMIxTCCP+gAOsJZvg0mFbsq+R0CZJwxcqpEF9
C7KcR7mvETL44Et9duyiEyLvhdShV+C67lfJ6kStlTSVeaXIM/YBI1mChT17FgwaSYMS3QuaNOUG
0d6VeQ88yBs1v3wSclum0j25OmytK94YQR9vZfIHCaYMrbXXwr4AjB0R0Wf+nJTgd6ouOa+Q2gOl
9/Ig5+li7twa/aietTZayjbxVur6dpmhklj1ARMYaBtz1gdQGSGX9a94C5yKruK1DaLcXp7EZhaU
5DzSTZjHrgVFAxALbdmbWEEP+ovg1C6Jlo2NjH5DWW45L6FCHsKwfraqvwSp8MBuJL6PpaHuDq20
8O+Rll8wMIS74p+kd0QMFjl7Aijpa1/ikkbCQC/ngafF8XJqs7+ooXxFBdMOH1i74/qAuguotZJp
G7kHtmurecj0H40tskKJwb0muZlTJmofY/t+OYPnOQP5Ra/DbBPXk0wV+KOy/Iu8Gtk4iVsPqDOe
6PRlQ8WSXxNFdGcqL922k8l7G+LwN1ewO8CxGZ1NQmc5raxfUSrrayhdUuit7NFpfHYfk7gbwyMp
Pi4Xrg+HLoaL0oK7tPajr02R1W5dJeA6LxozDxyvcL7jUZUwd5LiW+SAsSWzLi1+Cwm/IeBcyU0h
8PuGCxaBYq81I3VGy5XBF6EVVRv2cXag4+/LHQExPnWy7xm1PVGlUkzTYyxcTjk77sMcystbjqTl
PtlRuJEPg1BSpLDuPdQ47o+2aQX/I583OnCxoDaOmI/63VJS0iklh7Tkn3s0/mmZATijJmGZh4BL
H+LzOwVvkq8qIUH4tXqkQletqSysboj6wcfjE3jbzJRcCIGF3nYJ53SnSkjSaM1LHOZfLZQ3r8Q9
TJNpoba4MIpC0JQhcMf2SKsb2iTfb6Nm2lZUaS5N30XFYw8lWectepJ7yy14cP+BoLeORYfMJ+rD
b2NNhERzWrEO94q03OlpELV45hfGHEhHwNG3kSW8WT+QIrPnzktIRY1Y5BGXC2HLGJyOZR6QpCBE
ORzuAMjVd9G6FkBeFBfP07vPP3yNStKBUAaXWZaGdA8ZDc/VyCFYJq4l0vCPomHadOFyZucpWrMy
7a/9EVeS52Ty5s+NgXsklHkTsBNjXfS/kjnUt5abiu1+EwhG90omPvMrSfS/5dXiYNEaJkiGmSqm
ZZrDyQkQISA3QFjEdEBQ7JjTpJkT+oT0kBFW44qnVtzyjqcw809baFelSk3Gw5TJcTksKbVRPELY
lUd0m6LwetMIT56l/zHbXTUFT/al/VREww2knekbLRHhD7hs/d4znC+D3aSYEz546PHz/J1HYB2J
A1DT4QSXKe6MQHI3FMZ28rs8q9rPIEmbvz/tnVwD7py+PmupsQLJWkyPQBZg+LJBXMcNHBsfby3o
/gexS7+um5xCfAY0yyOzn05NHE7ITgyrCFxV+cNHW9G4Up7gzAcV4hNyccGKUcjXtC7BO+8QQqo9
SJiMEnUtMljeNzRCtyBuE3BbhdUCYhnBZpWGAiFNDH0FH3pkNW0jcgdRecL9L8/OIWhRnd9T4dLn
J6RC/15YkK9CRWKbxk4ToeZNt9QlYoU2sWzT+mSQeb709tby7qZMP+4JYOBdaXJ3/b+lMFDVcLiw
tK2yGc+ti4n+gTDsEyOjLjJGRTV0IVFpxzKcSi3FIJS6VdehZCAotqz6rBHFO+aJA8euYgzCMD/3
xd2EiCtbx+LviHOCGDAe3UVzkDY8Roi2OuFZNuK5dEMWVKpuUULvv/SwWHrhzbbPlmON8WRqCktQ
2FcJBkM5o3U3cSu9GPy842+GeJRRi68wg0JsNsTNRPcd6kdIELgxOisNlebs54pLkBi68IkdGMPr
FUYTVohkGsBLbsv5NDOrUc+QFNBvq9iOMeTs3yFwWGbSYcoOei6OGedCP63iqf3MY9l6sdVRu94L
+JO7aukUUFvqS5rdDx726DA9YP3UOa2nx+Ihu2zlmuGo//awmNlhATQHuef6J92SFC3Kc3A7fCsa
3hugml6ecqmWs5f+9RE01gyZ+lNorgM8J3802OgOw2aAkLrtpT4BM7cvLnmpffCPophxgIoJblPC
KD5tAQdEoszBUsXc9bROdR7rmfI2sVwKDfARzA9pg3NmxDFDWKX6vrl4MN0nWZb8xN1OlF5KocrW
9UagIL9+Qt1UyaX8N+mcud4lJsuIRjJV/KvCZh9l8561JxKiCu6preV/wUF3fLuP7DWuBSSDsazR
9N3fllb931y9MqxVxH2p8rCqlxX+GatzSO7at2KERZCCQ4u5uhkEf2ImoYeaX71x7ohqjdYefF/u
JlPdqsJdGH5aqj8OxJE0FEGaXdlkQSxoPSiHZyJF/bgiSarcvbyCfyUBAyRw+LMMTt84oMHglJ/L
7jAXltqlSf14iH+r6rBiWaYgBaft7JDHPTwyzOYURI9uc/2ex1knZwDTrmhA1HEHusn/xDi8woED
3eMZ3rCxOXO6TdwS9QPWNb193g9v4m3FuwB9Cojb6oj31CVGff4JFW/6BoYaWZvM8jsRTo77ILPn
RTR4DkmFMYFK4sHbDIQxlv9dbnp4pgX3lleOy/SR8LstYK6nkz6TRyZ9F0S06fjzKqra5FCbthay
oiXsehLGgJuS9Kn5kVhMFRqdfPNXLPqjIpVbubcPEFBs5O07nN96bnrQjo0+rBm/4Pvdo4C8AVCN
jRKYYmmeE45UUhN0E3+pAMUO+Indoq/eOuOvNdtZ87YLh7cD3Y86BIE1kcpRETG8N3WTvgTOKnTw
FGWPukbQIdQmu98tvaw/MgQqDigFaZhzpUSnh4RIL/9/2YqAWwFhTQTPeWvt0IubSSLXYVqI1/5N
ntICRoyryffeUHeVeGJDjUPW9xkNhQ6/Ly7ObqYKRWe/ZT/EsxnoWTz58OMDMkjdtjTDuiedTK2E
wdnZf1AGrohlDuRTz1/gOoo/PnW0rC1EpCShKLLy8vGOk4OFnljkOE0NahM+8kH8dfZCivz1qQR3
IX9I4zkWGToYVja5EEt97LhTSPaQjJNWp35OO9dAsfr3IOS5wH0LlbCYFNiS79p2qzlN67NGPzPs
9dUQ5eAsn0YW3hc9r5YudyeKaaUkk520Q1XTtk+EqemJJ3qbBbuY0eSnFOP+Kh48YD6UoS0eH99n
In14GlcXBor6jEP1o+488uyEZ2CrGxihyKsJykEOTh5podH2zJnkL8IIfkG1ey0lsZOetMEgx0MS
YYiE+k2CgYzFxxYwXVmwVKQuxIsKodmX7ZzBSjLQ4cItiNpWegHMUSuD+JjuvN9oM0Tj6QaUx5hB
KztuOdkkxsNSD4l54Vr4U1fe1a4bWpeV1GbasERvwQb+XMNrOiepf4gJSqcfiZQKZy96qnSJaKfd
waoo84moAZivqXN9p2S/sRTnmMqdDYAWMaH8ZlobO/ont2G0gVf5N215H9eAbQEP00w7Xycwvemu
VFXLXG3TtjdrV99ypzbbvSEcBBdTXVWOaNsx6BkYcSTdJ+s4dfJ/96CEtAWU03okdfa+WBHkvp8Y
LgT/iCrO2OinxvSkAWsYG599KlTGAePOWTsnHG3wpc5EI6aU9CmYoC/UQ/mzzpQx2EpQ7oVYxqsl
aR8fdqdtNkg1HMxXpGucJP1D1KjRHn+G22PK2EYAbx8AvB+KvNjrvD1UFBcBJvILOOlmPM0dTJmp
nhPAMii1PA50fBpxtWVu5Htf5HNKvACMoD5SYHAmEM10EmN4KlLqERoXwL6ZNjyq20NOR0Xpxf2W
m9Pvml0+t5bx6wqsA9bIr4/vfQYBd9QyYNS196Scykb+ohG/E/sNpoIXhO7qmNVRQ8mBiiZVWQLB
M7dpOsD/2Cb9ZiNCCQ6wetjaBEX49voopqvPgZyTWortBZHzyLE51gNY9nq/2tn8pm7lCQo9EHbV
2UNEv1txNKK6Ri0tbhIIVU99vOp6X9nzQsGpH0PyPRgOlnCKH2CxcXk8NeV3sGO+qojthC54Fg4K
U6eTHZumq+ppwWrPkjt1EGdf0+iwSgaMwmwwydfL9zH7YluVGC32s2G90+SCFkCmRIkx1UjnWurF
A+U6h7q7tsju44p1jC4z4F7yBfeK0PO2RNnxhYSGwqb8Gl/cWZgWtKR2bkPrkjBqmsfItU0tvwTq
rEQ+iQUnM9RhH8GxBs+s9H5oNlnu6FQWme/9KvhK3WyVmL0On6b4HnBvZqeRW3g3W3c/18yC3MiY
py19mPrM62EEPd+w6NYq+EJ2z9dv0uJvq+sE/fXj7P2Xaxe04NDz3D8d5Z0VnTrSwrczZxCFfQ1E
c8MtmLdYXsblB/brmnnvzbAJu7z/SwmD2eiy/iv5e2uiHeDlzWTdUu90O4tCgEzcUtgNCq0IKmH6
ZK4xuqY47My7jvHC5ClW0X7usDA523RuPRRST72X2mKNr7LF2KC4e0p3PqCA13K2bz6YoXaSruIa
qGAU03h2tG7vo0/RjiRmKpiRG9TDlQckd+7dl89NezZCNPe3VTCfEaoaPWjcw+31/ejdKmVRdeou
3OkSCI7SgeQqQ8dHzPmvUrQ4/RR8L44IVgw6Xx8yg0U/LO6U9KHJvLnbeL3AgjjbuzjtCEZRzvNZ
8TRisA1HTh5SQJPgNE1VoKxyUbyyPPj0KpCQxUio9+BwK3HgE9hxgxSzOUgNKBP90gvjW4nTs0Bd
lcHw4hsSOq8/fghgZAXZWqvvIeqPfb0wFqqtb6Syc7dnTtrrUuNDNRjafd4Qj5oKGLvQxgDGWz9M
8AkKPOZnBsj6FW15y6YSxgm0xg1lRdScL1Bj/bz13FEln6AbKnOwnKBpTsK3q1r8G5z0dmrfgTNh
Lis639cvfI9ZzSNndl1MHGypMJk2eLMSs8OC9YwKikzNy4SG1IocfwKsB1wfgCoIuEva0r9NmGgv
CaXVMbcowIm6T2BJxqOeFO99ICpw+C+v9QVOliWVnuTmvBY/idejA3a+QWcsg9YoNdQa+NAi5vPq
XMC7fjXgfJkNS5NmjH4eOX3CtMFLPR3PTjp9yQayjK8riwceI0DWFFF2mJrcMilbqVWKmOzfsrCb
/aP/ZrsifmzbvLig7PuVAh0c8LyIvG64cVaUvUhBV9TEOr4WiTdj+l6/oNYbx9rhmPXE1x3vg7kH
LP47wbvcHKP0RY6tfLDKgKVXldRWU3f4VCDOxebvjLXhOnpi+bmXkxB2WL79PVS4EvUhUHH+STIL
80yUt65auwp/WYs8d31rNd8z60HTes/qwas0kz+M9JJNh8NAlbufKPz8rauKzA1qQRL0p0P+gaUE
wfbwausT62ltU7kGVp1+c1AmO0lM9NbzMgoVmIyzevtGqkbYJ66P7ZmchXo3+OfYdpsFNqsB9K38
7+7k5y93X73MlIHmLvumsLL/ALyVX+kmJlw9+DQV97CdiM4DBzWjnlCcd42Xt9okMMU9rB4sMooy
TWAEWcH3gRguycmfFlw3W3LDn+P/bVjR/pIRODbt2MsVW5xMFmrF/evItM0On/jwcjE3qwyKjnt4
w12ZwYQXj1Kd6pamdQGSqnqkOnijQfs+RdhSLLXampgtYAloOFEXnmEu7ecVQOWNdmaLKAPXSRcA
6fR8rP1BhBXz2R5mluQfkwwk5hWJMUWoxn8LDKgigSt3k8g+h7+47qQbaLCtmwGWM48iPpuy8Zlg
H+N7KbLuT4Q1r5BOU3AuI584WccLKICtWjlfYPXJ+DkUJuwKpBjWOdzaPZ4uvZbh5wybQ/x866T8
DHT78etecwK7ROg+yjGtIPADQVOOMSAgVVadgoGCNsKrPOBkuoUQzYKenUzxkDnXHkdO7GPwmgad
oVWAwbjgTp6n1zhKlai3MkvhYyD1eS9bKxYNX8PEPGE+U22MoVrZcroPNgBwUBz6RgruusRs0LdN
UivNjr7nPt6iLv95nLGWjR1fDiOgiRX3WnIn1hDwm1PcmarLgmc7soWuQ7sHeFaW7XZgpP6nh+Uq
gL68+L0QBIUjjJspQuWJBXw2Q6ysVb1XB4dpqlsx+LfsVO40q2hW/eLHmil/jDkGRJvwhEEnsoie
e1wOugjDg4GfMZzxTMikwAwqp4oHEhtKjw9821MTXhIzwgVTz7Qcc9lp7PhGuuHkP0N56AQqfJSa
+bIVUddfxWyiAZhpmB2sqpTcnzaQZGaoD2knCSzyZ4hK9zWAtpkcckjzOVqZIXDLJ4Pf0T09AmFr
RJIem4+5dyYq4/SQJSVkKyIJKUFjB3n+ATva68A8vtaelqB77wi3PYLMYCgFi/2+WGB8/4HoJuDl
qqzYW5HTIiB+dLQ5YaqCZhCxUkuq3OfT0DkqeoEKihk+KKqaIMMQXbmAqiztmsaeI89SlkTQjH5z
Uba41WSTcHeC9F6ssHjAa7EcIhvno195tPcAD+AIcXulboyYxF8RmtZCxABVPaHTlRn7jhjBiYUw
NQ2JkAmpuw1vgjfZpH8/i/orV0J27OUpckB33OdKJPOaDvHp9plxkrZ/Aaw5UWIdwr1hpB3b6443
XKKBFTRVIiYY6c+ZiaUeTHP1ZBQ+r174vfKG9WZzOHmWXecEQs90DxfjVrE4SyfBC9aF/yN3Giax
eI620G0z/ldtWQxIh80AXVDJmmZMn/5Lu4JxH4bNEok3FSpY7vaVIavXUCoOaODSbPAT4+gTA3td
a394aCIHkqpbSvWKIzIzk75aE/gR3s2pHBJfZuNSgwsIAOkK49SbRz1+WvtsEhDKSWzZytFB23iS
pEBVPXpq87HGB0ttt+2fydcEHQh13lTxwBBf+vtYhRqrPvCsiOFLuGzSXkb794l1cwOgFsliFUN8
+IxKgq6rqVZMaWNewsOvHeqAlsXSkWn5/eXQqeL8i3aeNRk0tgxHPj3VRAspydqFELsU4JIKfg70
UFXGFUF7rKaJSvAwtZ67Yh2a0OcWO9Z88CSAp52O3kuTLMpu+9S+ECWBFPGg3Lb8kg42GgeekC1P
yKFOziDt8f3WgKXTeGK73E0SaY2BKUSWT8hcpfdVkSCpkmmWeJ3/bsY8xyTj+643DhJZCHzTGncQ
qTXzTj5LIRSAq/MHWUdF60m5ZFQUk6L8ttvUi+G/FGsXZakK7ArNjqkWRyC13n84lOJJaV/ueNhy
C2lFC2V4ZupWekBi9eqXNfOEQ/ix2M5Qmn2CTML1CT7hiHpJBpkGaiy/0XHGDjfT4/FQQ/uNwDOd
azjX0iLA+NvrCdZd61tQSwbQH75OJaBdsF/LKPqIMb1ESaA6VitTmFq5mwTQ4FWw11Mt9jhvMMwO
b+vf/vvfJ6ON8wpiWC+LZv4i9MOiPf4rtkAF/fz/L5Evw5cIwqpMuDxSMMgLpdXM5V0SLKLHmo4w
NpUl3f7PAMtMbYAHo7gYKXkIJ6kE4z2heMtPWhfR2SYSlAVmf1czvrQSnRTLOZBq7E4n/23J4QzF
8sDaD1pk5ZK1qyLl21TQc2XEts4l8kTL60dVtKXZSP13YK3dvOqyfD0N6zFMMEvnSrkWktv3AmTJ
Pd40DX2k7800dR/p68v8MxYoJTtN4uE8wUYRir+LfWKoYYT5vZ+bI0bFN0en20G7rkDenP4JfOEP
iXujycse9MoptK8dMEsl5cTNHbka87tkw7Ab8hSlaudvmmZbqfEYmjxe/suEnYX5Yc9eTEGYbG+h
TuXR673G1CrXnH3sl9ql5QIN9b/6pBYuP1/UplE1n5LKfarztSbFDgBrPo5Qymqx+SuE1fT0DxCz
VySAZyn2rv5bIBygIEk+dqrv2YeYa4oWeILGS0658/374RO9QR6Apng+Lferv5IguVqgo94jXy3t
480OMFmYoxBAEYKdiv6pa3oclL6tojhDo3wUvijBFdCguDOYwAMbRuqVLiKAseelgEeqrgsyxwu+
N3accHZn49hvF6CB8zFKtOO8E5Wv/HF7zhhThIpQfs0Jdy+HlIelK3DMi6I/ymoasYmQm6o/5TpR
ni84AdIUnBtfI43X1tNsvafSuAJMTNR0nt4lHIGelJU2CC9VhLFwO24U5I0LvolmfniI0HpZUDbz
0Im0smD001YfvNMB4qLDvW7Csek7ZPBuJyazkT4lLW3ySCCLDtVZvHy/BcYrj/0g1KUJiPMdnarM
HVChYx/DFGyY1d4hTuq4RDe5skpPhXkY9HIxcn00A0rMDGtltJG64XTq4gIDV5RzfDHbTgZHFfQ0
R2O4D5lPYfLLtaU5Rx6VX+AISAt7GZdjRaWUkc6RWF81Bnkn9ldhDKCkXZltBCK+10t9kJwawKHi
3BMxf3L9O2Bjhc7Wgt8JGfszhhxhOW8CL0PvrbmQYixK0Lkc9R3fqBTTDPLwMPjCS680VqdV5Bk6
q0qjkx4zcAbhtaq2Ws39TfctM1blPLDM0Akln2ACpaofI5wWE16AVz+iK7zoj0RqQOBVo03iJg38
R4jkmL2/eyLamJo23cAKeD44pbdbB5gr7BTjIf2dpB+7/2GQBneLVz0ZURtcMZvGp5y6rxhMXRz7
04x8266pSUWmRD9peKAaMXm5xRXxbSulHiSzrqNrqGVGitqSHuwF5sRNUxAVtdulaC3ABXxpdvnl
BBZGauXJDXy8IquYsJBKiktDc5qdijtTJ2xAs8ufaU0pq7D9oZtnYri4ZBApcI3UJzfoW1u+mtna
Gq4PQaGFIsv09raQzqIuCzoLC9fv3UIZVM+qx4mPD777RxhrnV9OYHbtIaadH4enFLCVXJME1113
DeRSRoH0qIro7YvOSrH4eVv9w9S0rEYXJGBX0uqd/3gx0rxtNwlTWaAQhvPgZ+I1d7pPv8YqwGtB
Pz8sz73S08Hyg9sy9LT4MWRICjaD+BHmiqrXo8deqqZBwv5s+SMWUA5tbdCfBaj4rijJQsQffMCK
2z9IzSpZ2Q0xRSh5yH/yEFCB2IlDDwWZZgdTi0543sL40C/L44qQoQzCF4fP1hBSW2DHbswxGWoh
mfR5XrMHAU2DopYWbwqh4MG7jGH63LlVspUAZl3hr4gmgcrfNEvTN1o4XTTsBGGWJYA/qCONQLN/
wjihU27KzOsMU2ZF6MEaoMjB5uTnecbdu0brbmZfVdEVUoOhLQCdsyQ3gSU/VzWA+PjRsWtC3N5u
IgzqvXkj4IuJQ3OfoaLxo0nuWDIqXchsDLflnzs5LE+y5DRO/TlalsbwvcM/TO9cZQ1i7AZUPumg
l9LoV5x5s7J2rNtVckGJcaP12zZ+BqjMls/MSpMy4gH4YIpsciXvK76Bn8cvsj1xyfPNYqCcTLgn
tkZxAMtt92xXzoMMxc/gWGuyhJYMyDj1o+84FlY1B/7GDmb56sd76gKYkKoXVsGbmfa05qnXc0va
Ok1EzE5nEZqunPHWO5xcxUsIGuBpfQB2s9lW3MbZtmPtnQkp20a7M0GPTPlM/T9x+6ClsKdR/qLr
flPZOj3M3IpFKnWJPVycncjw0NgbISfkeMD2MeRyXh4lXIRr9D7G/XxwUFh0js53obnhyvfMWzFR
5fY5EZ6Xvbk0wWpudPPIi1zS/cZGIJhXMr5/he2rhKzbVf3DPcf82S+j4qhewljyyxZJ4RdvUHEF
TDv1nMb0K0b9ZshuMR7Kelfz3PFAKVL3V2MGwhpVBKl9znwbLSb1mRtmEwZFSJsPhb5FfnxMggWR
t5JN6fML1XhX2UjiUC7cENqAg6XkixC+KKQlFoUrdv8x2Fa9LocsAG474iHDr0PgC/wTN1g1ZTpY
vN2l4M84wLwFhCwvVB/qiTmTyjakykHL+a4VczA1mPPqhhwFIlO7n9AmSOHmPCmGBGELfBTkJp0N
homOHBXyDXELR3urRiCbRDXdWZB7On8b8XX+GeWamRpMyRrvi2ewLb/X0cT3Zb+3r5dcxij0S0xs
HPAxOuESZQci918CLXkleu7FPesrGEEKE9v+NiDtsb/5gzgDoBCI3dCIU0LXKVwgALH9WnI19Qli
3JWhCeHAcz8HYvoBZHx6BU5hyy3Z931ka8bT8fNWapZ87azfikyexu2RSw1fhIfy0FaQ0HnDxo4G
xCGguuTSDJUI7v0NuqktM/+myG3kQ8MgYAAzEYbnQBV9k5ux4r9yTcwV6Vj3wC/PZ0RM2URyCJsu
78DSBvowZBWFS3OdNJQRS2ldVin4v9K9BlBVRe8lq2JCvSYCSNnI+H4zw7MNu8dotNv+Ot9HFw9T
gUA2ItQFqWB0J9hi5Y511IZ6lr1zZLdpwSOPbCUZiXK2KohUNwqhzDY92U2ge1G2NS2WpH4nWQjV
qejoxPPFXjc8zg+pDY69hbHmu5RO/YEwj4UnM5stzZUrkET/Do20QFocx5bdnTwcbjkBO9sV+ckD
9nXeV4TDGg5ESi+4LaByc+aKez/+9CCokSoUHGd2LWPdjkVwEh6N0ldw0LW0V5ltHdhE4KZXl249
dItmjcJic4oiTKEy/XaccY9bxQS44iOgqikX0TuClzhrAP+DjX3RBCBK1Ss8N1WvH3PBttC45iOP
Vy+agx24XYqE9waEPiYFqWQ+H0DaQE9Jli53i2QTTqDjJz4GFIIW24MctPz4AXwvJq+GzC2/pMNt
D6Q/qhrw3zI83MBCekMZ/HFHJA8vvnQyQW3i640hGe/6CGy9LWT/A89HW+LQ9Fly1VKzvmtf0A8N
VCVvvTuEn3ns+lSBI+QQT9R29Y0EFQSGDtSl33Iu/Hf/1VQEM62MA0j883WucglYvV2Tq89d4Kpq
uUvetSWLLNYTtvMHpVqdX/LwU9MEalm3Uj/AsSFrxMaN+rhYWffPmlaPum2ECO5btH009ZpWye/I
3tVdXXFETtgkUD2itZDKbguEMeUpe5vBLMPiqniUuUPv67FGH2DMR2zV6eQm1w3M0FX5LifPT11O
xSQeo9qFoq08t85mu2REIieIdwS+d1q+hhDbiN88NmScS6L1lBFqM7yUZEVuf3WaiNi5N2V5/yqH
GRNEprA6ppgV+bmGOjVo8Qwx4i5+62RBobcxo4uke2kyT8VRttfVft8f2SZZp6LAE5tKdNSK495h
Wf3pEFTH4Jnro81SQQ4pbfwo3x+UszVRuuiBB5pG3GHxyVXAA1PZTGFe9TbkPyFf/8RkOBVGFeDO
//DMqMwC8jQZAQT4oDMaup3WGRAzZoeLjO651f2BHi032zoyKAPva1BQpd5xfUxwnMCyuaGVSfJP
RkjkWiOa1bVmbTyXvqa4ldiJAlMOCzBwbFtp8F+7nc0QoOgZBh2Hz586VAQV1tYp8LA6p7a/2kld
pX+Akql/ZXSl/oMw5NWNInEHVz5oTnzfZRHT5PXapoclekxTT3ANjLvmqUFZnhvslEGeUFTf9UhL
hQPLx8iuPZbCYML0E/18EeAwLyEYFaZqtN2xr9Kb8cUu9/ApIiZ1lTX51VU6iRBtrfHwrcewHaKF
9my6tgDRwInA9JXYPZaMp8lcu+1tNPn0t5ObGnsowUHp3Gd7gZO2LlDo607m12rO4bn6p4j08wpj
Lo85vNq1Annp4pf2CIQCchuH2b2ZSkL5VZM5oQvqEW3Q3nAidvP4u1Vs1UdTfF5hk9y0MqrcCj7n
VvSk3a9x4CLEvo9ARQp5EX9uBaUpiqCbVSqZmV4hSzB4aeva8BS1iEhTb/cov7U+2CVMR5Uc53ed
3CfGEaCS3ixkY10hNQf0eIE5itlTCNlMBmnv08vcJ016vEt9QMU9ngtajNq0l6O/5VXA6U6BHfJR
grxfiiBeUbLMn728RTgrcSHyZo3E6CPmU6vwr2tdd9ecUAJ0m9GQyspBxnj3iXtCnhw3x8X0f79G
HxOsUfMl4aTiW8lbUZb/pgBD1FU8BPswoU2A15JjQdyopaNUby6qLjGtsnXKILWRLRYe++1zsDhY
d3813Z//7N6KyAPRvorvfmOyX56oDlHaoVVmEzmaxRjZb54zK2fcmNOEluwzZmKm6Cx8ckeZhzpu
Djg1i/eLwunKVTh+YlfIL4e/Oitupqx5bFIrquf+P2cLx/UosqMspbbq7Uvy1k/yJ739pCcsPL/X
PpikZ2qWUtDAlBn+3MRfP++wzcxoti1K9mLrTjwt4hKW8haD9UaRsdmgWj3pllLmdkQgnk4PoJ+s
dULuwcxfHK8HEJ7t/kBtdycQd2BredvBQbY+On4jhinNptSXewrxTGIHRpFGxwBraDD9v+B7A2LE
1ERX428Na3fnLzg+ggDmXTES4zLA+dReL5XalTILloZc/5z/jTGclioEPtZCfRjpzBEYAuiOoiSR
sDtGo+JzumOGCjpcxvpm6Qp5VHWDxWRGNyeJvbLVtFtkh+FXlWmYZf/ejbLicUm+8yiBBo2+4HPJ
dmLaZAm3LrpbIaRKB94RtglcWVPZkdB5bqEU2MWrsOAYYMxAIgDkx9yjaTw4dvrvD7u1Fxcd2DCK
mKQ9xSgekX0ZUCXHHgnIcSM5ZlTmC+CqQgWwBb3Az1kO+fGGp3/zTyJADtHqZGGC/zpUS5OkS6rh
jqjRdUU2UN3YEMm6X+G2SHobT9Bo2o5Zy0y7wWJ9ZcWBV20FiSkwjQ7buYZfiixhdePLKkD095Gn
EwRSxH7H0ClekeQWw6yQxqRTq3vEUHqm3O8NhbETkiBF1dRR5FGBL9Ji5EviMo7NXcXEz1XMft/L
4r9Hvs72W+DQmP/34MsvthKHrWY0FXlXcbcazB7E/xenKm4GIiO/qMmIbsi5T12kZZmmCOY2eFDi
roY1JBrj0b43NXHCheEnfVzHecBkr7Ig/cEbXU2c4P2JtkhCYaC6SNjoJZthikzAASFsIe9GHwfb
0YItFAz6CZOhZlfrE42k8ERWNvn2JQLwAt0hb2RLAhwclmTQzBAi9wC2teNCA2XCUexMXaY76C+p
ASFShTxnHyF4s8mn8Mo3b/3RK5C1JuSjeVhsQIdsX2AcHOSSudne4S30myXtur9AN+lGX6fraypc
2y8pqR9pqYIIYzDK9B4V9m4UchNT46wiRqCHrGjLJxIzLOzIeUDyTE9PuFxLUVKs8oeyGgMzUW+F
FjqHDp/NGTnVDd0CIbAoPqSPu4dkAgoMgIRcVqeoHOLUFXzTs7JaAkFDs20GBA1/cDNb+GtS0zgX
gGFBNC6+TrQ8NyP9LEAriIQGLRs+9bnBdFL0SksmjBTCvuCqPWFrSA+tU3Atrzs5G7FV9raoeIDd
FD+RhToqZouTGN+rirDqQwnJUYeyNrw3J82upOhoGofC2R5sjG65FkfRP7Rz+uKGgaPbPxbFor9t
zYeHzUjkLeuLGmFUtqzkpIl8rpOyQlCeEcWPqlHDpdVbncbQIoYU71ETxGyHxhrG7zfC18mH30nS
EsgodaXu/bP4TBU0r5/KMirjTmrO9QYZgoQOySux+IQh5SUU6yvYJln2+jSuFQHumYJpar7OZEFX
RbtC199OwFvhd1+zocEm8Ho4QCYfdFMOHIrsIsQLY0nz+BEfyFywDp2yZS2ed7xLBw5jnKlhC3Pi
tyQfK1elHVWspP1OBTHE3VYK3g05VXBLRVUV6+mN94k41AO7VvVQHFRvIRcdfAYC44NydpjDUmVT
RgqWoycbzQSRXly1RHrTojkBeh6bV8zknnbW7bvUM3h/F07cYhuIEj9f/yqkaaSnnpQkhFo+zuK3
SiDcc2pcu+lIhuuwR8XAO/Vst+K353m7pSpG87JI2QoZXTnB6UP3Z2iWBZOXrAuedLwdgmRuLuK9
zuuAyGvwOJUYo5fb7ekfa/q6/0kyGSjJa/hSLF6I1AF5xZNEvNFkUnQYxLichYDz62vbfqSI70OC
ZiBObc10qmtmVcb8GdKbfbwcMUeC8A47nwrgRLd/TXgNuCJufCBmDCne5q1RJZjkj4UEZqlxZpfC
4S8EWfJFHzjgEQ3qj10i8F6bk/wzsd9q620t8Svidg6bDqxPmwXYPuI03R7rERjQgyTMUdmnqB0d
cFxJJCmvhuXTX+zXrV2eKCr2vBRInDRtiXKmT4ohmIKgDY2oRqATHLOLJKsB5eKU5mu3qEBecoFQ
jjtHn0qHTG7rC8LkXxXgGFlQOPifHG2arGpGipVUcSi3B4nZC+7ynWGrioxQZUQwkg3NRBf1rw2q
wRGfKZK7jgv7WPX/iy3M8HXemk/YsTaOjaOI6jbVOMDt62NLxvgb0lMLF0TqD8kfee3l3i5+6+GP
x2hxHg5ZGGfB5pXZxMzz7gKp85aXVuYVeL9Yk1V0vVkoA40bo4qU4Gep1/3wXbMyZoczoiFODRSq
X/oUfN9NBze7DeIDACAstV93OH0TWJ4CGRkllWadUaluWhOjXGhV33WYqnr9TPM0reQiLQQXFbr2
iukdxOgNofS6VxiwQCdd82O3HK13FK7K06DdpSAZ/vV2CrsvYHEI08j39MPbbQTH745fVda7wJ9Z
IG0qNumaENvMeVuoXhCypuvQCaUwMH7p30GcnTPxngi1E6yeRgZAPg/p45x33xQewrSaIAdBgGTC
kvI2eZMi7ViVd8z9ouKFVaf5+F/iCBhyum4K7BOU7/xaUTZRBns14kp1mQ7WXDe2DhUV5z0aSzYc
SpHzol1fsyhmt6IkFnv0AqOfIWWKEHSGwEeZEgZEf5qtXUCuMeNCJH7tWtuK6sMTUYD7unQGsxp8
87Al8/6mKjl2HmStbK5jhvTD4meWfOKvz31K5d+j8Mxwi0o91CgjgIEWOjKUOYlbBxhROZpvQKXs
JqNfMFVvmA8vodHf3NBxZd6FNZvU8JvY/iAmA9Eqg6UyWZ+cVymHcqTqEYkkRwD3L8F1iIx+NFBN
ecv+KF1UyWxQjTWGltaL6Z3FUCIgBTpBMJ94p1UoqVqs2Dx22PkYiN6Q0twjbup03eF1k5jlyuIc
QBn8NJKNXNSznc4NsSPdLe43ivf8zEQOz/anCIbbPHuBXLNw7xGt7C7i1hOvJ7TzDN/7pPgcyf4O
9W2XQsMvstEA3Ogmok2juymDQpdBmfJiuv0pcZDhWyNyqmf9ajIIhK6tbQ7586BzdGFEaTr/8Ezd
xAUfcUzryphdIx5eG5gjFsH/uPiKw2RwBwa3mc8MmHfiNWotefIcXAnU0h4tcJcxY6qJBjSwslgV
GS9pbVkbTTOVG+elrmrJdyXjph7RsT+vBMKrKlEhqZlB/9jpH4QloVIfDHUuepsvAG1bZ1bE85x2
qGNhV/+FTxI6NPAcz2UCrtHVQEOFAoy1U84XzFT2pA31OZgmIOCGtuM2FSR9jovWFBxNMAEss7U6
WSTb2KmB2lTdtTKdhcT/vi1/En7/ceKHlOkTa5IHjddJbX7VK+GDxezpgpsYd3QvNPGTy7eC+JT0
C2g52WimnByfbwZY2ZU8CitzeKswjUGu4CMNfDDlAG1r9bf/3mfUwT/4wupXNcIoHyZX/eZ2eigN
xpwN0y61z5pIEf4zK23Zh125/rhSKafJR3FEc0hyIRYSWmjrEKiVx30UZg6MTmrr3tMoUSKDWbfJ
Ir70MpBwq0xESIrgFT11MspEJmLxLUTn3aSAhnfKxw8iSGqqrElMKXCayl3o1icA3QQdRwbPjXeU
mRxwqQ8XzT7T01KtfPGlTSdqwc98IfZNvio+9T0y6WZaFsr756+TWzBojpwMQejaBL7jWn5wpuyn
dB1cA3fOB4OjE3xh5IpHkd0we/eShM3NL1Oti4/3NGukhUlodMC2O91r828QVPKWJtEDuXtshMbV
/GgcmOt5jvpOSQzq3AECquUQrx8iB5lTTvFXcPIfB57Nv8AfNEQFd3uJxZqSY1Kx4syKfIn9SsP6
v2aW8fgVAF4RC/ixbsVydWaDZcfHlkgBTqAv4u4kj/uWqNgrLk67i7Dik/AWXCStovmgLW20izNx
XmW8gLTXjfLshqBcPBY/djWLc+qelm04EK4B8oAwNb1sLirv7QyWc1LdbM9DkBWiabBiKG3ESY1X
YGjCiu/o7DbsUbvZMInfEQjQ+asgaAdl5r9hK9yFAllmDPqp4IFotve/H4QuP7etm8wUDupPElOU
gIt7Hj3sxr3EvQeCElAqL6Z4H3yYCtKZlJLktRM41Y5PUPlIgpX7NmahB53B+adQWD7Y5uYP7cS6
Y/d84qZN+W0oZfdr7NbYZWzVxYkLIpExSgN4WKjny/L3yDuS3xAFk1xBuGn+C0KRkwZU7K9001We
7Fm2yXlTkwQVVo9Pw0mXGo2rVmPjb2gbkG7Q8SsIXGxpnNmC/gx78B6yyHnJrRzQZwgjkV8DlanB
KQtRjBoAUeTWqTtTPJBCge+jSJfDmyrwdTIekS5s4559NmkdC+JPiPzr36cZ+6pcbaCWXv0BdvSz
EvN7VORJn8toCc1/E1OhovTE6+epj41sn0ARYgAVYIBfhf+1wh5Cu1Ymu8NjWQpJgMN3YAGaBKDE
Qqtzduy/yL17r0y0o6hvKRPeXB/xViVNK2bCSxADb8jxqlNgCyeKpff8dnX16COaCGbVncOaVGX3
gdMuI3V9o06a9t/ATFZBGnZtrSndwiGmnZIpCdErefRcsiiJtFxMnvRsQH9JHwGuW70YlkteF/rM
MPlTh9lSPlaY5EwIJU3GUC2nW2+FNiwpnQO46EOLKytSfu59WgCF4c6iNJDFDjykLVoZoNcscHt9
qcC2ulJFsXCKbTo0vq9vphIB9KgHhmk7xinn+XYwmBFgShUYl1wKrZPCROVAJoznDmu3LOJBe9dG
ooG0NQndIFQpzmKms8oxTi7ko6BNhWiw/M/ZMOr6f1djYFFp9YkzY/U65USR3lIcuqBxuPajZShi
B2jnIIoiuJVBRG66oVwq8jftMBoEym0yqQQIiyVRnDZUqvTQ938xUlePcgOS9WVZ2t/Akkpjmw+C
eyqVpI9liiwx+/Pj1V404EZ89W2UdOwP9sJ1Nb6MP3vObQZBxYEJWIVs6LRKVhls0F3YpEgFUb8t
wRAOP8CdTBJX6cuKUYVSgzkfSlP+QNtjd9rGY+X31c6V0g73ZbVJmVb26mwdmdhAU8GMrnPakZQx
FHL66uXbXxQiPd/bZmpqDAaRrtzDdxo6w9B3HbSC8SvsKTYYYTER3nkRZ/5SvHRrMtWjomh5FPJJ
6xIJvILH2tqe0QaxDNXy6/XtjM1ieCt5vq3Bd31ulbXWUk9aQ2GKED167LWw4L/fAY3TUly7H7lW
ebuu0BopLD7/PLYEvsZ3Gi43lYfNN6plYH2KU6cELUZ9mwQtzJwL/oN6Dm+asiBZqKAlxm8kfXQV
G7wFtn/Zj3SkNUDy3R6kE7OTCeAbz3YDziiS9mKuhJWyYGjTTam3ddjnnFZ6LtrP0f5m2gMj4uLu
5bt+/0DfVGWgQL8FAUUK8AgjhKhFtS1i0RgwRzIfyVFUDxsNfCOrNOhoQ7c4TMQsppkovVGglIeq
S8hiJk+4tiutq9G6LV06UL6ldo37JE/fAWOr9YuCiqCfwovEasEiRump0+naqc1rlvKIiAistL2C
6YhtNaCIc0Yi7MDCqXJJHdHrDzxw/2C66Qzzq4AEQ2TBC4WRVvt+ZB24IX0cC4QTF3duRDJuGLYc
1vZXTlJxxk8dP27gxFsF6TzKK0UMzW3z13IlH0MghSTE0aCiZ7Pf5UYfkwuv4iebucb1wQNPZ3no
rjrb0iuUKcIqW1ro/b6Vv4ZMpkGsdY+lW5mQVeKcgiqVy3r1SvpwFwyCMUTnwXEGOrlEft3Et7Ag
r9bxbX7orqdappkzQ9OkVbVUpFYKm43XSLXD6Ld758I2nRB/O8dimeOxIgEH68qilS7kx5wvlrEl
ORwVHKw/e62DQFr41jNn1NrCm9WFouWi/ACle/iyAzeJDkcQOeq5MY69LQOjITiVsjivanpdiG74
DKYTk0KcuDdF6BtPYomixj3/oaWHmFwWAGBDmPB62pWJYLlzypFg+tkoVy92EQa29hYRqjEMm5YP
Sg4njudPynXg00WzbpyelVEXjyvELpXRsUSV62DFoUGSflSFJ3OCr3GQBKZ2q/xuez8qVIEYLwPh
9aQSjAGciWGjbYhm91QuVq6Xlv/vN9QSxg7DK6qlpncBSWhkqUcGJSN0Vmvn19FC8WdwcIhtITER
PQdESLeMMu1FJcYEvB2mjNhTOKkCj/VYaiNRA4XUFN8+pxnJ7gu+Pi1mugp+dUQKKFedX1sl6js0
w2xCVh6qJPRJmS4Gp0UCDX7cml811Y9i1H0ZhBBqsmqxytLR3huFWvEdp7Tew5sBGBma9l6qO8Hf
ZFr2pKkoUPNTFmFWrOIX7YaiKuCoiswIqYkUNNQIoGcxEkta80XrwVRAyCql0Dg2YUvv5QvyjGBe
J+5rIZvn05X13mdQWTYSXI/BLJ8xs0hUK6NAhj0V8SDSbgNCaSTGXrxlwhiBQrYNeA7/YGlsnAgj
oTaAw+DkBWPXF8C2ShAj/K1N5sX1kbpor6tb7/bJMW1QGLCUDSwbkgU7G19Q1qJKQWYcSgFH5blB
S9HDgLkzOBC+am5kXAsCaFwCrydmRUEcbFduDwFhIxhfCY/mNSWiQXhhJmD+D0Whcq8s7HG8vLHU
G5qiBuLEq7ReHC0P74Ui9CHiALaWAnuzqkXtkvtNtG7KymFhXqiMQpbTNYNNfL1x9To/BDN0VdvJ
fdVRle1abthXY1BV7HThlP/NY76UIcnQJzgR8d8iJAvhQc4kDjnf2O+HzmYM88BouZEYNcw17dna
r6X+l+aUkiutHYN4pZxzrTmrwKyDhR2v//w6LR1nmSNYdG+Mmkid5BeNdZQvFFUoTqPySpTHZ+qh
GLgPBACmqaLhpWXUQYNhsR91wW3PZAgrGg+N968YBlK7nbyz1/00wrx2It387soQMdXYOp8waNSY
6NoSEg7sBmhyg0vaawCGpTB0KtbNcFft8E29798w/idgRx1G0aOYPFJQ/pE9e9dGffOli7vL2Cz7
qHfMKJqCUx7y9A5QnFM9dz2QRH6Qwel+aoe+j3pWzPgeKHwQtVGxoTK1j0QSbUagHv/TgT1agYNt
BDUdL+S0aFRj7pJ9QBkgoim36bEh+dTeAUQ9jH9gktYY8BH3jVuw6D+UJvj9WCeRzNoZfr0E5yEk
UI+J64PzXHdkFf/kqzWCDpcmFSSzILkJ7+njyeRM+17huFGTaIvAtzYEJT4arMv8cXRuJAWRuue7
bqJVnj0OcAWz23IvUu4h+f/pKo69CjI0QMOCksbx4vDZEZvIy2OhNVbgT1xWLRkR/YjaKt74P+oX
GUCIj/9f8NeU1e+cL5GECH4GbcG0uWlUw+h1dSgDFAtCoALkfqntKEqhCD6E+e1YJvvnbg9os5tH
crCojiCRzgrkOLnWaU417M5tOxvr3L1S24Y0K3pCdnsFWnhqGZjfmLypcNBw23QGlicQP9G/sOEF
a9WZdcqb1S2n5iRCEXiD551xYzDy5Nis7mEHVNhkyAjrZwUZ1FhQ2eCrokZoVOhOSgZO7y+0UWYP
ZOGAnzgm7dXB8MDxRZn+316FViWFzlg/g7W7qvHYXBS0XgkasiH4alapGMNgP9CFzAII8jC2idqN
w46SPpne9NOQcdv5AL8O7vDfyxqh4yzgLNuWjc4RxJIs4KcI7szDWn4DEKEK+3Epw1udBZyiA4P7
/60yRHKwax+q5NlYaf/ZwkeWLRzPZOF3sbeGNThCUuLX5Wv27vmS0VIHXfLurDt8xdWC26ftiMBP
6LQoaWaGb3f0QB5eHbTShvOEXeIp/VJqE7IAZYCznUkgLXhLpMh2iDYf3UlmzxJC5jY+S2o5WfNd
Bn9LRjaSR/XSa4Aw3/h7vxWd+i8he+pTqqRGf2qmPaCjOpN7VPgtB6srlO9lAy0HqxOAQJ5FgYtD
5SK5x8wLF3jDoq2UNnWINX3v0dya2mMskJQ7iiMEGR//pcXG9blS7G5+39SRrytKU8togxN4wP0d
lY7MgAEA9wrCAnw2+nkTWvPRpw2eBErK4JpAdmIqzm3et2ufOGbkxcdc0Gp1MiP2pib+k7bxJSMR
OHfFmET1kJp9PvYTaIBc0ycnF1YbEDvPSILuTZvs+SipJKmMJy9CFI9M8gHMbsLKrK5QORURK74h
LafRTpIOiBXXzLTMFfqwJhL5DyshtgzzdI6NMuuS/ilU8oC+fr2o6SYn9AoHrirAdIHhVn/T3ElO
lI3+3OyO15i+FduZ5fPjr2b6DAWqjeC2HrWhy3aJi9+c3C+zU+43YmG9kwyqtMq+rJ3Zs8ONjOPH
hfHxYh2ctvNzles72WEfzItrukyg7ZiqUez44Gw5gic9QbbXL45aQG1Crb0+4wwEz/gkYW4CPQtD
45fn1sfM7vRe33TqFItQtObbB4MSD8v4W1KHpas8XdoQDaNhGnflmjgl5HEGlrbi6JMKkBR9ASpM
j4Mg3ljdaGbyd9m8d6BT0arQSRcYNxF/3XT1LUcDdj5ZSR555pLBlI2x7gGrVxAgdVF1mX1fy2kQ
1/TNqBxKbVY9d7tg61YSrrb67Kk9cz9oB9p9SVPeNkc0RVVVwqcN6SVXdjramb/HwZfyVlD56Vwe
BYQ762/1Yx6egHUkDHpiXWb/NRrER74IVO335uSEBK7CuUsV052OFRqV2yGmBy4gpoc2x4aT+yWI
WDmjXSkaD/e6I8O73q9nyf6vNastqw41AlYqulzLp3Ctw1oQWZBLpkg4moB3H6WkRV2sO2+XnzTC
7Bpv3fjie7iCu08opr+XXSQKmR7nSz1jG7XeQFOgt6ACPDHBN8beBKy8xmlB9ETZFr70st9KfZpn
MNtsF4NjPSgiKJb8qJ3+iReSgbkwnen9E0BqKeBtLPiTyqMDDByOPBSVNr+Qc/v3k9AH3phRxq/m
9ogm7V26i7p2y9Jo9xVile8KzANbjqC5LnWDV9CA3yUiGmHuKZVUVVSPDDviakSQ6ut3bJ0XUjtn
j+QP0YNjI4H8DpftwSzkAiP7EMK1w8/FivuNuE54qfUCV7ukAX4kLAO9y8oNJp7pCgf8VKPxqxVV
Sj9+jTcHVopUs/IFWEBdkMHEJK90xRowQoCdzWuUnB4MGwu2xKHLZ6kbjrbqp52w2111gCeEG9k+
ceieeKNpYQW38LSXo+2XYDIJ/xvTYPm4Yj/GJHzmNIDzacAZBG23+uuR4LZJ48f5ZdSL/5EFVg67
7PTPYiejvFQLbtoSy4nvPGZTosOIL+8jN3NQ2yM4/Ixn4svk+xCIMqHnwT5Dsl3K/+H+mx8ACjmC
c8cNNpuq8S3qfvcooGJBRdxSH03nNR6INDW6bJeqg8YX+jFqaXsEg55qn6/TSYaOmOb3snCZN/8h
TyxkUHV2PMhAgTxPHOt1gqmWF+X5vj6hMI3runE92XF7yFXy5C5v3yO6XtpA8nUyE+Am4p2voAYD
r8Ap6yPt/2wyxGFPC/Xp8CoAEuOtMtMXqhHL2jK6lmWQq/YjqrNVyDXbMPSXpD8339ezp7IDqOfZ
8wGMxuJFJJSJsLcootdwtPgg8Kzu6qp/qkLS9IFzZUIfyMnYLZ9J/Ilw82u44SJ88GUDc1jeS8dL
O4WCUQk0pLKNgMXN9IrpaVjSqS78/SK10oCaVeZfZnE9NE9hpw85eh5bXrgLVUE1Qa6bREIrY4ZP
hKqRGE0m5LSXOc5HPvi8olFa7qez36vYnat80FmkUCxS3tnK6Ld/rfr3FrCgIg7oj1MBGYz6/6Bv
P6c2e3npjxFROH62fLbQ5BagIr0oiU51Wnr+59zC3P7kRCaV+D8QIGF4Ll9DeYhCffPBBmKkXpkB
FE+mwapEYalZOW9YOGNW18+B2rhJ36AuZbCCEj+9Rn1duD0MoXQXP8Qw3Jqy3VHXmMLXFCIdcF5M
bNTZM9PO6AmoRfMN8/fTz2vzwZQhszkTH2VZXbN4Z6KQ87Fx33zwnRnoWUwqN3feIXctW0hLh8q9
Fq9lf4vNpqk0r1erI2+rhgQj0TF0grDjFx/yKwmS6S/uSenG7GVZetVZ9FFnYsL8Sc2wLmbarQ8s
4ZKEud2V61ydRBjvi64d+go7HFIqqX47rwE9KDatlZm/ySWfIz9MFyVgRySHzbxKa0OnrbIp4eBy
DvdbcNU8KUY/CuN7ZtU8KmsmVpZYPCoVnmPNDmss1ZZJTiYRaMJwA0LHFFQULytF43wHG8qCaWrh
ZUFydzZxLN7CCBlZ4mjsbm0qQGxxOxha5m/HWaOWZyN7UjROEpA4oWDGcO2Hic4Qqev39Doo48fi
lCu1B9WsW5LZ2pOZue4cisKTMEAjOGtgTNSIdrpkv6nVff6Ntioqt2+1fmUePbH+pjD7YbG4/Gub
/EmKaRaXqnIRhybSNe7y4jo0H7mnnqQhdd9Lg2wXwlqKY3b00MU4mMfUwrpd2XZ62rjbNiadvumx
tKjjfU2riCQ+7YR3jH5sgWxk0pyZiFY+rr8ZF5l1Mb1KY9YoOXmcnixd+lNZ0X9TEHwkZQ63AVVq
Hq8fC5WxKB1nNKUHIR19x01aQXMKpCJY34wGgevMO5Tf7GTr2vnap7NVXpYfh7l+Rj2GFQYp23o1
8+sA3alFkbYhBL8PedCFjBAd4rmOpDncWxr04GFczik8jydK8ctpMg6feZsBEWu5mSi3XzUPx5cE
OoJkUdLbzk9DjlNdw7njkOLtN1tMOff10T27JtkUMbJ1EuCFPSS2GuvHjKt8oMhCVAp6ke3EmnD5
Q35I/xAfN82Lf+EE1SDs0rPQen8DYZaNRwSn1kdtNWqtWgpOQGf8KV5A/N0iP66FmYm6097F0gVG
wakTZvBAxsUIkTkTLdX4InnkSe9+mlNWHxFPDCIsF+DeC8j2ardlw2aPiMWp4aaQ52VW36p3YjZQ
j5JmSBseWfLahJMUkyERE3D4iKtoNDTPVcXtG7Ovu2DvHFCHsjmzE444BtRzUIamJ4aFoVZtrwtT
gi3t955KYnRVXsGDsLlqwCKtMB87MquPtbMXXt6LkN1wrAbF1K5+TsaHCig7TiPdgKnE4LFE0ege
HMlEkPkzlZ2uKNnJq07IuTXBOSNivrlCsVGM9mQexNh7YzDzznqbXBiUzDQcuttMTf4pPN/SN/L1
bJ8LfK4wIS2cxfunqseeHxHsGem6JIUeQ9rMRbl0vGtMLa1jlMOBadGms7JgTtxDX4m7jhtLsVxX
0ErRJBNwx4o9IQ92E2lk/Gr9GLcO/zjZMucySInoR03G7e21n27PYZpKrqmicRg3rBf5dePkQ9fn
hiEgEYXfacxUmh2K/aANdBAvN0cOUe+u04RlLcS7JeqHcG9gKcWAKSJ/xwBXUqhnn73Z4OjTytul
RfR+sVFCKqmFPPyHhwaTjs1eqRpnZYOb+e5q+OJ4Gi6YPkn7PhhutsCkkWpGyg7tT9S+2jbG7wS1
kmby75KmJ7H3dsD3mErUsly58eIMvKYK0/YlERn58HFQ/p+y7lXtkoHk3ZIg45yZzaLnB+LTM966
Sbn0Bwcm5QSWCPfJ7gTLC6JVlGW352KzPLiYTIIcs4n/AZXeRRhniU3XwjehyUgI/jsnHrGQTr9I
ir45/+wZCvFj6b8SQ+HW38Y5b2UTiL/18Uaedm2AuptNARnRFv8dWe/ft5T+gzbQVFYIQmNiZDnP
UxA5ZAR7BwoizxUdApbrKXoVB3f0wfnVKb0yTPRemze/LkYL96rpYxVnQP/mmRr6lQx3RlFWME7f
4p4pyavLHE0d+fUQZfW7l6iHGraMEwGNkdQgEvLDzGU/VkE8aETnUm0URpWVvjaXH6zw18XLl3Qv
mIRhS/16Q69nIrOeIFMDXv7P6oZxav+36eA+u5yMpz2BVYBj9TDPSE+veEiQK0BX1iZvishtbsMe
nCjG6OVVijVYKVobhwmKiFjtcAVOz3A/DgQqSItX+61wsbHmjwV+iNyKP7WLAYxDd0R54C5j/zIH
oMFUSpFBCho8XOf/uasa8gD+pmWi1aa3cXAQjchT9NhnCyQBF+PvKQK67cj9wSyoSg5OluTCt/IS
aEIDJVjwvEtf3i4uibWDOyx51ccW/0tCpmzTzY3e/id4hGCZTC/A+gd56t0qM1tM5Yx623fDuRkI
W9DcOsACSWMFdC2mFdB0kwf7+zVy6qzK3ZjEDYf98fESgJ3AvVCQsjcfhW6ZBFUfTXt4EDkAv/kh
Kh2sZ8R0U13OWhtyvLg1CC2zBBIJr2aN9Y9FAWErBs2lv0y+CuU5cQRacj3GnjDJymyukNgBM0NP
/Ksm04Yuoz2rvqQ8dXQu21qLWVFzf+wNTZLns5lNmCgBxNEw1aX35ioMTK33c8+YKVsTtGO9I4RK
TDmW+6vGicliJkE8ZcUtxV5EcEHuIPNnAXA/cLiPs6VGcSvYwsnERtyzpZi8wITrqq0Mqs1+dLjj
xAYx3G+xbMSh9XUQSN9zGCbdxMWkEEnb5gbgRdtueytzJ56/Qc+1/sQCZD3fsyGkSx8lHpNdSi+B
yW4kEG8M5GLMtnvu80bWSUZ9OjwjwG6LPCP/mbUupgHG30U0NEI2FOJ80xBBGCGY86Gg3iQ4uUUP
Z8PfgT8o4VdeybTPPSCULqUmXhfKrhyeAOvAlwPrwvFYrqM71o8QQd8+g1DVNGemVDTDcmHAx3ST
P9b2KPTGGLhQ7AoWcViJ3F4ehToubAnSmF2BHW3MrFa6svdCAimxeV2E6lQ8G2VlaEg1wfMlmV/p
5fcTnradI4GRAIkqN78tlHLUUOTlqJkdDw1RsJyy1WuruWfz78H0He6kmXJzyVlhUYdIKUpEB9ol
na+V1h0eMCCb05tjYReSohF56DW4XQGf4CXxjqN1pAqWxeYgogpgkdaI3bcBEpkzRbbP6UZdDZsb
WGwF118easB4j7uGIyjmjLANUvLGfFipysYuLFBhX+apGl8fx4iXfFSjAd2Qh+Owa8Ab8oz6kXQ+
r8zEdBjPWrgKpfQx2DcrdzZ33Bw17bKxzc0PgopdclM3HdruS+UMBH7ReABesG+Ui+9x+7p7nGXZ
IOmxiIT0dpO2gQmLdtCsxFKbrXndMPnEkLt2hoewW6jsXTv/dduL5Ag1ggStMf4DIdoKfOsZqDgM
DDW2Qwi/19lXGvvGr2Unw0kFklRdQDcHKRWgKXb4+cO9eT9yhtjtRX4HNyOwwcg850bbYFrAHO79
9hDb6P1jpgw+BOBybvZFSWSoPCJoDx7fOBTJNgnmMB4JxTsl2ufwRfr+lCXKCOapKi5CAh3fyHaT
lYd9wln3lSGb5mNYpwYkQ7pIZ6psGKy+nD2bV/+F5GJ//i6WsnOCXYmH3DlQ396oCLJJVmU53LrK
mynaJ9TsomkzfUVtm5jJkmafRdPgrCnW+koBtjIPNyA4wnnEza88umoYcFwt05JqgMogNnt4cxLW
+iIZx8c3aoq6Do6IQLtDUd/07Ip54/F3xya0Azy4vc3L2vaHPsn0QPvAbEPV/25Nt3XOZj0x5EmT
6BfWSujk8FK4X3wjnQ223b2XUK5Im5R51BYGUSBwyQxsOSY7W/qjbB5eLBwytHvz+J9n94Wu6n71
Pv3bAHmuklKDyhhcWaobM2OZzsxLn14z6MQZOTkNaAvordO8dr2y8r/ah/XJC9XwOpdH6Ac8Hsyo
zO122nCW1RtzZjINQqdd89b9sL1MWIvwC79F+sFotbfTWsjxjQG5DO6C/rlAnUt0izGMLYNRD/ST
axS3TT0sxEQwGF2AUP5d501OlPp97aFhYkLi2rkLi1dNebGq6iDSvccDndq7nHnc120XnP0xalR8
0OuC64P8XCvhY+QQxUnhurmwj5p5TcDVMLKVYBrFhOLDxGKUP4uWuH1GOUtd8xqKdOCWDCPrl9lq
3gg/i0pbpPDOXLrIXcZ8UAZ4Gx5NUnHQrfBCJcXKqDZzwQo54YJaCUN8ax+TKrVmAbI9vWEvzA7H
UyHeMkBGchNolXIDGWzO1zpwFmkfXBd+6WfYh1UQaYXuVz4m7J7JNKGP0VHQ9+B4/LdZ3VXilQ9r
y8RML+mgeXBE7UBmbPeOo73VDp7V/HvtgWxzrRA7q2bKF7202DEJC35mS1mLR5F4BNSR/0Po+/Jh
qBOL6JtoL4kdvEqHwp4g7x7H2VIV7IAPQN1/Pk90GaQADbEPN6h2FrtK8EV0PnbVuPbGjF6xRCbq
MRACtVW/Ue4ONrruMDyFYdF2FGnYBlObx23sPX/29IsYgcLPlprhgSbpk27uu/jH7lafr/zTMcfd
xskf6JXf6tyf+fYYT3DSSQeHBGit8bisLo2zKXUVd8QaYdy28q+U+JKl7hWZOjbm521xdJgfHMaS
w4N3fd/6g46LWO+jsCsa69Gs6c8KAoJzsDy/9/uAqW7BlUqux8i2tPaXRtRqThGY51lFWhBZsj8B
IwnY6ap+xofYFdSABQq3/OLZewbPRxxUvblATq7kHhV/prgsJEl2ZGUL8fJ+e7KjgMPYuM++WDdu
80VrWJiY2GvrhQqD+uWrlhOa+Mw1Ebh+FmhfwjDCZskIFX0pj4+C8PHN2Vd24DyRmZX87mbviIsy
XcpUHqyIUAnglxalPhxDqA06MwOSuHqbj1oMYnyod5gWQNPRcXNyfTkB1AwodCw+eUTNpOb9xX6T
ZB0EtAaUNxhqasS6ZseRKPapqd3XxXb9u7A1vOS0H0DHt1E0T5LzQSbzIUUDVA+YPhmcaAxDWzP0
sa+oRos1l0lHa0DhYiGk5+wovNzhFQqquTpdg6zR1OAOz/ukXDCin2fKwbmrY1EfIIafzSLx+Vec
OUJ5+fE1k/QsdnWpldzwIqUWUH036grOiSn2qafGPW4drRyjSLQ8gVCbgi0CSb2x1utZ/2F6Nukf
NSLvnFPB6+LgNONy0Fs119ZbCmp9uAupxkeG3cRvx9U+n9szfwMRK8yv05w+0WRtBRWWyUZeuYMt
a4IYUli8qO4QjxPRh532kZsXO8EWOOj0V9BvKlUKZGb4wNFGBdxY3sgymeb1vxfP9Q0tdjBiwG0e
0gBWOSFh4jmN/0so0/ctsqvIdswIAtFfRJv+rp/rXzDA6T1WQfBehyoeCzrIfvhZCuOdS/i/PHjJ
UOef4dupFbJfrC/Qzl9GQZ8BbUB0VZiGvn2tOP0g+mnkS2OFaSck45H3L4HDdQwjGqcMNwMBtz/1
yUCs3i9uNtOhEbH2QX80LAVCZUSjbQ1IqWWS/VTV1C+EqzSTRqCy6WU9++8XHstI/fS7QZ+08Zv3
0hIGk4C4E0l49PG/WixeOIIQoBCjcrhyzvw11IlZi7h0Ct+dBYdIFlXkx+o/vZ2aVLu9fDfTA8Cn
dkIpzUGdHksa6gLRn+EuW0NH4kNki4jhbN5INekpzKPDBNDWlQxlgEJdBlw+7s4eoVWvGBtweo/k
P/6jjkv2JfUiOev1dX95Yw4LXu5zanWWsMzoQtwKEN4jeRvNfeFzm0YDlInAIAQLv+SqboiWYfKV
0zj63VH3ITmHdV1WSU/aNXPDK8u0uiymZeU8rsZ9mCPNcIjDK3/+oVM9lrRatmMrndv8Na2NKl0D
7JKOl9l6CAyaH/02oDywHoG8xEkcJSwbF75B7t2SDl4KRq+Jtq2btqrY2mFESQ7fKi/Z7plCekI9
234ObnR3QBjITEt5hZ2qf4pHY6LgNwxqOouwBhfaYh230gvIwZKveKCOE9H/gekjoGAmb3jSn1lB
jr9/uDfIcnxTQ4BwzT9XI7hZEeJYb7q6JpJIyi9paGzPgrn5MlropUskH6GdKp7WDOLNfKj4/iUQ
Q7D+GwqZNYRmSiWWqtVZTQDHw3X+tGG+MbKL3m4KNAoCjMn4F/yiklG3WslXWmqN+iUN82huh6A/
XOkQdA4lrMtDrebkdd2ekZNRAqt3vJo+nIh5owv2sW1zUWEap5qlgT6xZlxCjov9nAjGUcagciIq
vBaQYLSuG4674E1FcOSPn1+wSTwPl7VcILtFtGZk+tdQNa1npfsZdepyax52TlHzXKDOUoF0I/18
TJ+HiEA3IZgVhkDKdpPKOkTKI2Sw/gZ8O+ckvIKZpNzN0D1bWzVOhkslrkQboISkFyFkiNK+3S80
ShX0mG/IIz/Q3vs5+cI0ntzs+lvoRBLj/GmDM2PGxQ8gZhI8XKfGzqC77NdGvGkyu+7yw3/timf5
CJAKpxAwK/CsWEUb1muY58gJDGdBj0LY2UDFv/abWrasbfyFDWbgKF0IezSMcGDNIyicWLsUzDM3
/OaxzWgHypeYWzphz5LvcRnZIXPT3cLlPq9k5qSTKKylJPxuGC2fjQGgDLX4sEpw/HLjdr/w6XW1
eHXTfy6/6ECaIz13WEyczdju+vShsk8pEJuxCepLDgqUHLDMvja6mKUeKzolze7h+ZZUqOpCweMI
6O58d9D3uYgwsmmD/HNQu8wlSKU+0mkPaRlU4illxgeXu8UIiKOCRGN0n0dA/Q+CXzQhJY31UJg7
qHBXDdMhLAOqQIT5aCAHqDgGTGrWki6HZyR228cP5rWfdfNGPbm+pE86HA3ySiTdzroMgMa8lZZR
bjj7PRwwDFJcy2G/NFXoAI9IDBR9dsLqcsGVmKkD9HxLs+ZQEtuJ/G8KJlhEvefbS/t7u22N7OAs
J5qrGRa7kzajZy5vugWdqS4JoHtNqkH41Yc8vdWW7nbXzYQ+d9RfBs1YoEBevTDRwgs6ru1V9jIU
oMQLQ9vjD9b3RPYDw0WV7NlVOpI5DCduvzryV2FH0g3yUX+ABUZ4CpQtEsAiYOAMVspAWrcBx3q5
ypURa6JccuyHsmQzyLTp5/3wFZRJ9gWRACaVNkl6VeR8G6iJw3VHrmDje7it3ISiUFoJkX5Vs53M
1QtgDuW1D+N5gpAaWny0uHG5UleEMj5VHGC9YEjFnYQgFrqZh7CJUCnSLVZICKqrxvkerqUVflyP
vhkm71hRr33UcDEwDFCAcKxorD5ix1euyYibX+o/lrDebCCMGMJXfFSnm5iDCdVjiFl5DEjCvW4j
QvkAyZAM9vCX382+kxLtGexyV67FSNcGvIp0qLBHHpBuJt0N0j6IP3TUyajILJX5Ezjq9wxot8mb
oBN7uiEYVZHZB9ZuOm7oHzLqrtYpKLqYcwzsY7ULX3BJun5B7ayDBB9AQY2F/aq5AAWdCe1pt4E/
MfwxO6M4IhrCugizJ3ozuldlHOCxeAS3/rmgnGo0raRn2GGEjeRQsaj86vyRCqpmBSjRxgSX1gUs
z/guFusMPMerLSE9Nl18RXb/wkmmnCudJxEMT+sch+BMnCz3JFgNsSCIJ3izn5l2wQipSSCTdELp
8S1nE4pzzuUpngTHLEUk3tnEadOLu1gB4rh+SKV0RB/0/COIBX1NqXgJ8k/04wKXeld0e93DzFmD
RCj4Fc3Fkkq5IybxiHjmAtnlhANtGD8BXXHqRB3kXKQTUzCI4lG6yenQzHREm8/5LN6OTjKdYjCo
+2MGNi39LFbUZWQq1egxvgJAcpNlhl2DrXNjjthbTfxLFxWOo/26GkHIEO1V50GFGXPsbzvhbOkM
ARvdLDKsDnMQpzEBfo9hPjlKWlJ2FvAKGaNFC5f+ZRrQsqc65gQtZb37zO/SykhykkFi35M8shxf
T0MYJiI7twOdx962s1S82fqZqENV5pQBQL7laHEPMbMu6vOY621Bf/MtWKlMdlDdB8M6FmIB0yF2
usZUqFZEq28vIztxG0cZ8qxwxSiOU2ZgVYy0mnx+tNUCq2sjKuAgrwT1jySVV/Tp9IjE2YI4gXw+
bCvCIYuazCZ4l7zsgPh2HMH7hfTPrDPio1rLRsTYm1xXHRFMNbjNN+tAvKUSgiSVgYueRlAN9WSU
U0oN/0o2yn8XIbc8RDnajHhaP9M6jtn3q0H8hGsCcshujvhAxjUX2Rqm5c004azOgemuPvke+JS8
HalTVhpQbziq68Qe+yUFzTPdIbnwM5U016cdR2JiZuRwOb31E9nkUDg7dzrbOxca+INZMB0vmZdM
ff/gO1IYEa/82WPnXV2oqbtc6qvxJOJTaC5PFEsMGy3zBi7GccnUYj+51cY5j2lOezYDyGKco/xG
KZDGJtm6/Csin4jwpw/8swHRFxaM8nuqPqucBpfhqN4thnh83i8h6UR5TEHo9Zo/dRGXeBABjCS+
WZlmCW6z2zlWhojqJmiKhQ461cFVZ3uc9f2ibeY5fyZi8nZ56PC+Kt+qqhILld8NhsHQXWnyuh3+
MCZmNlO082F0+5tfuYwOJuDOSsPVIXpMe0f7ZUnswDSfTTFlMi28d/btY127Em6snOpJjRNA9mUf
GZp0uc+pzToAFD3cw5KZD0guoxLaKMNpglAvTs2i+KJlZie27roRl7sQ59zaJGe3nVuT9AVodzel
QRhRsjmpmatWBMHRnmVAz6qkJaGfKFsUIxd3yIgDT4vpuL/69ohIATxHxGQaTh3CvBbFNKEOecPN
jTfKu0267WH41EJD17aqKzmf/yaxHk4yCysealbIdDumqYtNAR1l53zQTCNChCZFGlbhw1aEGelm
RCbZ9+Pbhri06G97GEKT+0QbmY/ch/v5xnTLgr5Yrjmi03PzF8o0+B8F2ak+VDhC87roquJBDDKQ
bO06C3kztjWzmTf69XVUeKFCPwN5WWhjZG+xJT5zAFZL9Znk+CPss3O24nwVviVceVmS7/Wk9rTY
cFxdxpkbPpzl3uTv8FOrA3iFlL+Md4eStVB11bj4G6qOcDot2oSVC0QVAbi019ZLTK6tWhGQOcv5
LMiaL7merQC34o/0TiA4aM+3WHBm32XxPAOgomB5ilVFdSFfmmntL62jEd3htYZxhZR9kn+GYOuB
Sv+Q22NGDJlAW3cHrSebK54wVw2uNtjPUDyobEtp9HHjdRVl9j2O6FlMoNVZTDG4xCLQ72QYZ7iS
Eii2px2augN2Uwdesunx3Y04FjnmDdQq4csFckLJpBMHXwutugAJDhPY6mEK+TScieUvt8rNmTki
sscB99Xka1JWAFrm5gjj2gQw1KD9oI+/+JDurTiVAft4Z7kWyBojfwkTyv6ZbK2bSmINv6DCbvXq
Yo8oSp/dOcushWWH7mWBVqY2LJo2VtZRmSDiUZ8Zri9P5Foc2ZBRv6AvXLunv6Iyxtg6uBgXFmU7
OZ1XezE8tTxEwh/LFRLFI3zahSDz604MboU9nBhhUSzPI9hKb/Kkv4ZyhMUPDjZWjdmCri8kH/p/
dLu5GXfWA3X0q1FIhIabZR2CtAyvFFWFzd4B32m3NT94k3cJXo4V3kvUirUhAXyl714zJxtWwyIp
rkTWp1/w+UqFSUBKqlscWJaIiPOc5sApluaao4ERufMcDADG8iAv0OljClk8lTK5XHEAXkTDXRY2
xJonExn4fLTC3I8x88un+QZT4W5RRZt+PxE/i4fDm/GUoTDK2Tu4xIU7nKQy2+vHjdtlNH9vcCLA
Hpv90XAFmyTnxQ1ke5ZJ7uMlvgLSL2eWnRsO3WH1YERQCRL8vDAlEiZZBLclKvIn9X/HK0UU9a2L
7uv2M1hjV2XyBVuInTsOeHeYWIB8wRPTez+YjjsgBQs8laujhus4ZIJmvSCvvS5qEBlthHTHpS5n
GxjyEtoVYE13QCf1elVW5nBonEPRseGSLSwYfFMIsgXAcShRH0WW4HJhIFmqfoL0tm90dSTKCAYS
PJh6errWc8hb10VyohUn3qBl0hxP2Ihbma8sxaBE12DxX5v3OkmZCWzDWNPyW7Hy+e2CkNr582ZX
LV9rHVWeOp03/E+iY1G8eTtFy14kDJ+RxqOjvc7hX0R16o5QRBAzYn2BF8vJz2Ou0BppePXji5MY
iYttiFwbc6kKu9Cwsub2qqzpTyJJv1EVEA96ROG0qzrf4k1dAOHx2oRH2Wf2sLywvwTuCLWAirQh
NBYqzuE78/T0/UlQljVMdFQh3mDHgFoU58b+inHQRucEeRBgxp1O4au9nJjasHwykHwe+bwTveqD
tSDm5rsNZKt1FcDvT1U/17bGR6X5Fu8lAvpZ7GEV8V+9UoPQOdpKbzD9+5jpbW9pKQ7gl0VzpHic
v6uWuxz8gu6jx5QPOCtbSGLwjhvYzVbaZWu4SbwJ2rybZEaPvSsNip6m6Klatr4HsSjdgfF52ZEK
el7sJFr3w9LHBTrQVyQxQfp21qAXDMI71fzOWMb5iP5s1J+9VayL4mVcySdeSxUqSsXu2Iou3pmG
qGn6YaC42vvrX5ABvx0DdsyMSywaovZkjlHUw1eNjY/JMO1B9owLdGI5WNyeRV9EKZ+dFib1TJg0
45mkjDanqRgfsNhHqQWmhCHV2yh+hB0OCgVIFTkKzF3UYjkM8o+dwz5+zl2WMfeII8VvqXETBRHr
VETp2X3LKoiSgLCHlKoFZP8Qe3ACjP4K20f1fCgEcDAkq5uhnAnb0h/Xzjt9+6Z00Bh5vhR1x+Sl
Qly5wbLi2F0bKx0fgxHkpgxWfD1+GdWYQ2NL0/DMNYrpRZTA0CYb9vGdn9NttQneGETXlQZ3tX1G
Q+r4lOQtE/eSHDSv5RRYROAO6ZCjZ0mGwVH9aNsj2iTv4yLxmFC9FlOWl20UMCnYuHbyPUoQVUXE
A/x7QFq+kh9zkLAVRYmsxfpP6gffwPZveaksHl4iOQlSMffufNkWSGBMxB1FPHWy+bpym8PxxYix
5Rm9VN70xPR8cew4l17PvcUnNMJF9jRxLQ0nyGtSQ2WjI/lqKSBp+6qqI47E0NmfgmBQDTf7Jzn5
bjEWMAZ9WOndWC1Q4JIfFhyIvDAM/Oj+bzyNOhzPdkGn8EAlxAZEH+N4fyX+vuC09+JVEkdDe4Ep
MnNvhbnamdqXqfIGjK8spcm1vWHDnDpKsefzlseC9jndAPv7B78mWchobXgTkOr76ooALUNoCJor
tn3E/ii/CCO5AhoyRxkB2to7bE027soGpoQcjnbqt+TkA1C84aZnqywC8V7DoFZLSAP0ORtgWlIt
x8Zl+ijdacHa5rLaZgKp0Uf3BaUw7u1J9B0ZakLNKpCOoemCjLtSETLznkrrCA7NGnZUyugKFHVQ
1c5CLieffxMzHwLk/Z0Cl9dzSSnHofMjg10Sj5mtYSgmXqWshjFhhCqqLs0aPSK5mcY23os02hH5
yxYQ+J7efJLJ87EhiuOzfcRpGdd0THQDZSRAiNZG/fetLa1QUbgAKpR53029VCjqoSV9KUvkr9sX
pyr5lJE9YosRL1RmCL3deshKcbEXYfgXALzGGMix/dD81HDznwmXDyLzHP/dVsHgT6b9y4T47gPI
sOqX8CksGvZSuZTen+JX1XPni/RTODs3G9QJkul1koh0qhcaokkyeb3djjTm777hIfHzJx94Ezt5
/TKGiucYGBHT8svh/wbrB4XFPxw/yFuOgx1se1B9WhNDGXk6Xk18nHedv7PxyKpHGd13ToC5ZXhl
HeALJ8drQHMxbipAJ/jkYXsA9zU9GjwXTKK3Rb8iuWqq4DefOVOJfBAkDVoOJ/7xgmn+wEJwPZlK
q4SbSI+sqmLEdI2QIgdAQQ3/wUNq6lgSRZb9o85ijX8FumfUTkK6JA/LfksVM69zP6QBmt0Qcw9B
TFQRMmyb3KIkBwdMu8jQ0LE5dt3mpRopT31m2acLUaROZSupSW40/MicTlDbUl2DuzNV6TbtilmF
lurM6LNbLXFRI1+R1I9mqsi0a4igfXzcQ/Oy3ephbRe4hiL0vJD13SJakCkfNIeTC8PY/l8ldJS1
hwHAIxygB/j5pNyo+e9Nb56bAMr7SLJWxvfrr2Ecfj9LHAeVs/gPDJKTQnXytBAVND+lt+Mn5PaS
u0hFZpQG4AlfjlrbWw8abnYgFo9kl4skodPHg2XEsKqboay6kA16zIbLSJG/y30bQbK2b39DADhR
TE726CCJc61mtljV1yCPElFLqtlheS/EJRsK8gIvOFITOZJeWqXvEliSDzq3G7GK0U5zCBcqm0mg
ISosAyVd/ZfabB+ufgQtVKMn9iLkpPGPY+lwzz8UdiTRMjlM0NaPXaRc2RQbFsEUtrKJ/3M27n9W
GP++5wBUOUDeOGdDnwqqqIgnOhK5GUFjfqbOs/cxB45LDHkSPUK1xlKQ15NZ4/JfrePjlgVvTjXa
LctZfmO2LZq2vodUJ/6aeslLmCDuG2r3qKbvjXDl7W8rKHOad08wAa1cxQH0OJEVc4jg7Cnamzeg
w9mkE6mPy52JT+bMaG+15ox/oYldaBK88ZIq4r+xONhm3o0eC25yWDQduZ0EiWZMgOG6gVt1hX4M
vgWn9B0P85F88sSL7lm0qWvwFGniMNKXLG4cGjn1vNWrABuTLYMF8E7NonNhwLYGN6FXEthA9gyP
ks4kfDy/WVBqQY1NA1kwbUlW4T+fNQXhphFAO6SEWhd7f3zPc7/4eQ2QJ/xtVowFNt6esJ0o89O4
DR3DUDZSBo7p7ZZrW1kWuiTzOvMs0sXWs+blh6pCLseHrB77qUSRvR733XD4DFWoIGaRSpQpmt7+
6BjPpc+K2pIPoOiHNV+RtOe2nULwAzStTAeWUmc7kSTfjU1tgCdTcL7oJKxUEXJ/4dvk4m0kV4Gi
Rbtd08IpWLz1Ha6V5qq5jnuWNALwnbFrfubtB+SdiduyOqUle3fTpTZ7Q/KOk8l87nER0RblPMhr
eytKwlw/9ArXFhM2v/mCL31GuQgHvqT9Lo1DSARrtsMviCsGmnt8ZqRaP7Djv30Z5Rf97cZM8Fdj
n+aJh8JGyKAPqjWbntyGnOrwdxAZgfQGKt0yQyAdgqgG8iuHwr8UplWCzMuDBpI0Q7f/q5uh0oBc
DWGxLkafkxGHoxAhrqbRzTthLxJCPj8jJWp7RTJGUUBBYM1258rQyGIS2qiFn/bYInWFkxCbnaQx
58lH4xOMN9mwZo2up2JJqqFQznYUxpLId2t2h01v87IpNy+L8hauVvgw18jOtTt90x3caiTiPmpP
iZImKFHDuVG6740ymQphi5tEiDkFEd/6zyjmJ+Cbz/iK8DlE1ATtf0VPpF47S3N2+C7E0EBRBhCc
6R/FVOsySJRlB6+Lqm73Pr1I311sscgPRTTPhjBh8u2bPJmlr248M2CllbS9jG2dCFEhHdEjM8AF
p71cG/FO4Qc5C7/e80bgj/PFrvM9hXsnuzTZpIjVsOQtSJm4Nx/IwSJZvHJ+R2Yijc/9ntQHeays
4AsTn0xrlbDzc5Gzf4PPFSTBDo1r9xaVF5BpN2SUWsuaFwh6OpIzJSRHxW+ShNRPUq8+dxkzhO2I
OmB8BZxeCXIfTJwo/itZOQg3BsS185CwKCsAwLyBL0qeHDsJDQtWptMqoXYSBjSsLPsIuPOzAbyM
79+mfOPD7Q8C0+/O2L3VGAdbJmNmr+EWnHLqly5Xo69q6zG4zJV0Q3syFPQhZhlpnhEgC7Sf9gn1
3VVbBjNIHYQ/+k8UywPaqE3z2eTknjLCxz3DfHOUYa3KI5Sa1JriJaFuG35DD3IXom+5psBwaYQ0
/QtfqsZVxexXZe04QSx8xnU85suJfznm792HOhax930ewwVl50DSytA8xPOifDP4sLC49ByCzelf
Ltw3jIgpBqSylxCxfn/X3WTAYA+OQ4Vg+w6BpkkwAPtbcVJ511G07XyZx/q1/6ZgSh07U1ubDACt
QZZJ1URpw3PqabvdrfokBxwqIjJTrcap5Wt0ecW6PLbLdSGTuiZvyXJwYaf7XjBre16BI9DpD2TU
qrvuogMUAiwnlizjUbvhR4R6mYutXLObdwkWY8Q1aaAL0KwqAc38U2tGaWqiW0Q3Kcrd3eb9R96c
0dioPX2kyGlLBoUwyB3Se8Pmjd1xlIl5k2f4v/51ZR4oLOU74j4kmpkjPBlyQuLl9VEGkxlshnP3
Qng7cXP/MuN4cnov/4mhZ81x8RuIR8XMQZXoaj8OlZt4P5Ur/INlnUEYK8UvcR51JLrioIXFE3jh
qI28EginKpJ+p353aj4mFGGo4sF3y7ablQRICDHn+H054kJeSj7NPhOb8HFkar3RTAZnP0F5C1LG
hrR2sCyvh5hOAZS8l0vPzpheiS6dQjXvHr5VoL94sRh/C1b7liPKV2wQiPmsJ745LBY4MqB5rNJq
53Svu/nK8v9kHrFjfqf85KPswbHKQCrHV0mB6IlJNJqhXoxLBA/IlyKWty+lfrRvR7qhore96HUF
boUZcakPwqwHLmJ6ZNsDWSFhpuqIiyeiQjBhq0k6kEDCiJ7sxR/q1tgVFaum/lw5RI5TA6aSr/IX
t2owC5LQIjmfauEVLx5qnzPgnYDSNEOQecB8lmHB2gPeIVznQnh/otkJZop0mGAfXEfg5e4j2mt3
Ga3tFZNXNOq2Ol/4GDa7Mo70JHzybhw34fJvk1g7sBRF+d/9Lz0KD63VUfcGwm3Ace0+IxCTBkjY
BRu8ahnNunIwnMQqUIQLfKMuiWu2rtqxw+Foxw/aQZaM8IbFRAUyEIzB1zXy/zIJLGpYaRDS3TjX
J55Z7CN0zHXfL6fiDkNLHUpKF2ZMK5jIhfXAjcmUmfFdOSgsanbXJEKFTsNcAY6mIu6QgfdL7Gm/
JGZxfIm1xTK7Hjd4h2YNsVJbDw93DLsnlXa1dZx7ADlSQRe0xxKr62ALQ+E/PNHg+9hgk8uXpFWE
iW/yaCd2MeyjoWRs/GrU/7JBzbcfpxoVy5lH5nxaeIiSOcKRGkra9gdsSM86Xdm4POzSYn2pTZqU
BGe4oHknoXkoWsxDQ0h1eFjSmzA/eciwmsVfXeRB3tTmUlgHWqweB4uocbdBQATmYlcTqDw3ijOU
e+Inv9yT/w2e/B2eg35tO0pn8sJTUlOpnbL4Hx0Bxs879I4rLZ7MDBAxL6KCNbYgDxg/jEldxGS4
YhpgZfC78w6WqEUkDiEvPDOYGt19jDhr305WQEYK1dwEXGS5yVktqlqMPrL0fDv6yY6EnaZOGts0
yjs6u9JMM8fOM7qnkp7IGw1sNTnaA+HvnqqXex7DL542PmaHBS63iM9BOB4vImh1Lx8tqYk6vefa
vCpcEJ7KGyZKPcbMlkkDDro3XLt7By3Y3kHjIOdl9MxAdUka+1pytAfXNd0fFJxOGCwBokWhCA0h
wKKpsPdLiucunnsSALiTslhWKnVGkyMMll9TQ5SRa0gsfIYbCLwHrPUNBOw1e713JNgWG28Hhe9q
vT1EXr4eIVN9FPHnHkWIjgw4Q+9QDZyEVUcRIhmrUKEKWp9BphNVsPTLVwe/wkKmtYwaLKfDuN2j
0WCgYq6WZjMdmJpJg4anO4VIJEepphkPq54x7OeYQ5X/Rvpzim9Sua5ipSgIZz7dtRsstmcYsmvk
NQmKpId4T9BTKkCarZgQsleCGzCDQG20qmxrg+N9Rf1Es220E6faNj3GY/trvEusfP3IfxgXuoUM
9ZN6gtOBOqjNePyI5Pk8pnGpHWh0f4GK3plROxUBqsBMUFZDmJLrH3+UOuvnRO1SYM1RAtE9ojGN
YHrJUwlKz2VIkT1suy01jJLSAed2YN1avsmjXGayA24sJVMomHx/A03UhQxKsrjwz7QZtbudSDx0
TRsqAHIFTQb9C/Jzq++eaRzr63kDICGsvxdroNjl4tBTmv0lPoenQzXcQan5eX9v9HtOwemxLYBe
GlLyhaAZgYVAb820UaUzmUF7nBJyYhGPkuSQYKNIXIl3RpHUGCaMsl1sIZNeiJOplmwtke28NF1+
tQIOX6qJIgauP6BskQ6P4+6LBslNVWHwwbm471bDHGA6DNlMZAWMPnZRoyIosj3ytIqLsLUE7uJX
EgycMjVcCzf3lpVUDz/OTAQEl2fraC5J1v4buFJXYknZo/W74l6QBAdYmxtbjKPSu6BDANhP+I+6
rt0cMHBg0Di/G57jaSTPvfkSATkKQDFCTF4xyG67YU7dXyCPByTXclCFJSezHMKZsj75zXfpgF2g
zXq3flPCBCb7WXt5PJMenRz8bOBLJiSN2orhQkZTDKzHdi6UFX4xht8m+sLv8G24GyW7hBYZp5LC
+5LrPetNvSQD14Uw1IxNlmHfDMnrlIvQkq0OOeGgl4HbdHJKyr+5vLmdBp6In5CRpC7AAqjAoTJ/
aWVKUbYmnK1Y1sENrXNNLjhOGw0JQWdk40HM+HqfLZ7RdVxkL2AG3H5BhF6SGBoMe30wdorAUUaE
9rYRCUEZRZ2RtCkVrb1UBHCDqVQmPY94H9yzhz2zamej3nP/t17tWRpw+YXQvKCrc/TIoTwx19Ae
dtHuyqAEZw9DkQBd3N7EP9j7EN78zPzC7jB0yWUWh+iDixtIWYU7QICVaXZYDsEH0oFN2vJDU/32
QyBO3LYg20EEraAT2C4Fy+jjNb9W1wUOHyqNywO9Q6g5MxCXnI0kaz/NIC8aZdqkiFdeI17W0wJJ
UQMR0P3yIvk4HCoyk8ipVlbaaU1j4ZV4rhPT7Px1Lxmb2Qx4x/NhHR3LlWOqFuxWmUCt5aQf12tJ
lP1CCoGxDYxUKFTNr+1/5WrzxMjU3fdAvrJSwO5t+pHvC0iq6hB3tjDnoUVABPijv0wIFHbUFugQ
axrveYDKs1XccT+33/DmkniCALc5l05Ano4Kq8LaGpG1l8r61CF+bBRk4hiNqRdL9vNkZXwVlM8W
1RKRmsbtWvxCL3sMIH8CX7FCORrH3CinQv0OOfSnTbhWg8CoVeR65dh3lPFmoN6bwhmyU4JC+oCn
vvUmNsmjILDd9GD8KjjqC6LdLebzVF8cG3HBK3KK3KWInm+oJSZZrfHVfLkG54tGJaCJj92g7yEB
Q8PiNu8blnprxUCR221bnoF3Vt63akywABrkg81vjGaUkxFOIxJO48qSPy2LSwWUdxgEf2qXd8cQ
TwOLLiwvnhZbc3pgqdOI5ZbPwWo7davXCAfPmNaqhdquopYtR848d1XdwimEqjJ1SAaIsA8Z+nzT
Zn2Fc1hliqW35SIBr0U3xmaDXXbF7W0Pg7QV9anDOnPe3KjUKc4JeDZtxMSH/SsuQ9w6HGPMIbba
+fbnVt3oFCG4RqMIYGNWwcJzM5PEu1w6gz8T5fJTQZmaOHXUf8amyPw7crt0bUj/VsOWplbBLsVr
t8RZX54ziyniX8JomtISm7YSRDquw5Qp3uwafHLIMlbms4YMVcBZL89Y1C5b799QMGCPm1rEmH6a
0XhO6JkXk8fNKpEZdVaSPIkyUUbsTZfoYY83O9c3hGtB1Qo0XVBqICbckp9YGxMSdzGS4Hwjqbjg
uZL9OhYIslKXUZxe2jqOXzKfnzrh11Qh12+l18iItVjCvVkgiMRYxJ7jaVdghco2UdljbAOyo0eb
s9XWndO5HtsHhgmvVKXH0bSLF4HIsGZSsmwOnn7SNgAUnK6ghX1WTMk5/HoMZ6pJsK1VIzwPUimK
x8knDPQb0uJN/gqCOjIYbMD9aIqBu+qgy8xFPjfWesgXswo1dlcbOhj3OKNqxsr5NTS5MTSjlRv9
fNGyA7AodhunPP2Gb4YHR2yjZGRIjjtQqDcxRzzbxqKf9xOLRq8wg4SpdHXru5JtoESe3p8QQ+tq
YkDbVCLn7DNnRs6a1C5981WqU4z3qlbldE7g8OU+McvGzzW9/jSQnnwKZKiFeKJTLYJMcgE7WFCe
cRgUYcjapcKIKdlQ1z2NLCaZGJTOCE8Xj6LHUcJcUe7WUc8Cc0hwrn25zlDsTl5/4Y1pfdVPx6yD
iqsPRSV42Ct5LoZRG6rChd2FL7Qu+dFHs65kNbjEfWKVyDVa/77cjACkW2GTkqOr0U+gNKFc0qpn
J5RuWTu3mgG/hsWK0Jvr68hpOVyAF6OkwscDtEdcin5Pv3Kos+UUHgfCar2YaqVEFcv7DrMxo7Kt
6kWqFYe7mSrfkiRiwfBUiNMqbWQLgL5a5W4UrmvmynjI9GKiDNIgBN27mt7Ka9PtwuvHgdG/qS4J
9yUE/jAnQilx8Bl18aCPX+CzoX1KvB7C3ksDZHHUuUAFOR/Rq5uGDNJVkqZ7YkzcBTDFNzJd4j0C
HaCX6NT+TrnGilXb4I1PUj+q4AdpRN64cZN/rC1DVJsnFbPWRInsxMYa3VkQjm/hOnNcpiSvHM2O
dv03ANjV87RWctbkpVxs/nJ11zur4moFS5tkevWCDfZSJAzewA3Dx5VZsFiAlS+8Fw7+Ei9Exy1A
4XUQeX/F0SQqucxMozVBTc3nM28SJDu0DYLMG2ximYpUdxmFzgwQK2x2nBWZ6frf0hnRcYv8fzZk
+FbQIkczrq2z6irj/v2LL5xWk70r96z8PpypnGQpxgoHKbR1tKxN2ZbGD3qVXbFqj8lrzLWdGg24
cQdiv7E3ZZdkjo0lPm2kWTQBIiXNv6A0cq2005NiuqiUi8gIXPKXt8PrHBYPKQcDcNO1yopdo1iq
77vZ1c8EC18WyKjNZg8WSABPcrVCp0ELhM5z+xt8vj/S5XYSvHzAynVg+8WrtJK5YCYd5CAuxiUa
cwk8GYg/VPcibc366kA1SOWBjyJEMLmRIzeoqZvhMx98zHpXXlBny8WiUYsvszjAzpxPPcVoHpMM
S/F90t9Pa4OQklKAwe+ifSAOOB5SgpBCyTAU5e4+nm+b6FBJ4d/Xbp0tMi8kkAm/MnA1wGJtDL3o
O2BCy+AEM/zGyyCvvMNL8zdj/W02BhNhJkhQYXT4xu7zjeyF2B+oWHGJVi/rPxsCQcyQrQ3AXcSF
brW2Fglo7Wwg4AglkYXtTMcYgu5dyceyUkZkOeK5Obxh7+cEFMQh2HxhnoXBm2c2hm4tyKyx5l6x
ohoTFjQ4YxZZ66+zmuGUokhu84k61Jwlf+qLA7m1sLMxJhHszuJa12YGdpADzGHR0JNdaMw7Mrb/
Rg4zEfsLSriKmkbyYgmOT6H3XfOrGWUU7O7MUxOQsBwFT4Q8xCCCtkK+RgwrAPzKGRlnptxkasDq
BYPHdUNpoZWqAR5uyh3oTYOOydmxHShvzDsMqP7DvxwiBZFBOx/fj6z+wN8xvRAnw8phhJcB+yG5
W6ojpwmu0C+MuDDp0g8ZGMZLkvttHc0I8IcGZtsFjTMjv2wMCKHO9kBBvUXnkDlfFFurtdyrQ8jk
S+fND7fsyF4t1P3aQrHjSMN7+2iOlFuETacvvGVTkelbcnUXCWSmGB6qesHmEuvx6nnGtZCQPBxN
IGuYItsoWBUCwuxseQVGJWPVagmln8HAXxv1BnEqNEKzL0armi2NusD1Ke1RVAkzqKX+YsUikhQQ
/1rJI0GUc1gEi9qqjLWTxm+loIEkP4IWBHlY6jfB1PtBDWmVOXwn/XB1vjVz54yhoIXtX5IBmt73
T0/m1WU26s6oI+6AH445dGutiN3Q/sBj74Mhj0HCRVyjnwZqyqKQNXe9CkJIuJUb8WiBbs7FJYFJ
0LPVcZXYovh0nTZgnm/id2c5ts4WLloer/MX9Q/hHDcxKX3dmZAO8ZfDeHhux92ysxTdxD2azGFc
HMsmIiWeUE4pUTU05F+/MOZLHn9LWFQ2IUAEmSDM3ipM+yrcCahaTGHB835yJc6Dl/D61VCPXKZ1
L1xL0n4UOzaqON1KQC7ZKnuK6ZAEYmstettyZNkLyCwZqHnFkzYR9bpIEk9LDXaBkAHGXi5QloEv
tGSpBr2nRKWJNu20sR3JZCZUS/gtuxX2Fg40X2PhOzLZABTB7FJtQ30rzDBlfHe7Yga9OrhjgXDc
KdDJ7Z/n9bwvb4tS/p18NpMDhOK7lpj5P4bnKZ7V4ZpnlWlgLQ6x3UK5BCK6DFsJNtdk6d50Olc5
3bTU0Q6pisRGClm0ARcM+M+8RrGQllKuWXzaOY+yxieonhNY0fMtmB2f/GjrgSqUDTPLPAL2zVXE
qG95D6cpc/GwDpcwfLpUvq9ni9yp+6YCmIkHIhGRw2f4WHXz4UfYRRBxqfoINzbBwKTEmi31eiqF
B1aN5+U4iBXQLrkPRGAfHzR87YD6djXQOOSyHMAzXN2Fw37I97MOgQybtrwBP7WkkH5Xo1t1qRwt
uMnZKWSLLvNsoDWBgQ9MqVUm7iXo1W68zwTa9U8CTtpkjRhVLNqcJIwj5QoGvx327Ibf0/7BUjnm
BKDGT1lr4WhIWd2fdVkBposDzd0WNFY//TJ542ciBHtQMFiiv7+xLh7AMYcuvpXJHGhMb3xFbMcp
3C9wTI6gzMd2TW6K9HxzzzSrQ4EfdGkrw+iVC5JxQ+frvZBo6jdzILkc+GbPqjbaSZ81+mOSfnPo
/jHJlZnr3dw/iglzgykrDdLAnGsLUa56/Ummb11Z0EflcelLN+wpjgIfwB0esFiFVJfE0BzqMtBB
VfGUDuBhNd/BEPIW7ypP2p0CEn8jHJYIAj1vC8WoAsw+rjspi4uygoYG/spjaMhhUigNT1sIamGk
ElTCjKRQqDQ+TZTlE1W+d7mL0uAUy32eXa0avJVmIYbnUBtOB6x+zI0MM8i86ob5+g+bKtjPf1Mf
Hvod6255cXQ9TISH65/24u6jVBW3uTuRQAxEzIPrdudG/7McOGpIOWkemzM+JRzkIjykx4Oop5Bb
dUapHXD83SfOnyiS84eMK9LifgM0OWGmsJ3H2xavrLBHYbYElJFOhHGb1AhARJBcQ1JwOO4a0fTO
Og+B6nFz7U1znn9ItdcJKt3zSuvhuUeVKYFHw9cOcDGYO29ULkRrEwXAx1VIATYJFdHzMq8bfE1H
pxSyTGfDWTeJ/QNtPiWRFl+wmTtTsZyClql0VumBx1ibTHUbc4iENz78RTwJOeSaytyO5nAq+luB
Rowm+q1EQ7Yfn1dhHUboiw9uqBBlThs9XEl5iXr8wks1OFiFF1vxt+0kWzfKFyUt6EOye4dz8OQ2
0NHmez3h7i5tU/rYoc2lCfqzjmBcDnEcKRxP4UQG2wYmQvlSNbP7SAZjfxWuDaxT9Vb2rF3iY9k6
rvkFMP9ZQsxm0jri/MfuwmQQ3XJ+J64kcpQd7JZ3nmGpsHokfXL9dj+YiAjN5H6fAo4CKc1uUzJj
/xOKnx0GIRmCu/ifh3X5yNYDY0vSD6CKXnBnlgYgExVLgX3r4eutDcM5b7hieO3D7fIA0SNrV8T/
QcC1ovlsW6bzF6yMkWJe3SFViWaa+kcJt0/M/62nkUyJHhwNSWh7KUTiUarw457X6JH0epHlaQFH
A/M+ZoNHuBsDEmOak+c0syrOCz8fSpyf7xPNyvqa1UagoHKpqGspCYt9bJTvqP2QGjmjvG6Wofro
+LMQihv/9waewWoQn+nd0HuFswagEi0tZbmlBxL5E8pss1tSFJvqNHSDjx6onX+WZOaJmJdbi7dd
VvVRAueDtxc5kD9g/7HTeSKpMgO2WSnMEhUzt6suEzPsYqRPCVoefr6sJusBYcjnNHWPq5WTlAgk
mKKPpL1lUDBcWS4EdTGHWUItFjYnka06laJExSi/Z6I/CRNS76QKnMlBWMiNkRp6zLPQbp+Q2wAv
M4A3CkNXaU3PspK0f8QjLLdQ13vgdG5vi1N49zQ3MGQsuKrwIz9Vyp/I3cRLxzDkJCp0QFxM1I/K
YmY2WmxfTAkddzGdQ7r17ITQe/D/w2iYnLkKLAZH9JUt/WuvSWrEa0cXjtOZvdkmPk1Jnn4YhKbD
zKymYQZSz+Q48YZJk4jDlzoHGGBlGWFggnlk+XAuESxzAbNuED3FMig0EjzQ5Krl0sTwAcViTnVf
cAlzB822GyRZNIiJ4u8IpjuuwRZb3n/Doetvo+e+dsQ9SJJ+37KaTnUvDi3yVGn5MG9EfCMC/wkw
lz4dk+9zWnZ0+E27nKINJYethL6eL5Aebu3yqm1BPilG4MkOQIlAuoTYPFkerPOqzoHDX6T+FlRH
sNDQpVH4iHx+BaBXMAgq6PVaY6qApY8UZQYYPurDA/nokM5+rL60UjrjvZJGv5xlhYHS+CWe/q7G
bLOS3KuT7CEsdsPy6Gkez3o2KR8Xo4Gm7vgDxU9KiNP7DGxQev8S7KjZw+Xo0PzkkiXEM0ixJ1F9
AJzTj3QkCoQxxED3mbMaOV7ysdqt+Pqw/hm/LTOCj3jZ0ymyQAY3j5Vr0A4ruPGAIdkxJ5eFW0hE
E3Gj2x+L04NM11kjz2xbNUQh/C3FEIs8i6XT/gqi2JrA4YfdJWAdwvRK58chtakvfK0hv43S+VOB
NNqzOBdG0S7G6x+QhoaDpNADRuZ17eztaHIaRUwp011rJPPGYGC8chIgLJ9ZF+ZmDFwn/4OYjczn
nSPYIA/Kt2rChKGXSKmDGVudTipDEKaTxV2klo1dC+x3GUTxR4yvES7R09Ee3SJl1qVjbBO0V3Ga
6aBa7ULX4BqYU1eKvLYj0Z3G3dDDbPKk5AK2YivmtHyG1p/f86PGwTqnh1poeFodDjnEk1V2gmkT
Nrne/pkZDN3BXs61R931Ly31k9aG17HO/E8nADHvH+ty1CCsJcq+RtXx4uvTE68Pj9VKr1ZDo/hs
WPSLjUglnNii48twt4qo6vZiriIvSFXZ4MqxIx8W/IZralVAEM48hxQYCHa8+Ojd1pch6vOR1LvZ
B4qoXgpxulWyZUfBdN5fw5aR1i3Lc2lHGfntnpOQrwbr/1n/sVck/KBfMpJNg9cYKjRimEfbvlvd
JX70vzJs1oZJMPBH/BjE31WH0WxL3BQrrweNTfAjV9/7P3/UVZWt8+HBNvjO6WWeXqf1CVZ8CTMM
90FBEgrFsXG21RN6HS/sPGujkhsvg/gd1k9UDXZc8Oe/y9zPvhguTTH5fzYpWvPBYHUDyugcM/sS
wTmrkvGZbuEkEhF27qrgzknH1FDKFD7SyVbVGJcGgIEH+bm5shh7gx9nM3iO3ExsJzxEoE0xKkiN
1wazInn0bYWPcGFdgRGus3fnj9LBS5Fb+exhm2bN7lg07aPST5sqg2OiOeDAkvQY8AD9TOV2Zv5L
9NQhRF+BTxwkJF3UYOgwTtbltc5FxNd5sz0teuBv9TQGXpB/tz3Tfx1BPjGrHJ7d2/r4xgbKk/XV
0pHJzblP+I/QHh9vGnZXgnkmQbXgOfgrfDv1gMjwfZYcHbypHp1sRwKdaypSG6ss+kIltL+XD13t
MqhM2o2FRsmF4o8iT6YfITqhWyCNVmuCVBTv39wq7LrCL+jh3CqQLxk3G/ju9oq2YFxB6tyIHtEr
6fawSeDQH7OryY+piw+HhqTgGRlcJTtydYBcvpokA3NYJBCQE/AOiwhp8Z7MouF+jWiJK/2TuA/G
m9dYGpi/l0o0BHxC0+1NJchDDbOMypCMVOi3yupxhnGjXM49/U9tRu1mpxJRekx5GrVKRiqpZxEv
uqJZQaCrrIzPPO+jYl4TjHUer9xCoQOhEkaTakX7AP5bhtVhqlCf8R/dcC3Bwl5n39GhybFk3CwQ
dWVHE3L71Ml3bprxbL7Lz7rijit3K7+x0ZZ+72XDZSJLL3/GKFtGafkrXTYj354fW830jooZPfgp
OaOup5sgnkIyLW+pvGVg22VhWX3uVbl5/DalX0Pxr1migITAJExXfe6DWbQGCyjBD1jR4WWFUL1H
46O3RG2oVut4UELNs9IJeWmRBaOaglNVKu180zgVd/DmkXG7G0AEI2FNVy1gFOPYSG42CyTmmkC2
vBTNFDq4U/xzSvjR3dUFXUAqGT8URKlLuy5b/RZkcHr9hF6UuERbliTWrwhwPw59/H3qRERjnztJ
2PmRzZEpJ9/j2S05L9PwFbZ2NP/qakKzg9aRA5gBwfcs2+t0zN2vgB8wnpdF9MhG3h3MX+PX6Qfh
jQtJYe/IuSrvRPi5VFlX5M8JvJHvInL1vySmnCuC6Wj/061fUFJYmfZeqspyIfvWQOCGZkBKk8fK
3tJKmaFEaLDc8Jalsd7SxtDTW5FWAMgQ0bivTbhw2Kdjo3c6xCDF2L6vfvVdcq9ceNnOUQu5o27i
aiY7pnG9//WlQz60+ewYkH/skyF/WHxsPAoJmyjdKbfVVn5+b+Uu/Zdiq7fI/ZJoZgRk73U924Sc
IgwUOauoc5w3HFHuTqvC/8OcVyU4pbIrf/Zf6Jr47/luVTFbOsl4o1HMojUO7yw7vnqJ4/X8sgI2
faH6P8fenfzf0qXkVt/aY9j8GTe9QveqrqpYXs+zO5pBtK3uYSaFYXlct9MIi1OOAjdIjLiUQM0S
fl0kkpEJfPoVWaFrADBJEt3jtH6ttiVSR2NXQeBXPmJ9aTk2NZFVEX19VhBA3EhggSKi1a5qA5XN
5DFZNiRi8qHxQjhT118b5+hXTzttBSEw6Mp3jv5QPHiZAO2vf9FgzDIe9NR9MTuJMgpjud6Ond7j
4BDws+n+Ak4MVDzybrSyEJM9BRkOqQFIfXHyTl4zTHjlb6XZawkam4SNKFi4XyAl9vAPv94nowAC
F+iXP5eKtgNWMYxaZe9v/pY4TeJKJY//r8VnEvEn91G/VEJPAUvwzQrry4Sv+Oo9aD8A1ctpLQqR
yY4leHRxfLfIM1kCeJZrr4UpBgS475RKSvF3dYuVd0BE0pNB1TnbCwWmKJ5j/g5+mI8+QzqP544r
X5OCdK07r2DR99cysSf7+kce61rEuFyIdiaZrz6x2h+BnOQy2mW+0HFifM6PpLGE8Ma4DIgBptod
82+jR/I2bg13pEtaz/yTYtQgfytQAXcyKIMn2crhV4SMfMYzt3KEX09rZ64cK0kQ7eur1yhc0Gqc
UXqNFcLWlJSYohfjuHadtc3zKYvcJ/YCXT2ERS9NcBY6e3HGP2qfzZFKethHk5KZ5Px9b+5cz5uQ
cqdfqn+PDTfNobmNFNkUrrmKmPVkyIOdfMkb0hc+/0IPvpswsUlC0DLFpDh8uch/gFgRhLfpXTfq
GoxMm/snwxD89h2PG4pjBc3ORE+3VGEBsQtfWkm8LPhkVsWGkB6ykIzKZ4NfzhT5O6ARmdR0Fgsj
kaS8wpp259VotZ/LWyhXoiVOdkRAaBRNwU5MDddXUcJjv9ewrDeDzZ07HizXgWUGuxsfi4fLs0XD
duCh5oJxFifCW4/VUqVkbh9h1oVsseZqKKUDz+gnm6CmaeDXDlQ/0Fcdau/WGgEvlfeuGwwk9Mwd
gNQUSdCIzqT4Ob5PkRjPY378PhsVb6ZI1nUH9i7LjcyK0zbQHqKAdjkZko56rzt6Gqy4+5WuS9TJ
egcPRwPMSWYwwTqoVnREnjlIjdsgLZHBmtNfQVsVjpBTqRCfeZColscEcmIXd321eC3HvOgBFOyw
IhdYs91PF3IMNM/A4xa/PNbIQ0hD0qOFhUmx7kUmaoYL2t2tEENhiJlNputZcX4Ei3GCJABKjoFt
9hhBURwFaLt4MRGlv72ManRDlx8WwDwBz5P4Pl0tP+/DriS2FzW5vpWb6OycUhwwzGLm2CSUk7vE
weFJ+mE1g7Aj7NFIHYXejCeP49kWbD1JWpEP5DpyDb3nlTD8bQROt2upCt5VHHdFDJOBa6t7lSbR
E8lNnWBLTCChZ0wyBKcaRNc0p4ckRI11bkdKn72ppJxXUqpmch2129VX/fWDU3Q6xn2D7Ov8q0A4
eqlRjyAIzGt9RshYa4gCEJzuUVK1/3Jse08gF0Cqo0qShB4++mz9WA566eR2IBi2fq3Inoh15Prn
jgfxT4JRWxf9NSY+SnC0UZqKZ/1mpWlA/JQs/LDA1WrIJZSadmtN6vdABI/5WeZhalOvC4O1cGPy
qJQJ4JbWInZzMPi1dqWeXBaeZbEnbpTF0ZAOhA/R3SaDKB70EusTWz65YcmD0xvrn7kkNTcfYdFl
LaLRmuHyr879P+F7HMcWCqCSL+5iXB9DGriouP7t47WLRkCfX67BC+SnQo/UPVMBZdIi/51+W/sa
VeJbDzibV0m6Y4tt00ZCkkHfrX5JMUMRBKGgbOkg7qUWgpvDfk5aHTRVOvQIE6LG1KJbUYFx+N2m
x7CCJgDjGCHo2VBaMqvxyjyineDmnLXgZx2q0pLOZFqqgiqzCLtU/qQsaYbOz55E6ROOsp6c8pI1
7HBFycQJodRs+b/Xp9qE8fQ3/0Quw9DVcnA/ErmsglCzdtrEdY3K2FeiVFJGBYOtzqGLMt6GuC17
LgFT19dO8Wgc20gLlbyxj6CvSrIU5dihAA8BQTjQHQiePfYtNOSgKhPNhoBv/FO0RmNPktIxna3u
xm4N1vLBlaO2oJts8D9/LI/vOwLJLeA1qP2ao7XomvtxiIwUbR99OI9Pj5TkOBzthIhsfnxaHN/l
S2OqEPOVl1OpQJP9cdmaka3OoXDsZHLGpwEpkEv3jYSf3jPN/ZhImSZk3wTrjsHpVydblKstTxrl
WGntQupWXIMOP5exTVhZqp5YWObHLpDEZSjc34kXCokLHuhUrcOvynRsrBQ/rtYO9J1kuI5kqX1K
2KGep7j9e0nWzPqKmYZJK4pacm0iPH400xJ+WZe9ZIxCM5172q9mI69hkPNFoAw2bCJ9UBTMR2jD
cQhyLQMEPa7qIICfErUx25gT0tAH2NbPU9FCzo7CMBb9LD8MxOACxa767ZcBjqnAhn493KJCQJYV
h13KdzI1JDKFABffQb44ZopEpUIBRkmuuBymYqYPJiNWSnVJrY2COzDE6zSCKEaOJz3h//vj9qQg
SqZVsnZSXB+2kwfVrdyDf9wgDoHzl4l0dd8pHvUNJMz8tnOxDTsEFBzon/xJVDQ39regzZfgJvJC
rGhT1ko58MsFfCAIoJvt39t92Zll7ejDx5QcnAFtFbTxgUejJ+L58gaRXVWp7zATcfw8UQqKQnVe
i5nCnLZ4Zuul44mKX9meZCF6fId6SJ3qXhsHFNKARe0SOirTKK7JsIOVmzib6kZf1CU46O28Oj7W
C0YKipmsRwq/ImvAcP7joD1is3/CvroTCK2uwHPHGK+aYU9I5UDScWg2MzOHTP4zpwvBPZCqwDd1
RtAXfJk6j6PWzabKi92E8Ab8IRLqcRdpcBzjo8rcsdHck4atoSUxhRM8EgPLaxl5ftIuz9k4r9kv
FcNPpQh6CozPeSupGoVvR9KOOp2AMNiy+vHdHgRO6Ygscz3ChvYxpjzJkd3g8NuB0f/wRn8WOxbi
l2n+VBkwIujWMXkMn2kheXfaj89ndM1TvlojBxnD54CQ4svQNL5WcVcBPj9MVNttT39DxjbojCpZ
+kYpqaC0bpTb6Noqk1LLkRX8rtitqMBE5TO6HwWUifw+JyDbKGJ1yqvrIBBK6+vQttdm68jiwARF
Uf7JNb/G/YhP/arXbWJTjkfvtPjq/g2tgwIpow7m9SCuB9yMLCfXeHGqxn0TswdHCtyAaVTU0u3E
InBylxeOvJEYcpVHq78vSpn2TJO1ypEhAWD//90VeutgaioHHPE2auTdojOONEGt4u9mjrrGOnI+
PtFtSFzWR1cB+IT9t6Bh+pb73N0ML+FcxGQdpb9qvnoF5mO/FaL1syDef6nwIJcLvn1KaSUAo8nE
6TU9JsLEqKb7vJ2v39LNjytbK0PDXwO0v0u1AsglgkAL1ME3yAJtTnbOBWnNS3nQk+ekz76VNbcb
vLnSPk/ZRw1DW6ymwbaLM2VWy9Uz6g/TcOXxtQSWTnwPw8iNM/wLvlLZ6MozTIXUnrwiMNxncIp8
+/KWmA4HQvmQWqvLop2ybd0CMQmkvcNeevhXHDtnJ0Cl60rjr6Z5hLyedyDloMYwbxHujJB54w4g
+BWHx3YcKMVqIE+DkCPZiwong34oqf+BheoPObaMK6hsguacAe7nkpixCZEUADvRjhh8u2M1eNXr
m3QAdKcni6hl5S/zIEhF5lpmWNXCAm/fg3GgBxJh1fnj0aloxL1B1CTaCTCAfF4kPrEK5aA+ZjKH
QdJyn12vRE0Mra9s7kDUHycFNFmr2wgUVYxofff/JzRb7fO006zGvoZCpXxQ5vVS5fh88iCy4PM3
7PBYL6asp0yFu7yjk8lTTJITFXDkOwli/Rd7TecdGtRGmSXxL3jZ2NqcxsBuwgTLQwen6BL/0K7Q
srsVX4u/ef57xtknd00dyfjcQLmZ7PAwMAdQabYTxWXIxjzlVlQfrirQqfdlA1xW7qvI1+N4E3cj
AJqtXgGAVuueXgLdIjLdf6XXKI4u4Otn/3YOgc6ILLmtSUPzbzEwttEDRMypqU4TmOpm4BAVbDQf
6eT5y7S/4eAmQ0sNAqoUir0gn/V/XFvuLbXpPEFAu3qJrnOwsHBKd/Q94uV0jb275vIfBJtdaCLE
+FvQSODHEUChDTK1UpaKXlrFXla6NJwvAnr22d8egIWP2OkrGx4pmqqTqarVvizA8CnGXRHHJUp/
gs1AC++jfakLIqeJqj/QToYkoc1nTbNZzbltA93OnQ1jtMn9URGE1gFVokiUOz4i1quSqa1nkmfx
2SMmkk5uF7SSUypsbCEYg9aI/wfWUTQ2DMtbXpgGwdtMJYRcBxKEJdQ5J734NddQDLCKPQ9sOwM3
74wOyrgnCWBBtzRV+7blj5E45n+bh/NTlcJf1CvxuwECEUkcpEVIaB5zlFQuUJMluw7Ml1/JQfTN
GJam4+Bb2aIO8PJ1st4sn3+qox59ytUlDjHyeqZw2mAJYBjYk3qSK3EFhLqjM9zWnyAMvX93OBo8
h9NHm6vAwBzjyNXQaC9DmDiZyw0AsW4OtGM6NIhmEH287ZyrFUB0TqoAtrZy/rH3hv5+O83C0xCs
F6dqlMQLOIyeP+makgU2swPFhy8tpyngbid9HrWgPfWVgcFmh5Zzc0gOLgOLh+13FWJiFgoAAQZK
WG04ED9gmhMn0HlAWQvFM26qO3f6yRkulp22tR5ofoXDlTD2VCwcIp2wEyjitGlxuT395NULuSAl
/JdJ4yH5O7PkxzrVFHn8IQ8e3wAUCWXUN/OASN2PydwT0AK6s2+iI38jEbUw/605RxPAvSjaml9p
BjhZ7CqJuV28WIXQnWOwOso02ZSeIWPcJi1NHHCbJ61wUQQAeA0zrP9zLpfBE6Jkz6BIsk3IKRRe
G76A+qv+YWtJ7wyam/bhtMaKkkZsUkgY5cAFn9q4vxuQtqksC+t0LtkfOmSnJwZs4jlB1Tc2aiOX
tObMifGQkInybnQUS3FRVNNnFqxIaZL0LCXsbDoItsWJKbF1Cu/6+5Hd/V6h7UjvTrvmdgrRKS/V
/0DCtRn3uLtr6/kKiI/DNRXgqlL8XOCjP9RitbscmRcGuO2uh+h5yUlTaziD624J70sMhlkukXuW
S+hRR0B5XYFC6Q1Cs0h3XPPslifHy9mckJSQBSkZvhdz7VkhC3B+tVvSkEWA1rrIGGDlONvKS42V
aLwXTcaPYmZ1xMIR0FLS6jUUg85tpeFssySbovyay48LSo+b0s9Y/lUpVGiqjhWUey+1vWl6h3jX
MMmW/caSoAamxCI3pOSzZcmYMedT48kpqpNAQRvkjNGFoI3NdxXZD2RSZwlAtqixBc8Z29UHXCyZ
9v/w6QFzCEs9WXbV+D90ln8NVGE9rmvb1WVbKLdLg/Dggqvb+J33jaCqkbYaSRZnu0Va+rHkQCRS
Du8GxH+SD8rZhL6TFkwC5I3lSD+JPm7oeJFdYBqnHP5RHU0ExhFLSrQwrv4hFte8hnZjpnkt9jLa
CcBjk2oR1rL4LIe6nw8+tbkR8CWkjenGBTh7Z8zxwjxvrTClVaprRGmL7O/44qEoZ+qMvnvldAoA
vn7rRlNsMhCdhqWFqqEQeBY0PiykNTsVxNO+ZtDWcXnR9h705RagOkJ4KvRbo+WKErbC1DPEnlyo
k1bNDitUzoPvQr3tLK+TY4+x84vkT1L75yl6SHYNaviZaKZTY0/lohrQah4wG2HfWdPB+h//fRKB
GaAegszObgZZWYbln8JXVwcLZ7oCu56waUPsprS6Cdq3m5NsAHpFeBZEGw2D+ewMQg/GebRDqVnh
DjQP+Axf/Z2AZonTeEC0d6SxZsWue4CAUPGGC36z8FwjmzLUg/Xnaf08N3FY//MfRYqWgqEUiKkP
EXJ/DFVzW7DnEUxQJ/yWsZVLwVs4N4X2EPTN1czgp63CrPeDrGR3UPo08k31qsBAnvgz66gjkOCc
5CE8M65NjbypUx38OxrAqGN3Pp1s1/2AFaYoEnmuDpsxRupevxfc53uv3r4w/sR6oRNuoCov2Msi
BrQvbnctu6qX8OKUKO40kjx2dgyVGHcBqJLGsUpWA1BgUX/QkwkFUx89BIT2aOvE8y1rxRSClpwk
AsZZ8/IMn5Mwv08FdBfJ1urgBKO6SA5XrHv30iadpSDvZbMMTVGuLeGM5E+fsmFA22T/IT/KhZib
98bEy8hd+pkBZWryit34+Q7o/6n4y89ezZPZdp3vxRekqgMFfzW993N2tHxi5BJuPtITTXXso8Gw
z22R89SvWkEmKxTTFKMQoD05+5DVqsG5OglzLb1/vFBpA0JQbh5rsjryVDCo6pdD4qldOkEr4/Po
E/bx+q5GqmnimLdUq+qUoX3gt8KOK1ntqj6U9Sf6dKaG8XX/uS3F8t627Q8kRV0SW71IczLnxOJA
IEPqh/a5BywLifXMxAt8pwI5tRPSZa3/AW6zYZ+rRx3IHkwuWmSXTDiFsdW0q5ZLjfR+LZ46FZYV
NWDW4RruRNdOBa/7Acb+dzVQdzBlvKp6R/6PBXOn/abcA4HZUpFy4awyqfp1bpUncKGqqHCdvOWl
QPZesTCgKQVLdnBpGcRbJyzfXXkMcrXkTcTJkiCauUlTWYVfBsWz9w8cROGC09cFcUI/gHeSVygH
VjVRKyhQLFgN9G1vkV2dh9Te2dmZ6ReOiRRYt0DAzKgrAGVJ9KngPk3oYJC8iToT943UCJrVENSl
5kx68TdwcYrUeIny2PccWlGuS5uc19GY3XZpP8Hyf3zvbIs6ZGeqG4eDYXp3TyXyB7ejdQhX/m/y
LBN6SjkMOh/MfX7Gi7Xv0/rOFedugS4z1np+I2svbGFr+YwAk54MaUo170t+C6FmbuNCjgsSuOen
3ZZgzy+ghCe/xyUp9+cSjMc7xI2MsRduowyI/T9MIRf+S3cl3miNC/KEOn+J+QtZYf73nQ4VOIC6
gF0FqZ/YlBj+Go5NGgwLKHzc3pXgcaDtcPjgLPqVMgr4WYSpUSEuLXsbriCA+fXNiEBoSuVQYoMu
QgSgg3+2nvVcJSlNZjqQ7D/D5/eP7mfWq3z60mSoJSaIE/D/5/+F0pQWHv01HTvdwmTcwOce2uvl
qwsJG/foXHYyMymc6VjRJRrDlTG07b1+R0AkVV2amiRtsDCwIIYuyoNASUDQDA2iFzbBr4xRcEUn
mL9kQlRf2MVr9orC045jaoPUx0TC3pB8vndnOL19+BA/+Dn0wYYYsAD4gorJkVqfRGDsRigSjQLK
CoDEU3GS+tPjA3BUX2zTYeNcxwmE9I+1WjLbGkeJmyKfnmi8I+2M2yD2rWBp4Ce+1pQGFy41mDJA
hJ6yQ90ySKwaEY3F8X93wS6ubunvmDI3CAuox2ulPIZncKqsQyea9fTw5aMpXeWAwtRIJb2KW6Ja
rkW9L9RlC0h6gA67Ust3kKG3DS29jPxzaMSEiFHDOSEN32jRmMLmAaYkBXvxHjJUoP9POS3kg0Oi
qglwjZcLSGJyWEk9OFDsRnOr1fdCVVhkw1ath8TTDGYouzCWxslNf2drWiqkbfWI5GzlaamAyuTR
8XHtBv3b2NMgNWDfv1d0Nq2YLFC5SVHaJOPm9o4uqNp5my2YcyYRvLAN7LtG3kY/nftRLqag5sDm
hhGUe0R/H+BsfCC8A5wrIB6rN9hVHxgDHIXjIUDMDCSzcZR+fSWe65RSe/C/YytMMhhqrONVBlpN
sqqg4MYTD+tSfybWDOfaXiMHhJknNetmBqKAgiX8RQfQZaSsQTL55hF2X8GkT3Yr1Ce94Dx0F5UN
sg8p019KXHIOr0aIy/YU6sw0deK67uz6h5rGiP0wkv/UR0VZWv5zhZlJpaRYAfvGdGbj47jYBkfQ
zQtOnF7un4JBG3HQv30t60KuY+HiQr04ayHdLyu6GQZ5BY6F2M0qO9UftVtkjnREPZwDWttITvf+
wr6Xu380tgv7j01Hokf/TnngSEjgJ2wSrzVprELpr1utCk9hm5SIwKYxM9htmHmy0+6Xfr+eMKnR
kiqJPWcVNh+7yP0BfrTMqRliVe739XriFnxN1mkQmNEz589LLTEHGWaBzzP8Yx4Qzdm/GFZbjhKl
SoAQWoo0+YN7kbYN5gjJmV6WDSw5/xqsJ4isniQl2wc8xwVs3we8JpPuqSoS8xJXKtvHcNFIYxPK
LZKYhsdz+VSwtk3Lmq/p1uepykzxyKnQe54SCHwT43mymc8ZRxgT2D+m9lahxxlhY6Fz2BklT/nW
QT5comUIVdminQMuhQXJqfZGQ+cR4crnEPAydMqKMM31IqECnkxe++R6vIOv+MhvzHCE/hnDeim6
ftRYWOHq0uY+Fsiq8VXhMXahr96McldmQb9eSIoUPTanvPxYLEmVAs+VMAgCrzD5UDrxRCarAazg
EpP964ytQwBvhBesTUsU8+wZUQoSsuwSaVKwUDNvwoAVA4uX83r+4oe10WHakGTH1DdRCkW70heq
TI7/wZYhEFyKoylIJtCcGXkr2HaRdz81/Gzih1bGipOY0QrcIRyHP8BU+kJPKnvHiTr0+Zu6EfDY
BftkODIcBtMv955YaaBSANeDqqNl7bFM9C9gYXt0kbGCeBN1QTsYHq5I6CheeJ9cKYQgUMPH2Pgq
T7W00RLPwvg9PBhn1QDPmZussTXI8K4Jbz0WfdJq6YJqfmrSmxZy8CtEBOWk5jff5MuvNRQA0iWc
AtUgG8qSdqNNMMJ5WAzsP5XhaKPu/5B26CyRWo9I7Zt0aa/Lmo04rV3/NgwWvm+8DTcuH0D9pOtE
E59Zvgm9e9jU663LepY/dOBDqFRFyQdAH3CXzgOsIE31hPg/akgG4wGzoViyqHLS9HOJrLNs5Ce+
He2rx+D0lYrVVkYnIeQnodRJUqnNjvxl4tgvuQqAdXqmdpf3CUvVkO4OQBWGQ+g/FxKUlzukXrJy
lYzqnlemNiQuuc6KR3M6XdzOZmtmf64QiZtRGA43Mbb5ArxFBvGeQIp3wBaK3pZ/15GPEjAmYjY9
UmwYnqOZCftQ/bGZC7m6O8XXEh9YsU2oanW519l0/XqdDC1I8Ohj3SxTUa5eEVfSmJK9fpeCqoA0
gJqw0lPUDx3ETagPmYlmlld8956+6W91SEeLcr4fa/FJUcYN6AFKl1j3HPuTWIqlXsE0QcGyj/FV
nT/nb3niRFTe4GmNHO/Lto99pM3SAHqOGrHac5jJci8XjKyajQ/3i6mGxR5VMyjYzDAhPJz4+IoM
jiFAp69i4ZUx1KBqDse4CbysB4b5rMeKDNGfRHyZms2xrD6JVWs8GiMuHTlHTipX1TSIhzUOFhFX
ppEOiCyGl3UKDGTHMwPjVXYqCz8ERyjbXrAxq7bTIa2OdLeQRdyAwCsXOtsTgsuCai5J0GkMcZYc
A5D+9hn9XBDV05K12OugT+S5AjKGs9rcj+zJeDHLxYu5VciwKoFtpbAdJGrfIMmpZhgwuNMYbrVa
dcFhvd5+9ammeed8lzGPBM693AuZh6MNOwgua1pbYvBGW+pAHwAlrDD1lCcjA/EVDP+uykdKFGrJ
VXEWe2VkmmUUxYyyZ8P9p1RI6d2BJC4BlNI3O154SX4gJt2+nc1hBHPBiU2Ksq0T7wAFzEstbv7F
VRm5QggONni3BxIJuf9qaKr1/C4WEYo6NRdH9kz3wsLtkRDsCmjTUMXArraMS8/QKC2Q14w/s/GZ
nXw1dtLh0QvLbX4YQFLlWxrWiL6rjdUbX9PNfG07wmFNZEvAsiqvIgJQBTci0OiBYPUCB8o2AEx/
5inL5Df0pIW3ZyZtxA+gMmn8j6WaA1QWfSRM4D2CVIBDXdl5efhYx9O8SwpKFOnAHQAL9LCh4kUp
DNBgFcW2I7guk5+cCvlzii04FC3bZU0i46lNbbo7Ge37hNdQ+56vm4OzUS6FIIzMN4kRtR9cp3Zd
pH+xR7LdXXN9jubnKgFDN4Y4LzXXw7j5cbIcuwKlSYOYrn4rPFXQXT0e7IE1Mt5wZQ6G/ym1o4mo
KvhFVrBWb+aUcrKci3f4ISOXv/JQjiy+Wpy9XTxYb4OQSliwBwDfy0ZzozN0y4Nfl33wv8ZXQdj+
jOiDVHhH6fegbA4loY+zwMd4Qm4mVFM8NPNYnGLMOaBgxS0vw4vy6vaKTV0RcV4PiZ8f+wQXLBAG
Frdum/oXXxH3cQc+KZKspXxCxUfnQbaqDH/MAqEoUW0x33JoPuxdeUsEw1XmFdw3JFfd/UcH+2yb
S7eihHb2Z9m3z5qZEmGzzmRRWnm1m9mDV+gwUV2TcL9oiP0YWZ4MKWw6heLghsl11TCkwayjtG9S
VK2/j+1s43J69mnWCFIFzQ74ZezVjnCspczmXOWDDRAjcurZNRCUkLVSb8OIsTqlvGhQyf0chn1v
VMKTmAlmNVH50UnlWbE9pxz9V+KiiS89JrYaIOigcW0WldV1nD/6j66AhD9XINMKNft1mzq3z+An
UrY30dkxkBeDvttBhPZ9N8lbEIdFkFT9VC2XL4RbbmPYPfwilGdRF05x30ciYrYe7u7aBolOeNMe
g6Ekgui5IT5fwkw+NamhxWqpTYvfOogCFHQSjlU63Oa9QEe7Vrf4nGsYBAn/j2OsCyeI4bGEEb5I
chYF0kiVGaD8UAsNA/cqDFDb8yTmZajbgjJRKdlOf0TzyeS2ZZUa2lUl1AERSj1j8AB9PLY/WMyJ
M0UhsQGduVMQFfWaQycIsjcv07G7Ufzk/+FENYiF6elQKyHN744HdY0Ocw45l0ANn1sasB7JxYq9
+9tb0eBahW4tL5AcLhnGQFW0C/rS7mWl0Ca2Ctb51/M3wVDvvjOrsBSn25i53rsrt+NAwzAjEjSw
7V7KxWsJZb+cB39/lyt3b2OmEJ1QSSmxAaZyPOZmSGCDysLvlbYtpvXdGNNXUxnrhUPDRSt9BLQF
KQBWdjDmXpISqJ8qCyoGcAvJMd5dgEBWvvTaW+TY+pLQmAKC6tbVSwVji2rn7iRSgH9BXh6hSduK
CS60RpA81gg5H0edxzCzM3QmBgLG9LGbDUxrzN5LPPG+OUGfXtrwZ0RijbMeuujylA8CAdx6pSPe
YPWZelMihiPIqw8o49+UWas+CScRIhHrE15xvrKdGMeJaYJ5CL+AK2UPnlDFlTiIgUBYMzHv/8gp
Ac76S0nZc5PWTsY5aXgLT48kOF0aYBosaGfpkBlmcn1OmwmAHTvhhY86mGpe8zf40gtvMaGyP5t1
qvaVgRjDOjlJiAL9ROGMU1noCcnu66m0JfqnydyvkIPrJWB5dmh1fE7jLcplQbD2/er40geiLCwH
pnU/gQw/Bt2xAPNLPx9PhZdKG1pHRjRAyU4hD4d4m30FwObi6WbAgbyivbZsF7SxZWEUoY1mU6Ro
jag5wIWeE7l9xfS0NeXqoFr5GoMkdmHCFUqO/R56N8v3NbCnGpr4hpiuKfsFoVmc4GUsAyg2NaZ2
y4ypmpq18d0iWUKu8cz0TjQNeMuDhqkTnTpzTCtSqNw492DUADxlGkW2YXcfwd4O3VktXssPX1Rn
rjWqwR/ctap2d+16ZnQ3EaWGDL8izB6EYxWKSVxSIhmcNtyLSrPhczYTu9J9JgPVULNhGMRb5wM1
tsB7TYQVVkjPas0tkwrZCC7lsQl9icIBA2q5OA1/h8ddsQ5VkTXLi9/tSBhpwvh6bUYoxQsWoPGH
h99lYIK93hxSEzuG2Sc+b91+AJAcnEf/D+CiR9YCaYoy42WeyrrMWU6QuurKav7V1aaWzgeva04c
a3S53eal93C1EwTcDJUHOT8QryTsfhTRz6yFezfI8sMeaU58LX2Nplz/9qGZCdYqxzgD+3vKEhlV
7lIvnD7sgYw/O8fC+o0BTUQcc2cReQ1epboa9A2vLAq42yGwVGk37AhzWAUiv8xb0Aq+f9gCEDyB
FWgabjcJidRRC/JUCAZqO/xxY4nkqxlrtRFZYqC6odD+RMXinf6ozmVm/zEB1Yo4GG7iWe94Y9DH
1956g1rK7jj2IcRWD32Jw087HCzoxVGYSkIplGKmmP5QXPzpgRjHMKfY4nf/wgcK3Vgt63GcQrU0
HFrbC96r6lOmkPpeIHJQRwxWtzDFMMy6aSz1qlw9a8U/oTJo5m07Dy7dVSuG8DDgaqBY3gyy3kcY
fpePmvniDBbMOOOYJrk3BomCcD4Y2B2XOdscGqI6ji1+bYTWMSTHOZg7jm89ZBsWfngUIiB2HHHB
XMkUqVdsqVA2XoqvWscZCIqfBQpHz0VmQvMl/wHk9RXpOmeL9k7rrGxbdgwIgPHWvgGw872zOdvO
h0YunzLaeAPLlx0Qyx6QmONmCUPmsEmlZxOXsj/ZmWSKBnSDUqun2zpLVN1ErJ0iV71dhfVq1SQp
f1fPpUx4i1FZwANZdbYrMU0+7l1hHsaE4IvtgP858wiKk0CB2ZYDzbtu8X/I/cQLoATw7AcrGph6
LMPX+9y5dgG5Y3kSS+ST/7eZLzFd2DyjzA2TGsUuwAhJVisKUbgGXBDhMlkjV9OpBx3I8bw56y77
f/ASX8oSrevJVV0pkDslW8BxkHMsl0t8x9x2O4ABFf/o7UpS7Bo9vSq+Ck46SiWCLqJv/yBRfVbO
SVYoG8ilzewBEM1xap8+3uk0MvvUyxaejUDmnD3At3weIgfYPYcMKPmdMJwKliNVlneSoevyU5L8
kneMN/BIb09oAJrAqUMbNjZ2BHC0YUTsdapOv/iT6wlbUx5aweLVGYK+QuUx+IP46XjMQET+G6bF
ASAxjhGzwIvuflfV6RmbXZ8hNKrV5dIe5kJJF3MTrnzWfet/hMFvhtw8eBcfJwG/oNp/gKAHdM8U
phYuS7FoeHFGlht1vbDj71mNUsYCUlG+otM1Rmxa6IrXCbAJM0w5nXXJeDYpzH7xuT378AMc5Ibn
uzgYXuqYrDM/zggXQDDvUe1ppMnsJvZb7nprqkfiWUq4QiqkxG/kVZSJMTSsdaGerx1Iu+BD6Xk+
8+YmEIE/m2N4rnsCw8U6blrz22d550SBlqqRun4HH4nEgkVPyQpCKAycf8NVr1ODvdFMZ8lP6gSP
7J6ObsESN5v5/F7X2fPNghT2VPda+/+TERfreqQy7K/lhTtJbiR5kKXdZQYzegd9ILhcERgB2+af
x02+Rb0aPaykqYHTkfIk1r4RKYlo3NTiAbpMJGE5P7ygkq43eMN6UeQ4QMbM/A6QJ7TZkoCnhWbS
dI/cA/fPg0dPa5jkkaCYuDOkT23UYexJrvIHQ3A9QIfyHPkalUGvdXmYNrM34NLt1sZf2xol5is0
f0fUGTAcL1v+clyRV7bhIVxFC6eYnIcCkm/wsFeHg1eY1h5JPENpayzdiQJE2zS6NYoDqQxcGYcy
4BUAJkS80LbdITk9JRPdSGwpwOxnVyYsHy6XAsnh6DEO9EOi2ubdYXTBDb5SKvtRZxT5SzcINSai
1h0QpM/Jlg1ClZl8ZXEZlU8MoGEKLy/M3vIH8bB/CVVVbQ18pyWy7lXnya3t0yH2RnXXK8cyzcVC
mG998/iz106y+D9Z+5cuXOEaaUQtcZBMgR/cLKYaOFTe7h3fusgF5oSUozbY7gfdY28u76Z4x8L/
WbyRsw1iUmPO2YMtTs+PbejA33RiSkXoXYqpbNFsTCzPuRhXTixTJvoDxtCVJa0HEvzqWJhx+C+B
D/IajZQo+JXYedSsZ3t9b4b1TLK9qZuhT/BQtH8a89jN+wcSapzT4+AWLivqqwmfUBHaPpw5TFL9
QJb4c+7ZjcUa1LlCUygZEDQngWqpWAZTdLLZ0FhIshIizr9N6B1rg3MW7r0+VPDTZ3EehTFrznbX
2OU2qPcpw966WGFx02eODhJQvXKHPQzLb3yrhyEJs22dNoArwnp4kGNxpOjMBchUv9sHWxIeLLa7
CGBCzba9oDGmrlvrJcgPjbZIBEYWuxL7JBxxPwj1I4GdQkq1xPpStBRZgEVkJIMFLvMRUzPRfHrx
8lLRGqfs/Upfc/iB9PEdn12xGUt2mQlpDVxGItssDqwC+UXrzkomWEbkk2v4HMgPbrRVvCbuvQWM
QXjZkLytb1u3p2kHBOQ1zX7uHIuIAtpBspMj/q/E2DJnPjhOu/y2t/AOeubSL16dPMAzgi0EvOZx
XzybSOFQ3jsbLzOZjuoknYSEcHt1GAGzWL1r3q7mCgMWIcClFfIEO1CdbqYWXpQS/h2b8/sraLg+
4Sg9jINkPo5ElGNAVFZHdRYhvA3Zw666egKBzPaboaigMG2aMasXNmM3j2QN2qbvqPttouTmjPWL
pOeHar2RO/u7EHNF0Yo6G0bVofzLDd3+fTXTUJSHJIZ1EW7DKURRcR6QYjMyfV5EI9ErkkIZB83j
iPhvnOZTWKmOwNZt79BJB7Y1NXbnolirNoC3sdxW06oLc2uAQyrN472F6QdBAir7LLMmMGUdGUHj
AQRhLydFuEIqTY7ESeYNfAzuPTyp8H7u2pIFasm5XhPPl9ZR/L2Gg+C2q7SG3iEBzDjENK4OaTZU
lhbR1sWYZEF6WTseGx3lvMk1hyTJyb6wPid4hMQ/d7fv5R6DMSDgLYRrfh6Gs720VhItG/mcbqZz
NQHYTUhyRXQBgECVXe0IhJ3CkSl72raotQihhF0BmcknJE04K0Gfdkuq1bTvvX3SJvY32FgxI1pr
nOye/4VbOBKdKdA+vtpAhWJg32OPWcAlVwsUhgwcn/7S42XYBkUwxbwTfKGvvqS+h3ga+zYoo3u5
2nqWiiJjBe2IMuzNQ2hhsLje2xjpLlKcQv2iGRIAj/8DwBNha97QGik/90iadJ2npODS5KZ+n5xr
4eHVv9JqPjGamL+fLVKcpkwow9Ms2sYuV+TBQgJKxOmLM/QaULP9kvZFr8Kq+pMakfouFDo0xEar
Xvt8zZp+0YVJblhNxTjemOwhdbG2O/NM5W7S/6k3v+oGU7qjwnCNIIffeE2eS/9+0LNHL2TkWn2G
B6RrReYNjL8KvIzxk93nQO+FJw6GabRhQ+Us/CLCp/exEDZJg68AqF6GHFSw8CaW758xaI2ANp/X
W5zFI+jx1ckq39oIp0wCD28zqb9mz6Pdb/QTyBpF29O+xve10YGDiGL3OZic9R2568ZqKJfZEdg7
2dWxIFsZfYXBFzw34btxpiriiEf3pJQbe8z9jWrYhiwoP1NIpSPKfucz3RLlMKgJ8yyXv6s1aH9t
OD4QzulMe9wOuOhDC1xOAY0ar1XWdf+0L8uRYto3LhmMV3lp1njM9n+/dmjEwNEeHvrKejlFIYth
RaWYm9qv6FIdlSq/GM+sqwC7h27Io8UdnnPpUZTr2KzHTD86h/d1P4l674JtHjrlgbgvYFgzWlN8
co73ftn80Dynk8NmTeeXT9i6tqJNsLMRz9yTHY/Pson+XEumR+4eF1j27aCXGyL2h+Wx5VW6Acs/
rwrCpLmNEATXASYjQ5R2h/UHiXY/UpnV+qA8b0Yf82vimRz8zCYBCGEiMKM/a2RQLMhlI6iKubhz
hvJlcyKzcU2RA1G1x5dsW/ujEoEOjP2EfgL/NNB/VEXzS3fUedsb6W9Eyqs9UzEVaht6Tz4IuALB
EYpyHi74hcrY2Uv1WjBsEq/89duujR1ssrdzDq0QC6WOcCAvGFEbgZV1gH0h4BfJXgsfYV/1Sp3w
79g9GtkrRzi/LtpbRDy4hqWeaDBwkK/gZRdA1eeZbxaC1GGyCoVry7ClqyhRA+SxQmxGhSILb9++
pMxurDtCmWdTIiI9JnWOf5uYu6lrvVG2jP+Cc8yVfaoo0OQe60geHgke7jLFqdNjeR//T0SwQLYT
/pqczMrF9T0RFcfx7RrbdA9ybjOHlFA3Zur4tifwHxR6XM+/wI1MgK6BbYGYRCNg9mqIt6xfe6Hx
Xdig7WZAb10cuuZFBD5g8756znCEWnt0pCuZgTtEqwQRvG47o2VtZM36OKtq/wg5Ke/8FQQkqKZD
8nCarVX3Sx8gQEqWy39Csz/jFJ1VgbPdKUtLZRpAI/8f7wFWXBIH10uh9yzVNR26+unmDYORfE2C
pt/52nfR1MtwRHRGKLe4ZzTy/ZLA7vzXV87CPQYXIedq0sVZup1q7rQEnfF1byFXXXw+6J9QdFLx
3P7vGnDecwq6ABeRzFIj8t8q08dr4UpzNI5THtSy/Xl1PK+WTB168/j11rP1dYCIle2p8Lgx8JG9
4i/kM82nuP4aM4z/f4ttPZAL4GqZJQMXw6RhDDx3fKdoslH6vcKv1ad9+9m4e9H9d4/wuUoSPVNR
AAuUf5v9J1YfgwxwWtQO+WJKfoWpRgPb3ICLptXXx2ffSntk60aV7GOgdWCplR8t005v/xPUS/+I
rqbLIeVyY8C3aQrkfxWEtqvCRhqHB0dS2aO6CM/twClc1l4SwoUgDvlnq8kcjMu6AdzP2YFH+msc
pmiZQPpoOtradlbQY6VHzgwaik5yS8BagMzWjBvBwuZocSeTx4lPIAlBjWzf7NODgMW0llPpR/e/
vOs1Wbx0fnxQSDWKuCYYRA/Qis2FvdxDF9idlDWzrYAyr+ip5iHnO5PMVOEQFF1Bh0AsaD6H504q
/pOSqWF6O2+YMDBtSNb5o61M/LLjbql+oUoxbVvXtGIBut3u+aLFIEY660Q9TiWdDLAeRUVRtqy2
/C1QQK45zAavSyy2a/EXcLN90nV+NcGRjSiqdVG0iLlWqoirEEc806vBtFMPh1SQCfpqpwv9c18z
9mB1VYwCAFRYgDJo0InJkM8UzSxLdwFr7uSRaUBRdygExqjusKzeezpBakxEaW8pdC/6ygAz8xT8
zgtq7VGJ0FxjjsqKFVmdM6/StLTpNe+v1/QjebPXrjMNmytJmNR3q5ptpJwNE4HAepvhCEokG3au
itv3Xhu8qiD5eUN6jYthgR/4NJmQhz3RH0Crt1h+W2Rbwbkieh4Petps3BO9c72scO1yfyjw3chC
61NpK1W9fdSDfTFNd54vwjI0N5gBx/uJ9FZzhVAhF8iRirsQpE1mPLhDHOccqHOgleOIzz6WjBzb
2sqDAEhe0PLGzQA+tqDOdFrZVujOhoAe+Kjsj5QsP3zNWKTuuNruno4CBiC1ueVDkxbsCsl9Fb6i
S5JL1DyPp6TsYWSEewsKm1+4MINw0SpB/DFDSxNDujFnf4AjG3YK7Um+FK+79/+MRiteeQybBlzs
B6vg68BnJC85zXAYNjCBb9DDyENl4QfEey8ORgv32KP45RzrBT4qgU/4EAcjdxlvNq96EgiSMDoT
ty5Kqx04emle2fTkh5TxD/fL4io8V9SmvXkiXZB6q6FugIp9FroYzX0nZyoAD/EIENVyXo88aa3U
hav37GVH73qdMDif1gWqlc3zTgjO+tSfVhpAD0JdcW2U65SNPyR/LhOsA+NX6n4Ozq2Y0ASx4T1x
hkWcY2wZuuhXITvw7YMZmFTb6RUhEwI9Fp5U5jcU7vrvDYsU0weceMWCrGOncQj9yQ0ggZQ6aeW1
yjMe17bTvSX/0O9YsBpWZDqvHrmDCIMl0SM31pp92AEYQ4yQ8kiRuiz59Oz2B+JwegacddOSCE1J
yIgDw/n0houVm+nhYuI0gP9rLIn1SOc0WOlP5cl7fv8ozL3SYGU1uNJEZ45HCZ1K8qKwYVs04HE+
fCyR8axdOSwETbWG5xV+hlBUNfNMKDFinZYF04pN27Su9MN9Os8YSL+ko7X9klwdqLi5XdPN9YcR
jtx1LQYbgcPGuPmt0XH2WpKsOVLSDqBBV5tw5kEPQ9czHDvtwuIz7LvooBcbeqSRWMyyqrFub9LR
YvhE86e3EQnqwc0iMzd2ZqBjq3OrTw8v+gexiG81ZQuCbzYA8DNzDC1WeJWER7jQrnTS5B3lFZc6
kH/SV0/Bnqa1PG55DOYBLZRTlBW+NbRn1/95ry7Pgk6ItTb7URKGGtQocisfR8jkqjEmNtcq0EvT
9j09PfmHys/0HgY5ZSZHg9SdJpTocRFZlPLNGqcxeHxpWsIQ0mjxtLuVTNU7cfOcxeFkx9BioRwG
oV7+EW1WIAV0ztvdHcqu0YfR0ntJuDVku56boiIbkj/wvyeIhUy8ASDK6SCcz/5pMipj5u1jmk4K
T1Y6P93Xv6TyWedJuqTJ2whk77ZewMtM7ibc0g6eCpdBUkQPC0rKNu2Rt2zNRRZFGJ1sUU6gvzFE
bKuEVDBcilFRBmyQy/u1FeC2rb8WgfVmN0hdh1FXjZqBIMYGPde0Z8zYgtkJqKZDp9u0FCHM+hlP
jpA8vfUFEp1s0XKn2mKWZ8QD9JKSkhH65Y7obgWR/4/ySJC5ao2BuGTM0Pb2KV7xczv3a5qtzepG
zVH1IlQ0FkfN/h8hPKOwk37UL+jSV9biR3oCk53b2iI9tHR7NsFPP//D5K9R6WmjHxmovgpU2rWa
wEhB16k0WI+92ZpxS3s1ji7ab5dvD0pfM6o3VIy7hwTt07ZgDrA1rnJSK+oBHYw7PVtYeepMzRhS
2n4YRcNSihVvy9rQ1csB4i8gdtQJrYJE4z8Vnc7vG0wogjCQAWzgntuzgG/Dle91QTIc+BYiUuA5
SUh/WO+KN8VBgYEyDFuTB88kuZDRB5f1HdObLkS5hi8wvQ1cehj48qyhxUwpih4khib7PEjdrSuO
6oD8i+ssu8kkH4e9xA7xxCnkdNEwnWwZnBJZ0qJWxfsa5d3R6UeTYBjlt+MvU16kjwb782/i20zc
Vn/K6gvbn5a59jChcmnaWa8zLEe4gdKUZ6Z1RfkQw6STiLTl6KTQHIXyVlSo8X7oIr6g9xLJOb1y
9+IKT+zWs9RjIV8XSkt9BGmYWg5ENr3BhW51rjZEDhI7Q6GcXyPDud4gYasOa+YuPLiAsAPt5XRL
G2bzlvJchFvUA9cHFeOBA93BNdLdPlsRiOPST0ILflvzNX5S1zL01DBaD279I93sAcw78G4o8as4
ARNimFsRzN/nPDQ2BFNl1oY15cXj2FxITPiVDtcTp7CFRFKCtBpIoWu2U2o1oE6i/YVzFrcj8UyV
KPSYhaefIFOERtjNEiYjS4TduU3B9uRbzaOy9O6khnY9E2uAjkBuHT+RkOa4dGHdqn+HuYNNv2dw
jDzmFPHsiOZxj7KxlMHqN43CHb1XpqPcnJntantND4YRzkR7sFZ05IHzTnBx0oHmNw5OJJdwOgPM
7jDdGFzEzuCbi17bHixs4Aeuz/MpzWKAQkcfPR5AzZBLLTp75nBSwHHDDJdK9QDIQmonAUuLngFg
IcA/btCV4FoJ2UcJd1OHvVXm6thPV/AcIPu6bf8egwR8qCqNfz41FqSka2ggX69NUNa3e9gAXywF
Jnqe4m9EkoRYrK62f9Qg42rHHC9hxZYKFFpyiND8vdHAxg8eeXu6/sCNwezA/wZXjSHTD1IkpiqW
02MLgxkju2D5HOYArIarZ9gnnaxSSAc2/RM3YUFI2KvNEf5pXqhsBCE93acb3Z5sK44f8UfntzIb
+xwWbefLbK1oxUC2vYg0HD0kZ2tKQRfBSFHLYlmrbp97daxki/J5lbYDfuR2W/2zFLiuMWEX5Of1
uJaM01PcBr1DAmdurX5krEA9V3GNZmxy30zraU0FRJjPC3nYAONah2Q5IVNJrMJXMlMuFHQ+4OvM
CkqAS4CA2u2z+hwtkAO0zY5vk/zWOM7DZrG1OulTXqejyEagXT3ccwdDbUGJeWZ+sYuJl6+ho9pW
8IQ+AxecXFZdtWZN8azs933INDaHwdriH7Lu3x6V9nwEaIr8iqliTvSFMU42RkpGSYlAFyjM8egl
HLf0/O89z+8/xIjRbdvHk2qDRTyDtBpnGgTAjHA0Hy/anFDJOSaeWQ9lZxhmk1BStocmNgfc8LoW
BYuHpgKksBcqms2hLfYc6vuhO7DNBo2LYkq0FRFqA2/VUhtsJnLbriUlnkvzfqO2Ei3YzmI3GXFv
9eVFy5PpPZf/xVCCE8j73hdWbFdTGXtxkqMsbfUIpY1sscwHDkdrhMdm3db9hqTHdWaimpTBV3Jd
n+TTg64Pc5PHQFYSgbP+4kpjPGnvHfjbkYjHJT5t6TfwA8kLZvVfr0rl+YtHjjdvl1uE41PGpe66
WeV73jRkUkPjGKkZ/jf2X8Dogfzd1yQ5xDPHTeOth9kPbJwHnBAhACb3N2QzS9giOnwgHwIDPilD
Guxo+I+Te/QjVGaBHHXBd2w5Biz1RGwEARk70h7ohMw8aqTWPeML66puaZDybX75yFuYnoxsDyRa
NyK59i2NwP111L2ZnWukvTTOGnZvdnrZxlsEwpAxsSwY514nRUMEipnXZlYJrur2Yv2G3eZfnI+S
zhdP6Sk3zNVpqxDbBgQgnHl9UUzBYVZhmfabfTdHEpnrTpJ/nserkOGwzR6cq3TATYynpLh4td3v
SIEVUgmG4pmozjO5tGMrF3Zxdaw2/R4rlq2d0+S3QXYw6CFKaOxNv1ru7Rke3uPh51fOVos3ed6W
3JQ28jKQImOIF+iDf1DpMGj7IyiBOGaIKZBU2j8bjtwmpQBmI4iM8McXFhUaTSf1TAzqaP63RCqF
IW5wm+KWJz1Z63tHm33/d0Zi3FXjvM5vvBwDtvJi3Ex2xGV8Rf0QI0QURVACdi3JAGjUM0yF3DiY
SjmZ0BzjUS60xtcOOWq3cbDN16VyjHgY95qELlsppnG33WtSXfI1k9uucLazooIo28v+09ASM31N
R7BXBbRoZMUoTk0hmhmzeMXbiw2bO7IQ31C/oh8xGUiMKHoOf6Vx87KKyGo72wAEw6KsfYy2TjmR
KEGKRTu+A9nc4rID36wvkxBp06NyMhGUWEsJloIsRqC/xMSiu+EUZjPcSe5etuzyCIssxZKMC1QU
IrYjgF4O9E8YvBzsEIS5qRdMCUEuNEqepYLP4owgqdgp78pi9O6RTwGdvuTAiqLpnU2EeOgBJjAj
u+sNxnoj0xys4PrKlKANYrI3WqvR0laXnnbXJi8W3JiH9Tncfz4aM6MQlmhhv1kgAEl3MLYtDdDb
vFWhVG4X19RhiT801TDf3SQLN0mz9Swbt8wuhzzonT40pEQMs/VHPGFpkLklaSU7OiedgSQlOhqP
8JvWLhCdt9drb00Yo4rAhMr9lc+UsC0B58bfhoi+oMRg/q6KI09qEYqi3dzT+QIPn+yWMOlbBwC0
clL6HqCnDlbdaIb0+m4VyoHIQF0c3NQ6ZOmo7jbw0s89Y7DS2dxABmWjgUYSV4cOn3O9RHnd2uCi
KAF2dk/0QLoOSo7KOfK69wtsbeC2RfKL6dXDxY6QMuyxyQo9p4/gKNyhei68jvhk4kchI07onQn4
0watwLnRb1P23CTNh1a/1SJQTx5BN4JkGWw2zUPSypTmr676kdgUFMhR6wKGc0IpQQGuX/NkGAEq
U22cMO3dd8oxArK3AavO7hmwjN1U63SI52a45b/xWNEV7mFB/6svb4e2DhZne4AOAWdqrDvyPocS
nCUITDrUvjz/6LxhPv0IA1MRSq96btVpAwr7imG5Rp5lV1FUkGMug5Fw8SApZuFaPAxgGu3uh9fS
J/VvnqYwxRoofPuoOJ40d1Z7YT2m3EWZG4phzqBeBUO97ExNgWOE8a15JCKmvOzgL1eMyKlRbh2P
8pLeZIAB36FOKuS284UlV64tgWwSE8jI80sJVYuDY8loGwnjjVEDhbU3Yz674fzZQHbxM296MulN
XfIC/yYSR5NwELEUET2JfakmMNBhX1SlplcfY0LdegosWy0UHefKrLd6jMpZOZEPUR0kKSfEcIav
vkTK8DEmQln/FgxEhIZWRp5mKMaU6TIrsM0oxXqUvQaBs4/64lYrVHQWsV+xicH3f2b8NEiFerKr
bSPcSK5InuVhn3CIGij6mgdi5j1Fg2aLF53BqUzhtNiCwV1SntsD3bcoXwVzWX7h+2L3SwpUILVD
xGbzlIBOnOwDbjG5Hx0mOc8E3EIBn3YJQm3UaDXebhQJq9L0mKN7H1KQczblz2pIfxKgKJm7kzno
dzHjEc45j4f3JJFnr/Sgg7CIv+uRiX4UaZXE0vN49X1J2JZXnofSEcTn3x1IR/MIyO8yUP6sTMQY
QFvomo9Sa87EkVuqft/cJ8U8rO34i5lA5F8sMbrZSVBZLoD00I8HLLQAgSJWpPb2OJENCyz32m3h
ITTFQoxH3ZDvZEzmJ+WmdWxX5/wPWL9aADYTypQVLklYNPHVXrO9uqd/Ih8WCPV/LfnqPv/+tEwh
2FVOYs6rpFQhTAiZjjhUtCIFJYypSdd6eJ38r7y8zT7KVK8x/S2DUZXPOVmrhbqq42y4hWu+fW0p
fQe1sTwUST/5mCjf2fX2XwlCirpL7RtPQfLnSzXKGluRrz2Q2LjvkXxMK6hB7j1DuzwnsD6y2a9i
xNM5NijKrn8NHvCt/JuJ2OzxDHS2s5K4BdnJytFQEozANxZ+Rj5OEXshxK6a+JidFTOy0dKyIr5R
liewQscHWs4aIdDT+tuIsylcBeQKIJmYMD44l/pNjVAp0vFIHAS1Nh6cI6Gs9VfaMhFN/lZEqbWJ
VHohY4BToHk5dMplwpd6ffw0uoc4rlbSnJLCCeHQpzrTtr+3/bp0R0/QV85wZ3NQn0mGcL4NDxqt
CPejZsxaYsZ9bR7bKuq03j9uOFgWsCiF4DXexh1r5trLOe0jeyMWtuN/RLx2h94s6mbadlk2GJ+3
ZTJlSQQrDzyZlq2iKkaKcelgDkHkdT6cU6Fu1wbnL6z0v5dsf4/sA7KvJzX9YEPxuodeGhtbSL8y
5hTe8ZvAhvnOa/oSNne4CsLr4YMhQJGqQQV3oJiEndBrhO/UHkt63NPNBWHmbRa52YBXAdpnUwfC
T5TRl4Y8gAe+LO27+WkQNdBLVY6dzay9mVFHSwdedJzT9rPhQvjIUhOCOgx9wiSwiiwYqNgk5k3n
zw7JO3R3bLdBhULY4j2mI8Hldj+PjHWz0WCbXuFaRCHfeyXCu59tP4iT8w4w+DM0gRjJaio0Pj7P
I5lT6CmGr+1l3tSv6z6WLtYBVuUwkcRwaa+Gh1i/UI2mICK/VURmrvmExQgWT3i79dzMeEj6BxD3
LjY4X+JaZDJwHLNVa6Grs+caDfubXaovRvKKTKbDA0Jl+dMB1Ki+0ggPM1H7GwnrDkaVM4rb+wrY
zGAX6ZVaWuXBopc3HC6SnzXFJwD/HWOAG8QTw8v6u3auGCypJPHGcWBUTh56JJFUa/Batw60h692
8qOAJmFnT+TN3I2T9ill7zUikjbswYEbZgXbrfYglLOYMIZAINyy1s5svR8Adu6P0O7eVtEl3JFe
QjeLVY9q27RsWZI/0sTzsb6arpHGGADD/eHWOMPbByxxvdyrmhRh+g13h9Hq5xMdlYoWbKmgGrof
ZeL33U9QA3rWJ2tKqRImXCy+yZEV3hvkCGDgt5ECm4UaQLTxP7kx1x0NkUZxP3JJulglbix8Qtme
JeIyDgJVKD8jgp4jU9B1lI3Ykc4etM1LUj4sfAV2G0oGHc72iUh1licDFgAZKhzbHcJfhWxCpfn2
1N3nod1unYa63Z39YZx5VHgX5Hzbt046KxE562mAYOj9pq6AgZ/Dr1sbyJkh1hzkcaD0u+UwIncF
RPddtBs3Ik51VesGChdBKvwuuYlwNP7RzPfFBEnCV1U6pd8lmDG1lTRvKzO71rwA1d6UBXhYKETi
vzCidtby8uhnFQtLDPjo8EjOh057fAeEfVMIUEvsUlnvt3j0Hp3iCv98+7EqB81FjUd23iT7oYQy
h0BUqP5ee+laY64cGYmEpZ57iEc5amG2okQJaFjSKNClUUkvDxKZzFQfXI6BsVBghe2DiVk/GT8x
tJTewbk17ublKeaInmsFQxlrFCkGAzHiCIFQIq84+tD68JlVTcJD8NlDGlMxSlRKVS8pTcSMZTZZ
uAZLbiIFPHkVBuCkWvuUBZyVCqBhmW5rIrH8U4GFDXSqZj0rLGzny48PxPb1TszEoKOd+zpLbKIl
bkaiGr65eUb9WV7X4Cv7X/T26HjcYxyDgnDI4Hsm9eitzDebF32DcYasJLAsqlFaxo3bDtKRhhuB
swi3XB5XtzbjxtSBPkHsrtFalmKi8mywE3FamaIXcyPUntOYdtjlbPWG3WKaTbcgkBAGZaim56oF
9QY5C5wCy3W3ocUh/iZSoD0VCXtpF0VSr4jElG/HTjXQqN3e9FfEn6xTXACZs20JcQg7U/wsFxgx
lJ4zd+bjhQ5oKsQOw0jhG0Q5zcd4gdundbqdXH8sboc9KEUjqS90uuRMmZxcRwEAppGGu/MjKDMB
Y3jDSIY4V0712WzDKO1SoAd7dOlUbBjO4Gtd+WlV3G8IVxwORvXbknqiiSel6HiRqdo0W3XDOII9
O6OyWHYcYCcV7BfjDxMjgAbdnXwGIGSvfYGsyD77bnIqhWNSg1Du4d3szFke0rUfqH3itohuvoQ7
EQmkBXtNEV0RCzjoroLayKy6T/kRtEBY3PuQQF/mzrUTmWXETrouR5fiyrEsAKmHfhAwDXw4kmRa
OGsgmYAn+xFd+y69mHEXG0ilWXk9oYNTY4yql+hG7kwUCgBURdlSyQTAf1uSZdL5nQRKVnh31P7R
DZJzU4edwMHHVWn4YGZLCudJhx9EJvPL0ctyQUVDHAuHn059ts9dXR0OXj5pGguEB3pai2VNpbaQ
IONbVPYp6XzGp55axfVfZnQTW7QrDXa5L0bmX/4g0yUwGFY7TIVESi86hNoMf6dodl8g8P5oytbu
5n+92PSwXHNLYEQYDHm3EezdTxLnHdKwbCdrhLqN+wUNifJ/1l8pzh3olKSUr/Xu6vSRjeYXwiCr
0qoNr39rQgxVFg8ikVJhPxvVzo2ptDC01/HNVDt52WWuL+Sagpc5uyr1v2g/VGq0rLELYN2kbGpn
tR0hjiD+nir417dkQf7dh4cauv3KkSJLAjbjkefCmjbzjTJPkInws9nT2OZ7cDnpfR0D3yBGsB8N
sQiZdWlsvL80+DEUN/hwUr0prac45SDsyllGqFbIqk8uCOYCS+EyB7mgO4NqerevHPMICJiMR3FD
DWuoVv5Jo2KUcYfmtfP1UE3Xo6QlBBKulm53J20SDRbl8O/NmQL8tMOsLb1oXSXYvwXz7lur26CV
ZU/EPGD6prNDPhpOViN6aPjRp3/jFP6MJcLg/AVs5HnQ79Qzu1nLt+dJliDg0oF+LtY0w7GtE42P
twfgGJcaD8ExVM2ZSwAlubJNj6gGj7Dtw+Io49MvmnBDrvW456HCg4L7n/EZxUjHSEEMnvE/9QRV
dHk8wx85eN6CAXp/pWy9i6QYaZRFyoz0FDnHJkpVy7BEAvtUo1+LU7gM36EQnmQpqg4rSYHdsPHH
1AVVVD1LjF4tis2hVtIVrCvuRUjiqpw0GG6UQ3iOViRSXLg48rEKirH2L2SxtcWg3KDxTvX7evG9
GfYtU+modYICutlR9dA65TlYhvkNBEB0V/T3Jp1XavJP1JZuLQ9AvWkT8rYlczu7hq7pk/scgOIq
DJCtjX6fSwkOGcC62XFva1SUjww6ljmBr6euJlf25vtEk40IamyeL8BfZ3y7Rrado7HxNoiCoyLz
JPA5o6DW3BcVNUvsHGuMGLPq6HQFh9Jf79LlIFIVx5NMvS+sjekL9FSwS28gbAC+9ZUtY0mZCe5x
juc67b0fv3Hvr/lqHpPJs7hyPm1Dy9XjGv8iPnCGedXR6zyZWsK05GqzIm7pn8S52yyikonBDiFb
Lcw+DUZC49NpMlmbZe0fAvFN8IlWiPY60ekJ1OcFnvNqW9L2AF/x5f83dMz1EawRPr3nMwtuQSIC
TTnBtAPWqmTHwFKzih0gckUn1jtj1iyUZZjGwzzgBFTLHv/AAul5SXEglrWtrB8Vzaar10+2afYL
YnIJEtx0wiIhtHQg9AXlkreyFyYVprkwHDXqHXlNgX8tmtlNkLQHLsnGgRqUh6Vntc38/HIlk5EN
iAgie2YvidIZw8Yh6p2ftIxTIMKGSWRExhQbJrCDubUHxtbT5NXvh7l/qXxPMgtxCSWMuq1e1Bnk
zmXUBsyDylRTRCoQYdjiAOSK71mq8rvlw4+PTXWM12Ru+3owmrLg7Xk2m9z5nY0cHZ5sVra+IV0K
Aak3Nf5IJdOAMcWzkZ+9EZBWulLML73Zw36vFuhKz1OS1AdvBYzDzAllg0c689/gh58cAZZIVoe2
zThw/JjYUxUW81cxhhmnxmK+MxTGyVFYxDri4bmV8aLepyr+42qzdc2gMkTALB9gdIsleabV84f3
C9Qe/PPezx0wmbqhqOqLBamVxQar44UCBQge2qzx90gaqIzmHKCyWgm2ySABbI9Iff6f4Mq843x6
6erjdTX7tN9Sct944y0lkscNUKr+so1OZ/TiKUFtgjdcPj1nNKT00d6YcRg0mpgJHo4pRKn35Viq
JUymGwSgXdiAVBu82f2fCL6nT0tQXBzpqCQOugvkQOMfX63uKpqsrYLJ8u+rE0DtG4fzBEKmnDcu
h3JDjMITVMU2lrMzmARTAJnMAHl/7rIqJS61ebKJKjr3SjNL3EdRQuFxai8onpz6pPSXz6nimlgs
SsqOj1Z9NrXvT+bWUnmQsYyllz1GmJvFUY+v3a3HnVd0NB3hiwMEgW2jTvWd49eVc1Q/e+YRaMBM
DRujRJUAU9binpr5kuxgU+uuddwyMpCRdbna6FCa/7nJgEN1Incwhll+v9hlJi+5MxOgEFxjju6H
E0neRIdnCtSTr0H1FlsUGK1JHIAvVeZbpr9s8/SGi+8hAuV9S5rHFODrDc6UvhroL6Y2xrvXfW+N
rPMy6AuqxaRJFC8Fl7heTSbiVnE4NKfO0PGQ6CkJybOUuCaODfZ17tBeHiJLnYDdsxKwyNy3154Y
cD4hmK5CAcXoR3effR1kKdqQPKIg9bVkIjOxfre0M347BSGdfTglnGTQK8piSPqAIdMDML0fo3MM
qxr/LLldEx5mUvmmbEq69llDhkCVGxq7Zo+ynhEmhXvgPUWn3Pzt3Ppg2JeWIw6MDhCqKbNpRvSg
pIpTKdIHSrYlul75czfifa1Io9cFC15VfBQiNV3Zx3j5bCTZk7+bTqYq1EZ3QIuvgy0AeR10n6WR
YvOqD5bv1rxF//imLL9a1XX0uPL0A4bUo5Fnv+xiUSGnxywfN9T6sRvdVIn6UU41m4YA11wmUuyV
y16PKdw1bm9XKuwJUL9UFZaUkWv0EA1ALrZ+kPLl18XIABFWCdgpp5ScEmi97KAFZSklrYLcjSsU
6YxDtGMTVtzlugS6xKfRXKKfbeDc9VzghS5NTxrEUpCY9kFyLRuwXHy1hRCJmotmD4NjjVUUhOd6
IMn9nzHslos3K8CR5kM0+7whQ0hKhrv2zUtd5isZReOHcjHpmDVoQCdkMm3oMfSCm+WEVz+Y/GS3
e/cm3WAxuXGo/+EKCf2+gFKxuVZRsUPWFuNrJU89tflPidts5I99mQeNc/faSjYzJQ51iP25m+Bt
+tdLAsDWnJq64Rf+9I6xDcnF3o7bDBuUW7r6xW7YwbbGw5rZaMIHuDpMe922h3dYpK+V/ZKZNr0J
SKP+BNROZ5KGE7butR3THZ25adeJhMdLosERTaqM3Yue8Afszh5D0PTzPJNlSOE4idNvgkXApCz7
sUCI/Jxj5CXj24oUWKgyv979hUFFTdVi+lEtlUPSj029VdKwFooXLSTzBkCNDjyG3zwQn7cVIm8e
3AndKIbx0K8kP1yqMDdVti3cuCeeVI+SMo0l6vYIifyoiLp5+IGrSw6Vcx3sObsbHcgZ/DGuGsRt
d7ox1lNL6c0MwJo/jrvjtadaDamFQlht6AXEmCsLN3RYyY62hHZ1K4KfzSaRBcNF2DCvny6y/jDD
BIQiNcrjA94YJH7zbEuxYNpL65YZS3ZLcw7QXXB4TjFBy+1elaM6Aq4iI5g6VMGSfeIZvcONGgUI
TZyfy4PlIExF+p4J5zS6LE0ZH28Ux2B10wmqjs1ZQ+97CMsFDEYnWkOUHxGGdWQFDOKQjeUawe4W
SuwXrwHjn7i3AaW+AyHMPPEXO+zi1kYpOrRH9ejsX3jF/fG9OzjU53WSf0AHJx1oYQOIXStw1AOQ
m0CxJ/KCGI4M8yDkK0jkh+5a3FbKRmB7aiFZ6DvF/UQy4ys84U8CrmGx5IdI4UU0iC5NGYyxvzlp
iMLpJ3NHPOoX5VjzH5LuJSU9wNEb8nuvSaiHSubSBu1ad5W3uqwlqO8P8p2pRbj1IldKOHA+5NNL
pSnIgHxqv/cDGPeo12wT0ajQ55lgKNEgCpnLP+Fu4chChpQ8ZIyK01Mh17m8K35k0IJMe0kDm2VE
UVBLEJ+ANivZ9DrdrzyCyX+YATrICNJsdapuwRW1AFnameR8fVScpeeZ1ETmXhRcBpPlvWAr5QIr
21PHhBqMwEAsbpwzDeWQGgSQsRTcnopnSvOA5woCRgvyDk5t+VBxdZoScSY1c3BVnCbysmgAjXhk
r1OM7Aw+clx8bsn5/t4d2V/vgTvyXfMng0dWlFl63XxvScU4Y+2qKye1Hh17Svh7PkN5Nb64SS8A
0Hq9nNZK+TCvbqZWcwbvO+PWl7D9ySqhmpBMkosw7BRcVtEdNl0dKwhe0GzMLqoXZGpHEt72SF1z
qA+TAUTxE2z8Z2nuw+krlklzpnSJyp7J/pQ1kCFpg15oiG1fq8HyS/W6eGnqY2ECL441JlMRURlz
FPbcNCq5AgYP10cvmNz1QjX6i697UrySpncsByiIJNMwcnDOXXKyZ1yYQHyuZEfKGxSENz9LWe7L
wqQb5r4jstXzGyLmfq+N6q5P3oAn8lYGIZjWBRkLn0yUPle7KssPBGxIWnWYBXMp3zYGFuCIiRJf
uwdudGIGJ6xDkCy3yUQqJNlGxtDI4hNTPVb+UXkuHJEK1dmx9Ux/YS+xYyZI9fdULNFMhXdqkc3h
7RWefeBMqlxjbgLgp/N4EOh/Rfi9xMwOoo4IjfH8L6MsmNgnWXC2J2+0M0wV8pY+dqDK/BPYpQyd
mc5tEfrqKvdTBs1pe/ssfJ/9lb4HiUCYQrizXUXCthTKTBK2wbEdvQF3Pen/3L/FZCOeG9DWrYKX
DIBdyNvalV1O6QMm7Ddnv5URCf6Yn89umt8wdeFMbXKAPNFLGqaR+6bVXf5yg1Dpprko35D2AQdG
wm5fTkJ+bS70kXTXlKNtg5UyhvmUF9BITt7eZjSPI8wQwPFU7o66Y5ObcC2DD/HARKk1NGaQmO2/
qOEjN7ODAzVHg8jgaVWLL8tgj1kQE1RIcJptHz2/285PwUk7lvjK7Fku5sho1wKiAy4+qlFmP/M4
QHgWYjNrPy0VIQF4y0i45EG4L1TQ2rzJwaYjiJzsWD8xkv6clL/mB2iHWqLr5B/GAiobm+lkvph4
5WiteylnzcLGDy/yVHZHTKqOiWOp/A6iLKWqErezDgbUIUVUH/GEtHM0mPd3D3wAdrWhKde+53zu
PHpKI/+FfvUEwgUVEkLD6ff1uOkXuf3ZuUQkWJDicnkBVK4IRtiYNq88s6HwyoinIenxVpCWKfbI
+zyRzRAtJmWB+/fRT/c8m8NdZ6wzc5qdgVxaX6IfNynTljq1OAntpVmRridaszMoE/bJ2fYHo3g6
iF0g4Bb/UagWav+Cr9/4U0yaqCTez+wHMlEXNfaEBkrUlYSRBlPXRuued2XkWFAPxyu1a9Bg9LL/
2X1AJzmBpbgakA0sq13Gs3gPVTv9wl5uLBbsdTQXwgdetvlKt5LcKbE2gmt42N9Zd5C4Bx61ghP4
EnmSmPkzl1Dtc23+Brir6I2dnwE+JBJO3JTXrAuMelAIHFBLx6MttfTpPLY3MVXfod9L4GqQG82c
4yJhRlE9iE9I6bccjcGAumigED8xvCC+Nb9PXhW0EjkuRUtEgjjGmTk01gwsKS/wPGykMz3WtLsW
CVQy0wAC4I2RPPHWFox6ynYt6J7gk7kXhwoshcIW0gjYhfhBYAs9jfGn+xZ9nJ8+TpRPY0ILcmv+
UfiKfBudzmGHZ3uOJMo0T1vJ39HMeTVgwxKoMb7CIuX1BWpB5RbNQwgRGj1TeKthHBpH/I9K44Uj
ONrjlr+IQpcJeqoPmFN0BjS10Hh37ZyDB3SoZuduw1sFU44ZlpPxE7Y0j4jWpjMnWYmj8c3Ti9dh
hxY0pVS778btD72tLeeaP3Rr3WFhG82PFmfAyHmelaTblZCbsbWpS3HUQy3Noj52w50CNvl8h0Rr
PKV966YFWJJ1klsWIv6XE8tp7KLKGe007zCfZIktVrjk1/hYWrrupkson+DiisGxt0GvbsgtvTsS
XKV3GNtbK3AMy502KzZTqbWBs8pQNQ3Qp8MOlQ1a31rYFcit2hcgAXKPgaglEQzk5VEQ/h9p9qd2
VFJeFbb8FkhHgg6/Q1BJwb0ZbzdFt6PGT/LM4ithBZYRkmUzm6TBitwpxEMLqfO2GYfNg/k5Wsxe
DYm4mdGRt0L7lfaE3OfagMX7szND6FBcqeOG9oG7/mqoDqo47wYWZELY2pumJCG5V0HdCI/DP+or
WxyoaBDEs92zlnfNQ9g1mK5Fbg6SgnLUQYcVvgU2WuRtoD/aMtz58JD9vLSKzrPXuytMVl6mWdWN
mMnxUVIfp7jY7nSBC2QGbYAxtDJp+CTQqaA1rCmu8iaH7Y6HXlR2IZD5emz866ouy9XCzrSpC0Jw
LbQManmP03lZj0Tqb/fqdFmaFCxoyBjTG+D3YWmXst/QY3nmDa6+QFAFT0G3oQVygSmYLn0Jfgmi
TVoiJlIAbdpE73BCuYQoqHj8QpQ7FjHaKpRk9VbLjyzEEkfY2INDCAg/VThMkl0isAW0i/y+gRrp
SFRUDbHnh0++zrjVTpIG62l+ZeQRhsxVPUt+gMKWTto5y3MugpR4VKjQsHl+633tEUcLmvJuyX2k
dSIFy6Ai5qRbh9apOSLqglDTpn7UMfZkrAS5Vik4fYWgwMRgGGV9QWaVj4T0QdgSoeJDIEFypvvu
yYN8xOa0ZyrOX6XOs7mV5Otgw3Nmy3Fb80aIb/daM2Epgr9vmj8dpFuzgfT6A0jGTighMhrmCc38
aDlwqcf0DNMQVr+ruEVn4OJ3PlcGcuWd2cfsMGaoDwvfSwfFzaNhmluIAIe2up7PDwTD+gBV4CA1
gfTSZ76iM+RUKisyy2rND/tTaBa5lpnp7LTQmovL+zN30Fn7/0m9RjBY72/PVUjzW4voKGb8sUnC
dFfEygb9DjvGEQMZVsnf8A1i1UWbL6/8hwFvYCzmHzUeRfUz8XSHuviVJSfRLB1BgRvbMjq+PMno
U9K8Zdc/qM6hIPlmzqgJg48MtP5smp+2+xAEwtxqFKW0BvdpZlj5bM8g+l9YV01hPnoriLhqKasH
eoDp7ataH08+4geDERFaaOPo13WQ2H9AiN8yPKprsajtPqa4q0fmKeYIhdwQw1mfHbpsVDv6WpZr
HsEht2T2l0vNptpKUtWieBF2UQ+duydDMgYE0f4N+vFjxxtD11MhhJLWkJUspwRl3+5+UbGqyk7c
LQpgQeuAPZDk8K5j1SbzhjTQK40yYR5V/frahlvWHLizuWG6zJvEGuTW29/IsB65S1/zCsumqW2c
GVW2zboaA9DyMxcq+A7z/fI7tLl3lsy00ve7udowa5V1mnnKIfvtok6cbdvVxo7+KwedfqH3XZxw
m0GRULfDA0iNh06tO4jz5aTFO+C2d6S8dNV+bgmnTDiLBgceLXI4l+H6w3C1/upIZSi0BfwykoOG
zJAv8M9Z4xi+fKdKO6MNcKgNfvx5ofeVfgNYa1ig/mo3i93ZosG6kgmNOE1ZYeNx2A4fSy+OtWDP
rzyh1LGli/hyASf25NY5g0nlYr79kffZh8G7ND7zbbpGUyrodOcuB18k84H2er+Pdj/4InRFCqSo
fbJcHMB910HgLohpXD6NTwAjj+cPEE5mQSoNAyWslbQ52jm4zyEd0o8rRfybV1zwb2x0y2wHSd3C
xBLiSmRn6W+f1ZHmwi8ZmIq0lCqU3QzqEIvqo4u1HKv4AsJ/IeN33tjJ3FKPvSiePNrqALfjnLmv
Y8AoD/IfsIG5lzoPdjr3+qVc3NC8mLiRyT7F1KI40l04dm5U+UDF6jRmcCchXvAQEZBqhekBhI6p
TsF07p1k5ru2h5f0r7XTOyUA1krx88FGvFkZ/wRu/vKGZi6dc4/cnUXOx+b7wghMrQmDMDOBRIVb
cldW5wCpxyWslHNPXnNMKwrN9jaylHjbPvaOgznnMlMvn+OegOggC9R6wd3OcjmyzWwvEucU1cD/
cM5T+YkzYqi3lKLcQ7w6OatRIl8kFGOyD8OapS49cPwgwGhPl9l8XsNSOKqwEUQsK9nmNfdH/gUM
uO+AX5xcjAIL5BH5/2Ula7Myz8FqEgfazwZF0WRg1rywkoKYY1FWPgC63UAMa5YX7rsHya31/KNa
9MKHtFLqbg2dmN6L16Ylc+ePY1NyMl17vGiqEu9AbDgRhB3NeW8lV4aZBYPNWhTfTzipHh/dT6qO
W4468yiNgtYlM/YBlg5s2kUMlHMx1LWdc1Ksa7Vj9wUOJaA9ZprCVmVfx8AgE8YVbCB+0Ittcszd
m41hjVmL2oHD5+bpjNtpjUoykvY3XN2/MSkWpXUPjozMBNPd7HEP7+d6H5mN06hct+0vL6p5Sk2n
Mej9ftbDsAH+Zt4zkKA3aOeSt+skz/jPC8Tw88j0ZJh6u3kKrekiXTX9IFtThxsWkrxEtOs+3VDw
BZirkm5mi20VdKs1RJEQxAhugnuiQppYI8D/iyi6GKbz3Pq+8DsTMJoYRm+Glvq6D5UWpd4r9mBm
7aW4CEr1TMVu6EwvvcdxRQYJzcxDTBCFB4SwfggRE+1vTGwL22SifOEvDVnp4C13CAsSFKf9AQ/D
ojqUkXfxrintIRmhmIPn+TNF9+hGBDs3iJRJrxKZLAjkzHY5R+qCSD9b9sfCVAAoQeCLIL1Zrh5B
gKnGlcf5EgZGHWGQ0hviJLC3y5onWYcnD27CktF8XUaNP59CZWSxr++yyXTr5c+KDHSKqkrUMzVo
PvKLTVpe0nNvCRWBEUqHpKlnPUf6qLO4Qq5BHqZotIdHxsCmRWK37/whcuTtefzhD6pts8NSWBY5
bx6icXhXlbE66D5jlcu0wm88bcldpyJEaqci3XNLRJ3BhMXzEKdxj6nekQJr7BU+98pJIJltWlZE
HyE00+bjzDi5osI9eKa3TIdxB7W1z1ubq3LHYbs0I7aMBvYRNnf+5wzfDcKqv2O2jrP8FjXVyLz/
BAHCkEdQyeCTmY6xor2TEA9pjrWiX+TDG9ILNUlfYPLEB1GF9vNoTel16D59J03KPX3/aQ87sIZz
WzcmecUx6SShCNWZEB5WVyc30yqui/L+N20RYn90rjhe82iTv4ug7p5R+oPkVfJLs8HRG9B4oadJ
D/O39bzh8Uv5x0PoCW/eI8Qzyl9L8fIoQC02NE8h9S0CGKAixMlTaUehSaCZ+cnKMkMxO3LI3Go/
OTXxj+v+WgdaimkIO6iD8OFp8SEkDczYo2X2sUD31YP7iMap9tvviHFhfgnAfShv/nAmXHqc87jS
M//Hob6D8MuNJNSnjlERKg+kqBltZkDi7pkH3yQciA9QPtX5ZilOUoHC+zwbNXOAbVVVrc5xebmY
qCn1VLm186nVA4D1CybsyKqMm62OemIVMBwf9fPkA1kCq3NLJC44NhS8llhKdkcboMEB/diVAnDR
Yp+K+reb2ETwOsF2zbkB0BfCC2f9Nr4ppB3W/ZhTwkI1yAmPkR+nb9BczOZ6kYPfwpD6Ob1wQdZD
/ZUeiDCF0enCtAdu4M3Mpzx24f5rj0A2mHUUlMI2YHLSAPnWJ6UF/4VnFdiAZ0RkTevunHnDQWJF
+/7/VRLGTdio8fzrFQtHBjFfneewY6wRJuomwEjLeOeCQB1iRQoIJKB5Hb/id+4QUhlZLFh7YJyv
d2ev2htpLrsA1LYhlIZRGUneL+FrcQBb0qtFN1UWb9kou5ympduU1QM1KeYFylxepS2psRUOGvnn
2a2uwlHs4KE7IlYS1LElsIxv88hdP304dMzbpmj9CnFNnxkkqHx1AYS3UaxpO5mvuZQtGB0obaST
PZRxfUJ4JwSxmUbgfZq9SAY+fUZRG0lg7xOsnIbL2VmtdC3P2tNNFbodBzNVoC80dnPiuuc5MBMz
hgqMGJ1yS9nv9XdtxJjV7kv3JhEgDEbde4xoiSzqZqlewUKNfRLv0RBBkE3AWF35G8EkEan74Znc
6ozFxRpmV40jdGgaE2N0kkkYg+oL0KBVP4STeZ/a3tYzcX7ipzmfg4rBpTgkX7TBoYeVI+hb74vP
lytmv3FL6ztEb99RYx8SmikvGBDICsXVgBOYber8ePsjRWPP1i1DX3IqSVkNQQGcnfj2ojjaQ4cj
H1YI66MlXfmAP2Bp9Q83R4305mbgQwvcftmaBJH9vDshtKtajfma44hoIfTMOUhQlDEtLJsS+Vr9
QbPPhxA4TpXQzSjiUbjoZGq8UAIhGcVIeeWFOGWhLcQ7zLULlcmgPXsJPRt3oN9W3/qJOeI3zmjL
A6n5zUlhd+Dw1KOsEkxcKgi/AwLtWqC9UZFbLK1j+FLDdMe4HuOGVnUhGmG5KoLJZO+etiEmLxy3
KQtj4kaPnAZnu8SP1rC/nUQcx8XUYEPsxPqVdOEnZVS/ezfSc8rlHggVj1ujqC9WAymI4tne0Iqs
4017MG270zdyXwV3hXZkFqxFpXaJ17SR/oTGcTM1bbW/dCl38S5q8Zy9ofqwt/oV21fF1lQ63dWh
/Bc5fOq8vm8+p58iSFvdrR5lzTR5ostJBwQPARNLaFDik/VMp2UBgUKdPaVmkmjZFI0um1+rtzIA
28fkasLLU11KHWo4YG4yld2llqhqkHtn43aAPVrqDSvr0bPfb0UGBZk7GGrXnljXAWwcC6cbdUDY
+omLb5TCPnzK1ekLy+lF7fQ+v0ytPvUHao4gqknjPglSHv1mnshZKfjIt2ltIdlnahacE43pOEoM
FQvCT/M7oeHIEQKskWRXRr2AWoEwjwCrY1ZR49LQiYFS8CyOBV+KKhvwF/BLvuy2SZmZqO27bZMb
Ioen/J27jsK1Y6jtreN3rDsR3nkMLjfc2xAG6VkYUwRW5BKENhWqD+1ObldGP7yEsT3vOJskznbf
XpKutaEzaSCMQuvqeci+1Xoh91F6DnElxUuRHO70qc9StRE0sj/FJsDclv/nEo1xzobwC5/FWNXU
VPFRC9GQOsc1l6ATNjlg8lnGeWfeAbHHwZh9p4dYRZ2RWcKi4lFou2rCn2AlI2xaDZkQEZtKpTBV
kuBBUoIC2XSiiMEzMeBudroHqA8oUVHurn4wFe5u5b0JDNOFTriqWcSD7EtRU8SogOjOKwl8lnxO
qlOFHvuYbZ7Sd5bldLVM3l6BIgBmHsdNeI4EyPn9bsvHLOWdB/PXZUl9awE73RuqrAmHjM0/gx2Q
zdcCJ2vXZz33HmxZrXHU12E7u9nvNaS0YwU/gQCBHWlDKott2nPkZ1/HCZQZpST13z9DXhmVoQqE
pJ0FL6bXm4h7Q1MsDLWhyAn9TxQj7lk49WiRoui6DJEH3dqYtVqEHse5Nfyg/1tPtiesBlxyE5ml
GiiHm/P6xv5T6DtWZ8DZl8NmRyv4p0mdamrIFmuyPei2EP8o/MW5YpVl4rtUCWNHRHbPuY4qoQGw
XdKa7KQLPJeT2AzP0wycau9DHm7UBiDiiJDHVkOnQ5SjVSloniedwKihnbKuhQINXevjMMi+Ddzd
Cdhup1PIr+SdhEgOw6Xw5aAOON5/Ibhfaf6Ox3aVmMWOVKvfJX4uWVTdof+pKrtYJMTp+f7cdLbo
tcdodNMsH5qfhPkQ0uJMq8yQqEpqSUW4SekT7J0PJXToLnAIZGKh9HV76lTN6fALHO5EDGihQ1ln
qvKYSTa/8rop88/PwltMui+25IBSgfERpAkoiDrEl78i3GOXbE25gmnuuzjm+FeB1yFshALWA2Wf
GizjzYkg04GgexPWoD7JwPMGilSKeNItp8/IiFJsk5RK395OxE6l4b5xKSDdoQUW6xfzEAxPGWkm
zYOEppY1EoAr5XhSl3es1UnujOuyDkLQW8oi6X4HvAh/T0FPcowX7KZMFvdUBMeHrSIXf6USj1R0
On0Ow5mwTE0kKFx6dF7VLDN64Ag/kMT5OBtaNZ9qirQi20R8YlzjQZfdDVr2STLBT+AMfRnC8X7G
uX6julnfNrTyugoRhp1LXo2YdZ0gijsQE0cVfhJLaI9yySHjdqH2DjV4KVCplofW8AHL3Afaj70C
J992JvSQNX7MtBAxZv4XgBnNUw1vjoqivoHZ7C8EWO2ze8Vyxs27ktvmtqE4j5V6hzELybX7HbTO
n5PzCYsCXMPVxXEAfw0ZWt2TabwUhA/Z9FrhHXMuhj0px6oO5L3pCmH7wqEBh0SvRq5886LDJs0t
4GhH1bOmHsikqUBzLp7BkQX/zLxhhOSCmoOhgr0Y/LQFaUILbyVvL1D3i9XEe7cEyIf8UkEwkc8t
xqXAX8/I8QRLypMPngt+cDrNGXBinsv7DN53dY3h2yvNxrLOLL3hPn7XzzO2U6ZREuMD3Chr4eiW
hMOkANx9rq8VQMYgmD810JmjtiKdzoQ40gOjbvoavbw9uf1opaUVHIbXQAz01rZqEU3+OPXBt8AB
UqFvEhcGRd5kSLdQ5PuUh0OUkHD3+u7tke2uF/wVwANZCzWalrVt+BLCd8x7ZdXoBtqUYSrSQoug
08vKGFtx0AC0MGy56l2Qj10n2yG90dT/+vjXx/Pv2sfZqYf6tlhmfc/K/h2z2GjkIIL4xUjXe6oL
9GjgXh9l3M2u8p94r1tO8HcFrbzHmljlCB345E/Cr3rtjPKWk2vtY2BLySQ5ho+ca6jECvjBE+KO
4qnTNBDf4A2X6OsP7rbE0IproinRPSyUCgZPRe2JMQJd5ETJbEFLwkSGYJ2PnXkw2hB51+l8zXDf
cONaRIKFyt8XPV0xK8KF81W1RsxjSBMZSb3OzGhUaIZuSXA5Ddo+uPZSXTz0U+PNYAQcdFfg+Vxm
0Vmes2D/ycRh3qjOCd9rkCVMEo4njRGQBvj0uhPg9KeitZ9C9N8BCshqob2WOkxsKyitx6wkVbWU
Zg4kLx6fBuHVCBrJ5zIq/SQ3ptv8OCd96WvDxeJXN9AHdYUKdeSqP0stCTwNfaqeUWLrtQwQX/05
A2SDGbR1eHYtra9s4G+3PXniYZiwNl17pkLfM9FOle92XeI/wjBnOxP1rf9NzXg88Y52k2SzJyo0
KNbyoG5DkCT8kFJbCJX5QeGp3Zs1yW3q9YSZF4NwIB+7I0qfrj1yCdskvRlqZ9Ld0ws6psmYLLEo
ciz6+rIATQKmlAwTVEdoMj8nKPPvjv8gctW8uZyjUb5p3Mv6MCBpmBTl4sftM7We6PwfOKS7/Kl+
ax4XIpN/4GHEtRuv/b50p5nvac6otF30IJooDF1dvra/kTMFIEUi60ALJ4eT3fa+UTc6Sc2CFDKb
urHq+/b9WPFIkulwEqcf9JFt9INZnoKtiNjB/iNa2768ko80shOm9WGThOTIA1Oc/SuzXN6zQ2b/
H1aefij3kgE7A1fjy0pGyapfM290/Qkv/DsIbuj5xPT7i5wQ4sMR1OF8m3qR/qcKnbKRH0ppQYWK
L4k8zU3g26H+Deq7QME3T8Ghn2PtQv1L78eALWOP7YmNzSIaoCnujK1dj1xcIZDopIrYSMTaQ1Bt
6MKjvhZiZgNUKqcn2/pf8iU9p0Eb3PZvEDIGlqci0yaqbHAogto8Latz3n/yqh+F9mxM7P1Xo2wZ
BYPh+QvQTSbu5CBYEj9MIBOk6CxVEHLXRYZNlnxGpyPmG68D5edc+dlfEv8Q2BAnYVnHF7YvdKwu
r76Pt/d16eo3bF1GFAa+FXoqBREply/QR5BoPlHKeTkxhbVgwX15yE1SC5Lc/icZbbs8uKDRO0q4
3vDQy0u5SHyvLwwV6pd3coh+/PgvHmYW28YLOMQDCZd+ixXI3OJGH5OZGSCRWjQnXQpTqP5IUmF5
PFttckC9Q3U8pBt0bs1gZPCmBqejU7EmbFz0ffJ/0luETAy5qRs3/MNpGHaZS/rUmJFL3OMMLB6w
GT7HW0wlezG/K1B2wgoxAoiO2a7VT8Ru0e351OM6VAyFwaf3t+/1v8E1Cj4GlzF95UUWou5f5+dk
awWjZkwyVkc4M9H0enBwnFiocHLqyu4N082zCfKWx0wdUGzQfH6Ra0kIf3JeJXfJxiU7VRosfid2
akgqDt2dBYnFOLpt0sFBz666fKAgwIH1vxCSrmSFFMXdWmmMLqVegKWp/NKtzUWbZu5eEMzm6BzE
xFVEPhQwB1Vh0hWBu2tO9nauaY+1Wdr0neP94xjN7YOFyu3dLw/YatnGW9sK/8mNK7gCopjO1Y2L
4nmCAqIJLArviL2IwldtaKeoGLfunpqcyGsUX6gGbwthF4PSJnwP9SCPG8PPK7xl52Sh6Xd5Plu7
pEdkqVYk117AefTFroeZZICWjXnX3rLLetNTR42n0xQ1oBeB0vBtI/MD7mxddVL7GxKhhQ7dmir5
dBvofE1bympLmoy9uyVI+LTeVgFO6wlLrXlPNko9bfpYO7iVSvNFg0UB2f8Zy9KUHpCbuRXTXBBF
oHFuIpBdZOtzQQ2ZQaNyZdIi+g4VlAPqtfv3CTlDIDiDt3Zh8IGtoiHA0CYv6hyJ4nCNrWuX/D0/
gujR4hRi/1+sOahEgufLSqcePYd9+YBONP1lc8V3uZ/dPT4+lkOb+Zq9LmGWhTweXGU5rd6ZwvVM
2WYassoPxN+IXuXEupUaKmqkS/ETUvA5Hwml9m7HUpV6JlzUSVSFMNDRE/qudmMCldPT+s6LSFMp
/GIaAoTNFYJ0Us7dmjneIF6q5V1qDmcRgUi/ivuqLNR9UNhPRaRIzXzTHy1kLDCvOl/uLllBoPq9
woTGBUkMYtV591LWqhwjSbvGMckGr5+1v4mqyDGcPKS6RF78DmvUILeg7rWh4b8aIbA8CE93whmG
kMEWj38dZgNZh/eXzean2aKgmgDVkM5z+g2zQYHeDZyyHZk7NH/XKHQ4yNxnioCLg3T/rhxRnumG
VjnAnf3nEOY4rwvl6XveEupJ9Z7u8UCI/LplSG2CXYnh5cfppozKOy77enwbUKEuZMrmFBEnYuGs
ojg0d6kpfsfTOqf6+TTGmvlBWSBhvpKILqoCz+X2/BJgrpVFrRyNkyaP+52uDpdNmSX67UKaEJ2w
TQmzdr4tQRldE/y3v/qFLMgquFNZXeP09/jzyoHqfj8HJ0MITy+WxPboKkSAlB5mpracAS4vxgzR
hmB7WlPj2JTyk3fdAwF6/stqcNkDE7lZdeNc3It8ZMLzCEmBBOlVMlswrkQVTL97+Bm7v1xq8zsw
9+pHdeC/5gyposox3ZgrQAPQcGSbohvl0bX584Kc5mVGfzTpuMIG6swqLiNtQeFGZJpNv7/ZzBgS
F/zU6jZ1py5gB9G0qq6qK/2zzfUQDFafyuFF+odJWgVQ8OoXo3wNmYcursaCGln5df/bFuJ5k3zk
E6Ig2IatWDmaHExexpa1ssXQh+jY4+pqZlvqnrXcM/SMgQIr/h8q4dK1JZb+r/oIeSxD22rOId7J
kXARG8oHW/MSSCio1KbDx0sRowvW/foOnqUSkB/OicpJqL/p2uCraD5JjGSp9ESInQMGTUTUZ47S
mV/cV+D4qO4V1865UUlxwdYRl14q808140CPNOYqa6Cre+aMu/Z9f+P7vHgfokxFpiNKOCxj3/rW
3xhra1Y8RcLh4DUQik873RSq9ekkHNSFXI4QwvUSasih+9Qrsqp9GmdESRPMjLf1Zd+bpFPTZES/
DuTwrF+aZTg2C4iduyEDsgd+A6KfWTIHM4fos/yJMou43VFjPK6aDV634ukLRERFlNyh213wmPLc
YCDtJiYM2mADqeHwuaoMuYa3/vTT+Brz3qyWBeW1B+JiOGGcSR/GehQYfdRCO3TSX9FlH700FIfS
HYgNrYmWYC2LrEpMTEumR4eT9yHZNhI+qrxRjcGzn/Uv/kjgFBTr9mrXeQHsauFF0ZBRP2bMaiVw
GWyBFRG1Gqh069QDhrcwr8UdK/3rqGfsx/ZmxyFFeLME/Z4k7BpMU5ibrBGAz3LNfCwLSU0S2D9F
0OHwWr7EzZ1rsZe/4KMh/xYfPHsetZX88Pe1vjEzUvVkM6sC+JqTd4ASTXq2onBjY8oiEzhaMCng
oGSMvDRlNsUBYZxDJ2rbETO/1mxe3GM9g4KF56YVo2hDgpO/hDFvszgoA3p8SdFBw5u4nrKAZs44
r3QqcJRK9YZlznOkUOfq1Th9IwHNSHTDXkmyGDabyduUHumF8USC0Js7RWyEsbqMADNCOnWUEfGg
v6YFfMfMKlY0ywR7E7SiDbCXxAXB62X7nBXnJNGBWTx9CAusPEhoE1Wj6fQehJTSbuxhp9+u9hSD
f9bdI6KXITwvQRUnABdltnEjA2rFTSjE50bif8RJjMT5nep21ZvG6nYOaDczkSWqp7s/lG8UUgqE
e7j78vW1AokmVi0dWvQ9qVL14LgpXLjYxWwUvJqlZBY8nnNRmJGu8LnslSw8qvSw/Q2hb7c+K9F1
KzGzdAW4HQvEx718UewImx3BKM+CwURC6sgtsdtjoAey9fhpTw/pD8xlz0RD8rMf810jXn3bMvAL
xx2ibo1hLpPQ+cv/vSg0RBrGfDIkmE+rivpoQhIKlKeK685Zc5j6mDmaKFO+ZFKYLSIvqyneABW3
ewRqyQeA1n3q/hSSrYwrC4IDmRO6/gPmzzHMpcMw0Xkf62ZCKFSBXynQNBCStuiqg/EK/qY5imeX
moDm0lQ2jKu+i3Dn8TuQkqIOLeg3wHnqJk8muEnxncTYmcSyLdY/wTsOeAx5fEKMxcj8Q419I3lO
tpMJkd9E0G0q1Ljz6f56BflEnPfsgN3HRojX6TK+7gy/d89SInTBSXzabknk9iNbAMY5m4UBktn4
xNlj84cEfKVoRvJxAvqxeTbGwZiBCdCBY49KYKPBfonriDrG6BuqETBIFOym7qJ4Cq3T7pjfDl5q
TxowziNDPYBejz+9OldUbZU8+ZouQlkJ0JgsQoXzRh73jAWXwFOPep+YK2yIMudd22y0CtL93dMQ
1KA2pLMd/fxjlf4VxfJUWYSdn0vUqnhFjtqcyKZwv/gMYVeyGo35zrv+1o4F+oBz+K59e8f+rFVP
XvxGzgxfZJHJwKAgQ3Lwh4EEwm5XmRo6K8JKPBeRJa+Lc+5gwKhi6xpXLK5IYoPQC8etzmMrbZRv
OuKyJHcCNq82NgdhUPbhFZaVZL1KiHuWKxCEir1lAsP8ImVrF8l0sxaNN2bjmn5yUJ9mXxgycdfL
vQo7ccImTyQ864H74LiTD1YZpTXMeRqIacVRn4p75LEn22wLuLa5QRodBb7PYfe6gcABPayGSmke
+rUH1K1MjzhMoTXwfqBVnQknsqleMkucjap+R3FV0XpLmBDHdQiKqba4xCRqJmVvbx4/w+ID4c7+
nZhiHELYCSVIFe0DQkvlt3zuPE3ClA3+TLieKwmn6Nr+z2Zqmt1VKGjOgT0k1OCIEnMQXPHeT/mr
+CnLWkveIeBYuFkQdDI1bnicNmWF6XLNputHcqeajC+H1tQwEKAjD8tducdLVVoNIXqoGsM5AFX3
KjsZBuDAzEyZDWyA+7Q6zgpRIe4/mMsb2e8KojxD8IayYandwrfx/rJsTg/dg+n5jHC6qM2c+4ne
+QgaYsat9nB/pJLKvClxPH9CgIHo6pm3ww+2y83TJXSKH8uQM/HtPL4PpOPan3n4boTan2AKY63P
vcUuwkGexuwKUjWX8CMX/EYqsbK2tWO8EfUnphE08pNSc7kLwjEh/b625CWw4AP79WMO1scS7m+q
BxbG5d/8E/tA1qgLG2qe7JeaFGBdUukR49EvCvLQmiE9xq1cR4tiHyfapY5qs6Q04BZD1t8A73Mk
vYdIjLOSbercHP6LMmuV/6gVQqrYsoh/QJBuJzw6u4btTLHa88IlpQSlZ1xg2RHxC/vzKvUGeyue
+/X7KXbqt3KGJvvaW0KCCfUmEHISmkjQicTP+fF7WdmXmJnxWx6kEtdi9jD6EunnwAt7QGRKA6Gq
xqMQ5Ju9MKn93hezzMEbM/Xh8RKvmhriRcmYKQuyLgZayYtHFZnbJnLpThFfIG7wJda9qEcLe8xC
rza6jmSyHLEkqrdNFaUwnvgfZE9z6PHTRGzf7pCMDgOXQojqTp8HYsDrT5tVqZH9Vc/kzrNtmdjM
tBuLbDx1IZ7NHWS1ZsjP2kktm8foEPzuSsF9O05sSnT+gMYjWLaF4cGt17hiEQOKrY0ZjQRmNzX/
Npb59Xhy+h8JsWVaSKYA3NB8bghmOwNAaRSXvPnlDUiJ0vQ56RgPfcEt6kiwGbqAvmKMJ33NY9LM
BzxtXUeN7HLvbVmvsi05Bt279CIovXtYns4NnalQ1HSrvhX967k8ePcEsRC3CqojU9wxMHK5IhN5
ZM+mshdvYtUlDeNw70jEW5WRTaGfzdNIFMIKghdWWwLSyAUxmcLE2WQU6lR3XcdhsWhT8uRYGexF
YhMgiMSTnvVj6DSUF+gscMd2WDU7Li9liA3Tbbtpo78hhxozINxStMq+d//PfeDmaDDDw5rVakjX
yQElOE2CEHHelCws5S2nE9mzkBOG/cgpv5BOx9tCSyNQmQ7jnYHb6/+2jFGOFrG2NDX0rwDTaLe8
V180j7OteGWZozhIJFGAADOw2mK/lmkjqs/DEFtTu9pw9lsAx9y2DjZbBSr/TO4w9/2XqQBhbjY0
JYEAH3I0SAjOvb7DbRXNjBUnPjVmizE9/9rhC6WKeiXrbmaS948hqcnBorABx9YkwRs6Uy2WBfGA
LQf2xDrMet4eBl58s5+nsY3EQir54qBlK3HL1ps3B3z7igxf/GYbQZbPU1i8jfePbKwpTIKVDfEY
Zl8y81XWorq/Imj+tn9XpN4/j2YBF9b1YBA5ZsNIF3UXOOhH8+nSaqoTGA9NzYFbN2eU7HjMc/dq
wjNyVDqllKDGJh9VtPd6v+IlAFywyEEOUhw56AtHgIQlUs8cmW4+llpDsITTugd0RGLP0bVAxLjY
v90yY3mCxJ8YGTB1qFaucjEOLgfFj3EIQ4IyfCH35zqHvS5Fw7SZpw5O+Q0uA1qBWgU4kxxUipSl
z3ISQUDx3VFKanbSZa/bzMJnuSEEjnCjU4hCorDoLasZThVnFQlkcsXTrUc07gZF+XlASX61LkRr
KV6wcGqdRvaH0Tu/pZaQV5TtIX2Y/DmSLcSknR9A6kCDN3jQ3i942C44lR4kPGd30rbriSv+IE9m
LtbiO7jKzKl9r/m1lLu8HQDLetHd6B2Oo7nsUlos7XJYAqxgTMusg9oUMxSKlsONDCy4Z0Gp/4LS
vU6mTO+RytrezZxttBqr6jSEjDrRK0JMXOUgR/xe9ePRLjNRXFzH6iHXLnm9fJ8WTKhkPBjVRYqo
rOFAoD+IpyeXHhxTYdu3Dybt0bvOEFpdq9k5BsZponHHrgm/xjbL4TB+aYjDULoRer8Q4L91VDzQ
tzEmsvZhgpW+YABzDNKM88eGbRlDUR6lYuumE5JoKvOBqP52q4/RZGsWYj95h2LOZMPYr5hCueOf
RxQCVp29TJRVEptJ+2Rg6BlXJs1nYChlvejD4wScrPlicl8uqjpz0EFzS6+KrHZmkSK1jVleSsX/
iNLp7iQFHpdr7Rsg0IkB2jhuC2LPmY0tDQMMFV/o4mlWqLxuyKbsdqlgI8O8WFYgGG1CyC9vhWH+
RJEQEKm1n/HRMhLbEKyYS7E8FNhnRD1ctfVxtbXGN8lEIwVENszn6fRV/kXqE+7U+WMZ2Z97WOmu
mfRCx7Kz5nijG2cko2l/nquxgVE1uPWdbCDMucASmjt5NwxEfohM37qU/55RTYhPUEzgqfMZtuaw
yM+5HYW8i6Y5zXIUhWOgsPbDhARGj+9pX3XDlYWZMZiEl84Rla/VSEKY9rpdoLJoFha8tYBHhcMI
zy3VwcX4+2monhgfdVxlJ48d0+SFy0VKU+s+036aeTFqzvN8qRdpltEFp9NnhsYsTGFQ06Xe+QqF
W35MJV4E/XdQQqnUB5vdBhRE7Ckm4xOIU4hIhHhQlT31TPjOXDsfC/TreIbI9SyrJ8HBGEx9lS4o
uOa3/aRqoZhGBZk+XBg+CLi/rwOOOUzkCSL3XeUIESInalPcSOv1pORCYlQIEl5Pd9uxIrgHMlea
8sb6Ynx75VJYdxhQjytzcf0MsyhT+/+z2oXn7e/m5u/LBkd7C6Q0KBNmArYbFprCNkYQsuu7/axJ
B7piKj0SA3vd0gaXjmOOVXOhkgBhAOieugRyEbVMVs+WQdnPfX2/1FTkfvs7sDrXnmpJJ8qzk9kd
dhD2htFou36vIHnpxOs7bEyvs9luPbS37l+cR8YCPTFgx5D8QFvtwg3J4hWxBarfGyKjb+5Kj3ub
Oy+sFXRxvGLXwvVzRpmW54dRNcG67po+c74Xgcut1yzEIoASEF/d6aymaEJefYjF+mn9rLU2GXhm
c22o2ZbbjnzYPiZ/GMCh6cZFSTj/hXD6o9fGZqsJhoXOS5vOFVqEnE0f5h21AF8DDCdSWE/Wrt4t
6cixbexszfG4z4dw5asLm+8ITTjKosgUiYqS21RZf0Qky4qxV9qKehz2JP2JpgV3VIomxTVxPK9x
pNm0k2+zNJUFUfxxCHXB7XzU0DZEptmmksXAP36YmTXX27MYn8ZCdDB564a4+MwckXsjGY6XPvJe
2l/3HIFWRj7exEU/fxotlNZpOJ52jzoGwHsAzuxin9waMx1z1HZqLd0zUKTBkkbNTxeYpIoP7qE+
rxK4rLUZ77uVf8PVElVYVmUmmAAZMdDHy8N83Jpg8PHoRtdj8a+oh5naLJ/uG/yvRPp2hfdjlSxE
ngrcvQncyrxsWw3qpzqVkMXEkpLz1twno+AKJyKKlvyiT057DTdrEkIjCxK5ORJvMR737wn3KV6M
FpmbNu5lbPoSrX+25ALktu1hFnqbVnydV6Az3Ttqc+O3T1Tr/5DYl8efYxS6vl9bkYbkxOIYdVo3
c1z/8VeIahy5/Xy2pxk9MeOIfL5L4fjVNKlHDNso9C/SW9Of8NTtlSmPcPY8M0inxveEDHiZ8iOV
cWlOZVovWCzhI3wDNM4MnCwgCSu9CHJDECiQv2/Ur4kdE/qGiMTUYmAwGIy8tPzJhogZ9pooLAKX
o9kDHKJzHsDQk7jNcgy40KEekh4iwv2yRTgk7oo+WritRuAGOwio7GdHbLalZnEPEaKKLDGCA7VW
sm7FJ3CLMPXhnIuhHy1DzRIKJUKY0mKcbqGTUzoiTmtio/ypIVHk5cdN81eEdvgz5jP3YaBDKraH
eTJXr73NHF8UJUhrP3GgplpUdHYeCK0JwK6nGmfgMRI1HlIlQThvRj8tbr4pS3ahr4jparXbD/Ni
3CCdm67WIEsEpIzq3XSuOV9Yn94YwtVYW34U3AVKIt65UEN26pEOClSpbUt63J/Wfic4Ikt+vF7K
84qibEfJxxw0naUDOV+dtrlWcXHcMYhXxrbHpu98Z7UydXcJBT6YhAC/1gYpwQcRdL7x8j8FVWib
G8i7kdL/eWrfuZQjxORPNWHvUlAmC4j7NBxhN2yMerFZb+6Gz7U/ZsSwx4iWV7UqXmkEVzUm6e11
W6oC69oKr16DAcXKcDlo+84eUYSa0GN25KGxhl27XkUxiX2REHAMV+frKpSZh2DCGtoAtTAvQTOP
xmCbbQKf7DdePrfgZ3qpxJMCIcdKRn2NJhiZ0FJkCZrg7f2YI+47K/qYq2h8KDXTuM/qhAj4DRzj
D+DmNhD1qcpweaxDvuWAevHJkfuOdskAkdeJX953zn1vRLc+YjJq2DywuuhHgFs26z1mmZ311Pw0
U8PrZ/VwaKaXfwgYPub04HVmVYw9HHvcMpWLZwUozxwTq6uS2PwaPqwDkOIEMnG+JbS8Phvf5CK8
ZS/CTn1gnLc6hgv5wAp+pYf41NdAeTA4l9gzE779bdxLAfBoGIs4mtORjNtmGUJ+qilB+QKjbwg6
fNmBnhptFk4TQgzyIEtT+EKf/xC+rfcEGRJ2tR6RyIy2LfaulCCaBZY0URcSjO6W7+cZ2m/DVWAl
CQwtLIGEOCAmPP1WaVxUB6fyyiWDWn70hmrwCW9Usa/NP2aF5Z0SfBtGPBCvXBa36fQ5rX/teYqE
1CNFKJFPhdGTyODgAQOyK0redqkLp0vnfwKpM14+vqDwneh3GwEv/NPTl7guPRzaE7OQnZ4iw2mi
KJzoA39JPgm+Hqd/5LlRItx+L+qtuZp1bsIGp7U26IAae9Gl16GTTDKMP66ykWU40ngaK0KxNk+X
4J5vRMveFPhnvacY4NvxSK47aeq+IGSAvT/FpuUUE6dHH4EUzp1EaIwLZ+B2aTHzZ7UeoCyOUcFX
5YGkHT3TTq1vSe/INl4fkm5mZou+f8ywNHi7igHY1neXaCzlKG7IWxhwjNroNDbYSVMjDimKjoAk
6sPRAiF4Cyr+KFOGINla38zCgQhdUrNPN7AxncUY6HSXpcpXhAjx2nV4oXTiVuA2u+179ibrO+ps
/+h8nVk9WyC0/RLAzECPTzKl/gSkCiPVC56dZZS7yskReG5kiT3MlLxdeTZ1Tw0Pb8q/SFA6D5GJ
qS6xS1ZSZBbvsjDelc8unXOve7txLnOCefOOH6y59tSfZUtNhz9Y7RPO+mtJ3Vv2xnOuk86vyIzD
9iadoF7c4Gn2Kn8BJLgI3Zoiee3nDI40udFZyeXLWHzmTGuxCOCfGn7YPQsdmIexNf6UA3FUy7X4
3CD9wkCJ7VAItAiRWQ2va+XpRG7XE64W6YD3xmbYwNVscdKx+isLKwrI8zciN6Un5cvLbW2Gxtdi
So6pjLAFb188A4ZNSYjjWk8lgZ9vcWmh8BfFyTwHpVIeV0HJIfnXD+0EnHgNcfsb2m3Aw5njz8Ca
YRYNFIPad+1mLgKTcg0qFaphT+CuNq+F8BoMRH9lIDPdj8ZdPmLqhuLnrz9zQ/V6ri21Ft6pBPsf
VrgclyVLnwPshxMCpHax0RPPRPE+FBYqgSBtakubnqD9zPRHMlLnkZeob6k5VsSKoHRN/mvwamUD
v+u1KqOBaa+uKknntrTHc/Joti7KywwYNwAHTfHjVwZS3K3o3SjPDIMj0L2u9JSMbnsNawAx/xmp
lzDteTcs4/m5OXFGYL8zni6VqtYPIXQ0QVOfobvw74c+Y1gAhRAJDvCbd0j6hVgUnJ07dau0x4Iz
Vfb7+BEVMy620qp+KKT0RulLAElaJ1ah3H7mQbChqQDO9Fh2hBWDuRkcg4aLA5r240RBFcuYWDt6
eF8vDbo/z4x5DlfUWacjIf5vGuPZBxclxCnmAMsF4aaUo3VWZIE9+pE4HECLtCiJGZMlOSo0QYLJ
yJjUOCW6asaRCbV/gf23BvXXmt/SPTpDchYFnRymoxJQ3gCEVu2F2mGGetKB5akDx4lpZe0O9nxR
uAlP9naxfppDmEG1YoHDZI00WvaomuN4og3DeOUvbAQNBg0nl2xe+v5kEyx82MD4FsrgGw0i35e1
GoGIgppzIVUIpuNQFgmaPRk6joh+9h28kM8cydzHCYBk9MfQlGTqOlvvRxRQKa9yVImHe3E49Vc1
X2lsQG4AAQr+m638widYYoDGGKeSwOfBsCf9tcfe45LfLUBmC51EfVe/CJKFXY3BP1baGR1ePkW9
ecxbrEWqZDwMa36KIhkybeCcce3qwbzWhYhBQDKzgwk7le5m6zIzoO7KpV9C8O73wjhMWYQbgKUW
Iw+RBadH811jKQ4f6jJ2qxC1W3ACsvZRU2b2e4mUbWY+ADag3eBdRhZhTammQ9cLZuEt/iKtg88Y
P4wj5naiRzcOPXLjcIDaE4BvW8CNz5zvxNdVWs1SIwTQv5ka2UPQklOWSW47snnWYUmZ/gwYmAGH
/uN3D7GFHWY0mvvIBky7mpj6P3k1Wuwu7Og/QW2E48PR8NVzSv55614HomLPWrR6YtpB9SOhu23g
d4qR4r4HVIc0dltJG0FtK6icDE3FzeEZQb2X5Uh9N08De9w+EK5P2/PQzb+5GZhX5KguCMrTNl6s
T4YBznsWB/8W7UXs/0fYgT6qBFEYaaQ8qy2ZtQz4nOHRPRyJvQQD0vDrwABzZRlCvXoZbDuy5CeF
9H2aedqFuDFdoBu54MBpN2xO0C4XPqy4sryM2VQxGnq0DPZRgqZ7Vf3Uo4NzsACudWlNyGvO1Lfq
jsD5Bx5Fw853pNgD4yBWX/c25I3hmj+KWCdrcgANtqGkQyNTHxSvqd1QdHllmzseds1swhCUieX4
JLaBj6H+GxNMjIdVFH89RHlOqcoG4PluEl5o+zVS7rYnsXN1nXBw/oygbhCiRpdO2x+3r+5OoGaC
Y6Z+4hCSLVFN2mYcpu24lWE1FYznxqOUz3WtiySzVlsSXEf7gEDhMAWJKABFesmz8KG88TgfR92u
Gfvr/X6MGp+ulZsgSAFqYATyNM7SNsA2GQSGwZ0tSY7lgqYDKMjL6VeC1Vf+xmqR5te34N3sV47o
xpyUhZvSX0Om5YrG5l2yYRGtIT2CIZOlGyvg9niZnhpx0AF2i28UBTfbB+CxrkFvh1USB02hHZEa
cbae5NS/6hQWrP5Ucuxs1LCt333+cb0LWtkPljazNKUwX3UpQDTqH2GffoLfDOnBu+11/cIXbuGZ
WyARxC6oRucrOrG+gDNVVb1Jn5SM+adYrloRXNjqU2yLcxDQL26QV94GSDSYljK9YJr2eENx/trP
ASohAwYxBE6aWDtLPfnCAqPboD2UFGOR8IZZyXBg1EsO5G5reinmaMvVFq9IO6Lw/klNtLWHtF7u
VTAKi88rKT2+HxslXKtOyv7qoc1fshYRKpykP/5JxgDwGU2fSp4zxGh7TDLTWAaaii0DaH325lP0
EOv2wbd8NIrqn1QVnQtdH8Xmp/48Ib9vLPReCCGEkFm217fSCuXIXm2MwHETzbaGX4upwacalHm2
3EjkOwVDTRtolrCf0TT/Hckkyj/OAp+eiU8EtC7lDGUHgTdrPfIicHx/KNOHDnUBJXfc7fDfNxiI
NH/lkjjTlQ5Jk37znuT2JH/9r9uDiffQ/96H2W7e7lMxOL/yEaacFX+2HCVIXgSex9VkiqG7GcxR
MdeL+9JnCGF+K+HRuLNUmb+LDmGA/Fp5dXUUwajETOk35VLM4lQN7uQHhQDN3+dYapbhdd0Sd9zF
GH/eK9RjqooOLYHMYl8H3HfsUGIlepdZytkmISOG+naZV3CzSE1o2zis1sk9M+FuBmqmcLL6Ky1q
LiEfZdRiaB+EdkzIuJYG9Ztomzvg898UbkO/1hXvCrpevKVEYlzqjXZAdaUsoTfWSKIQoSfBDnpO
gyuawxfHOCNd11RvLm66GhLn8GDexge5Y78sLE8praKbVrQnoPrYUzP9Cc3B8EME6ZSXmKarPb7c
voaAr0DXMZPEh3BKG3JoNS39yRTiIa0QQ6mOFQLEz/W8tIAe7tN70dUe+Sba20p4DbQuUnO2wq4b
/YritGwWSyHOUzwMQlGL44vkz2MXLr0R4yNVZ2P556RL5QfEaAuQNWbLnkjtF3z0/zUoN/WKVzeG
54nhshkYdckTLEPf6cqFsWGISWtKB66S8vZMqioPJ3Ri0d5x+Rdrc8xQ6hNE8LJo+GLxdGPzD+Uv
5XCnCkkX5SNMM/+bqTYa8NeojAHpS85z5At6KuDye+uJ3BaPEYOqnFTHNfoMtwlusc4rEPmPl8mO
kZ91FKq2dMMxgNoB5cHNb2gsF/O/+wunML8bRmMI3wUbNcBpV5ntOOituaz2zquuvqcaxiHLxHwl
KYLmv94X78BlEs4WTaRkKYCDCzKeWi4evbSsZHYK7N0KmiYuv3rTQ/5rfnLMbOofcXbjHmCQoBFO
T3sp9JkWQbHQoriCAOcaFsh5lLo/OEInBdPcfiqee63ciuk/pjhr3zSqv5VNMbxtpcQrPMRYbE5l
taezqgKBiJ5ZQuqD75MmYGKZgCD4e6angYUfDT7k7hkj5BYldCVUjKaN3ePCApsy/8h/BHz0xgtb
XercOl/A5v2vnzj5nfwUqeS7seKxYrZ9UVZ8H37zGiWLu76xBpCvP/s9boJXlSawAxtT6RsgnZpq
XkpJR0FCrJk9/W+O1V5G/B3MPR6kuV1j7f1i5asPRasZXPxM0gjI4hh3WY1Nw/wuPwo6ViFmg1v5
+YYNWX/d+sn2Gn1nipC8tKw9k7KhIteoiZwYyUyGWpbuOy+80RujfTpBFVLy2r85IcPttlzSh3pb
Jy2YPAzyx4K9MRCV4Yn/EDxeeL8bI7wd+UHS/kbCJg45w1IWJ2bVJTf1dG2UHY69iHg/vZvQgJKH
7ILhSsJbw4xenFRFNF66tVcmC8+0cP71xC/yewgoOpCRY98VhdIvJPWJtBnzVRdpBYaJi+UCoMfX
c6olIUFCZ6k7rMNxvDDEoKWSlUyA+RUQW2yQlpz05npJiHTJ5kqpfPrBBmP80Jd1VNGzEYnANOc6
dIy6QMNlyXZEXbI5n+TXdB+Htiawflz/JaxbyVvykqJoYf6x76Nxj57dn/20DiYaw/z7h5nGrbZl
RjWdUjCsHKBdUybU+fkqT8jT10d0Vt1I2paLBNSTkvHLUQVtDMAk/BBht20mYJhGavDPBOh2Bz7N
JzW4CYSrVmyjWBzyRj6aAMVa/EeVUpGWv2GsZqV7AZXeX/pAZO0z7vEIs2cCfL0DsrdYwVQKz3su
5y8NIiettkoO6Aol6quo/rM/pqC1M+9OTjdVHVPgRj4UVtoJWxH2fVRH3xNv1EtuIoiWGmTkf29t
Q2Vetj7yn09lUwpddL17W87rtI3wF3Ou9Lzch9wSCjW1bwFiH8/GAsziY1626JyD4rShYtVUZhsO
thRpWbssKNEzu1dWEA60nZ2gQnsDbh9kqyDflb5x46bjqO1yhKKs7o8TXCe5J6RRzU2T2Jr9zunI
QzDhMovr0jpO7pBV0RwHNGiZ3rktVhpUt6Tvlf9bXo70j1hRNfFgXX8nwAebrBtJnQpXMVR4T3NF
VcCH49nrIizzOM6rcFiiL8T889kds7x0SSft2iPGHiEn2EXTr3JhZXP3pzeIPlHjpMCGaNbS8vk1
ut1SQbZ0/du/z6EdaBdBBov2p6F/re+3iPVrhB1bgjG2hxSM3KIqFFQvscJNptoUV6e8BfuM85Fv
uuVTSTB8s63W4fAZ5xNMX+vYhBuRbldbn6TTZV0QzGiH/ixx4QuVSsscxwU1oEqfLnshoDYnIO+A
M05peRPFFbdB4ZO+CnzmwJKSpBe3WB6+dNQvd7RoU2PUeYkvQelfMGbSvG37cO5Ag+Mhe2jrpMZ4
Y0mPv+Qm91mtsq3UnKNFb88ALQo6ZWqJNGYhL45Jdw2pKcTYe7S96AHbzSZ2tQwFzeityv2jukqP
rw5GdALOvUIWLypeg3lQ8bq2tlsjsb7HYdpMb6qYFMRD9XfTu7XopzSWSpMOudPNQfswKxNZonPW
b2AIeIHmFt4UdZYDBaNGZ7/3qDHN0hYp4PCO9lbdj4ItXwjopXVRp/EmjIMsnYCz7nt63uEn8DKd
V5ML8Ttv9/Ip88W9/edPQaA6zttiDGROAk3f1OLAHibHDmbj2cS3HzufKg3VjhNoqamWYMAakCZZ
xGE/UllWjG1XOy9HHovkaOpzvYHWmI5ukWrYGprbE2uM/0aV6lkLoEKgecOSHwnITKniBNsNj+9U
1G2UHinBI9sw3lp7kCETQVm1mxuYjoWU5NZiLsOvD9YU/Yl0Sf9STDg5A0uAJk6cwYSl3lbRYMwG
hrPVvnSCAyea72seeqCYfVz1kKWW1DOqEolp9GZxUP7Y3iJeGBmwRz19uxP02yovtBg7lFJTKAeY
hQQBFCdGpkG7tAYf+209T6oY/TtZ61I1s+tSyDsBlS7fIOOyEhaixz7JUhPtJSjDzlNcMrCPv7wZ
2A+I4cfoZmkRbkfeDUkrmGnyoO2IMYFK3kSuUTLtFlFnAL5l+1IMKmH29at/m+sVYi4vgzgxkUei
BP08TsVp6agiNK7mk1JA2v+Z8HUYC0xijuzpNCwj+LPLS51nqPW4DJWC2HFSM0+MvQnXNVU2NMNX
iqBv2656HfLE21RVpgAQHx/3KTJnvjlbEgEMdqjjBGuJ5H4dz3u2vHQfV51gBV/zavrRGcmJZsRn
tz5aKC7gNJj6RE6kcF83IgOoQOJWB/dx2CGj2N39/IpylgN/sRsHoUbREquNIx7vmpGtm2NRhJKy
2oNfP1IV90GIGDz1wSKcLiR5Pc3GYgQWr7+iHaoyE6zHLeSMFlmw/KB1bja/jsGyQQvd+hzBNcEL
KS9AvHtKmYpW62xMnfwwgBryPzpxgE73sT6dz0ersKb2hEPXNpLQAQWuXSmW6V50DBkoET3SzTqc
gA+Vk9cbvEMCl0jwokdw11D5Xf8czuJHTqmTKoF20fmhKqdb3l6a41E4mKyyoMr6EuSiU66Ha2pz
6c1RF9b29IqRlIni042jBS5HEWeQzBbDBu/ETXcpBISUdpJKNz7e71LSqtNDAC9d1y9KaeL4Sg+K
mjXgy1ZXjlC9ASdjv2lX6mB6z+5EXqpSssrWQI1P/XjD1U4Mb2vTt8QFwdwCtzdYAORhOITLPG3z
NHjsLyAAnkoZUXMGnnrCBiyLv9dWYJKAzcsyo6eJtTVOjlIVMBy3JqMNpoPg6hHd5PIkahiPGFTO
X1UIpd2XS6TIeToaeM++J444njnYURwcmdpT+TK6zIfdoSmCHc5Hhmn2mtbwjgA5/o44HMS50tDk
5LzDkjsr63kj6Wp52M5si3HWOaoJ2l9iYhW9fLBCTvjbzsuhqUqPVgEFxbnPRGSBWlpgLh8pmUDx
d58eQigK2ZXLrpdqtkqeDewQUtiHZ0sL3VL0ndEFqJjWrfza3wcSOkFwn1BxS21HFCVuYrAddC+S
3LyPKjqvvaP41menu/a+IphTfI/gms+fcfeExS0tlaXUsb2TqZMgwDQtD7tSOgCBywjUCU/hGzu6
Ccv4zifHJ0aT48FlXTsEjZY6rfEg4+ZMbfKIG2tZ76Jc6cczWGRC0lS6eHu+PN89tKF6HcAFpBY0
TxN2nY8dBppg9ONRWtwwWKwlcsNilySyfytDbLORGFEVBljMXhbU8gjwB7wQX9zqiWDHrcOX+Pea
0VXG64uSO/3Q9xYFcWqeYC4+LxNMqLLODmZO+jMen19tL3mrMN9jUgqrMkMAbibUG8sSJVK1xCdP
9qYjv3DvZikUocT3V9Ujxc8hHQmrrl2SsA2cNnPn3dp0csaFwUJJqwP2g8ywmicUvzZwjp9SmoO1
cx09WcnUA5TXYMnWJqB3EWrb3mGbzJCXhUogcTEfkkeXdBAa1s1tTRabfTwF8BkNuwCxM4aBkxH0
ytgMrmo9WWTUNIbUPMCxPdJyJijY1LOEFHOuf+NA6nUw9WvNTHU2dIucUft3H9ntVQQnAfREH10l
w+ewt8dj/jLAatzF53xrFqSh6/cmpCFT9FPO/RH1mFhtBsax1ZXxsmzHXohVzwluD1nNekjbsGah
SKOrX1kPcmW4t9AFBb55AH4/mncyyukxUCfalwPmaRLXQI/AFpBb7brGvoTOYmhfVtnjz4R089KW
/e5DGHV7v9for5WqWRJfrzkTh89oLS89Oq+0kQRzWvezieBlSUoOKXYghz5X6HGV2hZr/hG+L9Oi
NcTnkq5qVGGFBXf/jk4LbmX8JyuDTiriH0DRmVCYP09UoWbmGDYbptm6l8sSmtaUUhIf9PBgV/eC
n20W1RME1FtVVsgME1v+/M5vyfQq4M9PawC3LoohwT8zYehr9szuD61euMv3kdAsLYDzX0tZzm7O
oHfx3HohHPh0K5miQume78IIzLLnwDpNrMIDajo9uLJZxbnxPK6Rz58IoXhEPo6zIz+udeuWA2mh
UZeskveRqmE7713RLz9MAYfVQ9X7ouI2sYmjtKYYEx1sYZMjG8CXlDc91Y3Pr6EBjDa3DLboLpD4
VF8PU0LJiLe5Dv6w23oA53kdZj4ZxrR1c2OkyNHadQMazsQHEmDC61MYNYGveQUBJkoRyeyv/zAu
9HhUik/QtFTeLPtHhY7oMTs1aW3UWtiq4nbXpw0X+7HqqlcPKoTjjX2GWOi8h/4esEzjMJfroU4h
9EoID57BiNCaSUeA813zClHIFwt7h+LfBizVa9+JKC5OrPUg8ydmvIn/WW84TBeKoUUeuunv1dwa
mIUngQUD2Tu6LDUJ1wJT/fRi03WdIY+OYHGGjmT9n5FBnbk+d8yXiYn0hOtY8kJ/vKfjX3jiPykV
P6B9FfLeQdIh/q89dE4yTRJ+dvME7IWp/rYH9XNSS+VT3W14eSzmlsBZUh7bYmYHd2ZwOO53NlzL
L6+bVcgWeufO7Aj4WetTAf1hgVCVidPahQg5iv4UihuOIbLe8GUzoap61+U0CPenKp5NRzUHC5XY
Gfw7vwapRsezaQSQaAH+RYk3FqDK2iLw27PkE07zrFj4LJXzvwNIp5Fl4zzYRUtf7UY3QYcQTLfm
anmfss6N73NWczn2gh79ttyc8nkWjZRoaj8i5apx5ZP//CdGg7kS5Wa/yCypryeGc5laUQ==
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2014"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
lz3B4KHX5z7HJK6kHiZGMmcEnUqLtTRT/n7HdY7szClNEEBtVq2UQW/wdwwMN27AnOLZPVfuS67c
Y2O4fk1xOw==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OUoXLY9rVEqAKiJgtR19Q8FIQUm9wPmLFXF2sem6w9gJVRflCYIHWjOAqv6eppRvqeqcjaja3KKN
iRxsDXzkmdVb18CNyYXYPgZU4MySqAPoAE8BZ3alC446EKqG5bo3Faah4iFiaQ2fsSYQDhznQFWV
FIedseAJGSJjdgeT43M=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2014_03", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
bHuGx6phwwi065A2gw0E1Tqc2OLDUoohEHY7mOoJcUQwvr9OEJ4yz01Uls3wx2UOc24N+ANXe8aM
YdyfwspjYSBviz8nI/XUT5fPMjNbtL8HFChLorcX+K00Sc+A9m1I9+5W+Wd6GLSKBCVYKnWRn9Os
rc68y/GTowadTW08aEEccqOavDD8XG+R6gQqGpi5C8xq75oqBRmE5yNpxpBXxQRz9mmAsJcZ773H
BpObF8UUngkYlRzDjfxz3vzf6lVAPrLm55l1zEsel1LRtdqlRT8kBTrz1kke43v4c6xNv0u+i1Y0
dvxmNCEmLNrwBuVbcA8l6Jjp0k0WZScEgrEOCA==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
4sCk5d4E+rPjLUhUiUrzCNkXo2ztvWgfU4Ic3n3YDGHZzWC7cjzTKSJroiCXwtIaQEIL5FpdrGOo
eHf9JlqikZvG/pLSpSZr6BTZioOpsjgI4CJq9n0wGhpyClKm24hGzYEPH8AkBs4wVmgt4sOHvyYc
mYqTUQDFFlehrx6Wh0E=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
cjjanW9F+fseEMt2SDd6R3KYZVrfLHKeq8ULFHbP0E7BiwY4Vkec6zVJkc5FOAAhZdR5Ywc2FOnS
jk9bJ37QuAeSdAcrSzysHiIJYxA3kbMVuIa63kiSn3dKlLmPc1gZ2/UtM3HTBff0RPQzxl944kH8
SUid8bQM/bx+7wxLnTLuo6uTok/+c8ipzvZZ5iJ9DgzZyHiiuOtKu8JWNRVw1P5d1QqQT3EZ7Q8j
fnqcUNAmoR2w1hlmAhXTJgZbpiKUcMF+Y9/twpUzFl3rdEE6PKGzb5YQ/Re4uf+MJU96/KSTzmBR
Xfe8WjI4zLk+NlEm8eNku5cgYGTA1pkwApl+6w==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 82816)
`protect data_block
PKlpisMKFINH4hoELw81Ae+vpIr0xr/BIQZISQh02QmAYRngfWchi+A+2gXJ0ErM+PWm3fbvLHaf
UADT/opvnHMCrmwuOuQX48J/a1y0sztlHgsA7XTu3se9+qgRV127UsInIis4R+Arq69Sq2p8iQGa
1PD0yZk9bi6uA/bjwC/f0K4UDBZkBXzLgK8AKLyDRJmdnfTtG8KKVneUKGDkFJT/39R+ORlmjO1K
XG/kacw4HFvvx7d5zMmCVk65vch85G59cYj3oe9/dp+HeiNRQLeMPV8FtUC0j0/RKxrMAO+QOmF0
ERBQCHzifcxvPU4x/b51WVf9/zo5hEy7xHsvq6Gr/13z/wDwkNa+YPTJyWFr0XuiAw+KF9ipUo4x
gH1etQv38h/IUdmUpOcxElZzljx39pYb18ji+xL+nhrZ1Ac6sJjE7pdZiri/9xL7H1szzwA4RcCz
yyuOZXt8EURJ9h82hCDThzRDyluIzrwN/ciAVptMgYO6ozB7grEBz/iup4xRWP2gv89ezT0rg6vR
496XDHiQy8HsHmOlpPavfboF7FGgYJQZqrKfeqsoQHmz+dGTQ+1EC+sWnmqIHiwqGOWBHo9DXIsy
nSKVQmVA34iNf/mCOMeUFIjslHhMfuS6kS08B7zoWwoNLrzd0WEgVwsjy1qK84Ck/BfC8nYq9eOU
MvGQvNIzinz71GbUM79wlIdGOtkJszEKsR/hEWC2F339ASr//5+Qp5c4bRPBlgopO61i6ru+t3XK
YXb1pSColJ5eWLwqwgL+xJqNMuDULtXnREaaNx9pQm0D8HihoJXYwKfVN/QHqW5V1DCGCnmkHiBA
wIp+DY5kePLolhMmNJDLhl+BmT8VaWRmMwQBFQUlVDrBpQiWbpABx3xIKDMg323XW7mETqSrdipG
apggRa3y7ra85AHQgLyi/NvVT6TjJBlUhPpQcO+VkUXSC6F8hiHnpIhQKTJ26KSaaICSdR6rochg
RSk/PxvD12im8tj0fb/zT20G2Fah+omaNG6ayEVO00uLw2BdSeFyOiI+67MvIjzu0yLEgrBBSnJ6
CGAoN/7vwoPzxIjeDoKwdsFUCiKAjFMffXf8On6unogQud23p8iZyvdi5fzPgaWasp6lcVy6+EDN
cipbCcAHFWy9v+mCF7kaYiUjj5X1DXRFnNfSvWazczEmCv8gk6LPFgr/+kM9fxoJw/JFAzH533rC
YuOb5f6X5X0EPTdJ/xJNgQq33F2u5288g/LqiR3U+KvcKww9O/bzUei9xJPbdHGz1QXyDl6x45UD
mtF7Tx1BncNanvMkj28TyOHSdnZznRjHnZ+C4mIpR8oElrZ/kNBtjfX6uB40NK+xWzK5lSd4enja
8QVrKkQmfpbsFaYVxU6JJ1K8RdsRzIEfLKPKQgPlLCEtEvqe71Ob4VhcaldeizHxPHT7emlb+UpF
csLtBsu23jf6GMkltI7CHWGCMt5v4bGnt8V5W6pvfRo7Uzc45O1RUcLYETkJVTNOA0f0oZIwzzG6
oLrdF4u4A1nd4em8yz8erQHt+JWRZjuNOCvU0FrexgI4ye9hvYdGRtnqWECUEmC+9bAaTNhpz0RK
zpppgXZQNf3PhPRjcdV18C9kHr8xvK9TLmLqmzoUq2BtslvJtUzxPlLiBDbVkHiDBa2quq3uN/bX
6e3RU/OZflLx63FMA8Ly/mYcaApdDre/wj9U8rVky1xnqoAVYd63pwAeg1e5VN6dEkbGvA4Ilze1
1zlXwqjPrXFFTkchsMoYk/U+SvgqSEoQC4oWTr/wN1mbu3UoI+EpZtK45pXOQkMdS8ExqiIpITIZ
iWodd2/MAiAyhkayopiCWPEy1jj9uknlRRi1jQy/oBHpDRrekYmRMAVMwQtF4btRnv7BXW8INNE9
ln1hYwDJ+kKEUwG6OENJ3jOcSqroUquo6FuiX5HMg1XEUOcPyXt9XX85Au8i5Q1JdVw8BAeore7m
5q9ggtwf7Z6KmvE+6PnMPrfyMAiO+TO+z2jp/nbSm3mtLAoKAELcFXJ/NtXUwl7iE9HIDxpvgD9d
iFXaqQa7V/Q7ECPsqMALzfqmi1uJpCYIbOhaiunf4GY8el7eljC2CSvEi8LuKsPoYe6e2XbSFBas
2kiaw4o8G9YcUxyBJGkJSE7IngOTRDpXTKOEZ05btmg9iQMpQgkQRLUIKBiOnuHlWUpmE7xu6I4z
Tf3TxMAjGbO0sC8J+dxBzeVRDi9hxH2hVV5tNkErq1+87+BnhVHm2MmD/pymKNxi5cNX/FexiLLK
wjt58y2HmhcPuYib1+7czTXV7eP1aQkHrg2+mFmaxYy9X76du1DjC31Bi2TZCG2ilC0caCfcdg3e
JKg+aPtxCoijjNB7W61o0d3plpwnJQZsptKlLmtXP96GKCD8a32/WlVIrMFWp5SUbf6ggWqEusTW
MdxTbBcw8kDDIubMZjymOABdYFosaWfhmRap7HBodohX95I9pw8B8vmWll9icw2fd2hU9gkjzWuF
xVvkRuWsIuT7c/x8Hki3zaaDfTarVw1DinqLnn1f6IZfqNaqHhpA31oi3cfITJwleHS5wYNovj5f
erHd2jyxLdvB/4vkoy3InDw3n7x4w9YC0kweEyaHjbK8Q/1TTPEQf4Di+o3TMmLMScbxJMAF5gqK
gDbUR/AdJrLjTzOO1kpeXPhUlqaUvQBXne1F/N+oQj9KARG2LKii38ZRzl4wzFeJLbaHrlnRM8jR
lf00OwX/GvQJS7+aBoTdy8pbf3WMTRgyW1onApjm2JwZEmVLNB58CHtvj9HrOEx2hf8deEa/c9r/
ghS7Tva9ypnBZS1TKkCBamOysNwjLAtSFPedJqNIsXjDvdYX4T25ZMJWwfcKH6i22Sj7CFPhgUQg
BNOGvXttR1wGbCMmdh6Krdq2e+VcQijvArkt2tRTLx4GCp95T+oZ/CZo8dNj66cKNdMjL+exAcLC
zzlKsqpAVebefwCul3JVG1YLB3Ntpw1+i6hCc4ggsMR83MlP2T/B0A9Tk/o3h+CRDU3un2mAYKcw
ZbiCcpnoEuPWUbxdxN31az5xSewxsNkFPMqCcFW5uZHvFuRV55mMDeEJTxpDqIXiPHdSTUm+P2BL
bDcozga1rhoiqEsjCWIfptUBuVwdg9Xgb9dNx2s7YWVLgisJk2nEHQONBxyEStBJNhRh8YFVOYyw
/N+Wx9v/pyZFQyK3BMx4aJk8PqYECZKS3kDT8gxo96HGZu9Qv3a2iKakWdfVLuTyV3Ug4kaQBR81
zXIAUQo3uLHfwwITDjVJ363ZZ6xAre3Q51Ryndeqnp/9kZKtv9koF3gyLPSsUUrfXJVQNwMCgQu5
TtvT8EFBZ1I+LE5Ehlm4U50fxkDhCGFLLdr3EWvehcxjTkbJLqZIj2ZWuLVMB78bmQSUHmtFSAwu
sdNfj2l9NrUl+J0QAonF/qKVBV6u07e/w3Sibj6ruM5k37QA4BC5Dpjnksuys7BLBvFLM45YR1XX
JxQn6NMD08yFMz22Sp1VUDwnCjchS7wobrHTPMonTBGWEMEV/hbK573hquFoRFyTGVGBoeSgSfN+
DDcXIm2qoicZWezBQcsr2J9H6Y7qyGhDAvp6PDW6BQqD28yj/0mgo8cnxlQ5btPzvSqhzm2D6o8B
tVRLHbJAANknQ+8RSWH2POMFT10aqftNbe1zm2V40ooBxbN+kxKc640IYEiScSAEhPULLRXAHspd
QpkT0BZkB47K01kPf5a5d1N6Yr1E/xORHAb64nn4NHkEyuTusno6hHlqQDKfq5CDFNJmr1qAmkE5
Bxkjft9wL/JigRN01Psr/pX/3RNdaycs3lTKbSXofOmL7TzHNY1wmHzLNBVULt7ewmvFWo3lxBUV
55eWilrReGlk8hBO/tBGI4fedqQ8AXg0jjIMi0DmQUFBfdugV7qntf5lwPW7D216aMex0KRwEMup
GOqdTkW70Pv2HSJYc6eN45q5pS8TP1szMna+KP0nKezHHJorWa+j97qcHIGlQzUdD3oi7VG9AjsP
0vLZb84N65CPn4DvdILC3EHuttTZaNWzl+FMBjln1WEyFhWTvOwEDlHnhJlC35m48d+7GZzudu1e
opdUPGDRm29j17/tVysn46sFExzvyo5XTsgNHmoRZNwimAmXn43T3qTLOfsiOvdzCHr3dhV/N8RP
X7Llah7gW1ciRZ7Ljwsd6T6H24B2bEzV2qH1KIV/WdqPGK07rM0joYzB4hXrpOkZnKxEYRlFoIR/
ARCCOlX59he853aq39Oc5SAAXSHsohw7Ktq6CAJnFYqN2uA7y4TOZTCQi0KJj23sEZZ90bjglR2d
lXoBiaH7KeNUNra5aN+ICVa7lrb7IieqV3pmBi53xcHPM+NqX7c3KmEKv+8wNiqK4mI8Oggwo5xU
sJGa8aBXYEmcKw2qCbllHLMz1bZTBwVFtPgwZH5EHxphmvRk7p/BwNPzgFv1AgjyGyzX2WcLvnAl
CbINUV6Y9s1n4FoWyZKBVHsRt4MgTVoddmylXo6uS5oPI982oM+ifIKwZMQFQ+9ijUekSxnoKE8V
/MHE+OahSVRf0zM4rJmk8qdA/GsLDz8UUkKjRlxQKhh2HTEL/q+rDfX1Z0mnTb7PFywwT0zfnOLk
Jg5neZ5eBPh3zmFAjj19G41T5QHHfSlVxkhqHIufpcYnwlq0NO6fM6u6GK7d6NDaIHszskOujnuX
n7xRgZmA5aVZzgBwYM43y2jLZG2u9xds8RW69UrI0IpJ+w+prRebwwfN0OVvk2yKgxe1r6dWpN+q
6Vnm0L9nrH/pgP7J/78rRhPPkd87pYukJt+UH0n5+c5akxNNqcXjvw4VwIzoFfJHi2eahO8b+OYv
DzWsFy0G+zGTgPB2PjntUrFehdC9WmiUIqYGm/je5lxXXJCLRzMGSzsYsKG5ruUPewa8+BSotrbl
diyZV0jdoI7pnpbix6VKEklLOfvC2TogcQd7tPRK9kiIX6nfQvfFpRFi8pPzlVkzpM90Ne7WnMtG
i2p/IhF0beNsBKJOR8lxv7UkUNMvwjLIoC6JlpZzyMBjC9vu4O9twOaS9t0qsIO0PWuTaygICJWF
EJI3EUzVVXmkGsNtbUB9RPv43UHex05WvNiEIcQJ6Zi9g8jxtbMxCOKV1F4Y4qUIDH1C7LG8yVy8
/PB5oUEPolkbFoZVcKbUP9YggmeGXFKnoWn7fA93wb49K64t2UStaBleGNFdwKaI3O7YX2JwrZdu
V/6WJ46bEcfQ48DrVquvAsDu/Qte18hwq6AI8Q8wwBtc3yDMTgQ/F4o3hsKx2fKtwF45KS0N7gxk
3MDhygVlnV/n5EG0T4y2PuTcxiNRnYXNWHC7g4mEMK8J0i5HIfMKVGinj7FxfjeWeJnuwOLIbvWp
4or3GyP6gBIpQb+PHzc9B9Cskxt3toHQeQh3H/KAvEL/uTp4+N941dAU63HPmFAzGDJIHwUKKyEL
7Efc7jxL2AMJ+54irCxUXixt/Mf4EFUFeRX9Usfe3c3/0mu9d/Sn3kMEunIogqBdUTdAnDDO/DoZ
uNww22SXb9UlAdEgJAvek4cVX13GAHFrVKU6yPtUJTux8qTCvKgxRNBuM/h3KbVdm4P2ljhPVvon
YCUBNGXdjQD6LKha3CusIet0Ekwlu8ZLnCdgHEAqfT/z+WvzHKFvDo1qb1QA15XFo9EXcFE+lQuF
QTSvtb4Wo1lAb22E5sO7I2FZWmdqR6v7skvCnzT8btNQmbZitkIcFm4l4aqVuhB/QhsWLD0jvEt7
t7X6UzkRHs1NWtO4zSaDu5aFt0QR352AaUDzKBzSB1qdQfLp5JcXN4vwcwrJPNi13hgVQMAoOU8S
osgsTvP1b8QTzoO8ixR6xU02RPM4PZLO7gGrx0ykMrY34fnm5Ff+KKmLUdWStLwy11nandXepuxo
fP9bLHjW9QdAW0yrmYip/G3rkD9i/OzjWkhr9e8/dwIiuNGt9QfCBIQwc5HMNcH1vTsf8takLld/
/oFkvWHfxqw5xkiUJ5/8J1AcbZP9MBjjZ6XDztz/COro05yjbNenJGeBi0krvbvE1s+G3EvsCN4G
BLmmnuzGsEDJw37L1/a78qTMif+zUkfqHsZjLnI7Bvwo9EgiackDcpeU6KOh4vp6ygA6VbFKd2EN
YdREefq7BBZYKvbU2a5dQmuwjXrPLqPgLAZQ4gmLayoj8XDSOf1Ksvb7Sok26ptqyj++iwt6RwBj
/YsmDf+bEzFYAO+8e0hqrpOqylfeMN+JdSPLS+tFbBCQq0wtPPxilOzIbhaFwMMb9ZfIoxcY7qvG
YWC85mF8KXrRZKOFdR+ejw2jPdP9zNKXjlVFnIA2nw5T1F4ARmArbk+rSvujjZc15jsE56be0its
U5EsLpR/iUdQH+lmpm+51z8SSJVviYAmSsPiYm8hJoohgZH3b61qPgoIVBu0TmdQmb47Mv1uHbZJ
u2XVnCiK5y9gMkc8sRAIizunal/2jYYBDDL8E6r3KA/q+eIJyCD5kmGFKDb/vBfZeLPEtNaFTvVa
sX4hj58ndGYKTfHEetLwLu0hjRt4wFG6+S2jsS0Rf6ApIhDr5nHT+pqzaJhORoaix4HJtvjzgzhL
eDwBOqAfyRiJvTSwxTik/fGnX1YRyUeDOhIv5IXw1ZScGEvdIWb0RpKbl6uCFefIBSPbSEW1hMRj
wkSm0C4jCBJ2jogVxAf13pGUeV5t/IYtETyynHRtssHUuDgjpD3Fc1G8/KNUbYD07X++Lav4iH5V
LrCR9Gxrl+tHfKc1s3/RyQ08Nfjh5zTEClHS2my7PDpf38e6QwQDwq5l3OCZxWjztI9pAZqzEUcs
0uMiADDOxBBtFr6MRvfY9xJoIyb2xINI8RtWDdpx5U3rBTHjRUFlK8xiGaipFnom0XBfmNPfFREZ
U3ZrHWwGea0c55S5/134dNhlQT8SRnklMpKel0kCEMx/v3QC2V4fkL030oeLqUc5cfE43Uz3XD/X
JX3dZwidB7LN4eEgAOTHn/WsW288rXkBJAApGZr9QNzj2z3EijzlfSuvrhTY3IudYSvPbolq7uZq
ZUgddFnu0Z1DdRneCmTRIXpl/TOszFel9I1qcT9WUID86yCqXmAstwTP67djxrBQxL88iABniItY
GUYDdyEVO1Eth4G6oI0r/uJYzxj2ekEr1y90bnB3eETYaMU8LbyxUqZ5p79HeWmG9UO18848HO+Z
oHe+dF96apaQoiOnw4HNNLjrg87Fy6RqRjKXbIwQsYOUwOYUtIh7R4RtGs3sc+8o7pprFqwY2I0W
BYu9VLn9f5ZiaXgz7kJVmKNtdESAP7ZK9A+qlfGKEGF/A60GoQhHWSxlpJNidkdYHWf7dHm4KE0x
5PmNdSKB1GKNi0bH0r+Cng0RbkBP400tkZURLLxhI/40kBEoW88tTMC3WEkoNYz0j7FQBMZaOEix
UI2peq4kFnNKSgYkJl8NScOxX5ZHWrH4/aDws6zHczxNceoQJ9uL+CUifQoJKecew6Im8OTW7rPj
L33KCsouDuAc2ou89ekHahblEWAjIhYGuV2TqEmeCFHYtXxpta2Q5ZgYm/MTbrY4ndNgixT6tcZK
aPDHjUKMhjKJYfFBx1nmtKNgj28dcZ1xzdyPXRmyu4f5PS7hfhCdIDapZKcpOH3krS1eaoBqrPaH
EzJ/5xGhx0IsNtdLvOmNVY1odHOYrYMXQatws+xecoBD3NyghMEle1xc7gYe9F8TaYR2bFNz6kqQ
arN/bNuCtIdrKEIOguFIJev1/XTr/wixnLH+r1MwZZ+RQ1XW/GPqeSVduXo7BGEYUo7hCBIDJ+Aj
aOL3eNQYaqEmuWqZoTcPn6+u7S6Cp3gaj5YGdmpwxFptcy6kS31scDvOwFlKnBVKAZdkqS0ObGMH
RTgZcvyRS6O/WPgiQKas1+Qvw59gEDkwexG5XCs/wV88C9QyUqGZm+UZ7h6RsecO5xl2an5udfwx
BSA0NB+OKsP2RbG40oHvSDsNsDxpTKdPx8LM4NGwOo7shB1z3+57ObX4wSnIvInCsD2L4vsfh1K+
fzRYUBPNgKV/XWIk+MKk0TaldbyLyVzCXafyvUdjGsmgLtoRaXnzT3XDWpDmvClprJdgf558QuAy
+rcPrwMrZh6inr74HJ7rIUKZuIxdCnLynyloHSsFvZfOMq5/uyYcn818/gaNlLqITW2ayENgTcom
v5GJL3yBtVxAJhhH9eGFiiqBn05RLFGuqj120cvNK/KyRIic0q0o8cWKFBe6JrJ2AsP7/YvEJslm
ykdsSbaYUKi5ujcp5jO37sLWCs2BZtR26cPz5aubb8Lz1mv/9rNfPpl6kVKMdhWyxCWBFAl40IFJ
mdWYmfWh7L+cZVzjy09iS6h98uDJy+8YsslU0Sii21PnT86Aa2+LnEQRtYyawO3fayrFffV2h5uV
KKL1SxpaNthRLFRwAVjAkm+FMvFaSzlt12db1pommbcR64mNzAwwfI0Od366USZf1ndSzhbpTlXM
bQWRITeSNEjlx46KGGWB94EpbcnPXKsHMujKiSPLONY00dWArnoyJMgZ4POq94JOxC77PcAdu674
gYKo+/5A7n1tnSDB4+aJMLxQx5InYlPAeZYC9v5DWnfitYOiDi5QaS7WR/T3GAjhaU2GBDOPErlv
IV3hz6ZqnkA372K7R69ZFBpf38CCczvMsqg0FEhBYj8L55NsWa0trB+D6/Qn4TjKHM+cGYpHWHmD
6vJAGuh5Wl+hUeCL93HYXX1dOI+2a+YbbMFvNmtVObkr/fLW5oWkZXNYxiSpfXJMvy//ECx6Id6+
035AH0WDQf/Co2zFHWwMAp/1CkVGYaoy7HF1RsxQyA07fOuZLjCBwT+6r7vcF8aBrL/RZYpRt01Z
CDvIi2j7qf5km08E4bvfkIWdQUCW1ZcIPDlL7U8ky58aOp8NIofpjM43CwGhKwPtJtUjFHwWov3/
eevef1J0mrXAzG9XuLRChuDw9to1k2eWYUHWO2Yrl+ESrCqPAuGaCIhDrhIxbB3Np3EDd/3MQzSg
bnzH1cg5LP29hRm45+nQmtOZ5q4OpzpROCIZaueW4T6FHAlMJvz++e36vTSS8fxz2OAGtqKfFovx
x2Zpxxxubuoj/v+zE3KruZV7FIvc6DCT3EH4+GD/b7Ytq4A5VG5DixoxUc3Mq8CJFh15J7jWeCbO
jc3r3l1IjNUOjMenHyaY4gXEzr6a+xZzvJbpaojHC/tVpGTIBAmx4nkSsoMNoR/qv6B1uehkt0H5
GceF++3TDUpO6VsWhWzNSFNeCVXQIURbUD8SUFdNW+CJNjpSCfzfNooVSFgwZRDt9GydSHa6u7zt
SjK/Gc44EQ/Av4LxvHptvu1FurKi8Ld0sHJXcNvIi3SwSkdjX04OCFlZezws+0yNdnl0z7o90oKC
gOiwk/60T+jtIh0gzwiu7BeAL/+gvz3Aj0G8Y78mCUEuOQ075A57QMZ/o2TeNgEIqNh2ovEAALua
DG1qMMAhjtgVlIgfG5XYcvUfzGUBJTFb1fX8y77IeA3h0XPvV5dh2QzQ51T290kA+JcCgmqghaIq
iPhVGAz+01HqQ4EAF+3KbIPR1zzjtvlsV9O0txPhBkaNmsxxZQ5+oMhdjC67U/QQsx81yOQZkfvk
ASu0Ul6C2eiD+GaNLNc/ntyUgpV1W6KAareX2kxvBnC+HioFNrrgieO9K2MdspeM9i8ZWaHHFdx0
EuxuNrRTYnhal07PWa90cHlYxDrxOMExVT4HBRKxZN0gqLyUDTnUZI9U3uZbdndOLI3xU4J1ppbx
F5TqDJVTn7Gu/Efm2UTYZRZsJzGHYLrlg0W2lX80iZcgwYiqR7Pz4glUQ/kB1awqUYNGhca5QSug
omJiTF3GDQFJ6CoVIbZVCho7OREj0Cyq5lxgdzmvnyJAXCiU7Y0/naAz/MHbTpqJ/RgmVWmlwbdE
+KhrRSYS4xaIvRJpRmZnsLdG+zpNJOvXcHGu/9UA1bIV65Ui5af/ZRIQc+oNFTgR6dQRlsglA6/j
MyX1jtNXhyNFcXG3H29hNBe0JOi0bRHyzpsrlmOhzQKJVEnAO1cuUHG8Jt4XBPm0eQF/lyb4O8TJ
inXQCN/uerEYJ6T7KiHjXsPz8mJfeHuw4Vs37NbIMIxTCCP+gAOsJZvg0mFbsq+R0CZJwxcqpEF9
C7KcR7mvETL44Et9duyiEyLvhdShV+C67lfJ6kStlTSVeaXIM/YBI1mChT17FgwaSYMS3QuaNOUG
0d6VeQ88yBs1v3wSclum0j25OmytK94YQR9vZfIHCaYMrbXXwr4AjB0R0Wf+nJTgd6ouOa+Q2gOl
9/Ig5+li7twa/aietTZayjbxVur6dpmhklj1ARMYaBtz1gdQGSGX9a94C5yKruK1DaLcXp7EZhaU
5DzSTZjHrgVFAxALbdmbWEEP+ovg1C6Jlo2NjH5DWW45L6FCHsKwfraqvwSp8MBuJL6PpaHuDq20
8O+Rll8wMIS74p+kd0QMFjl7Aijpa1/ikkbCQC/ngafF8XJqs7+ooXxFBdMOH1i74/qAuguotZJp
G7kHtmurecj0H40tskKJwb0muZlTJmofY/t+OYPnOQP5Ra/DbBPXk0wV+KOy/Iu8Gtk4iVsPqDOe
6PRlQ8WSXxNFdGcqL922k8l7G+LwN1ewO8CxGZ1NQmc5raxfUSrrayhdUuit7NFpfHYfk7gbwyMp
Pi4Xrg+HLoaL0oK7tPajr02R1W5dJeA6LxozDxyvcL7jUZUwd5LiW+SAsSWzLi1+Cwm/IeBcyU0h
8PuGCxaBYq81I3VGy5XBF6EVVRv2cXag4+/LHQExPnWy7xm1PVGlUkzTYyxcTjk77sMcystbjqTl
PtlRuJEPg1BSpLDuPdQ47o+2aQX/I583OnCxoDaOmI/63VJS0iklh7Tkn3s0/mmZATijJmGZh4BL
H+LzOwVvkq8qIUH4tXqkQletqSysboj6wcfjE3jbzJRcCIGF3nYJ53SnSkjSaM1LHOZfLZQ3r8Q9
TJNpoba4MIpC0JQhcMf2SKsb2iTfb6Nm2lZUaS5N30XFYw8lWectepJ7yy14cP+BoLeORYfMJ+rD
b2NNhERzWrEO94q03OlpELV45hfGHEhHwNG3kSW8WT+QIrPnzktIRY1Y5BGXC2HLGJyOZR6QpCBE
ORzuAMjVd9G6FkBeFBfP07vPP3yNStKBUAaXWZaGdA8ZDc/VyCFYJq4l0vCPomHadOFyZucpWrMy
7a/9EVeS52Ty5s+NgXsklHkTsBNjXfS/kjnUt5abiu1+EwhG90omPvMrSfS/5dXiYNEaJkiGmSqm
ZZrDyQkQISA3QFjEdEBQ7JjTpJkT+oT0kBFW44qnVtzyjqcw809baFelSk3Gw5TJcTksKbVRPELY
lUd0m6LwetMIT56l/zHbXTUFT/al/VREww2knekbLRHhD7hs/d4znC+D3aSYEz546PHz/J1HYB2J
A1DT4QSXKe6MQHI3FMZ28rs8q9rPIEmbvz/tnVwD7py+PmupsQLJWkyPQBZg+LJBXMcNHBsfby3o
/gexS7+um5xCfAY0yyOzn05NHE7ITgyrCFxV+cNHW9G4Up7gzAcV4hNyccGKUcjXtC7BO+8QQqo9
SJiMEnUtMljeNzRCtyBuE3BbhdUCYhnBZpWGAiFNDH0FH3pkNW0jcgdRecL9L8/OIWhRnd9T4dLn
J6RC/15YkK9CRWKbxk4ToeZNt9QlYoU2sWzT+mSQeb709tby7qZMP+4JYOBdaXJ3/b+lMFDVcLiw
tK2yGc+ti4n+gTDsEyOjLjJGRTV0IVFpxzKcSi3FIJS6VdehZCAotqz6rBHFO+aJA8euYgzCMD/3
xd2EiCtbx+LviHOCGDAe3UVzkDY8Roi2OuFZNuK5dEMWVKpuUULvv/SwWHrhzbbPlmON8WRqCktQ
2FcJBkM5o3U3cSu9GPy842+GeJRRi68wg0JsNsTNRPcd6kdIELgxOisNlebs54pLkBi68IkdGMPr
FUYTVohkGsBLbsv5NDOrUc+QFNBvq9iOMeTs3yFwWGbSYcoOei6OGedCP63iqf3MY9l6sdVRu94L
+JO7aukUUFvqS5rdDx726DA9YP3UOa2nx+Ihu2zlmuGo//awmNlhATQHuef6J92SFC3Kc3A7fCsa
3hugml6ecqmWs5f+9RE01gyZ+lNorgM8J3802OgOw2aAkLrtpT4BM7cvLnmpffCPophxgIoJblPC
KD5tAQdEoszBUsXc9bROdR7rmfI2sVwKDfARzA9pg3NmxDFDWKX6vrl4MN0nWZb8xN1OlF5KocrW
9UagIL9+Qt1UyaX8N+mcud4lJsuIRjJV/KvCZh9l8561JxKiCu6preV/wUF3fLuP7DWuBSSDsazR
9N3fllb931y9MqxVxH2p8rCqlxX+GatzSO7at2KERZCCQ4u5uhkEf2ImoYeaX71x7ohqjdYefF/u
JlPdqsJdGH5aqj8OxJE0FEGaXdlkQSxoPSiHZyJF/bgiSarcvbyCfyUBAyRw+LMMTt84oMHglJ/L
7jAXltqlSf14iH+r6rBiWaYgBaft7JDHPTwyzOYURI9uc/2ex1knZwDTrmhA1HEHusn/xDi8woED
3eMZ3rCxOXO6TdwS9QPWNb193g9v4m3FuwB9Cojb6oj31CVGff4JFW/6BoYaWZvM8jsRTo77ILPn
RTR4DkmFMYFK4sHbDIQxlv9dbnp4pgX3lleOy/SR8LstYK6nkz6TRyZ9F0S06fjzKqra5FCbthay
oiXsehLGgJuS9Kn5kVhMFRqdfPNXLPqjIpVbubcPEFBs5O07nN96bnrQjo0+rBm/4Pvdo4C8AVCN
jRKYYmmeE45UUhN0E3+pAMUO+Indoq/eOuOvNdtZ87YLh7cD3Y86BIE1kcpRETG8N3WTvgTOKnTw
FGWPukbQIdQmu98tvaw/MgQqDigFaZhzpUSnh4RIL/9/2YqAWwFhTQTPeWvt0IubSSLXYVqI1/5N
ntICRoyryffeUHeVeGJDjUPW9xkNhQ6/Ly7ObqYKRWe/ZT/EsxnoWTz58OMDMkjdtjTDuiedTK2E
wdnZf1AGrohlDuRTz1/gOoo/PnW0rC1EpCShKLLy8vGOk4OFnljkOE0NahM+8kH8dfZCivz1qQR3
IX9I4zkWGToYVja5EEt97LhTSPaQjJNWp35OO9dAsfr3IOS5wH0LlbCYFNiS79p2qzlN67NGPzPs
9dUQ5eAsn0YW3hc9r5YudyeKaaUkk520Q1XTtk+EqemJJ3qbBbuY0eSnFOP+Kh48YD6UoS0eH99n
In14GlcXBor6jEP1o+488uyEZ2CrGxihyKsJykEOTh5podH2zJnkL8IIfkG1ey0lsZOetMEgx0MS
YYiE+k2CgYzFxxYwXVmwVKQuxIsKodmX7ZzBSjLQ4cItiNpWegHMUSuD+JjuvN9oM0Tj6QaUx5hB
KztuOdkkxsNSD4l54Vr4U1fe1a4bWpeV1GbasERvwQb+XMNrOiepf4gJSqcfiZQKZy96qnSJaKfd
waoo84moAZivqXN9p2S/sRTnmMqdDYAWMaH8ZlobO/ont2G0gVf5N215H9eAbQEP00w7Xycwvemu
VFXLXG3TtjdrV99ypzbbvSEcBBdTXVWOaNsx6BkYcSTdJ+s4dfJ/96CEtAWU03okdfa+WBHkvp8Y
LgT/iCrO2OinxvSkAWsYG599KlTGAePOWTsnHG3wpc5EI6aU9CmYoC/UQ/mzzpQx2EpQ7oVYxqsl
aR8fdqdtNkg1HMxXpGucJP1D1KjRHn+G22PK2EYAbx8AvB+KvNjrvD1UFBcBJvILOOlmPM0dTJmp
nhPAMii1PA50fBpxtWVu5Htf5HNKvACMoD5SYHAmEM10EmN4KlLqERoXwL6ZNjyq20NOR0Xpxf2W
m9Pvml0+t5bx6wqsA9bIr4/vfQYBd9QyYNS196Scykb+ohG/E/sNpoIXhO7qmNVRQ8mBiiZVWQLB
M7dpOsD/2Cb9ZiNCCQ6wetjaBEX49voopqvPgZyTWortBZHzyLE51gNY9nq/2tn8pm7lCQo9EHbV
2UNEv1txNKK6Ri0tbhIIVU99vOp6X9nzQsGpH0PyPRgOlnCKH2CxcXk8NeV3sGO+qojthC54Fg4K
U6eTHZumq+ppwWrPkjt1EGdf0+iwSgaMwmwwydfL9zH7YluVGC32s2G90+SCFkCmRIkx1UjnWurF
A+U6h7q7tsju44p1jC4z4F7yBfeK0PO2RNnxhYSGwqb8Gl/cWZgWtKR2bkPrkjBqmsfItU0tvwTq
rEQ+iQUnM9RhH8GxBs+s9H5oNlnu6FQWme/9KvhK3WyVmL0On6b4HnBvZqeRW3g3W3c/18yC3MiY
py19mPrM62EEPd+w6NYq+EJ2z9dv0uJvq+sE/fXj7P2Xaxe04NDz3D8d5Z0VnTrSwrczZxCFfQ1E
c8MtmLdYXsblB/brmnnvzbAJu7z/SwmD2eiy/iv5e2uiHeDlzWTdUu90O4tCgEzcUtgNCq0IKmH6
ZK4xuqY47My7jvHC5ClW0X7usDA523RuPRRST72X2mKNr7LF2KC4e0p3PqCA13K2bz6YoXaSruIa
qGAU03h2tG7vo0/RjiRmKpiRG9TDlQckd+7dl89NezZCNPe3VTCfEaoaPWjcw+31/ejdKmVRdeou
3OkSCI7SgeQqQ8dHzPmvUrQ4/RR8L44IVgw6Xx8yg0U/LO6U9KHJvLnbeL3AgjjbuzjtCEZRzvNZ
8TRisA1HTh5SQJPgNE1VoKxyUbyyPPj0KpCQxUio9+BwK3HgE9hxgxSzOUgNKBP90gvjW4nTs0Bd
lcHw4hsSOq8/fghgZAXZWqvvIeqPfb0wFqqtb6Syc7dnTtrrUuNDNRjafd4Qj5oKGLvQxgDGWz9M
8AkKPOZnBsj6FW15y6YSxgm0xg1lRdScL1Bj/bz13FEln6AbKnOwnKBpTsK3q1r8G5z0dmrfgTNh
Lis639cvfI9ZzSNndl1MHGypMJk2eLMSs8OC9YwKikzNy4SG1IocfwKsB1wfgCoIuEva0r9NmGgv
CaXVMbcowIm6T2BJxqOeFO99ICpw+C+v9QVOliWVnuTmvBY/idejA3a+QWcsg9YoNdQa+NAi5vPq
XMC7fjXgfJkNS5NmjH4eOX3CtMFLPR3PTjp9yQayjK8riwceI0DWFFF2mJrcMilbqVWKmOzfsrCb
/aP/ZrsifmzbvLig7PuVAh0c8LyIvG64cVaUvUhBV9TEOr4WiTdj+l6/oNYbx9rhmPXE1x3vg7kH
LP47wbvcHKP0RY6tfLDKgKVXldRWU3f4VCDOxebvjLXhOnpi+bmXkxB2WL79PVS4EvUhUHH+STIL
80yUt65auwp/WYs8d31rNd8z60HTes/qwas0kz+M9JJNh8NAlbufKPz8rauKzA1qQRL0p0P+gaUE
wfbwausT62ltU7kGVp1+c1AmO0lM9NbzMgoVmIyzevtGqkbYJ66P7ZmchXo3+OfYdpsFNqsB9K38
7+7k5y93X73MlIHmLvumsLL/ALyVX+kmJlw9+DQV97CdiM4DBzWjnlCcd42Xt9okMMU9rB4sMooy
TWAEWcH3gRguycmfFlw3W3LDn+P/bVjR/pIRODbt2MsVW5xMFmrF/evItM0On/jwcjE3qwyKjnt4
w12ZwYQXj1Kd6pamdQGSqnqkOnijQfs+RdhSLLXampgtYAloOFEXnmEu7ecVQOWNdmaLKAPXSRcA
6fR8rP1BhBXz2R5mluQfkwwk5hWJMUWoxn8LDKgigSt3k8g+h7+47qQbaLCtmwGWM48iPpuy8Zlg
H+N7KbLuT4Q1r5BOU3AuI584WccLKICtWjlfYPXJ+DkUJuwKpBjWOdzaPZ4uvZbh5wybQ/x866T8
DHT78etecwK7ROg+yjGtIPADQVOOMSAgVVadgoGCNsKrPOBkuoUQzYKenUzxkDnXHkdO7GPwmgad
oVWAwbjgTp6n1zhKlai3MkvhYyD1eS9bKxYNX8PEPGE+U22MoVrZcroPNgBwUBz6RgruusRs0LdN
UivNjr7nPt6iLv95nLGWjR1fDiOgiRX3WnIn1hDwm1PcmarLgmc7soWuQ7sHeFaW7XZgpP6nh+Uq
gL68+L0QBIUjjJspQuWJBXw2Q6ysVb1XB4dpqlsx+LfsVO40q2hW/eLHmil/jDkGRJvwhEEnsoie
e1wOugjDg4GfMZzxTMikwAwqp4oHEhtKjw9821MTXhIzwgVTz7Qcc9lp7PhGuuHkP0N56AQqfJSa
+bIVUddfxWyiAZhpmB2sqpTcnzaQZGaoD2knCSzyZ4hK9zWAtpkcckjzOVqZIXDLJ4Pf0T09AmFr
RJIem4+5dyYq4/SQJSVkKyIJKUFjB3n+ATva68A8vtaelqB77wi3PYLMYCgFi/2+WGB8/4HoJuDl
qqzYW5HTIiB+dLQ5YaqCZhCxUkuq3OfT0DkqeoEKihk+KKqaIMMQXbmAqiztmsaeI89SlkTQjH5z
Uba41WSTcHeC9F6ssHjAa7EcIhvno195tPcAD+AIcXulboyYxF8RmtZCxABVPaHTlRn7jhjBiYUw
NQ2JkAmpuw1vgjfZpH8/i/orV0J27OUpckB33OdKJPOaDvHp9plxkrZ/Aaw5UWIdwr1hpB3b6443
XKKBFTRVIiYY6c+ZiaUeTHP1ZBQ+r174vfKG9WZzOHmWXecEQs90DxfjVrE4SyfBC9aF/yN3Giax
eI620G0z/ldtWQxIh80AXVDJmmZMn/5Lu4JxH4bNEok3FSpY7vaVIavXUCoOaODSbPAT4+gTA3td
a394aCIHkqpbSvWKIzIzk75aE/gR3s2pHBJfZuNSgwsIAOkK49SbRz1+WvtsEhDKSWzZytFB23iS
pEBVPXpq87HGB0ttt+2fydcEHQh13lTxwBBf+vtYhRqrPvCsiOFLuGzSXkb794l1cwOgFsliFUN8
+IxKgq6rqVZMaWNewsOvHeqAlsXSkWn5/eXQqeL8i3aeNRk0tgxHPj3VRAspydqFELsU4JIKfg70
UFXGFUF7rKaJSvAwtZ67Yh2a0OcWO9Z88CSAp52O3kuTLMpu+9S+ECWBFPGg3Lb8kg42GgeekC1P
yKFOziDt8f3WgKXTeGK73E0SaY2BKUSWT8hcpfdVkSCpkmmWeJ3/bsY8xyTj+643DhJZCHzTGncQ
qTXzTj5LIRSAq/MHWUdF60m5ZFQUk6L8ttvUi+G/FGsXZakK7ArNjqkWRyC13n84lOJJaV/ueNhy
C2lFC2V4ZupWekBi9eqXNfOEQ/ix2M5Qmn2CTML1CT7hiHpJBpkGaiy/0XHGDjfT4/FQQ/uNwDOd
azjX0iLA+NvrCdZd61tQSwbQH75OJaBdsF/LKPqIMb1ESaA6VitTmFq5mwTQ4FWw11Mt9jhvMMwO
b+vf/vvfJ6ON8wpiWC+LZv4i9MOiPf4rtkAF/fz/L5Evw5cIwqpMuDxSMMgLpdXM5V0SLKLHmo4w
NpUl3f7PAMtMbYAHo7gYKXkIJ6kE4z2heMtPWhfR2SYSlAVmf1czvrQSnRTLOZBq7E4n/23J4QzF
8sDaD1pk5ZK1qyLl21TQc2XEts4l8kTL60dVtKXZSP13YK3dvOqyfD0N6zFMMEvnSrkWktv3AmTJ
Pd40DX2k7800dR/p68v8MxYoJTtN4uE8wUYRir+LfWKoYYT5vZ+bI0bFN0en20G7rkDenP4JfOEP
iXujycse9MoptK8dMEsl5cTNHbka87tkw7Ab8hSlaudvmmZbqfEYmjxe/suEnYX5Yc9eTEGYbG+h
TuXR673G1CrXnH3sl9ql5QIN9b/6pBYuP1/UplE1n5LKfarztSbFDgBrPo5Qymqx+SuE1fT0DxCz
VySAZyn2rv5bIBygIEk+dqrv2YeYa4oWeILGS0658/374RO9QR6Apng+Lferv5IguVqgo94jXy3t
480OMFmYoxBAEYKdiv6pa3oclL6tojhDo3wUvijBFdCguDOYwAMbRuqVLiKAseelgEeqrgsyxwu+
N3accHZn49hvF6CB8zFKtOO8E5Wv/HF7zhhThIpQfs0Jdy+HlIelK3DMi6I/ymoasYmQm6o/5TpR
ni84AdIUnBtfI43X1tNsvafSuAJMTNR0nt4lHIGelJU2CC9VhLFwO24U5I0LvolmfniI0HpZUDbz
0Im0smD001YfvNMB4qLDvW7Csek7ZPBuJyazkT4lLW3ySCCLDtVZvHy/BcYrj/0g1KUJiPMdnarM
HVChYx/DFGyY1d4hTuq4RDe5skpPhXkY9HIxcn00A0rMDGtltJG64XTq4gIDV5RzfDHbTgZHFfQ0
R2O4D5lPYfLLtaU5Rx6VX+AISAt7GZdjRaWUkc6RWF81Bnkn9ldhDKCkXZltBCK+10t9kJwawKHi
3BMxf3L9O2Bjhc7Wgt8JGfszhhxhOW8CL0PvrbmQYixK0Lkc9R3fqBTTDPLwMPjCS680VqdV5Bk6
q0qjkx4zcAbhtaq2Ws39TfctM1blPLDM0Akln2ACpaofI5wWE16AVz+iK7zoj0RqQOBVo03iJg38
R4jkmL2/eyLamJo23cAKeD44pbdbB5gr7BTjIf2dpB+7/2GQBneLVz0ZURtcMZvGp5y6rxhMXRz7
04x8266pSUWmRD9peKAaMXm5xRXxbSulHiSzrqNrqGVGitqSHuwF5sRNUxAVtdulaC3ABXxpdvnl
BBZGauXJDXy8IquYsJBKiktDc5qdijtTJ2xAs8ufaU0pq7D9oZtnYri4ZBApcI3UJzfoW1u+mtna
Gq4PQaGFIsv09raQzqIuCzoLC9fv3UIZVM+qx4mPD777RxhrnV9OYHbtIaadH4enFLCVXJME1113
DeRSRoH0qIro7YvOSrH4eVv9w9S0rEYXJGBX0uqd/3gx0rxtNwlTWaAQhvPgZ+I1d7pPv8YqwGtB
Pz8sz73S08Hyg9sy9LT4MWRICjaD+BHmiqrXo8deqqZBwv5s+SMWUA5tbdCfBaj4rijJQsQffMCK
2z9IzSpZ2Q0xRSh5yH/yEFCB2IlDDwWZZgdTi0543sL40C/L44qQoQzCF4fP1hBSW2DHbswxGWoh
mfR5XrMHAU2DopYWbwqh4MG7jGH63LlVspUAZl3hr4gmgcrfNEvTN1o4XTTsBGGWJYA/qCONQLN/
wjihU27KzOsMU2ZF6MEaoMjB5uTnecbdu0brbmZfVdEVUoOhLQCdsyQ3gSU/VzWA+PjRsWtC3N5u
IgzqvXkj4IuJQ3OfoaLxo0nuWDIqXchsDLflnzs5LE+y5DRO/TlalsbwvcM/TO9cZQ1i7AZUPumg
l9LoV5x5s7J2rNtVckGJcaP12zZ+BqjMls/MSpMy4gH4YIpsciXvK76Bn8cvsj1xyfPNYqCcTLgn
tkZxAMtt92xXzoMMxc/gWGuyhJYMyDj1o+84FlY1B/7GDmb56sd76gKYkKoXVsGbmfa05qnXc0va
Ok1EzE5nEZqunPHWO5xcxUsIGuBpfQB2s9lW3MbZtmPtnQkp20a7M0GPTPlM/T9x+6ClsKdR/qLr
flPZOj3M3IpFKnWJPVycncjw0NgbISfkeMD2MeRyXh4lXIRr9D7G/XxwUFh0js53obnhyvfMWzFR
5fY5EZ6Xvbk0wWpudPPIi1zS/cZGIJhXMr5/he2rhKzbVf3DPcf82S+j4qhewljyyxZJ4RdvUHEF
TDv1nMb0K0b9ZshuMR7Kelfz3PFAKVL3V2MGwhpVBKl9znwbLSb1mRtmEwZFSJsPhb5FfnxMggWR
t5JN6fML1XhX2UjiUC7cENqAg6XkixC+KKQlFoUrdv8x2Fa9LocsAG474iHDr0PgC/wTN1g1ZTpY
vN2l4M84wLwFhCwvVB/qiTmTyjakykHL+a4VczA1mPPqhhwFIlO7n9AmSOHmPCmGBGELfBTkJp0N
homOHBXyDXELR3urRiCbRDXdWZB7On8b8XX+GeWamRpMyRrvi2ewLb/X0cT3Zb+3r5dcxij0S0xs
HPAxOuESZQci918CLXkleu7FPesrGEEKE9v+NiDtsb/5gzgDoBCI3dCIU0LXKVwgALH9WnI19Qli
3JWhCeHAcz8HYvoBZHx6BU5hyy3Z931ka8bT8fNWapZ87azfikyexu2RSw1fhIfy0FaQ0HnDxo4G
xCGguuTSDJUI7v0NuqktM/+myG3kQ8MgYAAzEYbnQBV9k5ux4r9yTcwV6Vj3wC/PZ0RM2URyCJsu
78DSBvowZBWFS3OdNJQRS2ldVin4v9K9BlBVRe8lq2JCvSYCSNnI+H4zw7MNu8dotNv+Ot9HFw9T
gUA2ItQFqWB0J9hi5Y511IZ6lr1zZLdpwSOPbCUZiXK2KohUNwqhzDY92U2ge1G2NS2WpH4nWQjV
qejoxPPFXjc8zg+pDY69hbHmu5RO/YEwj4UnM5stzZUrkET/Do20QFocx5bdnTwcbjkBO9sV+ckD
9nXeV4TDGg5ESi+4LaByc+aKez/+9CCokSoUHGd2LWPdjkVwEh6N0ldw0LW0V5ltHdhE4KZXl249
dItmjcJic4oiTKEy/XaccY9bxQS44iOgqikX0TuClzhrAP+DjX3RBCBK1Ss8N1WvH3PBttC45iOP
Vy+agx24XYqE9waEPiYFqWQ+H0DaQE9Jli53i2QTTqDjJz4GFIIW24MctPz4AXwvJq+GzC2/pMNt
D6Q/qhrw3zI83MBCekMZ/HFHJA8vvnQyQW3i640hGe/6CGy9LWT/A89HW+LQ9Fly1VKzvmtf0A8N
VCVvvTuEn3ns+lSBI+QQT9R29Y0EFQSGDtSl33Iu/Hf/1VQEM62MA0j883WucglYvV2Tq89d4Kpq
uUvetSWLLNYTtvMHpVqdX/LwU9MEalm3Uj/AsSFrxMaN+rhYWffPmlaPum2ECO5btH009ZpWye/I
3tVdXXFETtgkUD2itZDKbguEMeUpe5vBLMPiqniUuUPv67FGH2DMR2zV6eQm1w3M0FX5LifPT11O
xSQeo9qFoq08t85mu2REIieIdwS+d1q+hhDbiN88NmScS6L1lBFqM7yUZEVuf3WaiNi5N2V5/yqH
GRNEprA6ppgV+bmGOjVo8Qwx4i5+62RBobcxo4uke2kyT8VRttfVft8f2SZZp6LAE5tKdNSK495h
Wf3pEFTH4Jnro81SQQ4pbfwo3x+UszVRuuiBB5pG3GHxyVXAA1PZTGFe9TbkPyFf/8RkOBVGFeDO
//DMqMwC8jQZAQT4oDMaup3WGRAzZoeLjO651f2BHi032zoyKAPva1BQpd5xfUxwnMCyuaGVSfJP
RkjkWiOa1bVmbTyXvqa4ldiJAlMOCzBwbFtp8F+7nc0QoOgZBh2Hz586VAQV1tYp8LA6p7a/2kld
pX+Akql/ZXSl/oMw5NWNInEHVz5oTnzfZRHT5PXapoclekxTT3ANjLvmqUFZnhvslEGeUFTf9UhL
hQPLx8iuPZbCYML0E/18EeAwLyEYFaZqtN2xr9Kb8cUu9/ApIiZ1lTX51VU6iRBtrfHwrcewHaKF
9my6tgDRwInA9JXYPZaMp8lcu+1tNPn0t5ObGnsowUHp3Gd7gZO2LlDo607m12rO4bn6p4j08wpj
Lo85vNq1Annp4pf2CIQCchuH2b2ZSkL5VZM5oQvqEW3Q3nAidvP4u1Vs1UdTfF5hk9y0MqrcCj7n
VvSk3a9x4CLEvo9ARQp5EX9uBaUpiqCbVSqZmV4hSzB4aeva8BS1iEhTb/cov7U+2CVMR5Uc53ed
3CfGEaCS3ixkY10hNQf0eIE5itlTCNlMBmnv08vcJ016vEt9QMU9ngtajNq0l6O/5VXA6U6BHfJR
grxfiiBeUbLMn728RTgrcSHyZo3E6CPmU6vwr2tdd9ecUAJ0m9GQyspBxnj3iXtCnhw3x8X0f79G
HxOsUfMl4aTiW8lbUZb/pgBD1FU8BPswoU2A15JjQdyopaNUby6qLjGtsnXKILWRLRYe++1zsDhY
d3813Z//7N6KyAPRvorvfmOyX56oDlHaoVVmEzmaxRjZb54zK2fcmNOEluwzZmKm6Cx8ckeZhzpu
Djg1i/eLwunKVTh+YlfIL4e/Oitupqx5bFIrquf+P2cLx/UosqMspbbq7Uvy1k/yJ739pCcsPL/X
PpikZ2qWUtDAlBn+3MRfP++wzcxoti1K9mLrTjwt4hKW8haD9UaRsdmgWj3pllLmdkQgnk4PoJ+s
dULuwcxfHK8HEJ7t/kBtdycQd2BredvBQbY+On4jhinNptSXewrxTGIHRpFGxwBraDD9v+B7A2LE
1ERX428Na3fnLzg+ggDmXTES4zLA+dReL5XalTILloZc/5z/jTGclioEPtZCfRjpzBEYAuiOoiSR
sDtGo+JzumOGCjpcxvpm6Qp5VHWDxWRGNyeJvbLVtFtkh+FXlWmYZf/ejbLicUm+8yiBBo2+4HPJ
dmLaZAm3LrpbIaRKB94RtglcWVPZkdB5bqEU2MWrsOAYYMxAIgDkx9yjaTw4dvrvD7u1Fxcd2DCK
mKQ9xSgekX0ZUCXHHgnIcSM5ZlTmC+CqQgWwBb3Az1kO+fGGp3/zTyJADtHqZGGC/zpUS5OkS6rh
jqjRdUU2UN3YEMm6X+G2SHobT9Bo2o5Zy0y7wWJ9ZcWBV20FiSkwjQ7buYZfiixhdePLKkD095Gn
EwRSxH7H0ClekeQWw6yQxqRTq3vEUHqm3O8NhbETkiBF1dRR5FGBL9Ji5EviMo7NXcXEz1XMft/L
4r9Hvs72W+DQmP/34MsvthKHrWY0FXlXcbcazB7E/xenKm4GIiO/qMmIbsi5T12kZZmmCOY2eFDi
roY1JBrj0b43NXHCheEnfVzHecBkr7Ig/cEbXU2c4P2JtkhCYaC6SNjoJZthikzAASFsIe9GHwfb
0YItFAz6CZOhZlfrE42k8ERWNvn2JQLwAt0hb2RLAhwclmTQzBAi9wC2teNCA2XCUexMXaY76C+p
ASFShTxnHyF4s8mn8Mo3b/3RK5C1JuSjeVhsQIdsX2AcHOSSudne4S30myXtur9AN+lGX6fraypc
2y8pqR9pqYIIYzDK9B4V9m4UchNT46wiRqCHrGjLJxIzLOzIeUDyTE9PuFxLUVKs8oeyGgMzUW+F
FjqHDp/NGTnVDd0CIbAoPqSPu4dkAgoMgIRcVqeoHOLUFXzTs7JaAkFDs20GBA1/cDNb+GtS0zgX
gGFBNC6+TrQ8NyP9LEAriIQGLRs+9bnBdFL0SksmjBTCvuCqPWFrSA+tU3Atrzs5G7FV9raoeIDd
FD+RhToqZouTGN+rirDqQwnJUYeyNrw3J82upOhoGofC2R5sjG65FkfRP7Rz+uKGgaPbPxbFor9t
zYeHzUjkLeuLGmFUtqzkpIl8rpOyQlCeEcWPqlHDpdVbncbQIoYU71ETxGyHxhrG7zfC18mH30nS
EsgodaXu/bP4TBU0r5/KMirjTmrO9QYZgoQOySux+IQh5SUU6yvYJln2+jSuFQHumYJpar7OZEFX
RbtC199OwFvhd1+zocEm8Ho4QCYfdFMOHIrsIsQLY0nz+BEfyFywDp2yZS2ed7xLBw5jnKlhC3Pi
tyQfK1elHVWspP1OBTHE3VYK3g05VXBLRVUV6+mN94k41AO7VvVQHFRvIRcdfAYC44NydpjDUmVT
RgqWoycbzQSRXly1RHrTojkBeh6bV8zknnbW7bvUM3h/F07cYhuIEj9f/yqkaaSnnpQkhFo+zuK3
SiDcc2pcu+lIhuuwR8XAO/Vst+K353m7pSpG87JI2QoZXTnB6UP3Z2iWBZOXrAuedLwdgmRuLuK9
zuuAyGvwOJUYo5fb7ekfa/q6/0kyGSjJa/hSLF6I1AF5xZNEvNFkUnQYxLichYDz62vbfqSI70OC
ZiBObc10qmtmVcb8GdKbfbwcMUeC8A47nwrgRLd/TXgNuCJufCBmDCne5q1RJZjkj4UEZqlxZpfC
4S8EWfJFHzjgEQ3qj10i8F6bk/wzsd9q620t8Svidg6bDqxPmwXYPuI03R7rERjQgyTMUdmnqB0d
cFxJJCmvhuXTX+zXrV2eKCr2vBRInDRtiXKmT4ohmIKgDY2oRqATHLOLJKsB5eKU5mu3qEBecoFQ
jjtHn0qHTG7rC8LkXxXgGFlQOPifHG2arGpGipVUcSi3B4nZC+7ynWGrioxQZUQwkg3NRBf1rw2q
wRGfKZK7jgv7WPX/iy3M8HXemk/YsTaOjaOI6jbVOMDt62NLxvgb0lMLF0TqD8kfee3l3i5+6+GP
x2hxHg5ZGGfB5pXZxMzz7gKp85aXVuYVeL9Yk1V0vVkoA40bo4qU4Gep1/3wXbMyZoczoiFODRSq
X/oUfN9NBze7DeIDACAstV93OH0TWJ4CGRkllWadUaluWhOjXGhV33WYqnr9TPM0reQiLQQXFbr2
iukdxOgNofS6VxiwQCdd82O3HK13FK7K06DdpSAZ/vV2CrsvYHEI08j39MPbbQTH745fVda7wJ9Z
IG0qNumaENvMeVuoXhCypuvQCaUwMH7p30GcnTPxngi1E6yeRgZAPg/p45x33xQewrSaIAdBgGTC
kvI2eZMi7ViVd8z9ouKFVaf5+F/iCBhyum4K7BOU7/xaUTZRBns14kp1mQ7WXDe2DhUV5z0aSzYc
SpHzol1fsyhmt6IkFnv0AqOfIWWKEHSGwEeZEgZEf5qtXUCuMeNCJH7tWtuK6sMTUYD7unQGsxp8
87Al8/6mKjl2HmStbK5jhvTD4meWfOKvz31K5d+j8Mxwi0o91CgjgIEWOjKUOYlbBxhROZpvQKXs
JqNfMFVvmA8vodHf3NBxZd6FNZvU8JvY/iAmA9Eqg6UyWZ+cVymHcqTqEYkkRwD3L8F1iIx+NFBN
ecv+KF1UyWxQjTWGltaL6Z3FUCIgBTpBMJ94p1UoqVqs2Dx22PkYiN6Q0twjbup03eF1k5jlyuIc
QBn8NJKNXNSznc4NsSPdLe43ivf8zEQOz/anCIbbPHuBXLNw7xGt7C7i1hOvJ7TzDN/7pPgcyf4O
9W2XQsMvstEA3Ogmok2juymDQpdBmfJiuv0pcZDhWyNyqmf9ajIIhK6tbQ7586BzdGFEaTr/8Ezd
xAUfcUzryphdIx5eG5gjFsH/uPiKw2RwBwa3mc8MmHfiNWotefIcXAnU0h4tcJcxY6qJBjSwslgV
GS9pbVkbTTOVG+elrmrJdyXjph7RsT+vBMKrKlEhqZlB/9jpH4QloVIfDHUuepsvAG1bZ1bE85x2
qGNhV/+FTxI6NPAcz2UCrtHVQEOFAoy1U84XzFT2pA31OZgmIOCGtuM2FSR9jovWFBxNMAEss7U6
WSTb2KmB2lTdtTKdhcT/vi1/En7/ceKHlOkTa5IHjddJbX7VK+GDxezpgpsYd3QvNPGTy7eC+JT0
C2g52WimnByfbwZY2ZU8CitzeKswjUGu4CMNfDDlAG1r9bf/3mfUwT/4wupXNcIoHyZX/eZ2eigN
xpwN0y61z5pIEf4zK23Zh125/rhSKafJR3FEc0hyIRYSWmjrEKiVx30UZg6MTmrr3tMoUSKDWbfJ
Ir70MpBwq0xESIrgFT11MspEJmLxLUTn3aSAhnfKxw8iSGqqrElMKXCayl3o1icA3QQdRwbPjXeU
mRxwqQ8XzT7T01KtfPGlTSdqwc98IfZNvio+9T0y6WZaFsr756+TWzBojpwMQejaBL7jWn5wpuyn
dB1cA3fOB4OjE3xh5IpHkd0we/eShM3NL1Oti4/3NGukhUlodMC2O91r828QVPKWJtEDuXtshMbV
/GgcmOt5jvpOSQzq3AECquUQrx8iB5lTTvFXcPIfB57Nv8AfNEQFd3uJxZqSY1Kx4syKfIn9SsP6
v2aW8fgVAF4RC/ixbsVydWaDZcfHlkgBTqAv4u4kj/uWqNgrLk67i7Dik/AWXCStovmgLW20izNx
XmW8gLTXjfLshqBcPBY/djWLc+qelm04EK4B8oAwNb1sLirv7QyWc1LdbM9DkBWiabBiKG3ESY1X
YGjCiu/o7DbsUbvZMInfEQjQ+asgaAdl5r9hK9yFAllmDPqp4IFotve/H4QuP7etm8wUDupPElOU
gIt7Hj3sxr3EvQeCElAqL6Z4H3yYCtKZlJLktRM41Y5PUPlIgpX7NmahB53B+adQWD7Y5uYP7cS6
Y/d84qZN+W0oZfdr7NbYZWzVxYkLIpExSgN4WKjny/L3yDuS3xAFk1xBuGn+C0KRkwZU7K9001We
7Fm2yXlTkwQVVo9Pw0mXGo2rVmPjb2gbkG7Q8SsIXGxpnNmC/gx78B6yyHnJrRzQZwgjkV8DlanB
KQtRjBoAUeTWqTtTPJBCge+jSJfDmyrwdTIekS5s4559NmkdC+JPiPzr36cZ+6pcbaCWXv0BdvSz
EvN7VORJn8toCc1/E1OhovTE6+epj41sn0ARYgAVYIBfhf+1wh5Cu1Ymu8NjWQpJgMN3YAGaBKDE
Qqtzduy/yL17r0y0o6hvKRPeXB/xViVNK2bCSxADb8jxqlNgCyeKpff8dnX16COaCGbVncOaVGX3
gdMuI3V9o06a9t/ATFZBGnZtrSndwiGmnZIpCdErefRcsiiJtFxMnvRsQH9JHwGuW70YlkteF/rM
MPlTh9lSPlaY5EwIJU3GUC2nW2+FNiwpnQO46EOLKytSfu59WgCF4c6iNJDFDjykLVoZoNcscHt9
qcC2ulJFsXCKbTo0vq9vphIB9KgHhmk7xinn+XYwmBFgShUYl1wKrZPCROVAJoznDmu3LOJBe9dG
ooG0NQndIFQpzmKms8oxTi7ko6BNhWiw/M/ZMOr6f1djYFFp9YkzY/U65USR3lIcuqBxuPajZShi
B2jnIIoiuJVBRG66oVwq8jftMBoEym0yqQQIiyVRnDZUqvTQ938xUlePcgOS9WVZ2t/Akkpjmw+C
eyqVpI9liiwx+/Pj1V404EZ89W2UdOwP9sJ1Nb6MP3vObQZBxYEJWIVs6LRKVhls0F3YpEgFUb8t
wRAOP8CdTBJX6cuKUYVSgzkfSlP+QNtjd9rGY+X31c6V0g73ZbVJmVb26mwdmdhAU8GMrnPakZQx
FHL66uXbXxQiPd/bZmpqDAaRrtzDdxo6w9B3HbSC8SvsKTYYYTER3nkRZ/5SvHRrMtWjomh5FPJJ
6xIJvILH2tqe0QaxDNXy6/XtjM1ieCt5vq3Bd31ulbXWUk9aQ2GKED167LWw4L/fAY3TUly7H7lW
ebuu0BopLD7/PLYEvsZ3Gi43lYfNN6plYH2KU6cELUZ9mwQtzJwL/oN6Dm+asiBZqKAlxm8kfXQV
G7wFtn/Zj3SkNUDy3R6kE7OTCeAbz3YDziiS9mKuhJWyYGjTTam3ddjnnFZ6LtrP0f5m2gMj4uLu
5bt+/0DfVGWgQL8FAUUK8AgjhKhFtS1i0RgwRzIfyVFUDxsNfCOrNOhoQ7c4TMQsppkovVGglIeq
S8hiJk+4tiutq9G6LV06UL6ldo37JE/fAWOr9YuCiqCfwovEasEiRump0+naqc1rlvKIiAistL2C
6YhtNaCIc0Yi7MDCqXJJHdHrDzxw/2C66Qzzq4AEQ2TBC4WRVvt+ZB24IX0cC4QTF3duRDJuGLYc
1vZXTlJxxk8dP27gxFsF6TzKK0UMzW3z13IlH0MghSTE0aCiZ7Pf5UYfkwuv4iebucb1wQNPZ3no
rjrb0iuUKcIqW1ro/b6Vv4ZMpkGsdY+lW5mQVeKcgiqVy3r1SvpwFwyCMUTnwXEGOrlEft3Et7Ag
r9bxbX7orqdappkzQ9OkVbVUpFYKm43XSLXD6Ld758I2nRB/O8dimeOxIgEH68qilS7kx5wvlrEl
ORwVHKw/e62DQFr41jNn1NrCm9WFouWi/ACle/iyAzeJDkcQOeq5MY69LQOjITiVsjivanpdiG74
DKYTk0KcuDdF6BtPYomixj3/oaWHmFwWAGBDmPB62pWJYLlzypFg+tkoVy92EQa29hYRqjEMm5YP
Sg4njudPynXg00WzbpyelVEXjyvELpXRsUSV62DFoUGSflSFJ3OCr3GQBKZ2q/xuez8qVIEYLwPh
9aQSjAGciWGjbYhm91QuVq6Xlv/vN9QSxg7DK6qlpncBSWhkqUcGJSN0Vmvn19FC8WdwcIhtITER
PQdESLeMMu1FJcYEvB2mjNhTOKkCj/VYaiNRA4XUFN8+pxnJ7gu+Pi1mugp+dUQKKFedX1sl6js0
w2xCVh6qJPRJmS4Gp0UCDX7cml811Y9i1H0ZhBBqsmqxytLR3huFWvEdp7Tew5sBGBma9l6qO8Hf
ZFr2pKkoUPNTFmFWrOIX7YaiKuCoiswIqYkUNNQIoGcxEkta80XrwVRAyCql0Dg2YUvv5QvyjGBe
J+5rIZvn05X13mdQWTYSXI/BLJ8xs0hUK6NAhj0V8SDSbgNCaSTGXrxlwhiBQrYNeA7/YGlsnAgj
oTaAw+DkBWPXF8C2ShAj/K1N5sX1kbpor6tb7/bJMW1QGLCUDSwbkgU7G19Q1qJKQWYcSgFH5blB
S9HDgLkzOBC+am5kXAsCaFwCrydmRUEcbFduDwFhIxhfCY/mNSWiQXhhJmD+D0Whcq8s7HG8vLHU
G5qiBuLEq7ReHC0P74Ui9CHiALaWAnuzqkXtkvtNtG7KymFhXqiMQpbTNYNNfL1x9To/BDN0VdvJ
fdVRle1abthXY1BV7HThlP/NY76UIcnQJzgR8d8iJAvhQc4kDjnf2O+HzmYM88BouZEYNcw17dna
r6X+l+aUkiutHYN4pZxzrTmrwKyDhR2v//w6LR1nmSNYdG+Mmkid5BeNdZQvFFUoTqPySpTHZ+qh
GLgPBACmqaLhpWXUQYNhsR91wW3PZAgrGg+N968YBlK7nbyz1/00wrx2It387soQMdXYOp8waNSY
6NoSEg7sBmhyg0vaawCGpTB0KtbNcFft8E29798w/idgRx1G0aOYPFJQ/pE9e9dGffOli7vL2Cz7
qHfMKJqCUx7y9A5QnFM9dz2QRH6Qwel+aoe+j3pWzPgeKHwQtVGxoTK1j0QSbUagHv/TgT1agYNt
BDUdL+S0aFRj7pJ9QBkgoim36bEh+dTeAUQ9jH9gktYY8BH3jVuw6D+UJvj9WCeRzNoZfr0E5yEk
UI+J64PzXHdkFf/kqzWCDpcmFSSzILkJ7+njyeRM+17huFGTaIvAtzYEJT4arMv8cXRuJAWRuue7
bqJVnj0OcAWz23IvUu4h+f/pKo69CjI0QMOCksbx4vDZEZvIy2OhNVbgT1xWLRkR/YjaKt74P+oX
GUCIj/9f8NeU1e+cL5GECH4GbcG0uWlUw+h1dSgDFAtCoALkfqntKEqhCD6E+e1YJvvnbg9os5tH
crCojiCRzgrkOLnWaU417M5tOxvr3L1S24Y0K3pCdnsFWnhqGZjfmLypcNBw23QGlicQP9G/sOEF
a9WZdcqb1S2n5iRCEXiD551xYzDy5Nis7mEHVNhkyAjrZwUZ1FhQ2eCrokZoVOhOSgZO7y+0UWYP
ZOGAnzgm7dXB8MDxRZn+316FViWFzlg/g7W7qvHYXBS0XgkasiH4alapGMNgP9CFzAII8jC2idqN
w46SPpne9NOQcdv5AL8O7vDfyxqh4yzgLNuWjc4RxJIs4KcI7szDWn4DEKEK+3Epw1udBZyiA4P7
/60yRHKwax+q5NlYaf/ZwkeWLRzPZOF3sbeGNThCUuLX5Wv27vmS0VIHXfLurDt8xdWC26ftiMBP
6LQoaWaGb3f0QB5eHbTShvOEXeIp/VJqE7IAZYCznUkgLXhLpMh2iDYf3UlmzxJC5jY+S2o5WfNd
Bn9LRjaSR/XSa4Aw3/h7vxWd+i8he+pTqqRGf2qmPaCjOpN7VPgtB6srlO9lAy0HqxOAQJ5FgYtD
5SK5x8wLF3jDoq2UNnWINX3v0dya2mMskJQ7iiMEGR//pcXG9blS7G5+39SRrytKU8togxN4wP0d
lY7MgAEA9wrCAnw2+nkTWvPRpw2eBErK4JpAdmIqzm3et2ufOGbkxcdc0Gp1MiP2pib+k7bxJSMR
OHfFmET1kJp9PvYTaIBc0ycnF1YbEDvPSILuTZvs+SipJKmMJy9CFI9M8gHMbsLKrK5QORURK74h
LafRTpIOiBXXzLTMFfqwJhL5DyshtgzzdI6NMuuS/ilU8oC+fr2o6SYn9AoHrirAdIHhVn/T3ElO
lI3+3OyO15i+FduZ5fPjr2b6DAWqjeC2HrWhy3aJi9+c3C+zU+43YmG9kwyqtMq+rJ3Zs8ONjOPH
hfHxYh2ctvNzles72WEfzItrukyg7ZiqUez44Gw5gic9QbbXL45aQG1Crb0+4wwEz/gkYW4CPQtD
45fn1sfM7vRe33TqFItQtObbB4MSD8v4W1KHpas8XdoQDaNhGnflmjgl5HEGlrbi6JMKkBR9ASpM
j4Mg3ljdaGbyd9m8d6BT0arQSRcYNxF/3XT1LUcDdj5ZSR555pLBlI2x7gGrVxAgdVF1mX1fy2kQ
1/TNqBxKbVY9d7tg61YSrrb67Kk9cz9oB9p9SVPeNkc0RVVVwqcN6SVXdjramb/HwZfyVlD56Vwe
BYQ762/1Yx6egHUkDHpiXWb/NRrER74IVO335uSEBK7CuUsV052OFRqV2yGmBy4gpoc2x4aT+yWI
WDmjXSkaD/e6I8O73q9nyf6vNastqw41AlYqulzLp3Ctw1oQWZBLpkg4moB3H6WkRV2sO2+XnzTC
7Bpv3fjie7iCu08opr+XXSQKmR7nSz1jG7XeQFOgt6ACPDHBN8beBKy8xmlB9ETZFr70st9KfZpn
MNtsF4NjPSgiKJb8qJ3+iReSgbkwnen9E0BqKeBtLPiTyqMDDByOPBSVNr+Qc/v3k9AH3phRxq/m
9ogm7V26i7p2y9Jo9xVile8KzANbjqC5LnWDV9CA3yUiGmHuKZVUVVSPDDviakSQ6ut3bJ0XUjtn
j+QP0YNjI4H8DpftwSzkAiP7EMK1w8/FivuNuE54qfUCV7ukAX4kLAO9y8oNJp7pCgf8VKPxqxVV
Sj9+jTcHVopUs/IFWEBdkMHEJK90xRowQoCdzWuUnB4MGwu2xKHLZ6kbjrbqp52w2111gCeEG9k+
ceieeKNpYQW38LSXo+2XYDIJ/xvTYPm4Yj/GJHzmNIDzacAZBG23+uuR4LZJ48f5ZdSL/5EFVg67
7PTPYiejvFQLbtoSy4nvPGZTosOIL+8jN3NQ2yM4/Ixn4svk+xCIMqHnwT5Dsl3K/+H+mx8ACjmC
c8cNNpuq8S3qfvcooGJBRdxSH03nNR6INDW6bJeqg8YX+jFqaXsEg55qn6/TSYaOmOb3snCZN/8h
TyxkUHV2PMhAgTxPHOt1gqmWF+X5vj6hMI3runE92XF7yFXy5C5v3yO6XtpA8nUyE+Am4p2voAYD
r8Ap6yPt/2wyxGFPC/Xp8CoAEuOtMtMXqhHL2jK6lmWQq/YjqrNVyDXbMPSXpD8339ezp7IDqOfZ
8wGMxuJFJJSJsLcootdwtPgg8Kzu6qp/qkLS9IFzZUIfyMnYLZ9J/Ilw82u44SJ88GUDc1jeS8dL
O4WCUQk0pLKNgMXN9IrpaVjSqS78/SK10oCaVeZfZnE9NE9hpw85eh5bXrgLVUE1Qa6bREIrY4ZP
hKqRGE0m5LSXOc5HPvi8olFa7qez36vYnat80FmkUCxS3tnK6Ld/rfr3FrCgIg7oj1MBGYz6/6Bv
P6c2e3npjxFROH62fLbQ5BagIr0oiU51Wnr+59zC3P7kRCaV+D8QIGF4Ll9DeYhCffPBBmKkXpkB
FE+mwapEYalZOW9YOGNW18+B2rhJ36AuZbCCEj+9Rn1duD0MoXQXP8Qw3Jqy3VHXmMLXFCIdcF5M
bNTZM9PO6AmoRfMN8/fTz2vzwZQhszkTH2VZXbN4Z6KQ87Fx33zwnRnoWUwqN3feIXctW0hLh8q9
Fq9lf4vNpqk0r1erI2+rhgQj0TF0grDjFx/yKwmS6S/uSenG7GVZetVZ9FFnYsL8Sc2wLmbarQ8s
4ZKEud2V61ydRBjvi64d+go7HFIqqX47rwE9KDatlZm/ySWfIz9MFyVgRySHzbxKa0OnrbIp4eBy
DvdbcNU8KUY/CuN7ZtU8KmsmVpZYPCoVnmPNDmss1ZZJTiYRaMJwA0LHFFQULytF43wHG8qCaWrh
ZUFydzZxLN7CCBlZ4mjsbm0qQGxxOxha5m/HWaOWZyN7UjROEpA4oWDGcO2Hic4Qqev39Doo48fi
lCu1B9WsW5LZ2pOZue4cisKTMEAjOGtgTNSIdrpkv6nVff6Ntioqt2+1fmUePbH+pjD7YbG4/Gub
/EmKaRaXqnIRhybSNe7y4jo0H7mnnqQhdd9Lg2wXwlqKY3b00MU4mMfUwrpd2XZ62rjbNiadvumx
tKjjfU2riCQ+7YR3jH5sgWxk0pyZiFY+rr8ZF5l1Mb1KY9YoOXmcnixd+lNZ0X9TEHwkZQ63AVVq
Hq8fC5WxKB1nNKUHIR19x01aQXMKpCJY34wGgevMO5Tf7GTr2vnap7NVXpYfh7l+Rj2GFQYp23o1
8+sA3alFkbYhBL8PedCFjBAd4rmOpDncWxr04GFczik8jydK8ctpMg6feZsBEWu5mSi3XzUPx5cE
OoJkUdLbzk9DjlNdw7njkOLtN1tMOff10T27JtkUMbJ1EuCFPSS2GuvHjKt8oMhCVAp6ke3EmnD5
Q35I/xAfN82Lf+EE1SDs0rPQen8DYZaNRwSn1kdtNWqtWgpOQGf8KV5A/N0iP66FmYm6097F0gVG
wakTZvBAxsUIkTkTLdX4InnkSe9+mlNWHxFPDCIsF+DeC8j2ardlw2aPiMWp4aaQ52VW36p3YjZQ
j5JmSBseWfLahJMUkyERE3D4iKtoNDTPVcXtG7Ovu2DvHFCHsjmzE444BtRzUIamJ4aFoVZtrwtT
gi3t955KYnRVXsGDsLlqwCKtMB87MquPtbMXXt6LkN1wrAbF1K5+TsaHCig7TiPdgKnE4LFE0ege
HMlEkPkzlZ2uKNnJq07IuTXBOSNivrlCsVGM9mQexNh7YzDzznqbXBiUzDQcuttMTf4pPN/SN/L1
bJ8LfK4wIS2cxfunqseeHxHsGem6JIUeQ9rMRbl0vGtMLa1jlMOBadGms7JgTtxDX4m7jhtLsVxX
0ErRJBNwx4o9IQ92E2lk/Gr9GLcO/zjZMucySInoR03G7e21n27PYZpKrqmicRg3rBf5dePkQ9fn
hiEgEYXfacxUmh2K/aANdBAvN0cOUe+u04RlLcS7JeqHcG9gKcWAKSJ/xwBXUqhnn73Z4OjTytul
RfR+sVFCKqmFPPyHhwaTjs1eqRpnZYOb+e5q+OJ4Gi6YPkn7PhhutsCkkWpGyg7tT9S+2jbG7wS1
kmby75KmJ7H3dsD3mErUsly58eIMvKYK0/YlERn58HFQ/p+y7lXtkoHk3ZIg45yZzaLnB+LTM966
Sbn0Bwcm5QSWCPfJ7gTLC6JVlGW352KzPLiYTIIcs4n/AZXeRRhniU3XwjehyUgI/jsnHrGQTr9I
ir45/+wZCvFj6b8SQ+HW38Y5b2UTiL/18Uaedm2AuptNARnRFv8dWe/ft5T+gzbQVFYIQmNiZDnP
UxA5ZAR7BwoizxUdApbrKXoVB3f0wfnVKb0yTPRemze/LkYL96rpYxVnQP/mmRr6lQx3RlFWME7f
4p4pyavLHE0d+fUQZfW7l6iHGraMEwGNkdQgEvLDzGU/VkE8aETnUm0URpWVvjaXH6zw18XLl3Qv
mIRhS/16Q69nIrOeIFMDXv7P6oZxav+36eA+u5yMpz2BVYBj9TDPSE+veEiQK0BX1iZvishtbsMe
nCjG6OVVijVYKVobhwmKiFjtcAVOz3A/DgQqSItX+61wsbHmjwV+iNyKP7WLAYxDd0R54C5j/zIH
oMFUSpFBCho8XOf/uasa8gD+pmWi1aa3cXAQjchT9NhnCyQBF+PvKQK67cj9wSyoSg5OluTCt/IS
aEIDJVjwvEtf3i4uibWDOyx51ccW/0tCpmzTzY3e/id4hGCZTC/A+gd56t0qM1tM5Yx623fDuRkI
W9DcOsACSWMFdC2mFdB0kwf7+zVy6qzK3ZjEDYf98fESgJ3AvVCQsjcfhW6ZBFUfTXt4EDkAv/kh
Kh2sZ8R0U13OWhtyvLg1CC2zBBIJr2aN9Y9FAWErBs2lv0y+CuU5cQRacj3GnjDJymyukNgBM0NP
/Ksm04Yuoz2rvqQ8dXQu21qLWVFzf+wNTZLns5lNmCgBxNEw1aX35ioMTK33c8+YKVsTtGO9I4RK
TDmW+6vGicliJkE8ZcUtxV5EcEHuIPNnAXA/cLiPs6VGcSvYwsnERtyzpZi8wITrqq0Mqs1+dLjj
xAYx3G+xbMSh9XUQSN9zGCbdxMWkEEnb5gbgRdtueytzJ56/Qc+1/sQCZD3fsyGkSx8lHpNdSi+B
yW4kEG8M5GLMtnvu80bWSUZ9OjwjwG6LPCP/mbUupgHG30U0NEI2FOJ80xBBGCGY86Gg3iQ4uUUP
Z8PfgT8o4VdeybTPPSCULqUmXhfKrhyeAOvAlwPrwvFYrqM71o8QQd8+g1DVNGemVDTDcmHAx3ST
P9b2KPTGGLhQ7AoWcViJ3F4ehToubAnSmF2BHW3MrFa6svdCAimxeV2E6lQ8G2VlaEg1wfMlmV/p
5fcTnradI4GRAIkqN78tlHLUUOTlqJkdDw1RsJyy1WuruWfz78H0He6kmXJzyVlhUYdIKUpEB9ol
na+V1h0eMCCb05tjYReSohF56DW4XQGf4CXxjqN1pAqWxeYgogpgkdaI3bcBEpkzRbbP6UZdDZsb
WGwF118easB4j7uGIyjmjLANUvLGfFipysYuLFBhX+apGl8fx4iXfFSjAd2Qh+Owa8Ab8oz6kXQ+
r8zEdBjPWrgKpfQx2DcrdzZ33Bw17bKxzc0PgopdclM3HdruS+UMBH7ReABesG+Ui+9x+7p7nGXZ
IOmxiIT0dpO2gQmLdtCsxFKbrXndMPnEkLt2hoewW6jsXTv/dduL5Ag1ggStMf4DIdoKfOsZqDgM
DDW2Qwi/19lXGvvGr2Unw0kFklRdQDcHKRWgKXb4+cO9eT9yhtjtRX4HNyOwwcg850bbYFrAHO79
9hDb6P1jpgw+BOBybvZFSWSoPCJoDx7fOBTJNgnmMB4JxTsl2ufwRfr+lCXKCOapKi5CAh3fyHaT
lYd9wln3lSGb5mNYpwYkQ7pIZ6psGKy+nD2bV/+F5GJ//i6WsnOCXYmH3DlQ396oCLJJVmU53LrK
mynaJ9TsomkzfUVtm5jJkmafRdPgrCnW+koBtjIPNyA4wnnEza88umoYcFwt05JqgMogNnt4cxLW
+iIZx8c3aoq6Do6IQLtDUd/07Ip54/F3xya0Azy4vc3L2vaHPsn0QPvAbEPV/25Nt3XOZj0x5EmT
6BfWSujk8FK4X3wjnQ223b2XUK5Im5R51BYGUSBwyQxsOSY7W/qjbB5eLBwytHvz+J9n94Wu6n71
Pv3bAHmuklKDyhhcWaobM2OZzsxLn14z6MQZOTkNaAvordO8dr2y8r/ah/XJC9XwOpdH6Ac8Hsyo
zO122nCW1RtzZjINQqdd89b9sL1MWIvwC79F+sFotbfTWsjxjQG5DO6C/rlAnUt0izGMLYNRD/ST
axS3TT0sxEQwGF2AUP5d501OlPp97aFhYkLi2rkLi1dNebGq6iDSvccDndq7nHnc120XnP0xalR8
0OuC64P8XCvhY+QQxUnhurmwj5p5TcDVMLKVYBrFhOLDxGKUP4uWuH1GOUtd8xqKdOCWDCPrl9lq
3gg/i0pbpPDOXLrIXcZ8UAZ4Gx5NUnHQrfBCJcXKqDZzwQo54YJaCUN8ax+TKrVmAbI9vWEvzA7H
UyHeMkBGchNolXIDGWzO1zpwFmkfXBd+6WfYh1UQaYXuVz4m7J7JNKGP0VHQ9+B4/LdZ3VXilQ9r
y8RML+mgeXBE7UBmbPeOo73VDp7V/HvtgWxzrRA7q2bKF7202DEJC35mS1mLR5F4BNSR/0Po+/Jh
qBOL6JtoL4kdvEqHwp4g7x7H2VIV7IAPQN1/Pk90GaQADbEPN6h2FrtK8EV0PnbVuPbGjF6xRCbq
MRACtVW/Ue4ONrruMDyFYdF2FGnYBlObx23sPX/29IsYgcLPlprhgSbpk27uu/jH7lafr/zTMcfd
xskf6JXf6tyf+fYYT3DSSQeHBGit8bisLo2zKXUVd8QaYdy28q+U+JKl7hWZOjbm521xdJgfHMaS
w4N3fd/6g46LWO+jsCsa69Gs6c8KAoJzsDy/9/uAqW7BlUqux8i2tPaXRtRqThGY51lFWhBZsj8B
IwnY6ap+xofYFdSABQq3/OLZewbPRxxUvblATq7kHhV/prgsJEl2ZGUL8fJ+e7KjgMPYuM++WDdu
80VrWJiY2GvrhQqD+uWrlhOa+Mw1Ebh+FmhfwjDCZskIFX0pj4+C8PHN2Vd24DyRmZX87mbviIsy
XcpUHqyIUAnglxalPhxDqA06MwOSuHqbj1oMYnyod5gWQNPRcXNyfTkB1AwodCw+eUTNpOb9xX6T
ZB0EtAaUNxhqasS6ZseRKPapqd3XxXb9u7A1vOS0H0DHt1E0T5LzQSbzIUUDVA+YPhmcaAxDWzP0
sa+oRos1l0lHa0DhYiGk5+wovNzhFQqquTpdg6zR1OAOz/ukXDCin2fKwbmrY1EfIIafzSLx+Vec
OUJ5+fE1k/QsdnWpldzwIqUWUH036grOiSn2qafGPW4drRyjSLQ8gVCbgi0CSb2x1utZ/2F6Nukf
NSLvnFPB6+LgNONy0Fs119ZbCmp9uAupxkeG3cRvx9U+n9szfwMRK8yv05w+0WRtBRWWyUZeuYMt
a4IYUli8qO4QjxPRh532kZsXO8EWOOj0V9BvKlUKZGb4wNFGBdxY3sgymeb1vxfP9Q0tdjBiwG0e
0gBWOSFh4jmN/0so0/ctsqvIdswIAtFfRJv+rp/rXzDA6T1WQfBehyoeCzrIfvhZCuOdS/i/PHjJ
UOef4dupFbJfrC/Qzl9GQZ8BbUB0VZiGvn2tOP0g+mnkS2OFaSck45H3L4HDdQwjGqcMNwMBtz/1
yUCs3i9uNtOhEbH2QX80LAVCZUSjbQ1IqWWS/VTV1C+EqzSTRqCy6WU9++8XHstI/fS7QZ+08Zv3
0hIGk4C4E0l49PG/WixeOIIQoBCjcrhyzvw11IlZi7h0Ct+dBYdIFlXkx+o/vZ2aVLu9fDfTA8Cn
dkIpzUGdHksa6gLRn+EuW0NH4kNki4jhbN5INekpzKPDBNDWlQxlgEJdBlw+7s4eoVWvGBtweo/k
P/6jjkv2JfUiOev1dX95Yw4LXu5zanWWsMzoQtwKEN4jeRvNfeFzm0YDlInAIAQLv+SqboiWYfKV
0zj63VH3ITmHdV1WSU/aNXPDK8u0uiymZeU8rsZ9mCPNcIjDK3/+oVM9lrRatmMrndv8Na2NKl0D
7JKOl9l6CAyaH/02oDywHoG8xEkcJSwbF75B7t2SDl4KRq+Jtq2btqrY2mFESQ7fKi/Z7plCekI9
234ObnR3QBjITEt5hZ2qf4pHY6LgNwxqOouwBhfaYh230gvIwZKveKCOE9H/gekjoGAmb3jSn1lB
jr9/uDfIcnxTQ4BwzT9XI7hZEeJYb7q6JpJIyi9paGzPgrn5MlropUskH6GdKp7WDOLNfKj4/iUQ
Q7D+GwqZNYRmSiWWqtVZTQDHw3X+tGG+MbKL3m4KNAoCjMn4F/yiklG3WslXWmqN+iUN82huh6A/
XOkQdA4lrMtDrebkdd2ekZNRAqt3vJo+nIh5owv2sW1zUWEap5qlgT6xZlxCjov9nAjGUcagciIq
vBaQYLSuG4674E1FcOSPn1+wSTwPl7VcILtFtGZk+tdQNa1npfsZdepyax52TlHzXKDOUoF0I/18
TJ+HiEA3IZgVhkDKdpPKOkTKI2Sw/gZ8O+ckvIKZpNzN0D1bWzVOhkslrkQboISkFyFkiNK+3S80
ShX0mG/IIz/Q3vs5+cI0ntzs+lvoRBLj/GmDM2PGxQ8gZhI8XKfGzqC77NdGvGkyu+7yw3/timf5
CJAKpxAwK/CsWEUb1muY58gJDGdBj0LY2UDFv/abWrasbfyFDWbgKF0IezSMcGDNIyicWLsUzDM3
/OaxzWgHypeYWzphz5LvcRnZIXPT3cLlPq9k5qSTKKylJPxuGC2fjQGgDLX4sEpw/HLjdr/w6XW1
eHXTfy6/6ECaIz13WEyczdju+vShsk8pEJuxCepLDgqUHLDMvja6mKUeKzolze7h+ZZUqOpCweMI
6O58d9D3uYgwsmmD/HNQu8wlSKU+0mkPaRlU4illxgeXu8UIiKOCRGN0n0dA/Q+CXzQhJY31UJg7
qHBXDdMhLAOqQIT5aCAHqDgGTGrWki6HZyR228cP5rWfdfNGPbm+pE86HA3ySiTdzroMgMa8lZZR
bjj7PRwwDFJcy2G/NFXoAI9IDBR9dsLqcsGVmKkD9HxLs+ZQEtuJ/G8KJlhEvefbS/t7u22N7OAs
J5qrGRa7kzajZy5vugWdqS4JoHtNqkH41Yc8vdWW7nbXzYQ+d9RfBs1YoEBevTDRwgs6ru1V9jIU
oMQLQ9vjD9b3RPYDw0WV7NlVOpI5DCduvzryV2FH0g3yUX+ABUZ4CpQtEsAiYOAMVspAWrcBx3q5
ypURa6JccuyHsmQzyLTp5/3wFZRJ9gWRACaVNkl6VeR8G6iJw3VHrmDje7it3ISiUFoJkX5Vs53M
1QtgDuW1D+N5gpAaWny0uHG5UleEMj5VHGC9YEjFnYQgFrqZh7CJUCnSLVZICKqrxvkerqUVflyP
vhkm71hRr33UcDEwDFCAcKxorD5ix1euyYibX+o/lrDebCCMGMJXfFSnm5iDCdVjiFl5DEjCvW4j
QvkAyZAM9vCX382+kxLtGexyV67FSNcGvIp0qLBHHpBuJt0N0j6IP3TUyajILJX5Ezjq9wxot8mb
oBN7uiEYVZHZB9ZuOm7oHzLqrtYpKLqYcwzsY7ULX3BJun5B7ayDBB9AQY2F/aq5AAWdCe1pt4E/
MfwxO6M4IhrCugizJ3ozuldlHOCxeAS3/rmgnGo0raRn2GGEjeRQsaj86vyRCqpmBSjRxgSX1gUs
z/guFusMPMerLSE9Nl18RXb/wkmmnCudJxEMT+sch+BMnCz3JFgNsSCIJ3izn5l2wQipSSCTdELp
8S1nE4pzzuUpngTHLEUk3tnEadOLu1gB4rh+SKV0RB/0/COIBX1NqXgJ8k/04wKXeld0e93DzFmD
RCj4Fc3Fkkq5IybxiHjmAtnlhANtGD8BXXHqRB3kXKQTUzCI4lG6yenQzHREm8/5LN6OTjKdYjCo
+2MGNi39LFbUZWQq1egxvgJAcpNlhl2DrXNjjthbTfxLFxWOo/26GkHIEO1V50GFGXPsbzvhbOkM
ARvdLDKsDnMQpzEBfo9hPjlKWlJ2FvAKGaNFC5f+ZRrQsqc65gQtZb37zO/SykhykkFi35M8shxf
T0MYJiI7twOdx962s1S82fqZqENV5pQBQL7laHEPMbMu6vOY621Bf/MtWKlMdlDdB8M6FmIB0yF2
usZUqFZEq28vIztxG0cZ8qxwxSiOU2ZgVYy0mnx+tNUCq2sjKuAgrwT1jySVV/Tp9IjE2YI4gXw+
bCvCIYuazCZ4l7zsgPh2HMH7hfTPrDPio1rLRsTYm1xXHRFMNbjNN+tAvKUSgiSVgYueRlAN9WSU
U0oN/0o2yn8XIbc8RDnajHhaP9M6jtn3q0H8hGsCcshujvhAxjUX2Rqm5c004azOgemuPvke+JS8
HalTVhpQbziq68Qe+yUFzTPdIbnwM5U016cdR2JiZuRwOb31E9nkUDg7dzrbOxca+INZMB0vmZdM
ff/gO1IYEa/82WPnXV2oqbtc6qvxJOJTaC5PFEsMGy3zBi7GccnUYj+51cY5j2lOezYDyGKco/xG
KZDGJtm6/Csin4jwpw/8swHRFxaM8nuqPqucBpfhqN4thnh83i8h6UR5TEHo9Zo/dRGXeBABjCS+
WZlmCW6z2zlWhojqJmiKhQ461cFVZ3uc9f2ibeY5fyZi8nZ56PC+Kt+qqhILld8NhsHQXWnyuh3+
MCZmNlO082F0+5tfuYwOJuDOSsPVIXpMe0f7ZUnswDSfTTFlMi28d/btY127Em6snOpJjRNA9mUf
GZp0uc+pzToAFD3cw5KZD0guoxLaKMNpglAvTs2i+KJlZie27roRl7sQ59zaJGe3nVuT9AVodzel
QRhRsjmpmatWBMHRnmVAz6qkJaGfKFsUIxd3yIgDT4vpuL/69ohIATxHxGQaTh3CvBbFNKEOecPN
jTfKu0267WH41EJD17aqKzmf/yaxHk4yCysealbIdDumqYtNAR1l53zQTCNChCZFGlbhw1aEGelm
RCbZ9+Pbhri06G97GEKT+0QbmY/ch/v5xnTLgr5Yrjmi03PzF8o0+B8F2ak+VDhC87roquJBDDKQ
bO06C3kztjWzmTf69XVUeKFCPwN5WWhjZG+xJT5zAFZL9Znk+CPss3O24nwVviVceVmS7/Wk9rTY
cFxdxpkbPpzl3uTv8FOrA3iFlL+Md4eStVB11bj4G6qOcDot2oSVC0QVAbi019ZLTK6tWhGQOcv5
LMiaL7merQC34o/0TiA4aM+3WHBm32XxPAOgomB5ilVFdSFfmmntL62jEd3htYZxhZR9kn+GYOuB
Sv+Q22NGDJlAW3cHrSebK54wVw2uNtjPUDyobEtp9HHjdRVl9j2O6FlMoNVZTDG4xCLQ72QYZ7iS
Eii2px2augN2Uwdesunx3Y04FjnmDdQq4csFckLJpBMHXwutugAJDhPY6mEK+TScieUvt8rNmTki
sscB99Xka1JWAFrm5gjj2gQw1KD9oI+/+JDurTiVAft4Z7kWyBojfwkTyv6ZbK2bSmINv6DCbvXq
Yo8oSp/dOcushWWH7mWBVqY2LJo2VtZRmSDiUZ8Zri9P5Foc2ZBRv6AvXLunv6Iyxtg6uBgXFmU7
OZ1XezE8tTxEwh/LFRLFI3zahSDz604MboU9nBhhUSzPI9hKb/Kkv4ZyhMUPDjZWjdmCri8kH/p/
dLu5GXfWA3X0q1FIhIabZR2CtAyvFFWFzd4B32m3NT94k3cJXo4V3kvUirUhAXyl714zJxtWwyIp
rkTWp1/w+UqFSUBKqlscWJaIiPOc5sApluaao4ERufMcDADG8iAv0OljClk8lTK5XHEAXkTDXRY2
xJonExn4fLTC3I8x88un+QZT4W5RRZt+PxE/i4fDm/GUoTDK2Tu4xIU7nKQy2+vHjdtlNH9vcCLA
Hpv90XAFmyTnxQ1ke5ZJ7uMlvgLSL2eWnRsO3WH1YERQCRL8vDAlEiZZBLclKvIn9X/HK0UU9a2L
7uv2M1hjV2XyBVuInTsOeHeYWIB8wRPTez+YjjsgBQs8laujhus4ZIJmvSCvvS5qEBlthHTHpS5n
GxjyEtoVYE13QCf1elVW5nBonEPRseGSLSwYfFMIsgXAcShRH0WW4HJhIFmqfoL0tm90dSTKCAYS
PJh6errWc8hb10VyohUn3qBl0hxP2Ihbma8sxaBE12DxX5v3OkmZCWzDWNPyW7Hy+e2CkNr582ZX
LV9rHVWeOp03/E+iY1G8eTtFy14kDJ+RxqOjvc7hX0R16o5QRBAzYn2BF8vJz2Ou0BppePXji5MY
iYttiFwbc6kKu9Cwsub2qqzpTyJJv1EVEA96ROG0qzrf4k1dAOHx2oRH2Wf2sLywvwTuCLWAirQh
NBYqzuE78/T0/UlQljVMdFQh3mDHgFoU58b+inHQRucEeRBgxp1O4au9nJjasHwykHwe+bwTveqD
tSDm5rsNZKt1FcDvT1U/17bGR6X5Fu8lAvpZ7GEV8V+9UoPQOdpKbzD9+5jpbW9pKQ7gl0VzpHic
v6uWuxz8gu6jx5QPOCtbSGLwjhvYzVbaZWu4SbwJ2rybZEaPvSsNip6m6Klatr4HsSjdgfF52ZEK
el7sJFr3w9LHBTrQVyQxQfp21qAXDMI71fzOWMb5iP5s1J+9VayL4mVcySdeSxUqSsXu2Iou3pmG
qGn6YaC42vvrX5ABvx0DdsyMSywaovZkjlHUw1eNjY/JMO1B9owLdGI5WNyeRV9EKZ+dFib1TJg0
45mkjDanqRgfsNhHqQWmhCHV2yh+hB0OCgVIFTkKzF3UYjkM8o+dwz5+zl2WMfeII8VvqXETBRHr
VETp2X3LKoiSgLCHlKoFZP8Qe3ACjP4K20f1fCgEcDAkq5uhnAnb0h/Xzjt9+6Z00Bh5vhR1x+Sl
Qly5wbLi2F0bKx0fgxHkpgxWfD1+GdWYQ2NL0/DMNYrpRZTA0CYb9vGdn9NttQneGETXlQZ3tX1G
Q+r4lOQtE/eSHDSv5RRYROAO6ZCjZ0mGwVH9aNsj2iTv4yLxmFC9FlOWl20UMCnYuHbyPUoQVUXE
A/x7QFq+kh9zkLAVRYmsxfpP6gffwPZveaksHl4iOQlSMffufNkWSGBMxB1FPHWy+bpym8PxxYix
5Rm9VN70xPR8cew4l17PvcUnNMJF9jRxLQ0nyGtSQ2WjI/lqKSBp+6qqI47E0NmfgmBQDTf7Jzn5
bjEWMAZ9WOndWC1Q4JIfFhyIvDAM/Oj+bzyNOhzPdkGn8EAlxAZEH+N4fyX+vuC09+JVEkdDe4Ep
MnNvhbnamdqXqfIGjK8spcm1vWHDnDpKsefzlseC9jndAPv7B78mWchobXgTkOr76ooALUNoCJor
tn3E/ii/CCO5AhoyRxkB2to7bE027soGpoQcjnbqt+TkA1C84aZnqywC8V7DoFZLSAP0ORtgWlIt
x8Zl+ijdacHa5rLaZgKp0Uf3BaUw7u1J9B0ZakLNKpCOoemCjLtSETLznkrrCA7NGnZUyugKFHVQ
1c5CLieffxMzHwLk/Z0Cl9dzSSnHofMjg10Sj5mtYSgmXqWshjFhhCqqLs0aPSK5mcY23os02hH5
yxYQ+J7efJLJ87EhiuOzfcRpGdd0THQDZSRAiNZG/fetLa1QUbgAKpR53029VCjqoSV9KUvkr9sX
pyr5lJE9YosRL1RmCL3deshKcbEXYfgXALzGGMix/dD81HDznwmXDyLzHP/dVsHgT6b9y4T47gPI
sOqX8CksGvZSuZTen+JX1XPni/RTODs3G9QJkul1koh0qhcaokkyeb3djjTm777hIfHzJx94Ezt5
/TKGiucYGBHT8svh/wbrB4XFPxw/yFuOgx1se1B9WhNDGXk6Xk18nHedv7PxyKpHGd13ToC5ZXhl
HeALJ8drQHMxbipAJ/jkYXsA9zU9GjwXTKK3Rb8iuWqq4DefOVOJfBAkDVoOJ/7xgmn+wEJwPZlK
q4SbSI+sqmLEdI2QIgdAQQ3/wUNq6lgSRZb9o85ijX8FumfUTkK6JA/LfksVM69zP6QBmt0Qcw9B
TFQRMmyb3KIkBwdMu8jQ0LE5dt3mpRopT31m2acLUaROZSupSW40/MicTlDbUl2DuzNV6TbtilmF
lurM6LNbLXFRI1+R1I9mqsi0a4igfXzcQ/Oy3ephbRe4hiL0vJD13SJakCkfNIeTC8PY/l8ldJS1
hwHAIxygB/j5pNyo+e9Nb56bAMr7SLJWxvfrr2Ecfj9LHAeVs/gPDJKTQnXytBAVND+lt+Mn5PaS
u0hFZpQG4AlfjlrbWw8abnYgFo9kl4skodPHg2XEsKqboay6kA16zIbLSJG/y30bQbK2b39DADhR
TE726CCJc61mtljV1yCPElFLqtlheS/EJRsK8gIvOFITOZJeWqXvEliSDzq3G7GK0U5zCBcqm0mg
ISosAyVd/ZfabB+ufgQtVKMn9iLkpPGPY+lwzz8UdiTRMjlM0NaPXaRc2RQbFsEUtrKJ/3M27n9W
GP++5wBUOUDeOGdDnwqqqIgnOhK5GUFjfqbOs/cxB45LDHkSPUK1xlKQ15NZ4/JfrePjlgVvTjXa
LctZfmO2LZq2vodUJ/6aeslLmCDuG2r3qKbvjXDl7W8rKHOad08wAa1cxQH0OJEVc4jg7Cnamzeg
w9mkE6mPy52JT+bMaG+15ox/oYldaBK88ZIq4r+xONhm3o0eC25yWDQduZ0EiWZMgOG6gVt1hX4M
vgWn9B0P85F88sSL7lm0qWvwFGniMNKXLG4cGjn1vNWrABuTLYMF8E7NonNhwLYGN6FXEthA9gyP
ks4kfDy/WVBqQY1NA1kwbUlW4T+fNQXhphFAO6SEWhd7f3zPc7/4eQ2QJ/xtVowFNt6esJ0o89O4
DR3DUDZSBo7p7ZZrW1kWuiTzOvMs0sXWs+blh6pCLseHrB77qUSRvR733XD4DFWoIGaRSpQpmt7+
6BjPpc+K2pIPoOiHNV+RtOe2nULwAzStTAeWUmc7kSTfjU1tgCdTcL7oJKxUEXJ/4dvk4m0kV4Gi
Rbtd08IpWLz1Ha6V5qq5jnuWNALwnbFrfubtB+SdiduyOqUle3fTpTZ7Q/KOk8l87nER0RblPMhr
eytKwlw/9ArXFhM2v/mCL31GuQgHvqT9Lo1DSARrtsMviCsGmnt8ZqRaP7Djv30Z5Rf97cZM8Fdj
n+aJh8JGyKAPqjWbntyGnOrwdxAZgfQGKt0yQyAdgqgG8iuHwr8UplWCzMuDBpI0Q7f/q5uh0oBc
DWGxLkafkxGHoxAhrqbRzTthLxJCPj8jJWp7RTJGUUBBYM1258rQyGIS2qiFn/bYInWFkxCbnaQx
58lH4xOMN9mwZo2up2JJqqFQznYUxpLId2t2h01v87IpNy+L8hauVvgw18jOtTt90x3caiTiPmpP
iZImKFHDuVG6740ymQphi5tEiDkFEd/6zyjmJ+Cbz/iK8DlE1ATtf0VPpF47S3N2+C7E0EBRBhCc
6R/FVOsySJRlB6+Lqm73Pr1I311sscgPRTTPhjBh8u2bPJmlr248M2CllbS9jG2dCFEhHdEjM8AF
p71cG/FO4Qc5C7/e80bgj/PFrvM9hXsnuzTZpIjVsOQtSJm4Nx/IwSJZvHJ+R2Yijc/9ntQHeays
4AsTn0xrlbDzc5Gzf4PPFSTBDo1r9xaVF5BpN2SUWsuaFwh6OpIzJSRHxW+ShNRPUq8+dxkzhO2I
OmB8BZxeCXIfTJwo/itZOQg3BsS185CwKCsAwLyBL0qeHDsJDQtWptMqoXYSBjSsLPsIuPOzAbyM
79+mfOPD7Q8C0+/O2L3VGAdbJmNmr+EWnHLqly5Xo69q6zG4zJV0Q3syFPQhZhlpnhEgC7Sf9gn1
3VVbBjNIHYQ/+k8UywPaqE3z2eTknjLCxz3DfHOUYa3KI5Sa1JriJaFuG35DD3IXom+5psBwaYQ0
/QtfqsZVxexXZe04QSx8xnU85suJfznm792HOhax930ewwVl50DSytA8xPOifDP4sLC49ByCzelf
Ltw3jIgpBqSylxCxfn/X3WTAYA+OQ4Vg+w6BpkkwAPtbcVJ511G07XyZx/q1/6ZgSh07U1ubDACt
QZZJ1URpw3PqabvdrfokBxwqIjJTrcap5Wt0ecW6PLbLdSGTuiZvyXJwYaf7XjBre16BI9DpD2TU
qrvuogMUAiwnlizjUbvhR4R6mYutXLObdwkWY8Q1aaAL0KwqAc38U2tGaWqiW0Q3Kcrd3eb9R96c
0dioPX2kyGlLBoUwyB3Se8Pmjd1xlIl5k2f4v/51ZR4oLOU74j4kmpkjPBlyQuLl9VEGkxlshnP3
Qng7cXP/MuN4cnov/4mhZ81x8RuIR8XMQZXoaj8OlZt4P5Ur/INlnUEYK8UvcR51JLrioIXFE3jh
qI28EginKpJ+p353aj4mFGGo4sF3y7ablQRICDHn+H054kJeSj7NPhOb8HFkar3RTAZnP0F5C1LG
hrR2sCyvh5hOAZS8l0vPzpheiS6dQjXvHr5VoL94sRh/C1b7liPKV2wQiPmsJ745LBY4MqB5rNJq
53Svu/nK8v9kHrFjfqf85KPswbHKQCrHV0mB6IlJNJqhXoxLBA/IlyKWty+lfrRvR7qhore96HUF
boUZcakPwqwHLmJ6ZNsDWSFhpuqIiyeiQjBhq0k6kEDCiJ7sxR/q1tgVFaum/lw5RI5TA6aSr/IX
t2owC5LQIjmfauEVLx5qnzPgnYDSNEOQecB8lmHB2gPeIVznQnh/otkJZop0mGAfXEfg5e4j2mt3
Ga3tFZNXNOq2Ol/4GDa7Mo70JHzybhw34fJvk1g7sBRF+d/9Lz0KD63VUfcGwm3Ace0+IxCTBkjY
BRu8ahnNunIwnMQqUIQLfKMuiWu2rtqxw+Foxw/aQZaM8IbFRAUyEIzB1zXy/zIJLGpYaRDS3TjX
J55Z7CN0zHXfL6fiDkNLHUpKF2ZMK5jIhfXAjcmUmfFdOSgsanbXJEKFTsNcAY6mIu6QgfdL7Gm/
JGZxfIm1xTK7Hjd4h2YNsVJbDw93DLsnlXa1dZx7ADlSQRe0xxKr62ALQ+E/PNHg+9hgk8uXpFWE
iW/yaCd2MeyjoWRs/GrU/7JBzbcfpxoVy5lH5nxaeIiSOcKRGkra9gdsSM86Xdm4POzSYn2pTZqU
BGe4oHknoXkoWsxDQ0h1eFjSmzA/eciwmsVfXeRB3tTmUlgHWqweB4uocbdBQATmYlcTqDw3ijOU
e+Inv9yT/w2e/B2eg35tO0pn8sJTUlOpnbL4Hx0Bxs879I4rLZ7MDBAxL6KCNbYgDxg/jEldxGS4
YhpgZfC78w6WqEUkDiEvPDOYGt19jDhr305WQEYK1dwEXGS5yVktqlqMPrL0fDv6yY6EnaZOGts0
yjs6u9JMM8fOM7qnkp7IGw1sNTnaA+HvnqqXex7DL542PmaHBS63iM9BOB4vImh1Lx8tqYk6vefa
vCpcEJ7KGyZKPcbMlkkDDro3XLt7By3Y3kHjIOdl9MxAdUka+1pytAfXNd0fFJxOGCwBokWhCA0h
wKKpsPdLiucunnsSALiTslhWKnVGkyMMll9TQ5SRa0gsfIYbCLwHrPUNBOw1e713JNgWG28Hhe9q
vT1EXr4eIVN9FPHnHkWIjgw4Q+9QDZyEVUcRIhmrUKEKWp9BphNVsPTLVwe/wkKmtYwaLKfDuN2j
0WCgYq6WZjMdmJpJg4anO4VIJEepphkPq54x7OeYQ5X/Rvpzim9Sua5ipSgIZz7dtRsstmcYsmvk
NQmKpId4T9BTKkCarZgQsleCGzCDQG20qmxrg+N9Rf1Es220E6faNj3GY/trvEusfP3IfxgXuoUM
9ZN6gtOBOqjNePyI5Pk8pnGpHWh0f4GK3plROxUBqsBMUFZDmJLrH3+UOuvnRO1SYM1RAtE9ojGN
YHrJUwlKz2VIkT1suy01jJLSAed2YN1avsmjXGayA24sJVMomHx/A03UhQxKsrjwz7QZtbudSDx0
TRsqAHIFTQb9C/Jzq++eaRzr63kDICGsvxdroNjl4tBTmv0lPoenQzXcQan5eX9v9HtOwemxLYBe
GlLyhaAZgYVAb820UaUzmUF7nBJyYhGPkuSQYKNIXIl3RpHUGCaMsl1sIZNeiJOplmwtke28NF1+
tQIOX6qJIgauP6BskQ6P4+6LBslNVWHwwbm471bDHGA6DNlMZAWMPnZRoyIosj3ytIqLsLUE7uJX
EgycMjVcCzf3lpVUDz/OTAQEl2fraC5J1v4buFJXYknZo/W74l6QBAdYmxtbjKPSu6BDANhP+I+6
rt0cMHBg0Di/G57jaSTPvfkSATkKQDFCTF4xyG67YU7dXyCPByTXclCFJSezHMKZsj75zXfpgF2g
zXq3flPCBCb7WXt5PJMenRz8bOBLJiSN2orhQkZTDKzHdi6UFX4xht8m+sLv8G24GyW7hBYZp5LC
+5LrPetNvSQD14Uw1IxNlmHfDMnrlIvQkq0OOeGgl4HbdHJKyr+5vLmdBp6In5CRpC7AAqjAoTJ/
aWVKUbYmnK1Y1sENrXNNLjhOGw0JQWdk40HM+HqfLZ7RdVxkL2AG3H5BhF6SGBoMe30wdorAUUaE
9rYRCUEZRZ2RtCkVrb1UBHCDqVQmPY94H9yzhz2zamej3nP/t17tWRpw+YXQvKCrc/TIoTwx19Ae
dtHuyqAEZw9DkQBd3N7EP9j7EN78zPzC7jB0yWUWh+iDixtIWYU7QICVaXZYDsEH0oFN2vJDU/32
QyBO3LYg20EEraAT2C4Fy+jjNb9W1wUOHyqNywO9Q6g5MxCXnI0kaz/NIC8aZdqkiFdeI17W0wJJ
UQMR0P3yIvk4HCoyk8ipVlbaaU1j4ZV4rhPT7Px1Lxmb2Qx4x/NhHR3LlWOqFuxWmUCt5aQf12tJ
lP1CCoGxDYxUKFTNr+1/5WrzxMjU3fdAvrJSwO5t+pHvC0iq6hB3tjDnoUVABPijv0wIFHbUFugQ
axrveYDKs1XccT+33/DmkniCALc5l05Ano4Kq8LaGpG1l8r61CF+bBRk4hiNqRdL9vNkZXwVlM8W
1RKRmsbtWvxCL3sMIH8CX7FCORrH3CinQv0OOfSnTbhWg8CoVeR65dh3lPFmoN6bwhmyU4JC+oCn
vvUmNsmjILDd9GD8KjjqC6LdLebzVF8cG3HBK3KK3KWInm+oJSZZrfHVfLkG54tGJaCJj92g7yEB
Q8PiNu8blnprxUCR221bnoF3Vt63akywABrkg81vjGaUkxFOIxJO48qSPy2LSwWUdxgEf2qXd8cQ
TwOLLiwvnhZbc3pgqdOI5ZbPwWo7davXCAfPmNaqhdquopYtR848d1XdwimEqjJ1SAaIsA8Z+nzT
Zn2Fc1hliqW35SIBr0U3xmaDXXbF7W0Pg7QV9anDOnPe3KjUKc4JeDZtxMSH/SsuQ9w6HGPMIbba
+fbnVt3oFCG4RqMIYGNWwcJzM5PEu1w6gz8T5fJTQZmaOHXUf8amyPw7crt0bUj/VsOWplbBLsVr
t8RZX54ziyniX8JomtISm7YSRDquw5Qp3uwafHLIMlbms4YMVcBZL89Y1C5b799QMGCPm1rEmH6a
0XhO6JkXk8fNKpEZdVaSPIkyUUbsTZfoYY83O9c3hGtB1Qo0XVBqICbckp9YGxMSdzGS4Hwjqbjg
uZL9OhYIslKXUZxe2jqOXzKfnzrh11Qh12+l18iItVjCvVkgiMRYxJ7jaVdghco2UdljbAOyo0eb
s9XWndO5HtsHhgmvVKXH0bSLF4HIsGZSsmwOnn7SNgAUnK6ghX1WTMk5/HoMZ6pJsK1VIzwPUimK
x8knDPQb0uJN/gqCOjIYbMD9aIqBu+qgy8xFPjfWesgXswo1dlcbOhj3OKNqxsr5NTS5MTSjlRv9
fNGyA7AodhunPP2Gb4YHR2yjZGRIjjtQqDcxRzzbxqKf9xOLRq8wg4SpdHXru5JtoESe3p8QQ+tq
YkDbVCLn7DNnRs6a1C5981WqU4z3qlbldE7g8OU+McvGzzW9/jSQnnwKZKiFeKJTLYJMcgE7WFCe
cRgUYcjapcKIKdlQ1z2NLCaZGJTOCE8Xj6LHUcJcUe7WUc8Cc0hwrn25zlDsTl5/4Y1pfdVPx6yD
iqsPRSV42Ct5LoZRG6rChd2FL7Qu+dFHs65kNbjEfWKVyDVa/77cjACkW2GTkqOr0U+gNKFc0qpn
J5RuWTu3mgG/hsWK0Jvr68hpOVyAF6OkwscDtEdcin5Pv3Kos+UUHgfCar2YaqVEFcv7DrMxo7Kt
6kWqFYe7mSrfkiRiwfBUiNMqbWQLgL5a5W4UrmvmynjI9GKiDNIgBN27mt7Ka9PtwuvHgdG/qS4J
9yUE/jAnQilx8Bl18aCPX+CzoX1KvB7C3ksDZHHUuUAFOR/Rq5uGDNJVkqZ7YkzcBTDFNzJd4j0C
HaCX6NT+TrnGilXb4I1PUj+q4AdpRN64cZN/rC1DVJsnFbPWRInsxMYa3VkQjm/hOnNcpiSvHM2O
dv03ANjV87RWctbkpVxs/nJ11zur4moFS5tkevWCDfZSJAzewA3Dx5VZsFiAlS+8Fw7+Ei9Exy1A
4XUQeX/F0SQqucxMozVBTc3nM28SJDu0DYLMG2ximYpUdxmFzgwQK2x2nBWZ6frf0hnRcYv8fzZk
+FbQIkczrq2z6irj/v2LL5xWk70r96z8PpypnGQpxgoHKbR1tKxN2ZbGD3qVXbFqj8lrzLWdGg24
cQdiv7E3ZZdkjo0lPm2kWTQBIiXNv6A0cq2005NiuqiUi8gIXPKXt8PrHBYPKQcDcNO1yopdo1iq
77vZ1c8EC18WyKjNZg8WSABPcrVCp0ELhM5z+xt8vj/S5XYSvHzAynVg+8WrtJK5YCYd5CAuxiUa
cwk8GYg/VPcibc366kA1SOWBjyJEMLmRIzeoqZvhMx98zHpXXlBny8WiUYsvszjAzpxPPcVoHpMM
S/F90t9Pa4OQklKAwe+ifSAOOB5SgpBCyTAU5e4+nm+b6FBJ4d/Xbp0tMi8kkAm/MnA1wGJtDL3o
O2BCy+AEM/zGyyCvvMNL8zdj/W02BhNhJkhQYXT4xu7zjeyF2B+oWHGJVi/rPxsCQcyQrQ3AXcSF
brW2Fglo7Wwg4AglkYXtTMcYgu5dyceyUkZkOeK5Obxh7+cEFMQh2HxhnoXBm2c2hm4tyKyx5l6x
ohoTFjQ4YxZZ66+zmuGUokhu84k61Jwlf+qLA7m1sLMxJhHszuJa12YGdpADzGHR0JNdaMw7Mrb/
Rg4zEfsLSriKmkbyYgmOT6H3XfOrGWUU7O7MUxOQsBwFT4Q8xCCCtkK+RgwrAPzKGRlnptxkasDq
BYPHdUNpoZWqAR5uyh3oTYOOydmxHShvzDsMqP7DvxwiBZFBOx/fj6z+wN8xvRAnw8phhJcB+yG5
W6ojpwmu0C+MuDDp0g8ZGMZLkvttHc0I8IcGZtsFjTMjv2wMCKHO9kBBvUXnkDlfFFurtdyrQ8jk
S+fND7fsyF4t1P3aQrHjSMN7+2iOlFuETacvvGVTkelbcnUXCWSmGB6qesHmEuvx6nnGtZCQPBxN
IGuYItsoWBUCwuxseQVGJWPVagmln8HAXxv1BnEqNEKzL0armi2NusD1Ke1RVAkzqKX+YsUikhQQ
/1rJI0GUc1gEi9qqjLWTxm+loIEkP4IWBHlY6jfB1PtBDWmVOXwn/XB1vjVz54yhoIXtX5IBmt73
T0/m1WU26s6oI+6AH445dGutiN3Q/sBj74Mhj0HCRVyjnwZqyqKQNXe9CkJIuJUb8WiBbs7FJYFJ
0LPVcZXYovh0nTZgnm/id2c5ts4WLloer/MX9Q/hHDcxKX3dmZAO8ZfDeHhux92ysxTdxD2azGFc
HMsmIiWeUE4pUTU05F+/MOZLHn9LWFQ2IUAEmSDM3ipM+yrcCahaTGHB835yJc6Dl/D61VCPXKZ1
L1xL0n4UOzaqON1KQC7ZKnuK6ZAEYmstettyZNkLyCwZqHnFkzYR9bpIEk9LDXaBkAHGXi5QloEv
tGSpBr2nRKWJNu20sR3JZCZUS/gtuxX2Fg40X2PhOzLZABTB7FJtQ30rzDBlfHe7Yga9OrhjgXDc
KdDJ7Z/n9bwvb4tS/p18NpMDhOK7lpj5P4bnKZ7V4ZpnlWlgLQ6x3UK5BCK6DFsJNtdk6d50Olc5
3bTU0Q6pisRGClm0ARcM+M+8RrGQllKuWXzaOY+yxieonhNY0fMtmB2f/GjrgSqUDTPLPAL2zVXE
qG95D6cpc/GwDpcwfLpUvq9ni9yp+6YCmIkHIhGRw2f4WHXz4UfYRRBxqfoINzbBwKTEmi31eiqF
B1aN5+U4iBXQLrkPRGAfHzR87YD6djXQOOSyHMAzXN2Fw37I97MOgQybtrwBP7WkkH5Xo1t1qRwt
uMnZKWSLLvNsoDWBgQ9MqVUm7iXo1W68zwTa9U8CTtpkjRhVLNqcJIwj5QoGvx327Ibf0/7BUjnm
BKDGT1lr4WhIWd2fdVkBposDzd0WNFY//TJ542ciBHtQMFiiv7+xLh7AMYcuvpXJHGhMb3xFbMcp
3C9wTI6gzMd2TW6K9HxzzzSrQ4EfdGkrw+iVC5JxQ+frvZBo6jdzILkc+GbPqjbaSZ81+mOSfnPo
/jHJlZnr3dw/iglzgykrDdLAnGsLUa56/Ummb11Z0EflcelLN+wpjgIfwB0esFiFVJfE0BzqMtBB
VfGUDuBhNd/BEPIW7ypP2p0CEn8jHJYIAj1vC8WoAsw+rjspi4uygoYG/spjaMhhUigNT1sIamGk
ElTCjKRQqDQ+TZTlE1W+d7mL0uAUy32eXa0avJVmIYbnUBtOB6x+zI0MM8i86ob5+g+bKtjPf1Mf
Hvod6255cXQ9TISH65/24u6jVBW3uTuRQAxEzIPrdudG/7McOGpIOWkemzM+JRzkIjykx4Oop5Bb
dUapHXD83SfOnyiS84eMK9LifgM0OWGmsJ3H2xavrLBHYbYElJFOhHGb1AhARJBcQ1JwOO4a0fTO
Og+B6nFz7U1znn9ItdcJKt3zSuvhuUeVKYFHw9cOcDGYO29ULkRrEwXAx1VIATYJFdHzMq8bfE1H
pxSyTGfDWTeJ/QNtPiWRFl+wmTtTsZyClql0VumBx1ibTHUbc4iENz78RTwJOeSaytyO5nAq+luB
Rowm+q1EQ7Yfn1dhHUboiw9uqBBlThs9XEl5iXr8wks1OFiFF1vxt+0kWzfKFyUt6EOye4dz8OQ2
0NHmez3h7i5tU/rYoc2lCfqzjmBcDnEcKRxP4UQG2wYmQvlSNbP7SAZjfxWuDaxT9Vb2rF3iY9k6
rvkFMP9ZQsxm0jri/MfuwmQQ3XJ+J64kcpQd7JZ3nmGpsHokfXL9dj+YiAjN5H6fAo4CKc1uUzJj
/xOKnx0GIRmCu/ifh3X5yNYDY0vSD6CKXnBnlgYgExVLgX3r4eutDcM5b7hieO3D7fIA0SNrV8T/
QcC1ovlsW6bzF6yMkWJe3SFViWaa+kcJt0/M/62nkUyJHhwNSWh7KUTiUarw457X6JH0epHlaQFH
A/M+ZoNHuBsDEmOak+c0syrOCz8fSpyf7xPNyvqa1UagoHKpqGspCYt9bJTvqP2QGjmjvG6Wofro
+LMQihv/9waewWoQn+nd0HuFswagEi0tZbmlBxL5E8pss1tSFJvqNHSDjx6onX+WZOaJmJdbi7dd
VvVRAueDtxc5kD9g/7HTeSKpMgO2WSnMEhUzt6suEzPsYqRPCVoefr6sJusBYcjnNHWPq5WTlAgk
mKKPpL1lUDBcWS4EdTGHWUItFjYnka06laJExSi/Z6I/CRNS76QKnMlBWMiNkRp6zLPQbp+Q2wAv
M4A3CkNXaU3PspK0f8QjLLdQ13vgdG5vi1N49zQ3MGQsuKrwIz9Vyp/I3cRLxzDkJCp0QFxM1I/K
YmY2WmxfTAkddzGdQ7r17ITQe/D/w2iYnLkKLAZH9JUt/WuvSWrEa0cXjtOZvdkmPk1Jnn4YhKbD
zKymYQZSz+Q48YZJk4jDlzoHGGBlGWFggnlk+XAuESxzAbNuED3FMig0EjzQ5Krl0sTwAcViTnVf
cAlzB822GyRZNIiJ4u8IpjuuwRZb3n/Doetvo+e+dsQ9SJJ+37KaTnUvDi3yVGn5MG9EfCMC/wkw
lz4dk+9zWnZ0+E27nKINJYethL6eL5Aebu3yqm1BPilG4MkOQIlAuoTYPFkerPOqzoHDX6T+FlRH
sNDQpVH4iHx+BaBXMAgq6PVaY6qApY8UZQYYPurDA/nokM5+rL60UjrjvZJGv5xlhYHS+CWe/q7G
bLOS3KuT7CEsdsPy6Gkez3o2KR8Xo4Gm7vgDxU9KiNP7DGxQev8S7KjZw+Xo0PzkkiXEM0ixJ1F9
AJzTj3QkCoQxxED3mbMaOV7ysdqt+Pqw/hm/LTOCj3jZ0ymyQAY3j5Vr0A4ruPGAIdkxJ5eFW0hE
E3Gj2x+L04NM11kjz2xbNUQh/C3FEIs8i6XT/gqi2JrA4YfdJWAdwvRK58chtakvfK0hv43S+VOB
NNqzOBdG0S7G6x+QhoaDpNADRuZ17eztaHIaRUwp011rJPPGYGC8chIgLJ9ZF+ZmDFwn/4OYjczn
nSPYIA/Kt2rChKGXSKmDGVudTipDEKaTxV2klo1dC+x3GUTxR4yvES7R09Ee3SJl1qVjbBO0V3Ga
6aBa7ULX4BqYU1eKvLYj0Z3G3dDDbPKk5AK2YivmtHyG1p/f86PGwTqnh1poeFodDjnEk1V2gmkT
Nrne/pkZDN3BXs61R931Ly31k9aG17HO/E8nADHvH+ty1CCsJcq+RtXx4uvTE68Pj9VKr1ZDo/hs
WPSLjUglnNii48twt4qo6vZiriIvSFXZ4MqxIx8W/IZralVAEM48hxQYCHa8+Ojd1pch6vOR1LvZ
B4qoXgpxulWyZUfBdN5fw5aR1i3Lc2lHGfntnpOQrwbr/1n/sVck/KBfMpJNg9cYKjRimEfbvlvd
JX70vzJs1oZJMPBH/BjE31WH0WxL3BQrrweNTfAjV9/7P3/UVZWt8+HBNvjO6WWeXqf1CVZ8CTMM
90FBEgrFsXG21RN6HS/sPGujkhsvg/gd1k9UDXZc8Oe/y9zPvhguTTH5fzYpWvPBYHUDyugcM/sS
wTmrkvGZbuEkEhF27qrgzknH1FDKFD7SyVbVGJcGgIEH+bm5shh7gx9nM3iO3ExsJzxEoE0xKkiN
1wazInn0bYWPcGFdgRGus3fnj9LBS5Fb+exhm2bN7lg07aPST5sqg2OiOeDAkvQY8AD9TOV2Zv5L
9NQhRF+BTxwkJF3UYOgwTtbltc5FxNd5sz0teuBv9TQGXpB/tz3Tfx1BPjGrHJ7d2/r4xgbKk/XV
0pHJzblP+I/QHh9vGnZXgnkmQbXgOfgrfDv1gMjwfZYcHbypHp1sRwKdaypSG6ss+kIltL+XD13t
MqhM2o2FRsmF4o8iT6YfITqhWyCNVmuCVBTv39wq7LrCL+jh3CqQLxk3G/ju9oq2YFxB6tyIHtEr
6fawSeDQH7OryY+piw+HhqTgGRlcJTtydYBcvpokA3NYJBCQE/AOiwhp8Z7MouF+jWiJK/2TuA/G
m9dYGpi/l0o0BHxC0+1NJchDDbOMypCMVOi3yupxhnGjXM49/U9tRu1mpxJRekx5GrVKRiqpZxEv
uqJZQaCrrIzPPO+jYl4TjHUer9xCoQOhEkaTakX7AP5bhtVhqlCf8R/dcC3Bwl5n39GhybFk3CwQ
dWVHE3L71Ml3bprxbL7Lz7rijit3K7+x0ZZ+72XDZSJLL3/GKFtGafkrXTYj354fW830jooZPfgp
OaOup5sgnkIyLW+pvGVg22VhWX3uVbl5/DalX0Pxr1migITAJExXfe6DWbQGCyjBD1jR4WWFUL1H
46O3RG2oVut4UELNs9IJeWmRBaOaglNVKu180zgVd/DmkXG7G0AEI2FNVy1gFOPYSG42CyTmmkC2
vBTNFDq4U/xzSvjR3dUFXUAqGT8URKlLuy5b/RZkcHr9hF6UuERbliTWrwhwPw59/H3qRERjnztJ
2PmRzZEpJ9/j2S05L9PwFbZ2NP/qakKzg9aRA5gBwfcs2+t0zN2vgB8wnpdF9MhG3h3MX+PX6Qfh
jQtJYe/IuSrvRPi5VFlX5M8JvJHvInL1vySmnCuC6Wj/061fUFJYmfZeqspyIfvWQOCGZkBKk8fK
3tJKmaFEaLDc8Jalsd7SxtDTW5FWAMgQ0bivTbhw2Kdjo3c6xCDF2L6vfvVdcq9ceNnOUQu5o27i
aiY7pnG9//WlQz60+ewYkH/skyF/WHxsPAoJmyjdKbfVVn5+b+Uu/Zdiq7fI/ZJoZgRk73U924Sc
IgwUOauoc5w3HFHuTqvC/8OcVyU4pbIrf/Zf6Jr47/luVTFbOsl4o1HMojUO7yw7vnqJ4/X8sgI2
faH6P8fenfzf0qXkVt/aY9j8GTe9QveqrqpYXs+zO5pBtK3uYSaFYXlct9MIi1OOAjdIjLiUQM0S
fl0kkpEJfPoVWaFrADBJEt3jtH6ttiVSR2NXQeBXPmJ9aTk2NZFVEX19VhBA3EhggSKi1a5qA5XN
5DFZNiRi8qHxQjhT118b5+hXTzttBSEw6Mp3jv5QPHiZAO2vf9FgzDIe9NR9MTuJMgpjud6Ond7j
4BDws+n+Ak4MVDzybrSyEJM9BRkOqQFIfXHyTl4zTHjlb6XZawkam4SNKFi4XyAl9vAPv94nowAC
F+iXP5eKtgNWMYxaZe9v/pY4TeJKJY//r8VnEvEn91G/VEJPAUvwzQrry4Sv+Oo9aD8A1ctpLQqR
yY4leHRxfLfIM1kCeJZrr4UpBgS475RKSvF3dYuVd0BE0pNB1TnbCwWmKJ5j/g5+mI8+QzqP544r
X5OCdK07r2DR99cysSf7+kce61rEuFyIdiaZrz6x2h+BnOQy2mW+0HFifM6PpLGE8Ma4DIgBptod
82+jR/I2bg13pEtaz/yTYtQgfytQAXcyKIMn2crhV4SMfMYzt3KEX09rZ64cK0kQ7eur1yhc0Gqc
UXqNFcLWlJSYohfjuHadtc3zKYvcJ/YCXT2ERS9NcBY6e3HGP2qfzZFKethHk5KZ5Px9b+5cz5uQ
cqdfqn+PDTfNobmNFNkUrrmKmPVkyIOdfMkb0hc+/0IPvpswsUlC0DLFpDh8uch/gFgRhLfpXTfq
GoxMm/snwxD89h2PG4pjBc3ORE+3VGEBsQtfWkm8LPhkVsWGkB6ykIzKZ4NfzhT5O6ARmdR0Fgsj
kaS8wpp259VotZ/LWyhXoiVOdkRAaBRNwU5MDddXUcJjv9ewrDeDzZ07HizXgWUGuxsfi4fLs0XD
duCh5oJxFifCW4/VUqVkbh9h1oVsseZqKKUDz+gnm6CmaeDXDlQ/0Fcdau/WGgEvlfeuGwwk9Mwd
gNQUSdCIzqT4Ob5PkRjPY378PhsVb6ZI1nUH9i7LjcyK0zbQHqKAdjkZko56rzt6Gqy4+5WuS9TJ
egcPRwPMSWYwwTqoVnREnjlIjdsgLZHBmtNfQVsVjpBTqRCfeZColscEcmIXd321eC3HvOgBFOyw
IhdYs91PF3IMNM/A4xa/PNbIQ0hD0qOFhUmx7kUmaoYL2t2tEENhiJlNputZcX4Ei3GCJABKjoFt
9hhBURwFaLt4MRGlv72ManRDlx8WwDwBz5P4Pl0tP+/DriS2FzW5vpWb6OycUhwwzGLm2CSUk7vE
weFJ+mE1g7Aj7NFIHYXejCeP49kWbD1JWpEP5DpyDb3nlTD8bQROt2upCt5VHHdFDJOBa6t7lSbR
E8lNnWBLTCChZ0wyBKcaRNc0p4ckRI11bkdKn72ppJxXUqpmch2129VX/fWDU3Q6xn2D7Ov8q0A4
eqlRjyAIzGt9RshYa4gCEJzuUVK1/3Jse08gF0Cqo0qShB4++mz9WA566eR2IBi2fq3Inoh15Prn
jgfxT4JRWxf9NSY+SnC0UZqKZ/1mpWlA/JQs/LDA1WrIJZSadmtN6vdABI/5WeZhalOvC4O1cGPy
qJQJ4JbWInZzMPi1dqWeXBaeZbEnbpTF0ZAOhA/R3SaDKB70EusTWz65YcmD0xvrn7kkNTcfYdFl
LaLRmuHyr879P+F7HMcWCqCSL+5iXB9DGriouP7t47WLRkCfX67BC+SnQo/UPVMBZdIi/51+W/sa
VeJbDzibV0m6Y4tt00ZCkkHfrX5JMUMRBKGgbOkg7qUWgpvDfk5aHTRVOvQIE6LG1KJbUYFx+N2m
x7CCJgDjGCHo2VBaMqvxyjyineDmnLXgZx2q0pLOZFqqgiqzCLtU/qQsaYbOz55E6ROOsp6c8pI1
7HBFycQJodRs+b/Xp9qE8fQ3/0Quw9DVcnA/ErmsglCzdtrEdY3K2FeiVFJGBYOtzqGLMt6GuC17
LgFT19dO8Wgc20gLlbyxj6CvSrIU5dihAA8BQTjQHQiePfYtNOSgKhPNhoBv/FO0RmNPktIxna3u
xm4N1vLBlaO2oJts8D9/LI/vOwLJLeA1qP2ao7XomvtxiIwUbR99OI9Pj5TkOBzthIhsfnxaHN/l
S2OqEPOVl1OpQJP9cdmaka3OoXDsZHLGpwEpkEv3jYSf3jPN/ZhImSZk3wTrjsHpVydblKstTxrl
WGntQupWXIMOP5exTVhZqp5YWObHLpDEZSjc34kXCokLHuhUrcOvynRsrBQ/rtYO9J1kuI5kqX1K
2KGep7j9e0nWzPqKmYZJK4pacm0iPH400xJ+WZe9ZIxCM5172q9mI69hkPNFoAw2bCJ9UBTMR2jD
cQhyLQMEPa7qIICfErUx25gT0tAH2NbPU9FCzo7CMBb9LD8MxOACxa767ZcBjqnAhn493KJCQJYV
h13KdzI1JDKFABffQb44ZopEpUIBRkmuuBymYqYPJiNWSnVJrY2COzDE6zSCKEaOJz3h//vj9qQg
SqZVsnZSXB+2kwfVrdyDf9wgDoHzl4l0dd8pHvUNJMz8tnOxDTsEFBzon/xJVDQ39regzZfgJvJC
rGhT1ko58MsFfCAIoJvt39t92Zll7ejDx5QcnAFtFbTxgUejJ+L58gaRXVWp7zATcfw8UQqKQnVe
i5nCnLZ4Zuul44mKX9meZCF6fId6SJ3qXhsHFNKARe0SOirTKK7JsIOVmzib6kZf1CU46O28Oj7W
C0YKipmsRwq/ImvAcP7joD1is3/CvroTCK2uwHPHGK+aYU9I5UDScWg2MzOHTP4zpwvBPZCqwDd1
RtAXfJk6j6PWzabKi92E8Ab8IRLqcRdpcBzjo8rcsdHck4atoSUxhRM8EgPLaxl5ftIuz9k4r9kv
FcNPpQh6CozPeSupGoVvR9KOOp2AMNiy+vHdHgRO6Ygscz3ChvYxpjzJkd3g8NuB0f/wRn8WOxbi
l2n+VBkwIujWMXkMn2kheXfaj89ndM1TvlojBxnD54CQ4svQNL5WcVcBPj9MVNttT39DxjbojCpZ
+kYpqaC0bpTb6Noqk1LLkRX8rtitqMBE5TO6HwWUifw+JyDbKGJ1yqvrIBBK6+vQttdm68jiwARF
Uf7JNb/G/YhP/arXbWJTjkfvtPjq/g2tgwIpow7m9SCuB9yMLCfXeHGqxn0TswdHCtyAaVTU0u3E
InBylxeOvJEYcpVHq78vSpn2TJO1ypEhAWD//90VeutgaioHHPE2auTdojOONEGt4u9mjrrGOnI+
PtFtSFzWR1cB+IT9t6Bh+pb73N0ML+FcxGQdpb9qvnoF5mO/FaL1syDef6nwIJcLvn1KaSUAo8nE
6TU9JsLEqKb7vJ2v39LNjytbK0PDXwO0v0u1AsglgkAL1ME3yAJtTnbOBWnNS3nQk+ekz76VNbcb
vLnSPk/ZRw1DW6ymwbaLM2VWy9Uz6g/TcOXxtQSWTnwPw8iNM/wLvlLZ6MozTIXUnrwiMNxncIp8
+/KWmA4HQvmQWqvLop2ybd0CMQmkvcNeevhXHDtnJ0Cl60rjr6Z5hLyedyDloMYwbxHujJB54w4g
+BWHx3YcKMVqIE+DkCPZiwong34oqf+BheoPObaMK6hsguacAe7nkpixCZEUADvRjhh8u2M1eNXr
m3QAdKcni6hl5S/zIEhF5lpmWNXCAm/fg3GgBxJh1fnj0aloxL1B1CTaCTCAfF4kPrEK5aA+ZjKH
QdJyn12vRE0Mra9s7kDUHycFNFmr2wgUVYxofff/JzRb7fO006zGvoZCpXxQ5vVS5fh88iCy4PM3
7PBYL6asp0yFu7yjk8lTTJITFXDkOwli/Rd7TecdGtRGmSXxL3jZ2NqcxsBuwgTLQwen6BL/0K7Q
srsVX4u/ef57xtknd00dyfjcQLmZ7PAwMAdQabYTxWXIxjzlVlQfrirQqfdlA1xW7qvI1+N4E3cj
AJqtXgGAVuueXgLdIjLdf6XXKI4u4Otn/3YOgc6ILLmtSUPzbzEwttEDRMypqU4TmOpm4BAVbDQf
6eT5y7S/4eAmQ0sNAqoUir0gn/V/XFvuLbXpPEFAu3qJrnOwsHBKd/Q94uV0jb275vIfBJtdaCLE
+FvQSODHEUChDTK1UpaKXlrFXla6NJwvAnr22d8egIWP2OkrGx4pmqqTqarVvizA8CnGXRHHJUp/
gs1AC++jfakLIqeJqj/QToYkoc1nTbNZzbltA93OnQ1jtMn9URGE1gFVokiUOz4i1quSqa1nkmfx
2SMmkk5uF7SSUypsbCEYg9aI/wfWUTQ2DMtbXpgGwdtMJYRcBxKEJdQ5J734NddQDLCKPQ9sOwM3
74wOyrgnCWBBtzRV+7blj5E45n+bh/NTlcJf1CvxuwECEUkcpEVIaB5zlFQuUJMluw7Ml1/JQfTN
GJam4+Bb2aIO8PJ1st4sn3+qox59ytUlDjHyeqZw2mAJYBjYk3qSK3EFhLqjM9zWnyAMvX93OBo8
h9NHm6vAwBzjyNXQaC9DmDiZyw0AsW4OtGM6NIhmEH287ZyrFUB0TqoAtrZy/rH3hv5+O83C0xCs
F6dqlMQLOIyeP+makgU2swPFhy8tpyngbid9HrWgPfWVgcFmh5Zzc0gOLgOLh+13FWJiFgoAAQZK
WG04ED9gmhMn0HlAWQvFM26qO3f6yRkulp22tR5ofoXDlTD2VCwcIp2wEyjitGlxuT395NULuSAl
/JdJ4yH5O7PkxzrVFHn8IQ8e3wAUCWXUN/OASN2PydwT0AK6s2+iI38jEbUw/605RxPAvSjaml9p
BjhZ7CqJuV28WIXQnWOwOso02ZSeIWPcJi1NHHCbJ61wUQQAeA0zrP9zLpfBE6Jkz6BIsk3IKRRe
G76A+qv+YWtJ7wyam/bhtMaKkkZsUkgY5cAFn9q4vxuQtqksC+t0LtkfOmSnJwZs4jlB1Tc2aiOX
tObMifGQkInybnQUS3FRVNNnFqxIaZL0LCXsbDoItsWJKbF1Cu/6+5Hd/V6h7UjvTrvmdgrRKS/V
/0DCtRn3uLtr6/kKiI/DNRXgqlL8XOCjP9RitbscmRcGuO2uh+h5yUlTaziD624J70sMhlkukXuW
S+hRR0B5XYFC6Q1Cs0h3XPPslifHy9mckJSQBSkZvhdz7VkhC3B+tVvSkEWA1rrIGGDlONvKS42V
aLwXTcaPYmZ1xMIR0FLS6jUUg85tpeFssySbovyay48LSo+b0s9Y/lUpVGiqjhWUey+1vWl6h3jX
MMmW/caSoAamxCI3pOSzZcmYMedT48kpqpNAQRvkjNGFoI3NdxXZD2RSZwlAtqixBc8Z29UHXCyZ
9v/w6QFzCEs9WXbV+D90ln8NVGE9rmvb1WVbKLdLg/Dggqvb+J33jaCqkbYaSRZnu0Va+rHkQCRS
Du8GxH+SD8rZhL6TFkwC5I3lSD+JPm7oeJFdYBqnHP5RHU0ExhFLSrQwrv4hFte8hnZjpnkt9jLa
CcBjk2oR1rL4LIe6nw8+tbkR8CWkjenGBTh7Z8zxwjxvrTClVaprRGmL7O/44qEoZ+qMvnvldAoA
vn7rRlNsMhCdhqWFqqEQeBY0PiykNTsVxNO+ZtDWcXnR9h705RagOkJ4KvRbo+WKErbC1DPEnlyo
k1bNDitUzoPvQr3tLK+TY4+x84vkT1L75yl6SHYNaviZaKZTY0/lohrQah4wG2HfWdPB+h//fRKB
GaAegszObgZZWYbln8JXVwcLZ7oCu56waUPsprS6Cdq3m5NsAHpFeBZEGw2D+ewMQg/GebRDqVnh
DjQP+Axf/Z2AZonTeEC0d6SxZsWue4CAUPGGC36z8FwjmzLUg/Xnaf08N3FY//MfRYqWgqEUiKkP
EXJ/DFVzW7DnEUxQJ/yWsZVLwVs4N4X2EPTN1czgp63CrPeDrGR3UPo08k31qsBAnvgz66gjkOCc
5CE8M65NjbypUx38OxrAqGN3Pp1s1/2AFaYoEnmuDpsxRupevxfc53uv3r4w/sR6oRNuoCov2Msi
BrQvbnctu6qX8OKUKO40kjx2dgyVGHcBqJLGsUpWA1BgUX/QkwkFUx89BIT2aOvE8y1rxRSClpwk
AsZZ8/IMn5Mwv08FdBfJ1urgBKO6SA5XrHv30iadpSDvZbMMTVGuLeGM5E+fsmFA22T/IT/KhZib
98bEy8hd+pkBZWryit34+Q7o/6n4y89ezZPZdp3vxRekqgMFfzW993N2tHxi5BJuPtITTXXso8Gw
z22R89SvWkEmKxTTFKMQoD05+5DVqsG5OglzLb1/vFBpA0JQbh5rsjryVDCo6pdD4qldOkEr4/Po
E/bx+q5GqmnimLdUq+qUoX3gt8KOK1ntqj6U9Sf6dKaG8XX/uS3F8t627Q8kRV0SW71IczLnxOJA
IEPqh/a5BywLifXMxAt8pwI5tRPSZa3/AW6zYZ+rRx3IHkwuWmSXTDiFsdW0q5ZLjfR+LZ46FZYV
NWDW4RruRNdOBa/7Acb+dzVQdzBlvKp6R/6PBXOn/abcA4HZUpFy4awyqfp1bpUncKGqqHCdvOWl
QPZesTCgKQVLdnBpGcRbJyzfXXkMcrXkTcTJkiCauUlTWYVfBsWz9w8cROGC09cFcUI/gHeSVygH
VjVRKyhQLFgN9G1vkV2dh9Te2dmZ6ReOiRRYt0DAzKgrAGVJ9KngPk3oYJC8iToT943UCJrVENSl
5kx68TdwcYrUeIny2PccWlGuS5uc19GY3XZpP8Hyf3zvbIs6ZGeqG4eDYXp3TyXyB7ejdQhX/m/y
LBN6SjkMOh/MfX7Gi7Xv0/rOFedugS4z1np+I2svbGFr+YwAk54MaUo170t+C6FmbuNCjgsSuOen
3ZZgzy+ghCe/xyUp9+cSjMc7xI2MsRduowyI/T9MIRf+S3cl3miNC/KEOn+J+QtZYf73nQ4VOIC6
gF0FqZ/YlBj+Go5NGgwLKHzc3pXgcaDtcPjgLPqVMgr4WYSpUSEuLXsbriCA+fXNiEBoSuVQYoMu
QgSgg3+2nvVcJSlNZjqQ7D/D5/eP7mfWq3z60mSoJSaIE/D/5/+F0pQWHv01HTvdwmTcwOce2uvl
qwsJG/foXHYyMymc6VjRJRrDlTG07b1+R0AkVV2amiRtsDCwIIYuyoNASUDQDA2iFzbBr4xRcEUn
mL9kQlRf2MVr9orC045jaoPUx0TC3pB8vndnOL19+BA/+Dn0wYYYsAD4gorJkVqfRGDsRigSjQLK
CoDEU3GS+tPjA3BUX2zTYeNcxwmE9I+1WjLbGkeJmyKfnmi8I+2M2yD2rWBp4Ce+1pQGFy41mDJA
hJ6yQ90ySKwaEY3F8X93wS6ubunvmDI3CAuox2ulPIZncKqsQyea9fTw5aMpXeWAwtRIJb2KW6Ja
rkW9L9RlC0h6gA67Ust3kKG3DS29jPxzaMSEiFHDOSEN32jRmMLmAaYkBXvxHjJUoP9POS3kg0Oi
qglwjZcLSGJyWEk9OFDsRnOr1fdCVVhkw1ath8TTDGYouzCWxslNf2drWiqkbfWI5GzlaamAyuTR
8XHtBv3b2NMgNWDfv1d0Nq2YLFC5SVHaJOPm9o4uqNp5my2YcyYRvLAN7LtG3kY/nftRLqag5sDm
hhGUe0R/H+BsfCC8A5wrIB6rN9hVHxgDHIXjIUDMDCSzcZR+fSWe65RSe/C/YytMMhhqrONVBlpN
sqqg4MYTD+tSfybWDOfaXiMHhJknNetmBqKAgiX8RQfQZaSsQTL55hF2X8GkT3Yr1Ce94Dx0F5UN
sg8p019KXHIOr0aIy/YU6sw0deK67uz6h5rGiP0wkv/UR0VZWv5zhZlJpaRYAfvGdGbj47jYBkfQ
zQtOnF7un4JBG3HQv30t60KuY+HiQr04ayHdLyu6GQZ5BY6F2M0qO9UftVtkjnREPZwDWttITvf+
wr6Xu380tgv7j01Hokf/TnngSEjgJ2wSrzVprELpr1utCk9hm5SIwKYxM9htmHmy0+6Xfr+eMKnR
kiqJPWcVNh+7yP0BfrTMqRliVe739XriFnxN1mkQmNEz589LLTEHGWaBzzP8Yx4Qzdm/GFZbjhKl
SoAQWoo0+YN7kbYN5gjJmV6WDSw5/xqsJ4isniQl2wc8xwVs3we8JpPuqSoS8xJXKtvHcNFIYxPK
LZKYhsdz+VSwtk3Lmq/p1uepykzxyKnQe54SCHwT43mymc8ZRxgT2D+m9lahxxlhY6Fz2BklT/nW
QT5comUIVdminQMuhQXJqfZGQ+cR4crnEPAydMqKMM31IqECnkxe++R6vIOv+MhvzHCE/hnDeim6
ftRYWOHq0uY+Fsiq8VXhMXahr96McldmQb9eSIoUPTanvPxYLEmVAs+VMAgCrzD5UDrxRCarAazg
EpP964ytQwBvhBesTUsU8+wZUQoSsuwSaVKwUDNvwoAVA4uX83r+4oe10WHakGTH1DdRCkW70heq
TI7/wZYhEFyKoylIJtCcGXkr2HaRdz81/Gzih1bGipOY0QrcIRyHP8BU+kJPKnvHiTr0+Zu6EfDY
BftkODIcBtMv955YaaBSANeDqqNl7bFM9C9gYXt0kbGCeBN1QTsYHq5I6CheeJ9cKYQgUMPH2Pgq
T7W00RLPwvg9PBhn1QDPmZussTXI8K4Jbz0WfdJq6YJqfmrSmxZy8CtEBOWk5jff5MuvNRQA0iWc
AtUgG8qSdqNNMMJ5WAzsP5XhaKPu/5B26CyRWo9I7Zt0aa/Lmo04rV3/NgwWvm+8DTcuH0D9pOtE
E59Zvgm9e9jU663LepY/dOBDqFRFyQdAH3CXzgOsIE31hPg/akgG4wGzoViyqHLS9HOJrLNs5Ce+
He2rx+D0lYrVVkYnIeQnodRJUqnNjvxl4tgvuQqAdXqmdpf3CUvVkO4OQBWGQ+g/FxKUlzukXrJy
lYzqnlemNiQuuc6KR3M6XdzOZmtmf64QiZtRGA43Mbb5ArxFBvGeQIp3wBaK3pZ/15GPEjAmYjY9
UmwYnqOZCftQ/bGZC7m6O8XXEh9YsU2oanW519l0/XqdDC1I8Ohj3SxTUa5eEVfSmJK9fpeCqoA0
gJqw0lPUDx3ETagPmYlmlld8956+6W91SEeLcr4fa/FJUcYN6AFKl1j3HPuTWIqlXsE0QcGyj/FV
nT/nb3niRFTe4GmNHO/Lto99pM3SAHqOGrHac5jJci8XjKyajQ/3i6mGxR5VMyjYzDAhPJz4+IoM
jiFAp69i4ZUx1KBqDse4CbysB4b5rMeKDNGfRHyZms2xrD6JVWs8GiMuHTlHTipX1TSIhzUOFhFX
ppEOiCyGl3UKDGTHMwPjVXYqCz8ERyjbXrAxq7bTIa2OdLeQRdyAwCsXOtsTgsuCai5J0GkMcZYc
A5D+9hn9XBDV05K12OugT+S5AjKGs9rcj+zJeDHLxYu5VciwKoFtpbAdJGrfIMmpZhgwuNMYbrVa
dcFhvd5+9ammeed8lzGPBM693AuZh6MNOwgua1pbYvBGW+pAHwAlrDD1lCcjA/EVDP+uykdKFGrJ
VXEWe2VkmmUUxYyyZ8P9p1RI6d2BJC4BlNI3O154SX4gJt2+nc1hBHPBiU2Ksq0T7wAFzEstbv7F
VRm5QggONni3BxIJuf9qaKr1/C4WEYo6NRdH9kz3wsLtkRDsCmjTUMXArraMS8/QKC2Q14w/s/GZ
nXw1dtLh0QvLbX4YQFLlWxrWiL6rjdUbX9PNfG07wmFNZEvAsiqvIgJQBTci0OiBYPUCB8o2AEx/
5inL5Df0pIW3ZyZtxA+gMmn8j6WaA1QWfSRM4D2CVIBDXdl5efhYx9O8SwpKFOnAHQAL9LCh4kUp
DNBgFcW2I7guk5+cCvlzii04FC3bZU0i46lNbbo7Ge37hNdQ+56vm4OzUS6FIIzMN4kRtR9cp3Zd
pH+xR7LdXXN9jubnKgFDN4Y4LzXXw7j5cbIcuwKlSYOYrn4rPFXQXT0e7IE1Mt5wZQ6G/ym1o4mo
KvhFVrBWb+aUcrKci3f4ISOXv/JQjiy+Wpy9XTxYb4OQSliwBwDfy0ZzozN0y4Nfl33wv8ZXQdj+
jOiDVHhH6fegbA4loY+zwMd4Qm4mVFM8NPNYnGLMOaBgxS0vw4vy6vaKTV0RcV4PiZ8f+wQXLBAG
Frdum/oXXxH3cQc+KZKspXxCxUfnQbaqDH/MAqEoUW0x33JoPuxdeUsEw1XmFdw3JFfd/UcH+2yb
S7eihHb2Z9m3z5qZEmGzzmRRWnm1m9mDV+gwUV2TcL9oiP0YWZ4MKWw6heLghsl11TCkwayjtG9S
VK2/j+1s43J69mnWCFIFzQ74ZezVjnCspczmXOWDDRAjcurZNRCUkLVSb8OIsTqlvGhQyf0chn1v
VMKTmAlmNVH50UnlWbE9pxz9V+KiiS89JrYaIOigcW0WldV1nD/6j66AhD9XINMKNft1mzq3z+An
UrY30dkxkBeDvttBhPZ9N8lbEIdFkFT9VC2XL4RbbmPYPfwilGdRF05x30ciYrYe7u7aBolOeNMe
g6Ekgui5IT5fwkw+NamhxWqpTYvfOogCFHQSjlU63Oa9QEe7Vrf4nGsYBAn/j2OsCyeI4bGEEb5I
chYF0kiVGaD8UAsNA/cqDFDb8yTmZajbgjJRKdlOf0TzyeS2ZZUa2lUl1AERSj1j8AB9PLY/WMyJ
M0UhsQGduVMQFfWaQycIsjcv07G7Ufzk/+FENYiF6elQKyHN744HdY0Ocw45l0ANn1sasB7JxYq9
+9tb0eBahW4tL5AcLhnGQFW0C/rS7mWl0Ca2Ctb51/M3wVDvvjOrsBSn25i53rsrt+NAwzAjEjSw
7V7KxWsJZb+cB39/lyt3b2OmEJ1QSSmxAaZyPOZmSGCDysLvlbYtpvXdGNNXUxnrhUPDRSt9BLQF
KQBWdjDmXpISqJ8qCyoGcAvJMd5dgEBWvvTaW+TY+pLQmAKC6tbVSwVji2rn7iRSgH9BXh6hSduK
CS60RpA81gg5H0edxzCzM3QmBgLG9LGbDUxrzN5LPPG+OUGfXtrwZ0RijbMeuujylA8CAdx6pSPe
YPWZelMihiPIqw8o49+UWas+CScRIhHrE15xvrKdGMeJaYJ5CL+AK2UPnlDFlTiIgUBYMzHv/8gp
Ac76S0nZc5PWTsY5aXgLT48kOF0aYBosaGfpkBlmcn1OmwmAHTvhhY86mGpe8zf40gtvMaGyP5t1
qvaVgRjDOjlJiAL9ROGMU1noCcnu66m0JfqnydyvkIPrJWB5dmh1fE7jLcplQbD2/er40geiLCwH
pnU/gQw/Bt2xAPNLPx9PhZdKG1pHRjRAyU4hD4d4m30FwObi6WbAgbyivbZsF7SxZWEUoY1mU6Ro
jag5wIWeE7l9xfS0NeXqoFr5GoMkdmHCFUqO/R56N8v3NbCnGpr4hpiuKfsFoVmc4GUsAyg2NaZ2
y4ypmpq18d0iWUKu8cz0TjQNeMuDhqkTnTpzTCtSqNw492DUADxlGkW2YXcfwd4O3VktXssPX1Rn
rjWqwR/ctap2d+16ZnQ3EaWGDL8izB6EYxWKSVxSIhmcNtyLSrPhczYTu9J9JgPVULNhGMRb5wM1
tsB7TYQVVkjPas0tkwrZCC7lsQl9icIBA2q5OA1/h8ddsQ5VkTXLi9/tSBhpwvh6bUYoxQsWoPGH
h99lYIK93hxSEzuG2Sc+b91+AJAcnEf/D+CiR9YCaYoy42WeyrrMWU6QuurKav7V1aaWzgeva04c
a3S53eal93C1EwTcDJUHOT8QryTsfhTRz6yFezfI8sMeaU58LX2Nplz/9qGZCdYqxzgD+3vKEhlV
7lIvnD7sgYw/O8fC+o0BTUQcc2cReQ1epboa9A2vLAq42yGwVGk37AhzWAUiv8xb0Aq+f9gCEDyB
FWgabjcJidRRC/JUCAZqO/xxY4nkqxlrtRFZYqC6odD+RMXinf6ozmVm/zEB1Yo4GG7iWe94Y9DH
1956g1rK7jj2IcRWD32Jw087HCzoxVGYSkIplGKmmP5QXPzpgRjHMKfY4nf/wgcK3Vgt63GcQrU0
HFrbC96r6lOmkPpeIHJQRwxWtzDFMMy6aSz1qlw9a8U/oTJo5m07Dy7dVSuG8DDgaqBY3gyy3kcY
fpePmvniDBbMOOOYJrk3BomCcD4Y2B2XOdscGqI6ji1+bYTWMSTHOZg7jm89ZBsWfngUIiB2HHHB
XMkUqVdsqVA2XoqvWscZCIqfBQpHz0VmQvMl/wHk9RXpOmeL9k7rrGxbdgwIgPHWvgGw872zOdvO
h0YunzLaeAPLlx0Qyx6QmONmCUPmsEmlZxOXsj/ZmWSKBnSDUqun2zpLVN1ErJ0iV71dhfVq1SQp
f1fPpUx4i1FZwANZdbYrMU0+7l1hHsaE4IvtgP858wiKk0CB2ZYDzbtu8X/I/cQLoATw7AcrGph6
LMPX+9y5dgG5Y3kSS+ST/7eZLzFd2DyjzA2TGsUuwAhJVisKUbgGXBDhMlkjV9OpBx3I8bw56y77
f/ASX8oSrevJVV0pkDslW8BxkHMsl0t8x9x2O4ABFf/o7UpS7Bo9vSq+Ck46SiWCLqJv/yBRfVbO
SVYoG8ilzewBEM1xap8+3uk0MvvUyxaejUDmnD3At3weIgfYPYcMKPmdMJwKliNVlneSoevyU5L8
kneMN/BIb09oAJrAqUMbNjZ2BHC0YUTsdapOv/iT6wlbUx5aweLVGYK+QuUx+IP46XjMQET+G6bF
ASAxjhGzwIvuflfV6RmbXZ8hNKrV5dIe5kJJF3MTrnzWfet/hMFvhtw8eBcfJwG/oNp/gKAHdM8U
phYuS7FoeHFGlht1vbDj71mNUsYCUlG+otM1Rmxa6IrXCbAJM0w5nXXJeDYpzH7xuT378AMc5Ibn
uzgYXuqYrDM/zggXQDDvUe1ppMnsJvZb7nprqkfiWUq4QiqkxG/kVZSJMTSsdaGerx1Iu+BD6Xk+
8+YmEIE/m2N4rnsCw8U6blrz22d550SBlqqRun4HH4nEgkVPyQpCKAycf8NVr1ODvdFMZ8lP6gSP
7J6ObsESN5v5/F7X2fPNghT2VPda+/+TERfreqQy7K/lhTtJbiR5kKXdZQYzegd9ILhcERgB2+af
x02+Rb0aPaykqYHTkfIk1r4RKYlo3NTiAbpMJGE5P7ygkq43eMN6UeQ4QMbM/A6QJ7TZkoCnhWbS
dI/cA/fPg0dPa5jkkaCYuDOkT23UYexJrvIHQ3A9QIfyHPkalUGvdXmYNrM34NLt1sZf2xol5is0
f0fUGTAcL1v+clyRV7bhIVxFC6eYnIcCkm/wsFeHg1eY1h5JPENpayzdiQJE2zS6NYoDqQxcGYcy
4BUAJkS80LbdITk9JRPdSGwpwOxnVyYsHy6XAsnh6DEO9EOi2ubdYXTBDb5SKvtRZxT5SzcINSai
1h0QpM/Jlg1ClZl8ZXEZlU8MoGEKLy/M3vIH8bB/CVVVbQ18pyWy7lXnya3t0yH2RnXXK8cyzcVC
mG998/iz106y+D9Z+5cuXOEaaUQtcZBMgR/cLKYaOFTe7h3fusgF5oSUozbY7gfdY28u76Z4x8L/
WbyRsw1iUmPO2YMtTs+PbejA33RiSkXoXYqpbNFsTCzPuRhXTixTJvoDxtCVJa0HEvzqWJhx+C+B
D/IajZQo+JXYedSsZ3t9b4b1TLK9qZuhT/BQtH8a89jN+wcSapzT4+AWLivqqwmfUBHaPpw5TFL9
QJb4c+7ZjcUa1LlCUygZEDQngWqpWAZTdLLZ0FhIshIizr9N6B1rg3MW7r0+VPDTZ3EehTFrznbX
2OU2qPcpw966WGFx02eODhJQvXKHPQzLb3yrhyEJs22dNoArwnp4kGNxpOjMBchUv9sHWxIeLLa7
CGBCzba9oDGmrlvrJcgPjbZIBEYWuxL7JBxxPwj1I4GdQkq1xPpStBRZgEVkJIMFLvMRUzPRfHrx
8lLRGqfs/Upfc/iB9PEdn12xGUt2mQlpDVxGItssDqwC+UXrzkomWEbkk2v4HMgPbrRVvCbuvQWM
QXjZkLytb1u3p2kHBOQ1zX7uHIuIAtpBspMj/q/E2DJnPjhOu/y2t/AOeubSL16dPMAzgi0EvOZx
XzybSOFQ3jsbLzOZjuoknYSEcHt1GAGzWL1r3q7mCgMWIcClFfIEO1CdbqYWXpQS/h2b8/sraLg+
4Sg9jINkPo5ElGNAVFZHdRYhvA3Zw666egKBzPaboaigMG2aMasXNmM3j2QN2qbvqPttouTmjPWL
pOeHar2RO/u7EHNF0Yo6G0bVofzLDd3+fTXTUJSHJIZ1EW7DKURRcR6QYjMyfV5EI9ErkkIZB83j
iPhvnOZTWKmOwNZt79BJB7Y1NXbnolirNoC3sdxW06oLc2uAQyrN472F6QdBAir7LLMmMGUdGUHj
AQRhLydFuEIqTY7ESeYNfAzuPTyp8H7u2pIFasm5XhPPl9ZR/L2Gg+C2q7SG3iEBzDjENK4OaTZU
lhbR1sWYZEF6WTseGx3lvMk1hyTJyb6wPid4hMQ/d7fv5R6DMSDgLYRrfh6Gs720VhItG/mcbqZz
NQHYTUhyRXQBgECVXe0IhJ3CkSl72raotQihhF0BmcknJE04K0Gfdkuq1bTvvX3SJvY32FgxI1pr
nOye/4VbOBKdKdA+vtpAhWJg32OPWcAlVwsUhgwcn/7S42XYBkUwxbwTfKGvvqS+h3ga+zYoo3u5
2nqWiiJjBe2IMuzNQ2hhsLje2xjpLlKcQv2iGRIAj/8DwBNha97QGik/90iadJ2npODS5KZ+n5xr
4eHVv9JqPjGamL+fLVKcpkwow9Ms2sYuV+TBQgJKxOmLM/QaULP9kvZFr8Kq+pMakfouFDo0xEar
Xvt8zZp+0YVJblhNxTjemOwhdbG2O/NM5W7S/6k3v+oGU7qjwnCNIIffeE2eS/9+0LNHL2TkWn2G
B6RrReYNjL8KvIzxk93nQO+FJw6GabRhQ+Us/CLCp/exEDZJg68AqF6GHFSw8CaW758xaI2ANp/X
W5zFI+jx1ckq39oIp0wCD28zqb9mz6Pdb/QTyBpF29O+xve10YGDiGL3OZic9R2568ZqKJfZEdg7
2dWxIFsZfYXBFzw34btxpiriiEf3pJQbe8z9jWrYhiwoP1NIpSPKfucz3RLlMKgJ8yyXv6s1aH9t
OD4QzulMe9wOuOhDC1xOAY0ar1XWdf+0L8uRYto3LhmMV3lp1njM9n+/dmjEwNEeHvrKejlFIYth
RaWYm9qv6FIdlSq/GM+sqwC7h27Io8UdnnPpUZTr2KzHTD86h/d1P4l674JtHjrlgbgvYFgzWlN8
co73ftn80Dynk8NmTeeXT9i6tqJNsLMRz9yTHY/Pson+XEumR+4eF1j27aCXGyL2h+Wx5VW6Acs/
rwrCpLmNEATXASYjQ5R2h/UHiXY/UpnV+qA8b0Yf82vimRz8zCYBCGEiMKM/a2RQLMhlI6iKubhz
hvJlcyKzcU2RA1G1x5dsW/ujEoEOjP2EfgL/NNB/VEXzS3fUedsb6W9Eyqs9UzEVaht6Tz4IuALB
EYpyHi74hcrY2Uv1WjBsEq/89duujR1ssrdzDq0QC6WOcCAvGFEbgZV1gH0h4BfJXgsfYV/1Sp3w
79g9GtkrRzi/LtpbRDy4hqWeaDBwkK/gZRdA1eeZbxaC1GGyCoVry7ClqyhRA+SxQmxGhSILb9++
pMxurDtCmWdTIiI9JnWOf5uYu6lrvVG2jP+Cc8yVfaoo0OQe60geHgke7jLFqdNjeR//T0SwQLYT
/pqczMrF9T0RFcfx7RrbdA9ybjOHlFA3Zur4tifwHxR6XM+/wI1MgK6BbYGYRCNg9mqIt6xfe6Hx
Xdig7WZAb10cuuZFBD5g8756znCEWnt0pCuZgTtEqwQRvG47o2VtZM36OKtq/wg5Ke/8FQQkqKZD
8nCarVX3Sx8gQEqWy39Csz/jFJ1VgbPdKUtLZRpAI/8f7wFWXBIH10uh9yzVNR26+unmDYORfE2C
pt/52nfR1MtwRHRGKLe4ZzTy/ZLA7vzXV87CPQYXIedq0sVZup1q7rQEnfF1byFXXXw+6J9QdFLx
3P7vGnDecwq6ABeRzFIj8t8q08dr4UpzNI5THtSy/Xl1PK+WTB168/j11rP1dYCIle2p8Lgx8JG9
4i/kM82nuP4aM4z/f4ttPZAL4GqZJQMXw6RhDDx3fKdoslH6vcKv1ad9+9m4e9H9d4/wuUoSPVNR
AAuUf5v9J1YfgwxwWtQO+WJKfoWpRgPb3ICLptXXx2ffSntk60aV7GOgdWCplR8t005v/xPUS/+I
rqbLIeVyY8C3aQrkfxWEtqvCRhqHB0dS2aO6CM/twClc1l4SwoUgDvlnq8kcjMu6AdzP2YFH+msc
pmiZQPpoOtradlbQY6VHzgwaik5yS8BagMzWjBvBwuZocSeTx4lPIAlBjWzf7NODgMW0llPpR/e/
vOs1Wbx0fnxQSDWKuCYYRA/Qis2FvdxDF9idlDWzrYAyr+ip5iHnO5PMVOEQFF1Bh0AsaD6H504q
/pOSqWF6O2+YMDBtSNb5o61M/LLjbql+oUoxbVvXtGIBut3u+aLFIEY660Q9TiWdDLAeRUVRtqy2
/C1QQK45zAavSyy2a/EXcLN90nV+NcGRjSiqdVG0iLlWqoirEEc806vBtFMPh1SQCfpqpwv9c18z
9mB1VYwCAFRYgDJo0InJkM8UzSxLdwFr7uSRaUBRdygExqjusKzeezpBakxEaW8pdC/6ygAz8xT8
zgtq7VGJ0FxjjsqKFVmdM6/StLTpNe+v1/QjebPXrjMNmytJmNR3q5ptpJwNE4HAepvhCEokG3au
itv3Xhu8qiD5eUN6jYthgR/4NJmQhz3RH0Crt1h+W2Rbwbkieh4Petps3BO9c72scO1yfyjw3chC
61NpK1W9fdSDfTFNd54vwjI0N5gBx/uJ9FZzhVAhF8iRirsQpE1mPLhDHOccqHOgleOIzz6WjBzb
2sqDAEhe0PLGzQA+tqDOdFrZVujOhoAe+Kjsj5QsP3zNWKTuuNruno4CBiC1ueVDkxbsCsl9Fb6i
S5JL1DyPp6TsYWSEewsKm1+4MINw0SpB/DFDSxNDujFnf4AjG3YK7Um+FK+79/+MRiteeQybBlzs
B6vg68BnJC85zXAYNjCBb9DDyENl4QfEey8ORgv32KP45RzrBT4qgU/4EAcjdxlvNq96EgiSMDoT
ty5Kqx04emle2fTkh5TxD/fL4io8V9SmvXkiXZB6q6FugIp9FroYzX0nZyoAD/EIENVyXo88aa3U
hav37GVH73qdMDif1gWqlc3zTgjO+tSfVhpAD0JdcW2U65SNPyR/LhOsA+NX6n4Ozq2Y0ASx4T1x
hkWcY2wZuuhXITvw7YMZmFTb6RUhEwI9Fp5U5jcU7vrvDYsU0weceMWCrGOncQj9yQ0ggZQ6aeW1
yjMe17bTvSX/0O9YsBpWZDqvHrmDCIMl0SM31pp92AEYQ4yQ8kiRuiz59Oz2B+JwegacddOSCE1J
yIgDw/n0houVm+nhYuI0gP9rLIn1SOc0WOlP5cl7fv8ozL3SYGU1uNJEZ45HCZ1K8qKwYVs04HE+
fCyR8axdOSwETbWG5xV+hlBUNfNMKDFinZYF04pN27Su9MN9Os8YSL+ko7X9klwdqLi5XdPN9YcR
jtx1LQYbgcPGuPmt0XH2WpKsOVLSDqBBV5tw5kEPQ9czHDvtwuIz7LvooBcbeqSRWMyyqrFub9LR
YvhE86e3EQnqwc0iMzd2ZqBjq3OrTw8v+gexiG81ZQuCbzYA8DNzDC1WeJWER7jQrnTS5B3lFZc6
kH/SV0/Bnqa1PG55DOYBLZRTlBW+NbRn1/95ry7Pgk6ItTb7URKGGtQocisfR8jkqjEmNtcq0EvT
9j09PfmHys/0HgY5ZSZHg9SdJpTocRFZlPLNGqcxeHxpWsIQ0mjxtLuVTNU7cfOcxeFkx9BioRwG
oV7+EW1WIAV0ztvdHcqu0YfR0ntJuDVku56boiIbkj/wvyeIhUy8ASDK6SCcz/5pMipj5u1jmk4K
T1Y6P93Xv6TyWedJuqTJ2whk77ZewMtM7ibc0g6eCpdBUkQPC0rKNu2Rt2zNRRZFGJ1sUU6gvzFE
bKuEVDBcilFRBmyQy/u1FeC2rb8WgfVmN0hdh1FXjZqBIMYGPde0Z8zYgtkJqKZDp9u0FCHM+hlP
jpA8vfUFEp1s0XKn2mKWZ8QD9JKSkhH65Y7obgWR/4/ySJC5ao2BuGTM0Pb2KV7xczv3a5qtzepG
zVH1IlQ0FkfN/h8hPKOwk37UL+jSV9biR3oCk53b2iI9tHR7NsFPP//D5K9R6WmjHxmovgpU2rWa
wEhB16k0WI+92ZpxS3s1ji7ab5dvD0pfM6o3VIy7hwTt07ZgDrA1rnJSK+oBHYw7PVtYeepMzRhS
2n4YRcNSihVvy9rQ1csB4i8gdtQJrYJE4z8Vnc7vG0wogjCQAWzgntuzgG/Dle91QTIc+BYiUuA5
SUh/WO+KN8VBgYEyDFuTB88kuZDRB5f1HdObLkS5hi8wvQ1cehj48qyhxUwpih4khib7PEjdrSuO
6oD8i+ssu8kkH4e9xA7xxCnkdNEwnWwZnBJZ0qJWxfsa5d3R6UeTYBjlt+MvU16kjwb782/i20zc
Vn/K6gvbn5a59jChcmnaWa8zLEe4gdKUZ6Z1RfkQw6STiLTl6KTQHIXyVlSo8X7oIr6g9xLJOb1y
9+IKT+zWs9RjIV8XSkt9BGmYWg5ENr3BhW51rjZEDhI7Q6GcXyPDud4gYasOa+YuPLiAsAPt5XRL
G2bzlvJchFvUA9cHFeOBA93BNdLdPlsRiOPST0ILflvzNX5S1zL01DBaD279I93sAcw78G4o8as4
ARNimFsRzN/nPDQ2BFNl1oY15cXj2FxITPiVDtcTp7CFRFKCtBpIoWu2U2o1oE6i/YVzFrcj8UyV
KPSYhaefIFOERtjNEiYjS4TduU3B9uRbzaOy9O6khnY9E2uAjkBuHT+RkOa4dGHdqn+HuYNNv2dw
jDzmFPHsiOZxj7KxlMHqN43CHb1XpqPcnJntantND4YRzkR7sFZ05IHzTnBx0oHmNw5OJJdwOgPM
7jDdGFzEzuCbi17bHixs4Aeuz/MpzWKAQkcfPR5AzZBLLTp75nBSwHHDDJdK9QDIQmonAUuLngFg
IcA/btCV4FoJ2UcJd1OHvVXm6thPV/AcIPu6bf8egwR8qCqNfz41FqSka2ggX69NUNa3e9gAXywF
Jnqe4m9EkoRYrK62f9Qg42rHHC9hxZYKFFpyiND8vdHAxg8eeXu6/sCNwezA/wZXjSHTD1IkpiqW
02MLgxkju2D5HOYArIarZ9gnnaxSSAc2/RM3YUFI2KvNEf5pXqhsBCE93acb3Z5sK44f8UfntzIb
+xwWbefLbK1oxUC2vYg0HD0kZ2tKQRfBSFHLYlmrbp97daxki/J5lbYDfuR2W/2zFLiuMWEX5Of1
uJaM01PcBr1DAmdurX5krEA9V3GNZmxy30zraU0FRJjPC3nYAONah2Q5IVNJrMJXMlMuFHQ+4OvM
CkqAS4CA2u2z+hwtkAO0zY5vk/zWOM7DZrG1OulTXqejyEagXT3ccwdDbUGJeWZ+sYuJl6+ho9pW
8IQ+AxecXFZdtWZN8azs933INDaHwdriH7Lu3x6V9nwEaIr8iqliTvSFMU42RkpGSYlAFyjM8egl
HLf0/O89z+8/xIjRbdvHk2qDRTyDtBpnGgTAjHA0Hy/anFDJOSaeWQ9lZxhmk1BStocmNgfc8LoW
BYuHpgKksBcqms2hLfYc6vuhO7DNBo2LYkq0FRFqA2/VUhtsJnLbriUlnkvzfqO2Ei3YzmI3GXFv
9eVFy5PpPZf/xVCCE8j73hdWbFdTGXtxkqMsbfUIpY1sscwHDkdrhMdm3db9hqTHdWaimpTBV3Jd
n+TTg64Pc5PHQFYSgbP+4kpjPGnvHfjbkYjHJT5t6TfwA8kLZvVfr0rl+YtHjjdvl1uE41PGpe66
WeV73jRkUkPjGKkZ/jf2X8Dogfzd1yQ5xDPHTeOth9kPbJwHnBAhACb3N2QzS9giOnwgHwIDPilD
Guxo+I+Te/QjVGaBHHXBd2w5Biz1RGwEARk70h7ohMw8aqTWPeML66puaZDybX75yFuYnoxsDyRa
NyK59i2NwP111L2ZnWukvTTOGnZvdnrZxlsEwpAxsSwY514nRUMEipnXZlYJrur2Yv2G3eZfnI+S
zhdP6Sk3zNVpqxDbBgQgnHl9UUzBYVZhmfabfTdHEpnrTpJ/nserkOGwzR6cq3TATYynpLh4td3v
SIEVUgmG4pmozjO5tGMrF3Zxdaw2/R4rlq2d0+S3QXYw6CFKaOxNv1ru7Rke3uPh51fOVos3ed6W
3JQ28jKQImOIF+iDf1DpMGj7IyiBOGaIKZBU2j8bjtwmpQBmI4iM8McXFhUaTSf1TAzqaP63RCqF
IW5wm+KWJz1Z63tHm33/d0Zi3FXjvM5vvBwDtvJi3Ex2xGV8Rf0QI0QURVACdi3JAGjUM0yF3DiY
SjmZ0BzjUS60xtcOOWq3cbDN16VyjHgY95qELlsppnG33WtSXfI1k9uucLazooIo28v+09ASM31N
R7BXBbRoZMUoTk0hmhmzeMXbiw2bO7IQ31C/oh8xGUiMKHoOf6Vx87KKyGo72wAEw6KsfYy2TjmR
KEGKRTu+A9nc4rID36wvkxBp06NyMhGUWEsJloIsRqC/xMSiu+EUZjPcSe5etuzyCIssxZKMC1QU
IrYjgF4O9E8YvBzsEIS5qRdMCUEuNEqepYLP4owgqdgp78pi9O6RTwGdvuTAiqLpnU2EeOgBJjAj
u+sNxnoj0xys4PrKlKANYrI3WqvR0laXnnbXJi8W3JiH9Tncfz4aM6MQlmhhv1kgAEl3MLYtDdDb
vFWhVG4X19RhiT801TDf3SQLN0mz9Swbt8wuhzzonT40pEQMs/VHPGFpkLklaSU7OiedgSQlOhqP
8JvWLhCdt9drb00Yo4rAhMr9lc+UsC0B58bfhoi+oMRg/q6KI09qEYqi3dzT+QIPn+yWMOlbBwC0
clL6HqCnDlbdaIb0+m4VyoHIQF0c3NQ6ZOmo7jbw0s89Y7DS2dxABmWjgUYSV4cOn3O9RHnd2uCi
KAF2dk/0QLoOSo7KOfK69wtsbeC2RfKL6dXDxY6QMuyxyQo9p4/gKNyhei68jvhk4kchI07onQn4
0watwLnRb1P23CTNh1a/1SJQTx5BN4JkGWw2zUPSypTmr676kdgUFMhR6wKGc0IpQQGuX/NkGAEq
U22cMO3dd8oxArK3AavO7hmwjN1U63SI52a45b/xWNEV7mFB/6svb4e2DhZne4AOAWdqrDvyPocS
nCUITDrUvjz/6LxhPv0IA1MRSq96btVpAwr7imG5Rp5lV1FUkGMug5Fw8SApZuFaPAxgGu3uh9fS
J/VvnqYwxRoofPuoOJ40d1Z7YT2m3EWZG4phzqBeBUO97ExNgWOE8a15JCKmvOzgL1eMyKlRbh2P
8pLeZIAB36FOKuS284UlV64tgWwSE8jI80sJVYuDY8loGwnjjVEDhbU3Yz674fzZQHbxM296MulN
XfIC/yYSR5NwELEUET2JfakmMNBhX1SlplcfY0LdegosWy0UHefKrLd6jMpZOZEPUR0kKSfEcIav
vkTK8DEmQln/FgxEhIZWRp5mKMaU6TIrsM0oxXqUvQaBs4/64lYrVHQWsV+xicH3f2b8NEiFerKr
bSPcSK5InuVhn3CIGij6mgdi5j1Fg2aLF53BqUzhtNiCwV1SntsD3bcoXwVzWX7h+2L3SwpUILVD
xGbzlIBOnOwDbjG5Hx0mOc8E3EIBn3YJQm3UaDXebhQJq9L0mKN7H1KQczblz2pIfxKgKJm7kzno
dzHjEc45j4f3JJFnr/Sgg7CIv+uRiX4UaZXE0vN49X1J2JZXnofSEcTn3x1IR/MIyO8yUP6sTMQY
QFvomo9Sa87EkVuqft/cJ8U8rO34i5lA5F8sMbrZSVBZLoD00I8HLLQAgSJWpPb2OJENCyz32m3h
ITTFQoxH3ZDvZEzmJ+WmdWxX5/wPWL9aADYTypQVLklYNPHVXrO9uqd/Ih8WCPV/LfnqPv/+tEwh
2FVOYs6rpFQhTAiZjjhUtCIFJYypSdd6eJ38r7y8zT7KVK8x/S2DUZXPOVmrhbqq42y4hWu+fW0p
fQe1sTwUST/5mCjf2fX2XwlCirpL7RtPQfLnSzXKGluRrz2Q2LjvkXxMK6hB7j1DuzwnsD6y2a9i
xNM5NijKrn8NHvCt/JuJ2OzxDHS2s5K4BdnJytFQEozANxZ+Rj5OEXshxK6a+JidFTOy0dKyIr5R
liewQscHWs4aIdDT+tuIsylcBeQKIJmYMD44l/pNjVAp0vFIHAS1Nh6cI6Gs9VfaMhFN/lZEqbWJ
VHohY4BToHk5dMplwpd6ffw0uoc4rlbSnJLCCeHQpzrTtr+3/bp0R0/QV85wZ3NQn0mGcL4NDxqt
CPejZsxaYsZ9bR7bKuq03j9uOFgWsCiF4DXexh1r5trLOe0jeyMWtuN/RLx2h94s6mbadlk2GJ+3
ZTJlSQQrDzyZlq2iKkaKcelgDkHkdT6cU6Fu1wbnL6z0v5dsf4/sA7KvJzX9YEPxuodeGhtbSL8y
5hTe8ZvAhvnOa/oSNne4CsLr4YMhQJGqQQV3oJiEndBrhO/UHkt63NPNBWHmbRa52YBXAdpnUwfC
T5TRl4Y8gAe+LO27+WkQNdBLVY6dzay9mVFHSwdedJzT9rPhQvjIUhOCOgx9wiSwiiwYqNgk5k3n
zw7JO3R3bLdBhULY4j2mI8Hldj+PjHWz0WCbXuFaRCHfeyXCu59tP4iT8w4w+DM0gRjJaio0Pj7P
I5lT6CmGr+1l3tSv6z6WLtYBVuUwkcRwaa+Gh1i/UI2mICK/VURmrvmExQgWT3i79dzMeEj6BxD3
LjY4X+JaZDJwHLNVa6Grs+caDfubXaovRvKKTKbDA0Jl+dMB1Ki+0ggPM1H7GwnrDkaVM4rb+wrY
zGAX6ZVaWuXBopc3HC6SnzXFJwD/HWOAG8QTw8v6u3auGCypJPHGcWBUTh56JJFUa/Batw60h692
8qOAJmFnT+TN3I2T9ill7zUikjbswYEbZgXbrfYglLOYMIZAINyy1s5svR8Adu6P0O7eVtEl3JFe
QjeLVY9q27RsWZI/0sTzsb6arpHGGADD/eHWOMPbByxxvdyrmhRh+g13h9Hq5xMdlYoWbKmgGrof
ZeL33U9QA3rWJ2tKqRImXCy+yZEV3hvkCGDgt5ECm4UaQLTxP7kx1x0NkUZxP3JJulglbix8Qtme
JeIyDgJVKD8jgp4jU9B1lI3Ykc4etM1LUj4sfAV2G0oGHc72iUh1licDFgAZKhzbHcJfhWxCpfn2
1N3nod1unYa63Z39YZx5VHgX5Hzbt046KxE562mAYOj9pq6AgZ/Dr1sbyJkh1hzkcaD0u+UwIncF
RPddtBs3Ik51VesGChdBKvwuuYlwNP7RzPfFBEnCV1U6pd8lmDG1lTRvKzO71rwA1d6UBXhYKETi
vzCidtby8uhnFQtLDPjo8EjOh057fAeEfVMIUEvsUlnvt3j0Hp3iCv98+7EqB81FjUd23iT7oYQy
h0BUqP5ee+laY64cGYmEpZ57iEc5amG2okQJaFjSKNClUUkvDxKZzFQfXI6BsVBghe2DiVk/GT8x
tJTewbk17ublKeaInmsFQxlrFCkGAzHiCIFQIq84+tD68JlVTcJD8NlDGlMxSlRKVS8pTcSMZTZZ
uAZLbiIFPHkVBuCkWvuUBZyVCqBhmW5rIrH8U4GFDXSqZj0rLGzny48PxPb1TszEoKOd+zpLbKIl
bkaiGr65eUb9WV7X4Cv7X/T26HjcYxyDgnDI4Hsm9eitzDebF32DcYasJLAsqlFaxo3bDtKRhhuB
swi3XB5XtzbjxtSBPkHsrtFalmKi8mywE3FamaIXcyPUntOYdtjlbPWG3WKaTbcgkBAGZaim56oF
9QY5C5wCy3W3ocUh/iZSoD0VCXtpF0VSr4jElG/HTjXQqN3e9FfEn6xTXACZs20JcQg7U/wsFxgx
lJ4zd+bjhQ5oKsQOw0jhG0Q5zcd4gdundbqdXH8sboc9KEUjqS90uuRMmZxcRwEAppGGu/MjKDMB
Y3jDSIY4V0712WzDKO1SoAd7dOlUbBjO4Gtd+WlV3G8IVxwORvXbknqiiSel6HiRqdo0W3XDOII9
O6OyWHYcYCcV7BfjDxMjgAbdnXwGIGSvfYGsyD77bnIqhWNSg1Du4d3szFke0rUfqH3itohuvoQ7
EQmkBXtNEV0RCzjoroLayKy6T/kRtEBY3PuQQF/mzrUTmWXETrouR5fiyrEsAKmHfhAwDXw4kmRa
OGsgmYAn+xFd+y69mHEXG0ilWXk9oYNTY4yql+hG7kwUCgBURdlSyQTAf1uSZdL5nQRKVnh31P7R
DZJzU4edwMHHVWn4YGZLCudJhx9EJvPL0ctyQUVDHAuHn059ts9dXR0OXj5pGguEB3pai2VNpbaQ
IONbVPYp6XzGp55axfVfZnQTW7QrDXa5L0bmX/4g0yUwGFY7TIVESi86hNoMf6dodl8g8P5oytbu
5n+92PSwXHNLYEQYDHm3EezdTxLnHdKwbCdrhLqN+wUNifJ/1l8pzh3olKSUr/Xu6vSRjeYXwiCr
0qoNr39rQgxVFg8ikVJhPxvVzo2ptDC01/HNVDt52WWuL+Sagpc5uyr1v2g/VGq0rLELYN2kbGpn
tR0hjiD+nir417dkQf7dh4cauv3KkSJLAjbjkefCmjbzjTJPkInws9nT2OZ7cDnpfR0D3yBGsB8N
sQiZdWlsvL80+DEUN/hwUr0prac45SDsyllGqFbIqk8uCOYCS+EyB7mgO4NqerevHPMICJiMR3FD
DWuoVv5Jo2KUcYfmtfP1UE3Xo6QlBBKulm53J20SDRbl8O/NmQL8tMOsLb1oXSXYvwXz7lur26CV
ZU/EPGD6prNDPhpOViN6aPjRp3/jFP6MJcLg/AVs5HnQ79Qzu1nLt+dJliDg0oF+LtY0w7GtE42P
twfgGJcaD8ExVM2ZSwAlubJNj6gGj7Dtw+Io49MvmnBDrvW456HCg4L7n/EZxUjHSEEMnvE/9QRV
dHk8wx85eN6CAXp/pWy9i6QYaZRFyoz0FDnHJkpVy7BEAvtUo1+LU7gM36EQnmQpqg4rSYHdsPHH
1AVVVD1LjF4tis2hVtIVrCvuRUjiqpw0GG6UQ3iOViRSXLg48rEKirH2L2SxtcWg3KDxTvX7evG9
GfYtU+modYICutlR9dA65TlYhvkNBEB0V/T3Jp1XavJP1JZuLQ9AvWkT8rYlczu7hq7pk/scgOIq
DJCtjX6fSwkOGcC62XFva1SUjww6ljmBr6euJlf25vtEk40IamyeL8BfZ3y7Rrado7HxNoiCoyLz
JPA5o6DW3BcVNUvsHGuMGLPq6HQFh9Jf79LlIFIVx5NMvS+sjekL9FSwS28gbAC+9ZUtY0mZCe5x
juc67b0fv3Hvr/lqHpPJs7hyPm1Dy9XjGv8iPnCGedXR6zyZWsK05GqzIm7pn8S52yyikonBDiFb
Lcw+DUZC49NpMlmbZe0fAvFN8IlWiPY60ekJ1OcFnvNqW9L2AF/x5f83dMz1EawRPr3nMwtuQSIC
TTnBtAPWqmTHwFKzih0gckUn1jtj1iyUZZjGwzzgBFTLHv/AAul5SXEglrWtrB8Vzaar10+2afYL
YnIJEtx0wiIhtHQg9AXlkreyFyYVprkwHDXqHXlNgX8tmtlNkLQHLsnGgRqUh6Vntc38/HIlk5EN
iAgie2YvidIZw8Yh6p2ftIxTIMKGSWRExhQbJrCDubUHxtbT5NXvh7l/qXxPMgtxCSWMuq1e1Bnk
zmXUBsyDylRTRCoQYdjiAOSK71mq8rvlw4+PTXWM12Ru+3owmrLg7Xk2m9z5nY0cHZ5sVra+IV0K
Aak3Nf5IJdOAMcWzkZ+9EZBWulLML73Zw36vFuhKz1OS1AdvBYzDzAllg0c689/gh58cAZZIVoe2
zThw/JjYUxUW81cxhhmnxmK+MxTGyVFYxDri4bmV8aLepyr+42qzdc2gMkTALB9gdIsleabV84f3
C9Qe/PPezx0wmbqhqOqLBamVxQar44UCBQge2qzx90gaqIzmHKCyWgm2ySABbI9Iff6f4Mq843x6
6erjdTX7tN9Sct944y0lkscNUKr+so1OZ/TiKUFtgjdcPj1nNKT00d6YcRg0mpgJHo4pRKn35Viq
JUymGwSgXdiAVBu82f2fCL6nT0tQXBzpqCQOugvkQOMfX63uKpqsrYLJ8u+rE0DtG4fzBEKmnDcu
h3JDjMITVMU2lrMzmARTAJnMAHl/7rIqJS61ebKJKjr3SjNL3EdRQuFxai8onpz6pPSXz6nimlgs
SsqOj1Z9NrXvT+bWUnmQsYyllz1GmJvFUY+v3a3HnVd0NB3hiwMEgW2jTvWd49eVc1Q/e+YRaMBM
DRujRJUAU9binpr5kuxgU+uuddwyMpCRdbna6FCa/7nJgEN1Incwhll+v9hlJi+5MxOgEFxjju6H
E0neRIdnCtSTr0H1FlsUGK1JHIAvVeZbpr9s8/SGi+8hAuV9S5rHFODrDc6UvhroL6Y2xrvXfW+N
rPMy6AuqxaRJFC8Fl7heTSbiVnE4NKfO0PGQ6CkJybOUuCaODfZ17tBeHiJLnYDdsxKwyNy3154Y
cD4hmK5CAcXoR3effR1kKdqQPKIg9bVkIjOxfre0M347BSGdfTglnGTQK8piSPqAIdMDML0fo3MM
qxr/LLldEx5mUvmmbEq69llDhkCVGxq7Zo+ynhEmhXvgPUWn3Pzt3Ppg2JeWIw6MDhCqKbNpRvSg
pIpTKdIHSrYlul75czfifa1Io9cFC15VfBQiNV3Zx3j5bCTZk7+bTqYq1EZ3QIuvgy0AeR10n6WR
YvOqD5bv1rxF//imLL9a1XX0uPL0A4bUo5Fnv+xiUSGnxywfN9T6sRvdVIn6UU41m4YA11wmUuyV
y16PKdw1bm9XKuwJUL9UFZaUkWv0EA1ALrZ+kPLl18XIABFWCdgpp5ScEmi97KAFZSklrYLcjSsU
6YxDtGMTVtzlugS6xKfRXKKfbeDc9VzghS5NTxrEUpCY9kFyLRuwXHy1hRCJmotmD4NjjVUUhOd6
IMn9nzHslos3K8CR5kM0+7whQ0hKhrv2zUtd5isZReOHcjHpmDVoQCdkMm3oMfSCm+WEVz+Y/GS3
e/cm3WAxuXGo/+EKCf2+gFKxuVZRsUPWFuNrJU89tflPidts5I99mQeNc/faSjYzJQ51iP25m+Bt
+tdLAsDWnJq64Rf+9I6xDcnF3o7bDBuUW7r6xW7YwbbGw5rZaMIHuDpMe922h3dYpK+V/ZKZNr0J
SKP+BNROZ5KGE7butR3THZ25adeJhMdLosERTaqM3Yue8Afszh5D0PTzPJNlSOE4idNvgkXApCz7
sUCI/Jxj5CXj24oUWKgyv979hUFFTdVi+lEtlUPSj029VdKwFooXLSTzBkCNDjyG3zwQn7cVIm8e
3AndKIbx0K8kP1yqMDdVti3cuCeeVI+SMo0l6vYIifyoiLp5+IGrSw6Vcx3sObsbHcgZ/DGuGsRt
d7ox1lNL6c0MwJo/jrvjtadaDamFQlht6AXEmCsLN3RYyY62hHZ1K4KfzSaRBcNF2DCvny6y/jDD
BIQiNcrjA94YJH7zbEuxYNpL65YZS3ZLcw7QXXB4TjFBy+1elaM6Aq4iI5g6VMGSfeIZvcONGgUI
TZyfy4PlIExF+p4J5zS6LE0ZH28Ux2B10wmqjs1ZQ+97CMsFDEYnWkOUHxGGdWQFDOKQjeUawe4W
SuwXrwHjn7i3AaW+AyHMPPEXO+zi1kYpOrRH9ejsX3jF/fG9OzjU53WSf0AHJx1oYQOIXStw1AOQ
m0CxJ/KCGI4M8yDkK0jkh+5a3FbKRmB7aiFZ6DvF/UQy4ys84U8CrmGx5IdI4UU0iC5NGYyxvzlp
iMLpJ3NHPOoX5VjzH5LuJSU9wNEb8nuvSaiHSubSBu1ad5W3uqwlqO8P8p2pRbj1IldKOHA+5NNL
pSnIgHxqv/cDGPeo12wT0ajQ55lgKNEgCpnLP+Fu4chChpQ8ZIyK01Mh17m8K35k0IJMe0kDm2VE
UVBLEJ+ANivZ9DrdrzyCyX+YATrICNJsdapuwRW1AFnameR8fVScpeeZ1ETmXhRcBpPlvWAr5QIr
21PHhBqMwEAsbpwzDeWQGgSQsRTcnopnSvOA5woCRgvyDk5t+VBxdZoScSY1c3BVnCbysmgAjXhk
r1OM7Aw+clx8bsn5/t4d2V/vgTvyXfMng0dWlFl63XxvScU4Y+2qKye1Hh17Svh7PkN5Nb64SS8A
0Hq9nNZK+TCvbqZWcwbvO+PWl7D9ySqhmpBMkosw7BRcVtEdNl0dKwhe0GzMLqoXZGpHEt72SF1z
qA+TAUTxE2z8Z2nuw+krlklzpnSJyp7J/pQ1kCFpg15oiG1fq8HyS/W6eGnqY2ECL441JlMRURlz
FPbcNCq5AgYP10cvmNz1QjX6i697UrySpncsByiIJNMwcnDOXXKyZ1yYQHyuZEfKGxSENz9LWe7L
wqQb5r4jstXzGyLmfq+N6q5P3oAn8lYGIZjWBRkLn0yUPle7KssPBGxIWnWYBXMp3zYGFuCIiRJf
uwdudGIGJ6xDkCy3yUQqJNlGxtDI4hNTPVb+UXkuHJEK1dmx9Ux/YS+xYyZI9fdULNFMhXdqkc3h
7RWefeBMqlxjbgLgp/N4EOh/Rfi9xMwOoo4IjfH8L6MsmNgnWXC2J2+0M0wV8pY+dqDK/BPYpQyd
mc5tEfrqKvdTBs1pe/ssfJ/9lb4HiUCYQrizXUXCthTKTBK2wbEdvQF3Pen/3L/FZCOeG9DWrYKX
DIBdyNvalV1O6QMm7Ddnv5URCf6Yn89umt8wdeFMbXKAPNFLGqaR+6bVXf5yg1Dpprko35D2AQdG
wm5fTkJ+bS70kXTXlKNtg5UyhvmUF9BITt7eZjSPI8wQwPFU7o66Y5ObcC2DD/HARKk1NGaQmO2/
qOEjN7ODAzVHg8jgaVWLL8tgj1kQE1RIcJptHz2/285PwUk7lvjK7Fku5sho1wKiAy4+qlFmP/M4
QHgWYjNrPy0VIQF4y0i45EG4L1TQ2rzJwaYjiJzsWD8xkv6clL/mB2iHWqLr5B/GAiobm+lkvph4
5WiteylnzcLGDy/yVHZHTKqOiWOp/A6iLKWqErezDgbUIUVUH/GEtHM0mPd3D3wAdrWhKde+53zu
PHpKI/+FfvUEwgUVEkLD6ff1uOkXuf3ZuUQkWJDicnkBVK4IRtiYNq88s6HwyoinIenxVpCWKfbI
+zyRzRAtJmWB+/fRT/c8m8NdZ6wzc5qdgVxaX6IfNynTljq1OAntpVmRridaszMoE/bJ2fYHo3g6
iF0g4Bb/UagWav+Cr9/4U0yaqCTez+wHMlEXNfaEBkrUlYSRBlPXRuued2XkWFAPxyu1a9Bg9LL/
2X1AJzmBpbgakA0sq13Gs3gPVTv9wl5uLBbsdTQXwgdetvlKt5LcKbE2gmt42N9Zd5C4Bx61ghP4
EnmSmPkzl1Dtc23+Brir6I2dnwE+JBJO3JTXrAuMelAIHFBLx6MttfTpPLY3MVXfod9L4GqQG82c
4yJhRlE9iE9I6bccjcGAumigED8xvCC+Nb9PXhW0EjkuRUtEgjjGmTk01gwsKS/wPGykMz3WtLsW
CVQy0wAC4I2RPPHWFox6ynYt6J7gk7kXhwoshcIW0gjYhfhBYAs9jfGn+xZ9nJ8+TpRPY0ILcmv+
UfiKfBudzmGHZ3uOJMo0T1vJ39HMeTVgwxKoMb7CIuX1BWpB5RbNQwgRGj1TeKthHBpH/I9K44Uj
ONrjlr+IQpcJeqoPmFN0BjS10Hh37ZyDB3SoZuduw1sFU44ZlpPxE7Y0j4jWpjMnWYmj8c3Ti9dh
hxY0pVS778btD72tLeeaP3Rr3WFhG82PFmfAyHmelaTblZCbsbWpS3HUQy3Noj52w50CNvl8h0Rr
PKV966YFWJJ1klsWIv6XE8tp7KLKGe007zCfZIktVrjk1/hYWrrupkson+DiisGxt0GvbsgtvTsS
XKV3GNtbK3AMy502KzZTqbWBs8pQNQ3Qp8MOlQ1a31rYFcit2hcgAXKPgaglEQzk5VEQ/h9p9qd2
VFJeFbb8FkhHgg6/Q1BJwb0ZbzdFt6PGT/LM4ithBZYRkmUzm6TBitwpxEMLqfO2GYfNg/k5Wsxe
DYm4mdGRt0L7lfaE3OfagMX7szND6FBcqeOG9oG7/mqoDqo47wYWZELY2pumJCG5V0HdCI/DP+or
WxyoaBDEs92zlnfNQ9g1mK5Fbg6SgnLUQYcVvgU2WuRtoD/aMtz58JD9vLSKzrPXuytMVl6mWdWN
mMnxUVIfp7jY7nSBC2QGbYAxtDJp+CTQqaA1rCmu8iaH7Y6HXlR2IZD5emz866ouy9XCzrSpC0Jw
LbQManmP03lZj0Tqb/fqdFmaFCxoyBjTG+D3YWmXst/QY3nmDa6+QFAFT0G3oQVygSmYLn0Jfgmi
TVoiJlIAbdpE73BCuYQoqHj8QpQ7FjHaKpRk9VbLjyzEEkfY2INDCAg/VThMkl0isAW0i/y+gRrp
SFRUDbHnh0++zrjVTpIG62l+ZeQRhsxVPUt+gMKWTto5y3MugpR4VKjQsHl+633tEUcLmvJuyX2k
dSIFy6Ai5qRbh9apOSLqglDTpn7UMfZkrAS5Vik4fYWgwMRgGGV9QWaVj4T0QdgSoeJDIEFypvvu
yYN8xOa0ZyrOX6XOs7mV5Otgw3Nmy3Fb80aIb/daM2Epgr9vmj8dpFuzgfT6A0jGTighMhrmCc38
aDlwqcf0DNMQVr+ruEVn4OJ3PlcGcuWd2cfsMGaoDwvfSwfFzaNhmluIAIe2up7PDwTD+gBV4CA1
gfTSZ76iM+RUKisyy2rND/tTaBa5lpnp7LTQmovL+zN30Fn7/0m9RjBY72/PVUjzW4voKGb8sUnC
dFfEygb9DjvGEQMZVsnf8A1i1UWbL6/8hwFvYCzmHzUeRfUz8XSHuviVJSfRLB1BgRvbMjq+PMno
U9K8Zdc/qM6hIPlmzqgJg48MtP5smp+2+xAEwtxqFKW0BvdpZlj5bM8g+l9YV01hPnoriLhqKasH
eoDp7ataH08+4geDERFaaOPo13WQ2H9AiN8yPKprsajtPqa4q0fmKeYIhdwQw1mfHbpsVDv6WpZr
HsEht2T2l0vNptpKUtWieBF2UQ+duydDMgYE0f4N+vFjxxtD11MhhJLWkJUspwRl3+5+UbGqyk7c
LQpgQeuAPZDk8K5j1SbzhjTQK40yYR5V/frahlvWHLizuWG6zJvEGuTW29/IsB65S1/zCsumqW2c
GVW2zboaA9DyMxcq+A7z/fI7tLl3lsy00ve7udowa5V1mnnKIfvtok6cbdvVxo7+KwedfqH3XZxw
m0GRULfDA0iNh06tO4jz5aTFO+C2d6S8dNV+bgmnTDiLBgceLXI4l+H6w3C1/upIZSi0BfwykoOG
zJAv8M9Z4xi+fKdKO6MNcKgNfvx5ofeVfgNYa1ig/mo3i93ZosG6kgmNOE1ZYeNx2A4fSy+OtWDP
rzyh1LGli/hyASf25NY5g0nlYr79kffZh8G7ND7zbbpGUyrodOcuB18k84H2er+Pdj/4InRFCqSo
fbJcHMB910HgLohpXD6NTwAjj+cPEE5mQSoNAyWslbQ52jm4zyEd0o8rRfybV1zwb2x0y2wHSd3C
xBLiSmRn6W+f1ZHmwi8ZmIq0lCqU3QzqEIvqo4u1HKv4AsJ/IeN33tjJ3FKPvSiePNrqALfjnLmv
Y8AoD/IfsIG5lzoPdjr3+qVc3NC8mLiRyT7F1KI40l04dm5U+UDF6jRmcCchXvAQEZBqhekBhI6p
TsF07p1k5ru2h5f0r7XTOyUA1krx88FGvFkZ/wRu/vKGZi6dc4/cnUXOx+b7wghMrQmDMDOBRIVb
cldW5wCpxyWslHNPXnNMKwrN9jaylHjbPvaOgznnMlMvn+OegOggC9R6wd3OcjmyzWwvEucU1cD/
cM5T+YkzYqi3lKLcQ7w6OatRIl8kFGOyD8OapS49cPwgwGhPl9l8XsNSOKqwEUQsK9nmNfdH/gUM
uO+AX5xcjAIL5BH5/2Ula7Myz8FqEgfazwZF0WRg1rywkoKYY1FWPgC63UAMa5YX7rsHya31/KNa
9MKHtFLqbg2dmN6L16Ylc+ePY1NyMl17vGiqEu9AbDgRhB3NeW8lV4aZBYPNWhTfTzipHh/dT6qO
W4468yiNgtYlM/YBlg5s2kUMlHMx1LWdc1Ksa7Vj9wUOJaA9ZprCVmVfx8AgE8YVbCB+0Ittcszd
m41hjVmL2oHD5+bpjNtpjUoykvY3XN2/MSkWpXUPjozMBNPd7HEP7+d6H5mN06hct+0vL6p5Sk2n
Mej9ftbDsAH+Zt4zkKA3aOeSt+skz/jPC8Tw88j0ZJh6u3kKrekiXTX9IFtThxsWkrxEtOs+3VDw
BZirkm5mi20VdKs1RJEQxAhugnuiQppYI8D/iyi6GKbz3Pq+8DsTMJoYRm+Glvq6D5UWpd4r9mBm
7aW4CEr1TMVu6EwvvcdxRQYJzcxDTBCFB4SwfggRE+1vTGwL22SifOEvDVnp4C13CAsSFKf9AQ/D
ojqUkXfxrintIRmhmIPn+TNF9+hGBDs3iJRJrxKZLAjkzHY5R+qCSD9b9sfCVAAoQeCLIL1Zrh5B
gKnGlcf5EgZGHWGQ0hviJLC3y5onWYcnD27CktF8XUaNP59CZWSxr++yyXTr5c+KDHSKqkrUMzVo
PvKLTVpe0nNvCRWBEUqHpKlnPUf6qLO4Qq5BHqZotIdHxsCmRWK37/whcuTtefzhD6pts8NSWBY5
bx6icXhXlbE66D5jlcu0wm88bcldpyJEaqci3XNLRJ3BhMXzEKdxj6nekQJr7BU+98pJIJltWlZE
HyE00+bjzDi5osI9eKa3TIdxB7W1z1ubq3LHYbs0I7aMBvYRNnf+5wzfDcKqv2O2jrP8FjXVyLz/
BAHCkEdQyeCTmY6xor2TEA9pjrWiX+TDG9ILNUlfYPLEB1GF9vNoTel16D59J03KPX3/aQ87sIZz
WzcmecUx6SShCNWZEB5WVyc30yqui/L+N20RYn90rjhe82iTv4ug7p5R+oPkVfJLs8HRG9B4oadJ
D/O39bzh8Uv5x0PoCW/eI8Qzyl9L8fIoQC02NE8h9S0CGKAixMlTaUehSaCZ+cnKMkMxO3LI3Go/
OTXxj+v+WgdaimkIO6iD8OFp8SEkDczYo2X2sUD31YP7iMap9tvviHFhfgnAfShv/nAmXHqc87jS
M//Hob6D8MuNJNSnjlERKg+kqBltZkDi7pkH3yQciA9QPtX5ZilOUoHC+zwbNXOAbVVVrc5xebmY
qCn1VLm186nVA4D1CybsyKqMm62OemIVMBwf9fPkA1kCq3NLJC44NhS8llhKdkcboMEB/diVAnDR
Yp+K+reb2ETwOsF2zbkB0BfCC2f9Nr4ppB3W/ZhTwkI1yAmPkR+nb9BczOZ6kYPfwpD6Ob1wQdZD
/ZUeiDCF0enCtAdu4M3Mpzx24f5rj0A2mHUUlMI2YHLSAPnWJ6UF/4VnFdiAZ0RkTevunHnDQWJF
+/7/VRLGTdio8fzrFQtHBjFfneewY6wRJuomwEjLeOeCQB1iRQoIJKB5Hb/id+4QUhlZLFh7YJyv
d2ev2htpLrsA1LYhlIZRGUneL+FrcQBb0qtFN1UWb9kou5ympduU1QM1KeYFylxepS2psRUOGvnn
2a2uwlHs4KE7IlYS1LElsIxv88hdP304dMzbpmj9CnFNnxkkqHx1AYS3UaxpO5mvuZQtGB0obaST
PZRxfUJ4JwSxmUbgfZq9SAY+fUZRG0lg7xOsnIbL2VmtdC3P2tNNFbodBzNVoC80dnPiuuc5MBMz
hgqMGJ1yS9nv9XdtxJjV7kv3JhEgDEbde4xoiSzqZqlewUKNfRLv0RBBkE3AWF35G8EkEan74Znc
6ozFxRpmV40jdGgaE2N0kkkYg+oL0KBVP4STeZ/a3tYzcX7ipzmfg4rBpTgkX7TBoYeVI+hb74vP
lytmv3FL6ztEb99RYx8SmikvGBDICsXVgBOYber8ePsjRWPP1i1DX3IqSVkNQQGcnfj2ojjaQ4cj
H1YI66MlXfmAP2Bp9Q83R4305mbgQwvcftmaBJH9vDshtKtajfma44hoIfTMOUhQlDEtLJsS+Vr9
QbPPhxA4TpXQzSjiUbjoZGq8UAIhGcVIeeWFOGWhLcQ7zLULlcmgPXsJPRt3oN9W3/qJOeI3zmjL
A6n5zUlhd+Dw1KOsEkxcKgi/AwLtWqC9UZFbLK1j+FLDdMe4HuOGVnUhGmG5KoLJZO+etiEmLxy3
KQtj4kaPnAZnu8SP1rC/nUQcx8XUYEPsxPqVdOEnZVS/ezfSc8rlHggVj1ujqC9WAymI4tne0Iqs
4017MG270zdyXwV3hXZkFqxFpXaJ17SR/oTGcTM1bbW/dCl38S5q8Zy9ofqwt/oV21fF1lQ63dWh
/Bc5fOq8vm8+p58iSFvdrR5lzTR5ostJBwQPARNLaFDik/VMp2UBgUKdPaVmkmjZFI0um1+rtzIA
28fkasLLU11KHWo4YG4yld2llqhqkHtn43aAPVrqDSvr0bPfb0UGBZk7GGrXnljXAWwcC6cbdUDY
+omLb5TCPnzK1ekLy+lF7fQ+v0ytPvUHao4gqknjPglSHv1mnshZKfjIt2ltIdlnahacE43pOEoM
FQvCT/M7oeHIEQKskWRXRr2AWoEwjwCrY1ZR49LQiYFS8CyOBV+KKhvwF/BLvuy2SZmZqO27bZMb
Ioen/J27jsK1Y6jtreN3rDsR3nkMLjfc2xAG6VkYUwRW5BKENhWqD+1ObldGP7yEsT3vOJskznbf
XpKutaEzaSCMQuvqeci+1Xoh91F6DnElxUuRHO70qc9StRE0sj/FJsDclv/nEo1xzobwC5/FWNXU
VPFRC9GQOsc1l6ATNjlg8lnGeWfeAbHHwZh9p4dYRZ2RWcKi4lFou2rCn2AlI2xaDZkQEZtKpTBV
kuBBUoIC2XSiiMEzMeBudroHqA8oUVHurn4wFe5u5b0JDNOFTriqWcSD7EtRU8SogOjOKwl8lnxO
qlOFHvuYbZ7Sd5bldLVM3l6BIgBmHsdNeI4EyPn9bsvHLOWdB/PXZUl9awE73RuqrAmHjM0/gx2Q
zdcCJ2vXZz33HmxZrXHU12E7u9nvNaS0YwU/gQCBHWlDKott2nPkZ1/HCZQZpST13z9DXhmVoQqE
pJ0FL6bXm4h7Q1MsDLWhyAn9TxQj7lk49WiRoui6DJEH3dqYtVqEHse5Nfyg/1tPtiesBlxyE5ml
GiiHm/P6xv5T6DtWZ8DZl8NmRyv4p0mdamrIFmuyPei2EP8o/MW5YpVl4rtUCWNHRHbPuY4qoQGw
XdKa7KQLPJeT2AzP0wycau9DHm7UBiDiiJDHVkOnQ5SjVSloniedwKihnbKuhQINXevjMMi+Ddzd
Cdhup1PIr+SdhEgOw6Xw5aAOON5/Ibhfaf6Ox3aVmMWOVKvfJX4uWVTdof+pKrtYJMTp+f7cdLbo
tcdodNMsH5qfhPkQ0uJMq8yQqEpqSUW4SekT7J0PJXToLnAIZGKh9HV76lTN6fALHO5EDGihQ1ln
qvKYSTa/8rop88/PwltMui+25IBSgfERpAkoiDrEl78i3GOXbE25gmnuuzjm+FeB1yFshALWA2Wf
GizjzYkg04GgexPWoD7JwPMGilSKeNItp8/IiFJsk5RK395OxE6l4b5xKSDdoQUW6xfzEAxPGWkm
zYOEppY1EoAr5XhSl3es1UnujOuyDkLQW8oi6X4HvAh/T0FPcowX7KZMFvdUBMeHrSIXf6USj1R0
On0Ow5mwTE0kKFx6dF7VLDN64Ag/kMT5OBtaNZ9qirQi20R8YlzjQZfdDVr2STLBT+AMfRnC8X7G
uX6julnfNrTyugoRhp1LXo2YdZ0gijsQE0cVfhJLaI9yySHjdqH2DjV4KVCplofW8AHL3Afaj70C
J992JvSQNX7MtBAxZv4XgBnNUw1vjoqivoHZ7C8EWO2ze8Vyxs27ktvmtqE4j5V6hzELybX7HbTO
n5PzCYsCXMPVxXEAfw0ZWt2TabwUhA/Z9FrhHXMuhj0px6oO5L3pCmH7wqEBh0SvRq5886LDJs0t
4GhH1bOmHsikqUBzLp7BkQX/zLxhhOSCmoOhgr0Y/LQFaUILbyVvL1D3i9XEe7cEyIf8UkEwkc8t
xqXAX8/I8QRLypMPngt+cDrNGXBinsv7DN53dY3h2yvNxrLOLL3hPn7XzzO2U6ZREuMD3Chr4eiW
hMOkANx9rq8VQMYgmD810JmjtiKdzoQ40gOjbvoavbw9uf1opaUVHIbXQAz01rZqEU3+OPXBt8AB
UqFvEhcGRd5kSLdQ5PuUh0OUkHD3+u7tke2uF/wVwANZCzWalrVt+BLCd8x7ZdXoBtqUYSrSQoug
08vKGFtx0AC0MGy56l2Qj10n2yG90dT/+vjXx/Pv2sfZqYf6tlhmfc/K/h2z2GjkIIL4xUjXe6oL
9GjgXh9l3M2u8p94r1tO8HcFrbzHmljlCB345E/Cr3rtjPKWk2vtY2BLySQ5ho+ca6jECvjBE+KO
4qnTNBDf4A2X6OsP7rbE0IproinRPSyUCgZPRe2JMQJd5ETJbEFLwkSGYJ2PnXkw2hB51+l8zXDf
cONaRIKFyt8XPV0xK8KF81W1RsxjSBMZSb3OzGhUaIZuSXA5Ddo+uPZSXTz0U+PNYAQcdFfg+Vxm
0Vmes2D/ycRh3qjOCd9rkCVMEo4njRGQBvj0uhPg9KeitZ9C9N8BCshqob2WOkxsKyitx6wkVbWU
Zg4kLx6fBuHVCBrJ5zIq/SQ3ptv8OCd96WvDxeJXN9AHdYUKdeSqP0stCTwNfaqeUWLrtQwQX/05
A2SDGbR1eHYtra9s4G+3PXniYZiwNl17pkLfM9FOle92XeI/wjBnOxP1rf9NzXg88Y52k2SzJyo0
KNbyoG5DkCT8kFJbCJX5QeGp3Zs1yW3q9YSZF4NwIB+7I0qfrj1yCdskvRlqZ9Ld0ws6psmYLLEo
ciz6+rIATQKmlAwTVEdoMj8nKPPvjv8gctW8uZyjUb5p3Mv6MCBpmBTl4sftM7We6PwfOKS7/Kl+
ax4XIpN/4GHEtRuv/b50p5nvac6otF30IJooDF1dvra/kTMFIEUi60ALJ4eT3fa+UTc6Sc2CFDKb
urHq+/b9WPFIkulwEqcf9JFt9INZnoKtiNjB/iNa2768ko80shOm9WGThOTIA1Oc/SuzXN6zQ2b/
H1aefij3kgE7A1fjy0pGyapfM290/Qkv/DsIbuj5xPT7i5wQ4sMR1OF8m3qR/qcKnbKRH0ppQYWK
L4k8zU3g26H+Deq7QME3T8Ghn2PtQv1L78eALWOP7YmNzSIaoCnujK1dj1xcIZDopIrYSMTaQ1Bt
6MKjvhZiZgNUKqcn2/pf8iU9p0Eb3PZvEDIGlqci0yaqbHAogto8Latz3n/yqh+F9mxM7P1Xo2wZ
BYPh+QvQTSbu5CBYEj9MIBOk6CxVEHLXRYZNlnxGpyPmG68D5edc+dlfEv8Q2BAnYVnHF7YvdKwu
r76Pt/d16eo3bF1GFAa+FXoqBREply/QR5BoPlHKeTkxhbVgwX15yE1SC5Lc/icZbbs8uKDRO0q4
3vDQy0u5SHyvLwwV6pd3coh+/PgvHmYW28YLOMQDCZd+ixXI3OJGH5OZGSCRWjQnXQpTqP5IUmF5
PFttckC9Q3U8pBt0bs1gZPCmBqejU7EmbFz0ffJ/0luETAy5qRs3/MNpGHaZS/rUmJFL3OMMLB6w
GT7HW0wlezG/K1B2wgoxAoiO2a7VT8Ru0e351OM6VAyFwaf3t+/1v8E1Cj4GlzF95UUWou5f5+dk
awWjZkwyVkc4M9H0enBwnFiocHLqyu4N082zCfKWx0wdUGzQfH6Ra0kIf3JeJXfJxiU7VRosfid2
akgqDt2dBYnFOLpt0sFBz666fKAgwIH1vxCSrmSFFMXdWmmMLqVegKWp/NKtzUWbZu5eEMzm6BzE
xFVEPhQwB1Vh0hWBu2tO9nauaY+1Wdr0neP94xjN7YOFyu3dLw/YatnGW9sK/8mNK7gCopjO1Y2L
4nmCAqIJLArviL2IwldtaKeoGLfunpqcyGsUX6gGbwthF4PSJnwP9SCPG8PPK7xl52Sh6Xd5Plu7
pEdkqVYk117AefTFroeZZICWjXnX3rLLetNTR42n0xQ1oBeB0vBtI/MD7mxddVL7GxKhhQ7dmir5
dBvofE1bympLmoy9uyVI+LTeVgFO6wlLrXlPNko9bfpYO7iVSvNFg0UB2f8Zy9KUHpCbuRXTXBBF
oHFuIpBdZOtzQQ2ZQaNyZdIi+g4VlAPqtfv3CTlDIDiDt3Zh8IGtoiHA0CYv6hyJ4nCNrWuX/D0/
gujR4hRi/1+sOahEgufLSqcePYd9+YBONP1lc8V3uZ/dPT4+lkOb+Zq9LmGWhTweXGU5rd6ZwvVM
2WYassoPxN+IXuXEupUaKmqkS/ETUvA5Hwml9m7HUpV6JlzUSVSFMNDRE/qudmMCldPT+s6LSFMp
/GIaAoTNFYJ0Us7dmjneIF6q5V1qDmcRgUi/ivuqLNR9UNhPRaRIzXzTHy1kLDCvOl/uLllBoPq9
woTGBUkMYtV591LWqhwjSbvGMckGr5+1v4mqyDGcPKS6RF78DmvUILeg7rWh4b8aIbA8CE93whmG
kMEWj38dZgNZh/eXzean2aKgmgDVkM5z+g2zQYHeDZyyHZk7NH/XKHQ4yNxnioCLg3T/rhxRnumG
VjnAnf3nEOY4rwvl6XveEupJ9Z7u8UCI/LplSG2CXYnh5cfppozKOy77enwbUKEuZMrmFBEnYuGs
ojg0d6kpfsfTOqf6+TTGmvlBWSBhvpKILqoCz+X2/BJgrpVFrRyNkyaP+52uDpdNmSX67UKaEJ2w
TQmzdr4tQRldE/y3v/qFLMgquFNZXeP09/jzyoHqfj8HJ0MITy+WxPboKkSAlB5mpracAS4vxgzR
hmB7WlPj2JTyk3fdAwF6/stqcNkDE7lZdeNc3It8ZMLzCEmBBOlVMlswrkQVTL97+Bm7v1xq8zsw
9+pHdeC/5gyposox3ZgrQAPQcGSbohvl0bX584Kc5mVGfzTpuMIG6swqLiNtQeFGZJpNv7/ZzBgS
F/zU6jZ1py5gB9G0qq6qK/2zzfUQDFafyuFF+odJWgVQ8OoXo3wNmYcursaCGln5df/bFuJ5k3zk
E6Ig2IatWDmaHExexpa1ssXQh+jY4+pqZlvqnrXcM/SMgQIr/h8q4dK1JZb+r/oIeSxD22rOId7J
kXARG8oHW/MSSCio1KbDx0sRowvW/foOnqUSkB/OicpJqL/p2uCraD5JjGSp9ESInQMGTUTUZ47S
mV/cV+D4qO4V1865UUlxwdYRl14q808140CPNOYqa6Cre+aMu/Z9f+P7vHgfokxFpiNKOCxj3/rW
3xhra1Y8RcLh4DUQik873RSq9ekkHNSFXI4QwvUSasih+9Qrsqp9GmdESRPMjLf1Zd+bpFPTZES/
DuTwrF+aZTg2C4iduyEDsgd+A6KfWTIHM4fos/yJMou43VFjPK6aDV634ukLRERFlNyh213wmPLc
YCDtJiYM2mADqeHwuaoMuYa3/vTT+Brz3qyWBeW1B+JiOGGcSR/GehQYfdRCO3TSX9FlH700FIfS
HYgNrYmWYC2LrEpMTEumR4eT9yHZNhI+qrxRjcGzn/Uv/kjgFBTr9mrXeQHsauFF0ZBRP2bMaiVw
GWyBFRG1Gqh069QDhrcwr8UdK/3rqGfsx/ZmxyFFeLME/Z4k7BpMU5ibrBGAz3LNfCwLSU0S2D9F
0OHwWr7EzZ1rsZe/4KMh/xYfPHsetZX88Pe1vjEzUvVkM6sC+JqTd4ASTXq2onBjY8oiEzhaMCng
oGSMvDRlNsUBYZxDJ2rbETO/1mxe3GM9g4KF56YVo2hDgpO/hDFvszgoA3p8SdFBw5u4nrKAZs44
r3QqcJRK9YZlznOkUOfq1Th9IwHNSHTDXkmyGDabyduUHumF8USC0Js7RWyEsbqMADNCOnWUEfGg
v6YFfMfMKlY0ywR7E7SiDbCXxAXB62X7nBXnJNGBWTx9CAusPEhoE1Wj6fQehJTSbuxhp9+u9hSD
f9bdI6KXITwvQRUnABdltnEjA2rFTSjE50bif8RJjMT5nep21ZvG6nYOaDczkSWqp7s/lG8UUgqE
e7j78vW1AokmVi0dWvQ9qVL14LgpXLjYxWwUvJqlZBY8nnNRmJGu8LnslSw8qvSw/Q2hb7c+K9F1
KzGzdAW4HQvEx718UewImx3BKM+CwURC6sgtsdtjoAey9fhpTw/pD8xlz0RD8rMf810jXn3bMvAL
xx2ibo1hLpPQ+cv/vSg0RBrGfDIkmE+rivpoQhIKlKeK685Zc5j6mDmaKFO+ZFKYLSIvqyneABW3
ewRqyQeA1n3q/hSSrYwrC4IDmRO6/gPmzzHMpcMw0Xkf62ZCKFSBXynQNBCStuiqg/EK/qY5imeX
moDm0lQ2jKu+i3Dn8TuQkqIOLeg3wHnqJk8muEnxncTYmcSyLdY/wTsOeAx5fEKMxcj8Q419I3lO
tpMJkd9E0G0q1Ljz6f56BflEnPfsgN3HRojX6TK+7gy/d89SInTBSXzabknk9iNbAMY5m4UBktn4
xNlj84cEfKVoRvJxAvqxeTbGwZiBCdCBY49KYKPBfonriDrG6BuqETBIFOym7qJ4Cq3T7pjfDl5q
TxowziNDPYBejz+9OldUbZU8+ZouQlkJ0JgsQoXzRh73jAWXwFOPep+YK2yIMudd22y0CtL93dMQ
1KA2pLMd/fxjlf4VxfJUWYSdn0vUqnhFjtqcyKZwv/gMYVeyGo35zrv+1o4F+oBz+K59e8f+rFVP
XvxGzgxfZJHJwKAgQ3Lwh4EEwm5XmRo6K8JKPBeRJa+Lc+5gwKhi6xpXLK5IYoPQC8etzmMrbZRv
OuKyJHcCNq82NgdhUPbhFZaVZL1KiHuWKxCEir1lAsP8ImVrF8l0sxaNN2bjmn5yUJ9mXxgycdfL
vQo7ccImTyQ864H74LiTD1YZpTXMeRqIacVRn4p75LEn22wLuLa5QRodBb7PYfe6gcABPayGSmke
+rUH1K1MjzhMoTXwfqBVnQknsqleMkucjap+R3FV0XpLmBDHdQiKqba4xCRqJmVvbx4/w+ID4c7+
nZhiHELYCSVIFe0DQkvlt3zuPE3ClA3+TLieKwmn6Nr+z2Zqmt1VKGjOgT0k1OCIEnMQXPHeT/mr
+CnLWkveIeBYuFkQdDI1bnicNmWF6XLNputHcqeajC+H1tQwEKAjD8tducdLVVoNIXqoGsM5AFX3
KjsZBuDAzEyZDWyA+7Q6zgpRIe4/mMsb2e8KojxD8IayYandwrfx/rJsTg/dg+n5jHC6qM2c+4ne
+QgaYsat9nB/pJLKvClxPH9CgIHo6pm3ww+2y83TJXSKH8uQM/HtPL4PpOPan3n4boTan2AKY63P
vcUuwkGexuwKUjWX8CMX/EYqsbK2tWO8EfUnphE08pNSc7kLwjEh/b625CWw4AP79WMO1scS7m+q
BxbG5d/8E/tA1qgLG2qe7JeaFGBdUukR49EvCvLQmiE9xq1cR4tiHyfapY5qs6Q04BZD1t8A73Mk
vYdIjLOSbercHP6LMmuV/6gVQqrYsoh/QJBuJzw6u4btTLHa88IlpQSlZ1xg2RHxC/vzKvUGeyue
+/X7KXbqt3KGJvvaW0KCCfUmEHISmkjQicTP+fF7WdmXmJnxWx6kEtdi9jD6EunnwAt7QGRKA6Gq
xqMQ5Ju9MKn93hezzMEbM/Xh8RKvmhriRcmYKQuyLgZayYtHFZnbJnLpThFfIG7wJda9qEcLe8xC
rza6jmSyHLEkqrdNFaUwnvgfZE9z6PHTRGzf7pCMDgOXQojqTp8HYsDrT5tVqZH9Vc/kzrNtmdjM
tBuLbDx1IZ7NHWS1ZsjP2kktm8foEPzuSsF9O05sSnT+gMYjWLaF4cGt17hiEQOKrY0ZjQRmNzX/
Npb59Xhy+h8JsWVaSKYA3NB8bghmOwNAaRSXvPnlDUiJ0vQ56RgPfcEt6kiwGbqAvmKMJ33NY9LM
BzxtXUeN7HLvbVmvsi05Bt279CIovXtYns4NnalQ1HSrvhX967k8ePcEsRC3CqojU9wxMHK5IhN5
ZM+mshdvYtUlDeNw70jEW5WRTaGfzdNIFMIKghdWWwLSyAUxmcLE2WQU6lR3XcdhsWhT8uRYGexF
YhMgiMSTnvVj6DSUF+gscMd2WDU7Li9liA3Tbbtpo78hhxozINxStMq+d//PfeDmaDDDw5rVakjX
yQElOE2CEHHelCws5S2nE9mzkBOG/cgpv5BOx9tCSyNQmQ7jnYHb6/+2jFGOFrG2NDX0rwDTaLe8
V180j7OteGWZozhIJFGAADOw2mK/lmkjqs/DEFtTu9pw9lsAx9y2DjZbBSr/TO4w9/2XqQBhbjY0
JYEAH3I0SAjOvb7DbRXNjBUnPjVmizE9/9rhC6WKeiXrbmaS948hqcnBorABx9YkwRs6Uy2WBfGA
LQf2xDrMet4eBl58s5+nsY3EQir54qBlK3HL1ps3B3z7igxf/GYbQZbPU1i8jfePbKwpTIKVDfEY
Zl8y81XWorq/Imj+tn9XpN4/j2YBF9b1YBA5ZsNIF3UXOOhH8+nSaqoTGA9NzYFbN2eU7HjMc/dq
wjNyVDqllKDGJh9VtPd6v+IlAFywyEEOUhw56AtHgIQlUs8cmW4+llpDsITTugd0RGLP0bVAxLjY
v90yY3mCxJ8YGTB1qFaucjEOLgfFj3EIQ4IyfCH35zqHvS5Fw7SZpw5O+Q0uA1qBWgU4kxxUipSl
z3ISQUDx3VFKanbSZa/bzMJnuSEEjnCjU4hCorDoLasZThVnFQlkcsXTrUc07gZF+XlASX61LkRr
KV6wcGqdRvaH0Tu/pZaQV5TtIX2Y/DmSLcSknR9A6kCDN3jQ3i942C44lR4kPGd30rbriSv+IE9m
LtbiO7jKzKl9r/m1lLu8HQDLetHd6B2Oo7nsUlos7XJYAqxgTMusg9oUMxSKlsONDCy4Z0Gp/4LS
vU6mTO+RytrezZxttBqr6jSEjDrRK0JMXOUgR/xe9ePRLjNRXFzH6iHXLnm9fJ8WTKhkPBjVRYqo
rOFAoD+IpyeXHhxTYdu3Dybt0bvOEFpdq9k5BsZponHHrgm/xjbL4TB+aYjDULoRer8Q4L91VDzQ
tzEmsvZhgpW+YABzDNKM88eGbRlDUR6lYuumE5JoKvOBqP52q4/RZGsWYj95h2LOZMPYr5hCueOf
RxQCVp29TJRVEptJ+2Rg6BlXJs1nYChlvejD4wScrPlicl8uqjpz0EFzS6+KrHZmkSK1jVleSsX/
iNLp7iQFHpdr7Rsg0IkB2jhuC2LPmY0tDQMMFV/o4mlWqLxuyKbsdqlgI8O8WFYgGG1CyC9vhWH+
RJEQEKm1n/HRMhLbEKyYS7E8FNhnRD1ctfVxtbXGN8lEIwVENszn6fRV/kXqE+7U+WMZ2Z97WOmu
mfRCx7Kz5nijG2cko2l/nquxgVE1uPWdbCDMucASmjt5NwxEfohM37qU/55RTYhPUEzgqfMZtuaw
yM+5HYW8i6Y5zXIUhWOgsPbDhARGj+9pX3XDlYWZMZiEl84Rla/VSEKY9rpdoLJoFha8tYBHhcMI
zy3VwcX4+2monhgfdVxlJ48d0+SFy0VKU+s+036aeTFqzvN8qRdpltEFp9NnhsYsTGFQ06Xe+QqF
W35MJV4E/XdQQqnUB5vdBhRE7Ckm4xOIU4hIhHhQlT31TPjOXDsfC/TreIbI9SyrJ8HBGEx9lS4o
uOa3/aRqoZhGBZk+XBg+CLi/rwOOOUzkCSL3XeUIESInalPcSOv1pORCYlQIEl5Pd9uxIrgHMlea
8sb6Ynx75VJYdxhQjytzcf0MsyhT+/+z2oXn7e/m5u/LBkd7C6Q0KBNmArYbFprCNkYQsuu7/axJ
B7piKj0SA3vd0gaXjmOOVXOhkgBhAOieugRyEbVMVs+WQdnPfX2/1FTkfvs7sDrXnmpJJ8qzk9kd
dhD2htFou36vIHnpxOs7bEyvs9luPbS37l+cR8YCPTFgx5D8QFvtwg3J4hWxBarfGyKjb+5Kj3ub
Oy+sFXRxvGLXwvVzRpmW54dRNcG67po+c74Xgcut1yzEIoASEF/d6aymaEJefYjF+mn9rLU2GXhm
c22o2ZbbjnzYPiZ/GMCh6cZFSTj/hXD6o9fGZqsJhoXOS5vOFVqEnE0f5h21AF8DDCdSWE/Wrt4t
6cixbexszfG4z4dw5asLm+8ITTjKosgUiYqS21RZf0Qky4qxV9qKehz2JP2JpgV3VIomxTVxPK9x
pNm0k2+zNJUFUfxxCHXB7XzU0DZEptmmksXAP36YmTXX27MYn8ZCdDB564a4+MwckXsjGY6XPvJe
2l/3HIFWRj7exEU/fxotlNZpOJ52jzoGwHsAzuxin9waMx1z1HZqLd0zUKTBkkbNTxeYpIoP7qE+
rxK4rLUZ77uVf8PVElVYVmUmmAAZMdDHy8N83Jpg8PHoRtdj8a+oh5naLJ/uG/yvRPp2hfdjlSxE
ngrcvQncyrxsWw3qpzqVkMXEkpLz1twno+AKJyKKlvyiT057DTdrEkIjCxK5ORJvMR737wn3KV6M
FpmbNu5lbPoSrX+25ALktu1hFnqbVnydV6Az3Ttqc+O3T1Tr/5DYl8efYxS6vl9bkYbkxOIYdVo3
c1z/8VeIahy5/Xy2pxk9MeOIfL5L4fjVNKlHDNso9C/SW9Of8NTtlSmPcPY8M0inxveEDHiZ8iOV
cWlOZVovWCzhI3wDNM4MnCwgCSu9CHJDECiQv2/Ur4kdE/qGiMTUYmAwGIy8tPzJhogZ9pooLAKX
o9kDHKJzHsDQk7jNcgy40KEekh4iwv2yRTgk7oo+WritRuAGOwio7GdHbLalZnEPEaKKLDGCA7VW
sm7FJ3CLMPXhnIuhHy1DzRIKJUKY0mKcbqGTUzoiTmtio/ypIVHk5cdN81eEdvgz5jP3YaBDKraH
eTJXr73NHF8UJUhrP3GgplpUdHYeCK0JwK6nGmfgMRI1HlIlQThvRj8tbr4pS3ahr4jparXbD/Ni
3CCdm67WIEsEpIzq3XSuOV9Yn94YwtVYW34U3AVKIt65UEN26pEOClSpbUt63J/Wfic4Ikt+vF7K
84qibEfJxxw0naUDOV+dtrlWcXHcMYhXxrbHpu98Z7UydXcJBT6YhAC/1gYpwQcRdL7x8j8FVWib
G8i7kdL/eWrfuZQjxORPNWHvUlAmC4j7NBxhN2yMerFZb+6Gz7U/ZsSwx4iWV7UqXmkEVzUm6e11
W6oC69oKr16DAcXKcDlo+84eUYSa0GN25KGxhl27XkUxiX2REHAMV+frKpSZh2DCGtoAtTAvQTOP
xmCbbQKf7DdePrfgZ3qpxJMCIcdKRn2NJhiZ0FJkCZrg7f2YI+47K/qYq2h8KDXTuM/qhAj4DRzj
D+DmNhD1qcpweaxDvuWAevHJkfuOdskAkdeJX953zn1vRLc+YjJq2DywuuhHgFs26z1mmZ311Pw0
U8PrZ/VwaKaXfwgYPub04HVmVYw9HHvcMpWLZwUozxwTq6uS2PwaPqwDkOIEMnG+JbS8Phvf5CK8
ZS/CTn1gnLc6hgv5wAp+pYf41NdAeTA4l9gzE779bdxLAfBoGIs4mtORjNtmGUJ+qilB+QKjbwg6
fNmBnhptFk4TQgzyIEtT+EKf/xC+rfcEGRJ2tR6RyIy2LfaulCCaBZY0URcSjO6W7+cZ2m/DVWAl
CQwtLIGEOCAmPP1WaVxUB6fyyiWDWn70hmrwCW9Usa/NP2aF5Z0SfBtGPBCvXBa36fQ5rX/teYqE
1CNFKJFPhdGTyODgAQOyK0redqkLp0vnfwKpM14+vqDwneh3GwEv/NPTl7guPRzaE7OQnZ4iw2mi
KJzoA39JPgm+Hqd/5LlRItx+L+qtuZp1bsIGp7U26IAae9Gl16GTTDKMP66ykWU40ngaK0KxNk+X
4J5vRMveFPhnvacY4NvxSK47aeq+IGSAvT/FpuUUE6dHH4EUzp1EaIwLZ+B2aTHzZ7UeoCyOUcFX
5YGkHT3TTq1vSe/INl4fkm5mZou+f8ywNHi7igHY1neXaCzlKG7IWxhwjNroNDbYSVMjDimKjoAk
6sPRAiF4Cyr+KFOGINla38zCgQhdUrNPN7AxncUY6HSXpcpXhAjx2nV4oXTiVuA2u+179ibrO+ps
/+h8nVk9WyC0/RLAzECPTzKl/gSkCiPVC56dZZS7yskReG5kiT3MlLxdeTZ1Tw0Pb8q/SFA6D5GJ
qS6xS1ZSZBbvsjDelc8unXOve7txLnOCefOOH6y59tSfZUtNhz9Y7RPO+mtJ3Vv2xnOuk86vyIzD
9iadoF7c4Gn2Kn8BJLgI3Zoiee3nDI40udFZyeXLWHzmTGuxCOCfGn7YPQsdmIexNf6UA3FUy7X4
3CD9wkCJ7VAItAiRWQ2va+XpRG7XE64W6YD3xmbYwNVscdKx+isLKwrI8zciN6Un5cvLbW2Gxtdi
So6pjLAFb188A4ZNSYjjWk8lgZ9vcWmh8BfFyTwHpVIeV0HJIfnXD+0EnHgNcfsb2m3Aw5njz8Ca
YRYNFIPad+1mLgKTcg0qFaphT+CuNq+F8BoMRH9lIDPdj8ZdPmLqhuLnrz9zQ/V6ri21Ft6pBPsf
VrgclyVLnwPshxMCpHax0RPPRPE+FBYqgSBtakubnqD9zPRHMlLnkZeob6k5VsSKoHRN/mvwamUD
v+u1KqOBaa+uKknntrTHc/Joti7KywwYNwAHTfHjVwZS3K3o3SjPDIMj0L2u9JSMbnsNawAx/xmp
lzDteTcs4/m5OXFGYL8zni6VqtYPIXQ0QVOfobvw74c+Y1gAhRAJDvCbd0j6hVgUnJ07dau0x4Iz
Vfb7+BEVMy620qp+KKT0RulLAElaJ1ah3H7mQbChqQDO9Fh2hBWDuRkcg4aLA5r240RBFcuYWDt6
eF8vDbo/z4x5DlfUWacjIf5vGuPZBxclxCnmAMsF4aaUo3VWZIE9+pE4HECLtCiJGZMlOSo0QYLJ
yJjUOCW6asaRCbV/gf23BvXXmt/SPTpDchYFnRymoxJQ3gCEVu2F2mGGetKB5akDx4lpZe0O9nxR
uAlP9naxfppDmEG1YoHDZI00WvaomuN4og3DeOUvbAQNBg0nl2xe+v5kEyx82MD4FsrgGw0i35e1
GoGIgppzIVUIpuNQFgmaPRk6joh+9h28kM8cydzHCYBk9MfQlGTqOlvvRxRQKa9yVImHe3E49Vc1
X2lsQG4AAQr+m638widYYoDGGKeSwOfBsCf9tcfe45LfLUBmC51EfVe/CJKFXY3BP1baGR1ePkW9
ecxbrEWqZDwMa36KIhkybeCcce3qwbzWhYhBQDKzgwk7le5m6zIzoO7KpV9C8O73wjhMWYQbgKUW
Iw+RBadH811jKQ4f6jJ2qxC1W3ACsvZRU2b2e4mUbWY+ADag3eBdRhZhTammQ9cLZuEt/iKtg88Y
P4wj5naiRzcOPXLjcIDaE4BvW8CNz5zvxNdVWs1SIwTQv5ka2UPQklOWSW47snnWYUmZ/gwYmAGH
/uN3D7GFHWY0mvvIBky7mpj6P3k1Wuwu7Og/QW2E48PR8NVzSv55614HomLPWrR6YtpB9SOhu23g
d4qR4r4HVIc0dltJG0FtK6icDE3FzeEZQb2X5Uh9N08De9w+EK5P2/PQzb+5GZhX5KguCMrTNl6s
T4YBznsWB/8W7UXs/0fYgT6qBFEYaaQ8qy2ZtQz4nOHRPRyJvQQD0vDrwABzZRlCvXoZbDuy5CeF
9H2aedqFuDFdoBu54MBpN2xO0C4XPqy4sryM2VQxGnq0DPZRgqZ7Vf3Uo4NzsACudWlNyGvO1Lfq
jsD5Bx5Fw853pNgD4yBWX/c25I3hmj+KWCdrcgANtqGkQyNTHxSvqd1QdHllmzseds1swhCUieX4
JLaBj6H+GxNMjIdVFH89RHlOqcoG4PluEl5o+zVS7rYnsXN1nXBw/oygbhCiRpdO2x+3r+5OoGaC
Y6Z+4hCSLVFN2mYcpu24lWE1FYznxqOUz3WtiySzVlsSXEf7gEDhMAWJKABFesmz8KG88TgfR92u
Gfvr/X6MGp+ulZsgSAFqYATyNM7SNsA2GQSGwZ0tSY7lgqYDKMjL6VeC1Vf+xmqR5te34N3sV47o
xpyUhZvSX0Om5YrG5l2yYRGtIT2CIZOlGyvg9niZnhpx0AF2i28UBTfbB+CxrkFvh1USB02hHZEa
cbae5NS/6hQWrP5Ucuxs1LCt333+cb0LWtkPljazNKUwX3UpQDTqH2GffoLfDOnBu+11/cIXbuGZ
WyARxC6oRucrOrG+gDNVVb1Jn5SM+adYrloRXNjqU2yLcxDQL26QV94GSDSYljK9YJr2eENx/trP
ASohAwYxBE6aWDtLPfnCAqPboD2UFGOR8IZZyXBg1EsO5G5reinmaMvVFq9IO6Lw/klNtLWHtF7u
VTAKi88rKT2+HxslXKtOyv7qoc1fshYRKpykP/5JxgDwGU2fSp4zxGh7TDLTWAaaii0DaH325lP0
EOv2wbd8NIrqn1QVnQtdH8Xmp/48Ib9vLPReCCGEkFm217fSCuXIXm2MwHETzbaGX4upwacalHm2
3EjkOwVDTRtolrCf0TT/Hckkyj/OAp+eiU8EtC7lDGUHgTdrPfIicHx/KNOHDnUBJXfc7fDfNxiI
NH/lkjjTlQ5Jk37znuT2JH/9r9uDiffQ/96H2W7e7lMxOL/yEaacFX+2HCVIXgSex9VkiqG7GcxR
MdeL+9JnCGF+K+HRuLNUmb+LDmGA/Fp5dXUUwajETOk35VLM4lQN7uQHhQDN3+dYapbhdd0Sd9zF
GH/eK9RjqooOLYHMYl8H3HfsUGIlepdZytkmISOG+naZV3CzSE1o2zis1sk9M+FuBmqmcLL6Ky1q
LiEfZdRiaB+EdkzIuJYG9Ztomzvg898UbkO/1hXvCrpevKVEYlzqjXZAdaUsoTfWSKIQoSfBDnpO
gyuawxfHOCNd11RvLm66GhLn8GDexge5Y78sLE8praKbVrQnoPrYUzP9Cc3B8EME6ZSXmKarPb7c
voaAr0DXMZPEh3BKG3JoNS39yRTiIa0QQ6mOFQLEz/W8tIAe7tN70dUe+Sba20p4DbQuUnO2wq4b
/YritGwWSyHOUzwMQlGL44vkz2MXLr0R4yNVZ2P556RL5QfEaAuQNWbLnkjtF3z0/zUoN/WKVzeG
54nhshkYdckTLEPf6cqFsWGISWtKB66S8vZMqioPJ3Ri0d5x+Rdrc8xQ6hNE8LJo+GLxdGPzD+Uv
5XCnCkkX5SNMM/+bqTYa8NeojAHpS85z5At6KuDye+uJ3BaPEYOqnFTHNfoMtwlusc4rEPmPl8mO
kZ91FKq2dMMxgNoB5cHNb2gsF/O/+wunML8bRmMI3wUbNcBpV5ntOOituaz2zquuvqcaxiHLxHwl
KYLmv94X78BlEs4WTaRkKYCDCzKeWi4evbSsZHYK7N0KmiYuv3rTQ/5rfnLMbOofcXbjHmCQoBFO
T3sp9JkWQbHQoriCAOcaFsh5lLo/OEInBdPcfiqee63ciuk/pjhr3zSqv5VNMbxtpcQrPMRYbE5l
taezqgKBiJ5ZQuqD75MmYGKZgCD4e6angYUfDT7k7hkj5BYldCVUjKaN3ePCApsy/8h/BHz0xgtb
XercOl/A5v2vnzj5nfwUqeS7seKxYrZ9UVZ8H37zGiWLu76xBpCvP/s9boJXlSawAxtT6RsgnZpq
XkpJR0FCrJk9/W+O1V5G/B3MPR6kuV1j7f1i5asPRasZXPxM0gjI4hh3WY1Nw/wuPwo6ViFmg1v5
+YYNWX/d+sn2Gn1nipC8tKw9k7KhIteoiZwYyUyGWpbuOy+80RujfTpBFVLy2r85IcPttlzSh3pb
Jy2YPAzyx4K9MRCV4Yn/EDxeeL8bI7wd+UHS/kbCJg45w1IWJ2bVJTf1dG2UHY69iHg/vZvQgJKH
7ILhSsJbw4xenFRFNF66tVcmC8+0cP71xC/yewgoOpCRY98VhdIvJPWJtBnzVRdpBYaJi+UCoMfX
c6olIUFCZ6k7rMNxvDDEoKWSlUyA+RUQW2yQlpz05npJiHTJ5kqpfPrBBmP80Jd1VNGzEYnANOc6
dIy6QMNlyXZEXbI5n+TXdB+Htiawflz/JaxbyVvykqJoYf6x76Nxj57dn/20DiYaw/z7h5nGrbZl
RjWdUjCsHKBdUybU+fkqT8jT10d0Vt1I2paLBNSTkvHLUQVtDMAk/BBht20mYJhGavDPBOh2Bz7N
JzW4CYSrVmyjWBzyRj6aAMVa/EeVUpGWv2GsZqV7AZXeX/pAZO0z7vEIs2cCfL0DsrdYwVQKz3su
5y8NIiettkoO6Aol6quo/rM/pqC1M+9OTjdVHVPgRj4UVtoJWxH2fVRH3xNv1EtuIoiWGmTkf29t
Q2Vetj7yn09lUwpddL17W87rtI3wF3Ou9Lzch9wSCjW1bwFiH8/GAsziY1626JyD4rShYtVUZhsO
thRpWbssKNEzu1dWEA60nZ2gQnsDbh9kqyDflb5x46bjqO1yhKKs7o8TXCe5J6RRzU2T2Jr9zunI
QzDhMovr0jpO7pBV0RwHNGiZ3rktVhpUt6Tvlf9bXo70j1hRNfFgXX8nwAebrBtJnQpXMVR4T3NF
VcCH49nrIizzOM6rcFiiL8T889kds7x0SSft2iPGHiEn2EXTr3JhZXP3pzeIPlHjpMCGaNbS8vk1
ut1SQbZ0/du/z6EdaBdBBov2p6F/re+3iPVrhB1bgjG2hxSM3KIqFFQvscJNptoUV6e8BfuM85Fv
uuVTSTB8s63W4fAZ5xNMX+vYhBuRbldbn6TTZV0QzGiH/ixx4QuVSsscxwU1oEqfLnshoDYnIO+A
M05peRPFFbdB4ZO+CnzmwJKSpBe3WB6+dNQvd7RoU2PUeYkvQelfMGbSvG37cO5Ag+Mhe2jrpMZ4
Y0mPv+Qm91mtsq3UnKNFb88ALQo6ZWqJNGYhL45Jdw2pKcTYe7S96AHbzSZ2tQwFzeityv2jukqP
rw5GdALOvUIWLypeg3lQ8bq2tlsjsb7HYdpMb6qYFMRD9XfTu7XopzSWSpMOudPNQfswKxNZonPW
b2AIeIHmFt4UdZYDBaNGZ7/3qDHN0hYp4PCO9lbdj4ItXwjopXVRp/EmjIMsnYCz7nt63uEn8DKd
V5ML8Ttv9/Ip88W9/edPQaA6zttiDGROAk3f1OLAHibHDmbj2cS3HzufKg3VjhNoqamWYMAakCZZ
xGE/UllWjG1XOy9HHovkaOpzvYHWmI5ukWrYGprbE2uM/0aV6lkLoEKgecOSHwnITKniBNsNj+9U
1G2UHinBI9sw3lp7kCETQVm1mxuYjoWU5NZiLsOvD9YU/Yl0Sf9STDg5A0uAJk6cwYSl3lbRYMwG
hrPVvnSCAyea72seeqCYfVz1kKWW1DOqEolp9GZxUP7Y3iJeGBmwRz19uxP02yovtBg7lFJTKAeY
hQQBFCdGpkG7tAYf+209T6oY/TtZ61I1s+tSyDsBlS7fIOOyEhaixz7JUhPtJSjDzlNcMrCPv7wZ
2A+I4cfoZmkRbkfeDUkrmGnyoO2IMYFK3kSuUTLtFlFnAL5l+1IMKmH29at/m+sVYi4vgzgxkUei
BP08TsVp6agiNK7mk1JA2v+Z8HUYC0xijuzpNCwj+LPLS51nqPW4DJWC2HFSM0+MvQnXNVU2NMNX
iqBv2656HfLE21RVpgAQHx/3KTJnvjlbEgEMdqjjBGuJ5H4dz3u2vHQfV51gBV/zavrRGcmJZsRn
tz5aKC7gNJj6RE6kcF83IgOoQOJWB/dx2CGj2N39/IpylgN/sRsHoUbREquNIx7vmpGtm2NRhJKy
2oNfP1IV90GIGDz1wSKcLiR5Pc3GYgQWr7+iHaoyE6zHLeSMFlmw/KB1bja/jsGyQQvd+hzBNcEL
KS9AvHtKmYpW62xMnfwwgBryPzpxgE73sT6dz0ersKb2hEPXNpLQAQWuXSmW6V50DBkoET3SzTqc
gA+Vk9cbvEMCl0jwokdw11D5Xf8czuJHTqmTKoF20fmhKqdb3l6a41E4mKyyoMr6EuSiU66Ha2pz
6c1RF9b29IqRlIni042jBS5HEWeQzBbDBu/ETXcpBISUdpJKNz7e71LSqtNDAC9d1y9KaeL4Sg+K
mjXgy1ZXjlC9ASdjv2lX6mB6z+5EXqpSssrWQI1P/XjD1U4Mb2vTt8QFwdwCtzdYAORhOITLPG3z
NHjsLyAAnkoZUXMGnnrCBiyLv9dWYJKAzcsyo6eJtTVOjlIVMBy3JqMNpoPg6hHd5PIkahiPGFTO
X1UIpd2XS6TIeToaeM++J444njnYURwcmdpT+TK6zIfdoSmCHc5Hhmn2mtbwjgA5/o44HMS50tDk
5LzDkjsr63kj6Wp52M5si3HWOaoJ2l9iYhW9fLBCTvjbzsuhqUqPVgEFxbnPRGSBWlpgLh8pmUDx
d58eQigK2ZXLrpdqtkqeDewQUtiHZ0sL3VL0ndEFqJjWrfza3wcSOkFwn1BxS21HFCVuYrAddC+S
3LyPKjqvvaP41menu/a+IphTfI/gms+fcfeExS0tlaXUsb2TqZMgwDQtD7tSOgCBywjUCU/hGzu6
Ccv4zifHJ0aT48FlXTsEjZY6rfEg4+ZMbfKIG2tZ76Jc6cczWGRC0lS6eHu+PN89tKF6HcAFpBY0
TxN2nY8dBppg9ONRWtwwWKwlcsNilySyfytDbLORGFEVBljMXhbU8gjwB7wQX9zqiWDHrcOX+Pea
0VXG64uSO/3Q9xYFcWqeYC4+LxNMqLLODmZO+jMen19tL3mrMN9jUgqrMkMAbibUG8sSJVK1xCdP
9qYjv3DvZikUocT3V9Ujxc8hHQmrrl2SsA2cNnPn3dp0csaFwUJJqwP2g8ywmicUvzZwjp9SmoO1
cx09WcnUA5TXYMnWJqB3EWrb3mGbzJCXhUogcTEfkkeXdBAa1s1tTRabfTwF8BkNuwCxM4aBkxH0
ytgMrmo9WWTUNIbUPMCxPdJyJijY1LOEFHOuf+NA6nUw9WvNTHU2dIucUft3H9ntVQQnAfREH10l
w+ewt8dj/jLAatzF53xrFqSh6/cmpCFT9FPO/RH1mFhtBsax1ZXxsmzHXohVzwluD1nNekjbsGah
SKOrX1kPcmW4t9AFBb55AH4/mncyyukxUCfalwPmaRLXQI/AFpBb7brGvoTOYmhfVtnjz4R089KW
/e5DGHV7v9for5WqWRJfrzkTh89oLS89Oq+0kQRzWvezieBlSUoOKXYghz5X6HGV2hZr/hG+L9Oi
NcTnkq5qVGGFBXf/jk4LbmX8JyuDTiriH0DRmVCYP09UoWbmGDYbptm6l8sSmtaUUhIf9PBgV/eC
n20W1RME1FtVVsgME1v+/M5vyfQq4M9PawC3LoohwT8zYehr9szuD61euMv3kdAsLYDzX0tZzm7O
oHfx3HohHPh0K5miQume78IIzLLnwDpNrMIDajo9uLJZxbnxPK6Rz58IoXhEPo6zIz+udeuWA2mh
UZeskveRqmE7713RLz9MAYfVQ9X7ouI2sYmjtKYYEx1sYZMjG8CXlDc91Y3Pr6EBjDa3DLboLpD4
VF8PU0LJiLe5Dv6w23oA53kdZj4ZxrR1c2OkyNHadQMazsQHEmDC61MYNYGveQUBJkoRyeyv/zAu
9HhUik/QtFTeLPtHhY7oMTs1aW3UWtiq4nbXpw0X+7HqqlcPKoTjjX2GWOi8h/4esEzjMJfroU4h
9EoID57BiNCaSUeA813zClHIFwt7h+LfBizVa9+JKC5OrPUg8ydmvIn/WW84TBeKoUUeuunv1dwa
mIUngQUD2Tu6LDUJ1wJT/fRi03WdIY+OYHGGjmT9n5FBnbk+d8yXiYn0hOtY8kJ/vKfjX3jiPykV
P6B9FfLeQdIh/q89dE4yTRJ+dvME7IWp/rYH9XNSS+VT3W14eSzmlsBZUh7bYmYHd2ZwOO53NlzL
L6+bVcgWeufO7Aj4WetTAf1hgVCVidPahQg5iv4UihuOIbLe8GUzoap61+U0CPenKp5NRzUHC5XY
Gfw7vwapRsezaQSQaAH+RYk3FqDK2iLw27PkE07zrFj4LJXzvwNIp5Fl4zzYRUtf7UY3QYcQTLfm
anmfss6N73NWczn2gh79ttyc8nkWjZRoaj8i5apx5ZP//CdGg7kS5Wa/yCypryeGc5laUQ==
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2014"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
lz3B4KHX5z7HJK6kHiZGMmcEnUqLtTRT/n7HdY7szClNEEBtVq2UQW/wdwwMN27AnOLZPVfuS67c
Y2O4fk1xOw==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OUoXLY9rVEqAKiJgtR19Q8FIQUm9wPmLFXF2sem6w9gJVRflCYIHWjOAqv6eppRvqeqcjaja3KKN
iRxsDXzkmdVb18CNyYXYPgZU4MySqAPoAE8BZ3alC446EKqG5bo3Faah4iFiaQ2fsSYQDhznQFWV
FIedseAJGSJjdgeT43M=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2014_03", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
bHuGx6phwwi065A2gw0E1Tqc2OLDUoohEHY7mOoJcUQwvr9OEJ4yz01Uls3wx2UOc24N+ANXe8aM
YdyfwspjYSBviz8nI/XUT5fPMjNbtL8HFChLorcX+K00Sc+A9m1I9+5W+Wd6GLSKBCVYKnWRn9Os
rc68y/GTowadTW08aEEccqOavDD8XG+R6gQqGpi5C8xq75oqBRmE5yNpxpBXxQRz9mmAsJcZ773H
BpObF8UUngkYlRzDjfxz3vzf6lVAPrLm55l1zEsel1LRtdqlRT8kBTrz1kke43v4c6xNv0u+i1Y0
dvxmNCEmLNrwBuVbcA8l6Jjp0k0WZScEgrEOCA==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
4sCk5d4E+rPjLUhUiUrzCNkXo2ztvWgfU4Ic3n3YDGHZzWC7cjzTKSJroiCXwtIaQEIL5FpdrGOo
eHf9JlqikZvG/pLSpSZr6BTZioOpsjgI4CJq9n0wGhpyClKm24hGzYEPH8AkBs4wVmgt4sOHvyYc
mYqTUQDFFlehrx6Wh0E=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
cjjanW9F+fseEMt2SDd6R3KYZVrfLHKeq8ULFHbP0E7BiwY4Vkec6zVJkc5FOAAhZdR5Ywc2FOnS
jk9bJ37QuAeSdAcrSzysHiIJYxA3kbMVuIa63kiSn3dKlLmPc1gZ2/UtM3HTBff0RPQzxl944kH8
SUid8bQM/bx+7wxLnTLuo6uTok/+c8ipzvZZ5iJ9DgzZyHiiuOtKu8JWNRVw1P5d1QqQT3EZ7Q8j
fnqcUNAmoR2w1hlmAhXTJgZbpiKUcMF+Y9/twpUzFl3rdEE6PKGzb5YQ/Re4uf+MJU96/KSTzmBR
Xfe8WjI4zLk+NlEm8eNku5cgYGTA1pkwApl+6w==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 82816)
`protect data_block
PKlpisMKFINH4hoELw81Ae+vpIr0xr/BIQZISQh02QmAYRngfWchi+A+2gXJ0ErM+PWm3fbvLHaf
UADT/opvnHMCrmwuOuQX48J/a1y0sztlHgsA7XTu3se9+qgRV127UsInIis4R+Arq69Sq2p8iQGa
1PD0yZk9bi6uA/bjwC/f0K4UDBZkBXzLgK8AKLyDRJmdnfTtG8KKVneUKGDkFJT/39R+ORlmjO1K
XG/kacw4HFvvx7d5zMmCVk65vch85G59cYj3oe9/dp+HeiNRQLeMPV8FtUC0j0/RKxrMAO+QOmF0
ERBQCHzifcxvPU4x/b51WVf9/zo5hEy7xHsvq6Gr/13z/wDwkNa+YPTJyWFr0XuiAw+KF9ipUo4x
gH1etQv38h/IUdmUpOcxElZzljx39pYb18ji+xL+nhrZ1Ac6sJjE7pdZiri/9xL7H1szzwA4RcCz
yyuOZXt8EURJ9h82hCDThzRDyluIzrwN/ciAVptMgYO6ozB7grEBz/iup4xRWP2gv89ezT0rg6vR
496XDHiQy8HsHmOlpPavfboF7FGgYJQZqrKfeqsoQHmz+dGTQ+1EC+sWnmqIHiwqGOWBHo9DXIsy
nSKVQmVA34iNf/mCOMeUFIjslHhMfuS6kS08B7zoWwoNLrzd0WEgVwsjy1qK84Ck/BfC8nYq9eOU
MvGQvNIzinz71GbUM79wlIdGOtkJszEKsR/hEWC2F339ASr//5+Qp5c4bRPBlgopO61i6ru+t3XK
YXb1pSColJ5eWLwqwgL+xJqNMuDULtXnREaaNx9pQm0D8HihoJXYwKfVN/QHqW5V1DCGCnmkHiBA
wIp+DY5kePLolhMmNJDLhl+BmT8VaWRmMwQBFQUlVDrBpQiWbpABx3xIKDMg323XW7mETqSrdipG
apggRa3y7ra85AHQgLyi/NvVT6TjJBlUhPpQcO+VkUXSC6F8hiHnpIhQKTJ26KSaaICSdR6rochg
RSk/PxvD12im8tj0fb/zT20G2Fah+omaNG6ayEVO00uLw2BdSeFyOiI+67MvIjzu0yLEgrBBSnJ6
CGAoN/7vwoPzxIjeDoKwdsFUCiKAjFMffXf8On6unogQud23p8iZyvdi5fzPgaWasp6lcVy6+EDN
cipbCcAHFWy9v+mCF7kaYiUjj5X1DXRFnNfSvWazczEmCv8gk6LPFgr/+kM9fxoJw/JFAzH533rC
YuOb5f6X5X0EPTdJ/xJNgQq33F2u5288g/LqiR3U+KvcKww9O/bzUei9xJPbdHGz1QXyDl6x45UD
mtF7Tx1BncNanvMkj28TyOHSdnZznRjHnZ+C4mIpR8oElrZ/kNBtjfX6uB40NK+xWzK5lSd4enja
8QVrKkQmfpbsFaYVxU6JJ1K8RdsRzIEfLKPKQgPlLCEtEvqe71Ob4VhcaldeizHxPHT7emlb+UpF
csLtBsu23jf6GMkltI7CHWGCMt5v4bGnt8V5W6pvfRo7Uzc45O1RUcLYETkJVTNOA0f0oZIwzzG6
oLrdF4u4A1nd4em8yz8erQHt+JWRZjuNOCvU0FrexgI4ye9hvYdGRtnqWECUEmC+9bAaTNhpz0RK
zpppgXZQNf3PhPRjcdV18C9kHr8xvK9TLmLqmzoUq2BtslvJtUzxPlLiBDbVkHiDBa2quq3uN/bX
6e3RU/OZflLx63FMA8Ly/mYcaApdDre/wj9U8rVky1xnqoAVYd63pwAeg1e5VN6dEkbGvA4Ilze1
1zlXwqjPrXFFTkchsMoYk/U+SvgqSEoQC4oWTr/wN1mbu3UoI+EpZtK45pXOQkMdS8ExqiIpITIZ
iWodd2/MAiAyhkayopiCWPEy1jj9uknlRRi1jQy/oBHpDRrekYmRMAVMwQtF4btRnv7BXW8INNE9
ln1hYwDJ+kKEUwG6OENJ3jOcSqroUquo6FuiX5HMg1XEUOcPyXt9XX85Au8i5Q1JdVw8BAeore7m
5q9ggtwf7Z6KmvE+6PnMPrfyMAiO+TO+z2jp/nbSm3mtLAoKAELcFXJ/NtXUwl7iE9HIDxpvgD9d
iFXaqQa7V/Q7ECPsqMALzfqmi1uJpCYIbOhaiunf4GY8el7eljC2CSvEi8LuKsPoYe6e2XbSFBas
2kiaw4o8G9YcUxyBJGkJSE7IngOTRDpXTKOEZ05btmg9iQMpQgkQRLUIKBiOnuHlWUpmE7xu6I4z
Tf3TxMAjGbO0sC8J+dxBzeVRDi9hxH2hVV5tNkErq1+87+BnhVHm2MmD/pymKNxi5cNX/FexiLLK
wjt58y2HmhcPuYib1+7czTXV7eP1aQkHrg2+mFmaxYy9X76du1DjC31Bi2TZCG2ilC0caCfcdg3e
JKg+aPtxCoijjNB7W61o0d3plpwnJQZsptKlLmtXP96GKCD8a32/WlVIrMFWp5SUbf6ggWqEusTW
MdxTbBcw8kDDIubMZjymOABdYFosaWfhmRap7HBodohX95I9pw8B8vmWll9icw2fd2hU9gkjzWuF
xVvkRuWsIuT7c/x8Hki3zaaDfTarVw1DinqLnn1f6IZfqNaqHhpA31oi3cfITJwleHS5wYNovj5f
erHd2jyxLdvB/4vkoy3InDw3n7x4w9YC0kweEyaHjbK8Q/1TTPEQf4Di+o3TMmLMScbxJMAF5gqK
gDbUR/AdJrLjTzOO1kpeXPhUlqaUvQBXne1F/N+oQj9KARG2LKii38ZRzl4wzFeJLbaHrlnRM8jR
lf00OwX/GvQJS7+aBoTdy8pbf3WMTRgyW1onApjm2JwZEmVLNB58CHtvj9HrOEx2hf8deEa/c9r/
ghS7Tva9ypnBZS1TKkCBamOysNwjLAtSFPedJqNIsXjDvdYX4T25ZMJWwfcKH6i22Sj7CFPhgUQg
BNOGvXttR1wGbCMmdh6Krdq2e+VcQijvArkt2tRTLx4GCp95T+oZ/CZo8dNj66cKNdMjL+exAcLC
zzlKsqpAVebefwCul3JVG1YLB3Ntpw1+i6hCc4ggsMR83MlP2T/B0A9Tk/o3h+CRDU3un2mAYKcw
ZbiCcpnoEuPWUbxdxN31az5xSewxsNkFPMqCcFW5uZHvFuRV55mMDeEJTxpDqIXiPHdSTUm+P2BL
bDcozga1rhoiqEsjCWIfptUBuVwdg9Xgb9dNx2s7YWVLgisJk2nEHQONBxyEStBJNhRh8YFVOYyw
/N+Wx9v/pyZFQyK3BMx4aJk8PqYECZKS3kDT8gxo96HGZu9Qv3a2iKakWdfVLuTyV3Ug4kaQBR81
zXIAUQo3uLHfwwITDjVJ363ZZ6xAre3Q51Ryndeqnp/9kZKtv9koF3gyLPSsUUrfXJVQNwMCgQu5
TtvT8EFBZ1I+LE5Ehlm4U50fxkDhCGFLLdr3EWvehcxjTkbJLqZIj2ZWuLVMB78bmQSUHmtFSAwu
sdNfj2l9NrUl+J0QAonF/qKVBV6u07e/w3Sibj6ruM5k37QA4BC5Dpjnksuys7BLBvFLM45YR1XX
JxQn6NMD08yFMz22Sp1VUDwnCjchS7wobrHTPMonTBGWEMEV/hbK573hquFoRFyTGVGBoeSgSfN+
DDcXIm2qoicZWezBQcsr2J9H6Y7qyGhDAvp6PDW6BQqD28yj/0mgo8cnxlQ5btPzvSqhzm2D6o8B
tVRLHbJAANknQ+8RSWH2POMFT10aqftNbe1zm2V40ooBxbN+kxKc640IYEiScSAEhPULLRXAHspd
QpkT0BZkB47K01kPf5a5d1N6Yr1E/xORHAb64nn4NHkEyuTusno6hHlqQDKfq5CDFNJmr1qAmkE5
Bxkjft9wL/JigRN01Psr/pX/3RNdaycs3lTKbSXofOmL7TzHNY1wmHzLNBVULt7ewmvFWo3lxBUV
55eWilrReGlk8hBO/tBGI4fedqQ8AXg0jjIMi0DmQUFBfdugV7qntf5lwPW7D216aMex0KRwEMup
GOqdTkW70Pv2HSJYc6eN45q5pS8TP1szMna+KP0nKezHHJorWa+j97qcHIGlQzUdD3oi7VG9AjsP
0vLZb84N65CPn4DvdILC3EHuttTZaNWzl+FMBjln1WEyFhWTvOwEDlHnhJlC35m48d+7GZzudu1e
opdUPGDRm29j17/tVysn46sFExzvyo5XTsgNHmoRZNwimAmXn43T3qTLOfsiOvdzCHr3dhV/N8RP
X7Llah7gW1ciRZ7Ljwsd6T6H24B2bEzV2qH1KIV/WdqPGK07rM0joYzB4hXrpOkZnKxEYRlFoIR/
ARCCOlX59he853aq39Oc5SAAXSHsohw7Ktq6CAJnFYqN2uA7y4TOZTCQi0KJj23sEZZ90bjglR2d
lXoBiaH7KeNUNra5aN+ICVa7lrb7IieqV3pmBi53xcHPM+NqX7c3KmEKv+8wNiqK4mI8Oggwo5xU
sJGa8aBXYEmcKw2qCbllHLMz1bZTBwVFtPgwZH5EHxphmvRk7p/BwNPzgFv1AgjyGyzX2WcLvnAl
CbINUV6Y9s1n4FoWyZKBVHsRt4MgTVoddmylXo6uS5oPI982oM+ifIKwZMQFQ+9ijUekSxnoKE8V
/MHE+OahSVRf0zM4rJmk8qdA/GsLDz8UUkKjRlxQKhh2HTEL/q+rDfX1Z0mnTb7PFywwT0zfnOLk
Jg5neZ5eBPh3zmFAjj19G41T5QHHfSlVxkhqHIufpcYnwlq0NO6fM6u6GK7d6NDaIHszskOujnuX
n7xRgZmA5aVZzgBwYM43y2jLZG2u9xds8RW69UrI0IpJ+w+prRebwwfN0OVvk2yKgxe1r6dWpN+q
6Vnm0L9nrH/pgP7J/78rRhPPkd87pYukJt+UH0n5+c5akxNNqcXjvw4VwIzoFfJHi2eahO8b+OYv
DzWsFy0G+zGTgPB2PjntUrFehdC9WmiUIqYGm/je5lxXXJCLRzMGSzsYsKG5ruUPewa8+BSotrbl
diyZV0jdoI7pnpbix6VKEklLOfvC2TogcQd7tPRK9kiIX6nfQvfFpRFi8pPzlVkzpM90Ne7WnMtG
i2p/IhF0beNsBKJOR8lxv7UkUNMvwjLIoC6JlpZzyMBjC9vu4O9twOaS9t0qsIO0PWuTaygICJWF
EJI3EUzVVXmkGsNtbUB9RPv43UHex05WvNiEIcQJ6Zi9g8jxtbMxCOKV1F4Y4qUIDH1C7LG8yVy8
/PB5oUEPolkbFoZVcKbUP9YggmeGXFKnoWn7fA93wb49K64t2UStaBleGNFdwKaI3O7YX2JwrZdu
V/6WJ46bEcfQ48DrVquvAsDu/Qte18hwq6AI8Q8wwBtc3yDMTgQ/F4o3hsKx2fKtwF45KS0N7gxk
3MDhygVlnV/n5EG0T4y2PuTcxiNRnYXNWHC7g4mEMK8J0i5HIfMKVGinj7FxfjeWeJnuwOLIbvWp
4or3GyP6gBIpQb+PHzc9B9Cskxt3toHQeQh3H/KAvEL/uTp4+N941dAU63HPmFAzGDJIHwUKKyEL
7Efc7jxL2AMJ+54irCxUXixt/Mf4EFUFeRX9Usfe3c3/0mu9d/Sn3kMEunIogqBdUTdAnDDO/DoZ
uNww22SXb9UlAdEgJAvek4cVX13GAHFrVKU6yPtUJTux8qTCvKgxRNBuM/h3KbVdm4P2ljhPVvon
YCUBNGXdjQD6LKha3CusIet0Ekwlu8ZLnCdgHEAqfT/z+WvzHKFvDo1qb1QA15XFo9EXcFE+lQuF
QTSvtb4Wo1lAb22E5sO7I2FZWmdqR6v7skvCnzT8btNQmbZitkIcFm4l4aqVuhB/QhsWLD0jvEt7
t7X6UzkRHs1NWtO4zSaDu5aFt0QR352AaUDzKBzSB1qdQfLp5JcXN4vwcwrJPNi13hgVQMAoOU8S
osgsTvP1b8QTzoO8ixR6xU02RPM4PZLO7gGrx0ykMrY34fnm5Ff+KKmLUdWStLwy11nandXepuxo
fP9bLHjW9QdAW0yrmYip/G3rkD9i/OzjWkhr9e8/dwIiuNGt9QfCBIQwc5HMNcH1vTsf8takLld/
/oFkvWHfxqw5xkiUJ5/8J1AcbZP9MBjjZ6XDztz/COro05yjbNenJGeBi0krvbvE1s+G3EvsCN4G
BLmmnuzGsEDJw37L1/a78qTMif+zUkfqHsZjLnI7Bvwo9EgiackDcpeU6KOh4vp6ygA6VbFKd2EN
YdREefq7BBZYKvbU2a5dQmuwjXrPLqPgLAZQ4gmLayoj8XDSOf1Ksvb7Sok26ptqyj++iwt6RwBj
/YsmDf+bEzFYAO+8e0hqrpOqylfeMN+JdSPLS+tFbBCQq0wtPPxilOzIbhaFwMMb9ZfIoxcY7qvG
YWC85mF8KXrRZKOFdR+ejw2jPdP9zNKXjlVFnIA2nw5T1F4ARmArbk+rSvujjZc15jsE56be0its
U5EsLpR/iUdQH+lmpm+51z8SSJVviYAmSsPiYm8hJoohgZH3b61qPgoIVBu0TmdQmb47Mv1uHbZJ
u2XVnCiK5y9gMkc8sRAIizunal/2jYYBDDL8E6r3KA/q+eIJyCD5kmGFKDb/vBfZeLPEtNaFTvVa
sX4hj58ndGYKTfHEetLwLu0hjRt4wFG6+S2jsS0Rf6ApIhDr5nHT+pqzaJhORoaix4HJtvjzgzhL
eDwBOqAfyRiJvTSwxTik/fGnX1YRyUeDOhIv5IXw1ZScGEvdIWb0RpKbl6uCFefIBSPbSEW1hMRj
wkSm0C4jCBJ2jogVxAf13pGUeV5t/IYtETyynHRtssHUuDgjpD3Fc1G8/KNUbYD07X++Lav4iH5V
LrCR9Gxrl+tHfKc1s3/RyQ08Nfjh5zTEClHS2my7PDpf38e6QwQDwq5l3OCZxWjztI9pAZqzEUcs
0uMiADDOxBBtFr6MRvfY9xJoIyb2xINI8RtWDdpx5U3rBTHjRUFlK8xiGaipFnom0XBfmNPfFREZ
U3ZrHWwGea0c55S5/134dNhlQT8SRnklMpKel0kCEMx/v3QC2V4fkL030oeLqUc5cfE43Uz3XD/X
JX3dZwidB7LN4eEgAOTHn/WsW288rXkBJAApGZr9QNzj2z3EijzlfSuvrhTY3IudYSvPbolq7uZq
ZUgddFnu0Z1DdRneCmTRIXpl/TOszFel9I1qcT9WUID86yCqXmAstwTP67djxrBQxL88iABniItY
GUYDdyEVO1Eth4G6oI0r/uJYzxj2ekEr1y90bnB3eETYaMU8LbyxUqZ5p79HeWmG9UO18848HO+Z
oHe+dF96apaQoiOnw4HNNLjrg87Fy6RqRjKXbIwQsYOUwOYUtIh7R4RtGs3sc+8o7pprFqwY2I0W
BYu9VLn9f5ZiaXgz7kJVmKNtdESAP7ZK9A+qlfGKEGF/A60GoQhHWSxlpJNidkdYHWf7dHm4KE0x
5PmNdSKB1GKNi0bH0r+Cng0RbkBP400tkZURLLxhI/40kBEoW88tTMC3WEkoNYz0j7FQBMZaOEix
UI2peq4kFnNKSgYkJl8NScOxX5ZHWrH4/aDws6zHczxNceoQJ9uL+CUifQoJKecew6Im8OTW7rPj
L33KCsouDuAc2ou89ekHahblEWAjIhYGuV2TqEmeCFHYtXxpta2Q5ZgYm/MTbrY4ndNgixT6tcZK
aPDHjUKMhjKJYfFBx1nmtKNgj28dcZ1xzdyPXRmyu4f5PS7hfhCdIDapZKcpOH3krS1eaoBqrPaH
EzJ/5xGhx0IsNtdLvOmNVY1odHOYrYMXQatws+xecoBD3NyghMEle1xc7gYe9F8TaYR2bFNz6kqQ
arN/bNuCtIdrKEIOguFIJev1/XTr/wixnLH+r1MwZZ+RQ1XW/GPqeSVduXo7BGEYUo7hCBIDJ+Aj
aOL3eNQYaqEmuWqZoTcPn6+u7S6Cp3gaj5YGdmpwxFptcy6kS31scDvOwFlKnBVKAZdkqS0ObGMH
RTgZcvyRS6O/WPgiQKas1+Qvw59gEDkwexG5XCs/wV88C9QyUqGZm+UZ7h6RsecO5xl2an5udfwx
BSA0NB+OKsP2RbG40oHvSDsNsDxpTKdPx8LM4NGwOo7shB1z3+57ObX4wSnIvInCsD2L4vsfh1K+
fzRYUBPNgKV/XWIk+MKk0TaldbyLyVzCXafyvUdjGsmgLtoRaXnzT3XDWpDmvClprJdgf558QuAy
+rcPrwMrZh6inr74HJ7rIUKZuIxdCnLynyloHSsFvZfOMq5/uyYcn818/gaNlLqITW2ayENgTcom
v5GJL3yBtVxAJhhH9eGFiiqBn05RLFGuqj120cvNK/KyRIic0q0o8cWKFBe6JrJ2AsP7/YvEJslm
ykdsSbaYUKi5ujcp5jO37sLWCs2BZtR26cPz5aubb8Lz1mv/9rNfPpl6kVKMdhWyxCWBFAl40IFJ
mdWYmfWh7L+cZVzjy09iS6h98uDJy+8YsslU0Sii21PnT86Aa2+LnEQRtYyawO3fayrFffV2h5uV
KKL1SxpaNthRLFRwAVjAkm+FMvFaSzlt12db1pommbcR64mNzAwwfI0Od366USZf1ndSzhbpTlXM
bQWRITeSNEjlx46KGGWB94EpbcnPXKsHMujKiSPLONY00dWArnoyJMgZ4POq94JOxC77PcAdu674
gYKo+/5A7n1tnSDB4+aJMLxQx5InYlPAeZYC9v5DWnfitYOiDi5QaS7WR/T3GAjhaU2GBDOPErlv
IV3hz6ZqnkA372K7R69ZFBpf38CCczvMsqg0FEhBYj8L55NsWa0trB+D6/Qn4TjKHM+cGYpHWHmD
6vJAGuh5Wl+hUeCL93HYXX1dOI+2a+YbbMFvNmtVObkr/fLW5oWkZXNYxiSpfXJMvy//ECx6Id6+
035AH0WDQf/Co2zFHWwMAp/1CkVGYaoy7HF1RsxQyA07fOuZLjCBwT+6r7vcF8aBrL/RZYpRt01Z
CDvIi2j7qf5km08E4bvfkIWdQUCW1ZcIPDlL7U8ky58aOp8NIofpjM43CwGhKwPtJtUjFHwWov3/
eevef1J0mrXAzG9XuLRChuDw9to1k2eWYUHWO2Yrl+ESrCqPAuGaCIhDrhIxbB3Np3EDd/3MQzSg
bnzH1cg5LP29hRm45+nQmtOZ5q4OpzpROCIZaueW4T6FHAlMJvz++e36vTSS8fxz2OAGtqKfFovx
x2Zpxxxubuoj/v+zE3KruZV7FIvc6DCT3EH4+GD/b7Ytq4A5VG5DixoxUc3Mq8CJFh15J7jWeCbO
jc3r3l1IjNUOjMenHyaY4gXEzr6a+xZzvJbpaojHC/tVpGTIBAmx4nkSsoMNoR/qv6B1uehkt0H5
GceF++3TDUpO6VsWhWzNSFNeCVXQIURbUD8SUFdNW+CJNjpSCfzfNooVSFgwZRDt9GydSHa6u7zt
SjK/Gc44EQ/Av4LxvHptvu1FurKi8Ld0sHJXcNvIi3SwSkdjX04OCFlZezws+0yNdnl0z7o90oKC
gOiwk/60T+jtIh0gzwiu7BeAL/+gvz3Aj0G8Y78mCUEuOQ075A57QMZ/o2TeNgEIqNh2ovEAALua
DG1qMMAhjtgVlIgfG5XYcvUfzGUBJTFb1fX8y77IeA3h0XPvV5dh2QzQ51T290kA+JcCgmqghaIq
iPhVGAz+01HqQ4EAF+3KbIPR1zzjtvlsV9O0txPhBkaNmsxxZQ5+oMhdjC67U/QQsx81yOQZkfvk
ASu0Ul6C2eiD+GaNLNc/ntyUgpV1W6KAareX2kxvBnC+HioFNrrgieO9K2MdspeM9i8ZWaHHFdx0
EuxuNrRTYnhal07PWa90cHlYxDrxOMExVT4HBRKxZN0gqLyUDTnUZI9U3uZbdndOLI3xU4J1ppbx
F5TqDJVTn7Gu/Efm2UTYZRZsJzGHYLrlg0W2lX80iZcgwYiqR7Pz4glUQ/kB1awqUYNGhca5QSug
omJiTF3GDQFJ6CoVIbZVCho7OREj0Cyq5lxgdzmvnyJAXCiU7Y0/naAz/MHbTpqJ/RgmVWmlwbdE
+KhrRSYS4xaIvRJpRmZnsLdG+zpNJOvXcHGu/9UA1bIV65Ui5af/ZRIQc+oNFTgR6dQRlsglA6/j
MyX1jtNXhyNFcXG3H29hNBe0JOi0bRHyzpsrlmOhzQKJVEnAO1cuUHG8Jt4XBPm0eQF/lyb4O8TJ
inXQCN/uerEYJ6T7KiHjXsPz8mJfeHuw4Vs37NbIMIxTCCP+gAOsJZvg0mFbsq+R0CZJwxcqpEF9
C7KcR7mvETL44Et9duyiEyLvhdShV+C67lfJ6kStlTSVeaXIM/YBI1mChT17FgwaSYMS3QuaNOUG
0d6VeQ88yBs1v3wSclum0j25OmytK94YQR9vZfIHCaYMrbXXwr4AjB0R0Wf+nJTgd6ouOa+Q2gOl
9/Ig5+li7twa/aietTZayjbxVur6dpmhklj1ARMYaBtz1gdQGSGX9a94C5yKruK1DaLcXp7EZhaU
5DzSTZjHrgVFAxALbdmbWEEP+ovg1C6Jlo2NjH5DWW45L6FCHsKwfraqvwSp8MBuJL6PpaHuDq20
8O+Rll8wMIS74p+kd0QMFjl7Aijpa1/ikkbCQC/ngafF8XJqs7+ooXxFBdMOH1i74/qAuguotZJp
G7kHtmurecj0H40tskKJwb0muZlTJmofY/t+OYPnOQP5Ra/DbBPXk0wV+KOy/Iu8Gtk4iVsPqDOe
6PRlQ8WSXxNFdGcqL922k8l7G+LwN1ewO8CxGZ1NQmc5raxfUSrrayhdUuit7NFpfHYfk7gbwyMp
Pi4Xrg+HLoaL0oK7tPajr02R1W5dJeA6LxozDxyvcL7jUZUwd5LiW+SAsSWzLi1+Cwm/IeBcyU0h
8PuGCxaBYq81I3VGy5XBF6EVVRv2cXag4+/LHQExPnWy7xm1PVGlUkzTYyxcTjk77sMcystbjqTl
PtlRuJEPg1BSpLDuPdQ47o+2aQX/I583OnCxoDaOmI/63VJS0iklh7Tkn3s0/mmZATijJmGZh4BL
H+LzOwVvkq8qIUH4tXqkQletqSysboj6wcfjE3jbzJRcCIGF3nYJ53SnSkjSaM1LHOZfLZQ3r8Q9
TJNpoba4MIpC0JQhcMf2SKsb2iTfb6Nm2lZUaS5N30XFYw8lWectepJ7yy14cP+BoLeORYfMJ+rD
b2NNhERzWrEO94q03OlpELV45hfGHEhHwNG3kSW8WT+QIrPnzktIRY1Y5BGXC2HLGJyOZR6QpCBE
ORzuAMjVd9G6FkBeFBfP07vPP3yNStKBUAaXWZaGdA8ZDc/VyCFYJq4l0vCPomHadOFyZucpWrMy
7a/9EVeS52Ty5s+NgXsklHkTsBNjXfS/kjnUt5abiu1+EwhG90omPvMrSfS/5dXiYNEaJkiGmSqm
ZZrDyQkQISA3QFjEdEBQ7JjTpJkT+oT0kBFW44qnVtzyjqcw809baFelSk3Gw5TJcTksKbVRPELY
lUd0m6LwetMIT56l/zHbXTUFT/al/VREww2knekbLRHhD7hs/d4znC+D3aSYEz546PHz/J1HYB2J
A1DT4QSXKe6MQHI3FMZ28rs8q9rPIEmbvz/tnVwD7py+PmupsQLJWkyPQBZg+LJBXMcNHBsfby3o
/gexS7+um5xCfAY0yyOzn05NHE7ITgyrCFxV+cNHW9G4Up7gzAcV4hNyccGKUcjXtC7BO+8QQqo9
SJiMEnUtMljeNzRCtyBuE3BbhdUCYhnBZpWGAiFNDH0FH3pkNW0jcgdRecL9L8/OIWhRnd9T4dLn
J6RC/15YkK9CRWKbxk4ToeZNt9QlYoU2sWzT+mSQeb709tby7qZMP+4JYOBdaXJ3/b+lMFDVcLiw
tK2yGc+ti4n+gTDsEyOjLjJGRTV0IVFpxzKcSi3FIJS6VdehZCAotqz6rBHFO+aJA8euYgzCMD/3
xd2EiCtbx+LviHOCGDAe3UVzkDY8Roi2OuFZNuK5dEMWVKpuUULvv/SwWHrhzbbPlmON8WRqCktQ
2FcJBkM5o3U3cSu9GPy842+GeJRRi68wg0JsNsTNRPcd6kdIELgxOisNlebs54pLkBi68IkdGMPr
FUYTVohkGsBLbsv5NDOrUc+QFNBvq9iOMeTs3yFwWGbSYcoOei6OGedCP63iqf3MY9l6sdVRu94L
+JO7aukUUFvqS5rdDx726DA9YP3UOa2nx+Ihu2zlmuGo//awmNlhATQHuef6J92SFC3Kc3A7fCsa
3hugml6ecqmWs5f+9RE01gyZ+lNorgM8J3802OgOw2aAkLrtpT4BM7cvLnmpffCPophxgIoJblPC
KD5tAQdEoszBUsXc9bROdR7rmfI2sVwKDfARzA9pg3NmxDFDWKX6vrl4MN0nWZb8xN1OlF5KocrW
9UagIL9+Qt1UyaX8N+mcud4lJsuIRjJV/KvCZh9l8561JxKiCu6preV/wUF3fLuP7DWuBSSDsazR
9N3fllb931y9MqxVxH2p8rCqlxX+GatzSO7at2KERZCCQ4u5uhkEf2ImoYeaX71x7ohqjdYefF/u
JlPdqsJdGH5aqj8OxJE0FEGaXdlkQSxoPSiHZyJF/bgiSarcvbyCfyUBAyRw+LMMTt84oMHglJ/L
7jAXltqlSf14iH+r6rBiWaYgBaft7JDHPTwyzOYURI9uc/2ex1knZwDTrmhA1HEHusn/xDi8woED
3eMZ3rCxOXO6TdwS9QPWNb193g9v4m3FuwB9Cojb6oj31CVGff4JFW/6BoYaWZvM8jsRTo77ILPn
RTR4DkmFMYFK4sHbDIQxlv9dbnp4pgX3lleOy/SR8LstYK6nkz6TRyZ9F0S06fjzKqra5FCbthay
oiXsehLGgJuS9Kn5kVhMFRqdfPNXLPqjIpVbubcPEFBs5O07nN96bnrQjo0+rBm/4Pvdo4C8AVCN
jRKYYmmeE45UUhN0E3+pAMUO+Indoq/eOuOvNdtZ87YLh7cD3Y86BIE1kcpRETG8N3WTvgTOKnTw
FGWPukbQIdQmu98tvaw/MgQqDigFaZhzpUSnh4RIL/9/2YqAWwFhTQTPeWvt0IubSSLXYVqI1/5N
ntICRoyryffeUHeVeGJDjUPW9xkNhQ6/Ly7ObqYKRWe/ZT/EsxnoWTz58OMDMkjdtjTDuiedTK2E
wdnZf1AGrohlDuRTz1/gOoo/PnW0rC1EpCShKLLy8vGOk4OFnljkOE0NahM+8kH8dfZCivz1qQR3
IX9I4zkWGToYVja5EEt97LhTSPaQjJNWp35OO9dAsfr3IOS5wH0LlbCYFNiS79p2qzlN67NGPzPs
9dUQ5eAsn0YW3hc9r5YudyeKaaUkk520Q1XTtk+EqemJJ3qbBbuY0eSnFOP+Kh48YD6UoS0eH99n
In14GlcXBor6jEP1o+488uyEZ2CrGxihyKsJykEOTh5podH2zJnkL8IIfkG1ey0lsZOetMEgx0MS
YYiE+k2CgYzFxxYwXVmwVKQuxIsKodmX7ZzBSjLQ4cItiNpWegHMUSuD+JjuvN9oM0Tj6QaUx5hB
KztuOdkkxsNSD4l54Vr4U1fe1a4bWpeV1GbasERvwQb+XMNrOiepf4gJSqcfiZQKZy96qnSJaKfd
waoo84moAZivqXN9p2S/sRTnmMqdDYAWMaH8ZlobO/ont2G0gVf5N215H9eAbQEP00w7Xycwvemu
VFXLXG3TtjdrV99ypzbbvSEcBBdTXVWOaNsx6BkYcSTdJ+s4dfJ/96CEtAWU03okdfa+WBHkvp8Y
LgT/iCrO2OinxvSkAWsYG599KlTGAePOWTsnHG3wpc5EI6aU9CmYoC/UQ/mzzpQx2EpQ7oVYxqsl
aR8fdqdtNkg1HMxXpGucJP1D1KjRHn+G22PK2EYAbx8AvB+KvNjrvD1UFBcBJvILOOlmPM0dTJmp
nhPAMii1PA50fBpxtWVu5Htf5HNKvACMoD5SYHAmEM10EmN4KlLqERoXwL6ZNjyq20NOR0Xpxf2W
m9Pvml0+t5bx6wqsA9bIr4/vfQYBd9QyYNS196Scykb+ohG/E/sNpoIXhO7qmNVRQ8mBiiZVWQLB
M7dpOsD/2Cb9ZiNCCQ6wetjaBEX49voopqvPgZyTWortBZHzyLE51gNY9nq/2tn8pm7lCQo9EHbV
2UNEv1txNKK6Ri0tbhIIVU99vOp6X9nzQsGpH0PyPRgOlnCKH2CxcXk8NeV3sGO+qojthC54Fg4K
U6eTHZumq+ppwWrPkjt1EGdf0+iwSgaMwmwwydfL9zH7YluVGC32s2G90+SCFkCmRIkx1UjnWurF
A+U6h7q7tsju44p1jC4z4F7yBfeK0PO2RNnxhYSGwqb8Gl/cWZgWtKR2bkPrkjBqmsfItU0tvwTq
rEQ+iQUnM9RhH8GxBs+s9H5oNlnu6FQWme/9KvhK3WyVmL0On6b4HnBvZqeRW3g3W3c/18yC3MiY
py19mPrM62EEPd+w6NYq+EJ2z9dv0uJvq+sE/fXj7P2Xaxe04NDz3D8d5Z0VnTrSwrczZxCFfQ1E
c8MtmLdYXsblB/brmnnvzbAJu7z/SwmD2eiy/iv5e2uiHeDlzWTdUu90O4tCgEzcUtgNCq0IKmH6
ZK4xuqY47My7jvHC5ClW0X7usDA523RuPRRST72X2mKNr7LF2KC4e0p3PqCA13K2bz6YoXaSruIa
qGAU03h2tG7vo0/RjiRmKpiRG9TDlQckd+7dl89NezZCNPe3VTCfEaoaPWjcw+31/ejdKmVRdeou
3OkSCI7SgeQqQ8dHzPmvUrQ4/RR8L44IVgw6Xx8yg0U/LO6U9KHJvLnbeL3AgjjbuzjtCEZRzvNZ
8TRisA1HTh5SQJPgNE1VoKxyUbyyPPj0KpCQxUio9+BwK3HgE9hxgxSzOUgNKBP90gvjW4nTs0Bd
lcHw4hsSOq8/fghgZAXZWqvvIeqPfb0wFqqtb6Syc7dnTtrrUuNDNRjafd4Qj5oKGLvQxgDGWz9M
8AkKPOZnBsj6FW15y6YSxgm0xg1lRdScL1Bj/bz13FEln6AbKnOwnKBpTsK3q1r8G5z0dmrfgTNh
Lis639cvfI9ZzSNndl1MHGypMJk2eLMSs8OC9YwKikzNy4SG1IocfwKsB1wfgCoIuEva0r9NmGgv
CaXVMbcowIm6T2BJxqOeFO99ICpw+C+v9QVOliWVnuTmvBY/idejA3a+QWcsg9YoNdQa+NAi5vPq
XMC7fjXgfJkNS5NmjH4eOX3CtMFLPR3PTjp9yQayjK8riwceI0DWFFF2mJrcMilbqVWKmOzfsrCb
/aP/ZrsifmzbvLig7PuVAh0c8LyIvG64cVaUvUhBV9TEOr4WiTdj+l6/oNYbx9rhmPXE1x3vg7kH
LP47wbvcHKP0RY6tfLDKgKVXldRWU3f4VCDOxebvjLXhOnpi+bmXkxB2WL79PVS4EvUhUHH+STIL
80yUt65auwp/WYs8d31rNd8z60HTes/qwas0kz+M9JJNh8NAlbufKPz8rauKzA1qQRL0p0P+gaUE
wfbwausT62ltU7kGVp1+c1AmO0lM9NbzMgoVmIyzevtGqkbYJ66P7ZmchXo3+OfYdpsFNqsB9K38
7+7k5y93X73MlIHmLvumsLL/ALyVX+kmJlw9+DQV97CdiM4DBzWjnlCcd42Xt9okMMU9rB4sMooy
TWAEWcH3gRguycmfFlw3W3LDn+P/bVjR/pIRODbt2MsVW5xMFmrF/evItM0On/jwcjE3qwyKjnt4
w12ZwYQXj1Kd6pamdQGSqnqkOnijQfs+RdhSLLXampgtYAloOFEXnmEu7ecVQOWNdmaLKAPXSRcA
6fR8rP1BhBXz2R5mluQfkwwk5hWJMUWoxn8LDKgigSt3k8g+h7+47qQbaLCtmwGWM48iPpuy8Zlg
H+N7KbLuT4Q1r5BOU3AuI584WccLKICtWjlfYPXJ+DkUJuwKpBjWOdzaPZ4uvZbh5wybQ/x866T8
DHT78etecwK7ROg+yjGtIPADQVOOMSAgVVadgoGCNsKrPOBkuoUQzYKenUzxkDnXHkdO7GPwmgad
oVWAwbjgTp6n1zhKlai3MkvhYyD1eS9bKxYNX8PEPGE+U22MoVrZcroPNgBwUBz6RgruusRs0LdN
UivNjr7nPt6iLv95nLGWjR1fDiOgiRX3WnIn1hDwm1PcmarLgmc7soWuQ7sHeFaW7XZgpP6nh+Uq
gL68+L0QBIUjjJspQuWJBXw2Q6ysVb1XB4dpqlsx+LfsVO40q2hW/eLHmil/jDkGRJvwhEEnsoie
e1wOugjDg4GfMZzxTMikwAwqp4oHEhtKjw9821MTXhIzwgVTz7Qcc9lp7PhGuuHkP0N56AQqfJSa
+bIVUddfxWyiAZhpmB2sqpTcnzaQZGaoD2knCSzyZ4hK9zWAtpkcckjzOVqZIXDLJ4Pf0T09AmFr
RJIem4+5dyYq4/SQJSVkKyIJKUFjB3n+ATva68A8vtaelqB77wi3PYLMYCgFi/2+WGB8/4HoJuDl
qqzYW5HTIiB+dLQ5YaqCZhCxUkuq3OfT0DkqeoEKihk+KKqaIMMQXbmAqiztmsaeI89SlkTQjH5z
Uba41WSTcHeC9F6ssHjAa7EcIhvno195tPcAD+AIcXulboyYxF8RmtZCxABVPaHTlRn7jhjBiYUw
NQ2JkAmpuw1vgjfZpH8/i/orV0J27OUpckB33OdKJPOaDvHp9plxkrZ/Aaw5UWIdwr1hpB3b6443
XKKBFTRVIiYY6c+ZiaUeTHP1ZBQ+r174vfKG9WZzOHmWXecEQs90DxfjVrE4SyfBC9aF/yN3Giax
eI620G0z/ldtWQxIh80AXVDJmmZMn/5Lu4JxH4bNEok3FSpY7vaVIavXUCoOaODSbPAT4+gTA3td
a394aCIHkqpbSvWKIzIzk75aE/gR3s2pHBJfZuNSgwsIAOkK49SbRz1+WvtsEhDKSWzZytFB23iS
pEBVPXpq87HGB0ttt+2fydcEHQh13lTxwBBf+vtYhRqrPvCsiOFLuGzSXkb794l1cwOgFsliFUN8
+IxKgq6rqVZMaWNewsOvHeqAlsXSkWn5/eXQqeL8i3aeNRk0tgxHPj3VRAspydqFELsU4JIKfg70
UFXGFUF7rKaJSvAwtZ67Yh2a0OcWO9Z88CSAp52O3kuTLMpu+9S+ECWBFPGg3Lb8kg42GgeekC1P
yKFOziDt8f3WgKXTeGK73E0SaY2BKUSWT8hcpfdVkSCpkmmWeJ3/bsY8xyTj+643DhJZCHzTGncQ
qTXzTj5LIRSAq/MHWUdF60m5ZFQUk6L8ttvUi+G/FGsXZakK7ArNjqkWRyC13n84lOJJaV/ueNhy
C2lFC2V4ZupWekBi9eqXNfOEQ/ix2M5Qmn2CTML1CT7hiHpJBpkGaiy/0XHGDjfT4/FQQ/uNwDOd
azjX0iLA+NvrCdZd61tQSwbQH75OJaBdsF/LKPqIMb1ESaA6VitTmFq5mwTQ4FWw11Mt9jhvMMwO
b+vf/vvfJ6ON8wpiWC+LZv4i9MOiPf4rtkAF/fz/L5Evw5cIwqpMuDxSMMgLpdXM5V0SLKLHmo4w
NpUl3f7PAMtMbYAHo7gYKXkIJ6kE4z2heMtPWhfR2SYSlAVmf1czvrQSnRTLOZBq7E4n/23J4QzF
8sDaD1pk5ZK1qyLl21TQc2XEts4l8kTL60dVtKXZSP13YK3dvOqyfD0N6zFMMEvnSrkWktv3AmTJ
Pd40DX2k7800dR/p68v8MxYoJTtN4uE8wUYRir+LfWKoYYT5vZ+bI0bFN0en20G7rkDenP4JfOEP
iXujycse9MoptK8dMEsl5cTNHbka87tkw7Ab8hSlaudvmmZbqfEYmjxe/suEnYX5Yc9eTEGYbG+h
TuXR673G1CrXnH3sl9ql5QIN9b/6pBYuP1/UplE1n5LKfarztSbFDgBrPo5Qymqx+SuE1fT0DxCz
VySAZyn2rv5bIBygIEk+dqrv2YeYa4oWeILGS0658/374RO9QR6Apng+Lferv5IguVqgo94jXy3t
480OMFmYoxBAEYKdiv6pa3oclL6tojhDo3wUvijBFdCguDOYwAMbRuqVLiKAseelgEeqrgsyxwu+
N3accHZn49hvF6CB8zFKtOO8E5Wv/HF7zhhThIpQfs0Jdy+HlIelK3DMi6I/ymoasYmQm6o/5TpR
ni84AdIUnBtfI43X1tNsvafSuAJMTNR0nt4lHIGelJU2CC9VhLFwO24U5I0LvolmfniI0HpZUDbz
0Im0smD001YfvNMB4qLDvW7Csek7ZPBuJyazkT4lLW3ySCCLDtVZvHy/BcYrj/0g1KUJiPMdnarM
HVChYx/DFGyY1d4hTuq4RDe5skpPhXkY9HIxcn00A0rMDGtltJG64XTq4gIDV5RzfDHbTgZHFfQ0
R2O4D5lPYfLLtaU5Rx6VX+AISAt7GZdjRaWUkc6RWF81Bnkn9ldhDKCkXZltBCK+10t9kJwawKHi
3BMxf3L9O2Bjhc7Wgt8JGfszhhxhOW8CL0PvrbmQYixK0Lkc9R3fqBTTDPLwMPjCS680VqdV5Bk6
q0qjkx4zcAbhtaq2Ws39TfctM1blPLDM0Akln2ACpaofI5wWE16AVz+iK7zoj0RqQOBVo03iJg38
R4jkmL2/eyLamJo23cAKeD44pbdbB5gr7BTjIf2dpB+7/2GQBneLVz0ZURtcMZvGp5y6rxhMXRz7
04x8266pSUWmRD9peKAaMXm5xRXxbSulHiSzrqNrqGVGitqSHuwF5sRNUxAVtdulaC3ABXxpdvnl
BBZGauXJDXy8IquYsJBKiktDc5qdijtTJ2xAs8ufaU0pq7D9oZtnYri4ZBApcI3UJzfoW1u+mtna
Gq4PQaGFIsv09raQzqIuCzoLC9fv3UIZVM+qx4mPD777RxhrnV9OYHbtIaadH4enFLCVXJME1113
DeRSRoH0qIro7YvOSrH4eVv9w9S0rEYXJGBX0uqd/3gx0rxtNwlTWaAQhvPgZ+I1d7pPv8YqwGtB
Pz8sz73S08Hyg9sy9LT4MWRICjaD+BHmiqrXo8deqqZBwv5s+SMWUA5tbdCfBaj4rijJQsQffMCK
2z9IzSpZ2Q0xRSh5yH/yEFCB2IlDDwWZZgdTi0543sL40C/L44qQoQzCF4fP1hBSW2DHbswxGWoh
mfR5XrMHAU2DopYWbwqh4MG7jGH63LlVspUAZl3hr4gmgcrfNEvTN1o4XTTsBGGWJYA/qCONQLN/
wjihU27KzOsMU2ZF6MEaoMjB5uTnecbdu0brbmZfVdEVUoOhLQCdsyQ3gSU/VzWA+PjRsWtC3N5u
IgzqvXkj4IuJQ3OfoaLxo0nuWDIqXchsDLflnzs5LE+y5DRO/TlalsbwvcM/TO9cZQ1i7AZUPumg
l9LoV5x5s7J2rNtVckGJcaP12zZ+BqjMls/MSpMy4gH4YIpsciXvK76Bn8cvsj1xyfPNYqCcTLgn
tkZxAMtt92xXzoMMxc/gWGuyhJYMyDj1o+84FlY1B/7GDmb56sd76gKYkKoXVsGbmfa05qnXc0va
Ok1EzE5nEZqunPHWO5xcxUsIGuBpfQB2s9lW3MbZtmPtnQkp20a7M0GPTPlM/T9x+6ClsKdR/qLr
flPZOj3M3IpFKnWJPVycncjw0NgbISfkeMD2MeRyXh4lXIRr9D7G/XxwUFh0js53obnhyvfMWzFR
5fY5EZ6Xvbk0wWpudPPIi1zS/cZGIJhXMr5/he2rhKzbVf3DPcf82S+j4qhewljyyxZJ4RdvUHEF
TDv1nMb0K0b9ZshuMR7Kelfz3PFAKVL3V2MGwhpVBKl9znwbLSb1mRtmEwZFSJsPhb5FfnxMggWR
t5JN6fML1XhX2UjiUC7cENqAg6XkixC+KKQlFoUrdv8x2Fa9LocsAG474iHDr0PgC/wTN1g1ZTpY
vN2l4M84wLwFhCwvVB/qiTmTyjakykHL+a4VczA1mPPqhhwFIlO7n9AmSOHmPCmGBGELfBTkJp0N
homOHBXyDXELR3urRiCbRDXdWZB7On8b8XX+GeWamRpMyRrvi2ewLb/X0cT3Zb+3r5dcxij0S0xs
HPAxOuESZQci918CLXkleu7FPesrGEEKE9v+NiDtsb/5gzgDoBCI3dCIU0LXKVwgALH9WnI19Qli
3JWhCeHAcz8HYvoBZHx6BU5hyy3Z931ka8bT8fNWapZ87azfikyexu2RSw1fhIfy0FaQ0HnDxo4G
xCGguuTSDJUI7v0NuqktM/+myG3kQ8MgYAAzEYbnQBV9k5ux4r9yTcwV6Vj3wC/PZ0RM2URyCJsu
78DSBvowZBWFS3OdNJQRS2ldVin4v9K9BlBVRe8lq2JCvSYCSNnI+H4zw7MNu8dotNv+Ot9HFw9T
gUA2ItQFqWB0J9hi5Y511IZ6lr1zZLdpwSOPbCUZiXK2KohUNwqhzDY92U2ge1G2NS2WpH4nWQjV
qejoxPPFXjc8zg+pDY69hbHmu5RO/YEwj4UnM5stzZUrkET/Do20QFocx5bdnTwcbjkBO9sV+ckD
9nXeV4TDGg5ESi+4LaByc+aKez/+9CCokSoUHGd2LWPdjkVwEh6N0ldw0LW0V5ltHdhE4KZXl249
dItmjcJic4oiTKEy/XaccY9bxQS44iOgqikX0TuClzhrAP+DjX3RBCBK1Ss8N1WvH3PBttC45iOP
Vy+agx24XYqE9waEPiYFqWQ+H0DaQE9Jli53i2QTTqDjJz4GFIIW24MctPz4AXwvJq+GzC2/pMNt
D6Q/qhrw3zI83MBCekMZ/HFHJA8vvnQyQW3i640hGe/6CGy9LWT/A89HW+LQ9Fly1VKzvmtf0A8N
VCVvvTuEn3ns+lSBI+QQT9R29Y0EFQSGDtSl33Iu/Hf/1VQEM62MA0j883WucglYvV2Tq89d4Kpq
uUvetSWLLNYTtvMHpVqdX/LwU9MEalm3Uj/AsSFrxMaN+rhYWffPmlaPum2ECO5btH009ZpWye/I
3tVdXXFETtgkUD2itZDKbguEMeUpe5vBLMPiqniUuUPv67FGH2DMR2zV6eQm1w3M0FX5LifPT11O
xSQeo9qFoq08t85mu2REIieIdwS+d1q+hhDbiN88NmScS6L1lBFqM7yUZEVuf3WaiNi5N2V5/yqH
GRNEprA6ppgV+bmGOjVo8Qwx4i5+62RBobcxo4uke2kyT8VRttfVft8f2SZZp6LAE5tKdNSK495h
Wf3pEFTH4Jnro81SQQ4pbfwo3x+UszVRuuiBB5pG3GHxyVXAA1PZTGFe9TbkPyFf/8RkOBVGFeDO
//DMqMwC8jQZAQT4oDMaup3WGRAzZoeLjO651f2BHi032zoyKAPva1BQpd5xfUxwnMCyuaGVSfJP
RkjkWiOa1bVmbTyXvqa4ldiJAlMOCzBwbFtp8F+7nc0QoOgZBh2Hz586VAQV1tYp8LA6p7a/2kld
pX+Akql/ZXSl/oMw5NWNInEHVz5oTnzfZRHT5PXapoclekxTT3ANjLvmqUFZnhvslEGeUFTf9UhL
hQPLx8iuPZbCYML0E/18EeAwLyEYFaZqtN2xr9Kb8cUu9/ApIiZ1lTX51VU6iRBtrfHwrcewHaKF
9my6tgDRwInA9JXYPZaMp8lcu+1tNPn0t5ObGnsowUHp3Gd7gZO2LlDo607m12rO4bn6p4j08wpj
Lo85vNq1Annp4pf2CIQCchuH2b2ZSkL5VZM5oQvqEW3Q3nAidvP4u1Vs1UdTfF5hk9y0MqrcCj7n
VvSk3a9x4CLEvo9ARQp5EX9uBaUpiqCbVSqZmV4hSzB4aeva8BS1iEhTb/cov7U+2CVMR5Uc53ed
3CfGEaCS3ixkY10hNQf0eIE5itlTCNlMBmnv08vcJ016vEt9QMU9ngtajNq0l6O/5VXA6U6BHfJR
grxfiiBeUbLMn728RTgrcSHyZo3E6CPmU6vwr2tdd9ecUAJ0m9GQyspBxnj3iXtCnhw3x8X0f79G
HxOsUfMl4aTiW8lbUZb/pgBD1FU8BPswoU2A15JjQdyopaNUby6qLjGtsnXKILWRLRYe++1zsDhY
d3813Z//7N6KyAPRvorvfmOyX56oDlHaoVVmEzmaxRjZb54zK2fcmNOEluwzZmKm6Cx8ckeZhzpu
Djg1i/eLwunKVTh+YlfIL4e/Oitupqx5bFIrquf+P2cLx/UosqMspbbq7Uvy1k/yJ739pCcsPL/X
PpikZ2qWUtDAlBn+3MRfP++wzcxoti1K9mLrTjwt4hKW8haD9UaRsdmgWj3pllLmdkQgnk4PoJ+s
dULuwcxfHK8HEJ7t/kBtdycQd2BredvBQbY+On4jhinNptSXewrxTGIHRpFGxwBraDD9v+B7A2LE
1ERX428Na3fnLzg+ggDmXTES4zLA+dReL5XalTILloZc/5z/jTGclioEPtZCfRjpzBEYAuiOoiSR
sDtGo+JzumOGCjpcxvpm6Qp5VHWDxWRGNyeJvbLVtFtkh+FXlWmYZf/ejbLicUm+8yiBBo2+4HPJ
dmLaZAm3LrpbIaRKB94RtglcWVPZkdB5bqEU2MWrsOAYYMxAIgDkx9yjaTw4dvrvD7u1Fxcd2DCK
mKQ9xSgekX0ZUCXHHgnIcSM5ZlTmC+CqQgWwBb3Az1kO+fGGp3/zTyJADtHqZGGC/zpUS5OkS6rh
jqjRdUU2UN3YEMm6X+G2SHobT9Bo2o5Zy0y7wWJ9ZcWBV20FiSkwjQ7buYZfiixhdePLKkD095Gn
EwRSxH7H0ClekeQWw6yQxqRTq3vEUHqm3O8NhbETkiBF1dRR5FGBL9Ji5EviMo7NXcXEz1XMft/L
4r9Hvs72W+DQmP/34MsvthKHrWY0FXlXcbcazB7E/xenKm4GIiO/qMmIbsi5T12kZZmmCOY2eFDi
roY1JBrj0b43NXHCheEnfVzHecBkr7Ig/cEbXU2c4P2JtkhCYaC6SNjoJZthikzAASFsIe9GHwfb
0YItFAz6CZOhZlfrE42k8ERWNvn2JQLwAt0hb2RLAhwclmTQzBAi9wC2teNCA2XCUexMXaY76C+p
ASFShTxnHyF4s8mn8Mo3b/3RK5C1JuSjeVhsQIdsX2AcHOSSudne4S30myXtur9AN+lGX6fraypc
2y8pqR9pqYIIYzDK9B4V9m4UchNT46wiRqCHrGjLJxIzLOzIeUDyTE9PuFxLUVKs8oeyGgMzUW+F
FjqHDp/NGTnVDd0CIbAoPqSPu4dkAgoMgIRcVqeoHOLUFXzTs7JaAkFDs20GBA1/cDNb+GtS0zgX
gGFBNC6+TrQ8NyP9LEAriIQGLRs+9bnBdFL0SksmjBTCvuCqPWFrSA+tU3Atrzs5G7FV9raoeIDd
FD+RhToqZouTGN+rirDqQwnJUYeyNrw3J82upOhoGofC2R5sjG65FkfRP7Rz+uKGgaPbPxbFor9t
zYeHzUjkLeuLGmFUtqzkpIl8rpOyQlCeEcWPqlHDpdVbncbQIoYU71ETxGyHxhrG7zfC18mH30nS
EsgodaXu/bP4TBU0r5/KMirjTmrO9QYZgoQOySux+IQh5SUU6yvYJln2+jSuFQHumYJpar7OZEFX
RbtC199OwFvhd1+zocEm8Ho4QCYfdFMOHIrsIsQLY0nz+BEfyFywDp2yZS2ed7xLBw5jnKlhC3Pi
tyQfK1elHVWspP1OBTHE3VYK3g05VXBLRVUV6+mN94k41AO7VvVQHFRvIRcdfAYC44NydpjDUmVT
RgqWoycbzQSRXly1RHrTojkBeh6bV8zknnbW7bvUM3h/F07cYhuIEj9f/yqkaaSnnpQkhFo+zuK3
SiDcc2pcu+lIhuuwR8XAO/Vst+K353m7pSpG87JI2QoZXTnB6UP3Z2iWBZOXrAuedLwdgmRuLuK9
zuuAyGvwOJUYo5fb7ekfa/q6/0kyGSjJa/hSLF6I1AF5xZNEvNFkUnQYxLichYDz62vbfqSI70OC
ZiBObc10qmtmVcb8GdKbfbwcMUeC8A47nwrgRLd/TXgNuCJufCBmDCne5q1RJZjkj4UEZqlxZpfC
4S8EWfJFHzjgEQ3qj10i8F6bk/wzsd9q620t8Svidg6bDqxPmwXYPuI03R7rERjQgyTMUdmnqB0d
cFxJJCmvhuXTX+zXrV2eKCr2vBRInDRtiXKmT4ohmIKgDY2oRqATHLOLJKsB5eKU5mu3qEBecoFQ
jjtHn0qHTG7rC8LkXxXgGFlQOPifHG2arGpGipVUcSi3B4nZC+7ynWGrioxQZUQwkg3NRBf1rw2q
wRGfKZK7jgv7WPX/iy3M8HXemk/YsTaOjaOI6jbVOMDt62NLxvgb0lMLF0TqD8kfee3l3i5+6+GP
x2hxHg5ZGGfB5pXZxMzz7gKp85aXVuYVeL9Yk1V0vVkoA40bo4qU4Gep1/3wXbMyZoczoiFODRSq
X/oUfN9NBze7DeIDACAstV93OH0TWJ4CGRkllWadUaluWhOjXGhV33WYqnr9TPM0reQiLQQXFbr2
iukdxOgNofS6VxiwQCdd82O3HK13FK7K06DdpSAZ/vV2CrsvYHEI08j39MPbbQTH745fVda7wJ9Z
IG0qNumaENvMeVuoXhCypuvQCaUwMH7p30GcnTPxngi1E6yeRgZAPg/p45x33xQewrSaIAdBgGTC
kvI2eZMi7ViVd8z9ouKFVaf5+F/iCBhyum4K7BOU7/xaUTZRBns14kp1mQ7WXDe2DhUV5z0aSzYc
SpHzol1fsyhmt6IkFnv0AqOfIWWKEHSGwEeZEgZEf5qtXUCuMeNCJH7tWtuK6sMTUYD7unQGsxp8
87Al8/6mKjl2HmStbK5jhvTD4meWfOKvz31K5d+j8Mxwi0o91CgjgIEWOjKUOYlbBxhROZpvQKXs
JqNfMFVvmA8vodHf3NBxZd6FNZvU8JvY/iAmA9Eqg6UyWZ+cVymHcqTqEYkkRwD3L8F1iIx+NFBN
ecv+KF1UyWxQjTWGltaL6Z3FUCIgBTpBMJ94p1UoqVqs2Dx22PkYiN6Q0twjbup03eF1k5jlyuIc
QBn8NJKNXNSznc4NsSPdLe43ivf8zEQOz/anCIbbPHuBXLNw7xGt7C7i1hOvJ7TzDN/7pPgcyf4O
9W2XQsMvstEA3Ogmok2juymDQpdBmfJiuv0pcZDhWyNyqmf9ajIIhK6tbQ7586BzdGFEaTr/8Ezd
xAUfcUzryphdIx5eG5gjFsH/uPiKw2RwBwa3mc8MmHfiNWotefIcXAnU0h4tcJcxY6qJBjSwslgV
GS9pbVkbTTOVG+elrmrJdyXjph7RsT+vBMKrKlEhqZlB/9jpH4QloVIfDHUuepsvAG1bZ1bE85x2
qGNhV/+FTxI6NPAcz2UCrtHVQEOFAoy1U84XzFT2pA31OZgmIOCGtuM2FSR9jovWFBxNMAEss7U6
WSTb2KmB2lTdtTKdhcT/vi1/En7/ceKHlOkTa5IHjddJbX7VK+GDxezpgpsYd3QvNPGTy7eC+JT0
C2g52WimnByfbwZY2ZU8CitzeKswjUGu4CMNfDDlAG1r9bf/3mfUwT/4wupXNcIoHyZX/eZ2eigN
xpwN0y61z5pIEf4zK23Zh125/rhSKafJR3FEc0hyIRYSWmjrEKiVx30UZg6MTmrr3tMoUSKDWbfJ
Ir70MpBwq0xESIrgFT11MspEJmLxLUTn3aSAhnfKxw8iSGqqrElMKXCayl3o1icA3QQdRwbPjXeU
mRxwqQ8XzT7T01KtfPGlTSdqwc98IfZNvio+9T0y6WZaFsr756+TWzBojpwMQejaBL7jWn5wpuyn
dB1cA3fOB4OjE3xh5IpHkd0we/eShM3NL1Oti4/3NGukhUlodMC2O91r828QVPKWJtEDuXtshMbV
/GgcmOt5jvpOSQzq3AECquUQrx8iB5lTTvFXcPIfB57Nv8AfNEQFd3uJxZqSY1Kx4syKfIn9SsP6
v2aW8fgVAF4RC/ixbsVydWaDZcfHlkgBTqAv4u4kj/uWqNgrLk67i7Dik/AWXCStovmgLW20izNx
XmW8gLTXjfLshqBcPBY/djWLc+qelm04EK4B8oAwNb1sLirv7QyWc1LdbM9DkBWiabBiKG3ESY1X
YGjCiu/o7DbsUbvZMInfEQjQ+asgaAdl5r9hK9yFAllmDPqp4IFotve/H4QuP7etm8wUDupPElOU
gIt7Hj3sxr3EvQeCElAqL6Z4H3yYCtKZlJLktRM41Y5PUPlIgpX7NmahB53B+adQWD7Y5uYP7cS6
Y/d84qZN+W0oZfdr7NbYZWzVxYkLIpExSgN4WKjny/L3yDuS3xAFk1xBuGn+C0KRkwZU7K9001We
7Fm2yXlTkwQVVo9Pw0mXGo2rVmPjb2gbkG7Q8SsIXGxpnNmC/gx78B6yyHnJrRzQZwgjkV8DlanB
KQtRjBoAUeTWqTtTPJBCge+jSJfDmyrwdTIekS5s4559NmkdC+JPiPzr36cZ+6pcbaCWXv0BdvSz
EvN7VORJn8toCc1/E1OhovTE6+epj41sn0ARYgAVYIBfhf+1wh5Cu1Ymu8NjWQpJgMN3YAGaBKDE
Qqtzduy/yL17r0y0o6hvKRPeXB/xViVNK2bCSxADb8jxqlNgCyeKpff8dnX16COaCGbVncOaVGX3
gdMuI3V9o06a9t/ATFZBGnZtrSndwiGmnZIpCdErefRcsiiJtFxMnvRsQH9JHwGuW70YlkteF/rM
MPlTh9lSPlaY5EwIJU3GUC2nW2+FNiwpnQO46EOLKytSfu59WgCF4c6iNJDFDjykLVoZoNcscHt9
qcC2ulJFsXCKbTo0vq9vphIB9KgHhmk7xinn+XYwmBFgShUYl1wKrZPCROVAJoznDmu3LOJBe9dG
ooG0NQndIFQpzmKms8oxTi7ko6BNhWiw/M/ZMOr6f1djYFFp9YkzY/U65USR3lIcuqBxuPajZShi
B2jnIIoiuJVBRG66oVwq8jftMBoEym0yqQQIiyVRnDZUqvTQ938xUlePcgOS9WVZ2t/Akkpjmw+C
eyqVpI9liiwx+/Pj1V404EZ89W2UdOwP9sJ1Nb6MP3vObQZBxYEJWIVs6LRKVhls0F3YpEgFUb8t
wRAOP8CdTBJX6cuKUYVSgzkfSlP+QNtjd9rGY+X31c6V0g73ZbVJmVb26mwdmdhAU8GMrnPakZQx
FHL66uXbXxQiPd/bZmpqDAaRrtzDdxo6w9B3HbSC8SvsKTYYYTER3nkRZ/5SvHRrMtWjomh5FPJJ
6xIJvILH2tqe0QaxDNXy6/XtjM1ieCt5vq3Bd31ulbXWUk9aQ2GKED167LWw4L/fAY3TUly7H7lW
ebuu0BopLD7/PLYEvsZ3Gi43lYfNN6plYH2KU6cELUZ9mwQtzJwL/oN6Dm+asiBZqKAlxm8kfXQV
G7wFtn/Zj3SkNUDy3R6kE7OTCeAbz3YDziiS9mKuhJWyYGjTTam3ddjnnFZ6LtrP0f5m2gMj4uLu
5bt+/0DfVGWgQL8FAUUK8AgjhKhFtS1i0RgwRzIfyVFUDxsNfCOrNOhoQ7c4TMQsppkovVGglIeq
S8hiJk+4tiutq9G6LV06UL6ldo37JE/fAWOr9YuCiqCfwovEasEiRump0+naqc1rlvKIiAistL2C
6YhtNaCIc0Yi7MDCqXJJHdHrDzxw/2C66Qzzq4AEQ2TBC4WRVvt+ZB24IX0cC4QTF3duRDJuGLYc
1vZXTlJxxk8dP27gxFsF6TzKK0UMzW3z13IlH0MghSTE0aCiZ7Pf5UYfkwuv4iebucb1wQNPZ3no
rjrb0iuUKcIqW1ro/b6Vv4ZMpkGsdY+lW5mQVeKcgiqVy3r1SvpwFwyCMUTnwXEGOrlEft3Et7Ag
r9bxbX7orqdappkzQ9OkVbVUpFYKm43XSLXD6Ld758I2nRB/O8dimeOxIgEH68qilS7kx5wvlrEl
ORwVHKw/e62DQFr41jNn1NrCm9WFouWi/ACle/iyAzeJDkcQOeq5MY69LQOjITiVsjivanpdiG74
DKYTk0KcuDdF6BtPYomixj3/oaWHmFwWAGBDmPB62pWJYLlzypFg+tkoVy92EQa29hYRqjEMm5YP
Sg4njudPynXg00WzbpyelVEXjyvELpXRsUSV62DFoUGSflSFJ3OCr3GQBKZ2q/xuez8qVIEYLwPh
9aQSjAGciWGjbYhm91QuVq6Xlv/vN9QSxg7DK6qlpncBSWhkqUcGJSN0Vmvn19FC8WdwcIhtITER
PQdESLeMMu1FJcYEvB2mjNhTOKkCj/VYaiNRA4XUFN8+pxnJ7gu+Pi1mugp+dUQKKFedX1sl6js0
w2xCVh6qJPRJmS4Gp0UCDX7cml811Y9i1H0ZhBBqsmqxytLR3huFWvEdp7Tew5sBGBma9l6qO8Hf
ZFr2pKkoUPNTFmFWrOIX7YaiKuCoiswIqYkUNNQIoGcxEkta80XrwVRAyCql0Dg2YUvv5QvyjGBe
J+5rIZvn05X13mdQWTYSXI/BLJ8xs0hUK6NAhj0V8SDSbgNCaSTGXrxlwhiBQrYNeA7/YGlsnAgj
oTaAw+DkBWPXF8C2ShAj/K1N5sX1kbpor6tb7/bJMW1QGLCUDSwbkgU7G19Q1qJKQWYcSgFH5blB
S9HDgLkzOBC+am5kXAsCaFwCrydmRUEcbFduDwFhIxhfCY/mNSWiQXhhJmD+D0Whcq8s7HG8vLHU
G5qiBuLEq7ReHC0P74Ui9CHiALaWAnuzqkXtkvtNtG7KymFhXqiMQpbTNYNNfL1x9To/BDN0VdvJ
fdVRle1abthXY1BV7HThlP/NY76UIcnQJzgR8d8iJAvhQc4kDjnf2O+HzmYM88BouZEYNcw17dna
r6X+l+aUkiutHYN4pZxzrTmrwKyDhR2v//w6LR1nmSNYdG+Mmkid5BeNdZQvFFUoTqPySpTHZ+qh
GLgPBACmqaLhpWXUQYNhsR91wW3PZAgrGg+N968YBlK7nbyz1/00wrx2It387soQMdXYOp8waNSY
6NoSEg7sBmhyg0vaawCGpTB0KtbNcFft8E29798w/idgRx1G0aOYPFJQ/pE9e9dGffOli7vL2Cz7
qHfMKJqCUx7y9A5QnFM9dz2QRH6Qwel+aoe+j3pWzPgeKHwQtVGxoTK1j0QSbUagHv/TgT1agYNt
BDUdL+S0aFRj7pJ9QBkgoim36bEh+dTeAUQ9jH9gktYY8BH3jVuw6D+UJvj9WCeRzNoZfr0E5yEk
UI+J64PzXHdkFf/kqzWCDpcmFSSzILkJ7+njyeRM+17huFGTaIvAtzYEJT4arMv8cXRuJAWRuue7
bqJVnj0OcAWz23IvUu4h+f/pKo69CjI0QMOCksbx4vDZEZvIy2OhNVbgT1xWLRkR/YjaKt74P+oX
GUCIj/9f8NeU1e+cL5GECH4GbcG0uWlUw+h1dSgDFAtCoALkfqntKEqhCD6E+e1YJvvnbg9os5tH
crCojiCRzgrkOLnWaU417M5tOxvr3L1S24Y0K3pCdnsFWnhqGZjfmLypcNBw23QGlicQP9G/sOEF
a9WZdcqb1S2n5iRCEXiD551xYzDy5Nis7mEHVNhkyAjrZwUZ1FhQ2eCrokZoVOhOSgZO7y+0UWYP
ZOGAnzgm7dXB8MDxRZn+316FViWFzlg/g7W7qvHYXBS0XgkasiH4alapGMNgP9CFzAII8jC2idqN
w46SPpne9NOQcdv5AL8O7vDfyxqh4yzgLNuWjc4RxJIs4KcI7szDWn4DEKEK+3Epw1udBZyiA4P7
/60yRHKwax+q5NlYaf/ZwkeWLRzPZOF3sbeGNThCUuLX5Wv27vmS0VIHXfLurDt8xdWC26ftiMBP
6LQoaWaGb3f0QB5eHbTShvOEXeIp/VJqE7IAZYCznUkgLXhLpMh2iDYf3UlmzxJC5jY+S2o5WfNd
Bn9LRjaSR/XSa4Aw3/h7vxWd+i8he+pTqqRGf2qmPaCjOpN7VPgtB6srlO9lAy0HqxOAQJ5FgYtD
5SK5x8wLF3jDoq2UNnWINX3v0dya2mMskJQ7iiMEGR//pcXG9blS7G5+39SRrytKU8togxN4wP0d
lY7MgAEA9wrCAnw2+nkTWvPRpw2eBErK4JpAdmIqzm3et2ufOGbkxcdc0Gp1MiP2pib+k7bxJSMR
OHfFmET1kJp9PvYTaIBc0ycnF1YbEDvPSILuTZvs+SipJKmMJy9CFI9M8gHMbsLKrK5QORURK74h
LafRTpIOiBXXzLTMFfqwJhL5DyshtgzzdI6NMuuS/ilU8oC+fr2o6SYn9AoHrirAdIHhVn/T3ElO
lI3+3OyO15i+FduZ5fPjr2b6DAWqjeC2HrWhy3aJi9+c3C+zU+43YmG9kwyqtMq+rJ3Zs8ONjOPH
hfHxYh2ctvNzles72WEfzItrukyg7ZiqUez44Gw5gic9QbbXL45aQG1Crb0+4wwEz/gkYW4CPQtD
45fn1sfM7vRe33TqFItQtObbB4MSD8v4W1KHpas8XdoQDaNhGnflmjgl5HEGlrbi6JMKkBR9ASpM
j4Mg3ljdaGbyd9m8d6BT0arQSRcYNxF/3XT1LUcDdj5ZSR555pLBlI2x7gGrVxAgdVF1mX1fy2kQ
1/TNqBxKbVY9d7tg61YSrrb67Kk9cz9oB9p9SVPeNkc0RVVVwqcN6SVXdjramb/HwZfyVlD56Vwe
BYQ762/1Yx6egHUkDHpiXWb/NRrER74IVO335uSEBK7CuUsV052OFRqV2yGmBy4gpoc2x4aT+yWI
WDmjXSkaD/e6I8O73q9nyf6vNastqw41AlYqulzLp3Ctw1oQWZBLpkg4moB3H6WkRV2sO2+XnzTC
7Bpv3fjie7iCu08opr+XXSQKmR7nSz1jG7XeQFOgt6ACPDHBN8beBKy8xmlB9ETZFr70st9KfZpn
MNtsF4NjPSgiKJb8qJ3+iReSgbkwnen9E0BqKeBtLPiTyqMDDByOPBSVNr+Qc/v3k9AH3phRxq/m
9ogm7V26i7p2y9Jo9xVile8KzANbjqC5LnWDV9CA3yUiGmHuKZVUVVSPDDviakSQ6ut3bJ0XUjtn
j+QP0YNjI4H8DpftwSzkAiP7EMK1w8/FivuNuE54qfUCV7ukAX4kLAO9y8oNJp7pCgf8VKPxqxVV
Sj9+jTcHVopUs/IFWEBdkMHEJK90xRowQoCdzWuUnB4MGwu2xKHLZ6kbjrbqp52w2111gCeEG9k+
ceieeKNpYQW38LSXo+2XYDIJ/xvTYPm4Yj/GJHzmNIDzacAZBG23+uuR4LZJ48f5ZdSL/5EFVg67
7PTPYiejvFQLbtoSy4nvPGZTosOIL+8jN3NQ2yM4/Ixn4svk+xCIMqHnwT5Dsl3K/+H+mx8ACjmC
c8cNNpuq8S3qfvcooGJBRdxSH03nNR6INDW6bJeqg8YX+jFqaXsEg55qn6/TSYaOmOb3snCZN/8h
TyxkUHV2PMhAgTxPHOt1gqmWF+X5vj6hMI3runE92XF7yFXy5C5v3yO6XtpA8nUyE+Am4p2voAYD
r8Ap6yPt/2wyxGFPC/Xp8CoAEuOtMtMXqhHL2jK6lmWQq/YjqrNVyDXbMPSXpD8339ezp7IDqOfZ
8wGMxuJFJJSJsLcootdwtPgg8Kzu6qp/qkLS9IFzZUIfyMnYLZ9J/Ilw82u44SJ88GUDc1jeS8dL
O4WCUQk0pLKNgMXN9IrpaVjSqS78/SK10oCaVeZfZnE9NE9hpw85eh5bXrgLVUE1Qa6bREIrY4ZP
hKqRGE0m5LSXOc5HPvi8olFa7qez36vYnat80FmkUCxS3tnK6Ld/rfr3FrCgIg7oj1MBGYz6/6Bv
P6c2e3npjxFROH62fLbQ5BagIr0oiU51Wnr+59zC3P7kRCaV+D8QIGF4Ll9DeYhCffPBBmKkXpkB
FE+mwapEYalZOW9YOGNW18+B2rhJ36AuZbCCEj+9Rn1duD0MoXQXP8Qw3Jqy3VHXmMLXFCIdcF5M
bNTZM9PO6AmoRfMN8/fTz2vzwZQhszkTH2VZXbN4Z6KQ87Fx33zwnRnoWUwqN3feIXctW0hLh8q9
Fq9lf4vNpqk0r1erI2+rhgQj0TF0grDjFx/yKwmS6S/uSenG7GVZetVZ9FFnYsL8Sc2wLmbarQ8s
4ZKEud2V61ydRBjvi64d+go7HFIqqX47rwE9KDatlZm/ySWfIz9MFyVgRySHzbxKa0OnrbIp4eBy
DvdbcNU8KUY/CuN7ZtU8KmsmVpZYPCoVnmPNDmss1ZZJTiYRaMJwA0LHFFQULytF43wHG8qCaWrh
ZUFydzZxLN7CCBlZ4mjsbm0qQGxxOxha5m/HWaOWZyN7UjROEpA4oWDGcO2Hic4Qqev39Doo48fi
lCu1B9WsW5LZ2pOZue4cisKTMEAjOGtgTNSIdrpkv6nVff6Ntioqt2+1fmUePbH+pjD7YbG4/Gub
/EmKaRaXqnIRhybSNe7y4jo0H7mnnqQhdd9Lg2wXwlqKY3b00MU4mMfUwrpd2XZ62rjbNiadvumx
tKjjfU2riCQ+7YR3jH5sgWxk0pyZiFY+rr8ZF5l1Mb1KY9YoOXmcnixd+lNZ0X9TEHwkZQ63AVVq
Hq8fC5WxKB1nNKUHIR19x01aQXMKpCJY34wGgevMO5Tf7GTr2vnap7NVXpYfh7l+Rj2GFQYp23o1
8+sA3alFkbYhBL8PedCFjBAd4rmOpDncWxr04GFczik8jydK8ctpMg6feZsBEWu5mSi3XzUPx5cE
OoJkUdLbzk9DjlNdw7njkOLtN1tMOff10T27JtkUMbJ1EuCFPSS2GuvHjKt8oMhCVAp6ke3EmnD5
Q35I/xAfN82Lf+EE1SDs0rPQen8DYZaNRwSn1kdtNWqtWgpOQGf8KV5A/N0iP66FmYm6097F0gVG
wakTZvBAxsUIkTkTLdX4InnkSe9+mlNWHxFPDCIsF+DeC8j2ardlw2aPiMWp4aaQ52VW36p3YjZQ
j5JmSBseWfLahJMUkyERE3D4iKtoNDTPVcXtG7Ovu2DvHFCHsjmzE444BtRzUIamJ4aFoVZtrwtT
gi3t955KYnRVXsGDsLlqwCKtMB87MquPtbMXXt6LkN1wrAbF1K5+TsaHCig7TiPdgKnE4LFE0ege
HMlEkPkzlZ2uKNnJq07IuTXBOSNivrlCsVGM9mQexNh7YzDzznqbXBiUzDQcuttMTf4pPN/SN/L1
bJ8LfK4wIS2cxfunqseeHxHsGem6JIUeQ9rMRbl0vGtMLa1jlMOBadGms7JgTtxDX4m7jhtLsVxX
0ErRJBNwx4o9IQ92E2lk/Gr9GLcO/zjZMucySInoR03G7e21n27PYZpKrqmicRg3rBf5dePkQ9fn
hiEgEYXfacxUmh2K/aANdBAvN0cOUe+u04RlLcS7JeqHcG9gKcWAKSJ/xwBXUqhnn73Z4OjTytul
RfR+sVFCKqmFPPyHhwaTjs1eqRpnZYOb+e5q+OJ4Gi6YPkn7PhhutsCkkWpGyg7tT9S+2jbG7wS1
kmby75KmJ7H3dsD3mErUsly58eIMvKYK0/YlERn58HFQ/p+y7lXtkoHk3ZIg45yZzaLnB+LTM966
Sbn0Bwcm5QSWCPfJ7gTLC6JVlGW352KzPLiYTIIcs4n/AZXeRRhniU3XwjehyUgI/jsnHrGQTr9I
ir45/+wZCvFj6b8SQ+HW38Y5b2UTiL/18Uaedm2AuptNARnRFv8dWe/ft5T+gzbQVFYIQmNiZDnP
UxA5ZAR7BwoizxUdApbrKXoVB3f0wfnVKb0yTPRemze/LkYL96rpYxVnQP/mmRr6lQx3RlFWME7f
4p4pyavLHE0d+fUQZfW7l6iHGraMEwGNkdQgEvLDzGU/VkE8aETnUm0URpWVvjaXH6zw18XLl3Qv
mIRhS/16Q69nIrOeIFMDXv7P6oZxav+36eA+u5yMpz2BVYBj9TDPSE+veEiQK0BX1iZvishtbsMe
nCjG6OVVijVYKVobhwmKiFjtcAVOz3A/DgQqSItX+61wsbHmjwV+iNyKP7WLAYxDd0R54C5j/zIH
oMFUSpFBCho8XOf/uasa8gD+pmWi1aa3cXAQjchT9NhnCyQBF+PvKQK67cj9wSyoSg5OluTCt/IS
aEIDJVjwvEtf3i4uibWDOyx51ccW/0tCpmzTzY3e/id4hGCZTC/A+gd56t0qM1tM5Yx623fDuRkI
W9DcOsACSWMFdC2mFdB0kwf7+zVy6qzK3ZjEDYf98fESgJ3AvVCQsjcfhW6ZBFUfTXt4EDkAv/kh
Kh2sZ8R0U13OWhtyvLg1CC2zBBIJr2aN9Y9FAWErBs2lv0y+CuU5cQRacj3GnjDJymyukNgBM0NP
/Ksm04Yuoz2rvqQ8dXQu21qLWVFzf+wNTZLns5lNmCgBxNEw1aX35ioMTK33c8+YKVsTtGO9I4RK
TDmW+6vGicliJkE8ZcUtxV5EcEHuIPNnAXA/cLiPs6VGcSvYwsnERtyzpZi8wITrqq0Mqs1+dLjj
xAYx3G+xbMSh9XUQSN9zGCbdxMWkEEnb5gbgRdtueytzJ56/Qc+1/sQCZD3fsyGkSx8lHpNdSi+B
yW4kEG8M5GLMtnvu80bWSUZ9OjwjwG6LPCP/mbUupgHG30U0NEI2FOJ80xBBGCGY86Gg3iQ4uUUP
Z8PfgT8o4VdeybTPPSCULqUmXhfKrhyeAOvAlwPrwvFYrqM71o8QQd8+g1DVNGemVDTDcmHAx3ST
P9b2KPTGGLhQ7AoWcViJ3F4ehToubAnSmF2BHW3MrFa6svdCAimxeV2E6lQ8G2VlaEg1wfMlmV/p
5fcTnradI4GRAIkqN78tlHLUUOTlqJkdDw1RsJyy1WuruWfz78H0He6kmXJzyVlhUYdIKUpEB9ol
na+V1h0eMCCb05tjYReSohF56DW4XQGf4CXxjqN1pAqWxeYgogpgkdaI3bcBEpkzRbbP6UZdDZsb
WGwF118easB4j7uGIyjmjLANUvLGfFipysYuLFBhX+apGl8fx4iXfFSjAd2Qh+Owa8Ab8oz6kXQ+
r8zEdBjPWrgKpfQx2DcrdzZ33Bw17bKxzc0PgopdclM3HdruS+UMBH7ReABesG+Ui+9x+7p7nGXZ
IOmxiIT0dpO2gQmLdtCsxFKbrXndMPnEkLt2hoewW6jsXTv/dduL5Ag1ggStMf4DIdoKfOsZqDgM
DDW2Qwi/19lXGvvGr2Unw0kFklRdQDcHKRWgKXb4+cO9eT9yhtjtRX4HNyOwwcg850bbYFrAHO79
9hDb6P1jpgw+BOBybvZFSWSoPCJoDx7fOBTJNgnmMB4JxTsl2ufwRfr+lCXKCOapKi5CAh3fyHaT
lYd9wln3lSGb5mNYpwYkQ7pIZ6psGKy+nD2bV/+F5GJ//i6WsnOCXYmH3DlQ396oCLJJVmU53LrK
mynaJ9TsomkzfUVtm5jJkmafRdPgrCnW+koBtjIPNyA4wnnEza88umoYcFwt05JqgMogNnt4cxLW
+iIZx8c3aoq6Do6IQLtDUd/07Ip54/F3xya0Azy4vc3L2vaHPsn0QPvAbEPV/25Nt3XOZj0x5EmT
6BfWSujk8FK4X3wjnQ223b2XUK5Im5R51BYGUSBwyQxsOSY7W/qjbB5eLBwytHvz+J9n94Wu6n71
Pv3bAHmuklKDyhhcWaobM2OZzsxLn14z6MQZOTkNaAvordO8dr2y8r/ah/XJC9XwOpdH6Ac8Hsyo
zO122nCW1RtzZjINQqdd89b9sL1MWIvwC79F+sFotbfTWsjxjQG5DO6C/rlAnUt0izGMLYNRD/ST
axS3TT0sxEQwGF2AUP5d501OlPp97aFhYkLi2rkLi1dNebGq6iDSvccDndq7nHnc120XnP0xalR8
0OuC64P8XCvhY+QQxUnhurmwj5p5TcDVMLKVYBrFhOLDxGKUP4uWuH1GOUtd8xqKdOCWDCPrl9lq
3gg/i0pbpPDOXLrIXcZ8UAZ4Gx5NUnHQrfBCJcXKqDZzwQo54YJaCUN8ax+TKrVmAbI9vWEvzA7H
UyHeMkBGchNolXIDGWzO1zpwFmkfXBd+6WfYh1UQaYXuVz4m7J7JNKGP0VHQ9+B4/LdZ3VXilQ9r
y8RML+mgeXBE7UBmbPeOo73VDp7V/HvtgWxzrRA7q2bKF7202DEJC35mS1mLR5F4BNSR/0Po+/Jh
qBOL6JtoL4kdvEqHwp4g7x7H2VIV7IAPQN1/Pk90GaQADbEPN6h2FrtK8EV0PnbVuPbGjF6xRCbq
MRACtVW/Ue4ONrruMDyFYdF2FGnYBlObx23sPX/29IsYgcLPlprhgSbpk27uu/jH7lafr/zTMcfd
xskf6JXf6tyf+fYYT3DSSQeHBGit8bisLo2zKXUVd8QaYdy28q+U+JKl7hWZOjbm521xdJgfHMaS
w4N3fd/6g46LWO+jsCsa69Gs6c8KAoJzsDy/9/uAqW7BlUqux8i2tPaXRtRqThGY51lFWhBZsj8B
IwnY6ap+xofYFdSABQq3/OLZewbPRxxUvblATq7kHhV/prgsJEl2ZGUL8fJ+e7KjgMPYuM++WDdu
80VrWJiY2GvrhQqD+uWrlhOa+Mw1Ebh+FmhfwjDCZskIFX0pj4+C8PHN2Vd24DyRmZX87mbviIsy
XcpUHqyIUAnglxalPhxDqA06MwOSuHqbj1oMYnyod5gWQNPRcXNyfTkB1AwodCw+eUTNpOb9xX6T
ZB0EtAaUNxhqasS6ZseRKPapqd3XxXb9u7A1vOS0H0DHt1E0T5LzQSbzIUUDVA+YPhmcaAxDWzP0
sa+oRos1l0lHa0DhYiGk5+wovNzhFQqquTpdg6zR1OAOz/ukXDCin2fKwbmrY1EfIIafzSLx+Vec
OUJ5+fE1k/QsdnWpldzwIqUWUH036grOiSn2qafGPW4drRyjSLQ8gVCbgi0CSb2x1utZ/2F6Nukf
NSLvnFPB6+LgNONy0Fs119ZbCmp9uAupxkeG3cRvx9U+n9szfwMRK8yv05w+0WRtBRWWyUZeuYMt
a4IYUli8qO4QjxPRh532kZsXO8EWOOj0V9BvKlUKZGb4wNFGBdxY3sgymeb1vxfP9Q0tdjBiwG0e
0gBWOSFh4jmN/0so0/ctsqvIdswIAtFfRJv+rp/rXzDA6T1WQfBehyoeCzrIfvhZCuOdS/i/PHjJ
UOef4dupFbJfrC/Qzl9GQZ8BbUB0VZiGvn2tOP0g+mnkS2OFaSck45H3L4HDdQwjGqcMNwMBtz/1
yUCs3i9uNtOhEbH2QX80LAVCZUSjbQ1IqWWS/VTV1C+EqzSTRqCy6WU9++8XHstI/fS7QZ+08Zv3
0hIGk4C4E0l49PG/WixeOIIQoBCjcrhyzvw11IlZi7h0Ct+dBYdIFlXkx+o/vZ2aVLu9fDfTA8Cn
dkIpzUGdHksa6gLRn+EuW0NH4kNki4jhbN5INekpzKPDBNDWlQxlgEJdBlw+7s4eoVWvGBtweo/k
P/6jjkv2JfUiOev1dX95Yw4LXu5zanWWsMzoQtwKEN4jeRvNfeFzm0YDlInAIAQLv+SqboiWYfKV
0zj63VH3ITmHdV1WSU/aNXPDK8u0uiymZeU8rsZ9mCPNcIjDK3/+oVM9lrRatmMrndv8Na2NKl0D
7JKOl9l6CAyaH/02oDywHoG8xEkcJSwbF75B7t2SDl4KRq+Jtq2btqrY2mFESQ7fKi/Z7plCekI9
234ObnR3QBjITEt5hZ2qf4pHY6LgNwxqOouwBhfaYh230gvIwZKveKCOE9H/gekjoGAmb3jSn1lB
jr9/uDfIcnxTQ4BwzT9XI7hZEeJYb7q6JpJIyi9paGzPgrn5MlropUskH6GdKp7WDOLNfKj4/iUQ
Q7D+GwqZNYRmSiWWqtVZTQDHw3X+tGG+MbKL3m4KNAoCjMn4F/yiklG3WslXWmqN+iUN82huh6A/
XOkQdA4lrMtDrebkdd2ekZNRAqt3vJo+nIh5owv2sW1zUWEap5qlgT6xZlxCjov9nAjGUcagciIq
vBaQYLSuG4674E1FcOSPn1+wSTwPl7VcILtFtGZk+tdQNa1npfsZdepyax52TlHzXKDOUoF0I/18
TJ+HiEA3IZgVhkDKdpPKOkTKI2Sw/gZ8O+ckvIKZpNzN0D1bWzVOhkslrkQboISkFyFkiNK+3S80
ShX0mG/IIz/Q3vs5+cI0ntzs+lvoRBLj/GmDM2PGxQ8gZhI8XKfGzqC77NdGvGkyu+7yw3/timf5
CJAKpxAwK/CsWEUb1muY58gJDGdBj0LY2UDFv/abWrasbfyFDWbgKF0IezSMcGDNIyicWLsUzDM3
/OaxzWgHypeYWzphz5LvcRnZIXPT3cLlPq9k5qSTKKylJPxuGC2fjQGgDLX4sEpw/HLjdr/w6XW1
eHXTfy6/6ECaIz13WEyczdju+vShsk8pEJuxCepLDgqUHLDMvja6mKUeKzolze7h+ZZUqOpCweMI
6O58d9D3uYgwsmmD/HNQu8wlSKU+0mkPaRlU4illxgeXu8UIiKOCRGN0n0dA/Q+CXzQhJY31UJg7
qHBXDdMhLAOqQIT5aCAHqDgGTGrWki6HZyR228cP5rWfdfNGPbm+pE86HA3ySiTdzroMgMa8lZZR
bjj7PRwwDFJcy2G/NFXoAI9IDBR9dsLqcsGVmKkD9HxLs+ZQEtuJ/G8KJlhEvefbS/t7u22N7OAs
J5qrGRa7kzajZy5vugWdqS4JoHtNqkH41Yc8vdWW7nbXzYQ+d9RfBs1YoEBevTDRwgs6ru1V9jIU
oMQLQ9vjD9b3RPYDw0WV7NlVOpI5DCduvzryV2FH0g3yUX+ABUZ4CpQtEsAiYOAMVspAWrcBx3q5
ypURa6JccuyHsmQzyLTp5/3wFZRJ9gWRACaVNkl6VeR8G6iJw3VHrmDje7it3ISiUFoJkX5Vs53M
1QtgDuW1D+N5gpAaWny0uHG5UleEMj5VHGC9YEjFnYQgFrqZh7CJUCnSLVZICKqrxvkerqUVflyP
vhkm71hRr33UcDEwDFCAcKxorD5ix1euyYibX+o/lrDebCCMGMJXfFSnm5iDCdVjiFl5DEjCvW4j
QvkAyZAM9vCX382+kxLtGexyV67FSNcGvIp0qLBHHpBuJt0N0j6IP3TUyajILJX5Ezjq9wxot8mb
oBN7uiEYVZHZB9ZuOm7oHzLqrtYpKLqYcwzsY7ULX3BJun5B7ayDBB9AQY2F/aq5AAWdCe1pt4E/
MfwxO6M4IhrCugizJ3ozuldlHOCxeAS3/rmgnGo0raRn2GGEjeRQsaj86vyRCqpmBSjRxgSX1gUs
z/guFusMPMerLSE9Nl18RXb/wkmmnCudJxEMT+sch+BMnCz3JFgNsSCIJ3izn5l2wQipSSCTdELp
8S1nE4pzzuUpngTHLEUk3tnEadOLu1gB4rh+SKV0RB/0/COIBX1NqXgJ8k/04wKXeld0e93DzFmD
RCj4Fc3Fkkq5IybxiHjmAtnlhANtGD8BXXHqRB3kXKQTUzCI4lG6yenQzHREm8/5LN6OTjKdYjCo
+2MGNi39LFbUZWQq1egxvgJAcpNlhl2DrXNjjthbTfxLFxWOo/26GkHIEO1V50GFGXPsbzvhbOkM
ARvdLDKsDnMQpzEBfo9hPjlKWlJ2FvAKGaNFC5f+ZRrQsqc65gQtZb37zO/SykhykkFi35M8shxf
T0MYJiI7twOdx962s1S82fqZqENV5pQBQL7laHEPMbMu6vOY621Bf/MtWKlMdlDdB8M6FmIB0yF2
usZUqFZEq28vIztxG0cZ8qxwxSiOU2ZgVYy0mnx+tNUCq2sjKuAgrwT1jySVV/Tp9IjE2YI4gXw+
bCvCIYuazCZ4l7zsgPh2HMH7hfTPrDPio1rLRsTYm1xXHRFMNbjNN+tAvKUSgiSVgYueRlAN9WSU
U0oN/0o2yn8XIbc8RDnajHhaP9M6jtn3q0H8hGsCcshujvhAxjUX2Rqm5c004azOgemuPvke+JS8
HalTVhpQbziq68Qe+yUFzTPdIbnwM5U016cdR2JiZuRwOb31E9nkUDg7dzrbOxca+INZMB0vmZdM
ff/gO1IYEa/82WPnXV2oqbtc6qvxJOJTaC5PFEsMGy3zBi7GccnUYj+51cY5j2lOezYDyGKco/xG
KZDGJtm6/Csin4jwpw/8swHRFxaM8nuqPqucBpfhqN4thnh83i8h6UR5TEHo9Zo/dRGXeBABjCS+
WZlmCW6z2zlWhojqJmiKhQ461cFVZ3uc9f2ibeY5fyZi8nZ56PC+Kt+qqhILld8NhsHQXWnyuh3+
MCZmNlO082F0+5tfuYwOJuDOSsPVIXpMe0f7ZUnswDSfTTFlMi28d/btY127Em6snOpJjRNA9mUf
GZp0uc+pzToAFD3cw5KZD0guoxLaKMNpglAvTs2i+KJlZie27roRl7sQ59zaJGe3nVuT9AVodzel
QRhRsjmpmatWBMHRnmVAz6qkJaGfKFsUIxd3yIgDT4vpuL/69ohIATxHxGQaTh3CvBbFNKEOecPN
jTfKu0267WH41EJD17aqKzmf/yaxHk4yCysealbIdDumqYtNAR1l53zQTCNChCZFGlbhw1aEGelm
RCbZ9+Pbhri06G97GEKT+0QbmY/ch/v5xnTLgr5Yrjmi03PzF8o0+B8F2ak+VDhC87roquJBDDKQ
bO06C3kztjWzmTf69XVUeKFCPwN5WWhjZG+xJT5zAFZL9Znk+CPss3O24nwVviVceVmS7/Wk9rTY
cFxdxpkbPpzl3uTv8FOrA3iFlL+Md4eStVB11bj4G6qOcDot2oSVC0QVAbi019ZLTK6tWhGQOcv5
LMiaL7merQC34o/0TiA4aM+3WHBm32XxPAOgomB5ilVFdSFfmmntL62jEd3htYZxhZR9kn+GYOuB
Sv+Q22NGDJlAW3cHrSebK54wVw2uNtjPUDyobEtp9HHjdRVl9j2O6FlMoNVZTDG4xCLQ72QYZ7iS
Eii2px2augN2Uwdesunx3Y04FjnmDdQq4csFckLJpBMHXwutugAJDhPY6mEK+TScieUvt8rNmTki
sscB99Xka1JWAFrm5gjj2gQw1KD9oI+/+JDurTiVAft4Z7kWyBojfwkTyv6ZbK2bSmINv6DCbvXq
Yo8oSp/dOcushWWH7mWBVqY2LJo2VtZRmSDiUZ8Zri9P5Foc2ZBRv6AvXLunv6Iyxtg6uBgXFmU7
OZ1XezE8tTxEwh/LFRLFI3zahSDz604MboU9nBhhUSzPI9hKb/Kkv4ZyhMUPDjZWjdmCri8kH/p/
dLu5GXfWA3X0q1FIhIabZR2CtAyvFFWFzd4B32m3NT94k3cJXo4V3kvUirUhAXyl714zJxtWwyIp
rkTWp1/w+UqFSUBKqlscWJaIiPOc5sApluaao4ERufMcDADG8iAv0OljClk8lTK5XHEAXkTDXRY2
xJonExn4fLTC3I8x88un+QZT4W5RRZt+PxE/i4fDm/GUoTDK2Tu4xIU7nKQy2+vHjdtlNH9vcCLA
Hpv90XAFmyTnxQ1ke5ZJ7uMlvgLSL2eWnRsO3WH1YERQCRL8vDAlEiZZBLclKvIn9X/HK0UU9a2L
7uv2M1hjV2XyBVuInTsOeHeYWIB8wRPTez+YjjsgBQs8laujhus4ZIJmvSCvvS5qEBlthHTHpS5n
GxjyEtoVYE13QCf1elVW5nBonEPRseGSLSwYfFMIsgXAcShRH0WW4HJhIFmqfoL0tm90dSTKCAYS
PJh6errWc8hb10VyohUn3qBl0hxP2Ihbma8sxaBE12DxX5v3OkmZCWzDWNPyW7Hy+e2CkNr582ZX
LV9rHVWeOp03/E+iY1G8eTtFy14kDJ+RxqOjvc7hX0R16o5QRBAzYn2BF8vJz2Ou0BppePXji5MY
iYttiFwbc6kKu9Cwsub2qqzpTyJJv1EVEA96ROG0qzrf4k1dAOHx2oRH2Wf2sLywvwTuCLWAirQh
NBYqzuE78/T0/UlQljVMdFQh3mDHgFoU58b+inHQRucEeRBgxp1O4au9nJjasHwykHwe+bwTveqD
tSDm5rsNZKt1FcDvT1U/17bGR6X5Fu8lAvpZ7GEV8V+9UoPQOdpKbzD9+5jpbW9pKQ7gl0VzpHic
v6uWuxz8gu6jx5QPOCtbSGLwjhvYzVbaZWu4SbwJ2rybZEaPvSsNip6m6Klatr4HsSjdgfF52ZEK
el7sJFr3w9LHBTrQVyQxQfp21qAXDMI71fzOWMb5iP5s1J+9VayL4mVcySdeSxUqSsXu2Iou3pmG
qGn6YaC42vvrX5ABvx0DdsyMSywaovZkjlHUw1eNjY/JMO1B9owLdGI5WNyeRV9EKZ+dFib1TJg0
45mkjDanqRgfsNhHqQWmhCHV2yh+hB0OCgVIFTkKzF3UYjkM8o+dwz5+zl2WMfeII8VvqXETBRHr
VETp2X3LKoiSgLCHlKoFZP8Qe3ACjP4K20f1fCgEcDAkq5uhnAnb0h/Xzjt9+6Z00Bh5vhR1x+Sl
Qly5wbLi2F0bKx0fgxHkpgxWfD1+GdWYQ2NL0/DMNYrpRZTA0CYb9vGdn9NttQneGETXlQZ3tX1G
Q+r4lOQtE/eSHDSv5RRYROAO6ZCjZ0mGwVH9aNsj2iTv4yLxmFC9FlOWl20UMCnYuHbyPUoQVUXE
A/x7QFq+kh9zkLAVRYmsxfpP6gffwPZveaksHl4iOQlSMffufNkWSGBMxB1FPHWy+bpym8PxxYix
5Rm9VN70xPR8cew4l17PvcUnNMJF9jRxLQ0nyGtSQ2WjI/lqKSBp+6qqI47E0NmfgmBQDTf7Jzn5
bjEWMAZ9WOndWC1Q4JIfFhyIvDAM/Oj+bzyNOhzPdkGn8EAlxAZEH+N4fyX+vuC09+JVEkdDe4Ep
MnNvhbnamdqXqfIGjK8spcm1vWHDnDpKsefzlseC9jndAPv7B78mWchobXgTkOr76ooALUNoCJor
tn3E/ii/CCO5AhoyRxkB2to7bE027soGpoQcjnbqt+TkA1C84aZnqywC8V7DoFZLSAP0ORtgWlIt
x8Zl+ijdacHa5rLaZgKp0Uf3BaUw7u1J9B0ZakLNKpCOoemCjLtSETLznkrrCA7NGnZUyugKFHVQ
1c5CLieffxMzHwLk/Z0Cl9dzSSnHofMjg10Sj5mtYSgmXqWshjFhhCqqLs0aPSK5mcY23os02hH5
yxYQ+J7efJLJ87EhiuOzfcRpGdd0THQDZSRAiNZG/fetLa1QUbgAKpR53029VCjqoSV9KUvkr9sX
pyr5lJE9YosRL1RmCL3deshKcbEXYfgXALzGGMix/dD81HDznwmXDyLzHP/dVsHgT6b9y4T47gPI
sOqX8CksGvZSuZTen+JX1XPni/RTODs3G9QJkul1koh0qhcaokkyeb3djjTm777hIfHzJx94Ezt5
/TKGiucYGBHT8svh/wbrB4XFPxw/yFuOgx1se1B9WhNDGXk6Xk18nHedv7PxyKpHGd13ToC5ZXhl
HeALJ8drQHMxbipAJ/jkYXsA9zU9GjwXTKK3Rb8iuWqq4DefOVOJfBAkDVoOJ/7xgmn+wEJwPZlK
q4SbSI+sqmLEdI2QIgdAQQ3/wUNq6lgSRZb9o85ijX8FumfUTkK6JA/LfksVM69zP6QBmt0Qcw9B
TFQRMmyb3KIkBwdMu8jQ0LE5dt3mpRopT31m2acLUaROZSupSW40/MicTlDbUl2DuzNV6TbtilmF
lurM6LNbLXFRI1+R1I9mqsi0a4igfXzcQ/Oy3ephbRe4hiL0vJD13SJakCkfNIeTC8PY/l8ldJS1
hwHAIxygB/j5pNyo+e9Nb56bAMr7SLJWxvfrr2Ecfj9LHAeVs/gPDJKTQnXytBAVND+lt+Mn5PaS
u0hFZpQG4AlfjlrbWw8abnYgFo9kl4skodPHg2XEsKqboay6kA16zIbLSJG/y30bQbK2b39DADhR
TE726CCJc61mtljV1yCPElFLqtlheS/EJRsK8gIvOFITOZJeWqXvEliSDzq3G7GK0U5zCBcqm0mg
ISosAyVd/ZfabB+ufgQtVKMn9iLkpPGPY+lwzz8UdiTRMjlM0NaPXaRc2RQbFsEUtrKJ/3M27n9W
GP++5wBUOUDeOGdDnwqqqIgnOhK5GUFjfqbOs/cxB45LDHkSPUK1xlKQ15NZ4/JfrePjlgVvTjXa
LctZfmO2LZq2vodUJ/6aeslLmCDuG2r3qKbvjXDl7W8rKHOad08wAa1cxQH0OJEVc4jg7Cnamzeg
w9mkE6mPy52JT+bMaG+15ox/oYldaBK88ZIq4r+xONhm3o0eC25yWDQduZ0EiWZMgOG6gVt1hX4M
vgWn9B0P85F88sSL7lm0qWvwFGniMNKXLG4cGjn1vNWrABuTLYMF8E7NonNhwLYGN6FXEthA9gyP
ks4kfDy/WVBqQY1NA1kwbUlW4T+fNQXhphFAO6SEWhd7f3zPc7/4eQ2QJ/xtVowFNt6esJ0o89O4
DR3DUDZSBo7p7ZZrW1kWuiTzOvMs0sXWs+blh6pCLseHrB77qUSRvR733XD4DFWoIGaRSpQpmt7+
6BjPpc+K2pIPoOiHNV+RtOe2nULwAzStTAeWUmc7kSTfjU1tgCdTcL7oJKxUEXJ/4dvk4m0kV4Gi
Rbtd08IpWLz1Ha6V5qq5jnuWNALwnbFrfubtB+SdiduyOqUle3fTpTZ7Q/KOk8l87nER0RblPMhr
eytKwlw/9ArXFhM2v/mCL31GuQgHvqT9Lo1DSARrtsMviCsGmnt8ZqRaP7Djv30Z5Rf97cZM8Fdj
n+aJh8JGyKAPqjWbntyGnOrwdxAZgfQGKt0yQyAdgqgG8iuHwr8UplWCzMuDBpI0Q7f/q5uh0oBc
DWGxLkafkxGHoxAhrqbRzTthLxJCPj8jJWp7RTJGUUBBYM1258rQyGIS2qiFn/bYInWFkxCbnaQx
58lH4xOMN9mwZo2up2JJqqFQznYUxpLId2t2h01v87IpNy+L8hauVvgw18jOtTt90x3caiTiPmpP
iZImKFHDuVG6740ymQphi5tEiDkFEd/6zyjmJ+Cbz/iK8DlE1ATtf0VPpF47S3N2+C7E0EBRBhCc
6R/FVOsySJRlB6+Lqm73Pr1I311sscgPRTTPhjBh8u2bPJmlr248M2CllbS9jG2dCFEhHdEjM8AF
p71cG/FO4Qc5C7/e80bgj/PFrvM9hXsnuzTZpIjVsOQtSJm4Nx/IwSJZvHJ+R2Yijc/9ntQHeays
4AsTn0xrlbDzc5Gzf4PPFSTBDo1r9xaVF5BpN2SUWsuaFwh6OpIzJSRHxW+ShNRPUq8+dxkzhO2I
OmB8BZxeCXIfTJwo/itZOQg3BsS185CwKCsAwLyBL0qeHDsJDQtWptMqoXYSBjSsLPsIuPOzAbyM
79+mfOPD7Q8C0+/O2L3VGAdbJmNmr+EWnHLqly5Xo69q6zG4zJV0Q3syFPQhZhlpnhEgC7Sf9gn1
3VVbBjNIHYQ/+k8UywPaqE3z2eTknjLCxz3DfHOUYa3KI5Sa1JriJaFuG35DD3IXom+5psBwaYQ0
/QtfqsZVxexXZe04QSx8xnU85suJfznm792HOhax930ewwVl50DSytA8xPOifDP4sLC49ByCzelf
Ltw3jIgpBqSylxCxfn/X3WTAYA+OQ4Vg+w6BpkkwAPtbcVJ511G07XyZx/q1/6ZgSh07U1ubDACt
QZZJ1URpw3PqabvdrfokBxwqIjJTrcap5Wt0ecW6PLbLdSGTuiZvyXJwYaf7XjBre16BI9DpD2TU
qrvuogMUAiwnlizjUbvhR4R6mYutXLObdwkWY8Q1aaAL0KwqAc38U2tGaWqiW0Q3Kcrd3eb9R96c
0dioPX2kyGlLBoUwyB3Se8Pmjd1xlIl5k2f4v/51ZR4oLOU74j4kmpkjPBlyQuLl9VEGkxlshnP3
Qng7cXP/MuN4cnov/4mhZ81x8RuIR8XMQZXoaj8OlZt4P5Ur/INlnUEYK8UvcR51JLrioIXFE3jh
qI28EginKpJ+p353aj4mFGGo4sF3y7ablQRICDHn+H054kJeSj7NPhOb8HFkar3RTAZnP0F5C1LG
hrR2sCyvh5hOAZS8l0vPzpheiS6dQjXvHr5VoL94sRh/C1b7liPKV2wQiPmsJ745LBY4MqB5rNJq
53Svu/nK8v9kHrFjfqf85KPswbHKQCrHV0mB6IlJNJqhXoxLBA/IlyKWty+lfrRvR7qhore96HUF
boUZcakPwqwHLmJ6ZNsDWSFhpuqIiyeiQjBhq0k6kEDCiJ7sxR/q1tgVFaum/lw5RI5TA6aSr/IX
t2owC5LQIjmfauEVLx5qnzPgnYDSNEOQecB8lmHB2gPeIVznQnh/otkJZop0mGAfXEfg5e4j2mt3
Ga3tFZNXNOq2Ol/4GDa7Mo70JHzybhw34fJvk1g7sBRF+d/9Lz0KD63VUfcGwm3Ace0+IxCTBkjY
BRu8ahnNunIwnMQqUIQLfKMuiWu2rtqxw+Foxw/aQZaM8IbFRAUyEIzB1zXy/zIJLGpYaRDS3TjX
J55Z7CN0zHXfL6fiDkNLHUpKF2ZMK5jIhfXAjcmUmfFdOSgsanbXJEKFTsNcAY6mIu6QgfdL7Gm/
JGZxfIm1xTK7Hjd4h2YNsVJbDw93DLsnlXa1dZx7ADlSQRe0xxKr62ALQ+E/PNHg+9hgk8uXpFWE
iW/yaCd2MeyjoWRs/GrU/7JBzbcfpxoVy5lH5nxaeIiSOcKRGkra9gdsSM86Xdm4POzSYn2pTZqU
BGe4oHknoXkoWsxDQ0h1eFjSmzA/eciwmsVfXeRB3tTmUlgHWqweB4uocbdBQATmYlcTqDw3ijOU
e+Inv9yT/w2e/B2eg35tO0pn8sJTUlOpnbL4Hx0Bxs879I4rLZ7MDBAxL6KCNbYgDxg/jEldxGS4
YhpgZfC78w6WqEUkDiEvPDOYGt19jDhr305WQEYK1dwEXGS5yVktqlqMPrL0fDv6yY6EnaZOGts0
yjs6u9JMM8fOM7qnkp7IGw1sNTnaA+HvnqqXex7DL542PmaHBS63iM9BOB4vImh1Lx8tqYk6vefa
vCpcEJ7KGyZKPcbMlkkDDro3XLt7By3Y3kHjIOdl9MxAdUka+1pytAfXNd0fFJxOGCwBokWhCA0h
wKKpsPdLiucunnsSALiTslhWKnVGkyMMll9TQ5SRa0gsfIYbCLwHrPUNBOw1e713JNgWG28Hhe9q
vT1EXr4eIVN9FPHnHkWIjgw4Q+9QDZyEVUcRIhmrUKEKWp9BphNVsPTLVwe/wkKmtYwaLKfDuN2j
0WCgYq6WZjMdmJpJg4anO4VIJEepphkPq54x7OeYQ5X/Rvpzim9Sua5ipSgIZz7dtRsstmcYsmvk
NQmKpId4T9BTKkCarZgQsleCGzCDQG20qmxrg+N9Rf1Es220E6faNj3GY/trvEusfP3IfxgXuoUM
9ZN6gtOBOqjNePyI5Pk8pnGpHWh0f4GK3plROxUBqsBMUFZDmJLrH3+UOuvnRO1SYM1RAtE9ojGN
YHrJUwlKz2VIkT1suy01jJLSAed2YN1avsmjXGayA24sJVMomHx/A03UhQxKsrjwz7QZtbudSDx0
TRsqAHIFTQb9C/Jzq++eaRzr63kDICGsvxdroNjl4tBTmv0lPoenQzXcQan5eX9v9HtOwemxLYBe
GlLyhaAZgYVAb820UaUzmUF7nBJyYhGPkuSQYKNIXIl3RpHUGCaMsl1sIZNeiJOplmwtke28NF1+
tQIOX6qJIgauP6BskQ6P4+6LBslNVWHwwbm471bDHGA6DNlMZAWMPnZRoyIosj3ytIqLsLUE7uJX
EgycMjVcCzf3lpVUDz/OTAQEl2fraC5J1v4buFJXYknZo/W74l6QBAdYmxtbjKPSu6BDANhP+I+6
rt0cMHBg0Di/G57jaSTPvfkSATkKQDFCTF4xyG67YU7dXyCPByTXclCFJSezHMKZsj75zXfpgF2g
zXq3flPCBCb7WXt5PJMenRz8bOBLJiSN2orhQkZTDKzHdi6UFX4xht8m+sLv8G24GyW7hBYZp5LC
+5LrPetNvSQD14Uw1IxNlmHfDMnrlIvQkq0OOeGgl4HbdHJKyr+5vLmdBp6In5CRpC7AAqjAoTJ/
aWVKUbYmnK1Y1sENrXNNLjhOGw0JQWdk40HM+HqfLZ7RdVxkL2AG3H5BhF6SGBoMe30wdorAUUaE
9rYRCUEZRZ2RtCkVrb1UBHCDqVQmPY94H9yzhz2zamej3nP/t17tWRpw+YXQvKCrc/TIoTwx19Ae
dtHuyqAEZw9DkQBd3N7EP9j7EN78zPzC7jB0yWUWh+iDixtIWYU7QICVaXZYDsEH0oFN2vJDU/32
QyBO3LYg20EEraAT2C4Fy+jjNb9W1wUOHyqNywO9Q6g5MxCXnI0kaz/NIC8aZdqkiFdeI17W0wJJ
UQMR0P3yIvk4HCoyk8ipVlbaaU1j4ZV4rhPT7Px1Lxmb2Qx4x/NhHR3LlWOqFuxWmUCt5aQf12tJ
lP1CCoGxDYxUKFTNr+1/5WrzxMjU3fdAvrJSwO5t+pHvC0iq6hB3tjDnoUVABPijv0wIFHbUFugQ
axrveYDKs1XccT+33/DmkniCALc5l05Ano4Kq8LaGpG1l8r61CF+bBRk4hiNqRdL9vNkZXwVlM8W
1RKRmsbtWvxCL3sMIH8CX7FCORrH3CinQv0OOfSnTbhWg8CoVeR65dh3lPFmoN6bwhmyU4JC+oCn
vvUmNsmjILDd9GD8KjjqC6LdLebzVF8cG3HBK3KK3KWInm+oJSZZrfHVfLkG54tGJaCJj92g7yEB
Q8PiNu8blnprxUCR221bnoF3Vt63akywABrkg81vjGaUkxFOIxJO48qSPy2LSwWUdxgEf2qXd8cQ
TwOLLiwvnhZbc3pgqdOI5ZbPwWo7davXCAfPmNaqhdquopYtR848d1XdwimEqjJ1SAaIsA8Z+nzT
Zn2Fc1hliqW35SIBr0U3xmaDXXbF7W0Pg7QV9anDOnPe3KjUKc4JeDZtxMSH/SsuQ9w6HGPMIbba
+fbnVt3oFCG4RqMIYGNWwcJzM5PEu1w6gz8T5fJTQZmaOHXUf8amyPw7crt0bUj/VsOWplbBLsVr
t8RZX54ziyniX8JomtISm7YSRDquw5Qp3uwafHLIMlbms4YMVcBZL89Y1C5b799QMGCPm1rEmH6a
0XhO6JkXk8fNKpEZdVaSPIkyUUbsTZfoYY83O9c3hGtB1Qo0XVBqICbckp9YGxMSdzGS4Hwjqbjg
uZL9OhYIslKXUZxe2jqOXzKfnzrh11Qh12+l18iItVjCvVkgiMRYxJ7jaVdghco2UdljbAOyo0eb
s9XWndO5HtsHhgmvVKXH0bSLF4HIsGZSsmwOnn7SNgAUnK6ghX1WTMk5/HoMZ6pJsK1VIzwPUimK
x8knDPQb0uJN/gqCOjIYbMD9aIqBu+qgy8xFPjfWesgXswo1dlcbOhj3OKNqxsr5NTS5MTSjlRv9
fNGyA7AodhunPP2Gb4YHR2yjZGRIjjtQqDcxRzzbxqKf9xOLRq8wg4SpdHXru5JtoESe3p8QQ+tq
YkDbVCLn7DNnRs6a1C5981WqU4z3qlbldE7g8OU+McvGzzW9/jSQnnwKZKiFeKJTLYJMcgE7WFCe
cRgUYcjapcKIKdlQ1z2NLCaZGJTOCE8Xj6LHUcJcUe7WUc8Cc0hwrn25zlDsTl5/4Y1pfdVPx6yD
iqsPRSV42Ct5LoZRG6rChd2FL7Qu+dFHs65kNbjEfWKVyDVa/77cjACkW2GTkqOr0U+gNKFc0qpn
J5RuWTu3mgG/hsWK0Jvr68hpOVyAF6OkwscDtEdcin5Pv3Kos+UUHgfCar2YaqVEFcv7DrMxo7Kt
6kWqFYe7mSrfkiRiwfBUiNMqbWQLgL5a5W4UrmvmynjI9GKiDNIgBN27mt7Ka9PtwuvHgdG/qS4J
9yUE/jAnQilx8Bl18aCPX+CzoX1KvB7C3ksDZHHUuUAFOR/Rq5uGDNJVkqZ7YkzcBTDFNzJd4j0C
HaCX6NT+TrnGilXb4I1PUj+q4AdpRN64cZN/rC1DVJsnFbPWRInsxMYa3VkQjm/hOnNcpiSvHM2O
dv03ANjV87RWctbkpVxs/nJ11zur4moFS5tkevWCDfZSJAzewA3Dx5VZsFiAlS+8Fw7+Ei9Exy1A
4XUQeX/F0SQqucxMozVBTc3nM28SJDu0DYLMG2ximYpUdxmFzgwQK2x2nBWZ6frf0hnRcYv8fzZk
+FbQIkczrq2z6irj/v2LL5xWk70r96z8PpypnGQpxgoHKbR1tKxN2ZbGD3qVXbFqj8lrzLWdGg24
cQdiv7E3ZZdkjo0lPm2kWTQBIiXNv6A0cq2005NiuqiUi8gIXPKXt8PrHBYPKQcDcNO1yopdo1iq
77vZ1c8EC18WyKjNZg8WSABPcrVCp0ELhM5z+xt8vj/S5XYSvHzAynVg+8WrtJK5YCYd5CAuxiUa
cwk8GYg/VPcibc366kA1SOWBjyJEMLmRIzeoqZvhMx98zHpXXlBny8WiUYsvszjAzpxPPcVoHpMM
S/F90t9Pa4OQklKAwe+ifSAOOB5SgpBCyTAU5e4+nm+b6FBJ4d/Xbp0tMi8kkAm/MnA1wGJtDL3o
O2BCy+AEM/zGyyCvvMNL8zdj/W02BhNhJkhQYXT4xu7zjeyF2B+oWHGJVi/rPxsCQcyQrQ3AXcSF
brW2Fglo7Wwg4AglkYXtTMcYgu5dyceyUkZkOeK5Obxh7+cEFMQh2HxhnoXBm2c2hm4tyKyx5l6x
ohoTFjQ4YxZZ66+zmuGUokhu84k61Jwlf+qLA7m1sLMxJhHszuJa12YGdpADzGHR0JNdaMw7Mrb/
Rg4zEfsLSriKmkbyYgmOT6H3XfOrGWUU7O7MUxOQsBwFT4Q8xCCCtkK+RgwrAPzKGRlnptxkasDq
BYPHdUNpoZWqAR5uyh3oTYOOydmxHShvzDsMqP7DvxwiBZFBOx/fj6z+wN8xvRAnw8phhJcB+yG5
W6ojpwmu0C+MuDDp0g8ZGMZLkvttHc0I8IcGZtsFjTMjv2wMCKHO9kBBvUXnkDlfFFurtdyrQ8jk
S+fND7fsyF4t1P3aQrHjSMN7+2iOlFuETacvvGVTkelbcnUXCWSmGB6qesHmEuvx6nnGtZCQPBxN
IGuYItsoWBUCwuxseQVGJWPVagmln8HAXxv1BnEqNEKzL0armi2NusD1Ke1RVAkzqKX+YsUikhQQ
/1rJI0GUc1gEi9qqjLWTxm+loIEkP4IWBHlY6jfB1PtBDWmVOXwn/XB1vjVz54yhoIXtX5IBmt73
T0/m1WU26s6oI+6AH445dGutiN3Q/sBj74Mhj0HCRVyjnwZqyqKQNXe9CkJIuJUb8WiBbs7FJYFJ
0LPVcZXYovh0nTZgnm/id2c5ts4WLloer/MX9Q/hHDcxKX3dmZAO8ZfDeHhux92ysxTdxD2azGFc
HMsmIiWeUE4pUTU05F+/MOZLHn9LWFQ2IUAEmSDM3ipM+yrcCahaTGHB835yJc6Dl/D61VCPXKZ1
L1xL0n4UOzaqON1KQC7ZKnuK6ZAEYmstettyZNkLyCwZqHnFkzYR9bpIEk9LDXaBkAHGXi5QloEv
tGSpBr2nRKWJNu20sR3JZCZUS/gtuxX2Fg40X2PhOzLZABTB7FJtQ30rzDBlfHe7Yga9OrhjgXDc
KdDJ7Z/n9bwvb4tS/p18NpMDhOK7lpj5P4bnKZ7V4ZpnlWlgLQ6x3UK5BCK6DFsJNtdk6d50Olc5
3bTU0Q6pisRGClm0ARcM+M+8RrGQllKuWXzaOY+yxieonhNY0fMtmB2f/GjrgSqUDTPLPAL2zVXE
qG95D6cpc/GwDpcwfLpUvq9ni9yp+6YCmIkHIhGRw2f4WHXz4UfYRRBxqfoINzbBwKTEmi31eiqF
B1aN5+U4iBXQLrkPRGAfHzR87YD6djXQOOSyHMAzXN2Fw37I97MOgQybtrwBP7WkkH5Xo1t1qRwt
uMnZKWSLLvNsoDWBgQ9MqVUm7iXo1W68zwTa9U8CTtpkjRhVLNqcJIwj5QoGvx327Ibf0/7BUjnm
BKDGT1lr4WhIWd2fdVkBposDzd0WNFY//TJ542ciBHtQMFiiv7+xLh7AMYcuvpXJHGhMb3xFbMcp
3C9wTI6gzMd2TW6K9HxzzzSrQ4EfdGkrw+iVC5JxQ+frvZBo6jdzILkc+GbPqjbaSZ81+mOSfnPo
/jHJlZnr3dw/iglzgykrDdLAnGsLUa56/Ummb11Z0EflcelLN+wpjgIfwB0esFiFVJfE0BzqMtBB
VfGUDuBhNd/BEPIW7ypP2p0CEn8jHJYIAj1vC8WoAsw+rjspi4uygoYG/spjaMhhUigNT1sIamGk
ElTCjKRQqDQ+TZTlE1W+d7mL0uAUy32eXa0avJVmIYbnUBtOB6x+zI0MM8i86ob5+g+bKtjPf1Mf
Hvod6255cXQ9TISH65/24u6jVBW3uTuRQAxEzIPrdudG/7McOGpIOWkemzM+JRzkIjykx4Oop5Bb
dUapHXD83SfOnyiS84eMK9LifgM0OWGmsJ3H2xavrLBHYbYElJFOhHGb1AhARJBcQ1JwOO4a0fTO
Og+B6nFz7U1znn9ItdcJKt3zSuvhuUeVKYFHw9cOcDGYO29ULkRrEwXAx1VIATYJFdHzMq8bfE1H
pxSyTGfDWTeJ/QNtPiWRFl+wmTtTsZyClql0VumBx1ibTHUbc4iENz78RTwJOeSaytyO5nAq+luB
Rowm+q1EQ7Yfn1dhHUboiw9uqBBlThs9XEl5iXr8wks1OFiFF1vxt+0kWzfKFyUt6EOye4dz8OQ2
0NHmez3h7i5tU/rYoc2lCfqzjmBcDnEcKRxP4UQG2wYmQvlSNbP7SAZjfxWuDaxT9Vb2rF3iY9k6
rvkFMP9ZQsxm0jri/MfuwmQQ3XJ+J64kcpQd7JZ3nmGpsHokfXL9dj+YiAjN5H6fAo4CKc1uUzJj
/xOKnx0GIRmCu/ifh3X5yNYDY0vSD6CKXnBnlgYgExVLgX3r4eutDcM5b7hieO3D7fIA0SNrV8T/
QcC1ovlsW6bzF6yMkWJe3SFViWaa+kcJt0/M/62nkUyJHhwNSWh7KUTiUarw457X6JH0epHlaQFH
A/M+ZoNHuBsDEmOak+c0syrOCz8fSpyf7xPNyvqa1UagoHKpqGspCYt9bJTvqP2QGjmjvG6Wofro
+LMQihv/9waewWoQn+nd0HuFswagEi0tZbmlBxL5E8pss1tSFJvqNHSDjx6onX+WZOaJmJdbi7dd
VvVRAueDtxc5kD9g/7HTeSKpMgO2WSnMEhUzt6suEzPsYqRPCVoefr6sJusBYcjnNHWPq5WTlAgk
mKKPpL1lUDBcWS4EdTGHWUItFjYnka06laJExSi/Z6I/CRNS76QKnMlBWMiNkRp6zLPQbp+Q2wAv
M4A3CkNXaU3PspK0f8QjLLdQ13vgdG5vi1N49zQ3MGQsuKrwIz9Vyp/I3cRLxzDkJCp0QFxM1I/K
YmY2WmxfTAkddzGdQ7r17ITQe/D/w2iYnLkKLAZH9JUt/WuvSWrEa0cXjtOZvdkmPk1Jnn4YhKbD
zKymYQZSz+Q48YZJk4jDlzoHGGBlGWFggnlk+XAuESxzAbNuED3FMig0EjzQ5Krl0sTwAcViTnVf
cAlzB822GyRZNIiJ4u8IpjuuwRZb3n/Doetvo+e+dsQ9SJJ+37KaTnUvDi3yVGn5MG9EfCMC/wkw
lz4dk+9zWnZ0+E27nKINJYethL6eL5Aebu3yqm1BPilG4MkOQIlAuoTYPFkerPOqzoHDX6T+FlRH
sNDQpVH4iHx+BaBXMAgq6PVaY6qApY8UZQYYPurDA/nokM5+rL60UjrjvZJGv5xlhYHS+CWe/q7G
bLOS3KuT7CEsdsPy6Gkez3o2KR8Xo4Gm7vgDxU9KiNP7DGxQev8S7KjZw+Xo0PzkkiXEM0ixJ1F9
AJzTj3QkCoQxxED3mbMaOV7ysdqt+Pqw/hm/LTOCj3jZ0ymyQAY3j5Vr0A4ruPGAIdkxJ5eFW0hE
E3Gj2x+L04NM11kjz2xbNUQh/C3FEIs8i6XT/gqi2JrA4YfdJWAdwvRK58chtakvfK0hv43S+VOB
NNqzOBdG0S7G6x+QhoaDpNADRuZ17eztaHIaRUwp011rJPPGYGC8chIgLJ9ZF+ZmDFwn/4OYjczn
nSPYIA/Kt2rChKGXSKmDGVudTipDEKaTxV2klo1dC+x3GUTxR4yvES7R09Ee3SJl1qVjbBO0V3Ga
6aBa7ULX4BqYU1eKvLYj0Z3G3dDDbPKk5AK2YivmtHyG1p/f86PGwTqnh1poeFodDjnEk1V2gmkT
Nrne/pkZDN3BXs61R931Ly31k9aG17HO/E8nADHvH+ty1CCsJcq+RtXx4uvTE68Pj9VKr1ZDo/hs
WPSLjUglnNii48twt4qo6vZiriIvSFXZ4MqxIx8W/IZralVAEM48hxQYCHa8+Ojd1pch6vOR1LvZ
B4qoXgpxulWyZUfBdN5fw5aR1i3Lc2lHGfntnpOQrwbr/1n/sVck/KBfMpJNg9cYKjRimEfbvlvd
JX70vzJs1oZJMPBH/BjE31WH0WxL3BQrrweNTfAjV9/7P3/UVZWt8+HBNvjO6WWeXqf1CVZ8CTMM
90FBEgrFsXG21RN6HS/sPGujkhsvg/gd1k9UDXZc8Oe/y9zPvhguTTH5fzYpWvPBYHUDyugcM/sS
wTmrkvGZbuEkEhF27qrgzknH1FDKFD7SyVbVGJcGgIEH+bm5shh7gx9nM3iO3ExsJzxEoE0xKkiN
1wazInn0bYWPcGFdgRGus3fnj9LBS5Fb+exhm2bN7lg07aPST5sqg2OiOeDAkvQY8AD9TOV2Zv5L
9NQhRF+BTxwkJF3UYOgwTtbltc5FxNd5sz0teuBv9TQGXpB/tz3Tfx1BPjGrHJ7d2/r4xgbKk/XV
0pHJzblP+I/QHh9vGnZXgnkmQbXgOfgrfDv1gMjwfZYcHbypHp1sRwKdaypSG6ss+kIltL+XD13t
MqhM2o2FRsmF4o8iT6YfITqhWyCNVmuCVBTv39wq7LrCL+jh3CqQLxk3G/ju9oq2YFxB6tyIHtEr
6fawSeDQH7OryY+piw+HhqTgGRlcJTtydYBcvpokA3NYJBCQE/AOiwhp8Z7MouF+jWiJK/2TuA/G
m9dYGpi/l0o0BHxC0+1NJchDDbOMypCMVOi3yupxhnGjXM49/U9tRu1mpxJRekx5GrVKRiqpZxEv
uqJZQaCrrIzPPO+jYl4TjHUer9xCoQOhEkaTakX7AP5bhtVhqlCf8R/dcC3Bwl5n39GhybFk3CwQ
dWVHE3L71Ml3bprxbL7Lz7rijit3K7+x0ZZ+72XDZSJLL3/GKFtGafkrXTYj354fW830jooZPfgp
OaOup5sgnkIyLW+pvGVg22VhWX3uVbl5/DalX0Pxr1migITAJExXfe6DWbQGCyjBD1jR4WWFUL1H
46O3RG2oVut4UELNs9IJeWmRBaOaglNVKu180zgVd/DmkXG7G0AEI2FNVy1gFOPYSG42CyTmmkC2
vBTNFDq4U/xzSvjR3dUFXUAqGT8URKlLuy5b/RZkcHr9hF6UuERbliTWrwhwPw59/H3qRERjnztJ
2PmRzZEpJ9/j2S05L9PwFbZ2NP/qakKzg9aRA5gBwfcs2+t0zN2vgB8wnpdF9MhG3h3MX+PX6Qfh
jQtJYe/IuSrvRPi5VFlX5M8JvJHvInL1vySmnCuC6Wj/061fUFJYmfZeqspyIfvWQOCGZkBKk8fK
3tJKmaFEaLDc8Jalsd7SxtDTW5FWAMgQ0bivTbhw2Kdjo3c6xCDF2L6vfvVdcq9ceNnOUQu5o27i
aiY7pnG9//WlQz60+ewYkH/skyF/WHxsPAoJmyjdKbfVVn5+b+Uu/Zdiq7fI/ZJoZgRk73U924Sc
IgwUOauoc5w3HFHuTqvC/8OcVyU4pbIrf/Zf6Jr47/luVTFbOsl4o1HMojUO7yw7vnqJ4/X8sgI2
faH6P8fenfzf0qXkVt/aY9j8GTe9QveqrqpYXs+zO5pBtK3uYSaFYXlct9MIi1OOAjdIjLiUQM0S
fl0kkpEJfPoVWaFrADBJEt3jtH6ttiVSR2NXQeBXPmJ9aTk2NZFVEX19VhBA3EhggSKi1a5qA5XN
5DFZNiRi8qHxQjhT118b5+hXTzttBSEw6Mp3jv5QPHiZAO2vf9FgzDIe9NR9MTuJMgpjud6Ond7j
4BDws+n+Ak4MVDzybrSyEJM9BRkOqQFIfXHyTl4zTHjlb6XZawkam4SNKFi4XyAl9vAPv94nowAC
F+iXP5eKtgNWMYxaZe9v/pY4TeJKJY//r8VnEvEn91G/VEJPAUvwzQrry4Sv+Oo9aD8A1ctpLQqR
yY4leHRxfLfIM1kCeJZrr4UpBgS475RKSvF3dYuVd0BE0pNB1TnbCwWmKJ5j/g5+mI8+QzqP544r
X5OCdK07r2DR99cysSf7+kce61rEuFyIdiaZrz6x2h+BnOQy2mW+0HFifM6PpLGE8Ma4DIgBptod
82+jR/I2bg13pEtaz/yTYtQgfytQAXcyKIMn2crhV4SMfMYzt3KEX09rZ64cK0kQ7eur1yhc0Gqc
UXqNFcLWlJSYohfjuHadtc3zKYvcJ/YCXT2ERS9NcBY6e3HGP2qfzZFKethHk5KZ5Px9b+5cz5uQ
cqdfqn+PDTfNobmNFNkUrrmKmPVkyIOdfMkb0hc+/0IPvpswsUlC0DLFpDh8uch/gFgRhLfpXTfq
GoxMm/snwxD89h2PG4pjBc3ORE+3VGEBsQtfWkm8LPhkVsWGkB6ykIzKZ4NfzhT5O6ARmdR0Fgsj
kaS8wpp259VotZ/LWyhXoiVOdkRAaBRNwU5MDddXUcJjv9ewrDeDzZ07HizXgWUGuxsfi4fLs0XD
duCh5oJxFifCW4/VUqVkbh9h1oVsseZqKKUDz+gnm6CmaeDXDlQ/0Fcdau/WGgEvlfeuGwwk9Mwd
gNQUSdCIzqT4Ob5PkRjPY378PhsVb6ZI1nUH9i7LjcyK0zbQHqKAdjkZko56rzt6Gqy4+5WuS9TJ
egcPRwPMSWYwwTqoVnREnjlIjdsgLZHBmtNfQVsVjpBTqRCfeZColscEcmIXd321eC3HvOgBFOyw
IhdYs91PF3IMNM/A4xa/PNbIQ0hD0qOFhUmx7kUmaoYL2t2tEENhiJlNputZcX4Ei3GCJABKjoFt
9hhBURwFaLt4MRGlv72ManRDlx8WwDwBz5P4Pl0tP+/DriS2FzW5vpWb6OycUhwwzGLm2CSUk7vE
weFJ+mE1g7Aj7NFIHYXejCeP49kWbD1JWpEP5DpyDb3nlTD8bQROt2upCt5VHHdFDJOBa6t7lSbR
E8lNnWBLTCChZ0wyBKcaRNc0p4ckRI11bkdKn72ppJxXUqpmch2129VX/fWDU3Q6xn2D7Ov8q0A4
eqlRjyAIzGt9RshYa4gCEJzuUVK1/3Jse08gF0Cqo0qShB4++mz9WA566eR2IBi2fq3Inoh15Prn
jgfxT4JRWxf9NSY+SnC0UZqKZ/1mpWlA/JQs/LDA1WrIJZSadmtN6vdABI/5WeZhalOvC4O1cGPy
qJQJ4JbWInZzMPi1dqWeXBaeZbEnbpTF0ZAOhA/R3SaDKB70EusTWz65YcmD0xvrn7kkNTcfYdFl
LaLRmuHyr879P+F7HMcWCqCSL+5iXB9DGriouP7t47WLRkCfX67BC+SnQo/UPVMBZdIi/51+W/sa
VeJbDzibV0m6Y4tt00ZCkkHfrX5JMUMRBKGgbOkg7qUWgpvDfk5aHTRVOvQIE6LG1KJbUYFx+N2m
x7CCJgDjGCHo2VBaMqvxyjyineDmnLXgZx2q0pLOZFqqgiqzCLtU/qQsaYbOz55E6ROOsp6c8pI1
7HBFycQJodRs+b/Xp9qE8fQ3/0Quw9DVcnA/ErmsglCzdtrEdY3K2FeiVFJGBYOtzqGLMt6GuC17
LgFT19dO8Wgc20gLlbyxj6CvSrIU5dihAA8BQTjQHQiePfYtNOSgKhPNhoBv/FO0RmNPktIxna3u
xm4N1vLBlaO2oJts8D9/LI/vOwLJLeA1qP2ao7XomvtxiIwUbR99OI9Pj5TkOBzthIhsfnxaHN/l
S2OqEPOVl1OpQJP9cdmaka3OoXDsZHLGpwEpkEv3jYSf3jPN/ZhImSZk3wTrjsHpVydblKstTxrl
WGntQupWXIMOP5exTVhZqp5YWObHLpDEZSjc34kXCokLHuhUrcOvynRsrBQ/rtYO9J1kuI5kqX1K
2KGep7j9e0nWzPqKmYZJK4pacm0iPH400xJ+WZe9ZIxCM5172q9mI69hkPNFoAw2bCJ9UBTMR2jD
cQhyLQMEPa7qIICfErUx25gT0tAH2NbPU9FCzo7CMBb9LD8MxOACxa767ZcBjqnAhn493KJCQJYV
h13KdzI1JDKFABffQb44ZopEpUIBRkmuuBymYqYPJiNWSnVJrY2COzDE6zSCKEaOJz3h//vj9qQg
SqZVsnZSXB+2kwfVrdyDf9wgDoHzl4l0dd8pHvUNJMz8tnOxDTsEFBzon/xJVDQ39regzZfgJvJC
rGhT1ko58MsFfCAIoJvt39t92Zll7ejDx5QcnAFtFbTxgUejJ+L58gaRXVWp7zATcfw8UQqKQnVe
i5nCnLZ4Zuul44mKX9meZCF6fId6SJ3qXhsHFNKARe0SOirTKK7JsIOVmzib6kZf1CU46O28Oj7W
C0YKipmsRwq/ImvAcP7joD1is3/CvroTCK2uwHPHGK+aYU9I5UDScWg2MzOHTP4zpwvBPZCqwDd1
RtAXfJk6j6PWzabKi92E8Ab8IRLqcRdpcBzjo8rcsdHck4atoSUxhRM8EgPLaxl5ftIuz9k4r9kv
FcNPpQh6CozPeSupGoVvR9KOOp2AMNiy+vHdHgRO6Ygscz3ChvYxpjzJkd3g8NuB0f/wRn8WOxbi
l2n+VBkwIujWMXkMn2kheXfaj89ndM1TvlojBxnD54CQ4svQNL5WcVcBPj9MVNttT39DxjbojCpZ
+kYpqaC0bpTb6Noqk1LLkRX8rtitqMBE5TO6HwWUifw+JyDbKGJ1yqvrIBBK6+vQttdm68jiwARF
Uf7JNb/G/YhP/arXbWJTjkfvtPjq/g2tgwIpow7m9SCuB9yMLCfXeHGqxn0TswdHCtyAaVTU0u3E
InBylxeOvJEYcpVHq78vSpn2TJO1ypEhAWD//90VeutgaioHHPE2auTdojOONEGt4u9mjrrGOnI+
PtFtSFzWR1cB+IT9t6Bh+pb73N0ML+FcxGQdpb9qvnoF5mO/FaL1syDef6nwIJcLvn1KaSUAo8nE
6TU9JsLEqKb7vJ2v39LNjytbK0PDXwO0v0u1AsglgkAL1ME3yAJtTnbOBWnNS3nQk+ekz76VNbcb
vLnSPk/ZRw1DW6ymwbaLM2VWy9Uz6g/TcOXxtQSWTnwPw8iNM/wLvlLZ6MozTIXUnrwiMNxncIp8
+/KWmA4HQvmQWqvLop2ybd0CMQmkvcNeevhXHDtnJ0Cl60rjr6Z5hLyedyDloMYwbxHujJB54w4g
+BWHx3YcKMVqIE+DkCPZiwong34oqf+BheoPObaMK6hsguacAe7nkpixCZEUADvRjhh8u2M1eNXr
m3QAdKcni6hl5S/zIEhF5lpmWNXCAm/fg3GgBxJh1fnj0aloxL1B1CTaCTCAfF4kPrEK5aA+ZjKH
QdJyn12vRE0Mra9s7kDUHycFNFmr2wgUVYxofff/JzRb7fO006zGvoZCpXxQ5vVS5fh88iCy4PM3
7PBYL6asp0yFu7yjk8lTTJITFXDkOwli/Rd7TecdGtRGmSXxL3jZ2NqcxsBuwgTLQwen6BL/0K7Q
srsVX4u/ef57xtknd00dyfjcQLmZ7PAwMAdQabYTxWXIxjzlVlQfrirQqfdlA1xW7qvI1+N4E3cj
AJqtXgGAVuueXgLdIjLdf6XXKI4u4Otn/3YOgc6ILLmtSUPzbzEwttEDRMypqU4TmOpm4BAVbDQf
6eT5y7S/4eAmQ0sNAqoUir0gn/V/XFvuLbXpPEFAu3qJrnOwsHBKd/Q94uV0jb275vIfBJtdaCLE
+FvQSODHEUChDTK1UpaKXlrFXla6NJwvAnr22d8egIWP2OkrGx4pmqqTqarVvizA8CnGXRHHJUp/
gs1AC++jfakLIqeJqj/QToYkoc1nTbNZzbltA93OnQ1jtMn9URGE1gFVokiUOz4i1quSqa1nkmfx
2SMmkk5uF7SSUypsbCEYg9aI/wfWUTQ2DMtbXpgGwdtMJYRcBxKEJdQ5J734NddQDLCKPQ9sOwM3
74wOyrgnCWBBtzRV+7blj5E45n+bh/NTlcJf1CvxuwECEUkcpEVIaB5zlFQuUJMluw7Ml1/JQfTN
GJam4+Bb2aIO8PJ1st4sn3+qox59ytUlDjHyeqZw2mAJYBjYk3qSK3EFhLqjM9zWnyAMvX93OBo8
h9NHm6vAwBzjyNXQaC9DmDiZyw0AsW4OtGM6NIhmEH287ZyrFUB0TqoAtrZy/rH3hv5+O83C0xCs
F6dqlMQLOIyeP+makgU2swPFhy8tpyngbid9HrWgPfWVgcFmh5Zzc0gOLgOLh+13FWJiFgoAAQZK
WG04ED9gmhMn0HlAWQvFM26qO3f6yRkulp22tR5ofoXDlTD2VCwcIp2wEyjitGlxuT395NULuSAl
/JdJ4yH5O7PkxzrVFHn8IQ8e3wAUCWXUN/OASN2PydwT0AK6s2+iI38jEbUw/605RxPAvSjaml9p
BjhZ7CqJuV28WIXQnWOwOso02ZSeIWPcJi1NHHCbJ61wUQQAeA0zrP9zLpfBE6Jkz6BIsk3IKRRe
G76A+qv+YWtJ7wyam/bhtMaKkkZsUkgY5cAFn9q4vxuQtqksC+t0LtkfOmSnJwZs4jlB1Tc2aiOX
tObMifGQkInybnQUS3FRVNNnFqxIaZL0LCXsbDoItsWJKbF1Cu/6+5Hd/V6h7UjvTrvmdgrRKS/V
/0DCtRn3uLtr6/kKiI/DNRXgqlL8XOCjP9RitbscmRcGuO2uh+h5yUlTaziD624J70sMhlkukXuW
S+hRR0B5XYFC6Q1Cs0h3XPPslifHy9mckJSQBSkZvhdz7VkhC3B+tVvSkEWA1rrIGGDlONvKS42V
aLwXTcaPYmZ1xMIR0FLS6jUUg85tpeFssySbovyay48LSo+b0s9Y/lUpVGiqjhWUey+1vWl6h3jX
MMmW/caSoAamxCI3pOSzZcmYMedT48kpqpNAQRvkjNGFoI3NdxXZD2RSZwlAtqixBc8Z29UHXCyZ
9v/w6QFzCEs9WXbV+D90ln8NVGE9rmvb1WVbKLdLg/Dggqvb+J33jaCqkbYaSRZnu0Va+rHkQCRS
Du8GxH+SD8rZhL6TFkwC5I3lSD+JPm7oeJFdYBqnHP5RHU0ExhFLSrQwrv4hFte8hnZjpnkt9jLa
CcBjk2oR1rL4LIe6nw8+tbkR8CWkjenGBTh7Z8zxwjxvrTClVaprRGmL7O/44qEoZ+qMvnvldAoA
vn7rRlNsMhCdhqWFqqEQeBY0PiykNTsVxNO+ZtDWcXnR9h705RagOkJ4KvRbo+WKErbC1DPEnlyo
k1bNDitUzoPvQr3tLK+TY4+x84vkT1L75yl6SHYNaviZaKZTY0/lohrQah4wG2HfWdPB+h//fRKB
GaAegszObgZZWYbln8JXVwcLZ7oCu56waUPsprS6Cdq3m5NsAHpFeBZEGw2D+ewMQg/GebRDqVnh
DjQP+Axf/Z2AZonTeEC0d6SxZsWue4CAUPGGC36z8FwjmzLUg/Xnaf08N3FY//MfRYqWgqEUiKkP
EXJ/DFVzW7DnEUxQJ/yWsZVLwVs4N4X2EPTN1czgp63CrPeDrGR3UPo08k31qsBAnvgz66gjkOCc
5CE8M65NjbypUx38OxrAqGN3Pp1s1/2AFaYoEnmuDpsxRupevxfc53uv3r4w/sR6oRNuoCov2Msi
BrQvbnctu6qX8OKUKO40kjx2dgyVGHcBqJLGsUpWA1BgUX/QkwkFUx89BIT2aOvE8y1rxRSClpwk
AsZZ8/IMn5Mwv08FdBfJ1urgBKO6SA5XrHv30iadpSDvZbMMTVGuLeGM5E+fsmFA22T/IT/KhZib
98bEy8hd+pkBZWryit34+Q7o/6n4y89ezZPZdp3vxRekqgMFfzW993N2tHxi5BJuPtITTXXso8Gw
z22R89SvWkEmKxTTFKMQoD05+5DVqsG5OglzLb1/vFBpA0JQbh5rsjryVDCo6pdD4qldOkEr4/Po
E/bx+q5GqmnimLdUq+qUoX3gt8KOK1ntqj6U9Sf6dKaG8XX/uS3F8t627Q8kRV0SW71IczLnxOJA
IEPqh/a5BywLifXMxAt8pwI5tRPSZa3/AW6zYZ+rRx3IHkwuWmSXTDiFsdW0q5ZLjfR+LZ46FZYV
NWDW4RruRNdOBa/7Acb+dzVQdzBlvKp6R/6PBXOn/abcA4HZUpFy4awyqfp1bpUncKGqqHCdvOWl
QPZesTCgKQVLdnBpGcRbJyzfXXkMcrXkTcTJkiCauUlTWYVfBsWz9w8cROGC09cFcUI/gHeSVygH
VjVRKyhQLFgN9G1vkV2dh9Te2dmZ6ReOiRRYt0DAzKgrAGVJ9KngPk3oYJC8iToT943UCJrVENSl
5kx68TdwcYrUeIny2PccWlGuS5uc19GY3XZpP8Hyf3zvbIs6ZGeqG4eDYXp3TyXyB7ejdQhX/m/y
LBN6SjkMOh/MfX7Gi7Xv0/rOFedugS4z1np+I2svbGFr+YwAk54MaUo170t+C6FmbuNCjgsSuOen
3ZZgzy+ghCe/xyUp9+cSjMc7xI2MsRduowyI/T9MIRf+S3cl3miNC/KEOn+J+QtZYf73nQ4VOIC6
gF0FqZ/YlBj+Go5NGgwLKHzc3pXgcaDtcPjgLPqVMgr4WYSpUSEuLXsbriCA+fXNiEBoSuVQYoMu
QgSgg3+2nvVcJSlNZjqQ7D/D5/eP7mfWq3z60mSoJSaIE/D/5/+F0pQWHv01HTvdwmTcwOce2uvl
qwsJG/foXHYyMymc6VjRJRrDlTG07b1+R0AkVV2amiRtsDCwIIYuyoNASUDQDA2iFzbBr4xRcEUn
mL9kQlRf2MVr9orC045jaoPUx0TC3pB8vndnOL19+BA/+Dn0wYYYsAD4gorJkVqfRGDsRigSjQLK
CoDEU3GS+tPjA3BUX2zTYeNcxwmE9I+1WjLbGkeJmyKfnmi8I+2M2yD2rWBp4Ce+1pQGFy41mDJA
hJ6yQ90ySKwaEY3F8X93wS6ubunvmDI3CAuox2ulPIZncKqsQyea9fTw5aMpXeWAwtRIJb2KW6Ja
rkW9L9RlC0h6gA67Ust3kKG3DS29jPxzaMSEiFHDOSEN32jRmMLmAaYkBXvxHjJUoP9POS3kg0Oi
qglwjZcLSGJyWEk9OFDsRnOr1fdCVVhkw1ath8TTDGYouzCWxslNf2drWiqkbfWI5GzlaamAyuTR
8XHtBv3b2NMgNWDfv1d0Nq2YLFC5SVHaJOPm9o4uqNp5my2YcyYRvLAN7LtG3kY/nftRLqag5sDm
hhGUe0R/H+BsfCC8A5wrIB6rN9hVHxgDHIXjIUDMDCSzcZR+fSWe65RSe/C/YytMMhhqrONVBlpN
sqqg4MYTD+tSfybWDOfaXiMHhJknNetmBqKAgiX8RQfQZaSsQTL55hF2X8GkT3Yr1Ce94Dx0F5UN
sg8p019KXHIOr0aIy/YU6sw0deK67uz6h5rGiP0wkv/UR0VZWv5zhZlJpaRYAfvGdGbj47jYBkfQ
zQtOnF7un4JBG3HQv30t60KuY+HiQr04ayHdLyu6GQZ5BY6F2M0qO9UftVtkjnREPZwDWttITvf+
wr6Xu380tgv7j01Hokf/TnngSEjgJ2wSrzVprELpr1utCk9hm5SIwKYxM9htmHmy0+6Xfr+eMKnR
kiqJPWcVNh+7yP0BfrTMqRliVe739XriFnxN1mkQmNEz589LLTEHGWaBzzP8Yx4Qzdm/GFZbjhKl
SoAQWoo0+YN7kbYN5gjJmV6WDSw5/xqsJ4isniQl2wc8xwVs3we8JpPuqSoS8xJXKtvHcNFIYxPK
LZKYhsdz+VSwtk3Lmq/p1uepykzxyKnQe54SCHwT43mymc8ZRxgT2D+m9lahxxlhY6Fz2BklT/nW
QT5comUIVdminQMuhQXJqfZGQ+cR4crnEPAydMqKMM31IqECnkxe++R6vIOv+MhvzHCE/hnDeim6
ftRYWOHq0uY+Fsiq8VXhMXahr96McldmQb9eSIoUPTanvPxYLEmVAs+VMAgCrzD5UDrxRCarAazg
EpP964ytQwBvhBesTUsU8+wZUQoSsuwSaVKwUDNvwoAVA4uX83r+4oe10WHakGTH1DdRCkW70heq
TI7/wZYhEFyKoylIJtCcGXkr2HaRdz81/Gzih1bGipOY0QrcIRyHP8BU+kJPKnvHiTr0+Zu6EfDY
BftkODIcBtMv955YaaBSANeDqqNl7bFM9C9gYXt0kbGCeBN1QTsYHq5I6CheeJ9cKYQgUMPH2Pgq
T7W00RLPwvg9PBhn1QDPmZussTXI8K4Jbz0WfdJq6YJqfmrSmxZy8CtEBOWk5jff5MuvNRQA0iWc
AtUgG8qSdqNNMMJ5WAzsP5XhaKPu/5B26CyRWo9I7Zt0aa/Lmo04rV3/NgwWvm+8DTcuH0D9pOtE
E59Zvgm9e9jU663LepY/dOBDqFRFyQdAH3CXzgOsIE31hPg/akgG4wGzoViyqHLS9HOJrLNs5Ce+
He2rx+D0lYrVVkYnIeQnodRJUqnNjvxl4tgvuQqAdXqmdpf3CUvVkO4OQBWGQ+g/FxKUlzukXrJy
lYzqnlemNiQuuc6KR3M6XdzOZmtmf64QiZtRGA43Mbb5ArxFBvGeQIp3wBaK3pZ/15GPEjAmYjY9
UmwYnqOZCftQ/bGZC7m6O8XXEh9YsU2oanW519l0/XqdDC1I8Ohj3SxTUa5eEVfSmJK9fpeCqoA0
gJqw0lPUDx3ETagPmYlmlld8956+6W91SEeLcr4fa/FJUcYN6AFKl1j3HPuTWIqlXsE0QcGyj/FV
nT/nb3niRFTe4GmNHO/Lto99pM3SAHqOGrHac5jJci8XjKyajQ/3i6mGxR5VMyjYzDAhPJz4+IoM
jiFAp69i4ZUx1KBqDse4CbysB4b5rMeKDNGfRHyZms2xrD6JVWs8GiMuHTlHTipX1TSIhzUOFhFX
ppEOiCyGl3UKDGTHMwPjVXYqCz8ERyjbXrAxq7bTIa2OdLeQRdyAwCsXOtsTgsuCai5J0GkMcZYc
A5D+9hn9XBDV05K12OugT+S5AjKGs9rcj+zJeDHLxYu5VciwKoFtpbAdJGrfIMmpZhgwuNMYbrVa
dcFhvd5+9ammeed8lzGPBM693AuZh6MNOwgua1pbYvBGW+pAHwAlrDD1lCcjA/EVDP+uykdKFGrJ
VXEWe2VkmmUUxYyyZ8P9p1RI6d2BJC4BlNI3O154SX4gJt2+nc1hBHPBiU2Ksq0T7wAFzEstbv7F
VRm5QggONni3BxIJuf9qaKr1/C4WEYo6NRdH9kz3wsLtkRDsCmjTUMXArraMS8/QKC2Q14w/s/GZ
nXw1dtLh0QvLbX4YQFLlWxrWiL6rjdUbX9PNfG07wmFNZEvAsiqvIgJQBTci0OiBYPUCB8o2AEx/
5inL5Df0pIW3ZyZtxA+gMmn8j6WaA1QWfSRM4D2CVIBDXdl5efhYx9O8SwpKFOnAHQAL9LCh4kUp
DNBgFcW2I7guk5+cCvlzii04FC3bZU0i46lNbbo7Ge37hNdQ+56vm4OzUS6FIIzMN4kRtR9cp3Zd
pH+xR7LdXXN9jubnKgFDN4Y4LzXXw7j5cbIcuwKlSYOYrn4rPFXQXT0e7IE1Mt5wZQ6G/ym1o4mo
KvhFVrBWb+aUcrKci3f4ISOXv/JQjiy+Wpy9XTxYb4OQSliwBwDfy0ZzozN0y4Nfl33wv8ZXQdj+
jOiDVHhH6fegbA4loY+zwMd4Qm4mVFM8NPNYnGLMOaBgxS0vw4vy6vaKTV0RcV4PiZ8f+wQXLBAG
Frdum/oXXxH3cQc+KZKspXxCxUfnQbaqDH/MAqEoUW0x33JoPuxdeUsEw1XmFdw3JFfd/UcH+2yb
S7eihHb2Z9m3z5qZEmGzzmRRWnm1m9mDV+gwUV2TcL9oiP0YWZ4MKWw6heLghsl11TCkwayjtG9S
VK2/j+1s43J69mnWCFIFzQ74ZezVjnCspczmXOWDDRAjcurZNRCUkLVSb8OIsTqlvGhQyf0chn1v
VMKTmAlmNVH50UnlWbE9pxz9V+KiiS89JrYaIOigcW0WldV1nD/6j66AhD9XINMKNft1mzq3z+An
UrY30dkxkBeDvttBhPZ9N8lbEIdFkFT9VC2XL4RbbmPYPfwilGdRF05x30ciYrYe7u7aBolOeNMe
g6Ekgui5IT5fwkw+NamhxWqpTYvfOogCFHQSjlU63Oa9QEe7Vrf4nGsYBAn/j2OsCyeI4bGEEb5I
chYF0kiVGaD8UAsNA/cqDFDb8yTmZajbgjJRKdlOf0TzyeS2ZZUa2lUl1AERSj1j8AB9PLY/WMyJ
M0UhsQGduVMQFfWaQycIsjcv07G7Ufzk/+FENYiF6elQKyHN744HdY0Ocw45l0ANn1sasB7JxYq9
+9tb0eBahW4tL5AcLhnGQFW0C/rS7mWl0Ca2Ctb51/M3wVDvvjOrsBSn25i53rsrt+NAwzAjEjSw
7V7KxWsJZb+cB39/lyt3b2OmEJ1QSSmxAaZyPOZmSGCDysLvlbYtpvXdGNNXUxnrhUPDRSt9BLQF
KQBWdjDmXpISqJ8qCyoGcAvJMd5dgEBWvvTaW+TY+pLQmAKC6tbVSwVji2rn7iRSgH9BXh6hSduK
CS60RpA81gg5H0edxzCzM3QmBgLG9LGbDUxrzN5LPPG+OUGfXtrwZ0RijbMeuujylA8CAdx6pSPe
YPWZelMihiPIqw8o49+UWas+CScRIhHrE15xvrKdGMeJaYJ5CL+AK2UPnlDFlTiIgUBYMzHv/8gp
Ac76S0nZc5PWTsY5aXgLT48kOF0aYBosaGfpkBlmcn1OmwmAHTvhhY86mGpe8zf40gtvMaGyP5t1
qvaVgRjDOjlJiAL9ROGMU1noCcnu66m0JfqnydyvkIPrJWB5dmh1fE7jLcplQbD2/er40geiLCwH
pnU/gQw/Bt2xAPNLPx9PhZdKG1pHRjRAyU4hD4d4m30FwObi6WbAgbyivbZsF7SxZWEUoY1mU6Ro
jag5wIWeE7l9xfS0NeXqoFr5GoMkdmHCFUqO/R56N8v3NbCnGpr4hpiuKfsFoVmc4GUsAyg2NaZ2
y4ypmpq18d0iWUKu8cz0TjQNeMuDhqkTnTpzTCtSqNw492DUADxlGkW2YXcfwd4O3VktXssPX1Rn
rjWqwR/ctap2d+16ZnQ3EaWGDL8izB6EYxWKSVxSIhmcNtyLSrPhczYTu9J9JgPVULNhGMRb5wM1
tsB7TYQVVkjPas0tkwrZCC7lsQl9icIBA2q5OA1/h8ddsQ5VkTXLi9/tSBhpwvh6bUYoxQsWoPGH
h99lYIK93hxSEzuG2Sc+b91+AJAcnEf/D+CiR9YCaYoy42WeyrrMWU6QuurKav7V1aaWzgeva04c
a3S53eal93C1EwTcDJUHOT8QryTsfhTRz6yFezfI8sMeaU58LX2Nplz/9qGZCdYqxzgD+3vKEhlV
7lIvnD7sgYw/O8fC+o0BTUQcc2cReQ1epboa9A2vLAq42yGwVGk37AhzWAUiv8xb0Aq+f9gCEDyB
FWgabjcJidRRC/JUCAZqO/xxY4nkqxlrtRFZYqC6odD+RMXinf6ozmVm/zEB1Yo4GG7iWe94Y9DH
1956g1rK7jj2IcRWD32Jw087HCzoxVGYSkIplGKmmP5QXPzpgRjHMKfY4nf/wgcK3Vgt63GcQrU0
HFrbC96r6lOmkPpeIHJQRwxWtzDFMMy6aSz1qlw9a8U/oTJo5m07Dy7dVSuG8DDgaqBY3gyy3kcY
fpePmvniDBbMOOOYJrk3BomCcD4Y2B2XOdscGqI6ji1+bYTWMSTHOZg7jm89ZBsWfngUIiB2HHHB
XMkUqVdsqVA2XoqvWscZCIqfBQpHz0VmQvMl/wHk9RXpOmeL9k7rrGxbdgwIgPHWvgGw872zOdvO
h0YunzLaeAPLlx0Qyx6QmONmCUPmsEmlZxOXsj/ZmWSKBnSDUqun2zpLVN1ErJ0iV71dhfVq1SQp
f1fPpUx4i1FZwANZdbYrMU0+7l1hHsaE4IvtgP858wiKk0CB2ZYDzbtu8X/I/cQLoATw7AcrGph6
LMPX+9y5dgG5Y3kSS+ST/7eZLzFd2DyjzA2TGsUuwAhJVisKUbgGXBDhMlkjV9OpBx3I8bw56y77
f/ASX8oSrevJVV0pkDslW8BxkHMsl0t8x9x2O4ABFf/o7UpS7Bo9vSq+Ck46SiWCLqJv/yBRfVbO
SVYoG8ilzewBEM1xap8+3uk0MvvUyxaejUDmnD3At3weIgfYPYcMKPmdMJwKliNVlneSoevyU5L8
kneMN/BIb09oAJrAqUMbNjZ2BHC0YUTsdapOv/iT6wlbUx5aweLVGYK+QuUx+IP46XjMQET+G6bF
ASAxjhGzwIvuflfV6RmbXZ8hNKrV5dIe5kJJF3MTrnzWfet/hMFvhtw8eBcfJwG/oNp/gKAHdM8U
phYuS7FoeHFGlht1vbDj71mNUsYCUlG+otM1Rmxa6IrXCbAJM0w5nXXJeDYpzH7xuT378AMc5Ibn
uzgYXuqYrDM/zggXQDDvUe1ppMnsJvZb7nprqkfiWUq4QiqkxG/kVZSJMTSsdaGerx1Iu+BD6Xk+
8+YmEIE/m2N4rnsCw8U6blrz22d550SBlqqRun4HH4nEgkVPyQpCKAycf8NVr1ODvdFMZ8lP6gSP
7J6ObsESN5v5/F7X2fPNghT2VPda+/+TERfreqQy7K/lhTtJbiR5kKXdZQYzegd9ILhcERgB2+af
x02+Rb0aPaykqYHTkfIk1r4RKYlo3NTiAbpMJGE5P7ygkq43eMN6UeQ4QMbM/A6QJ7TZkoCnhWbS
dI/cA/fPg0dPa5jkkaCYuDOkT23UYexJrvIHQ3A9QIfyHPkalUGvdXmYNrM34NLt1sZf2xol5is0
f0fUGTAcL1v+clyRV7bhIVxFC6eYnIcCkm/wsFeHg1eY1h5JPENpayzdiQJE2zS6NYoDqQxcGYcy
4BUAJkS80LbdITk9JRPdSGwpwOxnVyYsHy6XAsnh6DEO9EOi2ubdYXTBDb5SKvtRZxT5SzcINSai
1h0QpM/Jlg1ClZl8ZXEZlU8MoGEKLy/M3vIH8bB/CVVVbQ18pyWy7lXnya3t0yH2RnXXK8cyzcVC
mG998/iz106y+D9Z+5cuXOEaaUQtcZBMgR/cLKYaOFTe7h3fusgF5oSUozbY7gfdY28u76Z4x8L/
WbyRsw1iUmPO2YMtTs+PbejA33RiSkXoXYqpbNFsTCzPuRhXTixTJvoDxtCVJa0HEvzqWJhx+C+B
D/IajZQo+JXYedSsZ3t9b4b1TLK9qZuhT/BQtH8a89jN+wcSapzT4+AWLivqqwmfUBHaPpw5TFL9
QJb4c+7ZjcUa1LlCUygZEDQngWqpWAZTdLLZ0FhIshIizr9N6B1rg3MW7r0+VPDTZ3EehTFrznbX
2OU2qPcpw966WGFx02eODhJQvXKHPQzLb3yrhyEJs22dNoArwnp4kGNxpOjMBchUv9sHWxIeLLa7
CGBCzba9oDGmrlvrJcgPjbZIBEYWuxL7JBxxPwj1I4GdQkq1xPpStBRZgEVkJIMFLvMRUzPRfHrx
8lLRGqfs/Upfc/iB9PEdn12xGUt2mQlpDVxGItssDqwC+UXrzkomWEbkk2v4HMgPbrRVvCbuvQWM
QXjZkLytb1u3p2kHBOQ1zX7uHIuIAtpBspMj/q/E2DJnPjhOu/y2t/AOeubSL16dPMAzgi0EvOZx
XzybSOFQ3jsbLzOZjuoknYSEcHt1GAGzWL1r3q7mCgMWIcClFfIEO1CdbqYWXpQS/h2b8/sraLg+
4Sg9jINkPo5ElGNAVFZHdRYhvA3Zw666egKBzPaboaigMG2aMasXNmM3j2QN2qbvqPttouTmjPWL
pOeHar2RO/u7EHNF0Yo6G0bVofzLDd3+fTXTUJSHJIZ1EW7DKURRcR6QYjMyfV5EI9ErkkIZB83j
iPhvnOZTWKmOwNZt79BJB7Y1NXbnolirNoC3sdxW06oLc2uAQyrN472F6QdBAir7LLMmMGUdGUHj
AQRhLydFuEIqTY7ESeYNfAzuPTyp8H7u2pIFasm5XhPPl9ZR/L2Gg+C2q7SG3iEBzDjENK4OaTZU
lhbR1sWYZEF6WTseGx3lvMk1hyTJyb6wPid4hMQ/d7fv5R6DMSDgLYRrfh6Gs720VhItG/mcbqZz
NQHYTUhyRXQBgECVXe0IhJ3CkSl72raotQihhF0BmcknJE04K0Gfdkuq1bTvvX3SJvY32FgxI1pr
nOye/4VbOBKdKdA+vtpAhWJg32OPWcAlVwsUhgwcn/7S42XYBkUwxbwTfKGvvqS+h3ga+zYoo3u5
2nqWiiJjBe2IMuzNQ2hhsLje2xjpLlKcQv2iGRIAj/8DwBNha97QGik/90iadJ2npODS5KZ+n5xr
4eHVv9JqPjGamL+fLVKcpkwow9Ms2sYuV+TBQgJKxOmLM/QaULP9kvZFr8Kq+pMakfouFDo0xEar
Xvt8zZp+0YVJblhNxTjemOwhdbG2O/NM5W7S/6k3v+oGU7qjwnCNIIffeE2eS/9+0LNHL2TkWn2G
B6RrReYNjL8KvIzxk93nQO+FJw6GabRhQ+Us/CLCp/exEDZJg68AqF6GHFSw8CaW758xaI2ANp/X
W5zFI+jx1ckq39oIp0wCD28zqb9mz6Pdb/QTyBpF29O+xve10YGDiGL3OZic9R2568ZqKJfZEdg7
2dWxIFsZfYXBFzw34btxpiriiEf3pJQbe8z9jWrYhiwoP1NIpSPKfucz3RLlMKgJ8yyXv6s1aH9t
OD4QzulMe9wOuOhDC1xOAY0ar1XWdf+0L8uRYto3LhmMV3lp1njM9n+/dmjEwNEeHvrKejlFIYth
RaWYm9qv6FIdlSq/GM+sqwC7h27Io8UdnnPpUZTr2KzHTD86h/d1P4l674JtHjrlgbgvYFgzWlN8
co73ftn80Dynk8NmTeeXT9i6tqJNsLMRz9yTHY/Pson+XEumR+4eF1j27aCXGyL2h+Wx5VW6Acs/
rwrCpLmNEATXASYjQ5R2h/UHiXY/UpnV+qA8b0Yf82vimRz8zCYBCGEiMKM/a2RQLMhlI6iKubhz
hvJlcyKzcU2RA1G1x5dsW/ujEoEOjP2EfgL/NNB/VEXzS3fUedsb6W9Eyqs9UzEVaht6Tz4IuALB
EYpyHi74hcrY2Uv1WjBsEq/89duujR1ssrdzDq0QC6WOcCAvGFEbgZV1gH0h4BfJXgsfYV/1Sp3w
79g9GtkrRzi/LtpbRDy4hqWeaDBwkK/gZRdA1eeZbxaC1GGyCoVry7ClqyhRA+SxQmxGhSILb9++
pMxurDtCmWdTIiI9JnWOf5uYu6lrvVG2jP+Cc8yVfaoo0OQe60geHgke7jLFqdNjeR//T0SwQLYT
/pqczMrF9T0RFcfx7RrbdA9ybjOHlFA3Zur4tifwHxR6XM+/wI1MgK6BbYGYRCNg9mqIt6xfe6Hx
Xdig7WZAb10cuuZFBD5g8756znCEWnt0pCuZgTtEqwQRvG47o2VtZM36OKtq/wg5Ke/8FQQkqKZD
8nCarVX3Sx8gQEqWy39Csz/jFJ1VgbPdKUtLZRpAI/8f7wFWXBIH10uh9yzVNR26+unmDYORfE2C
pt/52nfR1MtwRHRGKLe4ZzTy/ZLA7vzXV87CPQYXIedq0sVZup1q7rQEnfF1byFXXXw+6J9QdFLx
3P7vGnDecwq6ABeRzFIj8t8q08dr4UpzNI5THtSy/Xl1PK+WTB168/j11rP1dYCIle2p8Lgx8JG9
4i/kM82nuP4aM4z/f4ttPZAL4GqZJQMXw6RhDDx3fKdoslH6vcKv1ad9+9m4e9H9d4/wuUoSPVNR
AAuUf5v9J1YfgwxwWtQO+WJKfoWpRgPb3ICLptXXx2ffSntk60aV7GOgdWCplR8t005v/xPUS/+I
rqbLIeVyY8C3aQrkfxWEtqvCRhqHB0dS2aO6CM/twClc1l4SwoUgDvlnq8kcjMu6AdzP2YFH+msc
pmiZQPpoOtradlbQY6VHzgwaik5yS8BagMzWjBvBwuZocSeTx4lPIAlBjWzf7NODgMW0llPpR/e/
vOs1Wbx0fnxQSDWKuCYYRA/Qis2FvdxDF9idlDWzrYAyr+ip5iHnO5PMVOEQFF1Bh0AsaD6H504q
/pOSqWF6O2+YMDBtSNb5o61M/LLjbql+oUoxbVvXtGIBut3u+aLFIEY660Q9TiWdDLAeRUVRtqy2
/C1QQK45zAavSyy2a/EXcLN90nV+NcGRjSiqdVG0iLlWqoirEEc806vBtFMPh1SQCfpqpwv9c18z
9mB1VYwCAFRYgDJo0InJkM8UzSxLdwFr7uSRaUBRdygExqjusKzeezpBakxEaW8pdC/6ygAz8xT8
zgtq7VGJ0FxjjsqKFVmdM6/StLTpNe+v1/QjebPXrjMNmytJmNR3q5ptpJwNE4HAepvhCEokG3au
itv3Xhu8qiD5eUN6jYthgR/4NJmQhz3RH0Crt1h+W2Rbwbkieh4Petps3BO9c72scO1yfyjw3chC
61NpK1W9fdSDfTFNd54vwjI0N5gBx/uJ9FZzhVAhF8iRirsQpE1mPLhDHOccqHOgleOIzz6WjBzb
2sqDAEhe0PLGzQA+tqDOdFrZVujOhoAe+Kjsj5QsP3zNWKTuuNruno4CBiC1ueVDkxbsCsl9Fb6i
S5JL1DyPp6TsYWSEewsKm1+4MINw0SpB/DFDSxNDujFnf4AjG3YK7Um+FK+79/+MRiteeQybBlzs
B6vg68BnJC85zXAYNjCBb9DDyENl4QfEey8ORgv32KP45RzrBT4qgU/4EAcjdxlvNq96EgiSMDoT
ty5Kqx04emle2fTkh5TxD/fL4io8V9SmvXkiXZB6q6FugIp9FroYzX0nZyoAD/EIENVyXo88aa3U
hav37GVH73qdMDif1gWqlc3zTgjO+tSfVhpAD0JdcW2U65SNPyR/LhOsA+NX6n4Ozq2Y0ASx4T1x
hkWcY2wZuuhXITvw7YMZmFTb6RUhEwI9Fp5U5jcU7vrvDYsU0weceMWCrGOncQj9yQ0ggZQ6aeW1
yjMe17bTvSX/0O9YsBpWZDqvHrmDCIMl0SM31pp92AEYQ4yQ8kiRuiz59Oz2B+JwegacddOSCE1J
yIgDw/n0houVm+nhYuI0gP9rLIn1SOc0WOlP5cl7fv8ozL3SYGU1uNJEZ45HCZ1K8qKwYVs04HE+
fCyR8axdOSwETbWG5xV+hlBUNfNMKDFinZYF04pN27Su9MN9Os8YSL+ko7X9klwdqLi5XdPN9YcR
jtx1LQYbgcPGuPmt0XH2WpKsOVLSDqBBV5tw5kEPQ9czHDvtwuIz7LvooBcbeqSRWMyyqrFub9LR
YvhE86e3EQnqwc0iMzd2ZqBjq3OrTw8v+gexiG81ZQuCbzYA8DNzDC1WeJWER7jQrnTS5B3lFZc6
kH/SV0/Bnqa1PG55DOYBLZRTlBW+NbRn1/95ry7Pgk6ItTb7URKGGtQocisfR8jkqjEmNtcq0EvT
9j09PfmHys/0HgY5ZSZHg9SdJpTocRFZlPLNGqcxeHxpWsIQ0mjxtLuVTNU7cfOcxeFkx9BioRwG
oV7+EW1WIAV0ztvdHcqu0YfR0ntJuDVku56boiIbkj/wvyeIhUy8ASDK6SCcz/5pMipj5u1jmk4K
T1Y6P93Xv6TyWedJuqTJ2whk77ZewMtM7ibc0g6eCpdBUkQPC0rKNu2Rt2zNRRZFGJ1sUU6gvzFE
bKuEVDBcilFRBmyQy/u1FeC2rb8WgfVmN0hdh1FXjZqBIMYGPde0Z8zYgtkJqKZDp9u0FCHM+hlP
jpA8vfUFEp1s0XKn2mKWZ8QD9JKSkhH65Y7obgWR/4/ySJC5ao2BuGTM0Pb2KV7xczv3a5qtzepG
zVH1IlQ0FkfN/h8hPKOwk37UL+jSV9biR3oCk53b2iI9tHR7NsFPP//D5K9R6WmjHxmovgpU2rWa
wEhB16k0WI+92ZpxS3s1ji7ab5dvD0pfM6o3VIy7hwTt07ZgDrA1rnJSK+oBHYw7PVtYeepMzRhS
2n4YRcNSihVvy9rQ1csB4i8gdtQJrYJE4z8Vnc7vG0wogjCQAWzgntuzgG/Dle91QTIc+BYiUuA5
SUh/WO+KN8VBgYEyDFuTB88kuZDRB5f1HdObLkS5hi8wvQ1cehj48qyhxUwpih4khib7PEjdrSuO
6oD8i+ssu8kkH4e9xA7xxCnkdNEwnWwZnBJZ0qJWxfsa5d3R6UeTYBjlt+MvU16kjwb782/i20zc
Vn/K6gvbn5a59jChcmnaWa8zLEe4gdKUZ6Z1RfkQw6STiLTl6KTQHIXyVlSo8X7oIr6g9xLJOb1y
9+IKT+zWs9RjIV8XSkt9BGmYWg5ENr3BhW51rjZEDhI7Q6GcXyPDud4gYasOa+YuPLiAsAPt5XRL
G2bzlvJchFvUA9cHFeOBA93BNdLdPlsRiOPST0ILflvzNX5S1zL01DBaD279I93sAcw78G4o8as4
ARNimFsRzN/nPDQ2BFNl1oY15cXj2FxITPiVDtcTp7CFRFKCtBpIoWu2U2o1oE6i/YVzFrcj8UyV
KPSYhaefIFOERtjNEiYjS4TduU3B9uRbzaOy9O6khnY9E2uAjkBuHT+RkOa4dGHdqn+HuYNNv2dw
jDzmFPHsiOZxj7KxlMHqN43CHb1XpqPcnJntantND4YRzkR7sFZ05IHzTnBx0oHmNw5OJJdwOgPM
7jDdGFzEzuCbi17bHixs4Aeuz/MpzWKAQkcfPR5AzZBLLTp75nBSwHHDDJdK9QDIQmonAUuLngFg
IcA/btCV4FoJ2UcJd1OHvVXm6thPV/AcIPu6bf8egwR8qCqNfz41FqSka2ggX69NUNa3e9gAXywF
Jnqe4m9EkoRYrK62f9Qg42rHHC9hxZYKFFpyiND8vdHAxg8eeXu6/sCNwezA/wZXjSHTD1IkpiqW
02MLgxkju2D5HOYArIarZ9gnnaxSSAc2/RM3YUFI2KvNEf5pXqhsBCE93acb3Z5sK44f8UfntzIb
+xwWbefLbK1oxUC2vYg0HD0kZ2tKQRfBSFHLYlmrbp97daxki/J5lbYDfuR2W/2zFLiuMWEX5Of1
uJaM01PcBr1DAmdurX5krEA9V3GNZmxy30zraU0FRJjPC3nYAONah2Q5IVNJrMJXMlMuFHQ+4OvM
CkqAS4CA2u2z+hwtkAO0zY5vk/zWOM7DZrG1OulTXqejyEagXT3ccwdDbUGJeWZ+sYuJl6+ho9pW
8IQ+AxecXFZdtWZN8azs933INDaHwdriH7Lu3x6V9nwEaIr8iqliTvSFMU42RkpGSYlAFyjM8egl
HLf0/O89z+8/xIjRbdvHk2qDRTyDtBpnGgTAjHA0Hy/anFDJOSaeWQ9lZxhmk1BStocmNgfc8LoW
BYuHpgKksBcqms2hLfYc6vuhO7DNBo2LYkq0FRFqA2/VUhtsJnLbriUlnkvzfqO2Ei3YzmI3GXFv
9eVFy5PpPZf/xVCCE8j73hdWbFdTGXtxkqMsbfUIpY1sscwHDkdrhMdm3db9hqTHdWaimpTBV3Jd
n+TTg64Pc5PHQFYSgbP+4kpjPGnvHfjbkYjHJT5t6TfwA8kLZvVfr0rl+YtHjjdvl1uE41PGpe66
WeV73jRkUkPjGKkZ/jf2X8Dogfzd1yQ5xDPHTeOth9kPbJwHnBAhACb3N2QzS9giOnwgHwIDPilD
Guxo+I+Te/QjVGaBHHXBd2w5Biz1RGwEARk70h7ohMw8aqTWPeML66puaZDybX75yFuYnoxsDyRa
NyK59i2NwP111L2ZnWukvTTOGnZvdnrZxlsEwpAxsSwY514nRUMEipnXZlYJrur2Yv2G3eZfnI+S
zhdP6Sk3zNVpqxDbBgQgnHl9UUzBYVZhmfabfTdHEpnrTpJ/nserkOGwzR6cq3TATYynpLh4td3v
SIEVUgmG4pmozjO5tGMrF3Zxdaw2/R4rlq2d0+S3QXYw6CFKaOxNv1ru7Rke3uPh51fOVos3ed6W
3JQ28jKQImOIF+iDf1DpMGj7IyiBOGaIKZBU2j8bjtwmpQBmI4iM8McXFhUaTSf1TAzqaP63RCqF
IW5wm+KWJz1Z63tHm33/d0Zi3FXjvM5vvBwDtvJi3Ex2xGV8Rf0QI0QURVACdi3JAGjUM0yF3DiY
SjmZ0BzjUS60xtcOOWq3cbDN16VyjHgY95qELlsppnG33WtSXfI1k9uucLazooIo28v+09ASM31N
R7BXBbRoZMUoTk0hmhmzeMXbiw2bO7IQ31C/oh8xGUiMKHoOf6Vx87KKyGo72wAEw6KsfYy2TjmR
KEGKRTu+A9nc4rID36wvkxBp06NyMhGUWEsJloIsRqC/xMSiu+EUZjPcSe5etuzyCIssxZKMC1QU
IrYjgF4O9E8YvBzsEIS5qRdMCUEuNEqepYLP4owgqdgp78pi9O6RTwGdvuTAiqLpnU2EeOgBJjAj
u+sNxnoj0xys4PrKlKANYrI3WqvR0laXnnbXJi8W3JiH9Tncfz4aM6MQlmhhv1kgAEl3MLYtDdDb
vFWhVG4X19RhiT801TDf3SQLN0mz9Swbt8wuhzzonT40pEQMs/VHPGFpkLklaSU7OiedgSQlOhqP
8JvWLhCdt9drb00Yo4rAhMr9lc+UsC0B58bfhoi+oMRg/q6KI09qEYqi3dzT+QIPn+yWMOlbBwC0
clL6HqCnDlbdaIb0+m4VyoHIQF0c3NQ6ZOmo7jbw0s89Y7DS2dxABmWjgUYSV4cOn3O9RHnd2uCi
KAF2dk/0QLoOSo7KOfK69wtsbeC2RfKL6dXDxY6QMuyxyQo9p4/gKNyhei68jvhk4kchI07onQn4
0watwLnRb1P23CTNh1a/1SJQTx5BN4JkGWw2zUPSypTmr676kdgUFMhR6wKGc0IpQQGuX/NkGAEq
U22cMO3dd8oxArK3AavO7hmwjN1U63SI52a45b/xWNEV7mFB/6svb4e2DhZne4AOAWdqrDvyPocS
nCUITDrUvjz/6LxhPv0IA1MRSq96btVpAwr7imG5Rp5lV1FUkGMug5Fw8SApZuFaPAxgGu3uh9fS
J/VvnqYwxRoofPuoOJ40d1Z7YT2m3EWZG4phzqBeBUO97ExNgWOE8a15JCKmvOzgL1eMyKlRbh2P
8pLeZIAB36FOKuS284UlV64tgWwSE8jI80sJVYuDY8loGwnjjVEDhbU3Yz674fzZQHbxM296MulN
XfIC/yYSR5NwELEUET2JfakmMNBhX1SlplcfY0LdegosWy0UHefKrLd6jMpZOZEPUR0kKSfEcIav
vkTK8DEmQln/FgxEhIZWRp5mKMaU6TIrsM0oxXqUvQaBs4/64lYrVHQWsV+xicH3f2b8NEiFerKr
bSPcSK5InuVhn3CIGij6mgdi5j1Fg2aLF53BqUzhtNiCwV1SntsD3bcoXwVzWX7h+2L3SwpUILVD
xGbzlIBOnOwDbjG5Hx0mOc8E3EIBn3YJQm3UaDXebhQJq9L0mKN7H1KQczblz2pIfxKgKJm7kzno
dzHjEc45j4f3JJFnr/Sgg7CIv+uRiX4UaZXE0vN49X1J2JZXnofSEcTn3x1IR/MIyO8yUP6sTMQY
QFvomo9Sa87EkVuqft/cJ8U8rO34i5lA5F8sMbrZSVBZLoD00I8HLLQAgSJWpPb2OJENCyz32m3h
ITTFQoxH3ZDvZEzmJ+WmdWxX5/wPWL9aADYTypQVLklYNPHVXrO9uqd/Ih8WCPV/LfnqPv/+tEwh
2FVOYs6rpFQhTAiZjjhUtCIFJYypSdd6eJ38r7y8zT7KVK8x/S2DUZXPOVmrhbqq42y4hWu+fW0p
fQe1sTwUST/5mCjf2fX2XwlCirpL7RtPQfLnSzXKGluRrz2Q2LjvkXxMK6hB7j1DuzwnsD6y2a9i
xNM5NijKrn8NHvCt/JuJ2OzxDHS2s5K4BdnJytFQEozANxZ+Rj5OEXshxK6a+JidFTOy0dKyIr5R
liewQscHWs4aIdDT+tuIsylcBeQKIJmYMD44l/pNjVAp0vFIHAS1Nh6cI6Gs9VfaMhFN/lZEqbWJ
VHohY4BToHk5dMplwpd6ffw0uoc4rlbSnJLCCeHQpzrTtr+3/bp0R0/QV85wZ3NQn0mGcL4NDxqt
CPejZsxaYsZ9bR7bKuq03j9uOFgWsCiF4DXexh1r5trLOe0jeyMWtuN/RLx2h94s6mbadlk2GJ+3
ZTJlSQQrDzyZlq2iKkaKcelgDkHkdT6cU6Fu1wbnL6z0v5dsf4/sA7KvJzX9YEPxuodeGhtbSL8y
5hTe8ZvAhvnOa/oSNne4CsLr4YMhQJGqQQV3oJiEndBrhO/UHkt63NPNBWHmbRa52YBXAdpnUwfC
T5TRl4Y8gAe+LO27+WkQNdBLVY6dzay9mVFHSwdedJzT9rPhQvjIUhOCOgx9wiSwiiwYqNgk5k3n
zw7JO3R3bLdBhULY4j2mI8Hldj+PjHWz0WCbXuFaRCHfeyXCu59tP4iT8w4w+DM0gRjJaio0Pj7P
I5lT6CmGr+1l3tSv6z6WLtYBVuUwkcRwaa+Gh1i/UI2mICK/VURmrvmExQgWT3i79dzMeEj6BxD3
LjY4X+JaZDJwHLNVa6Grs+caDfubXaovRvKKTKbDA0Jl+dMB1Ki+0ggPM1H7GwnrDkaVM4rb+wrY
zGAX6ZVaWuXBopc3HC6SnzXFJwD/HWOAG8QTw8v6u3auGCypJPHGcWBUTh56JJFUa/Batw60h692
8qOAJmFnT+TN3I2T9ill7zUikjbswYEbZgXbrfYglLOYMIZAINyy1s5svR8Adu6P0O7eVtEl3JFe
QjeLVY9q27RsWZI/0sTzsb6arpHGGADD/eHWOMPbByxxvdyrmhRh+g13h9Hq5xMdlYoWbKmgGrof
ZeL33U9QA3rWJ2tKqRImXCy+yZEV3hvkCGDgt5ECm4UaQLTxP7kx1x0NkUZxP3JJulglbix8Qtme
JeIyDgJVKD8jgp4jU9B1lI3Ykc4etM1LUj4sfAV2G0oGHc72iUh1licDFgAZKhzbHcJfhWxCpfn2
1N3nod1unYa63Z39YZx5VHgX5Hzbt046KxE562mAYOj9pq6AgZ/Dr1sbyJkh1hzkcaD0u+UwIncF
RPddtBs3Ik51VesGChdBKvwuuYlwNP7RzPfFBEnCV1U6pd8lmDG1lTRvKzO71rwA1d6UBXhYKETi
vzCidtby8uhnFQtLDPjo8EjOh057fAeEfVMIUEvsUlnvt3j0Hp3iCv98+7EqB81FjUd23iT7oYQy
h0BUqP5ee+laY64cGYmEpZ57iEc5amG2okQJaFjSKNClUUkvDxKZzFQfXI6BsVBghe2DiVk/GT8x
tJTewbk17ublKeaInmsFQxlrFCkGAzHiCIFQIq84+tD68JlVTcJD8NlDGlMxSlRKVS8pTcSMZTZZ
uAZLbiIFPHkVBuCkWvuUBZyVCqBhmW5rIrH8U4GFDXSqZj0rLGzny48PxPb1TszEoKOd+zpLbKIl
bkaiGr65eUb9WV7X4Cv7X/T26HjcYxyDgnDI4Hsm9eitzDebF32DcYasJLAsqlFaxo3bDtKRhhuB
swi3XB5XtzbjxtSBPkHsrtFalmKi8mywE3FamaIXcyPUntOYdtjlbPWG3WKaTbcgkBAGZaim56oF
9QY5C5wCy3W3ocUh/iZSoD0VCXtpF0VSr4jElG/HTjXQqN3e9FfEn6xTXACZs20JcQg7U/wsFxgx
lJ4zd+bjhQ5oKsQOw0jhG0Q5zcd4gdundbqdXH8sboc9KEUjqS90uuRMmZxcRwEAppGGu/MjKDMB
Y3jDSIY4V0712WzDKO1SoAd7dOlUbBjO4Gtd+WlV3G8IVxwORvXbknqiiSel6HiRqdo0W3XDOII9
O6OyWHYcYCcV7BfjDxMjgAbdnXwGIGSvfYGsyD77bnIqhWNSg1Du4d3szFke0rUfqH3itohuvoQ7
EQmkBXtNEV0RCzjoroLayKy6T/kRtEBY3PuQQF/mzrUTmWXETrouR5fiyrEsAKmHfhAwDXw4kmRa
OGsgmYAn+xFd+y69mHEXG0ilWXk9oYNTY4yql+hG7kwUCgBURdlSyQTAf1uSZdL5nQRKVnh31P7R
DZJzU4edwMHHVWn4YGZLCudJhx9EJvPL0ctyQUVDHAuHn059ts9dXR0OXj5pGguEB3pai2VNpbaQ
IONbVPYp6XzGp55axfVfZnQTW7QrDXa5L0bmX/4g0yUwGFY7TIVESi86hNoMf6dodl8g8P5oytbu
5n+92PSwXHNLYEQYDHm3EezdTxLnHdKwbCdrhLqN+wUNifJ/1l8pzh3olKSUr/Xu6vSRjeYXwiCr
0qoNr39rQgxVFg8ikVJhPxvVzo2ptDC01/HNVDt52WWuL+Sagpc5uyr1v2g/VGq0rLELYN2kbGpn
tR0hjiD+nir417dkQf7dh4cauv3KkSJLAjbjkefCmjbzjTJPkInws9nT2OZ7cDnpfR0D3yBGsB8N
sQiZdWlsvL80+DEUN/hwUr0prac45SDsyllGqFbIqk8uCOYCS+EyB7mgO4NqerevHPMICJiMR3FD
DWuoVv5Jo2KUcYfmtfP1UE3Xo6QlBBKulm53J20SDRbl8O/NmQL8tMOsLb1oXSXYvwXz7lur26CV
ZU/EPGD6prNDPhpOViN6aPjRp3/jFP6MJcLg/AVs5HnQ79Qzu1nLt+dJliDg0oF+LtY0w7GtE42P
twfgGJcaD8ExVM2ZSwAlubJNj6gGj7Dtw+Io49MvmnBDrvW456HCg4L7n/EZxUjHSEEMnvE/9QRV
dHk8wx85eN6CAXp/pWy9i6QYaZRFyoz0FDnHJkpVy7BEAvtUo1+LU7gM36EQnmQpqg4rSYHdsPHH
1AVVVD1LjF4tis2hVtIVrCvuRUjiqpw0GG6UQ3iOViRSXLg48rEKirH2L2SxtcWg3KDxTvX7evG9
GfYtU+modYICutlR9dA65TlYhvkNBEB0V/T3Jp1XavJP1JZuLQ9AvWkT8rYlczu7hq7pk/scgOIq
DJCtjX6fSwkOGcC62XFva1SUjww6ljmBr6euJlf25vtEk40IamyeL8BfZ3y7Rrado7HxNoiCoyLz
JPA5o6DW3BcVNUvsHGuMGLPq6HQFh9Jf79LlIFIVx5NMvS+sjekL9FSwS28gbAC+9ZUtY0mZCe5x
juc67b0fv3Hvr/lqHpPJs7hyPm1Dy9XjGv8iPnCGedXR6zyZWsK05GqzIm7pn8S52yyikonBDiFb
Lcw+DUZC49NpMlmbZe0fAvFN8IlWiPY60ekJ1OcFnvNqW9L2AF/x5f83dMz1EawRPr3nMwtuQSIC
TTnBtAPWqmTHwFKzih0gckUn1jtj1iyUZZjGwzzgBFTLHv/AAul5SXEglrWtrB8Vzaar10+2afYL
YnIJEtx0wiIhtHQg9AXlkreyFyYVprkwHDXqHXlNgX8tmtlNkLQHLsnGgRqUh6Vntc38/HIlk5EN
iAgie2YvidIZw8Yh6p2ftIxTIMKGSWRExhQbJrCDubUHxtbT5NXvh7l/qXxPMgtxCSWMuq1e1Bnk
zmXUBsyDylRTRCoQYdjiAOSK71mq8rvlw4+PTXWM12Ru+3owmrLg7Xk2m9z5nY0cHZ5sVra+IV0K
Aak3Nf5IJdOAMcWzkZ+9EZBWulLML73Zw36vFuhKz1OS1AdvBYzDzAllg0c689/gh58cAZZIVoe2
zThw/JjYUxUW81cxhhmnxmK+MxTGyVFYxDri4bmV8aLepyr+42qzdc2gMkTALB9gdIsleabV84f3
C9Qe/PPezx0wmbqhqOqLBamVxQar44UCBQge2qzx90gaqIzmHKCyWgm2ySABbI9Iff6f4Mq843x6
6erjdTX7tN9Sct944y0lkscNUKr+so1OZ/TiKUFtgjdcPj1nNKT00d6YcRg0mpgJHo4pRKn35Viq
JUymGwSgXdiAVBu82f2fCL6nT0tQXBzpqCQOugvkQOMfX63uKpqsrYLJ8u+rE0DtG4fzBEKmnDcu
h3JDjMITVMU2lrMzmARTAJnMAHl/7rIqJS61ebKJKjr3SjNL3EdRQuFxai8onpz6pPSXz6nimlgs
SsqOj1Z9NrXvT+bWUnmQsYyllz1GmJvFUY+v3a3HnVd0NB3hiwMEgW2jTvWd49eVc1Q/e+YRaMBM
DRujRJUAU9binpr5kuxgU+uuddwyMpCRdbna6FCa/7nJgEN1Incwhll+v9hlJi+5MxOgEFxjju6H
E0neRIdnCtSTr0H1FlsUGK1JHIAvVeZbpr9s8/SGi+8hAuV9S5rHFODrDc6UvhroL6Y2xrvXfW+N
rPMy6AuqxaRJFC8Fl7heTSbiVnE4NKfO0PGQ6CkJybOUuCaODfZ17tBeHiJLnYDdsxKwyNy3154Y
cD4hmK5CAcXoR3effR1kKdqQPKIg9bVkIjOxfre0M347BSGdfTglnGTQK8piSPqAIdMDML0fo3MM
qxr/LLldEx5mUvmmbEq69llDhkCVGxq7Zo+ynhEmhXvgPUWn3Pzt3Ppg2JeWIw6MDhCqKbNpRvSg
pIpTKdIHSrYlul75czfifa1Io9cFC15VfBQiNV3Zx3j5bCTZk7+bTqYq1EZ3QIuvgy0AeR10n6WR
YvOqD5bv1rxF//imLL9a1XX0uPL0A4bUo5Fnv+xiUSGnxywfN9T6sRvdVIn6UU41m4YA11wmUuyV
y16PKdw1bm9XKuwJUL9UFZaUkWv0EA1ALrZ+kPLl18XIABFWCdgpp5ScEmi97KAFZSklrYLcjSsU
6YxDtGMTVtzlugS6xKfRXKKfbeDc9VzghS5NTxrEUpCY9kFyLRuwXHy1hRCJmotmD4NjjVUUhOd6
IMn9nzHslos3K8CR5kM0+7whQ0hKhrv2zUtd5isZReOHcjHpmDVoQCdkMm3oMfSCm+WEVz+Y/GS3
e/cm3WAxuXGo/+EKCf2+gFKxuVZRsUPWFuNrJU89tflPidts5I99mQeNc/faSjYzJQ51iP25m+Bt
+tdLAsDWnJq64Rf+9I6xDcnF3o7bDBuUW7r6xW7YwbbGw5rZaMIHuDpMe922h3dYpK+V/ZKZNr0J
SKP+BNROZ5KGE7butR3THZ25adeJhMdLosERTaqM3Yue8Afszh5D0PTzPJNlSOE4idNvgkXApCz7
sUCI/Jxj5CXj24oUWKgyv979hUFFTdVi+lEtlUPSj029VdKwFooXLSTzBkCNDjyG3zwQn7cVIm8e
3AndKIbx0K8kP1yqMDdVti3cuCeeVI+SMo0l6vYIifyoiLp5+IGrSw6Vcx3sObsbHcgZ/DGuGsRt
d7ox1lNL6c0MwJo/jrvjtadaDamFQlht6AXEmCsLN3RYyY62hHZ1K4KfzSaRBcNF2DCvny6y/jDD
BIQiNcrjA94YJH7zbEuxYNpL65YZS3ZLcw7QXXB4TjFBy+1elaM6Aq4iI5g6VMGSfeIZvcONGgUI
TZyfy4PlIExF+p4J5zS6LE0ZH28Ux2B10wmqjs1ZQ+97CMsFDEYnWkOUHxGGdWQFDOKQjeUawe4W
SuwXrwHjn7i3AaW+AyHMPPEXO+zi1kYpOrRH9ejsX3jF/fG9OzjU53WSf0AHJx1oYQOIXStw1AOQ
m0CxJ/KCGI4M8yDkK0jkh+5a3FbKRmB7aiFZ6DvF/UQy4ys84U8CrmGx5IdI4UU0iC5NGYyxvzlp
iMLpJ3NHPOoX5VjzH5LuJSU9wNEb8nuvSaiHSubSBu1ad5W3uqwlqO8P8p2pRbj1IldKOHA+5NNL
pSnIgHxqv/cDGPeo12wT0ajQ55lgKNEgCpnLP+Fu4chChpQ8ZIyK01Mh17m8K35k0IJMe0kDm2VE
UVBLEJ+ANivZ9DrdrzyCyX+YATrICNJsdapuwRW1AFnameR8fVScpeeZ1ETmXhRcBpPlvWAr5QIr
21PHhBqMwEAsbpwzDeWQGgSQsRTcnopnSvOA5woCRgvyDk5t+VBxdZoScSY1c3BVnCbysmgAjXhk
r1OM7Aw+clx8bsn5/t4d2V/vgTvyXfMng0dWlFl63XxvScU4Y+2qKye1Hh17Svh7PkN5Nb64SS8A
0Hq9nNZK+TCvbqZWcwbvO+PWl7D9ySqhmpBMkosw7BRcVtEdNl0dKwhe0GzMLqoXZGpHEt72SF1z
qA+TAUTxE2z8Z2nuw+krlklzpnSJyp7J/pQ1kCFpg15oiG1fq8HyS/W6eGnqY2ECL441JlMRURlz
FPbcNCq5AgYP10cvmNz1QjX6i697UrySpncsByiIJNMwcnDOXXKyZ1yYQHyuZEfKGxSENz9LWe7L
wqQb5r4jstXzGyLmfq+N6q5P3oAn8lYGIZjWBRkLn0yUPle7KssPBGxIWnWYBXMp3zYGFuCIiRJf
uwdudGIGJ6xDkCy3yUQqJNlGxtDI4hNTPVb+UXkuHJEK1dmx9Ux/YS+xYyZI9fdULNFMhXdqkc3h
7RWefeBMqlxjbgLgp/N4EOh/Rfi9xMwOoo4IjfH8L6MsmNgnWXC2J2+0M0wV8pY+dqDK/BPYpQyd
mc5tEfrqKvdTBs1pe/ssfJ/9lb4HiUCYQrizXUXCthTKTBK2wbEdvQF3Pen/3L/FZCOeG9DWrYKX
DIBdyNvalV1O6QMm7Ddnv5URCf6Yn89umt8wdeFMbXKAPNFLGqaR+6bVXf5yg1Dpprko35D2AQdG
wm5fTkJ+bS70kXTXlKNtg5UyhvmUF9BITt7eZjSPI8wQwPFU7o66Y5ObcC2DD/HARKk1NGaQmO2/
qOEjN7ODAzVHg8jgaVWLL8tgj1kQE1RIcJptHz2/285PwUk7lvjK7Fku5sho1wKiAy4+qlFmP/M4
QHgWYjNrPy0VIQF4y0i45EG4L1TQ2rzJwaYjiJzsWD8xkv6clL/mB2iHWqLr5B/GAiobm+lkvph4
5WiteylnzcLGDy/yVHZHTKqOiWOp/A6iLKWqErezDgbUIUVUH/GEtHM0mPd3D3wAdrWhKde+53zu
PHpKI/+FfvUEwgUVEkLD6ff1uOkXuf3ZuUQkWJDicnkBVK4IRtiYNq88s6HwyoinIenxVpCWKfbI
+zyRzRAtJmWB+/fRT/c8m8NdZ6wzc5qdgVxaX6IfNynTljq1OAntpVmRridaszMoE/bJ2fYHo3g6
iF0g4Bb/UagWav+Cr9/4U0yaqCTez+wHMlEXNfaEBkrUlYSRBlPXRuued2XkWFAPxyu1a9Bg9LL/
2X1AJzmBpbgakA0sq13Gs3gPVTv9wl5uLBbsdTQXwgdetvlKt5LcKbE2gmt42N9Zd5C4Bx61ghP4
EnmSmPkzl1Dtc23+Brir6I2dnwE+JBJO3JTXrAuMelAIHFBLx6MttfTpPLY3MVXfod9L4GqQG82c
4yJhRlE9iE9I6bccjcGAumigED8xvCC+Nb9PXhW0EjkuRUtEgjjGmTk01gwsKS/wPGykMz3WtLsW
CVQy0wAC4I2RPPHWFox6ynYt6J7gk7kXhwoshcIW0gjYhfhBYAs9jfGn+xZ9nJ8+TpRPY0ILcmv+
UfiKfBudzmGHZ3uOJMo0T1vJ39HMeTVgwxKoMb7CIuX1BWpB5RbNQwgRGj1TeKthHBpH/I9K44Uj
ONrjlr+IQpcJeqoPmFN0BjS10Hh37ZyDB3SoZuduw1sFU44ZlpPxE7Y0j4jWpjMnWYmj8c3Ti9dh
hxY0pVS778btD72tLeeaP3Rr3WFhG82PFmfAyHmelaTblZCbsbWpS3HUQy3Noj52w50CNvl8h0Rr
PKV966YFWJJ1klsWIv6XE8tp7KLKGe007zCfZIktVrjk1/hYWrrupkson+DiisGxt0GvbsgtvTsS
XKV3GNtbK3AMy502KzZTqbWBs8pQNQ3Qp8MOlQ1a31rYFcit2hcgAXKPgaglEQzk5VEQ/h9p9qd2
VFJeFbb8FkhHgg6/Q1BJwb0ZbzdFt6PGT/LM4ithBZYRkmUzm6TBitwpxEMLqfO2GYfNg/k5Wsxe
DYm4mdGRt0L7lfaE3OfagMX7szND6FBcqeOG9oG7/mqoDqo47wYWZELY2pumJCG5V0HdCI/DP+or
WxyoaBDEs92zlnfNQ9g1mK5Fbg6SgnLUQYcVvgU2WuRtoD/aMtz58JD9vLSKzrPXuytMVl6mWdWN
mMnxUVIfp7jY7nSBC2QGbYAxtDJp+CTQqaA1rCmu8iaH7Y6HXlR2IZD5emz866ouy9XCzrSpC0Jw
LbQManmP03lZj0Tqb/fqdFmaFCxoyBjTG+D3YWmXst/QY3nmDa6+QFAFT0G3oQVygSmYLn0Jfgmi
TVoiJlIAbdpE73BCuYQoqHj8QpQ7FjHaKpRk9VbLjyzEEkfY2INDCAg/VThMkl0isAW0i/y+gRrp
SFRUDbHnh0++zrjVTpIG62l+ZeQRhsxVPUt+gMKWTto5y3MugpR4VKjQsHl+633tEUcLmvJuyX2k
dSIFy6Ai5qRbh9apOSLqglDTpn7UMfZkrAS5Vik4fYWgwMRgGGV9QWaVj4T0QdgSoeJDIEFypvvu
yYN8xOa0ZyrOX6XOs7mV5Otgw3Nmy3Fb80aIb/daM2Epgr9vmj8dpFuzgfT6A0jGTighMhrmCc38
aDlwqcf0DNMQVr+ruEVn4OJ3PlcGcuWd2cfsMGaoDwvfSwfFzaNhmluIAIe2up7PDwTD+gBV4CA1
gfTSZ76iM+RUKisyy2rND/tTaBa5lpnp7LTQmovL+zN30Fn7/0m9RjBY72/PVUjzW4voKGb8sUnC
dFfEygb9DjvGEQMZVsnf8A1i1UWbL6/8hwFvYCzmHzUeRfUz8XSHuviVJSfRLB1BgRvbMjq+PMno
U9K8Zdc/qM6hIPlmzqgJg48MtP5smp+2+xAEwtxqFKW0BvdpZlj5bM8g+l9YV01hPnoriLhqKasH
eoDp7ataH08+4geDERFaaOPo13WQ2H9AiN8yPKprsajtPqa4q0fmKeYIhdwQw1mfHbpsVDv6WpZr
HsEht2T2l0vNptpKUtWieBF2UQ+duydDMgYE0f4N+vFjxxtD11MhhJLWkJUspwRl3+5+UbGqyk7c
LQpgQeuAPZDk8K5j1SbzhjTQK40yYR5V/frahlvWHLizuWG6zJvEGuTW29/IsB65S1/zCsumqW2c
GVW2zboaA9DyMxcq+A7z/fI7tLl3lsy00ve7udowa5V1mnnKIfvtok6cbdvVxo7+KwedfqH3XZxw
m0GRULfDA0iNh06tO4jz5aTFO+C2d6S8dNV+bgmnTDiLBgceLXI4l+H6w3C1/upIZSi0BfwykoOG
zJAv8M9Z4xi+fKdKO6MNcKgNfvx5ofeVfgNYa1ig/mo3i93ZosG6kgmNOE1ZYeNx2A4fSy+OtWDP
rzyh1LGli/hyASf25NY5g0nlYr79kffZh8G7ND7zbbpGUyrodOcuB18k84H2er+Pdj/4InRFCqSo
fbJcHMB910HgLohpXD6NTwAjj+cPEE5mQSoNAyWslbQ52jm4zyEd0o8rRfybV1zwb2x0y2wHSd3C
xBLiSmRn6W+f1ZHmwi8ZmIq0lCqU3QzqEIvqo4u1HKv4AsJ/IeN33tjJ3FKPvSiePNrqALfjnLmv
Y8AoD/IfsIG5lzoPdjr3+qVc3NC8mLiRyT7F1KI40l04dm5U+UDF6jRmcCchXvAQEZBqhekBhI6p
TsF07p1k5ru2h5f0r7XTOyUA1krx88FGvFkZ/wRu/vKGZi6dc4/cnUXOx+b7wghMrQmDMDOBRIVb
cldW5wCpxyWslHNPXnNMKwrN9jaylHjbPvaOgznnMlMvn+OegOggC9R6wd3OcjmyzWwvEucU1cD/
cM5T+YkzYqi3lKLcQ7w6OatRIl8kFGOyD8OapS49cPwgwGhPl9l8XsNSOKqwEUQsK9nmNfdH/gUM
uO+AX5xcjAIL5BH5/2Ula7Myz8FqEgfazwZF0WRg1rywkoKYY1FWPgC63UAMa5YX7rsHya31/KNa
9MKHtFLqbg2dmN6L16Ylc+ePY1NyMl17vGiqEu9AbDgRhB3NeW8lV4aZBYPNWhTfTzipHh/dT6qO
W4468yiNgtYlM/YBlg5s2kUMlHMx1LWdc1Ksa7Vj9wUOJaA9ZprCVmVfx8AgE8YVbCB+0Ittcszd
m41hjVmL2oHD5+bpjNtpjUoykvY3XN2/MSkWpXUPjozMBNPd7HEP7+d6H5mN06hct+0vL6p5Sk2n
Mej9ftbDsAH+Zt4zkKA3aOeSt+skz/jPC8Tw88j0ZJh6u3kKrekiXTX9IFtThxsWkrxEtOs+3VDw
BZirkm5mi20VdKs1RJEQxAhugnuiQppYI8D/iyi6GKbz3Pq+8DsTMJoYRm+Glvq6D5UWpd4r9mBm
7aW4CEr1TMVu6EwvvcdxRQYJzcxDTBCFB4SwfggRE+1vTGwL22SifOEvDVnp4C13CAsSFKf9AQ/D
ojqUkXfxrintIRmhmIPn+TNF9+hGBDs3iJRJrxKZLAjkzHY5R+qCSD9b9sfCVAAoQeCLIL1Zrh5B
gKnGlcf5EgZGHWGQ0hviJLC3y5onWYcnD27CktF8XUaNP59CZWSxr++yyXTr5c+KDHSKqkrUMzVo
PvKLTVpe0nNvCRWBEUqHpKlnPUf6qLO4Qq5BHqZotIdHxsCmRWK37/whcuTtefzhD6pts8NSWBY5
bx6icXhXlbE66D5jlcu0wm88bcldpyJEaqci3XNLRJ3BhMXzEKdxj6nekQJr7BU+98pJIJltWlZE
HyE00+bjzDi5osI9eKa3TIdxB7W1z1ubq3LHYbs0I7aMBvYRNnf+5wzfDcKqv2O2jrP8FjXVyLz/
BAHCkEdQyeCTmY6xor2TEA9pjrWiX+TDG9ILNUlfYPLEB1GF9vNoTel16D59J03KPX3/aQ87sIZz
WzcmecUx6SShCNWZEB5WVyc30yqui/L+N20RYn90rjhe82iTv4ug7p5R+oPkVfJLs8HRG9B4oadJ
D/O39bzh8Uv5x0PoCW/eI8Qzyl9L8fIoQC02NE8h9S0CGKAixMlTaUehSaCZ+cnKMkMxO3LI3Go/
OTXxj+v+WgdaimkIO6iD8OFp8SEkDczYo2X2sUD31YP7iMap9tvviHFhfgnAfShv/nAmXHqc87jS
M//Hob6D8MuNJNSnjlERKg+kqBltZkDi7pkH3yQciA9QPtX5ZilOUoHC+zwbNXOAbVVVrc5xebmY
qCn1VLm186nVA4D1CybsyKqMm62OemIVMBwf9fPkA1kCq3NLJC44NhS8llhKdkcboMEB/diVAnDR
Yp+K+reb2ETwOsF2zbkB0BfCC2f9Nr4ppB3W/ZhTwkI1yAmPkR+nb9BczOZ6kYPfwpD6Ob1wQdZD
/ZUeiDCF0enCtAdu4M3Mpzx24f5rj0A2mHUUlMI2YHLSAPnWJ6UF/4VnFdiAZ0RkTevunHnDQWJF
+/7/VRLGTdio8fzrFQtHBjFfneewY6wRJuomwEjLeOeCQB1iRQoIJKB5Hb/id+4QUhlZLFh7YJyv
d2ev2htpLrsA1LYhlIZRGUneL+FrcQBb0qtFN1UWb9kou5ympduU1QM1KeYFylxepS2psRUOGvnn
2a2uwlHs4KE7IlYS1LElsIxv88hdP304dMzbpmj9CnFNnxkkqHx1AYS3UaxpO5mvuZQtGB0obaST
PZRxfUJ4JwSxmUbgfZq9SAY+fUZRG0lg7xOsnIbL2VmtdC3P2tNNFbodBzNVoC80dnPiuuc5MBMz
hgqMGJ1yS9nv9XdtxJjV7kv3JhEgDEbde4xoiSzqZqlewUKNfRLv0RBBkE3AWF35G8EkEan74Znc
6ozFxRpmV40jdGgaE2N0kkkYg+oL0KBVP4STeZ/a3tYzcX7ipzmfg4rBpTgkX7TBoYeVI+hb74vP
lytmv3FL6ztEb99RYx8SmikvGBDICsXVgBOYber8ePsjRWPP1i1DX3IqSVkNQQGcnfj2ojjaQ4cj
H1YI66MlXfmAP2Bp9Q83R4305mbgQwvcftmaBJH9vDshtKtajfma44hoIfTMOUhQlDEtLJsS+Vr9
QbPPhxA4TpXQzSjiUbjoZGq8UAIhGcVIeeWFOGWhLcQ7zLULlcmgPXsJPRt3oN9W3/qJOeI3zmjL
A6n5zUlhd+Dw1KOsEkxcKgi/AwLtWqC9UZFbLK1j+FLDdMe4HuOGVnUhGmG5KoLJZO+etiEmLxy3
KQtj4kaPnAZnu8SP1rC/nUQcx8XUYEPsxPqVdOEnZVS/ezfSc8rlHggVj1ujqC9WAymI4tne0Iqs
4017MG270zdyXwV3hXZkFqxFpXaJ17SR/oTGcTM1bbW/dCl38S5q8Zy9ofqwt/oV21fF1lQ63dWh
/Bc5fOq8vm8+p58iSFvdrR5lzTR5ostJBwQPARNLaFDik/VMp2UBgUKdPaVmkmjZFI0um1+rtzIA
28fkasLLU11KHWo4YG4yld2llqhqkHtn43aAPVrqDSvr0bPfb0UGBZk7GGrXnljXAWwcC6cbdUDY
+omLb5TCPnzK1ekLy+lF7fQ+v0ytPvUHao4gqknjPglSHv1mnshZKfjIt2ltIdlnahacE43pOEoM
FQvCT/M7oeHIEQKskWRXRr2AWoEwjwCrY1ZR49LQiYFS8CyOBV+KKhvwF/BLvuy2SZmZqO27bZMb
Ioen/J27jsK1Y6jtreN3rDsR3nkMLjfc2xAG6VkYUwRW5BKENhWqD+1ObldGP7yEsT3vOJskznbf
XpKutaEzaSCMQuvqeci+1Xoh91F6DnElxUuRHO70qc9StRE0sj/FJsDclv/nEo1xzobwC5/FWNXU
VPFRC9GQOsc1l6ATNjlg8lnGeWfeAbHHwZh9p4dYRZ2RWcKi4lFou2rCn2AlI2xaDZkQEZtKpTBV
kuBBUoIC2XSiiMEzMeBudroHqA8oUVHurn4wFe5u5b0JDNOFTriqWcSD7EtRU8SogOjOKwl8lnxO
qlOFHvuYbZ7Sd5bldLVM3l6BIgBmHsdNeI4EyPn9bsvHLOWdB/PXZUl9awE73RuqrAmHjM0/gx2Q
zdcCJ2vXZz33HmxZrXHU12E7u9nvNaS0YwU/gQCBHWlDKott2nPkZ1/HCZQZpST13z9DXhmVoQqE
pJ0FL6bXm4h7Q1MsDLWhyAn9TxQj7lk49WiRoui6DJEH3dqYtVqEHse5Nfyg/1tPtiesBlxyE5ml
GiiHm/P6xv5T6DtWZ8DZl8NmRyv4p0mdamrIFmuyPei2EP8o/MW5YpVl4rtUCWNHRHbPuY4qoQGw
XdKa7KQLPJeT2AzP0wycau9DHm7UBiDiiJDHVkOnQ5SjVSloniedwKihnbKuhQINXevjMMi+Ddzd
Cdhup1PIr+SdhEgOw6Xw5aAOON5/Ibhfaf6Ox3aVmMWOVKvfJX4uWVTdof+pKrtYJMTp+f7cdLbo
tcdodNMsH5qfhPkQ0uJMq8yQqEpqSUW4SekT7J0PJXToLnAIZGKh9HV76lTN6fALHO5EDGihQ1ln
qvKYSTa/8rop88/PwltMui+25IBSgfERpAkoiDrEl78i3GOXbE25gmnuuzjm+FeB1yFshALWA2Wf
GizjzYkg04GgexPWoD7JwPMGilSKeNItp8/IiFJsk5RK395OxE6l4b5xKSDdoQUW6xfzEAxPGWkm
zYOEppY1EoAr5XhSl3es1UnujOuyDkLQW8oi6X4HvAh/T0FPcowX7KZMFvdUBMeHrSIXf6USj1R0
On0Ow5mwTE0kKFx6dF7VLDN64Ag/kMT5OBtaNZ9qirQi20R8YlzjQZfdDVr2STLBT+AMfRnC8X7G
uX6julnfNrTyugoRhp1LXo2YdZ0gijsQE0cVfhJLaI9yySHjdqH2DjV4KVCplofW8AHL3Afaj70C
J992JvSQNX7MtBAxZv4XgBnNUw1vjoqivoHZ7C8EWO2ze8Vyxs27ktvmtqE4j5V6hzELybX7HbTO
n5PzCYsCXMPVxXEAfw0ZWt2TabwUhA/Z9FrhHXMuhj0px6oO5L3pCmH7wqEBh0SvRq5886LDJs0t
4GhH1bOmHsikqUBzLp7BkQX/zLxhhOSCmoOhgr0Y/LQFaUILbyVvL1D3i9XEe7cEyIf8UkEwkc8t
xqXAX8/I8QRLypMPngt+cDrNGXBinsv7DN53dY3h2yvNxrLOLL3hPn7XzzO2U6ZREuMD3Chr4eiW
hMOkANx9rq8VQMYgmD810JmjtiKdzoQ40gOjbvoavbw9uf1opaUVHIbXQAz01rZqEU3+OPXBt8AB
UqFvEhcGRd5kSLdQ5PuUh0OUkHD3+u7tke2uF/wVwANZCzWalrVt+BLCd8x7ZdXoBtqUYSrSQoug
08vKGFtx0AC0MGy56l2Qj10n2yG90dT/+vjXx/Pv2sfZqYf6tlhmfc/K/h2z2GjkIIL4xUjXe6oL
9GjgXh9l3M2u8p94r1tO8HcFrbzHmljlCB345E/Cr3rtjPKWk2vtY2BLySQ5ho+ca6jECvjBE+KO
4qnTNBDf4A2X6OsP7rbE0IproinRPSyUCgZPRe2JMQJd5ETJbEFLwkSGYJ2PnXkw2hB51+l8zXDf
cONaRIKFyt8XPV0xK8KF81W1RsxjSBMZSb3OzGhUaIZuSXA5Ddo+uPZSXTz0U+PNYAQcdFfg+Vxm
0Vmes2D/ycRh3qjOCd9rkCVMEo4njRGQBvj0uhPg9KeitZ9C9N8BCshqob2WOkxsKyitx6wkVbWU
Zg4kLx6fBuHVCBrJ5zIq/SQ3ptv8OCd96WvDxeJXN9AHdYUKdeSqP0stCTwNfaqeUWLrtQwQX/05
A2SDGbR1eHYtra9s4G+3PXniYZiwNl17pkLfM9FOle92XeI/wjBnOxP1rf9NzXg88Y52k2SzJyo0
KNbyoG5DkCT8kFJbCJX5QeGp3Zs1yW3q9YSZF4NwIB+7I0qfrj1yCdskvRlqZ9Ld0ws6psmYLLEo
ciz6+rIATQKmlAwTVEdoMj8nKPPvjv8gctW8uZyjUb5p3Mv6MCBpmBTl4sftM7We6PwfOKS7/Kl+
ax4XIpN/4GHEtRuv/b50p5nvac6otF30IJooDF1dvra/kTMFIEUi60ALJ4eT3fa+UTc6Sc2CFDKb
urHq+/b9WPFIkulwEqcf9JFt9INZnoKtiNjB/iNa2768ko80shOm9WGThOTIA1Oc/SuzXN6zQ2b/
H1aefij3kgE7A1fjy0pGyapfM290/Qkv/DsIbuj5xPT7i5wQ4sMR1OF8m3qR/qcKnbKRH0ppQYWK
L4k8zU3g26H+Deq7QME3T8Ghn2PtQv1L78eALWOP7YmNzSIaoCnujK1dj1xcIZDopIrYSMTaQ1Bt
6MKjvhZiZgNUKqcn2/pf8iU9p0Eb3PZvEDIGlqci0yaqbHAogto8Latz3n/yqh+F9mxM7P1Xo2wZ
BYPh+QvQTSbu5CBYEj9MIBOk6CxVEHLXRYZNlnxGpyPmG68D5edc+dlfEv8Q2BAnYVnHF7YvdKwu
r76Pt/d16eo3bF1GFAa+FXoqBREply/QR5BoPlHKeTkxhbVgwX15yE1SC5Lc/icZbbs8uKDRO0q4
3vDQy0u5SHyvLwwV6pd3coh+/PgvHmYW28YLOMQDCZd+ixXI3OJGH5OZGSCRWjQnXQpTqP5IUmF5
PFttckC9Q3U8pBt0bs1gZPCmBqejU7EmbFz0ffJ/0luETAy5qRs3/MNpGHaZS/rUmJFL3OMMLB6w
GT7HW0wlezG/K1B2wgoxAoiO2a7VT8Ru0e351OM6VAyFwaf3t+/1v8E1Cj4GlzF95UUWou5f5+dk
awWjZkwyVkc4M9H0enBwnFiocHLqyu4N082zCfKWx0wdUGzQfH6Ra0kIf3JeJXfJxiU7VRosfid2
akgqDt2dBYnFOLpt0sFBz666fKAgwIH1vxCSrmSFFMXdWmmMLqVegKWp/NKtzUWbZu5eEMzm6BzE
xFVEPhQwB1Vh0hWBu2tO9nauaY+1Wdr0neP94xjN7YOFyu3dLw/YatnGW9sK/8mNK7gCopjO1Y2L
4nmCAqIJLArviL2IwldtaKeoGLfunpqcyGsUX6gGbwthF4PSJnwP9SCPG8PPK7xl52Sh6Xd5Plu7
pEdkqVYk117AefTFroeZZICWjXnX3rLLetNTR42n0xQ1oBeB0vBtI/MD7mxddVL7GxKhhQ7dmir5
dBvofE1bympLmoy9uyVI+LTeVgFO6wlLrXlPNko9bfpYO7iVSvNFg0UB2f8Zy9KUHpCbuRXTXBBF
oHFuIpBdZOtzQQ2ZQaNyZdIi+g4VlAPqtfv3CTlDIDiDt3Zh8IGtoiHA0CYv6hyJ4nCNrWuX/D0/
gujR4hRi/1+sOahEgufLSqcePYd9+YBONP1lc8V3uZ/dPT4+lkOb+Zq9LmGWhTweXGU5rd6ZwvVM
2WYassoPxN+IXuXEupUaKmqkS/ETUvA5Hwml9m7HUpV6JlzUSVSFMNDRE/qudmMCldPT+s6LSFMp
/GIaAoTNFYJ0Us7dmjneIF6q5V1qDmcRgUi/ivuqLNR9UNhPRaRIzXzTHy1kLDCvOl/uLllBoPq9
woTGBUkMYtV591LWqhwjSbvGMckGr5+1v4mqyDGcPKS6RF78DmvUILeg7rWh4b8aIbA8CE93whmG
kMEWj38dZgNZh/eXzean2aKgmgDVkM5z+g2zQYHeDZyyHZk7NH/XKHQ4yNxnioCLg3T/rhxRnumG
VjnAnf3nEOY4rwvl6XveEupJ9Z7u8UCI/LplSG2CXYnh5cfppozKOy77enwbUKEuZMrmFBEnYuGs
ojg0d6kpfsfTOqf6+TTGmvlBWSBhvpKILqoCz+X2/BJgrpVFrRyNkyaP+52uDpdNmSX67UKaEJ2w
TQmzdr4tQRldE/y3v/qFLMgquFNZXeP09/jzyoHqfj8HJ0MITy+WxPboKkSAlB5mpracAS4vxgzR
hmB7WlPj2JTyk3fdAwF6/stqcNkDE7lZdeNc3It8ZMLzCEmBBOlVMlswrkQVTL97+Bm7v1xq8zsw
9+pHdeC/5gyposox3ZgrQAPQcGSbohvl0bX584Kc5mVGfzTpuMIG6swqLiNtQeFGZJpNv7/ZzBgS
F/zU6jZ1py5gB9G0qq6qK/2zzfUQDFafyuFF+odJWgVQ8OoXo3wNmYcursaCGln5df/bFuJ5k3zk
E6Ig2IatWDmaHExexpa1ssXQh+jY4+pqZlvqnrXcM/SMgQIr/h8q4dK1JZb+r/oIeSxD22rOId7J
kXARG8oHW/MSSCio1KbDx0sRowvW/foOnqUSkB/OicpJqL/p2uCraD5JjGSp9ESInQMGTUTUZ47S
mV/cV+D4qO4V1865UUlxwdYRl14q808140CPNOYqa6Cre+aMu/Z9f+P7vHgfokxFpiNKOCxj3/rW
3xhra1Y8RcLh4DUQik873RSq9ekkHNSFXI4QwvUSasih+9Qrsqp9GmdESRPMjLf1Zd+bpFPTZES/
DuTwrF+aZTg2C4iduyEDsgd+A6KfWTIHM4fos/yJMou43VFjPK6aDV634ukLRERFlNyh213wmPLc
YCDtJiYM2mADqeHwuaoMuYa3/vTT+Brz3qyWBeW1B+JiOGGcSR/GehQYfdRCO3TSX9FlH700FIfS
HYgNrYmWYC2LrEpMTEumR4eT9yHZNhI+qrxRjcGzn/Uv/kjgFBTr9mrXeQHsauFF0ZBRP2bMaiVw
GWyBFRG1Gqh069QDhrcwr8UdK/3rqGfsx/ZmxyFFeLME/Z4k7BpMU5ibrBGAz3LNfCwLSU0S2D9F
0OHwWr7EzZ1rsZe/4KMh/xYfPHsetZX88Pe1vjEzUvVkM6sC+JqTd4ASTXq2onBjY8oiEzhaMCng
oGSMvDRlNsUBYZxDJ2rbETO/1mxe3GM9g4KF56YVo2hDgpO/hDFvszgoA3p8SdFBw5u4nrKAZs44
r3QqcJRK9YZlznOkUOfq1Th9IwHNSHTDXkmyGDabyduUHumF8USC0Js7RWyEsbqMADNCOnWUEfGg
v6YFfMfMKlY0ywR7E7SiDbCXxAXB62X7nBXnJNGBWTx9CAusPEhoE1Wj6fQehJTSbuxhp9+u9hSD
f9bdI6KXITwvQRUnABdltnEjA2rFTSjE50bif8RJjMT5nep21ZvG6nYOaDczkSWqp7s/lG8UUgqE
e7j78vW1AokmVi0dWvQ9qVL14LgpXLjYxWwUvJqlZBY8nnNRmJGu8LnslSw8qvSw/Q2hb7c+K9F1
KzGzdAW4HQvEx718UewImx3BKM+CwURC6sgtsdtjoAey9fhpTw/pD8xlz0RD8rMf810jXn3bMvAL
xx2ibo1hLpPQ+cv/vSg0RBrGfDIkmE+rivpoQhIKlKeK685Zc5j6mDmaKFO+ZFKYLSIvqyneABW3
ewRqyQeA1n3q/hSSrYwrC4IDmRO6/gPmzzHMpcMw0Xkf62ZCKFSBXynQNBCStuiqg/EK/qY5imeX
moDm0lQ2jKu+i3Dn8TuQkqIOLeg3wHnqJk8muEnxncTYmcSyLdY/wTsOeAx5fEKMxcj8Q419I3lO
tpMJkd9E0G0q1Ljz6f56BflEnPfsgN3HRojX6TK+7gy/d89SInTBSXzabknk9iNbAMY5m4UBktn4
xNlj84cEfKVoRvJxAvqxeTbGwZiBCdCBY49KYKPBfonriDrG6BuqETBIFOym7qJ4Cq3T7pjfDl5q
TxowziNDPYBejz+9OldUbZU8+ZouQlkJ0JgsQoXzRh73jAWXwFOPep+YK2yIMudd22y0CtL93dMQ
1KA2pLMd/fxjlf4VxfJUWYSdn0vUqnhFjtqcyKZwv/gMYVeyGo35zrv+1o4F+oBz+K59e8f+rFVP
XvxGzgxfZJHJwKAgQ3Lwh4EEwm5XmRo6K8JKPBeRJa+Lc+5gwKhi6xpXLK5IYoPQC8etzmMrbZRv
OuKyJHcCNq82NgdhUPbhFZaVZL1KiHuWKxCEir1lAsP8ImVrF8l0sxaNN2bjmn5yUJ9mXxgycdfL
vQo7ccImTyQ864H74LiTD1YZpTXMeRqIacVRn4p75LEn22wLuLa5QRodBb7PYfe6gcABPayGSmke
+rUH1K1MjzhMoTXwfqBVnQknsqleMkucjap+R3FV0XpLmBDHdQiKqba4xCRqJmVvbx4/w+ID4c7+
nZhiHELYCSVIFe0DQkvlt3zuPE3ClA3+TLieKwmn6Nr+z2Zqmt1VKGjOgT0k1OCIEnMQXPHeT/mr
+CnLWkveIeBYuFkQdDI1bnicNmWF6XLNputHcqeajC+H1tQwEKAjD8tducdLVVoNIXqoGsM5AFX3
KjsZBuDAzEyZDWyA+7Q6zgpRIe4/mMsb2e8KojxD8IayYandwrfx/rJsTg/dg+n5jHC6qM2c+4ne
+QgaYsat9nB/pJLKvClxPH9CgIHo6pm3ww+2y83TJXSKH8uQM/HtPL4PpOPan3n4boTan2AKY63P
vcUuwkGexuwKUjWX8CMX/EYqsbK2tWO8EfUnphE08pNSc7kLwjEh/b625CWw4AP79WMO1scS7m+q
BxbG5d/8E/tA1qgLG2qe7JeaFGBdUukR49EvCvLQmiE9xq1cR4tiHyfapY5qs6Q04BZD1t8A73Mk
vYdIjLOSbercHP6LMmuV/6gVQqrYsoh/QJBuJzw6u4btTLHa88IlpQSlZ1xg2RHxC/vzKvUGeyue
+/X7KXbqt3KGJvvaW0KCCfUmEHISmkjQicTP+fF7WdmXmJnxWx6kEtdi9jD6EunnwAt7QGRKA6Gq
xqMQ5Ju9MKn93hezzMEbM/Xh8RKvmhriRcmYKQuyLgZayYtHFZnbJnLpThFfIG7wJda9qEcLe8xC
rza6jmSyHLEkqrdNFaUwnvgfZE9z6PHTRGzf7pCMDgOXQojqTp8HYsDrT5tVqZH9Vc/kzrNtmdjM
tBuLbDx1IZ7NHWS1ZsjP2kktm8foEPzuSsF9O05sSnT+gMYjWLaF4cGt17hiEQOKrY0ZjQRmNzX/
Npb59Xhy+h8JsWVaSKYA3NB8bghmOwNAaRSXvPnlDUiJ0vQ56RgPfcEt6kiwGbqAvmKMJ33NY9LM
BzxtXUeN7HLvbVmvsi05Bt279CIovXtYns4NnalQ1HSrvhX967k8ePcEsRC3CqojU9wxMHK5IhN5
ZM+mshdvYtUlDeNw70jEW5WRTaGfzdNIFMIKghdWWwLSyAUxmcLE2WQU6lR3XcdhsWhT8uRYGexF
YhMgiMSTnvVj6DSUF+gscMd2WDU7Li9liA3Tbbtpo78hhxozINxStMq+d//PfeDmaDDDw5rVakjX
yQElOE2CEHHelCws5S2nE9mzkBOG/cgpv5BOx9tCSyNQmQ7jnYHb6/+2jFGOFrG2NDX0rwDTaLe8
V180j7OteGWZozhIJFGAADOw2mK/lmkjqs/DEFtTu9pw9lsAx9y2DjZbBSr/TO4w9/2XqQBhbjY0
JYEAH3I0SAjOvb7DbRXNjBUnPjVmizE9/9rhC6WKeiXrbmaS948hqcnBorABx9YkwRs6Uy2WBfGA
LQf2xDrMet4eBl58s5+nsY3EQir54qBlK3HL1ps3B3z7igxf/GYbQZbPU1i8jfePbKwpTIKVDfEY
Zl8y81XWorq/Imj+tn9XpN4/j2YBF9b1YBA5ZsNIF3UXOOhH8+nSaqoTGA9NzYFbN2eU7HjMc/dq
wjNyVDqllKDGJh9VtPd6v+IlAFywyEEOUhw56AtHgIQlUs8cmW4+llpDsITTugd0RGLP0bVAxLjY
v90yY3mCxJ8YGTB1qFaucjEOLgfFj3EIQ4IyfCH35zqHvS5Fw7SZpw5O+Q0uA1qBWgU4kxxUipSl
z3ISQUDx3VFKanbSZa/bzMJnuSEEjnCjU4hCorDoLasZThVnFQlkcsXTrUc07gZF+XlASX61LkRr
KV6wcGqdRvaH0Tu/pZaQV5TtIX2Y/DmSLcSknR9A6kCDN3jQ3i942C44lR4kPGd30rbriSv+IE9m
LtbiO7jKzKl9r/m1lLu8HQDLetHd6B2Oo7nsUlos7XJYAqxgTMusg9oUMxSKlsONDCy4Z0Gp/4LS
vU6mTO+RytrezZxttBqr6jSEjDrRK0JMXOUgR/xe9ePRLjNRXFzH6iHXLnm9fJ8WTKhkPBjVRYqo
rOFAoD+IpyeXHhxTYdu3Dybt0bvOEFpdq9k5BsZponHHrgm/xjbL4TB+aYjDULoRer8Q4L91VDzQ
tzEmsvZhgpW+YABzDNKM88eGbRlDUR6lYuumE5JoKvOBqP52q4/RZGsWYj95h2LOZMPYr5hCueOf
RxQCVp29TJRVEptJ+2Rg6BlXJs1nYChlvejD4wScrPlicl8uqjpz0EFzS6+KrHZmkSK1jVleSsX/
iNLp7iQFHpdr7Rsg0IkB2jhuC2LPmY0tDQMMFV/o4mlWqLxuyKbsdqlgI8O8WFYgGG1CyC9vhWH+
RJEQEKm1n/HRMhLbEKyYS7E8FNhnRD1ctfVxtbXGN8lEIwVENszn6fRV/kXqE+7U+WMZ2Z97WOmu
mfRCx7Kz5nijG2cko2l/nquxgVE1uPWdbCDMucASmjt5NwxEfohM37qU/55RTYhPUEzgqfMZtuaw
yM+5HYW8i6Y5zXIUhWOgsPbDhARGj+9pX3XDlYWZMZiEl84Rla/VSEKY9rpdoLJoFha8tYBHhcMI
zy3VwcX4+2monhgfdVxlJ48d0+SFy0VKU+s+036aeTFqzvN8qRdpltEFp9NnhsYsTGFQ06Xe+QqF
W35MJV4E/XdQQqnUB5vdBhRE7Ckm4xOIU4hIhHhQlT31TPjOXDsfC/TreIbI9SyrJ8HBGEx9lS4o
uOa3/aRqoZhGBZk+XBg+CLi/rwOOOUzkCSL3XeUIESInalPcSOv1pORCYlQIEl5Pd9uxIrgHMlea
8sb6Ynx75VJYdxhQjytzcf0MsyhT+/+z2oXn7e/m5u/LBkd7C6Q0KBNmArYbFprCNkYQsuu7/axJ
B7piKj0SA3vd0gaXjmOOVXOhkgBhAOieugRyEbVMVs+WQdnPfX2/1FTkfvs7sDrXnmpJJ8qzk9kd
dhD2htFou36vIHnpxOs7bEyvs9luPbS37l+cR8YCPTFgx5D8QFvtwg3J4hWxBarfGyKjb+5Kj3ub
Oy+sFXRxvGLXwvVzRpmW54dRNcG67po+c74Xgcut1yzEIoASEF/d6aymaEJefYjF+mn9rLU2GXhm
c22o2ZbbjnzYPiZ/GMCh6cZFSTj/hXD6o9fGZqsJhoXOS5vOFVqEnE0f5h21AF8DDCdSWE/Wrt4t
6cixbexszfG4z4dw5asLm+8ITTjKosgUiYqS21RZf0Qky4qxV9qKehz2JP2JpgV3VIomxTVxPK9x
pNm0k2+zNJUFUfxxCHXB7XzU0DZEptmmksXAP36YmTXX27MYn8ZCdDB564a4+MwckXsjGY6XPvJe
2l/3HIFWRj7exEU/fxotlNZpOJ52jzoGwHsAzuxin9waMx1z1HZqLd0zUKTBkkbNTxeYpIoP7qE+
rxK4rLUZ77uVf8PVElVYVmUmmAAZMdDHy8N83Jpg8PHoRtdj8a+oh5naLJ/uG/yvRPp2hfdjlSxE
ngrcvQncyrxsWw3qpzqVkMXEkpLz1twno+AKJyKKlvyiT057DTdrEkIjCxK5ORJvMR737wn3KV6M
FpmbNu5lbPoSrX+25ALktu1hFnqbVnydV6Az3Ttqc+O3T1Tr/5DYl8efYxS6vl9bkYbkxOIYdVo3
c1z/8VeIahy5/Xy2pxk9MeOIfL5L4fjVNKlHDNso9C/SW9Of8NTtlSmPcPY8M0inxveEDHiZ8iOV
cWlOZVovWCzhI3wDNM4MnCwgCSu9CHJDECiQv2/Ur4kdE/qGiMTUYmAwGIy8tPzJhogZ9pooLAKX
o9kDHKJzHsDQk7jNcgy40KEekh4iwv2yRTgk7oo+WritRuAGOwio7GdHbLalZnEPEaKKLDGCA7VW
sm7FJ3CLMPXhnIuhHy1DzRIKJUKY0mKcbqGTUzoiTmtio/ypIVHk5cdN81eEdvgz5jP3YaBDKraH
eTJXr73NHF8UJUhrP3GgplpUdHYeCK0JwK6nGmfgMRI1HlIlQThvRj8tbr4pS3ahr4jparXbD/Ni
3CCdm67WIEsEpIzq3XSuOV9Yn94YwtVYW34U3AVKIt65UEN26pEOClSpbUt63J/Wfic4Ikt+vF7K
84qibEfJxxw0naUDOV+dtrlWcXHcMYhXxrbHpu98Z7UydXcJBT6YhAC/1gYpwQcRdL7x8j8FVWib
G8i7kdL/eWrfuZQjxORPNWHvUlAmC4j7NBxhN2yMerFZb+6Gz7U/ZsSwx4iWV7UqXmkEVzUm6e11
W6oC69oKr16DAcXKcDlo+84eUYSa0GN25KGxhl27XkUxiX2REHAMV+frKpSZh2DCGtoAtTAvQTOP
xmCbbQKf7DdePrfgZ3qpxJMCIcdKRn2NJhiZ0FJkCZrg7f2YI+47K/qYq2h8KDXTuM/qhAj4DRzj
D+DmNhD1qcpweaxDvuWAevHJkfuOdskAkdeJX953zn1vRLc+YjJq2DywuuhHgFs26z1mmZ311Pw0
U8PrZ/VwaKaXfwgYPub04HVmVYw9HHvcMpWLZwUozxwTq6uS2PwaPqwDkOIEMnG+JbS8Phvf5CK8
ZS/CTn1gnLc6hgv5wAp+pYf41NdAeTA4l9gzE779bdxLAfBoGIs4mtORjNtmGUJ+qilB+QKjbwg6
fNmBnhptFk4TQgzyIEtT+EKf/xC+rfcEGRJ2tR6RyIy2LfaulCCaBZY0URcSjO6W7+cZ2m/DVWAl
CQwtLIGEOCAmPP1WaVxUB6fyyiWDWn70hmrwCW9Usa/NP2aF5Z0SfBtGPBCvXBa36fQ5rX/teYqE
1CNFKJFPhdGTyODgAQOyK0redqkLp0vnfwKpM14+vqDwneh3GwEv/NPTl7guPRzaE7OQnZ4iw2mi
KJzoA39JPgm+Hqd/5LlRItx+L+qtuZp1bsIGp7U26IAae9Gl16GTTDKMP66ykWU40ngaK0KxNk+X
4J5vRMveFPhnvacY4NvxSK47aeq+IGSAvT/FpuUUE6dHH4EUzp1EaIwLZ+B2aTHzZ7UeoCyOUcFX
5YGkHT3TTq1vSe/INl4fkm5mZou+f8ywNHi7igHY1neXaCzlKG7IWxhwjNroNDbYSVMjDimKjoAk
6sPRAiF4Cyr+KFOGINla38zCgQhdUrNPN7AxncUY6HSXpcpXhAjx2nV4oXTiVuA2u+179ibrO+ps
/+h8nVk9WyC0/RLAzECPTzKl/gSkCiPVC56dZZS7yskReG5kiT3MlLxdeTZ1Tw0Pb8q/SFA6D5GJ
qS6xS1ZSZBbvsjDelc8unXOve7txLnOCefOOH6y59tSfZUtNhz9Y7RPO+mtJ3Vv2xnOuk86vyIzD
9iadoF7c4Gn2Kn8BJLgI3Zoiee3nDI40udFZyeXLWHzmTGuxCOCfGn7YPQsdmIexNf6UA3FUy7X4
3CD9wkCJ7VAItAiRWQ2va+XpRG7XE64W6YD3xmbYwNVscdKx+isLKwrI8zciN6Un5cvLbW2Gxtdi
So6pjLAFb188A4ZNSYjjWk8lgZ9vcWmh8BfFyTwHpVIeV0HJIfnXD+0EnHgNcfsb2m3Aw5njz8Ca
YRYNFIPad+1mLgKTcg0qFaphT+CuNq+F8BoMRH9lIDPdj8ZdPmLqhuLnrz9zQ/V6ri21Ft6pBPsf
VrgclyVLnwPshxMCpHax0RPPRPE+FBYqgSBtakubnqD9zPRHMlLnkZeob6k5VsSKoHRN/mvwamUD
v+u1KqOBaa+uKknntrTHc/Joti7KywwYNwAHTfHjVwZS3K3o3SjPDIMj0L2u9JSMbnsNawAx/xmp
lzDteTcs4/m5OXFGYL8zni6VqtYPIXQ0QVOfobvw74c+Y1gAhRAJDvCbd0j6hVgUnJ07dau0x4Iz
Vfb7+BEVMy620qp+KKT0RulLAElaJ1ah3H7mQbChqQDO9Fh2hBWDuRkcg4aLA5r240RBFcuYWDt6
eF8vDbo/z4x5DlfUWacjIf5vGuPZBxclxCnmAMsF4aaUo3VWZIE9+pE4HECLtCiJGZMlOSo0QYLJ
yJjUOCW6asaRCbV/gf23BvXXmt/SPTpDchYFnRymoxJQ3gCEVu2F2mGGetKB5akDx4lpZe0O9nxR
uAlP9naxfppDmEG1YoHDZI00WvaomuN4og3DeOUvbAQNBg0nl2xe+v5kEyx82MD4FsrgGw0i35e1
GoGIgppzIVUIpuNQFgmaPRk6joh+9h28kM8cydzHCYBk9MfQlGTqOlvvRxRQKa9yVImHe3E49Vc1
X2lsQG4AAQr+m638widYYoDGGKeSwOfBsCf9tcfe45LfLUBmC51EfVe/CJKFXY3BP1baGR1ePkW9
ecxbrEWqZDwMa36KIhkybeCcce3qwbzWhYhBQDKzgwk7le5m6zIzoO7KpV9C8O73wjhMWYQbgKUW
Iw+RBadH811jKQ4f6jJ2qxC1W3ACsvZRU2b2e4mUbWY+ADag3eBdRhZhTammQ9cLZuEt/iKtg88Y
P4wj5naiRzcOPXLjcIDaE4BvW8CNz5zvxNdVWs1SIwTQv5ka2UPQklOWSW47snnWYUmZ/gwYmAGH
/uN3D7GFHWY0mvvIBky7mpj6P3k1Wuwu7Og/QW2E48PR8NVzSv55614HomLPWrR6YtpB9SOhu23g
d4qR4r4HVIc0dltJG0FtK6icDE3FzeEZQb2X5Uh9N08De9w+EK5P2/PQzb+5GZhX5KguCMrTNl6s
T4YBznsWB/8W7UXs/0fYgT6qBFEYaaQ8qy2ZtQz4nOHRPRyJvQQD0vDrwABzZRlCvXoZbDuy5CeF
9H2aedqFuDFdoBu54MBpN2xO0C4XPqy4sryM2VQxGnq0DPZRgqZ7Vf3Uo4NzsACudWlNyGvO1Lfq
jsD5Bx5Fw853pNgD4yBWX/c25I3hmj+KWCdrcgANtqGkQyNTHxSvqd1QdHllmzseds1swhCUieX4
JLaBj6H+GxNMjIdVFH89RHlOqcoG4PluEl5o+zVS7rYnsXN1nXBw/oygbhCiRpdO2x+3r+5OoGaC
Y6Z+4hCSLVFN2mYcpu24lWE1FYznxqOUz3WtiySzVlsSXEf7gEDhMAWJKABFesmz8KG88TgfR92u
Gfvr/X6MGp+ulZsgSAFqYATyNM7SNsA2GQSGwZ0tSY7lgqYDKMjL6VeC1Vf+xmqR5te34N3sV47o
xpyUhZvSX0Om5YrG5l2yYRGtIT2CIZOlGyvg9niZnhpx0AF2i28UBTfbB+CxrkFvh1USB02hHZEa
cbae5NS/6hQWrP5Ucuxs1LCt333+cb0LWtkPljazNKUwX3UpQDTqH2GffoLfDOnBu+11/cIXbuGZ
WyARxC6oRucrOrG+gDNVVb1Jn5SM+adYrloRXNjqU2yLcxDQL26QV94GSDSYljK9YJr2eENx/trP
ASohAwYxBE6aWDtLPfnCAqPboD2UFGOR8IZZyXBg1EsO5G5reinmaMvVFq9IO6Lw/klNtLWHtF7u
VTAKi88rKT2+HxslXKtOyv7qoc1fshYRKpykP/5JxgDwGU2fSp4zxGh7TDLTWAaaii0DaH325lP0
EOv2wbd8NIrqn1QVnQtdH8Xmp/48Ib9vLPReCCGEkFm217fSCuXIXm2MwHETzbaGX4upwacalHm2
3EjkOwVDTRtolrCf0TT/Hckkyj/OAp+eiU8EtC7lDGUHgTdrPfIicHx/KNOHDnUBJXfc7fDfNxiI
NH/lkjjTlQ5Jk37znuT2JH/9r9uDiffQ/96H2W7e7lMxOL/yEaacFX+2HCVIXgSex9VkiqG7GcxR
MdeL+9JnCGF+K+HRuLNUmb+LDmGA/Fp5dXUUwajETOk35VLM4lQN7uQHhQDN3+dYapbhdd0Sd9zF
GH/eK9RjqooOLYHMYl8H3HfsUGIlepdZytkmISOG+naZV3CzSE1o2zis1sk9M+FuBmqmcLL6Ky1q
LiEfZdRiaB+EdkzIuJYG9Ztomzvg898UbkO/1hXvCrpevKVEYlzqjXZAdaUsoTfWSKIQoSfBDnpO
gyuawxfHOCNd11RvLm66GhLn8GDexge5Y78sLE8praKbVrQnoPrYUzP9Cc3B8EME6ZSXmKarPb7c
voaAr0DXMZPEh3BKG3JoNS39yRTiIa0QQ6mOFQLEz/W8tIAe7tN70dUe+Sba20p4DbQuUnO2wq4b
/YritGwWSyHOUzwMQlGL44vkz2MXLr0R4yNVZ2P556RL5QfEaAuQNWbLnkjtF3z0/zUoN/WKVzeG
54nhshkYdckTLEPf6cqFsWGISWtKB66S8vZMqioPJ3Ri0d5x+Rdrc8xQ6hNE8LJo+GLxdGPzD+Uv
5XCnCkkX5SNMM/+bqTYa8NeojAHpS85z5At6KuDye+uJ3BaPEYOqnFTHNfoMtwlusc4rEPmPl8mO
kZ91FKq2dMMxgNoB5cHNb2gsF/O/+wunML8bRmMI3wUbNcBpV5ntOOituaz2zquuvqcaxiHLxHwl
KYLmv94X78BlEs4WTaRkKYCDCzKeWi4evbSsZHYK7N0KmiYuv3rTQ/5rfnLMbOofcXbjHmCQoBFO
T3sp9JkWQbHQoriCAOcaFsh5lLo/OEInBdPcfiqee63ciuk/pjhr3zSqv5VNMbxtpcQrPMRYbE5l
taezqgKBiJ5ZQuqD75MmYGKZgCD4e6angYUfDT7k7hkj5BYldCVUjKaN3ePCApsy/8h/BHz0xgtb
XercOl/A5v2vnzj5nfwUqeS7seKxYrZ9UVZ8H37zGiWLu76xBpCvP/s9boJXlSawAxtT6RsgnZpq
XkpJR0FCrJk9/W+O1V5G/B3MPR6kuV1j7f1i5asPRasZXPxM0gjI4hh3WY1Nw/wuPwo6ViFmg1v5
+YYNWX/d+sn2Gn1nipC8tKw9k7KhIteoiZwYyUyGWpbuOy+80RujfTpBFVLy2r85IcPttlzSh3pb
Jy2YPAzyx4K9MRCV4Yn/EDxeeL8bI7wd+UHS/kbCJg45w1IWJ2bVJTf1dG2UHY69iHg/vZvQgJKH
7ILhSsJbw4xenFRFNF66tVcmC8+0cP71xC/yewgoOpCRY98VhdIvJPWJtBnzVRdpBYaJi+UCoMfX
c6olIUFCZ6k7rMNxvDDEoKWSlUyA+RUQW2yQlpz05npJiHTJ5kqpfPrBBmP80Jd1VNGzEYnANOc6
dIy6QMNlyXZEXbI5n+TXdB+Htiawflz/JaxbyVvykqJoYf6x76Nxj57dn/20DiYaw/z7h5nGrbZl
RjWdUjCsHKBdUybU+fkqT8jT10d0Vt1I2paLBNSTkvHLUQVtDMAk/BBht20mYJhGavDPBOh2Bz7N
JzW4CYSrVmyjWBzyRj6aAMVa/EeVUpGWv2GsZqV7AZXeX/pAZO0z7vEIs2cCfL0DsrdYwVQKz3su
5y8NIiettkoO6Aol6quo/rM/pqC1M+9OTjdVHVPgRj4UVtoJWxH2fVRH3xNv1EtuIoiWGmTkf29t
Q2Vetj7yn09lUwpddL17W87rtI3wF3Ou9Lzch9wSCjW1bwFiH8/GAsziY1626JyD4rShYtVUZhsO
thRpWbssKNEzu1dWEA60nZ2gQnsDbh9kqyDflb5x46bjqO1yhKKs7o8TXCe5J6RRzU2T2Jr9zunI
QzDhMovr0jpO7pBV0RwHNGiZ3rktVhpUt6Tvlf9bXo70j1hRNfFgXX8nwAebrBtJnQpXMVR4T3NF
VcCH49nrIizzOM6rcFiiL8T889kds7x0SSft2iPGHiEn2EXTr3JhZXP3pzeIPlHjpMCGaNbS8vk1
ut1SQbZ0/du/z6EdaBdBBov2p6F/re+3iPVrhB1bgjG2hxSM3KIqFFQvscJNptoUV6e8BfuM85Fv
uuVTSTB8s63W4fAZ5xNMX+vYhBuRbldbn6TTZV0QzGiH/ixx4QuVSsscxwU1oEqfLnshoDYnIO+A
M05peRPFFbdB4ZO+CnzmwJKSpBe3WB6+dNQvd7RoU2PUeYkvQelfMGbSvG37cO5Ag+Mhe2jrpMZ4
Y0mPv+Qm91mtsq3UnKNFb88ALQo6ZWqJNGYhL45Jdw2pKcTYe7S96AHbzSZ2tQwFzeityv2jukqP
rw5GdALOvUIWLypeg3lQ8bq2tlsjsb7HYdpMb6qYFMRD9XfTu7XopzSWSpMOudPNQfswKxNZonPW
b2AIeIHmFt4UdZYDBaNGZ7/3qDHN0hYp4PCO9lbdj4ItXwjopXVRp/EmjIMsnYCz7nt63uEn8DKd
V5ML8Ttv9/Ip88W9/edPQaA6zttiDGROAk3f1OLAHibHDmbj2cS3HzufKg3VjhNoqamWYMAakCZZ
xGE/UllWjG1XOy9HHovkaOpzvYHWmI5ukWrYGprbE2uM/0aV6lkLoEKgecOSHwnITKniBNsNj+9U
1G2UHinBI9sw3lp7kCETQVm1mxuYjoWU5NZiLsOvD9YU/Yl0Sf9STDg5A0uAJk6cwYSl3lbRYMwG
hrPVvnSCAyea72seeqCYfVz1kKWW1DOqEolp9GZxUP7Y3iJeGBmwRz19uxP02yovtBg7lFJTKAeY
hQQBFCdGpkG7tAYf+209T6oY/TtZ61I1s+tSyDsBlS7fIOOyEhaixz7JUhPtJSjDzlNcMrCPv7wZ
2A+I4cfoZmkRbkfeDUkrmGnyoO2IMYFK3kSuUTLtFlFnAL5l+1IMKmH29at/m+sVYi4vgzgxkUei
BP08TsVp6agiNK7mk1JA2v+Z8HUYC0xijuzpNCwj+LPLS51nqPW4DJWC2HFSM0+MvQnXNVU2NMNX
iqBv2656HfLE21RVpgAQHx/3KTJnvjlbEgEMdqjjBGuJ5H4dz3u2vHQfV51gBV/zavrRGcmJZsRn
tz5aKC7gNJj6RE6kcF83IgOoQOJWB/dx2CGj2N39/IpylgN/sRsHoUbREquNIx7vmpGtm2NRhJKy
2oNfP1IV90GIGDz1wSKcLiR5Pc3GYgQWr7+iHaoyE6zHLeSMFlmw/KB1bja/jsGyQQvd+hzBNcEL
KS9AvHtKmYpW62xMnfwwgBryPzpxgE73sT6dz0ersKb2hEPXNpLQAQWuXSmW6V50DBkoET3SzTqc
gA+Vk9cbvEMCl0jwokdw11D5Xf8czuJHTqmTKoF20fmhKqdb3l6a41E4mKyyoMr6EuSiU66Ha2pz
6c1RF9b29IqRlIni042jBS5HEWeQzBbDBu/ETXcpBISUdpJKNz7e71LSqtNDAC9d1y9KaeL4Sg+K
mjXgy1ZXjlC9ASdjv2lX6mB6z+5EXqpSssrWQI1P/XjD1U4Mb2vTt8QFwdwCtzdYAORhOITLPG3z
NHjsLyAAnkoZUXMGnnrCBiyLv9dWYJKAzcsyo6eJtTVOjlIVMBy3JqMNpoPg6hHd5PIkahiPGFTO
X1UIpd2XS6TIeToaeM++J444njnYURwcmdpT+TK6zIfdoSmCHc5Hhmn2mtbwjgA5/o44HMS50tDk
5LzDkjsr63kj6Wp52M5si3HWOaoJ2l9iYhW9fLBCTvjbzsuhqUqPVgEFxbnPRGSBWlpgLh8pmUDx
d58eQigK2ZXLrpdqtkqeDewQUtiHZ0sL3VL0ndEFqJjWrfza3wcSOkFwn1BxS21HFCVuYrAddC+S
3LyPKjqvvaP41menu/a+IphTfI/gms+fcfeExS0tlaXUsb2TqZMgwDQtD7tSOgCBywjUCU/hGzu6
Ccv4zifHJ0aT48FlXTsEjZY6rfEg4+ZMbfKIG2tZ76Jc6cczWGRC0lS6eHu+PN89tKF6HcAFpBY0
TxN2nY8dBppg9ONRWtwwWKwlcsNilySyfytDbLORGFEVBljMXhbU8gjwB7wQX9zqiWDHrcOX+Pea
0VXG64uSO/3Q9xYFcWqeYC4+LxNMqLLODmZO+jMen19tL3mrMN9jUgqrMkMAbibUG8sSJVK1xCdP
9qYjv3DvZikUocT3V9Ujxc8hHQmrrl2SsA2cNnPn3dp0csaFwUJJqwP2g8ywmicUvzZwjp9SmoO1
cx09WcnUA5TXYMnWJqB3EWrb3mGbzJCXhUogcTEfkkeXdBAa1s1tTRabfTwF8BkNuwCxM4aBkxH0
ytgMrmo9WWTUNIbUPMCxPdJyJijY1LOEFHOuf+NA6nUw9WvNTHU2dIucUft3H9ntVQQnAfREH10l
w+ewt8dj/jLAatzF53xrFqSh6/cmpCFT9FPO/RH1mFhtBsax1ZXxsmzHXohVzwluD1nNekjbsGah
SKOrX1kPcmW4t9AFBb55AH4/mncyyukxUCfalwPmaRLXQI/AFpBb7brGvoTOYmhfVtnjz4R089KW
/e5DGHV7v9for5WqWRJfrzkTh89oLS89Oq+0kQRzWvezieBlSUoOKXYghz5X6HGV2hZr/hG+L9Oi
NcTnkq5qVGGFBXf/jk4LbmX8JyuDTiriH0DRmVCYP09UoWbmGDYbptm6l8sSmtaUUhIf9PBgV/eC
n20W1RME1FtVVsgME1v+/M5vyfQq4M9PawC3LoohwT8zYehr9szuD61euMv3kdAsLYDzX0tZzm7O
oHfx3HohHPh0K5miQume78IIzLLnwDpNrMIDajo9uLJZxbnxPK6Rz58IoXhEPo6zIz+udeuWA2mh
UZeskveRqmE7713RLz9MAYfVQ9X7ouI2sYmjtKYYEx1sYZMjG8CXlDc91Y3Pr6EBjDa3DLboLpD4
VF8PU0LJiLe5Dv6w23oA53kdZj4ZxrR1c2OkyNHadQMazsQHEmDC61MYNYGveQUBJkoRyeyv/zAu
9HhUik/QtFTeLPtHhY7oMTs1aW3UWtiq4nbXpw0X+7HqqlcPKoTjjX2GWOi8h/4esEzjMJfroU4h
9EoID57BiNCaSUeA813zClHIFwt7h+LfBizVa9+JKC5OrPUg8ydmvIn/WW84TBeKoUUeuunv1dwa
mIUngQUD2Tu6LDUJ1wJT/fRi03WdIY+OYHGGjmT9n5FBnbk+d8yXiYn0hOtY8kJ/vKfjX3jiPykV
P6B9FfLeQdIh/q89dE4yTRJ+dvME7IWp/rYH9XNSS+VT3W14eSzmlsBZUh7bYmYHd2ZwOO53NlzL
L6+bVcgWeufO7Aj4WetTAf1hgVCVidPahQg5iv4UihuOIbLe8GUzoap61+U0CPenKp5NRzUHC5XY
Gfw7vwapRsezaQSQaAH+RYk3FqDK2iLw27PkE07zrFj4LJXzvwNIp5Fl4zzYRUtf7UY3QYcQTLfm
anmfss6N73NWczn2gh79ttyc8nkWjZRoaj8i5apx5ZP//CdGg7kS5Wa/yCypryeGc5laUQ==
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2014"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
lz3B4KHX5z7HJK6kHiZGMmcEnUqLtTRT/n7HdY7szClNEEBtVq2UQW/wdwwMN27AnOLZPVfuS67c
Y2O4fk1xOw==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OUoXLY9rVEqAKiJgtR19Q8FIQUm9wPmLFXF2sem6w9gJVRflCYIHWjOAqv6eppRvqeqcjaja3KKN
iRxsDXzkmdVb18CNyYXYPgZU4MySqAPoAE8BZ3alC446EKqG5bo3Faah4iFiaQ2fsSYQDhznQFWV
FIedseAJGSJjdgeT43M=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2014_03", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
bHuGx6phwwi065A2gw0E1Tqc2OLDUoohEHY7mOoJcUQwvr9OEJ4yz01Uls3wx2UOc24N+ANXe8aM
YdyfwspjYSBviz8nI/XUT5fPMjNbtL8HFChLorcX+K00Sc+A9m1I9+5W+Wd6GLSKBCVYKnWRn9Os
rc68y/GTowadTW08aEEccqOavDD8XG+R6gQqGpi5C8xq75oqBRmE5yNpxpBXxQRz9mmAsJcZ773H
BpObF8UUngkYlRzDjfxz3vzf6lVAPrLm55l1zEsel1LRtdqlRT8kBTrz1kke43v4c6xNv0u+i1Y0
dvxmNCEmLNrwBuVbcA8l6Jjp0k0WZScEgrEOCA==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
4sCk5d4E+rPjLUhUiUrzCNkXo2ztvWgfU4Ic3n3YDGHZzWC7cjzTKSJroiCXwtIaQEIL5FpdrGOo
eHf9JlqikZvG/pLSpSZr6BTZioOpsjgI4CJq9n0wGhpyClKm24hGzYEPH8AkBs4wVmgt4sOHvyYc
mYqTUQDFFlehrx6Wh0E=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
cjjanW9F+fseEMt2SDd6R3KYZVrfLHKeq8ULFHbP0E7BiwY4Vkec6zVJkc5FOAAhZdR5Ywc2FOnS
jk9bJ37QuAeSdAcrSzysHiIJYxA3kbMVuIa63kiSn3dKlLmPc1gZ2/UtM3HTBff0RPQzxl944kH8
SUid8bQM/bx+7wxLnTLuo6uTok/+c8ipzvZZ5iJ9DgzZyHiiuOtKu8JWNRVw1P5d1QqQT3EZ7Q8j
fnqcUNAmoR2w1hlmAhXTJgZbpiKUcMF+Y9/twpUzFl3rdEE6PKGzb5YQ/Re4uf+MJU96/KSTzmBR
Xfe8WjI4zLk+NlEm8eNku5cgYGTA1pkwApl+6w==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 82816)
`protect data_block
PKlpisMKFINH4hoELw81Ae+vpIr0xr/BIQZISQh02QmAYRngfWchi+A+2gXJ0ErM+PWm3fbvLHaf
UADT/opvnHMCrmwuOuQX48J/a1y0sztlHgsA7XTu3se9+qgRV127UsInIis4R+Arq69Sq2p8iQGa
1PD0yZk9bi6uA/bjwC/f0K4UDBZkBXzLgK8AKLyDRJmdnfTtG8KKVneUKGDkFJT/39R+ORlmjO1K
XG/kacw4HFvvx7d5zMmCVk65vch85G59cYj3oe9/dp+HeiNRQLeMPV8FtUC0j0/RKxrMAO+QOmF0
ERBQCHzifcxvPU4x/b51WVf9/zo5hEy7xHsvq6Gr/13z/wDwkNa+YPTJyWFr0XuiAw+KF9ipUo4x
gH1etQv38h/IUdmUpOcxElZzljx39pYb18ji+xL+nhrZ1Ac6sJjE7pdZiri/9xL7H1szzwA4RcCz
yyuOZXt8EURJ9h82hCDThzRDyluIzrwN/ciAVptMgYO6ozB7grEBz/iup4xRWP2gv89ezT0rg6vR
496XDHiQy8HsHmOlpPavfboF7FGgYJQZqrKfeqsoQHmz+dGTQ+1EC+sWnmqIHiwqGOWBHo9DXIsy
nSKVQmVA34iNf/mCOMeUFIjslHhMfuS6kS08B7zoWwoNLrzd0WEgVwsjy1qK84Ck/BfC8nYq9eOU
MvGQvNIzinz71GbUM79wlIdGOtkJszEKsR/hEWC2F339ASr//5+Qp5c4bRPBlgopO61i6ru+t3XK
YXb1pSColJ5eWLwqwgL+xJqNMuDULtXnREaaNx9pQm0D8HihoJXYwKfVN/QHqW5V1DCGCnmkHiBA
wIp+DY5kePLolhMmNJDLhl+BmT8VaWRmMwQBFQUlVDrBpQiWbpABx3xIKDMg323XW7mETqSrdipG
apggRa3y7ra85AHQgLyi/NvVT6TjJBlUhPpQcO+VkUXSC6F8hiHnpIhQKTJ26KSaaICSdR6rochg
RSk/PxvD12im8tj0fb/zT20G2Fah+omaNG6ayEVO00uLw2BdSeFyOiI+67MvIjzu0yLEgrBBSnJ6
CGAoN/7vwoPzxIjeDoKwdsFUCiKAjFMffXf8On6unogQud23p8iZyvdi5fzPgaWasp6lcVy6+EDN
cipbCcAHFWy9v+mCF7kaYiUjj5X1DXRFnNfSvWazczEmCv8gk6LPFgr/+kM9fxoJw/JFAzH533rC
YuOb5f6X5X0EPTdJ/xJNgQq33F2u5288g/LqiR3U+KvcKww9O/bzUei9xJPbdHGz1QXyDl6x45UD
mtF7Tx1BncNanvMkj28TyOHSdnZznRjHnZ+C4mIpR8oElrZ/kNBtjfX6uB40NK+xWzK5lSd4enja
8QVrKkQmfpbsFaYVxU6JJ1K8RdsRzIEfLKPKQgPlLCEtEvqe71Ob4VhcaldeizHxPHT7emlb+UpF
csLtBsu23jf6GMkltI7CHWGCMt5v4bGnt8V5W6pvfRo7Uzc45O1RUcLYETkJVTNOA0f0oZIwzzG6
oLrdF4u4A1nd4em8yz8erQHt+JWRZjuNOCvU0FrexgI4ye9hvYdGRtnqWECUEmC+9bAaTNhpz0RK
zpppgXZQNf3PhPRjcdV18C9kHr8xvK9TLmLqmzoUq2BtslvJtUzxPlLiBDbVkHiDBa2quq3uN/bX
6e3RU/OZflLx63FMA8Ly/mYcaApdDre/wj9U8rVky1xnqoAVYd63pwAeg1e5VN6dEkbGvA4Ilze1
1zlXwqjPrXFFTkchsMoYk/U+SvgqSEoQC4oWTr/wN1mbu3UoI+EpZtK45pXOQkMdS8ExqiIpITIZ
iWodd2/MAiAyhkayopiCWPEy1jj9uknlRRi1jQy/oBHpDRrekYmRMAVMwQtF4btRnv7BXW8INNE9
ln1hYwDJ+kKEUwG6OENJ3jOcSqroUquo6FuiX5HMg1XEUOcPyXt9XX85Au8i5Q1JdVw8BAeore7m
5q9ggtwf7Z6KmvE+6PnMPrfyMAiO+TO+z2jp/nbSm3mtLAoKAELcFXJ/NtXUwl7iE9HIDxpvgD9d
iFXaqQa7V/Q7ECPsqMALzfqmi1uJpCYIbOhaiunf4GY8el7eljC2CSvEi8LuKsPoYe6e2XbSFBas
2kiaw4o8G9YcUxyBJGkJSE7IngOTRDpXTKOEZ05btmg9iQMpQgkQRLUIKBiOnuHlWUpmE7xu6I4z
Tf3TxMAjGbO0sC8J+dxBzeVRDi9hxH2hVV5tNkErq1+87+BnhVHm2MmD/pymKNxi5cNX/FexiLLK
wjt58y2HmhcPuYib1+7czTXV7eP1aQkHrg2+mFmaxYy9X76du1DjC31Bi2TZCG2ilC0caCfcdg3e
JKg+aPtxCoijjNB7W61o0d3plpwnJQZsptKlLmtXP96GKCD8a32/WlVIrMFWp5SUbf6ggWqEusTW
MdxTbBcw8kDDIubMZjymOABdYFosaWfhmRap7HBodohX95I9pw8B8vmWll9icw2fd2hU9gkjzWuF
xVvkRuWsIuT7c/x8Hki3zaaDfTarVw1DinqLnn1f6IZfqNaqHhpA31oi3cfITJwleHS5wYNovj5f
erHd2jyxLdvB/4vkoy3InDw3n7x4w9YC0kweEyaHjbK8Q/1TTPEQf4Di+o3TMmLMScbxJMAF5gqK
gDbUR/AdJrLjTzOO1kpeXPhUlqaUvQBXne1F/N+oQj9KARG2LKii38ZRzl4wzFeJLbaHrlnRM8jR
lf00OwX/GvQJS7+aBoTdy8pbf3WMTRgyW1onApjm2JwZEmVLNB58CHtvj9HrOEx2hf8deEa/c9r/
ghS7Tva9ypnBZS1TKkCBamOysNwjLAtSFPedJqNIsXjDvdYX4T25ZMJWwfcKH6i22Sj7CFPhgUQg
BNOGvXttR1wGbCMmdh6Krdq2e+VcQijvArkt2tRTLx4GCp95T+oZ/CZo8dNj66cKNdMjL+exAcLC
zzlKsqpAVebefwCul3JVG1YLB3Ntpw1+i6hCc4ggsMR83MlP2T/B0A9Tk/o3h+CRDU3un2mAYKcw
ZbiCcpnoEuPWUbxdxN31az5xSewxsNkFPMqCcFW5uZHvFuRV55mMDeEJTxpDqIXiPHdSTUm+P2BL
bDcozga1rhoiqEsjCWIfptUBuVwdg9Xgb9dNx2s7YWVLgisJk2nEHQONBxyEStBJNhRh8YFVOYyw
/N+Wx9v/pyZFQyK3BMx4aJk8PqYECZKS3kDT8gxo96HGZu9Qv3a2iKakWdfVLuTyV3Ug4kaQBR81
zXIAUQo3uLHfwwITDjVJ363ZZ6xAre3Q51Ryndeqnp/9kZKtv9koF3gyLPSsUUrfXJVQNwMCgQu5
TtvT8EFBZ1I+LE5Ehlm4U50fxkDhCGFLLdr3EWvehcxjTkbJLqZIj2ZWuLVMB78bmQSUHmtFSAwu
sdNfj2l9NrUl+J0QAonF/qKVBV6u07e/w3Sibj6ruM5k37QA4BC5Dpjnksuys7BLBvFLM45YR1XX
JxQn6NMD08yFMz22Sp1VUDwnCjchS7wobrHTPMonTBGWEMEV/hbK573hquFoRFyTGVGBoeSgSfN+
DDcXIm2qoicZWezBQcsr2J9H6Y7qyGhDAvp6PDW6BQqD28yj/0mgo8cnxlQ5btPzvSqhzm2D6o8B
tVRLHbJAANknQ+8RSWH2POMFT10aqftNbe1zm2V40ooBxbN+kxKc640IYEiScSAEhPULLRXAHspd
QpkT0BZkB47K01kPf5a5d1N6Yr1E/xORHAb64nn4NHkEyuTusno6hHlqQDKfq5CDFNJmr1qAmkE5
Bxkjft9wL/JigRN01Psr/pX/3RNdaycs3lTKbSXofOmL7TzHNY1wmHzLNBVULt7ewmvFWo3lxBUV
55eWilrReGlk8hBO/tBGI4fedqQ8AXg0jjIMi0DmQUFBfdugV7qntf5lwPW7D216aMex0KRwEMup
GOqdTkW70Pv2HSJYc6eN45q5pS8TP1szMna+KP0nKezHHJorWa+j97qcHIGlQzUdD3oi7VG9AjsP
0vLZb84N65CPn4DvdILC3EHuttTZaNWzl+FMBjln1WEyFhWTvOwEDlHnhJlC35m48d+7GZzudu1e
opdUPGDRm29j17/tVysn46sFExzvyo5XTsgNHmoRZNwimAmXn43T3qTLOfsiOvdzCHr3dhV/N8RP
X7Llah7gW1ciRZ7Ljwsd6T6H24B2bEzV2qH1KIV/WdqPGK07rM0joYzB4hXrpOkZnKxEYRlFoIR/
ARCCOlX59he853aq39Oc5SAAXSHsohw7Ktq6CAJnFYqN2uA7y4TOZTCQi0KJj23sEZZ90bjglR2d
lXoBiaH7KeNUNra5aN+ICVa7lrb7IieqV3pmBi53xcHPM+NqX7c3KmEKv+8wNiqK4mI8Oggwo5xU
sJGa8aBXYEmcKw2qCbllHLMz1bZTBwVFtPgwZH5EHxphmvRk7p/BwNPzgFv1AgjyGyzX2WcLvnAl
CbINUV6Y9s1n4FoWyZKBVHsRt4MgTVoddmylXo6uS5oPI982oM+ifIKwZMQFQ+9ijUekSxnoKE8V
/MHE+OahSVRf0zM4rJmk8qdA/GsLDz8UUkKjRlxQKhh2HTEL/q+rDfX1Z0mnTb7PFywwT0zfnOLk
Jg5neZ5eBPh3zmFAjj19G41T5QHHfSlVxkhqHIufpcYnwlq0NO6fM6u6GK7d6NDaIHszskOujnuX
n7xRgZmA5aVZzgBwYM43y2jLZG2u9xds8RW69UrI0IpJ+w+prRebwwfN0OVvk2yKgxe1r6dWpN+q
6Vnm0L9nrH/pgP7J/78rRhPPkd87pYukJt+UH0n5+c5akxNNqcXjvw4VwIzoFfJHi2eahO8b+OYv
DzWsFy0G+zGTgPB2PjntUrFehdC9WmiUIqYGm/je5lxXXJCLRzMGSzsYsKG5ruUPewa8+BSotrbl
diyZV0jdoI7pnpbix6VKEklLOfvC2TogcQd7tPRK9kiIX6nfQvfFpRFi8pPzlVkzpM90Ne7WnMtG
i2p/IhF0beNsBKJOR8lxv7UkUNMvwjLIoC6JlpZzyMBjC9vu4O9twOaS9t0qsIO0PWuTaygICJWF
EJI3EUzVVXmkGsNtbUB9RPv43UHex05WvNiEIcQJ6Zi9g8jxtbMxCOKV1F4Y4qUIDH1C7LG8yVy8
/PB5oUEPolkbFoZVcKbUP9YggmeGXFKnoWn7fA93wb49K64t2UStaBleGNFdwKaI3O7YX2JwrZdu
V/6WJ46bEcfQ48DrVquvAsDu/Qte18hwq6AI8Q8wwBtc3yDMTgQ/F4o3hsKx2fKtwF45KS0N7gxk
3MDhygVlnV/n5EG0T4y2PuTcxiNRnYXNWHC7g4mEMK8J0i5HIfMKVGinj7FxfjeWeJnuwOLIbvWp
4or3GyP6gBIpQb+PHzc9B9Cskxt3toHQeQh3H/KAvEL/uTp4+N941dAU63HPmFAzGDJIHwUKKyEL
7Efc7jxL2AMJ+54irCxUXixt/Mf4EFUFeRX9Usfe3c3/0mu9d/Sn3kMEunIogqBdUTdAnDDO/DoZ
uNww22SXb9UlAdEgJAvek4cVX13GAHFrVKU6yPtUJTux8qTCvKgxRNBuM/h3KbVdm4P2ljhPVvon
YCUBNGXdjQD6LKha3CusIet0Ekwlu8ZLnCdgHEAqfT/z+WvzHKFvDo1qb1QA15XFo9EXcFE+lQuF
QTSvtb4Wo1lAb22E5sO7I2FZWmdqR6v7skvCnzT8btNQmbZitkIcFm4l4aqVuhB/QhsWLD0jvEt7
t7X6UzkRHs1NWtO4zSaDu5aFt0QR352AaUDzKBzSB1qdQfLp5JcXN4vwcwrJPNi13hgVQMAoOU8S
osgsTvP1b8QTzoO8ixR6xU02RPM4PZLO7gGrx0ykMrY34fnm5Ff+KKmLUdWStLwy11nandXepuxo
fP9bLHjW9QdAW0yrmYip/G3rkD9i/OzjWkhr9e8/dwIiuNGt9QfCBIQwc5HMNcH1vTsf8takLld/
/oFkvWHfxqw5xkiUJ5/8J1AcbZP9MBjjZ6XDztz/COro05yjbNenJGeBi0krvbvE1s+G3EvsCN4G
BLmmnuzGsEDJw37L1/a78qTMif+zUkfqHsZjLnI7Bvwo9EgiackDcpeU6KOh4vp6ygA6VbFKd2EN
YdREefq7BBZYKvbU2a5dQmuwjXrPLqPgLAZQ4gmLayoj8XDSOf1Ksvb7Sok26ptqyj++iwt6RwBj
/YsmDf+bEzFYAO+8e0hqrpOqylfeMN+JdSPLS+tFbBCQq0wtPPxilOzIbhaFwMMb9ZfIoxcY7qvG
YWC85mF8KXrRZKOFdR+ejw2jPdP9zNKXjlVFnIA2nw5T1F4ARmArbk+rSvujjZc15jsE56be0its
U5EsLpR/iUdQH+lmpm+51z8SSJVviYAmSsPiYm8hJoohgZH3b61qPgoIVBu0TmdQmb47Mv1uHbZJ
u2XVnCiK5y9gMkc8sRAIizunal/2jYYBDDL8E6r3KA/q+eIJyCD5kmGFKDb/vBfZeLPEtNaFTvVa
sX4hj58ndGYKTfHEetLwLu0hjRt4wFG6+S2jsS0Rf6ApIhDr5nHT+pqzaJhORoaix4HJtvjzgzhL
eDwBOqAfyRiJvTSwxTik/fGnX1YRyUeDOhIv5IXw1ZScGEvdIWb0RpKbl6uCFefIBSPbSEW1hMRj
wkSm0C4jCBJ2jogVxAf13pGUeV5t/IYtETyynHRtssHUuDgjpD3Fc1G8/KNUbYD07X++Lav4iH5V
LrCR9Gxrl+tHfKc1s3/RyQ08Nfjh5zTEClHS2my7PDpf38e6QwQDwq5l3OCZxWjztI9pAZqzEUcs
0uMiADDOxBBtFr6MRvfY9xJoIyb2xINI8RtWDdpx5U3rBTHjRUFlK8xiGaipFnom0XBfmNPfFREZ
U3ZrHWwGea0c55S5/134dNhlQT8SRnklMpKel0kCEMx/v3QC2V4fkL030oeLqUc5cfE43Uz3XD/X
JX3dZwidB7LN4eEgAOTHn/WsW288rXkBJAApGZr9QNzj2z3EijzlfSuvrhTY3IudYSvPbolq7uZq
ZUgddFnu0Z1DdRneCmTRIXpl/TOszFel9I1qcT9WUID86yCqXmAstwTP67djxrBQxL88iABniItY
GUYDdyEVO1Eth4G6oI0r/uJYzxj2ekEr1y90bnB3eETYaMU8LbyxUqZ5p79HeWmG9UO18848HO+Z
oHe+dF96apaQoiOnw4HNNLjrg87Fy6RqRjKXbIwQsYOUwOYUtIh7R4RtGs3sc+8o7pprFqwY2I0W
BYu9VLn9f5ZiaXgz7kJVmKNtdESAP7ZK9A+qlfGKEGF/A60GoQhHWSxlpJNidkdYHWf7dHm4KE0x
5PmNdSKB1GKNi0bH0r+Cng0RbkBP400tkZURLLxhI/40kBEoW88tTMC3WEkoNYz0j7FQBMZaOEix
UI2peq4kFnNKSgYkJl8NScOxX5ZHWrH4/aDws6zHczxNceoQJ9uL+CUifQoJKecew6Im8OTW7rPj
L33KCsouDuAc2ou89ekHahblEWAjIhYGuV2TqEmeCFHYtXxpta2Q5ZgYm/MTbrY4ndNgixT6tcZK
aPDHjUKMhjKJYfFBx1nmtKNgj28dcZ1xzdyPXRmyu4f5PS7hfhCdIDapZKcpOH3krS1eaoBqrPaH
EzJ/5xGhx0IsNtdLvOmNVY1odHOYrYMXQatws+xecoBD3NyghMEle1xc7gYe9F8TaYR2bFNz6kqQ
arN/bNuCtIdrKEIOguFIJev1/XTr/wixnLH+r1MwZZ+RQ1XW/GPqeSVduXo7BGEYUo7hCBIDJ+Aj
aOL3eNQYaqEmuWqZoTcPn6+u7S6Cp3gaj5YGdmpwxFptcy6kS31scDvOwFlKnBVKAZdkqS0ObGMH
RTgZcvyRS6O/WPgiQKas1+Qvw59gEDkwexG5XCs/wV88C9QyUqGZm+UZ7h6RsecO5xl2an5udfwx
BSA0NB+OKsP2RbG40oHvSDsNsDxpTKdPx8LM4NGwOo7shB1z3+57ObX4wSnIvInCsD2L4vsfh1K+
fzRYUBPNgKV/XWIk+MKk0TaldbyLyVzCXafyvUdjGsmgLtoRaXnzT3XDWpDmvClprJdgf558QuAy
+rcPrwMrZh6inr74HJ7rIUKZuIxdCnLynyloHSsFvZfOMq5/uyYcn818/gaNlLqITW2ayENgTcom
v5GJL3yBtVxAJhhH9eGFiiqBn05RLFGuqj120cvNK/KyRIic0q0o8cWKFBe6JrJ2AsP7/YvEJslm
ykdsSbaYUKi5ujcp5jO37sLWCs2BZtR26cPz5aubb8Lz1mv/9rNfPpl6kVKMdhWyxCWBFAl40IFJ
mdWYmfWh7L+cZVzjy09iS6h98uDJy+8YsslU0Sii21PnT86Aa2+LnEQRtYyawO3fayrFffV2h5uV
KKL1SxpaNthRLFRwAVjAkm+FMvFaSzlt12db1pommbcR64mNzAwwfI0Od366USZf1ndSzhbpTlXM
bQWRITeSNEjlx46KGGWB94EpbcnPXKsHMujKiSPLONY00dWArnoyJMgZ4POq94JOxC77PcAdu674
gYKo+/5A7n1tnSDB4+aJMLxQx5InYlPAeZYC9v5DWnfitYOiDi5QaS7WR/T3GAjhaU2GBDOPErlv
IV3hz6ZqnkA372K7R69ZFBpf38CCczvMsqg0FEhBYj8L55NsWa0trB+D6/Qn4TjKHM+cGYpHWHmD
6vJAGuh5Wl+hUeCL93HYXX1dOI+2a+YbbMFvNmtVObkr/fLW5oWkZXNYxiSpfXJMvy//ECx6Id6+
035AH0WDQf/Co2zFHWwMAp/1CkVGYaoy7HF1RsxQyA07fOuZLjCBwT+6r7vcF8aBrL/RZYpRt01Z
CDvIi2j7qf5km08E4bvfkIWdQUCW1ZcIPDlL7U8ky58aOp8NIofpjM43CwGhKwPtJtUjFHwWov3/
eevef1J0mrXAzG9XuLRChuDw9to1k2eWYUHWO2Yrl+ESrCqPAuGaCIhDrhIxbB3Np3EDd/3MQzSg
bnzH1cg5LP29hRm45+nQmtOZ5q4OpzpROCIZaueW4T6FHAlMJvz++e36vTSS8fxz2OAGtqKfFovx
x2Zpxxxubuoj/v+zE3KruZV7FIvc6DCT3EH4+GD/b7Ytq4A5VG5DixoxUc3Mq8CJFh15J7jWeCbO
jc3r3l1IjNUOjMenHyaY4gXEzr6a+xZzvJbpaojHC/tVpGTIBAmx4nkSsoMNoR/qv6B1uehkt0H5
GceF++3TDUpO6VsWhWzNSFNeCVXQIURbUD8SUFdNW+CJNjpSCfzfNooVSFgwZRDt9GydSHa6u7zt
SjK/Gc44EQ/Av4LxvHptvu1FurKi8Ld0sHJXcNvIi3SwSkdjX04OCFlZezws+0yNdnl0z7o90oKC
gOiwk/60T+jtIh0gzwiu7BeAL/+gvz3Aj0G8Y78mCUEuOQ075A57QMZ/o2TeNgEIqNh2ovEAALua
DG1qMMAhjtgVlIgfG5XYcvUfzGUBJTFb1fX8y77IeA3h0XPvV5dh2QzQ51T290kA+JcCgmqghaIq
iPhVGAz+01HqQ4EAF+3KbIPR1zzjtvlsV9O0txPhBkaNmsxxZQ5+oMhdjC67U/QQsx81yOQZkfvk
ASu0Ul6C2eiD+GaNLNc/ntyUgpV1W6KAareX2kxvBnC+HioFNrrgieO9K2MdspeM9i8ZWaHHFdx0
EuxuNrRTYnhal07PWa90cHlYxDrxOMExVT4HBRKxZN0gqLyUDTnUZI9U3uZbdndOLI3xU4J1ppbx
F5TqDJVTn7Gu/Efm2UTYZRZsJzGHYLrlg0W2lX80iZcgwYiqR7Pz4glUQ/kB1awqUYNGhca5QSug
omJiTF3GDQFJ6CoVIbZVCho7OREj0Cyq5lxgdzmvnyJAXCiU7Y0/naAz/MHbTpqJ/RgmVWmlwbdE
+KhrRSYS4xaIvRJpRmZnsLdG+zpNJOvXcHGu/9UA1bIV65Ui5af/ZRIQc+oNFTgR6dQRlsglA6/j
MyX1jtNXhyNFcXG3H29hNBe0JOi0bRHyzpsrlmOhzQKJVEnAO1cuUHG8Jt4XBPm0eQF/lyb4O8TJ
inXQCN/uerEYJ6T7KiHjXsPz8mJfeHuw4Vs37NbIMIxTCCP+gAOsJZvg0mFbsq+R0CZJwxcqpEF9
C7KcR7mvETL44Et9duyiEyLvhdShV+C67lfJ6kStlTSVeaXIM/YBI1mChT17FgwaSYMS3QuaNOUG
0d6VeQ88yBs1v3wSclum0j25OmytK94YQR9vZfIHCaYMrbXXwr4AjB0R0Wf+nJTgd6ouOa+Q2gOl
9/Ig5+li7twa/aietTZayjbxVur6dpmhklj1ARMYaBtz1gdQGSGX9a94C5yKruK1DaLcXp7EZhaU
5DzSTZjHrgVFAxALbdmbWEEP+ovg1C6Jlo2NjH5DWW45L6FCHsKwfraqvwSp8MBuJL6PpaHuDq20
8O+Rll8wMIS74p+kd0QMFjl7Aijpa1/ikkbCQC/ngafF8XJqs7+ooXxFBdMOH1i74/qAuguotZJp
G7kHtmurecj0H40tskKJwb0muZlTJmofY/t+OYPnOQP5Ra/DbBPXk0wV+KOy/Iu8Gtk4iVsPqDOe
6PRlQ8WSXxNFdGcqL922k8l7G+LwN1ewO8CxGZ1NQmc5raxfUSrrayhdUuit7NFpfHYfk7gbwyMp
Pi4Xrg+HLoaL0oK7tPajr02R1W5dJeA6LxozDxyvcL7jUZUwd5LiW+SAsSWzLi1+Cwm/IeBcyU0h
8PuGCxaBYq81I3VGy5XBF6EVVRv2cXag4+/LHQExPnWy7xm1PVGlUkzTYyxcTjk77sMcystbjqTl
PtlRuJEPg1BSpLDuPdQ47o+2aQX/I583OnCxoDaOmI/63VJS0iklh7Tkn3s0/mmZATijJmGZh4BL
H+LzOwVvkq8qIUH4tXqkQletqSysboj6wcfjE3jbzJRcCIGF3nYJ53SnSkjSaM1LHOZfLZQ3r8Q9
TJNpoba4MIpC0JQhcMf2SKsb2iTfb6Nm2lZUaS5N30XFYw8lWectepJ7yy14cP+BoLeORYfMJ+rD
b2NNhERzWrEO94q03OlpELV45hfGHEhHwNG3kSW8WT+QIrPnzktIRY1Y5BGXC2HLGJyOZR6QpCBE
ORzuAMjVd9G6FkBeFBfP07vPP3yNStKBUAaXWZaGdA8ZDc/VyCFYJq4l0vCPomHadOFyZucpWrMy
7a/9EVeS52Ty5s+NgXsklHkTsBNjXfS/kjnUt5abiu1+EwhG90omPvMrSfS/5dXiYNEaJkiGmSqm
ZZrDyQkQISA3QFjEdEBQ7JjTpJkT+oT0kBFW44qnVtzyjqcw809baFelSk3Gw5TJcTksKbVRPELY
lUd0m6LwetMIT56l/zHbXTUFT/al/VREww2knekbLRHhD7hs/d4znC+D3aSYEz546PHz/J1HYB2J
A1DT4QSXKe6MQHI3FMZ28rs8q9rPIEmbvz/tnVwD7py+PmupsQLJWkyPQBZg+LJBXMcNHBsfby3o
/gexS7+um5xCfAY0yyOzn05NHE7ITgyrCFxV+cNHW9G4Up7gzAcV4hNyccGKUcjXtC7BO+8QQqo9
SJiMEnUtMljeNzRCtyBuE3BbhdUCYhnBZpWGAiFNDH0FH3pkNW0jcgdRecL9L8/OIWhRnd9T4dLn
J6RC/15YkK9CRWKbxk4ToeZNt9QlYoU2sWzT+mSQeb709tby7qZMP+4JYOBdaXJ3/b+lMFDVcLiw
tK2yGc+ti4n+gTDsEyOjLjJGRTV0IVFpxzKcSi3FIJS6VdehZCAotqz6rBHFO+aJA8euYgzCMD/3
xd2EiCtbx+LviHOCGDAe3UVzkDY8Roi2OuFZNuK5dEMWVKpuUULvv/SwWHrhzbbPlmON8WRqCktQ
2FcJBkM5o3U3cSu9GPy842+GeJRRi68wg0JsNsTNRPcd6kdIELgxOisNlebs54pLkBi68IkdGMPr
FUYTVohkGsBLbsv5NDOrUc+QFNBvq9iOMeTs3yFwWGbSYcoOei6OGedCP63iqf3MY9l6sdVRu94L
+JO7aukUUFvqS5rdDx726DA9YP3UOa2nx+Ihu2zlmuGo//awmNlhATQHuef6J92SFC3Kc3A7fCsa
3hugml6ecqmWs5f+9RE01gyZ+lNorgM8J3802OgOw2aAkLrtpT4BM7cvLnmpffCPophxgIoJblPC
KD5tAQdEoszBUsXc9bROdR7rmfI2sVwKDfARzA9pg3NmxDFDWKX6vrl4MN0nWZb8xN1OlF5KocrW
9UagIL9+Qt1UyaX8N+mcud4lJsuIRjJV/KvCZh9l8561JxKiCu6preV/wUF3fLuP7DWuBSSDsazR
9N3fllb931y9MqxVxH2p8rCqlxX+GatzSO7at2KERZCCQ4u5uhkEf2ImoYeaX71x7ohqjdYefF/u
JlPdqsJdGH5aqj8OxJE0FEGaXdlkQSxoPSiHZyJF/bgiSarcvbyCfyUBAyRw+LMMTt84oMHglJ/L
7jAXltqlSf14iH+r6rBiWaYgBaft7JDHPTwyzOYURI9uc/2ex1knZwDTrmhA1HEHusn/xDi8woED
3eMZ3rCxOXO6TdwS9QPWNb193g9v4m3FuwB9Cojb6oj31CVGff4JFW/6BoYaWZvM8jsRTo77ILPn
RTR4DkmFMYFK4sHbDIQxlv9dbnp4pgX3lleOy/SR8LstYK6nkz6TRyZ9F0S06fjzKqra5FCbthay
oiXsehLGgJuS9Kn5kVhMFRqdfPNXLPqjIpVbubcPEFBs5O07nN96bnrQjo0+rBm/4Pvdo4C8AVCN
jRKYYmmeE45UUhN0E3+pAMUO+Indoq/eOuOvNdtZ87YLh7cD3Y86BIE1kcpRETG8N3WTvgTOKnTw
FGWPukbQIdQmu98tvaw/MgQqDigFaZhzpUSnh4RIL/9/2YqAWwFhTQTPeWvt0IubSSLXYVqI1/5N
ntICRoyryffeUHeVeGJDjUPW9xkNhQ6/Ly7ObqYKRWe/ZT/EsxnoWTz58OMDMkjdtjTDuiedTK2E
wdnZf1AGrohlDuRTz1/gOoo/PnW0rC1EpCShKLLy8vGOk4OFnljkOE0NahM+8kH8dfZCivz1qQR3
IX9I4zkWGToYVja5EEt97LhTSPaQjJNWp35OO9dAsfr3IOS5wH0LlbCYFNiS79p2qzlN67NGPzPs
9dUQ5eAsn0YW3hc9r5YudyeKaaUkk520Q1XTtk+EqemJJ3qbBbuY0eSnFOP+Kh48YD6UoS0eH99n
In14GlcXBor6jEP1o+488uyEZ2CrGxihyKsJykEOTh5podH2zJnkL8IIfkG1ey0lsZOetMEgx0MS
YYiE+k2CgYzFxxYwXVmwVKQuxIsKodmX7ZzBSjLQ4cItiNpWegHMUSuD+JjuvN9oM0Tj6QaUx5hB
KztuOdkkxsNSD4l54Vr4U1fe1a4bWpeV1GbasERvwQb+XMNrOiepf4gJSqcfiZQKZy96qnSJaKfd
waoo84moAZivqXN9p2S/sRTnmMqdDYAWMaH8ZlobO/ont2G0gVf5N215H9eAbQEP00w7Xycwvemu
VFXLXG3TtjdrV99ypzbbvSEcBBdTXVWOaNsx6BkYcSTdJ+s4dfJ/96CEtAWU03okdfa+WBHkvp8Y
LgT/iCrO2OinxvSkAWsYG599KlTGAePOWTsnHG3wpc5EI6aU9CmYoC/UQ/mzzpQx2EpQ7oVYxqsl
aR8fdqdtNkg1HMxXpGucJP1D1KjRHn+G22PK2EYAbx8AvB+KvNjrvD1UFBcBJvILOOlmPM0dTJmp
nhPAMii1PA50fBpxtWVu5Htf5HNKvACMoD5SYHAmEM10EmN4KlLqERoXwL6ZNjyq20NOR0Xpxf2W
m9Pvml0+t5bx6wqsA9bIr4/vfQYBd9QyYNS196Scykb+ohG/E/sNpoIXhO7qmNVRQ8mBiiZVWQLB
M7dpOsD/2Cb9ZiNCCQ6wetjaBEX49voopqvPgZyTWortBZHzyLE51gNY9nq/2tn8pm7lCQo9EHbV
2UNEv1txNKK6Ri0tbhIIVU99vOp6X9nzQsGpH0PyPRgOlnCKH2CxcXk8NeV3sGO+qojthC54Fg4K
U6eTHZumq+ppwWrPkjt1EGdf0+iwSgaMwmwwydfL9zH7YluVGC32s2G90+SCFkCmRIkx1UjnWurF
A+U6h7q7tsju44p1jC4z4F7yBfeK0PO2RNnxhYSGwqb8Gl/cWZgWtKR2bkPrkjBqmsfItU0tvwTq
rEQ+iQUnM9RhH8GxBs+s9H5oNlnu6FQWme/9KvhK3WyVmL0On6b4HnBvZqeRW3g3W3c/18yC3MiY
py19mPrM62EEPd+w6NYq+EJ2z9dv0uJvq+sE/fXj7P2Xaxe04NDz3D8d5Z0VnTrSwrczZxCFfQ1E
c8MtmLdYXsblB/brmnnvzbAJu7z/SwmD2eiy/iv5e2uiHeDlzWTdUu90O4tCgEzcUtgNCq0IKmH6
ZK4xuqY47My7jvHC5ClW0X7usDA523RuPRRST72X2mKNr7LF2KC4e0p3PqCA13K2bz6YoXaSruIa
qGAU03h2tG7vo0/RjiRmKpiRG9TDlQckd+7dl89NezZCNPe3VTCfEaoaPWjcw+31/ejdKmVRdeou
3OkSCI7SgeQqQ8dHzPmvUrQ4/RR8L44IVgw6Xx8yg0U/LO6U9KHJvLnbeL3AgjjbuzjtCEZRzvNZ
8TRisA1HTh5SQJPgNE1VoKxyUbyyPPj0KpCQxUio9+BwK3HgE9hxgxSzOUgNKBP90gvjW4nTs0Bd
lcHw4hsSOq8/fghgZAXZWqvvIeqPfb0wFqqtb6Syc7dnTtrrUuNDNRjafd4Qj5oKGLvQxgDGWz9M
8AkKPOZnBsj6FW15y6YSxgm0xg1lRdScL1Bj/bz13FEln6AbKnOwnKBpTsK3q1r8G5z0dmrfgTNh
Lis639cvfI9ZzSNndl1MHGypMJk2eLMSs8OC9YwKikzNy4SG1IocfwKsB1wfgCoIuEva0r9NmGgv
CaXVMbcowIm6T2BJxqOeFO99ICpw+C+v9QVOliWVnuTmvBY/idejA3a+QWcsg9YoNdQa+NAi5vPq
XMC7fjXgfJkNS5NmjH4eOX3CtMFLPR3PTjp9yQayjK8riwceI0DWFFF2mJrcMilbqVWKmOzfsrCb
/aP/ZrsifmzbvLig7PuVAh0c8LyIvG64cVaUvUhBV9TEOr4WiTdj+l6/oNYbx9rhmPXE1x3vg7kH
LP47wbvcHKP0RY6tfLDKgKVXldRWU3f4VCDOxebvjLXhOnpi+bmXkxB2WL79PVS4EvUhUHH+STIL
80yUt65auwp/WYs8d31rNd8z60HTes/qwas0kz+M9JJNh8NAlbufKPz8rauKzA1qQRL0p0P+gaUE
wfbwausT62ltU7kGVp1+c1AmO0lM9NbzMgoVmIyzevtGqkbYJ66P7ZmchXo3+OfYdpsFNqsB9K38
7+7k5y93X73MlIHmLvumsLL/ALyVX+kmJlw9+DQV97CdiM4DBzWjnlCcd42Xt9okMMU9rB4sMooy
TWAEWcH3gRguycmfFlw3W3LDn+P/bVjR/pIRODbt2MsVW5xMFmrF/evItM0On/jwcjE3qwyKjnt4
w12ZwYQXj1Kd6pamdQGSqnqkOnijQfs+RdhSLLXampgtYAloOFEXnmEu7ecVQOWNdmaLKAPXSRcA
6fR8rP1BhBXz2R5mluQfkwwk5hWJMUWoxn8LDKgigSt3k8g+h7+47qQbaLCtmwGWM48iPpuy8Zlg
H+N7KbLuT4Q1r5BOU3AuI584WccLKICtWjlfYPXJ+DkUJuwKpBjWOdzaPZ4uvZbh5wybQ/x866T8
DHT78etecwK7ROg+yjGtIPADQVOOMSAgVVadgoGCNsKrPOBkuoUQzYKenUzxkDnXHkdO7GPwmgad
oVWAwbjgTp6n1zhKlai3MkvhYyD1eS9bKxYNX8PEPGE+U22MoVrZcroPNgBwUBz6RgruusRs0LdN
UivNjr7nPt6iLv95nLGWjR1fDiOgiRX3WnIn1hDwm1PcmarLgmc7soWuQ7sHeFaW7XZgpP6nh+Uq
gL68+L0QBIUjjJspQuWJBXw2Q6ysVb1XB4dpqlsx+LfsVO40q2hW/eLHmil/jDkGRJvwhEEnsoie
e1wOugjDg4GfMZzxTMikwAwqp4oHEhtKjw9821MTXhIzwgVTz7Qcc9lp7PhGuuHkP0N56AQqfJSa
+bIVUddfxWyiAZhpmB2sqpTcnzaQZGaoD2knCSzyZ4hK9zWAtpkcckjzOVqZIXDLJ4Pf0T09AmFr
RJIem4+5dyYq4/SQJSVkKyIJKUFjB3n+ATva68A8vtaelqB77wi3PYLMYCgFi/2+WGB8/4HoJuDl
qqzYW5HTIiB+dLQ5YaqCZhCxUkuq3OfT0DkqeoEKihk+KKqaIMMQXbmAqiztmsaeI89SlkTQjH5z
Uba41WSTcHeC9F6ssHjAa7EcIhvno195tPcAD+AIcXulboyYxF8RmtZCxABVPaHTlRn7jhjBiYUw
NQ2JkAmpuw1vgjfZpH8/i/orV0J27OUpckB33OdKJPOaDvHp9plxkrZ/Aaw5UWIdwr1hpB3b6443
XKKBFTRVIiYY6c+ZiaUeTHP1ZBQ+r174vfKG9WZzOHmWXecEQs90DxfjVrE4SyfBC9aF/yN3Giax
eI620G0z/ldtWQxIh80AXVDJmmZMn/5Lu4JxH4bNEok3FSpY7vaVIavXUCoOaODSbPAT4+gTA3td
a394aCIHkqpbSvWKIzIzk75aE/gR3s2pHBJfZuNSgwsIAOkK49SbRz1+WvtsEhDKSWzZytFB23iS
pEBVPXpq87HGB0ttt+2fydcEHQh13lTxwBBf+vtYhRqrPvCsiOFLuGzSXkb794l1cwOgFsliFUN8
+IxKgq6rqVZMaWNewsOvHeqAlsXSkWn5/eXQqeL8i3aeNRk0tgxHPj3VRAspydqFELsU4JIKfg70
UFXGFUF7rKaJSvAwtZ67Yh2a0OcWO9Z88CSAp52O3kuTLMpu+9S+ECWBFPGg3Lb8kg42GgeekC1P
yKFOziDt8f3WgKXTeGK73E0SaY2BKUSWT8hcpfdVkSCpkmmWeJ3/bsY8xyTj+643DhJZCHzTGncQ
qTXzTj5LIRSAq/MHWUdF60m5ZFQUk6L8ttvUi+G/FGsXZakK7ArNjqkWRyC13n84lOJJaV/ueNhy
C2lFC2V4ZupWekBi9eqXNfOEQ/ix2M5Qmn2CTML1CT7hiHpJBpkGaiy/0XHGDjfT4/FQQ/uNwDOd
azjX0iLA+NvrCdZd61tQSwbQH75OJaBdsF/LKPqIMb1ESaA6VitTmFq5mwTQ4FWw11Mt9jhvMMwO
b+vf/vvfJ6ON8wpiWC+LZv4i9MOiPf4rtkAF/fz/L5Evw5cIwqpMuDxSMMgLpdXM5V0SLKLHmo4w
NpUl3f7PAMtMbYAHo7gYKXkIJ6kE4z2heMtPWhfR2SYSlAVmf1czvrQSnRTLOZBq7E4n/23J4QzF
8sDaD1pk5ZK1qyLl21TQc2XEts4l8kTL60dVtKXZSP13YK3dvOqyfD0N6zFMMEvnSrkWktv3AmTJ
Pd40DX2k7800dR/p68v8MxYoJTtN4uE8wUYRir+LfWKoYYT5vZ+bI0bFN0en20G7rkDenP4JfOEP
iXujycse9MoptK8dMEsl5cTNHbka87tkw7Ab8hSlaudvmmZbqfEYmjxe/suEnYX5Yc9eTEGYbG+h
TuXR673G1CrXnH3sl9ql5QIN9b/6pBYuP1/UplE1n5LKfarztSbFDgBrPo5Qymqx+SuE1fT0DxCz
VySAZyn2rv5bIBygIEk+dqrv2YeYa4oWeILGS0658/374RO9QR6Apng+Lferv5IguVqgo94jXy3t
480OMFmYoxBAEYKdiv6pa3oclL6tojhDo3wUvijBFdCguDOYwAMbRuqVLiKAseelgEeqrgsyxwu+
N3accHZn49hvF6CB8zFKtOO8E5Wv/HF7zhhThIpQfs0Jdy+HlIelK3DMi6I/ymoasYmQm6o/5TpR
ni84AdIUnBtfI43X1tNsvafSuAJMTNR0nt4lHIGelJU2CC9VhLFwO24U5I0LvolmfniI0HpZUDbz
0Im0smD001YfvNMB4qLDvW7Csek7ZPBuJyazkT4lLW3ySCCLDtVZvHy/BcYrj/0g1KUJiPMdnarM
HVChYx/DFGyY1d4hTuq4RDe5skpPhXkY9HIxcn00A0rMDGtltJG64XTq4gIDV5RzfDHbTgZHFfQ0
R2O4D5lPYfLLtaU5Rx6VX+AISAt7GZdjRaWUkc6RWF81Bnkn9ldhDKCkXZltBCK+10t9kJwawKHi
3BMxf3L9O2Bjhc7Wgt8JGfszhhxhOW8CL0PvrbmQYixK0Lkc9R3fqBTTDPLwMPjCS680VqdV5Bk6
q0qjkx4zcAbhtaq2Ws39TfctM1blPLDM0Akln2ACpaofI5wWE16AVz+iK7zoj0RqQOBVo03iJg38
R4jkmL2/eyLamJo23cAKeD44pbdbB5gr7BTjIf2dpB+7/2GQBneLVz0ZURtcMZvGp5y6rxhMXRz7
04x8266pSUWmRD9peKAaMXm5xRXxbSulHiSzrqNrqGVGitqSHuwF5sRNUxAVtdulaC3ABXxpdvnl
BBZGauXJDXy8IquYsJBKiktDc5qdijtTJ2xAs8ufaU0pq7D9oZtnYri4ZBApcI3UJzfoW1u+mtna
Gq4PQaGFIsv09raQzqIuCzoLC9fv3UIZVM+qx4mPD777RxhrnV9OYHbtIaadH4enFLCVXJME1113
DeRSRoH0qIro7YvOSrH4eVv9w9S0rEYXJGBX0uqd/3gx0rxtNwlTWaAQhvPgZ+I1d7pPv8YqwGtB
Pz8sz73S08Hyg9sy9LT4MWRICjaD+BHmiqrXo8deqqZBwv5s+SMWUA5tbdCfBaj4rijJQsQffMCK
2z9IzSpZ2Q0xRSh5yH/yEFCB2IlDDwWZZgdTi0543sL40C/L44qQoQzCF4fP1hBSW2DHbswxGWoh
mfR5XrMHAU2DopYWbwqh4MG7jGH63LlVspUAZl3hr4gmgcrfNEvTN1o4XTTsBGGWJYA/qCONQLN/
wjihU27KzOsMU2ZF6MEaoMjB5uTnecbdu0brbmZfVdEVUoOhLQCdsyQ3gSU/VzWA+PjRsWtC3N5u
IgzqvXkj4IuJQ3OfoaLxo0nuWDIqXchsDLflnzs5LE+y5DRO/TlalsbwvcM/TO9cZQ1i7AZUPumg
l9LoV5x5s7J2rNtVckGJcaP12zZ+BqjMls/MSpMy4gH4YIpsciXvK76Bn8cvsj1xyfPNYqCcTLgn
tkZxAMtt92xXzoMMxc/gWGuyhJYMyDj1o+84FlY1B/7GDmb56sd76gKYkKoXVsGbmfa05qnXc0va
Ok1EzE5nEZqunPHWO5xcxUsIGuBpfQB2s9lW3MbZtmPtnQkp20a7M0GPTPlM/T9x+6ClsKdR/qLr
flPZOj3M3IpFKnWJPVycncjw0NgbISfkeMD2MeRyXh4lXIRr9D7G/XxwUFh0js53obnhyvfMWzFR
5fY5EZ6Xvbk0wWpudPPIi1zS/cZGIJhXMr5/he2rhKzbVf3DPcf82S+j4qhewljyyxZJ4RdvUHEF
TDv1nMb0K0b9ZshuMR7Kelfz3PFAKVL3V2MGwhpVBKl9znwbLSb1mRtmEwZFSJsPhb5FfnxMggWR
t5JN6fML1XhX2UjiUC7cENqAg6XkixC+KKQlFoUrdv8x2Fa9LocsAG474iHDr0PgC/wTN1g1ZTpY
vN2l4M84wLwFhCwvVB/qiTmTyjakykHL+a4VczA1mPPqhhwFIlO7n9AmSOHmPCmGBGELfBTkJp0N
homOHBXyDXELR3urRiCbRDXdWZB7On8b8XX+GeWamRpMyRrvi2ewLb/X0cT3Zb+3r5dcxij0S0xs
HPAxOuESZQci918CLXkleu7FPesrGEEKE9v+NiDtsb/5gzgDoBCI3dCIU0LXKVwgALH9WnI19Qli
3JWhCeHAcz8HYvoBZHx6BU5hyy3Z931ka8bT8fNWapZ87azfikyexu2RSw1fhIfy0FaQ0HnDxo4G
xCGguuTSDJUI7v0NuqktM/+myG3kQ8MgYAAzEYbnQBV9k5ux4r9yTcwV6Vj3wC/PZ0RM2URyCJsu
78DSBvowZBWFS3OdNJQRS2ldVin4v9K9BlBVRe8lq2JCvSYCSNnI+H4zw7MNu8dotNv+Ot9HFw9T
gUA2ItQFqWB0J9hi5Y511IZ6lr1zZLdpwSOPbCUZiXK2KohUNwqhzDY92U2ge1G2NS2WpH4nWQjV
qejoxPPFXjc8zg+pDY69hbHmu5RO/YEwj4UnM5stzZUrkET/Do20QFocx5bdnTwcbjkBO9sV+ckD
9nXeV4TDGg5ESi+4LaByc+aKez/+9CCokSoUHGd2LWPdjkVwEh6N0ldw0LW0V5ltHdhE4KZXl249
dItmjcJic4oiTKEy/XaccY9bxQS44iOgqikX0TuClzhrAP+DjX3RBCBK1Ss8N1WvH3PBttC45iOP
Vy+agx24XYqE9waEPiYFqWQ+H0DaQE9Jli53i2QTTqDjJz4GFIIW24MctPz4AXwvJq+GzC2/pMNt
D6Q/qhrw3zI83MBCekMZ/HFHJA8vvnQyQW3i640hGe/6CGy9LWT/A89HW+LQ9Fly1VKzvmtf0A8N
VCVvvTuEn3ns+lSBI+QQT9R29Y0EFQSGDtSl33Iu/Hf/1VQEM62MA0j883WucglYvV2Tq89d4Kpq
uUvetSWLLNYTtvMHpVqdX/LwU9MEalm3Uj/AsSFrxMaN+rhYWffPmlaPum2ECO5btH009ZpWye/I
3tVdXXFETtgkUD2itZDKbguEMeUpe5vBLMPiqniUuUPv67FGH2DMR2zV6eQm1w3M0FX5LifPT11O
xSQeo9qFoq08t85mu2REIieIdwS+d1q+hhDbiN88NmScS6L1lBFqM7yUZEVuf3WaiNi5N2V5/yqH
GRNEprA6ppgV+bmGOjVo8Qwx4i5+62RBobcxo4uke2kyT8VRttfVft8f2SZZp6LAE5tKdNSK495h
Wf3pEFTH4Jnro81SQQ4pbfwo3x+UszVRuuiBB5pG3GHxyVXAA1PZTGFe9TbkPyFf/8RkOBVGFeDO
//DMqMwC8jQZAQT4oDMaup3WGRAzZoeLjO651f2BHi032zoyKAPva1BQpd5xfUxwnMCyuaGVSfJP
RkjkWiOa1bVmbTyXvqa4ldiJAlMOCzBwbFtp8F+7nc0QoOgZBh2Hz586VAQV1tYp8LA6p7a/2kld
pX+Akql/ZXSl/oMw5NWNInEHVz5oTnzfZRHT5PXapoclekxTT3ANjLvmqUFZnhvslEGeUFTf9UhL
hQPLx8iuPZbCYML0E/18EeAwLyEYFaZqtN2xr9Kb8cUu9/ApIiZ1lTX51VU6iRBtrfHwrcewHaKF
9my6tgDRwInA9JXYPZaMp8lcu+1tNPn0t5ObGnsowUHp3Gd7gZO2LlDo607m12rO4bn6p4j08wpj
Lo85vNq1Annp4pf2CIQCchuH2b2ZSkL5VZM5oQvqEW3Q3nAidvP4u1Vs1UdTfF5hk9y0MqrcCj7n
VvSk3a9x4CLEvo9ARQp5EX9uBaUpiqCbVSqZmV4hSzB4aeva8BS1iEhTb/cov7U+2CVMR5Uc53ed
3CfGEaCS3ixkY10hNQf0eIE5itlTCNlMBmnv08vcJ016vEt9QMU9ngtajNq0l6O/5VXA6U6BHfJR
grxfiiBeUbLMn728RTgrcSHyZo3E6CPmU6vwr2tdd9ecUAJ0m9GQyspBxnj3iXtCnhw3x8X0f79G
HxOsUfMl4aTiW8lbUZb/pgBD1FU8BPswoU2A15JjQdyopaNUby6qLjGtsnXKILWRLRYe++1zsDhY
d3813Z//7N6KyAPRvorvfmOyX56oDlHaoVVmEzmaxRjZb54zK2fcmNOEluwzZmKm6Cx8ckeZhzpu
Djg1i/eLwunKVTh+YlfIL4e/Oitupqx5bFIrquf+P2cLx/UosqMspbbq7Uvy1k/yJ739pCcsPL/X
PpikZ2qWUtDAlBn+3MRfP++wzcxoti1K9mLrTjwt4hKW8haD9UaRsdmgWj3pllLmdkQgnk4PoJ+s
dULuwcxfHK8HEJ7t/kBtdycQd2BredvBQbY+On4jhinNptSXewrxTGIHRpFGxwBraDD9v+B7A2LE
1ERX428Na3fnLzg+ggDmXTES4zLA+dReL5XalTILloZc/5z/jTGclioEPtZCfRjpzBEYAuiOoiSR
sDtGo+JzumOGCjpcxvpm6Qp5VHWDxWRGNyeJvbLVtFtkh+FXlWmYZf/ejbLicUm+8yiBBo2+4HPJ
dmLaZAm3LrpbIaRKB94RtglcWVPZkdB5bqEU2MWrsOAYYMxAIgDkx9yjaTw4dvrvD7u1Fxcd2DCK
mKQ9xSgekX0ZUCXHHgnIcSM5ZlTmC+CqQgWwBb3Az1kO+fGGp3/zTyJADtHqZGGC/zpUS5OkS6rh
jqjRdUU2UN3YEMm6X+G2SHobT9Bo2o5Zy0y7wWJ9ZcWBV20FiSkwjQ7buYZfiixhdePLKkD095Gn
EwRSxH7H0ClekeQWw6yQxqRTq3vEUHqm3O8NhbETkiBF1dRR5FGBL9Ji5EviMo7NXcXEz1XMft/L
4r9Hvs72W+DQmP/34MsvthKHrWY0FXlXcbcazB7E/xenKm4GIiO/qMmIbsi5T12kZZmmCOY2eFDi
roY1JBrj0b43NXHCheEnfVzHecBkr7Ig/cEbXU2c4P2JtkhCYaC6SNjoJZthikzAASFsIe9GHwfb
0YItFAz6CZOhZlfrE42k8ERWNvn2JQLwAt0hb2RLAhwclmTQzBAi9wC2teNCA2XCUexMXaY76C+p
ASFShTxnHyF4s8mn8Mo3b/3RK5C1JuSjeVhsQIdsX2AcHOSSudne4S30myXtur9AN+lGX6fraypc
2y8pqR9pqYIIYzDK9B4V9m4UchNT46wiRqCHrGjLJxIzLOzIeUDyTE9PuFxLUVKs8oeyGgMzUW+F
FjqHDp/NGTnVDd0CIbAoPqSPu4dkAgoMgIRcVqeoHOLUFXzTs7JaAkFDs20GBA1/cDNb+GtS0zgX
gGFBNC6+TrQ8NyP9LEAriIQGLRs+9bnBdFL0SksmjBTCvuCqPWFrSA+tU3Atrzs5G7FV9raoeIDd
FD+RhToqZouTGN+rirDqQwnJUYeyNrw3J82upOhoGofC2R5sjG65FkfRP7Rz+uKGgaPbPxbFor9t
zYeHzUjkLeuLGmFUtqzkpIl8rpOyQlCeEcWPqlHDpdVbncbQIoYU71ETxGyHxhrG7zfC18mH30nS
EsgodaXu/bP4TBU0r5/KMirjTmrO9QYZgoQOySux+IQh5SUU6yvYJln2+jSuFQHumYJpar7OZEFX
RbtC199OwFvhd1+zocEm8Ho4QCYfdFMOHIrsIsQLY0nz+BEfyFywDp2yZS2ed7xLBw5jnKlhC3Pi
tyQfK1elHVWspP1OBTHE3VYK3g05VXBLRVUV6+mN94k41AO7VvVQHFRvIRcdfAYC44NydpjDUmVT
RgqWoycbzQSRXly1RHrTojkBeh6bV8zknnbW7bvUM3h/F07cYhuIEj9f/yqkaaSnnpQkhFo+zuK3
SiDcc2pcu+lIhuuwR8XAO/Vst+K353m7pSpG87JI2QoZXTnB6UP3Z2iWBZOXrAuedLwdgmRuLuK9
zuuAyGvwOJUYo5fb7ekfa/q6/0kyGSjJa/hSLF6I1AF5xZNEvNFkUnQYxLichYDz62vbfqSI70OC
ZiBObc10qmtmVcb8GdKbfbwcMUeC8A47nwrgRLd/TXgNuCJufCBmDCne5q1RJZjkj4UEZqlxZpfC
4S8EWfJFHzjgEQ3qj10i8F6bk/wzsd9q620t8Svidg6bDqxPmwXYPuI03R7rERjQgyTMUdmnqB0d
cFxJJCmvhuXTX+zXrV2eKCr2vBRInDRtiXKmT4ohmIKgDY2oRqATHLOLJKsB5eKU5mu3qEBecoFQ
jjtHn0qHTG7rC8LkXxXgGFlQOPifHG2arGpGipVUcSi3B4nZC+7ynWGrioxQZUQwkg3NRBf1rw2q
wRGfKZK7jgv7WPX/iy3M8HXemk/YsTaOjaOI6jbVOMDt62NLxvgb0lMLF0TqD8kfee3l3i5+6+GP
x2hxHg5ZGGfB5pXZxMzz7gKp85aXVuYVeL9Yk1V0vVkoA40bo4qU4Gep1/3wXbMyZoczoiFODRSq
X/oUfN9NBze7DeIDACAstV93OH0TWJ4CGRkllWadUaluWhOjXGhV33WYqnr9TPM0reQiLQQXFbr2
iukdxOgNofS6VxiwQCdd82O3HK13FK7K06DdpSAZ/vV2CrsvYHEI08j39MPbbQTH745fVda7wJ9Z
IG0qNumaENvMeVuoXhCypuvQCaUwMH7p30GcnTPxngi1E6yeRgZAPg/p45x33xQewrSaIAdBgGTC
kvI2eZMi7ViVd8z9ouKFVaf5+F/iCBhyum4K7BOU7/xaUTZRBns14kp1mQ7WXDe2DhUV5z0aSzYc
SpHzol1fsyhmt6IkFnv0AqOfIWWKEHSGwEeZEgZEf5qtXUCuMeNCJH7tWtuK6sMTUYD7unQGsxp8
87Al8/6mKjl2HmStbK5jhvTD4meWfOKvz31K5d+j8Mxwi0o91CgjgIEWOjKUOYlbBxhROZpvQKXs
JqNfMFVvmA8vodHf3NBxZd6FNZvU8JvY/iAmA9Eqg6UyWZ+cVymHcqTqEYkkRwD3L8F1iIx+NFBN
ecv+KF1UyWxQjTWGltaL6Z3FUCIgBTpBMJ94p1UoqVqs2Dx22PkYiN6Q0twjbup03eF1k5jlyuIc
QBn8NJKNXNSznc4NsSPdLe43ivf8zEQOz/anCIbbPHuBXLNw7xGt7C7i1hOvJ7TzDN/7pPgcyf4O
9W2XQsMvstEA3Ogmok2juymDQpdBmfJiuv0pcZDhWyNyqmf9ajIIhK6tbQ7586BzdGFEaTr/8Ezd
xAUfcUzryphdIx5eG5gjFsH/uPiKw2RwBwa3mc8MmHfiNWotefIcXAnU0h4tcJcxY6qJBjSwslgV
GS9pbVkbTTOVG+elrmrJdyXjph7RsT+vBMKrKlEhqZlB/9jpH4QloVIfDHUuepsvAG1bZ1bE85x2
qGNhV/+FTxI6NPAcz2UCrtHVQEOFAoy1U84XzFT2pA31OZgmIOCGtuM2FSR9jovWFBxNMAEss7U6
WSTb2KmB2lTdtTKdhcT/vi1/En7/ceKHlOkTa5IHjddJbX7VK+GDxezpgpsYd3QvNPGTy7eC+JT0
C2g52WimnByfbwZY2ZU8CitzeKswjUGu4CMNfDDlAG1r9bf/3mfUwT/4wupXNcIoHyZX/eZ2eigN
xpwN0y61z5pIEf4zK23Zh125/rhSKafJR3FEc0hyIRYSWmjrEKiVx30UZg6MTmrr3tMoUSKDWbfJ
Ir70MpBwq0xESIrgFT11MspEJmLxLUTn3aSAhnfKxw8iSGqqrElMKXCayl3o1icA3QQdRwbPjXeU
mRxwqQ8XzT7T01KtfPGlTSdqwc98IfZNvio+9T0y6WZaFsr756+TWzBojpwMQejaBL7jWn5wpuyn
dB1cA3fOB4OjE3xh5IpHkd0we/eShM3NL1Oti4/3NGukhUlodMC2O91r828QVPKWJtEDuXtshMbV
/GgcmOt5jvpOSQzq3AECquUQrx8iB5lTTvFXcPIfB57Nv8AfNEQFd3uJxZqSY1Kx4syKfIn9SsP6
v2aW8fgVAF4RC/ixbsVydWaDZcfHlkgBTqAv4u4kj/uWqNgrLk67i7Dik/AWXCStovmgLW20izNx
XmW8gLTXjfLshqBcPBY/djWLc+qelm04EK4B8oAwNb1sLirv7QyWc1LdbM9DkBWiabBiKG3ESY1X
YGjCiu/o7DbsUbvZMInfEQjQ+asgaAdl5r9hK9yFAllmDPqp4IFotve/H4QuP7etm8wUDupPElOU
gIt7Hj3sxr3EvQeCElAqL6Z4H3yYCtKZlJLktRM41Y5PUPlIgpX7NmahB53B+adQWD7Y5uYP7cS6
Y/d84qZN+W0oZfdr7NbYZWzVxYkLIpExSgN4WKjny/L3yDuS3xAFk1xBuGn+C0KRkwZU7K9001We
7Fm2yXlTkwQVVo9Pw0mXGo2rVmPjb2gbkG7Q8SsIXGxpnNmC/gx78B6yyHnJrRzQZwgjkV8DlanB
KQtRjBoAUeTWqTtTPJBCge+jSJfDmyrwdTIekS5s4559NmkdC+JPiPzr36cZ+6pcbaCWXv0BdvSz
EvN7VORJn8toCc1/E1OhovTE6+epj41sn0ARYgAVYIBfhf+1wh5Cu1Ymu8NjWQpJgMN3YAGaBKDE
Qqtzduy/yL17r0y0o6hvKRPeXB/xViVNK2bCSxADb8jxqlNgCyeKpff8dnX16COaCGbVncOaVGX3
gdMuI3V9o06a9t/ATFZBGnZtrSndwiGmnZIpCdErefRcsiiJtFxMnvRsQH9JHwGuW70YlkteF/rM
MPlTh9lSPlaY5EwIJU3GUC2nW2+FNiwpnQO46EOLKytSfu59WgCF4c6iNJDFDjykLVoZoNcscHt9
qcC2ulJFsXCKbTo0vq9vphIB9KgHhmk7xinn+XYwmBFgShUYl1wKrZPCROVAJoznDmu3LOJBe9dG
ooG0NQndIFQpzmKms8oxTi7ko6BNhWiw/M/ZMOr6f1djYFFp9YkzY/U65USR3lIcuqBxuPajZShi
B2jnIIoiuJVBRG66oVwq8jftMBoEym0yqQQIiyVRnDZUqvTQ938xUlePcgOS9WVZ2t/Akkpjmw+C
eyqVpI9liiwx+/Pj1V404EZ89W2UdOwP9sJ1Nb6MP3vObQZBxYEJWIVs6LRKVhls0F3YpEgFUb8t
wRAOP8CdTBJX6cuKUYVSgzkfSlP+QNtjd9rGY+X31c6V0g73ZbVJmVb26mwdmdhAU8GMrnPakZQx
FHL66uXbXxQiPd/bZmpqDAaRrtzDdxo6w9B3HbSC8SvsKTYYYTER3nkRZ/5SvHRrMtWjomh5FPJJ
6xIJvILH2tqe0QaxDNXy6/XtjM1ieCt5vq3Bd31ulbXWUk9aQ2GKED167LWw4L/fAY3TUly7H7lW
ebuu0BopLD7/PLYEvsZ3Gi43lYfNN6plYH2KU6cELUZ9mwQtzJwL/oN6Dm+asiBZqKAlxm8kfXQV
G7wFtn/Zj3SkNUDy3R6kE7OTCeAbz3YDziiS9mKuhJWyYGjTTam3ddjnnFZ6LtrP0f5m2gMj4uLu
5bt+/0DfVGWgQL8FAUUK8AgjhKhFtS1i0RgwRzIfyVFUDxsNfCOrNOhoQ7c4TMQsppkovVGglIeq
S8hiJk+4tiutq9G6LV06UL6ldo37JE/fAWOr9YuCiqCfwovEasEiRump0+naqc1rlvKIiAistL2C
6YhtNaCIc0Yi7MDCqXJJHdHrDzxw/2C66Qzzq4AEQ2TBC4WRVvt+ZB24IX0cC4QTF3duRDJuGLYc
1vZXTlJxxk8dP27gxFsF6TzKK0UMzW3z13IlH0MghSTE0aCiZ7Pf5UYfkwuv4iebucb1wQNPZ3no
rjrb0iuUKcIqW1ro/b6Vv4ZMpkGsdY+lW5mQVeKcgiqVy3r1SvpwFwyCMUTnwXEGOrlEft3Et7Ag
r9bxbX7orqdappkzQ9OkVbVUpFYKm43XSLXD6Ld758I2nRB/O8dimeOxIgEH68qilS7kx5wvlrEl
ORwVHKw/e62DQFr41jNn1NrCm9WFouWi/ACle/iyAzeJDkcQOeq5MY69LQOjITiVsjivanpdiG74
DKYTk0KcuDdF6BtPYomixj3/oaWHmFwWAGBDmPB62pWJYLlzypFg+tkoVy92EQa29hYRqjEMm5YP
Sg4njudPynXg00WzbpyelVEXjyvELpXRsUSV62DFoUGSflSFJ3OCr3GQBKZ2q/xuez8qVIEYLwPh
9aQSjAGciWGjbYhm91QuVq6Xlv/vN9QSxg7DK6qlpncBSWhkqUcGJSN0Vmvn19FC8WdwcIhtITER
PQdESLeMMu1FJcYEvB2mjNhTOKkCj/VYaiNRA4XUFN8+pxnJ7gu+Pi1mugp+dUQKKFedX1sl6js0
w2xCVh6qJPRJmS4Gp0UCDX7cml811Y9i1H0ZhBBqsmqxytLR3huFWvEdp7Tew5sBGBma9l6qO8Hf
ZFr2pKkoUPNTFmFWrOIX7YaiKuCoiswIqYkUNNQIoGcxEkta80XrwVRAyCql0Dg2YUvv5QvyjGBe
J+5rIZvn05X13mdQWTYSXI/BLJ8xs0hUK6NAhj0V8SDSbgNCaSTGXrxlwhiBQrYNeA7/YGlsnAgj
oTaAw+DkBWPXF8C2ShAj/K1N5sX1kbpor6tb7/bJMW1QGLCUDSwbkgU7G19Q1qJKQWYcSgFH5blB
S9HDgLkzOBC+am5kXAsCaFwCrydmRUEcbFduDwFhIxhfCY/mNSWiQXhhJmD+D0Whcq8s7HG8vLHU
G5qiBuLEq7ReHC0P74Ui9CHiALaWAnuzqkXtkvtNtG7KymFhXqiMQpbTNYNNfL1x9To/BDN0VdvJ
fdVRle1abthXY1BV7HThlP/NY76UIcnQJzgR8d8iJAvhQc4kDjnf2O+HzmYM88BouZEYNcw17dna
r6X+l+aUkiutHYN4pZxzrTmrwKyDhR2v//w6LR1nmSNYdG+Mmkid5BeNdZQvFFUoTqPySpTHZ+qh
GLgPBACmqaLhpWXUQYNhsR91wW3PZAgrGg+N968YBlK7nbyz1/00wrx2It387soQMdXYOp8waNSY
6NoSEg7sBmhyg0vaawCGpTB0KtbNcFft8E29798w/idgRx1G0aOYPFJQ/pE9e9dGffOli7vL2Cz7
qHfMKJqCUx7y9A5QnFM9dz2QRH6Qwel+aoe+j3pWzPgeKHwQtVGxoTK1j0QSbUagHv/TgT1agYNt
BDUdL+S0aFRj7pJ9QBkgoim36bEh+dTeAUQ9jH9gktYY8BH3jVuw6D+UJvj9WCeRzNoZfr0E5yEk
UI+J64PzXHdkFf/kqzWCDpcmFSSzILkJ7+njyeRM+17huFGTaIvAtzYEJT4arMv8cXRuJAWRuue7
bqJVnj0OcAWz23IvUu4h+f/pKo69CjI0QMOCksbx4vDZEZvIy2OhNVbgT1xWLRkR/YjaKt74P+oX
GUCIj/9f8NeU1e+cL5GECH4GbcG0uWlUw+h1dSgDFAtCoALkfqntKEqhCD6E+e1YJvvnbg9os5tH
crCojiCRzgrkOLnWaU417M5tOxvr3L1S24Y0K3pCdnsFWnhqGZjfmLypcNBw23QGlicQP9G/sOEF
a9WZdcqb1S2n5iRCEXiD551xYzDy5Nis7mEHVNhkyAjrZwUZ1FhQ2eCrokZoVOhOSgZO7y+0UWYP
ZOGAnzgm7dXB8MDxRZn+316FViWFzlg/g7W7qvHYXBS0XgkasiH4alapGMNgP9CFzAII8jC2idqN
w46SPpne9NOQcdv5AL8O7vDfyxqh4yzgLNuWjc4RxJIs4KcI7szDWn4DEKEK+3Epw1udBZyiA4P7
/60yRHKwax+q5NlYaf/ZwkeWLRzPZOF3sbeGNThCUuLX5Wv27vmS0VIHXfLurDt8xdWC26ftiMBP
6LQoaWaGb3f0QB5eHbTShvOEXeIp/VJqE7IAZYCznUkgLXhLpMh2iDYf3UlmzxJC5jY+S2o5WfNd
Bn9LRjaSR/XSa4Aw3/h7vxWd+i8he+pTqqRGf2qmPaCjOpN7VPgtB6srlO9lAy0HqxOAQJ5FgYtD
5SK5x8wLF3jDoq2UNnWINX3v0dya2mMskJQ7iiMEGR//pcXG9blS7G5+39SRrytKU8togxN4wP0d
lY7MgAEA9wrCAnw2+nkTWvPRpw2eBErK4JpAdmIqzm3et2ufOGbkxcdc0Gp1MiP2pib+k7bxJSMR
OHfFmET1kJp9PvYTaIBc0ycnF1YbEDvPSILuTZvs+SipJKmMJy9CFI9M8gHMbsLKrK5QORURK74h
LafRTpIOiBXXzLTMFfqwJhL5DyshtgzzdI6NMuuS/ilU8oC+fr2o6SYn9AoHrirAdIHhVn/T3ElO
lI3+3OyO15i+FduZ5fPjr2b6DAWqjeC2HrWhy3aJi9+c3C+zU+43YmG9kwyqtMq+rJ3Zs8ONjOPH
hfHxYh2ctvNzles72WEfzItrukyg7ZiqUez44Gw5gic9QbbXL45aQG1Crb0+4wwEz/gkYW4CPQtD
45fn1sfM7vRe33TqFItQtObbB4MSD8v4W1KHpas8XdoQDaNhGnflmjgl5HEGlrbi6JMKkBR9ASpM
j4Mg3ljdaGbyd9m8d6BT0arQSRcYNxF/3XT1LUcDdj5ZSR555pLBlI2x7gGrVxAgdVF1mX1fy2kQ
1/TNqBxKbVY9d7tg61YSrrb67Kk9cz9oB9p9SVPeNkc0RVVVwqcN6SVXdjramb/HwZfyVlD56Vwe
BYQ762/1Yx6egHUkDHpiXWb/NRrER74IVO335uSEBK7CuUsV052OFRqV2yGmBy4gpoc2x4aT+yWI
WDmjXSkaD/e6I8O73q9nyf6vNastqw41AlYqulzLp3Ctw1oQWZBLpkg4moB3H6WkRV2sO2+XnzTC
7Bpv3fjie7iCu08opr+XXSQKmR7nSz1jG7XeQFOgt6ACPDHBN8beBKy8xmlB9ETZFr70st9KfZpn
MNtsF4NjPSgiKJb8qJ3+iReSgbkwnen9E0BqKeBtLPiTyqMDDByOPBSVNr+Qc/v3k9AH3phRxq/m
9ogm7V26i7p2y9Jo9xVile8KzANbjqC5LnWDV9CA3yUiGmHuKZVUVVSPDDviakSQ6ut3bJ0XUjtn
j+QP0YNjI4H8DpftwSzkAiP7EMK1w8/FivuNuE54qfUCV7ukAX4kLAO9y8oNJp7pCgf8VKPxqxVV
Sj9+jTcHVopUs/IFWEBdkMHEJK90xRowQoCdzWuUnB4MGwu2xKHLZ6kbjrbqp52w2111gCeEG9k+
ceieeKNpYQW38LSXo+2XYDIJ/xvTYPm4Yj/GJHzmNIDzacAZBG23+uuR4LZJ48f5ZdSL/5EFVg67
7PTPYiejvFQLbtoSy4nvPGZTosOIL+8jN3NQ2yM4/Ixn4svk+xCIMqHnwT5Dsl3K/+H+mx8ACjmC
c8cNNpuq8S3qfvcooGJBRdxSH03nNR6INDW6bJeqg8YX+jFqaXsEg55qn6/TSYaOmOb3snCZN/8h
TyxkUHV2PMhAgTxPHOt1gqmWF+X5vj6hMI3runE92XF7yFXy5C5v3yO6XtpA8nUyE+Am4p2voAYD
r8Ap6yPt/2wyxGFPC/Xp8CoAEuOtMtMXqhHL2jK6lmWQq/YjqrNVyDXbMPSXpD8339ezp7IDqOfZ
8wGMxuJFJJSJsLcootdwtPgg8Kzu6qp/qkLS9IFzZUIfyMnYLZ9J/Ilw82u44SJ88GUDc1jeS8dL
O4WCUQk0pLKNgMXN9IrpaVjSqS78/SK10oCaVeZfZnE9NE9hpw85eh5bXrgLVUE1Qa6bREIrY4ZP
hKqRGE0m5LSXOc5HPvi8olFa7qez36vYnat80FmkUCxS3tnK6Ld/rfr3FrCgIg7oj1MBGYz6/6Bv
P6c2e3npjxFROH62fLbQ5BagIr0oiU51Wnr+59zC3P7kRCaV+D8QIGF4Ll9DeYhCffPBBmKkXpkB
FE+mwapEYalZOW9YOGNW18+B2rhJ36AuZbCCEj+9Rn1duD0MoXQXP8Qw3Jqy3VHXmMLXFCIdcF5M
bNTZM9PO6AmoRfMN8/fTz2vzwZQhszkTH2VZXbN4Z6KQ87Fx33zwnRnoWUwqN3feIXctW0hLh8q9
Fq9lf4vNpqk0r1erI2+rhgQj0TF0grDjFx/yKwmS6S/uSenG7GVZetVZ9FFnYsL8Sc2wLmbarQ8s
4ZKEud2V61ydRBjvi64d+go7HFIqqX47rwE9KDatlZm/ySWfIz9MFyVgRySHzbxKa0OnrbIp4eBy
DvdbcNU8KUY/CuN7ZtU8KmsmVpZYPCoVnmPNDmss1ZZJTiYRaMJwA0LHFFQULytF43wHG8qCaWrh
ZUFydzZxLN7CCBlZ4mjsbm0qQGxxOxha5m/HWaOWZyN7UjROEpA4oWDGcO2Hic4Qqev39Doo48fi
lCu1B9WsW5LZ2pOZue4cisKTMEAjOGtgTNSIdrpkv6nVff6Ntioqt2+1fmUePbH+pjD7YbG4/Gub
/EmKaRaXqnIRhybSNe7y4jo0H7mnnqQhdd9Lg2wXwlqKY3b00MU4mMfUwrpd2XZ62rjbNiadvumx
tKjjfU2riCQ+7YR3jH5sgWxk0pyZiFY+rr8ZF5l1Mb1KY9YoOXmcnixd+lNZ0X9TEHwkZQ63AVVq
Hq8fC5WxKB1nNKUHIR19x01aQXMKpCJY34wGgevMO5Tf7GTr2vnap7NVXpYfh7l+Rj2GFQYp23o1
8+sA3alFkbYhBL8PedCFjBAd4rmOpDncWxr04GFczik8jydK8ctpMg6feZsBEWu5mSi3XzUPx5cE
OoJkUdLbzk9DjlNdw7njkOLtN1tMOff10T27JtkUMbJ1EuCFPSS2GuvHjKt8oMhCVAp6ke3EmnD5
Q35I/xAfN82Lf+EE1SDs0rPQen8DYZaNRwSn1kdtNWqtWgpOQGf8KV5A/N0iP66FmYm6097F0gVG
wakTZvBAxsUIkTkTLdX4InnkSe9+mlNWHxFPDCIsF+DeC8j2ardlw2aPiMWp4aaQ52VW36p3YjZQ
j5JmSBseWfLahJMUkyERE3D4iKtoNDTPVcXtG7Ovu2DvHFCHsjmzE444BtRzUIamJ4aFoVZtrwtT
gi3t955KYnRVXsGDsLlqwCKtMB87MquPtbMXXt6LkN1wrAbF1K5+TsaHCig7TiPdgKnE4LFE0ege
HMlEkPkzlZ2uKNnJq07IuTXBOSNivrlCsVGM9mQexNh7YzDzznqbXBiUzDQcuttMTf4pPN/SN/L1
bJ8LfK4wIS2cxfunqseeHxHsGem6JIUeQ9rMRbl0vGtMLa1jlMOBadGms7JgTtxDX4m7jhtLsVxX
0ErRJBNwx4o9IQ92E2lk/Gr9GLcO/zjZMucySInoR03G7e21n27PYZpKrqmicRg3rBf5dePkQ9fn
hiEgEYXfacxUmh2K/aANdBAvN0cOUe+u04RlLcS7JeqHcG9gKcWAKSJ/xwBXUqhnn73Z4OjTytul
RfR+sVFCKqmFPPyHhwaTjs1eqRpnZYOb+e5q+OJ4Gi6YPkn7PhhutsCkkWpGyg7tT9S+2jbG7wS1
kmby75KmJ7H3dsD3mErUsly58eIMvKYK0/YlERn58HFQ/p+y7lXtkoHk3ZIg45yZzaLnB+LTM966
Sbn0Bwcm5QSWCPfJ7gTLC6JVlGW352KzPLiYTIIcs4n/AZXeRRhniU3XwjehyUgI/jsnHrGQTr9I
ir45/+wZCvFj6b8SQ+HW38Y5b2UTiL/18Uaedm2AuptNARnRFv8dWe/ft5T+gzbQVFYIQmNiZDnP
UxA5ZAR7BwoizxUdApbrKXoVB3f0wfnVKb0yTPRemze/LkYL96rpYxVnQP/mmRr6lQx3RlFWME7f
4p4pyavLHE0d+fUQZfW7l6iHGraMEwGNkdQgEvLDzGU/VkE8aETnUm0URpWVvjaXH6zw18XLl3Qv
mIRhS/16Q69nIrOeIFMDXv7P6oZxav+36eA+u5yMpz2BVYBj9TDPSE+veEiQK0BX1iZvishtbsMe
nCjG6OVVijVYKVobhwmKiFjtcAVOz3A/DgQqSItX+61wsbHmjwV+iNyKP7WLAYxDd0R54C5j/zIH
oMFUSpFBCho8XOf/uasa8gD+pmWi1aa3cXAQjchT9NhnCyQBF+PvKQK67cj9wSyoSg5OluTCt/IS
aEIDJVjwvEtf3i4uibWDOyx51ccW/0tCpmzTzY3e/id4hGCZTC/A+gd56t0qM1tM5Yx623fDuRkI
W9DcOsACSWMFdC2mFdB0kwf7+zVy6qzK3ZjEDYf98fESgJ3AvVCQsjcfhW6ZBFUfTXt4EDkAv/kh
Kh2sZ8R0U13OWhtyvLg1CC2zBBIJr2aN9Y9FAWErBs2lv0y+CuU5cQRacj3GnjDJymyukNgBM0NP
/Ksm04Yuoz2rvqQ8dXQu21qLWVFzf+wNTZLns5lNmCgBxNEw1aX35ioMTK33c8+YKVsTtGO9I4RK
TDmW+6vGicliJkE8ZcUtxV5EcEHuIPNnAXA/cLiPs6VGcSvYwsnERtyzpZi8wITrqq0Mqs1+dLjj
xAYx3G+xbMSh9XUQSN9zGCbdxMWkEEnb5gbgRdtueytzJ56/Qc+1/sQCZD3fsyGkSx8lHpNdSi+B
yW4kEG8M5GLMtnvu80bWSUZ9OjwjwG6LPCP/mbUupgHG30U0NEI2FOJ80xBBGCGY86Gg3iQ4uUUP
Z8PfgT8o4VdeybTPPSCULqUmXhfKrhyeAOvAlwPrwvFYrqM71o8QQd8+g1DVNGemVDTDcmHAx3ST
P9b2KPTGGLhQ7AoWcViJ3F4ehToubAnSmF2BHW3MrFa6svdCAimxeV2E6lQ8G2VlaEg1wfMlmV/p
5fcTnradI4GRAIkqN78tlHLUUOTlqJkdDw1RsJyy1WuruWfz78H0He6kmXJzyVlhUYdIKUpEB9ol
na+V1h0eMCCb05tjYReSohF56DW4XQGf4CXxjqN1pAqWxeYgogpgkdaI3bcBEpkzRbbP6UZdDZsb
WGwF118easB4j7uGIyjmjLANUvLGfFipysYuLFBhX+apGl8fx4iXfFSjAd2Qh+Owa8Ab8oz6kXQ+
r8zEdBjPWrgKpfQx2DcrdzZ33Bw17bKxzc0PgopdclM3HdruS+UMBH7ReABesG+Ui+9x+7p7nGXZ
IOmxiIT0dpO2gQmLdtCsxFKbrXndMPnEkLt2hoewW6jsXTv/dduL5Ag1ggStMf4DIdoKfOsZqDgM
DDW2Qwi/19lXGvvGr2Unw0kFklRdQDcHKRWgKXb4+cO9eT9yhtjtRX4HNyOwwcg850bbYFrAHO79
9hDb6P1jpgw+BOBybvZFSWSoPCJoDx7fOBTJNgnmMB4JxTsl2ufwRfr+lCXKCOapKi5CAh3fyHaT
lYd9wln3lSGb5mNYpwYkQ7pIZ6psGKy+nD2bV/+F5GJ//i6WsnOCXYmH3DlQ396oCLJJVmU53LrK
mynaJ9TsomkzfUVtm5jJkmafRdPgrCnW+koBtjIPNyA4wnnEza88umoYcFwt05JqgMogNnt4cxLW
+iIZx8c3aoq6Do6IQLtDUd/07Ip54/F3xya0Azy4vc3L2vaHPsn0QPvAbEPV/25Nt3XOZj0x5EmT
6BfWSujk8FK4X3wjnQ223b2XUK5Im5R51BYGUSBwyQxsOSY7W/qjbB5eLBwytHvz+J9n94Wu6n71
Pv3bAHmuklKDyhhcWaobM2OZzsxLn14z6MQZOTkNaAvordO8dr2y8r/ah/XJC9XwOpdH6Ac8Hsyo
zO122nCW1RtzZjINQqdd89b9sL1MWIvwC79F+sFotbfTWsjxjQG5DO6C/rlAnUt0izGMLYNRD/ST
axS3TT0sxEQwGF2AUP5d501OlPp97aFhYkLi2rkLi1dNebGq6iDSvccDndq7nHnc120XnP0xalR8
0OuC64P8XCvhY+QQxUnhurmwj5p5TcDVMLKVYBrFhOLDxGKUP4uWuH1GOUtd8xqKdOCWDCPrl9lq
3gg/i0pbpPDOXLrIXcZ8UAZ4Gx5NUnHQrfBCJcXKqDZzwQo54YJaCUN8ax+TKrVmAbI9vWEvzA7H
UyHeMkBGchNolXIDGWzO1zpwFmkfXBd+6WfYh1UQaYXuVz4m7J7JNKGP0VHQ9+B4/LdZ3VXilQ9r
y8RML+mgeXBE7UBmbPeOo73VDp7V/HvtgWxzrRA7q2bKF7202DEJC35mS1mLR5F4BNSR/0Po+/Jh
qBOL6JtoL4kdvEqHwp4g7x7H2VIV7IAPQN1/Pk90GaQADbEPN6h2FrtK8EV0PnbVuPbGjF6xRCbq
MRACtVW/Ue4ONrruMDyFYdF2FGnYBlObx23sPX/29IsYgcLPlprhgSbpk27uu/jH7lafr/zTMcfd
xskf6JXf6tyf+fYYT3DSSQeHBGit8bisLo2zKXUVd8QaYdy28q+U+JKl7hWZOjbm521xdJgfHMaS
w4N3fd/6g46LWO+jsCsa69Gs6c8KAoJzsDy/9/uAqW7BlUqux8i2tPaXRtRqThGY51lFWhBZsj8B
IwnY6ap+xofYFdSABQq3/OLZewbPRxxUvblATq7kHhV/prgsJEl2ZGUL8fJ+e7KjgMPYuM++WDdu
80VrWJiY2GvrhQqD+uWrlhOa+Mw1Ebh+FmhfwjDCZskIFX0pj4+C8PHN2Vd24DyRmZX87mbviIsy
XcpUHqyIUAnglxalPhxDqA06MwOSuHqbj1oMYnyod5gWQNPRcXNyfTkB1AwodCw+eUTNpOb9xX6T
ZB0EtAaUNxhqasS6ZseRKPapqd3XxXb9u7A1vOS0H0DHt1E0T5LzQSbzIUUDVA+YPhmcaAxDWzP0
sa+oRos1l0lHa0DhYiGk5+wovNzhFQqquTpdg6zR1OAOz/ukXDCin2fKwbmrY1EfIIafzSLx+Vec
OUJ5+fE1k/QsdnWpldzwIqUWUH036grOiSn2qafGPW4drRyjSLQ8gVCbgi0CSb2x1utZ/2F6Nukf
NSLvnFPB6+LgNONy0Fs119ZbCmp9uAupxkeG3cRvx9U+n9szfwMRK8yv05w+0WRtBRWWyUZeuYMt
a4IYUli8qO4QjxPRh532kZsXO8EWOOj0V9BvKlUKZGb4wNFGBdxY3sgymeb1vxfP9Q0tdjBiwG0e
0gBWOSFh4jmN/0so0/ctsqvIdswIAtFfRJv+rp/rXzDA6T1WQfBehyoeCzrIfvhZCuOdS/i/PHjJ
UOef4dupFbJfrC/Qzl9GQZ8BbUB0VZiGvn2tOP0g+mnkS2OFaSck45H3L4HDdQwjGqcMNwMBtz/1
yUCs3i9uNtOhEbH2QX80LAVCZUSjbQ1IqWWS/VTV1C+EqzSTRqCy6WU9++8XHstI/fS7QZ+08Zv3
0hIGk4C4E0l49PG/WixeOIIQoBCjcrhyzvw11IlZi7h0Ct+dBYdIFlXkx+o/vZ2aVLu9fDfTA8Cn
dkIpzUGdHksa6gLRn+EuW0NH4kNki4jhbN5INekpzKPDBNDWlQxlgEJdBlw+7s4eoVWvGBtweo/k
P/6jjkv2JfUiOev1dX95Yw4LXu5zanWWsMzoQtwKEN4jeRvNfeFzm0YDlInAIAQLv+SqboiWYfKV
0zj63VH3ITmHdV1WSU/aNXPDK8u0uiymZeU8rsZ9mCPNcIjDK3/+oVM9lrRatmMrndv8Na2NKl0D
7JKOl9l6CAyaH/02oDywHoG8xEkcJSwbF75B7t2SDl4KRq+Jtq2btqrY2mFESQ7fKi/Z7plCekI9
234ObnR3QBjITEt5hZ2qf4pHY6LgNwxqOouwBhfaYh230gvIwZKveKCOE9H/gekjoGAmb3jSn1lB
jr9/uDfIcnxTQ4BwzT9XI7hZEeJYb7q6JpJIyi9paGzPgrn5MlropUskH6GdKp7WDOLNfKj4/iUQ
Q7D+GwqZNYRmSiWWqtVZTQDHw3X+tGG+MbKL3m4KNAoCjMn4F/yiklG3WslXWmqN+iUN82huh6A/
XOkQdA4lrMtDrebkdd2ekZNRAqt3vJo+nIh5owv2sW1zUWEap5qlgT6xZlxCjov9nAjGUcagciIq
vBaQYLSuG4674E1FcOSPn1+wSTwPl7VcILtFtGZk+tdQNa1npfsZdepyax52TlHzXKDOUoF0I/18
TJ+HiEA3IZgVhkDKdpPKOkTKI2Sw/gZ8O+ckvIKZpNzN0D1bWzVOhkslrkQboISkFyFkiNK+3S80
ShX0mG/IIz/Q3vs5+cI0ntzs+lvoRBLj/GmDM2PGxQ8gZhI8XKfGzqC77NdGvGkyu+7yw3/timf5
CJAKpxAwK/CsWEUb1muY58gJDGdBj0LY2UDFv/abWrasbfyFDWbgKF0IezSMcGDNIyicWLsUzDM3
/OaxzWgHypeYWzphz5LvcRnZIXPT3cLlPq9k5qSTKKylJPxuGC2fjQGgDLX4sEpw/HLjdr/w6XW1
eHXTfy6/6ECaIz13WEyczdju+vShsk8pEJuxCepLDgqUHLDMvja6mKUeKzolze7h+ZZUqOpCweMI
6O58d9D3uYgwsmmD/HNQu8wlSKU+0mkPaRlU4illxgeXu8UIiKOCRGN0n0dA/Q+CXzQhJY31UJg7
qHBXDdMhLAOqQIT5aCAHqDgGTGrWki6HZyR228cP5rWfdfNGPbm+pE86HA3ySiTdzroMgMa8lZZR
bjj7PRwwDFJcy2G/NFXoAI9IDBR9dsLqcsGVmKkD9HxLs+ZQEtuJ/G8KJlhEvefbS/t7u22N7OAs
J5qrGRa7kzajZy5vugWdqS4JoHtNqkH41Yc8vdWW7nbXzYQ+d9RfBs1YoEBevTDRwgs6ru1V9jIU
oMQLQ9vjD9b3RPYDw0WV7NlVOpI5DCduvzryV2FH0g3yUX+ABUZ4CpQtEsAiYOAMVspAWrcBx3q5
ypURa6JccuyHsmQzyLTp5/3wFZRJ9gWRACaVNkl6VeR8G6iJw3VHrmDje7it3ISiUFoJkX5Vs53M
1QtgDuW1D+N5gpAaWny0uHG5UleEMj5VHGC9YEjFnYQgFrqZh7CJUCnSLVZICKqrxvkerqUVflyP
vhkm71hRr33UcDEwDFCAcKxorD5ix1euyYibX+o/lrDebCCMGMJXfFSnm5iDCdVjiFl5DEjCvW4j
QvkAyZAM9vCX382+kxLtGexyV67FSNcGvIp0qLBHHpBuJt0N0j6IP3TUyajILJX5Ezjq9wxot8mb
oBN7uiEYVZHZB9ZuOm7oHzLqrtYpKLqYcwzsY7ULX3BJun5B7ayDBB9AQY2F/aq5AAWdCe1pt4E/
MfwxO6M4IhrCugizJ3ozuldlHOCxeAS3/rmgnGo0raRn2GGEjeRQsaj86vyRCqpmBSjRxgSX1gUs
z/guFusMPMerLSE9Nl18RXb/wkmmnCudJxEMT+sch+BMnCz3JFgNsSCIJ3izn5l2wQipSSCTdELp
8S1nE4pzzuUpngTHLEUk3tnEadOLu1gB4rh+SKV0RB/0/COIBX1NqXgJ8k/04wKXeld0e93DzFmD
RCj4Fc3Fkkq5IybxiHjmAtnlhANtGD8BXXHqRB3kXKQTUzCI4lG6yenQzHREm8/5LN6OTjKdYjCo
+2MGNi39LFbUZWQq1egxvgJAcpNlhl2DrXNjjthbTfxLFxWOo/26GkHIEO1V50GFGXPsbzvhbOkM
ARvdLDKsDnMQpzEBfo9hPjlKWlJ2FvAKGaNFC5f+ZRrQsqc65gQtZb37zO/SykhykkFi35M8shxf
T0MYJiI7twOdx962s1S82fqZqENV5pQBQL7laHEPMbMu6vOY621Bf/MtWKlMdlDdB8M6FmIB0yF2
usZUqFZEq28vIztxG0cZ8qxwxSiOU2ZgVYy0mnx+tNUCq2sjKuAgrwT1jySVV/Tp9IjE2YI4gXw+
bCvCIYuazCZ4l7zsgPh2HMH7hfTPrDPio1rLRsTYm1xXHRFMNbjNN+tAvKUSgiSVgYueRlAN9WSU
U0oN/0o2yn8XIbc8RDnajHhaP9M6jtn3q0H8hGsCcshujvhAxjUX2Rqm5c004azOgemuPvke+JS8
HalTVhpQbziq68Qe+yUFzTPdIbnwM5U016cdR2JiZuRwOb31E9nkUDg7dzrbOxca+INZMB0vmZdM
ff/gO1IYEa/82WPnXV2oqbtc6qvxJOJTaC5PFEsMGy3zBi7GccnUYj+51cY5j2lOezYDyGKco/xG
KZDGJtm6/Csin4jwpw/8swHRFxaM8nuqPqucBpfhqN4thnh83i8h6UR5TEHo9Zo/dRGXeBABjCS+
WZlmCW6z2zlWhojqJmiKhQ461cFVZ3uc9f2ibeY5fyZi8nZ56PC+Kt+qqhILld8NhsHQXWnyuh3+
MCZmNlO082F0+5tfuYwOJuDOSsPVIXpMe0f7ZUnswDSfTTFlMi28d/btY127Em6snOpJjRNA9mUf
GZp0uc+pzToAFD3cw5KZD0guoxLaKMNpglAvTs2i+KJlZie27roRl7sQ59zaJGe3nVuT9AVodzel
QRhRsjmpmatWBMHRnmVAz6qkJaGfKFsUIxd3yIgDT4vpuL/69ohIATxHxGQaTh3CvBbFNKEOecPN
jTfKu0267WH41EJD17aqKzmf/yaxHk4yCysealbIdDumqYtNAR1l53zQTCNChCZFGlbhw1aEGelm
RCbZ9+Pbhri06G97GEKT+0QbmY/ch/v5xnTLgr5Yrjmi03PzF8o0+B8F2ak+VDhC87roquJBDDKQ
bO06C3kztjWzmTf69XVUeKFCPwN5WWhjZG+xJT5zAFZL9Znk+CPss3O24nwVviVceVmS7/Wk9rTY
cFxdxpkbPpzl3uTv8FOrA3iFlL+Md4eStVB11bj4G6qOcDot2oSVC0QVAbi019ZLTK6tWhGQOcv5
LMiaL7merQC34o/0TiA4aM+3WHBm32XxPAOgomB5ilVFdSFfmmntL62jEd3htYZxhZR9kn+GYOuB
Sv+Q22NGDJlAW3cHrSebK54wVw2uNtjPUDyobEtp9HHjdRVl9j2O6FlMoNVZTDG4xCLQ72QYZ7iS
Eii2px2augN2Uwdesunx3Y04FjnmDdQq4csFckLJpBMHXwutugAJDhPY6mEK+TScieUvt8rNmTki
sscB99Xka1JWAFrm5gjj2gQw1KD9oI+/+JDurTiVAft4Z7kWyBojfwkTyv6ZbK2bSmINv6DCbvXq
Yo8oSp/dOcushWWH7mWBVqY2LJo2VtZRmSDiUZ8Zri9P5Foc2ZBRv6AvXLunv6Iyxtg6uBgXFmU7
OZ1XezE8tTxEwh/LFRLFI3zahSDz604MboU9nBhhUSzPI9hKb/Kkv4ZyhMUPDjZWjdmCri8kH/p/
dLu5GXfWA3X0q1FIhIabZR2CtAyvFFWFzd4B32m3NT94k3cJXo4V3kvUirUhAXyl714zJxtWwyIp
rkTWp1/w+UqFSUBKqlscWJaIiPOc5sApluaao4ERufMcDADG8iAv0OljClk8lTK5XHEAXkTDXRY2
xJonExn4fLTC3I8x88un+QZT4W5RRZt+PxE/i4fDm/GUoTDK2Tu4xIU7nKQy2+vHjdtlNH9vcCLA
Hpv90XAFmyTnxQ1ke5ZJ7uMlvgLSL2eWnRsO3WH1YERQCRL8vDAlEiZZBLclKvIn9X/HK0UU9a2L
7uv2M1hjV2XyBVuInTsOeHeYWIB8wRPTez+YjjsgBQs8laujhus4ZIJmvSCvvS5qEBlthHTHpS5n
GxjyEtoVYE13QCf1elVW5nBonEPRseGSLSwYfFMIsgXAcShRH0WW4HJhIFmqfoL0tm90dSTKCAYS
PJh6errWc8hb10VyohUn3qBl0hxP2Ihbma8sxaBE12DxX5v3OkmZCWzDWNPyW7Hy+e2CkNr582ZX
LV9rHVWeOp03/E+iY1G8eTtFy14kDJ+RxqOjvc7hX0R16o5QRBAzYn2BF8vJz2Ou0BppePXji5MY
iYttiFwbc6kKu9Cwsub2qqzpTyJJv1EVEA96ROG0qzrf4k1dAOHx2oRH2Wf2sLywvwTuCLWAirQh
NBYqzuE78/T0/UlQljVMdFQh3mDHgFoU58b+inHQRucEeRBgxp1O4au9nJjasHwykHwe+bwTveqD
tSDm5rsNZKt1FcDvT1U/17bGR6X5Fu8lAvpZ7GEV8V+9UoPQOdpKbzD9+5jpbW9pKQ7gl0VzpHic
v6uWuxz8gu6jx5QPOCtbSGLwjhvYzVbaZWu4SbwJ2rybZEaPvSsNip6m6Klatr4HsSjdgfF52ZEK
el7sJFr3w9LHBTrQVyQxQfp21qAXDMI71fzOWMb5iP5s1J+9VayL4mVcySdeSxUqSsXu2Iou3pmG
qGn6YaC42vvrX5ABvx0DdsyMSywaovZkjlHUw1eNjY/JMO1B9owLdGI5WNyeRV9EKZ+dFib1TJg0
45mkjDanqRgfsNhHqQWmhCHV2yh+hB0OCgVIFTkKzF3UYjkM8o+dwz5+zl2WMfeII8VvqXETBRHr
VETp2X3LKoiSgLCHlKoFZP8Qe3ACjP4K20f1fCgEcDAkq5uhnAnb0h/Xzjt9+6Z00Bh5vhR1x+Sl
Qly5wbLi2F0bKx0fgxHkpgxWfD1+GdWYQ2NL0/DMNYrpRZTA0CYb9vGdn9NttQneGETXlQZ3tX1G
Q+r4lOQtE/eSHDSv5RRYROAO6ZCjZ0mGwVH9aNsj2iTv4yLxmFC9FlOWl20UMCnYuHbyPUoQVUXE
A/x7QFq+kh9zkLAVRYmsxfpP6gffwPZveaksHl4iOQlSMffufNkWSGBMxB1FPHWy+bpym8PxxYix
5Rm9VN70xPR8cew4l17PvcUnNMJF9jRxLQ0nyGtSQ2WjI/lqKSBp+6qqI47E0NmfgmBQDTf7Jzn5
bjEWMAZ9WOndWC1Q4JIfFhyIvDAM/Oj+bzyNOhzPdkGn8EAlxAZEH+N4fyX+vuC09+JVEkdDe4Ep
MnNvhbnamdqXqfIGjK8spcm1vWHDnDpKsefzlseC9jndAPv7B78mWchobXgTkOr76ooALUNoCJor
tn3E/ii/CCO5AhoyRxkB2to7bE027soGpoQcjnbqt+TkA1C84aZnqywC8V7DoFZLSAP0ORtgWlIt
x8Zl+ijdacHa5rLaZgKp0Uf3BaUw7u1J9B0ZakLNKpCOoemCjLtSETLznkrrCA7NGnZUyugKFHVQ
1c5CLieffxMzHwLk/Z0Cl9dzSSnHofMjg10Sj5mtYSgmXqWshjFhhCqqLs0aPSK5mcY23os02hH5
yxYQ+J7efJLJ87EhiuOzfcRpGdd0THQDZSRAiNZG/fetLa1QUbgAKpR53029VCjqoSV9KUvkr9sX
pyr5lJE9YosRL1RmCL3deshKcbEXYfgXALzGGMix/dD81HDznwmXDyLzHP/dVsHgT6b9y4T47gPI
sOqX8CksGvZSuZTen+JX1XPni/RTODs3G9QJkul1koh0qhcaokkyeb3djjTm777hIfHzJx94Ezt5
/TKGiucYGBHT8svh/wbrB4XFPxw/yFuOgx1se1B9WhNDGXk6Xk18nHedv7PxyKpHGd13ToC5ZXhl
HeALJ8drQHMxbipAJ/jkYXsA9zU9GjwXTKK3Rb8iuWqq4DefOVOJfBAkDVoOJ/7xgmn+wEJwPZlK
q4SbSI+sqmLEdI2QIgdAQQ3/wUNq6lgSRZb9o85ijX8FumfUTkK6JA/LfksVM69zP6QBmt0Qcw9B
TFQRMmyb3KIkBwdMu8jQ0LE5dt3mpRopT31m2acLUaROZSupSW40/MicTlDbUl2DuzNV6TbtilmF
lurM6LNbLXFRI1+R1I9mqsi0a4igfXzcQ/Oy3ephbRe4hiL0vJD13SJakCkfNIeTC8PY/l8ldJS1
hwHAIxygB/j5pNyo+e9Nb56bAMr7SLJWxvfrr2Ecfj9LHAeVs/gPDJKTQnXytBAVND+lt+Mn5PaS
u0hFZpQG4AlfjlrbWw8abnYgFo9kl4skodPHg2XEsKqboay6kA16zIbLSJG/y30bQbK2b39DADhR
TE726CCJc61mtljV1yCPElFLqtlheS/EJRsK8gIvOFITOZJeWqXvEliSDzq3G7GK0U5zCBcqm0mg
ISosAyVd/ZfabB+ufgQtVKMn9iLkpPGPY+lwzz8UdiTRMjlM0NaPXaRc2RQbFsEUtrKJ/3M27n9W
GP++5wBUOUDeOGdDnwqqqIgnOhK5GUFjfqbOs/cxB45LDHkSPUK1xlKQ15NZ4/JfrePjlgVvTjXa
LctZfmO2LZq2vodUJ/6aeslLmCDuG2r3qKbvjXDl7W8rKHOad08wAa1cxQH0OJEVc4jg7Cnamzeg
w9mkE6mPy52JT+bMaG+15ox/oYldaBK88ZIq4r+xONhm3o0eC25yWDQduZ0EiWZMgOG6gVt1hX4M
vgWn9B0P85F88sSL7lm0qWvwFGniMNKXLG4cGjn1vNWrABuTLYMF8E7NonNhwLYGN6FXEthA9gyP
ks4kfDy/WVBqQY1NA1kwbUlW4T+fNQXhphFAO6SEWhd7f3zPc7/4eQ2QJ/xtVowFNt6esJ0o89O4
DR3DUDZSBo7p7ZZrW1kWuiTzOvMs0sXWs+blh6pCLseHrB77qUSRvR733XD4DFWoIGaRSpQpmt7+
6BjPpc+K2pIPoOiHNV+RtOe2nULwAzStTAeWUmc7kSTfjU1tgCdTcL7oJKxUEXJ/4dvk4m0kV4Gi
Rbtd08IpWLz1Ha6V5qq5jnuWNALwnbFrfubtB+SdiduyOqUle3fTpTZ7Q/KOk8l87nER0RblPMhr
eytKwlw/9ArXFhM2v/mCL31GuQgHvqT9Lo1DSARrtsMviCsGmnt8ZqRaP7Djv30Z5Rf97cZM8Fdj
n+aJh8JGyKAPqjWbntyGnOrwdxAZgfQGKt0yQyAdgqgG8iuHwr8UplWCzMuDBpI0Q7f/q5uh0oBc
DWGxLkafkxGHoxAhrqbRzTthLxJCPj8jJWp7RTJGUUBBYM1258rQyGIS2qiFn/bYInWFkxCbnaQx
58lH4xOMN9mwZo2up2JJqqFQznYUxpLId2t2h01v87IpNy+L8hauVvgw18jOtTt90x3caiTiPmpP
iZImKFHDuVG6740ymQphi5tEiDkFEd/6zyjmJ+Cbz/iK8DlE1ATtf0VPpF47S3N2+C7E0EBRBhCc
6R/FVOsySJRlB6+Lqm73Pr1I311sscgPRTTPhjBh8u2bPJmlr248M2CllbS9jG2dCFEhHdEjM8AF
p71cG/FO4Qc5C7/e80bgj/PFrvM9hXsnuzTZpIjVsOQtSJm4Nx/IwSJZvHJ+R2Yijc/9ntQHeays
4AsTn0xrlbDzc5Gzf4PPFSTBDo1r9xaVF5BpN2SUWsuaFwh6OpIzJSRHxW+ShNRPUq8+dxkzhO2I
OmB8BZxeCXIfTJwo/itZOQg3BsS185CwKCsAwLyBL0qeHDsJDQtWptMqoXYSBjSsLPsIuPOzAbyM
79+mfOPD7Q8C0+/O2L3VGAdbJmNmr+EWnHLqly5Xo69q6zG4zJV0Q3syFPQhZhlpnhEgC7Sf9gn1
3VVbBjNIHYQ/+k8UywPaqE3z2eTknjLCxz3DfHOUYa3KI5Sa1JriJaFuG35DD3IXom+5psBwaYQ0
/QtfqsZVxexXZe04QSx8xnU85suJfznm792HOhax930ewwVl50DSytA8xPOifDP4sLC49ByCzelf
Ltw3jIgpBqSylxCxfn/X3WTAYA+OQ4Vg+w6BpkkwAPtbcVJ511G07XyZx/q1/6ZgSh07U1ubDACt
QZZJ1URpw3PqabvdrfokBxwqIjJTrcap5Wt0ecW6PLbLdSGTuiZvyXJwYaf7XjBre16BI9DpD2TU
qrvuogMUAiwnlizjUbvhR4R6mYutXLObdwkWY8Q1aaAL0KwqAc38U2tGaWqiW0Q3Kcrd3eb9R96c
0dioPX2kyGlLBoUwyB3Se8Pmjd1xlIl5k2f4v/51ZR4oLOU74j4kmpkjPBlyQuLl9VEGkxlshnP3
Qng7cXP/MuN4cnov/4mhZ81x8RuIR8XMQZXoaj8OlZt4P5Ur/INlnUEYK8UvcR51JLrioIXFE3jh
qI28EginKpJ+p353aj4mFGGo4sF3y7ablQRICDHn+H054kJeSj7NPhOb8HFkar3RTAZnP0F5C1LG
hrR2sCyvh5hOAZS8l0vPzpheiS6dQjXvHr5VoL94sRh/C1b7liPKV2wQiPmsJ745LBY4MqB5rNJq
53Svu/nK8v9kHrFjfqf85KPswbHKQCrHV0mB6IlJNJqhXoxLBA/IlyKWty+lfrRvR7qhore96HUF
boUZcakPwqwHLmJ6ZNsDWSFhpuqIiyeiQjBhq0k6kEDCiJ7sxR/q1tgVFaum/lw5RI5TA6aSr/IX
t2owC5LQIjmfauEVLx5qnzPgnYDSNEOQecB8lmHB2gPeIVznQnh/otkJZop0mGAfXEfg5e4j2mt3
Ga3tFZNXNOq2Ol/4GDa7Mo70JHzybhw34fJvk1g7sBRF+d/9Lz0KD63VUfcGwm3Ace0+IxCTBkjY
BRu8ahnNunIwnMQqUIQLfKMuiWu2rtqxw+Foxw/aQZaM8IbFRAUyEIzB1zXy/zIJLGpYaRDS3TjX
J55Z7CN0zHXfL6fiDkNLHUpKF2ZMK5jIhfXAjcmUmfFdOSgsanbXJEKFTsNcAY6mIu6QgfdL7Gm/
JGZxfIm1xTK7Hjd4h2YNsVJbDw93DLsnlXa1dZx7ADlSQRe0xxKr62ALQ+E/PNHg+9hgk8uXpFWE
iW/yaCd2MeyjoWRs/GrU/7JBzbcfpxoVy5lH5nxaeIiSOcKRGkra9gdsSM86Xdm4POzSYn2pTZqU
BGe4oHknoXkoWsxDQ0h1eFjSmzA/eciwmsVfXeRB3tTmUlgHWqweB4uocbdBQATmYlcTqDw3ijOU
e+Inv9yT/w2e/B2eg35tO0pn8sJTUlOpnbL4Hx0Bxs879I4rLZ7MDBAxL6KCNbYgDxg/jEldxGS4
YhpgZfC78w6WqEUkDiEvPDOYGt19jDhr305WQEYK1dwEXGS5yVktqlqMPrL0fDv6yY6EnaZOGts0
yjs6u9JMM8fOM7qnkp7IGw1sNTnaA+HvnqqXex7DL542PmaHBS63iM9BOB4vImh1Lx8tqYk6vefa
vCpcEJ7KGyZKPcbMlkkDDro3XLt7By3Y3kHjIOdl9MxAdUka+1pytAfXNd0fFJxOGCwBokWhCA0h
wKKpsPdLiucunnsSALiTslhWKnVGkyMMll9TQ5SRa0gsfIYbCLwHrPUNBOw1e713JNgWG28Hhe9q
vT1EXr4eIVN9FPHnHkWIjgw4Q+9QDZyEVUcRIhmrUKEKWp9BphNVsPTLVwe/wkKmtYwaLKfDuN2j
0WCgYq6WZjMdmJpJg4anO4VIJEepphkPq54x7OeYQ5X/Rvpzim9Sua5ipSgIZz7dtRsstmcYsmvk
NQmKpId4T9BTKkCarZgQsleCGzCDQG20qmxrg+N9Rf1Es220E6faNj3GY/trvEusfP3IfxgXuoUM
9ZN6gtOBOqjNePyI5Pk8pnGpHWh0f4GK3plROxUBqsBMUFZDmJLrH3+UOuvnRO1SYM1RAtE9ojGN
YHrJUwlKz2VIkT1suy01jJLSAed2YN1avsmjXGayA24sJVMomHx/A03UhQxKsrjwz7QZtbudSDx0
TRsqAHIFTQb9C/Jzq++eaRzr63kDICGsvxdroNjl4tBTmv0lPoenQzXcQan5eX9v9HtOwemxLYBe
GlLyhaAZgYVAb820UaUzmUF7nBJyYhGPkuSQYKNIXIl3RpHUGCaMsl1sIZNeiJOplmwtke28NF1+
tQIOX6qJIgauP6BskQ6P4+6LBslNVWHwwbm471bDHGA6DNlMZAWMPnZRoyIosj3ytIqLsLUE7uJX
EgycMjVcCzf3lpVUDz/OTAQEl2fraC5J1v4buFJXYknZo/W74l6QBAdYmxtbjKPSu6BDANhP+I+6
rt0cMHBg0Di/G57jaSTPvfkSATkKQDFCTF4xyG67YU7dXyCPByTXclCFJSezHMKZsj75zXfpgF2g
zXq3flPCBCb7WXt5PJMenRz8bOBLJiSN2orhQkZTDKzHdi6UFX4xht8m+sLv8G24GyW7hBYZp5LC
+5LrPetNvSQD14Uw1IxNlmHfDMnrlIvQkq0OOeGgl4HbdHJKyr+5vLmdBp6In5CRpC7AAqjAoTJ/
aWVKUbYmnK1Y1sENrXNNLjhOGw0JQWdk40HM+HqfLZ7RdVxkL2AG3H5BhF6SGBoMe30wdorAUUaE
9rYRCUEZRZ2RtCkVrb1UBHCDqVQmPY94H9yzhz2zamej3nP/t17tWRpw+YXQvKCrc/TIoTwx19Ae
dtHuyqAEZw9DkQBd3N7EP9j7EN78zPzC7jB0yWUWh+iDixtIWYU7QICVaXZYDsEH0oFN2vJDU/32
QyBO3LYg20EEraAT2C4Fy+jjNb9W1wUOHyqNywO9Q6g5MxCXnI0kaz/NIC8aZdqkiFdeI17W0wJJ
UQMR0P3yIvk4HCoyk8ipVlbaaU1j4ZV4rhPT7Px1Lxmb2Qx4x/NhHR3LlWOqFuxWmUCt5aQf12tJ
lP1CCoGxDYxUKFTNr+1/5WrzxMjU3fdAvrJSwO5t+pHvC0iq6hB3tjDnoUVABPijv0wIFHbUFugQ
axrveYDKs1XccT+33/DmkniCALc5l05Ano4Kq8LaGpG1l8r61CF+bBRk4hiNqRdL9vNkZXwVlM8W
1RKRmsbtWvxCL3sMIH8CX7FCORrH3CinQv0OOfSnTbhWg8CoVeR65dh3lPFmoN6bwhmyU4JC+oCn
vvUmNsmjILDd9GD8KjjqC6LdLebzVF8cG3HBK3KK3KWInm+oJSZZrfHVfLkG54tGJaCJj92g7yEB
Q8PiNu8blnprxUCR221bnoF3Vt63akywABrkg81vjGaUkxFOIxJO48qSPy2LSwWUdxgEf2qXd8cQ
TwOLLiwvnhZbc3pgqdOI5ZbPwWo7davXCAfPmNaqhdquopYtR848d1XdwimEqjJ1SAaIsA8Z+nzT
Zn2Fc1hliqW35SIBr0U3xmaDXXbF7W0Pg7QV9anDOnPe3KjUKc4JeDZtxMSH/SsuQ9w6HGPMIbba
+fbnVt3oFCG4RqMIYGNWwcJzM5PEu1w6gz8T5fJTQZmaOHXUf8amyPw7crt0bUj/VsOWplbBLsVr
t8RZX54ziyniX8JomtISm7YSRDquw5Qp3uwafHLIMlbms4YMVcBZL89Y1C5b799QMGCPm1rEmH6a
0XhO6JkXk8fNKpEZdVaSPIkyUUbsTZfoYY83O9c3hGtB1Qo0XVBqICbckp9YGxMSdzGS4Hwjqbjg
uZL9OhYIslKXUZxe2jqOXzKfnzrh11Qh12+l18iItVjCvVkgiMRYxJ7jaVdghco2UdljbAOyo0eb
s9XWndO5HtsHhgmvVKXH0bSLF4HIsGZSsmwOnn7SNgAUnK6ghX1WTMk5/HoMZ6pJsK1VIzwPUimK
x8knDPQb0uJN/gqCOjIYbMD9aIqBu+qgy8xFPjfWesgXswo1dlcbOhj3OKNqxsr5NTS5MTSjlRv9
fNGyA7AodhunPP2Gb4YHR2yjZGRIjjtQqDcxRzzbxqKf9xOLRq8wg4SpdHXru5JtoESe3p8QQ+tq
YkDbVCLn7DNnRs6a1C5981WqU4z3qlbldE7g8OU+McvGzzW9/jSQnnwKZKiFeKJTLYJMcgE7WFCe
cRgUYcjapcKIKdlQ1z2NLCaZGJTOCE8Xj6LHUcJcUe7WUc8Cc0hwrn25zlDsTl5/4Y1pfdVPx6yD
iqsPRSV42Ct5LoZRG6rChd2FL7Qu+dFHs65kNbjEfWKVyDVa/77cjACkW2GTkqOr0U+gNKFc0qpn
J5RuWTu3mgG/hsWK0Jvr68hpOVyAF6OkwscDtEdcin5Pv3Kos+UUHgfCar2YaqVEFcv7DrMxo7Kt
6kWqFYe7mSrfkiRiwfBUiNMqbWQLgL5a5W4UrmvmynjI9GKiDNIgBN27mt7Ka9PtwuvHgdG/qS4J
9yUE/jAnQilx8Bl18aCPX+CzoX1KvB7C3ksDZHHUuUAFOR/Rq5uGDNJVkqZ7YkzcBTDFNzJd4j0C
HaCX6NT+TrnGilXb4I1PUj+q4AdpRN64cZN/rC1DVJsnFbPWRInsxMYa3VkQjm/hOnNcpiSvHM2O
dv03ANjV87RWctbkpVxs/nJ11zur4moFS5tkevWCDfZSJAzewA3Dx5VZsFiAlS+8Fw7+Ei9Exy1A
4XUQeX/F0SQqucxMozVBTc3nM28SJDu0DYLMG2ximYpUdxmFzgwQK2x2nBWZ6frf0hnRcYv8fzZk
+FbQIkczrq2z6irj/v2LL5xWk70r96z8PpypnGQpxgoHKbR1tKxN2ZbGD3qVXbFqj8lrzLWdGg24
cQdiv7E3ZZdkjo0lPm2kWTQBIiXNv6A0cq2005NiuqiUi8gIXPKXt8PrHBYPKQcDcNO1yopdo1iq
77vZ1c8EC18WyKjNZg8WSABPcrVCp0ELhM5z+xt8vj/S5XYSvHzAynVg+8WrtJK5YCYd5CAuxiUa
cwk8GYg/VPcibc366kA1SOWBjyJEMLmRIzeoqZvhMx98zHpXXlBny8WiUYsvszjAzpxPPcVoHpMM
S/F90t9Pa4OQklKAwe+ifSAOOB5SgpBCyTAU5e4+nm+b6FBJ4d/Xbp0tMi8kkAm/MnA1wGJtDL3o
O2BCy+AEM/zGyyCvvMNL8zdj/W02BhNhJkhQYXT4xu7zjeyF2B+oWHGJVi/rPxsCQcyQrQ3AXcSF
brW2Fglo7Wwg4AglkYXtTMcYgu5dyceyUkZkOeK5Obxh7+cEFMQh2HxhnoXBm2c2hm4tyKyx5l6x
ohoTFjQ4YxZZ66+zmuGUokhu84k61Jwlf+qLA7m1sLMxJhHszuJa12YGdpADzGHR0JNdaMw7Mrb/
Rg4zEfsLSriKmkbyYgmOT6H3XfOrGWUU7O7MUxOQsBwFT4Q8xCCCtkK+RgwrAPzKGRlnptxkasDq
BYPHdUNpoZWqAR5uyh3oTYOOydmxHShvzDsMqP7DvxwiBZFBOx/fj6z+wN8xvRAnw8phhJcB+yG5
W6ojpwmu0C+MuDDp0g8ZGMZLkvttHc0I8IcGZtsFjTMjv2wMCKHO9kBBvUXnkDlfFFurtdyrQ8jk
S+fND7fsyF4t1P3aQrHjSMN7+2iOlFuETacvvGVTkelbcnUXCWSmGB6qesHmEuvx6nnGtZCQPBxN
IGuYItsoWBUCwuxseQVGJWPVagmln8HAXxv1BnEqNEKzL0armi2NusD1Ke1RVAkzqKX+YsUikhQQ
/1rJI0GUc1gEi9qqjLWTxm+loIEkP4IWBHlY6jfB1PtBDWmVOXwn/XB1vjVz54yhoIXtX5IBmt73
T0/m1WU26s6oI+6AH445dGutiN3Q/sBj74Mhj0HCRVyjnwZqyqKQNXe9CkJIuJUb8WiBbs7FJYFJ
0LPVcZXYovh0nTZgnm/id2c5ts4WLloer/MX9Q/hHDcxKX3dmZAO8ZfDeHhux92ysxTdxD2azGFc
HMsmIiWeUE4pUTU05F+/MOZLHn9LWFQ2IUAEmSDM3ipM+yrcCahaTGHB835yJc6Dl/D61VCPXKZ1
L1xL0n4UOzaqON1KQC7ZKnuK6ZAEYmstettyZNkLyCwZqHnFkzYR9bpIEk9LDXaBkAHGXi5QloEv
tGSpBr2nRKWJNu20sR3JZCZUS/gtuxX2Fg40X2PhOzLZABTB7FJtQ30rzDBlfHe7Yga9OrhjgXDc
KdDJ7Z/n9bwvb4tS/p18NpMDhOK7lpj5P4bnKZ7V4ZpnlWlgLQ6x3UK5BCK6DFsJNtdk6d50Olc5
3bTU0Q6pisRGClm0ARcM+M+8RrGQllKuWXzaOY+yxieonhNY0fMtmB2f/GjrgSqUDTPLPAL2zVXE
qG95D6cpc/GwDpcwfLpUvq9ni9yp+6YCmIkHIhGRw2f4WHXz4UfYRRBxqfoINzbBwKTEmi31eiqF
B1aN5+U4iBXQLrkPRGAfHzR87YD6djXQOOSyHMAzXN2Fw37I97MOgQybtrwBP7WkkH5Xo1t1qRwt
uMnZKWSLLvNsoDWBgQ9MqVUm7iXo1W68zwTa9U8CTtpkjRhVLNqcJIwj5QoGvx327Ibf0/7BUjnm
BKDGT1lr4WhIWd2fdVkBposDzd0WNFY//TJ542ciBHtQMFiiv7+xLh7AMYcuvpXJHGhMb3xFbMcp
3C9wTI6gzMd2TW6K9HxzzzSrQ4EfdGkrw+iVC5JxQ+frvZBo6jdzILkc+GbPqjbaSZ81+mOSfnPo
/jHJlZnr3dw/iglzgykrDdLAnGsLUa56/Ummb11Z0EflcelLN+wpjgIfwB0esFiFVJfE0BzqMtBB
VfGUDuBhNd/BEPIW7ypP2p0CEn8jHJYIAj1vC8WoAsw+rjspi4uygoYG/spjaMhhUigNT1sIamGk
ElTCjKRQqDQ+TZTlE1W+d7mL0uAUy32eXa0avJVmIYbnUBtOB6x+zI0MM8i86ob5+g+bKtjPf1Mf
Hvod6255cXQ9TISH65/24u6jVBW3uTuRQAxEzIPrdudG/7McOGpIOWkemzM+JRzkIjykx4Oop5Bb
dUapHXD83SfOnyiS84eMK9LifgM0OWGmsJ3H2xavrLBHYbYElJFOhHGb1AhARJBcQ1JwOO4a0fTO
Og+B6nFz7U1znn9ItdcJKt3zSuvhuUeVKYFHw9cOcDGYO29ULkRrEwXAx1VIATYJFdHzMq8bfE1H
pxSyTGfDWTeJ/QNtPiWRFl+wmTtTsZyClql0VumBx1ibTHUbc4iENz78RTwJOeSaytyO5nAq+luB
Rowm+q1EQ7Yfn1dhHUboiw9uqBBlThs9XEl5iXr8wks1OFiFF1vxt+0kWzfKFyUt6EOye4dz8OQ2
0NHmez3h7i5tU/rYoc2lCfqzjmBcDnEcKRxP4UQG2wYmQvlSNbP7SAZjfxWuDaxT9Vb2rF3iY9k6
rvkFMP9ZQsxm0jri/MfuwmQQ3XJ+J64kcpQd7JZ3nmGpsHokfXL9dj+YiAjN5H6fAo4CKc1uUzJj
/xOKnx0GIRmCu/ifh3X5yNYDY0vSD6CKXnBnlgYgExVLgX3r4eutDcM5b7hieO3D7fIA0SNrV8T/
QcC1ovlsW6bzF6yMkWJe3SFViWaa+kcJt0/M/62nkUyJHhwNSWh7KUTiUarw457X6JH0epHlaQFH
A/M+ZoNHuBsDEmOak+c0syrOCz8fSpyf7xPNyvqa1UagoHKpqGspCYt9bJTvqP2QGjmjvG6Wofro
+LMQihv/9waewWoQn+nd0HuFswagEi0tZbmlBxL5E8pss1tSFJvqNHSDjx6onX+WZOaJmJdbi7dd
VvVRAueDtxc5kD9g/7HTeSKpMgO2WSnMEhUzt6suEzPsYqRPCVoefr6sJusBYcjnNHWPq5WTlAgk
mKKPpL1lUDBcWS4EdTGHWUItFjYnka06laJExSi/Z6I/CRNS76QKnMlBWMiNkRp6zLPQbp+Q2wAv
M4A3CkNXaU3PspK0f8QjLLdQ13vgdG5vi1N49zQ3MGQsuKrwIz9Vyp/I3cRLxzDkJCp0QFxM1I/K
YmY2WmxfTAkddzGdQ7r17ITQe/D/w2iYnLkKLAZH9JUt/WuvSWrEa0cXjtOZvdkmPk1Jnn4YhKbD
zKymYQZSz+Q48YZJk4jDlzoHGGBlGWFggnlk+XAuESxzAbNuED3FMig0EjzQ5Krl0sTwAcViTnVf
cAlzB822GyRZNIiJ4u8IpjuuwRZb3n/Doetvo+e+dsQ9SJJ+37KaTnUvDi3yVGn5MG9EfCMC/wkw
lz4dk+9zWnZ0+E27nKINJYethL6eL5Aebu3yqm1BPilG4MkOQIlAuoTYPFkerPOqzoHDX6T+FlRH
sNDQpVH4iHx+BaBXMAgq6PVaY6qApY8UZQYYPurDA/nokM5+rL60UjrjvZJGv5xlhYHS+CWe/q7G
bLOS3KuT7CEsdsPy6Gkez3o2KR8Xo4Gm7vgDxU9KiNP7DGxQev8S7KjZw+Xo0PzkkiXEM0ixJ1F9
AJzTj3QkCoQxxED3mbMaOV7ysdqt+Pqw/hm/LTOCj3jZ0ymyQAY3j5Vr0A4ruPGAIdkxJ5eFW0hE
E3Gj2x+L04NM11kjz2xbNUQh/C3FEIs8i6XT/gqi2JrA4YfdJWAdwvRK58chtakvfK0hv43S+VOB
NNqzOBdG0S7G6x+QhoaDpNADRuZ17eztaHIaRUwp011rJPPGYGC8chIgLJ9ZF+ZmDFwn/4OYjczn
nSPYIA/Kt2rChKGXSKmDGVudTipDEKaTxV2klo1dC+x3GUTxR4yvES7R09Ee3SJl1qVjbBO0V3Ga
6aBa7ULX4BqYU1eKvLYj0Z3G3dDDbPKk5AK2YivmtHyG1p/f86PGwTqnh1poeFodDjnEk1V2gmkT
Nrne/pkZDN3BXs61R931Ly31k9aG17HO/E8nADHvH+ty1CCsJcq+RtXx4uvTE68Pj9VKr1ZDo/hs
WPSLjUglnNii48twt4qo6vZiriIvSFXZ4MqxIx8W/IZralVAEM48hxQYCHa8+Ojd1pch6vOR1LvZ
B4qoXgpxulWyZUfBdN5fw5aR1i3Lc2lHGfntnpOQrwbr/1n/sVck/KBfMpJNg9cYKjRimEfbvlvd
JX70vzJs1oZJMPBH/BjE31WH0WxL3BQrrweNTfAjV9/7P3/UVZWt8+HBNvjO6WWeXqf1CVZ8CTMM
90FBEgrFsXG21RN6HS/sPGujkhsvg/gd1k9UDXZc8Oe/y9zPvhguTTH5fzYpWvPBYHUDyugcM/sS
wTmrkvGZbuEkEhF27qrgzknH1FDKFD7SyVbVGJcGgIEH+bm5shh7gx9nM3iO3ExsJzxEoE0xKkiN
1wazInn0bYWPcGFdgRGus3fnj9LBS5Fb+exhm2bN7lg07aPST5sqg2OiOeDAkvQY8AD9TOV2Zv5L
9NQhRF+BTxwkJF3UYOgwTtbltc5FxNd5sz0teuBv9TQGXpB/tz3Tfx1BPjGrHJ7d2/r4xgbKk/XV
0pHJzblP+I/QHh9vGnZXgnkmQbXgOfgrfDv1gMjwfZYcHbypHp1sRwKdaypSG6ss+kIltL+XD13t
MqhM2o2FRsmF4o8iT6YfITqhWyCNVmuCVBTv39wq7LrCL+jh3CqQLxk3G/ju9oq2YFxB6tyIHtEr
6fawSeDQH7OryY+piw+HhqTgGRlcJTtydYBcvpokA3NYJBCQE/AOiwhp8Z7MouF+jWiJK/2TuA/G
m9dYGpi/l0o0BHxC0+1NJchDDbOMypCMVOi3yupxhnGjXM49/U9tRu1mpxJRekx5GrVKRiqpZxEv
uqJZQaCrrIzPPO+jYl4TjHUer9xCoQOhEkaTakX7AP5bhtVhqlCf8R/dcC3Bwl5n39GhybFk3CwQ
dWVHE3L71Ml3bprxbL7Lz7rijit3K7+x0ZZ+72XDZSJLL3/GKFtGafkrXTYj354fW830jooZPfgp
OaOup5sgnkIyLW+pvGVg22VhWX3uVbl5/DalX0Pxr1migITAJExXfe6DWbQGCyjBD1jR4WWFUL1H
46O3RG2oVut4UELNs9IJeWmRBaOaglNVKu180zgVd/DmkXG7G0AEI2FNVy1gFOPYSG42CyTmmkC2
vBTNFDq4U/xzSvjR3dUFXUAqGT8URKlLuy5b/RZkcHr9hF6UuERbliTWrwhwPw59/H3qRERjnztJ
2PmRzZEpJ9/j2S05L9PwFbZ2NP/qakKzg9aRA5gBwfcs2+t0zN2vgB8wnpdF9MhG3h3MX+PX6Qfh
jQtJYe/IuSrvRPi5VFlX5M8JvJHvInL1vySmnCuC6Wj/061fUFJYmfZeqspyIfvWQOCGZkBKk8fK
3tJKmaFEaLDc8Jalsd7SxtDTW5FWAMgQ0bivTbhw2Kdjo3c6xCDF2L6vfvVdcq9ceNnOUQu5o27i
aiY7pnG9//WlQz60+ewYkH/skyF/WHxsPAoJmyjdKbfVVn5+b+Uu/Zdiq7fI/ZJoZgRk73U924Sc
IgwUOauoc5w3HFHuTqvC/8OcVyU4pbIrf/Zf6Jr47/luVTFbOsl4o1HMojUO7yw7vnqJ4/X8sgI2
faH6P8fenfzf0qXkVt/aY9j8GTe9QveqrqpYXs+zO5pBtK3uYSaFYXlct9MIi1OOAjdIjLiUQM0S
fl0kkpEJfPoVWaFrADBJEt3jtH6ttiVSR2NXQeBXPmJ9aTk2NZFVEX19VhBA3EhggSKi1a5qA5XN
5DFZNiRi8qHxQjhT118b5+hXTzttBSEw6Mp3jv5QPHiZAO2vf9FgzDIe9NR9MTuJMgpjud6Ond7j
4BDws+n+Ak4MVDzybrSyEJM9BRkOqQFIfXHyTl4zTHjlb6XZawkam4SNKFi4XyAl9vAPv94nowAC
F+iXP5eKtgNWMYxaZe9v/pY4TeJKJY//r8VnEvEn91G/VEJPAUvwzQrry4Sv+Oo9aD8A1ctpLQqR
yY4leHRxfLfIM1kCeJZrr4UpBgS475RKSvF3dYuVd0BE0pNB1TnbCwWmKJ5j/g5+mI8+QzqP544r
X5OCdK07r2DR99cysSf7+kce61rEuFyIdiaZrz6x2h+BnOQy2mW+0HFifM6PpLGE8Ma4DIgBptod
82+jR/I2bg13pEtaz/yTYtQgfytQAXcyKIMn2crhV4SMfMYzt3KEX09rZ64cK0kQ7eur1yhc0Gqc
UXqNFcLWlJSYohfjuHadtc3zKYvcJ/YCXT2ERS9NcBY6e3HGP2qfzZFKethHk5KZ5Px9b+5cz5uQ
cqdfqn+PDTfNobmNFNkUrrmKmPVkyIOdfMkb0hc+/0IPvpswsUlC0DLFpDh8uch/gFgRhLfpXTfq
GoxMm/snwxD89h2PG4pjBc3ORE+3VGEBsQtfWkm8LPhkVsWGkB6ykIzKZ4NfzhT5O6ARmdR0Fgsj
kaS8wpp259VotZ/LWyhXoiVOdkRAaBRNwU5MDddXUcJjv9ewrDeDzZ07HizXgWUGuxsfi4fLs0XD
duCh5oJxFifCW4/VUqVkbh9h1oVsseZqKKUDz+gnm6CmaeDXDlQ/0Fcdau/WGgEvlfeuGwwk9Mwd
gNQUSdCIzqT4Ob5PkRjPY378PhsVb6ZI1nUH9i7LjcyK0zbQHqKAdjkZko56rzt6Gqy4+5WuS9TJ
egcPRwPMSWYwwTqoVnREnjlIjdsgLZHBmtNfQVsVjpBTqRCfeZColscEcmIXd321eC3HvOgBFOyw
IhdYs91PF3IMNM/A4xa/PNbIQ0hD0qOFhUmx7kUmaoYL2t2tEENhiJlNputZcX4Ei3GCJABKjoFt
9hhBURwFaLt4MRGlv72ManRDlx8WwDwBz5P4Pl0tP+/DriS2FzW5vpWb6OycUhwwzGLm2CSUk7vE
weFJ+mE1g7Aj7NFIHYXejCeP49kWbD1JWpEP5DpyDb3nlTD8bQROt2upCt5VHHdFDJOBa6t7lSbR
E8lNnWBLTCChZ0wyBKcaRNc0p4ckRI11bkdKn72ppJxXUqpmch2129VX/fWDU3Q6xn2D7Ov8q0A4
eqlRjyAIzGt9RshYa4gCEJzuUVK1/3Jse08gF0Cqo0qShB4++mz9WA566eR2IBi2fq3Inoh15Prn
jgfxT4JRWxf9NSY+SnC0UZqKZ/1mpWlA/JQs/LDA1WrIJZSadmtN6vdABI/5WeZhalOvC4O1cGPy
qJQJ4JbWInZzMPi1dqWeXBaeZbEnbpTF0ZAOhA/R3SaDKB70EusTWz65YcmD0xvrn7kkNTcfYdFl
LaLRmuHyr879P+F7HMcWCqCSL+5iXB9DGriouP7t47WLRkCfX67BC+SnQo/UPVMBZdIi/51+W/sa
VeJbDzibV0m6Y4tt00ZCkkHfrX5JMUMRBKGgbOkg7qUWgpvDfk5aHTRVOvQIE6LG1KJbUYFx+N2m
x7CCJgDjGCHo2VBaMqvxyjyineDmnLXgZx2q0pLOZFqqgiqzCLtU/qQsaYbOz55E6ROOsp6c8pI1
7HBFycQJodRs+b/Xp9qE8fQ3/0Quw9DVcnA/ErmsglCzdtrEdY3K2FeiVFJGBYOtzqGLMt6GuC17
LgFT19dO8Wgc20gLlbyxj6CvSrIU5dihAA8BQTjQHQiePfYtNOSgKhPNhoBv/FO0RmNPktIxna3u
xm4N1vLBlaO2oJts8D9/LI/vOwLJLeA1qP2ao7XomvtxiIwUbR99OI9Pj5TkOBzthIhsfnxaHN/l
S2OqEPOVl1OpQJP9cdmaka3OoXDsZHLGpwEpkEv3jYSf3jPN/ZhImSZk3wTrjsHpVydblKstTxrl
WGntQupWXIMOP5exTVhZqp5YWObHLpDEZSjc34kXCokLHuhUrcOvynRsrBQ/rtYO9J1kuI5kqX1K
2KGep7j9e0nWzPqKmYZJK4pacm0iPH400xJ+WZe9ZIxCM5172q9mI69hkPNFoAw2bCJ9UBTMR2jD
cQhyLQMEPa7qIICfErUx25gT0tAH2NbPU9FCzo7CMBb9LD8MxOACxa767ZcBjqnAhn493KJCQJYV
h13KdzI1JDKFABffQb44ZopEpUIBRkmuuBymYqYPJiNWSnVJrY2COzDE6zSCKEaOJz3h//vj9qQg
SqZVsnZSXB+2kwfVrdyDf9wgDoHzl4l0dd8pHvUNJMz8tnOxDTsEFBzon/xJVDQ39regzZfgJvJC
rGhT1ko58MsFfCAIoJvt39t92Zll7ejDx5QcnAFtFbTxgUejJ+L58gaRXVWp7zATcfw8UQqKQnVe
i5nCnLZ4Zuul44mKX9meZCF6fId6SJ3qXhsHFNKARe0SOirTKK7JsIOVmzib6kZf1CU46O28Oj7W
C0YKipmsRwq/ImvAcP7joD1is3/CvroTCK2uwHPHGK+aYU9I5UDScWg2MzOHTP4zpwvBPZCqwDd1
RtAXfJk6j6PWzabKi92E8Ab8IRLqcRdpcBzjo8rcsdHck4atoSUxhRM8EgPLaxl5ftIuz9k4r9kv
FcNPpQh6CozPeSupGoVvR9KOOp2AMNiy+vHdHgRO6Ygscz3ChvYxpjzJkd3g8NuB0f/wRn8WOxbi
l2n+VBkwIujWMXkMn2kheXfaj89ndM1TvlojBxnD54CQ4svQNL5WcVcBPj9MVNttT39DxjbojCpZ
+kYpqaC0bpTb6Noqk1LLkRX8rtitqMBE5TO6HwWUifw+JyDbKGJ1yqvrIBBK6+vQttdm68jiwARF
Uf7JNb/G/YhP/arXbWJTjkfvtPjq/g2tgwIpow7m9SCuB9yMLCfXeHGqxn0TswdHCtyAaVTU0u3E
InBylxeOvJEYcpVHq78vSpn2TJO1ypEhAWD//90VeutgaioHHPE2auTdojOONEGt4u9mjrrGOnI+
PtFtSFzWR1cB+IT9t6Bh+pb73N0ML+FcxGQdpb9qvnoF5mO/FaL1syDef6nwIJcLvn1KaSUAo8nE
6TU9JsLEqKb7vJ2v39LNjytbK0PDXwO0v0u1AsglgkAL1ME3yAJtTnbOBWnNS3nQk+ekz76VNbcb
vLnSPk/ZRw1DW6ymwbaLM2VWy9Uz6g/TcOXxtQSWTnwPw8iNM/wLvlLZ6MozTIXUnrwiMNxncIp8
+/KWmA4HQvmQWqvLop2ybd0CMQmkvcNeevhXHDtnJ0Cl60rjr6Z5hLyedyDloMYwbxHujJB54w4g
+BWHx3YcKMVqIE+DkCPZiwong34oqf+BheoPObaMK6hsguacAe7nkpixCZEUADvRjhh8u2M1eNXr
m3QAdKcni6hl5S/zIEhF5lpmWNXCAm/fg3GgBxJh1fnj0aloxL1B1CTaCTCAfF4kPrEK5aA+ZjKH
QdJyn12vRE0Mra9s7kDUHycFNFmr2wgUVYxofff/JzRb7fO006zGvoZCpXxQ5vVS5fh88iCy4PM3
7PBYL6asp0yFu7yjk8lTTJITFXDkOwli/Rd7TecdGtRGmSXxL3jZ2NqcxsBuwgTLQwen6BL/0K7Q
srsVX4u/ef57xtknd00dyfjcQLmZ7PAwMAdQabYTxWXIxjzlVlQfrirQqfdlA1xW7qvI1+N4E3cj
AJqtXgGAVuueXgLdIjLdf6XXKI4u4Otn/3YOgc6ILLmtSUPzbzEwttEDRMypqU4TmOpm4BAVbDQf
6eT5y7S/4eAmQ0sNAqoUir0gn/V/XFvuLbXpPEFAu3qJrnOwsHBKd/Q94uV0jb275vIfBJtdaCLE
+FvQSODHEUChDTK1UpaKXlrFXla6NJwvAnr22d8egIWP2OkrGx4pmqqTqarVvizA8CnGXRHHJUp/
gs1AC++jfakLIqeJqj/QToYkoc1nTbNZzbltA93OnQ1jtMn9URGE1gFVokiUOz4i1quSqa1nkmfx
2SMmkk5uF7SSUypsbCEYg9aI/wfWUTQ2DMtbXpgGwdtMJYRcBxKEJdQ5J734NddQDLCKPQ9sOwM3
74wOyrgnCWBBtzRV+7blj5E45n+bh/NTlcJf1CvxuwECEUkcpEVIaB5zlFQuUJMluw7Ml1/JQfTN
GJam4+Bb2aIO8PJ1st4sn3+qox59ytUlDjHyeqZw2mAJYBjYk3qSK3EFhLqjM9zWnyAMvX93OBo8
h9NHm6vAwBzjyNXQaC9DmDiZyw0AsW4OtGM6NIhmEH287ZyrFUB0TqoAtrZy/rH3hv5+O83C0xCs
F6dqlMQLOIyeP+makgU2swPFhy8tpyngbid9HrWgPfWVgcFmh5Zzc0gOLgOLh+13FWJiFgoAAQZK
WG04ED9gmhMn0HlAWQvFM26qO3f6yRkulp22tR5ofoXDlTD2VCwcIp2wEyjitGlxuT395NULuSAl
/JdJ4yH5O7PkxzrVFHn8IQ8e3wAUCWXUN/OASN2PydwT0AK6s2+iI38jEbUw/605RxPAvSjaml9p
BjhZ7CqJuV28WIXQnWOwOso02ZSeIWPcJi1NHHCbJ61wUQQAeA0zrP9zLpfBE6Jkz6BIsk3IKRRe
G76A+qv+YWtJ7wyam/bhtMaKkkZsUkgY5cAFn9q4vxuQtqksC+t0LtkfOmSnJwZs4jlB1Tc2aiOX
tObMifGQkInybnQUS3FRVNNnFqxIaZL0LCXsbDoItsWJKbF1Cu/6+5Hd/V6h7UjvTrvmdgrRKS/V
/0DCtRn3uLtr6/kKiI/DNRXgqlL8XOCjP9RitbscmRcGuO2uh+h5yUlTaziD624J70sMhlkukXuW
S+hRR0B5XYFC6Q1Cs0h3XPPslifHy9mckJSQBSkZvhdz7VkhC3B+tVvSkEWA1rrIGGDlONvKS42V
aLwXTcaPYmZ1xMIR0FLS6jUUg85tpeFssySbovyay48LSo+b0s9Y/lUpVGiqjhWUey+1vWl6h3jX
MMmW/caSoAamxCI3pOSzZcmYMedT48kpqpNAQRvkjNGFoI3NdxXZD2RSZwlAtqixBc8Z29UHXCyZ
9v/w6QFzCEs9WXbV+D90ln8NVGE9rmvb1WVbKLdLg/Dggqvb+J33jaCqkbYaSRZnu0Va+rHkQCRS
Du8GxH+SD8rZhL6TFkwC5I3lSD+JPm7oeJFdYBqnHP5RHU0ExhFLSrQwrv4hFte8hnZjpnkt9jLa
CcBjk2oR1rL4LIe6nw8+tbkR8CWkjenGBTh7Z8zxwjxvrTClVaprRGmL7O/44qEoZ+qMvnvldAoA
vn7rRlNsMhCdhqWFqqEQeBY0PiykNTsVxNO+ZtDWcXnR9h705RagOkJ4KvRbo+WKErbC1DPEnlyo
k1bNDitUzoPvQr3tLK+TY4+x84vkT1L75yl6SHYNaviZaKZTY0/lohrQah4wG2HfWdPB+h//fRKB
GaAegszObgZZWYbln8JXVwcLZ7oCu56waUPsprS6Cdq3m5NsAHpFeBZEGw2D+ewMQg/GebRDqVnh
DjQP+Axf/Z2AZonTeEC0d6SxZsWue4CAUPGGC36z8FwjmzLUg/Xnaf08N3FY//MfRYqWgqEUiKkP
EXJ/DFVzW7DnEUxQJ/yWsZVLwVs4N4X2EPTN1czgp63CrPeDrGR3UPo08k31qsBAnvgz66gjkOCc
5CE8M65NjbypUx38OxrAqGN3Pp1s1/2AFaYoEnmuDpsxRupevxfc53uv3r4w/sR6oRNuoCov2Msi
BrQvbnctu6qX8OKUKO40kjx2dgyVGHcBqJLGsUpWA1BgUX/QkwkFUx89BIT2aOvE8y1rxRSClpwk
AsZZ8/IMn5Mwv08FdBfJ1urgBKO6SA5XrHv30iadpSDvZbMMTVGuLeGM5E+fsmFA22T/IT/KhZib
98bEy8hd+pkBZWryit34+Q7o/6n4y89ezZPZdp3vxRekqgMFfzW993N2tHxi5BJuPtITTXXso8Gw
z22R89SvWkEmKxTTFKMQoD05+5DVqsG5OglzLb1/vFBpA0JQbh5rsjryVDCo6pdD4qldOkEr4/Po
E/bx+q5GqmnimLdUq+qUoX3gt8KOK1ntqj6U9Sf6dKaG8XX/uS3F8t627Q8kRV0SW71IczLnxOJA
IEPqh/a5BywLifXMxAt8pwI5tRPSZa3/AW6zYZ+rRx3IHkwuWmSXTDiFsdW0q5ZLjfR+LZ46FZYV
NWDW4RruRNdOBa/7Acb+dzVQdzBlvKp6R/6PBXOn/abcA4HZUpFy4awyqfp1bpUncKGqqHCdvOWl
QPZesTCgKQVLdnBpGcRbJyzfXXkMcrXkTcTJkiCauUlTWYVfBsWz9w8cROGC09cFcUI/gHeSVygH
VjVRKyhQLFgN9G1vkV2dh9Te2dmZ6ReOiRRYt0DAzKgrAGVJ9KngPk3oYJC8iToT943UCJrVENSl
5kx68TdwcYrUeIny2PccWlGuS5uc19GY3XZpP8Hyf3zvbIs6ZGeqG4eDYXp3TyXyB7ejdQhX/m/y
LBN6SjkMOh/MfX7Gi7Xv0/rOFedugS4z1np+I2svbGFr+YwAk54MaUo170t+C6FmbuNCjgsSuOen
3ZZgzy+ghCe/xyUp9+cSjMc7xI2MsRduowyI/T9MIRf+S3cl3miNC/KEOn+J+QtZYf73nQ4VOIC6
gF0FqZ/YlBj+Go5NGgwLKHzc3pXgcaDtcPjgLPqVMgr4WYSpUSEuLXsbriCA+fXNiEBoSuVQYoMu
QgSgg3+2nvVcJSlNZjqQ7D/D5/eP7mfWq3z60mSoJSaIE/D/5/+F0pQWHv01HTvdwmTcwOce2uvl
qwsJG/foXHYyMymc6VjRJRrDlTG07b1+R0AkVV2amiRtsDCwIIYuyoNASUDQDA2iFzbBr4xRcEUn
mL9kQlRf2MVr9orC045jaoPUx0TC3pB8vndnOL19+BA/+Dn0wYYYsAD4gorJkVqfRGDsRigSjQLK
CoDEU3GS+tPjA3BUX2zTYeNcxwmE9I+1WjLbGkeJmyKfnmi8I+2M2yD2rWBp4Ce+1pQGFy41mDJA
hJ6yQ90ySKwaEY3F8X93wS6ubunvmDI3CAuox2ulPIZncKqsQyea9fTw5aMpXeWAwtRIJb2KW6Ja
rkW9L9RlC0h6gA67Ust3kKG3DS29jPxzaMSEiFHDOSEN32jRmMLmAaYkBXvxHjJUoP9POS3kg0Oi
qglwjZcLSGJyWEk9OFDsRnOr1fdCVVhkw1ath8TTDGYouzCWxslNf2drWiqkbfWI5GzlaamAyuTR
8XHtBv3b2NMgNWDfv1d0Nq2YLFC5SVHaJOPm9o4uqNp5my2YcyYRvLAN7LtG3kY/nftRLqag5sDm
hhGUe0R/H+BsfCC8A5wrIB6rN9hVHxgDHIXjIUDMDCSzcZR+fSWe65RSe/C/YytMMhhqrONVBlpN
sqqg4MYTD+tSfybWDOfaXiMHhJknNetmBqKAgiX8RQfQZaSsQTL55hF2X8GkT3Yr1Ce94Dx0F5UN
sg8p019KXHIOr0aIy/YU6sw0deK67uz6h5rGiP0wkv/UR0VZWv5zhZlJpaRYAfvGdGbj47jYBkfQ
zQtOnF7un4JBG3HQv30t60KuY+HiQr04ayHdLyu6GQZ5BY6F2M0qO9UftVtkjnREPZwDWttITvf+
wr6Xu380tgv7j01Hokf/TnngSEjgJ2wSrzVprELpr1utCk9hm5SIwKYxM9htmHmy0+6Xfr+eMKnR
kiqJPWcVNh+7yP0BfrTMqRliVe739XriFnxN1mkQmNEz589LLTEHGWaBzzP8Yx4Qzdm/GFZbjhKl
SoAQWoo0+YN7kbYN5gjJmV6WDSw5/xqsJ4isniQl2wc8xwVs3we8JpPuqSoS8xJXKtvHcNFIYxPK
LZKYhsdz+VSwtk3Lmq/p1uepykzxyKnQe54SCHwT43mymc8ZRxgT2D+m9lahxxlhY6Fz2BklT/nW
QT5comUIVdminQMuhQXJqfZGQ+cR4crnEPAydMqKMM31IqECnkxe++R6vIOv+MhvzHCE/hnDeim6
ftRYWOHq0uY+Fsiq8VXhMXahr96McldmQb9eSIoUPTanvPxYLEmVAs+VMAgCrzD5UDrxRCarAazg
EpP964ytQwBvhBesTUsU8+wZUQoSsuwSaVKwUDNvwoAVA4uX83r+4oe10WHakGTH1DdRCkW70heq
TI7/wZYhEFyKoylIJtCcGXkr2HaRdz81/Gzih1bGipOY0QrcIRyHP8BU+kJPKnvHiTr0+Zu6EfDY
BftkODIcBtMv955YaaBSANeDqqNl7bFM9C9gYXt0kbGCeBN1QTsYHq5I6CheeJ9cKYQgUMPH2Pgq
T7W00RLPwvg9PBhn1QDPmZussTXI8K4Jbz0WfdJq6YJqfmrSmxZy8CtEBOWk5jff5MuvNRQA0iWc
AtUgG8qSdqNNMMJ5WAzsP5XhaKPu/5B26CyRWo9I7Zt0aa/Lmo04rV3/NgwWvm+8DTcuH0D9pOtE
E59Zvgm9e9jU663LepY/dOBDqFRFyQdAH3CXzgOsIE31hPg/akgG4wGzoViyqHLS9HOJrLNs5Ce+
He2rx+D0lYrVVkYnIeQnodRJUqnNjvxl4tgvuQqAdXqmdpf3CUvVkO4OQBWGQ+g/FxKUlzukXrJy
lYzqnlemNiQuuc6KR3M6XdzOZmtmf64QiZtRGA43Mbb5ArxFBvGeQIp3wBaK3pZ/15GPEjAmYjY9
UmwYnqOZCftQ/bGZC7m6O8XXEh9YsU2oanW519l0/XqdDC1I8Ohj3SxTUa5eEVfSmJK9fpeCqoA0
gJqw0lPUDx3ETagPmYlmlld8956+6W91SEeLcr4fa/FJUcYN6AFKl1j3HPuTWIqlXsE0QcGyj/FV
nT/nb3niRFTe4GmNHO/Lto99pM3SAHqOGrHac5jJci8XjKyajQ/3i6mGxR5VMyjYzDAhPJz4+IoM
jiFAp69i4ZUx1KBqDse4CbysB4b5rMeKDNGfRHyZms2xrD6JVWs8GiMuHTlHTipX1TSIhzUOFhFX
ppEOiCyGl3UKDGTHMwPjVXYqCz8ERyjbXrAxq7bTIa2OdLeQRdyAwCsXOtsTgsuCai5J0GkMcZYc
A5D+9hn9XBDV05K12OugT+S5AjKGs9rcj+zJeDHLxYu5VciwKoFtpbAdJGrfIMmpZhgwuNMYbrVa
dcFhvd5+9ammeed8lzGPBM693AuZh6MNOwgua1pbYvBGW+pAHwAlrDD1lCcjA/EVDP+uykdKFGrJ
VXEWe2VkmmUUxYyyZ8P9p1RI6d2BJC4BlNI3O154SX4gJt2+nc1hBHPBiU2Ksq0T7wAFzEstbv7F
VRm5QggONni3BxIJuf9qaKr1/C4WEYo6NRdH9kz3wsLtkRDsCmjTUMXArraMS8/QKC2Q14w/s/GZ
nXw1dtLh0QvLbX4YQFLlWxrWiL6rjdUbX9PNfG07wmFNZEvAsiqvIgJQBTci0OiBYPUCB8o2AEx/
5inL5Df0pIW3ZyZtxA+gMmn8j6WaA1QWfSRM4D2CVIBDXdl5efhYx9O8SwpKFOnAHQAL9LCh4kUp
DNBgFcW2I7guk5+cCvlzii04FC3bZU0i46lNbbo7Ge37hNdQ+56vm4OzUS6FIIzMN4kRtR9cp3Zd
pH+xR7LdXXN9jubnKgFDN4Y4LzXXw7j5cbIcuwKlSYOYrn4rPFXQXT0e7IE1Mt5wZQ6G/ym1o4mo
KvhFVrBWb+aUcrKci3f4ISOXv/JQjiy+Wpy9XTxYb4OQSliwBwDfy0ZzozN0y4Nfl33wv8ZXQdj+
jOiDVHhH6fegbA4loY+zwMd4Qm4mVFM8NPNYnGLMOaBgxS0vw4vy6vaKTV0RcV4PiZ8f+wQXLBAG
Frdum/oXXxH3cQc+KZKspXxCxUfnQbaqDH/MAqEoUW0x33JoPuxdeUsEw1XmFdw3JFfd/UcH+2yb
S7eihHb2Z9m3z5qZEmGzzmRRWnm1m9mDV+gwUV2TcL9oiP0YWZ4MKWw6heLghsl11TCkwayjtG9S
VK2/j+1s43J69mnWCFIFzQ74ZezVjnCspczmXOWDDRAjcurZNRCUkLVSb8OIsTqlvGhQyf0chn1v
VMKTmAlmNVH50UnlWbE9pxz9V+KiiS89JrYaIOigcW0WldV1nD/6j66AhD9XINMKNft1mzq3z+An
UrY30dkxkBeDvttBhPZ9N8lbEIdFkFT9VC2XL4RbbmPYPfwilGdRF05x30ciYrYe7u7aBolOeNMe
g6Ekgui5IT5fwkw+NamhxWqpTYvfOogCFHQSjlU63Oa9QEe7Vrf4nGsYBAn/j2OsCyeI4bGEEb5I
chYF0kiVGaD8UAsNA/cqDFDb8yTmZajbgjJRKdlOf0TzyeS2ZZUa2lUl1AERSj1j8AB9PLY/WMyJ
M0UhsQGduVMQFfWaQycIsjcv07G7Ufzk/+FENYiF6elQKyHN744HdY0Ocw45l0ANn1sasB7JxYq9
+9tb0eBahW4tL5AcLhnGQFW0C/rS7mWl0Ca2Ctb51/M3wVDvvjOrsBSn25i53rsrt+NAwzAjEjSw
7V7KxWsJZb+cB39/lyt3b2OmEJ1QSSmxAaZyPOZmSGCDysLvlbYtpvXdGNNXUxnrhUPDRSt9BLQF
KQBWdjDmXpISqJ8qCyoGcAvJMd5dgEBWvvTaW+TY+pLQmAKC6tbVSwVji2rn7iRSgH9BXh6hSduK
CS60RpA81gg5H0edxzCzM3QmBgLG9LGbDUxrzN5LPPG+OUGfXtrwZ0RijbMeuujylA8CAdx6pSPe
YPWZelMihiPIqw8o49+UWas+CScRIhHrE15xvrKdGMeJaYJ5CL+AK2UPnlDFlTiIgUBYMzHv/8gp
Ac76S0nZc5PWTsY5aXgLT48kOF0aYBosaGfpkBlmcn1OmwmAHTvhhY86mGpe8zf40gtvMaGyP5t1
qvaVgRjDOjlJiAL9ROGMU1noCcnu66m0JfqnydyvkIPrJWB5dmh1fE7jLcplQbD2/er40geiLCwH
pnU/gQw/Bt2xAPNLPx9PhZdKG1pHRjRAyU4hD4d4m30FwObi6WbAgbyivbZsF7SxZWEUoY1mU6Ro
jag5wIWeE7l9xfS0NeXqoFr5GoMkdmHCFUqO/R56N8v3NbCnGpr4hpiuKfsFoVmc4GUsAyg2NaZ2
y4ypmpq18d0iWUKu8cz0TjQNeMuDhqkTnTpzTCtSqNw492DUADxlGkW2YXcfwd4O3VktXssPX1Rn
rjWqwR/ctap2d+16ZnQ3EaWGDL8izB6EYxWKSVxSIhmcNtyLSrPhczYTu9J9JgPVULNhGMRb5wM1
tsB7TYQVVkjPas0tkwrZCC7lsQl9icIBA2q5OA1/h8ddsQ5VkTXLi9/tSBhpwvh6bUYoxQsWoPGH
h99lYIK93hxSEzuG2Sc+b91+AJAcnEf/D+CiR9YCaYoy42WeyrrMWU6QuurKav7V1aaWzgeva04c
a3S53eal93C1EwTcDJUHOT8QryTsfhTRz6yFezfI8sMeaU58LX2Nplz/9qGZCdYqxzgD+3vKEhlV
7lIvnD7sgYw/O8fC+o0BTUQcc2cReQ1epboa9A2vLAq42yGwVGk37AhzWAUiv8xb0Aq+f9gCEDyB
FWgabjcJidRRC/JUCAZqO/xxY4nkqxlrtRFZYqC6odD+RMXinf6ozmVm/zEB1Yo4GG7iWe94Y9DH
1956g1rK7jj2IcRWD32Jw087HCzoxVGYSkIplGKmmP5QXPzpgRjHMKfY4nf/wgcK3Vgt63GcQrU0
HFrbC96r6lOmkPpeIHJQRwxWtzDFMMy6aSz1qlw9a8U/oTJo5m07Dy7dVSuG8DDgaqBY3gyy3kcY
fpePmvniDBbMOOOYJrk3BomCcD4Y2B2XOdscGqI6ji1+bYTWMSTHOZg7jm89ZBsWfngUIiB2HHHB
XMkUqVdsqVA2XoqvWscZCIqfBQpHz0VmQvMl/wHk9RXpOmeL9k7rrGxbdgwIgPHWvgGw872zOdvO
h0YunzLaeAPLlx0Qyx6QmONmCUPmsEmlZxOXsj/ZmWSKBnSDUqun2zpLVN1ErJ0iV71dhfVq1SQp
f1fPpUx4i1FZwANZdbYrMU0+7l1hHsaE4IvtgP858wiKk0CB2ZYDzbtu8X/I/cQLoATw7AcrGph6
LMPX+9y5dgG5Y3kSS+ST/7eZLzFd2DyjzA2TGsUuwAhJVisKUbgGXBDhMlkjV9OpBx3I8bw56y77
f/ASX8oSrevJVV0pkDslW8BxkHMsl0t8x9x2O4ABFf/o7UpS7Bo9vSq+Ck46SiWCLqJv/yBRfVbO
SVYoG8ilzewBEM1xap8+3uk0MvvUyxaejUDmnD3At3weIgfYPYcMKPmdMJwKliNVlneSoevyU5L8
kneMN/BIb09oAJrAqUMbNjZ2BHC0YUTsdapOv/iT6wlbUx5aweLVGYK+QuUx+IP46XjMQET+G6bF
ASAxjhGzwIvuflfV6RmbXZ8hNKrV5dIe5kJJF3MTrnzWfet/hMFvhtw8eBcfJwG/oNp/gKAHdM8U
phYuS7FoeHFGlht1vbDj71mNUsYCUlG+otM1Rmxa6IrXCbAJM0w5nXXJeDYpzH7xuT378AMc5Ibn
uzgYXuqYrDM/zggXQDDvUe1ppMnsJvZb7nprqkfiWUq4QiqkxG/kVZSJMTSsdaGerx1Iu+BD6Xk+
8+YmEIE/m2N4rnsCw8U6blrz22d550SBlqqRun4HH4nEgkVPyQpCKAycf8NVr1ODvdFMZ8lP6gSP
7J6ObsESN5v5/F7X2fPNghT2VPda+/+TERfreqQy7K/lhTtJbiR5kKXdZQYzegd9ILhcERgB2+af
x02+Rb0aPaykqYHTkfIk1r4RKYlo3NTiAbpMJGE5P7ygkq43eMN6UeQ4QMbM/A6QJ7TZkoCnhWbS
dI/cA/fPg0dPa5jkkaCYuDOkT23UYexJrvIHQ3A9QIfyHPkalUGvdXmYNrM34NLt1sZf2xol5is0
f0fUGTAcL1v+clyRV7bhIVxFC6eYnIcCkm/wsFeHg1eY1h5JPENpayzdiQJE2zS6NYoDqQxcGYcy
4BUAJkS80LbdITk9JRPdSGwpwOxnVyYsHy6XAsnh6DEO9EOi2ubdYXTBDb5SKvtRZxT5SzcINSai
1h0QpM/Jlg1ClZl8ZXEZlU8MoGEKLy/M3vIH8bB/CVVVbQ18pyWy7lXnya3t0yH2RnXXK8cyzcVC
mG998/iz106y+D9Z+5cuXOEaaUQtcZBMgR/cLKYaOFTe7h3fusgF5oSUozbY7gfdY28u76Z4x8L/
WbyRsw1iUmPO2YMtTs+PbejA33RiSkXoXYqpbNFsTCzPuRhXTixTJvoDxtCVJa0HEvzqWJhx+C+B
D/IajZQo+JXYedSsZ3t9b4b1TLK9qZuhT/BQtH8a89jN+wcSapzT4+AWLivqqwmfUBHaPpw5TFL9
QJb4c+7ZjcUa1LlCUygZEDQngWqpWAZTdLLZ0FhIshIizr9N6B1rg3MW7r0+VPDTZ3EehTFrznbX
2OU2qPcpw966WGFx02eODhJQvXKHPQzLb3yrhyEJs22dNoArwnp4kGNxpOjMBchUv9sHWxIeLLa7
CGBCzba9oDGmrlvrJcgPjbZIBEYWuxL7JBxxPwj1I4GdQkq1xPpStBRZgEVkJIMFLvMRUzPRfHrx
8lLRGqfs/Upfc/iB9PEdn12xGUt2mQlpDVxGItssDqwC+UXrzkomWEbkk2v4HMgPbrRVvCbuvQWM
QXjZkLytb1u3p2kHBOQ1zX7uHIuIAtpBspMj/q/E2DJnPjhOu/y2t/AOeubSL16dPMAzgi0EvOZx
XzybSOFQ3jsbLzOZjuoknYSEcHt1GAGzWL1r3q7mCgMWIcClFfIEO1CdbqYWXpQS/h2b8/sraLg+
4Sg9jINkPo5ElGNAVFZHdRYhvA3Zw666egKBzPaboaigMG2aMasXNmM3j2QN2qbvqPttouTmjPWL
pOeHar2RO/u7EHNF0Yo6G0bVofzLDd3+fTXTUJSHJIZ1EW7DKURRcR6QYjMyfV5EI9ErkkIZB83j
iPhvnOZTWKmOwNZt79BJB7Y1NXbnolirNoC3sdxW06oLc2uAQyrN472F6QdBAir7LLMmMGUdGUHj
AQRhLydFuEIqTY7ESeYNfAzuPTyp8H7u2pIFasm5XhPPl9ZR/L2Gg+C2q7SG3iEBzDjENK4OaTZU
lhbR1sWYZEF6WTseGx3lvMk1hyTJyb6wPid4hMQ/d7fv5R6DMSDgLYRrfh6Gs720VhItG/mcbqZz
NQHYTUhyRXQBgECVXe0IhJ3CkSl72raotQihhF0BmcknJE04K0Gfdkuq1bTvvX3SJvY32FgxI1pr
nOye/4VbOBKdKdA+vtpAhWJg32OPWcAlVwsUhgwcn/7S42XYBkUwxbwTfKGvvqS+h3ga+zYoo3u5
2nqWiiJjBe2IMuzNQ2hhsLje2xjpLlKcQv2iGRIAj/8DwBNha97QGik/90iadJ2npODS5KZ+n5xr
4eHVv9JqPjGamL+fLVKcpkwow9Ms2sYuV+TBQgJKxOmLM/QaULP9kvZFr8Kq+pMakfouFDo0xEar
Xvt8zZp+0YVJblhNxTjemOwhdbG2O/NM5W7S/6k3v+oGU7qjwnCNIIffeE2eS/9+0LNHL2TkWn2G
B6RrReYNjL8KvIzxk93nQO+FJw6GabRhQ+Us/CLCp/exEDZJg68AqF6GHFSw8CaW758xaI2ANp/X
W5zFI+jx1ckq39oIp0wCD28zqb9mz6Pdb/QTyBpF29O+xve10YGDiGL3OZic9R2568ZqKJfZEdg7
2dWxIFsZfYXBFzw34btxpiriiEf3pJQbe8z9jWrYhiwoP1NIpSPKfucz3RLlMKgJ8yyXv6s1aH9t
OD4QzulMe9wOuOhDC1xOAY0ar1XWdf+0L8uRYto3LhmMV3lp1njM9n+/dmjEwNEeHvrKejlFIYth
RaWYm9qv6FIdlSq/GM+sqwC7h27Io8UdnnPpUZTr2KzHTD86h/d1P4l674JtHjrlgbgvYFgzWlN8
co73ftn80Dynk8NmTeeXT9i6tqJNsLMRz9yTHY/Pson+XEumR+4eF1j27aCXGyL2h+Wx5VW6Acs/
rwrCpLmNEATXASYjQ5R2h/UHiXY/UpnV+qA8b0Yf82vimRz8zCYBCGEiMKM/a2RQLMhlI6iKubhz
hvJlcyKzcU2RA1G1x5dsW/ujEoEOjP2EfgL/NNB/VEXzS3fUedsb6W9Eyqs9UzEVaht6Tz4IuALB
EYpyHi74hcrY2Uv1WjBsEq/89duujR1ssrdzDq0QC6WOcCAvGFEbgZV1gH0h4BfJXgsfYV/1Sp3w
79g9GtkrRzi/LtpbRDy4hqWeaDBwkK/gZRdA1eeZbxaC1GGyCoVry7ClqyhRA+SxQmxGhSILb9++
pMxurDtCmWdTIiI9JnWOf5uYu6lrvVG2jP+Cc8yVfaoo0OQe60geHgke7jLFqdNjeR//T0SwQLYT
/pqczMrF9T0RFcfx7RrbdA9ybjOHlFA3Zur4tifwHxR6XM+/wI1MgK6BbYGYRCNg9mqIt6xfe6Hx
Xdig7WZAb10cuuZFBD5g8756znCEWnt0pCuZgTtEqwQRvG47o2VtZM36OKtq/wg5Ke/8FQQkqKZD
8nCarVX3Sx8gQEqWy39Csz/jFJ1VgbPdKUtLZRpAI/8f7wFWXBIH10uh9yzVNR26+unmDYORfE2C
pt/52nfR1MtwRHRGKLe4ZzTy/ZLA7vzXV87CPQYXIedq0sVZup1q7rQEnfF1byFXXXw+6J9QdFLx
3P7vGnDecwq6ABeRzFIj8t8q08dr4UpzNI5THtSy/Xl1PK+WTB168/j11rP1dYCIle2p8Lgx8JG9
4i/kM82nuP4aM4z/f4ttPZAL4GqZJQMXw6RhDDx3fKdoslH6vcKv1ad9+9m4e9H9d4/wuUoSPVNR
AAuUf5v9J1YfgwxwWtQO+WJKfoWpRgPb3ICLptXXx2ffSntk60aV7GOgdWCplR8t005v/xPUS/+I
rqbLIeVyY8C3aQrkfxWEtqvCRhqHB0dS2aO6CM/twClc1l4SwoUgDvlnq8kcjMu6AdzP2YFH+msc
pmiZQPpoOtradlbQY6VHzgwaik5yS8BagMzWjBvBwuZocSeTx4lPIAlBjWzf7NODgMW0llPpR/e/
vOs1Wbx0fnxQSDWKuCYYRA/Qis2FvdxDF9idlDWzrYAyr+ip5iHnO5PMVOEQFF1Bh0AsaD6H504q
/pOSqWF6O2+YMDBtSNb5o61M/LLjbql+oUoxbVvXtGIBut3u+aLFIEY660Q9TiWdDLAeRUVRtqy2
/C1QQK45zAavSyy2a/EXcLN90nV+NcGRjSiqdVG0iLlWqoirEEc806vBtFMPh1SQCfpqpwv9c18z
9mB1VYwCAFRYgDJo0InJkM8UzSxLdwFr7uSRaUBRdygExqjusKzeezpBakxEaW8pdC/6ygAz8xT8
zgtq7VGJ0FxjjsqKFVmdM6/StLTpNe+v1/QjebPXrjMNmytJmNR3q5ptpJwNE4HAepvhCEokG3au
itv3Xhu8qiD5eUN6jYthgR/4NJmQhz3RH0Crt1h+W2Rbwbkieh4Petps3BO9c72scO1yfyjw3chC
61NpK1W9fdSDfTFNd54vwjI0N5gBx/uJ9FZzhVAhF8iRirsQpE1mPLhDHOccqHOgleOIzz6WjBzb
2sqDAEhe0PLGzQA+tqDOdFrZVujOhoAe+Kjsj5QsP3zNWKTuuNruno4CBiC1ueVDkxbsCsl9Fb6i
S5JL1DyPp6TsYWSEewsKm1+4MINw0SpB/DFDSxNDujFnf4AjG3YK7Um+FK+79/+MRiteeQybBlzs
B6vg68BnJC85zXAYNjCBb9DDyENl4QfEey8ORgv32KP45RzrBT4qgU/4EAcjdxlvNq96EgiSMDoT
ty5Kqx04emle2fTkh5TxD/fL4io8V9SmvXkiXZB6q6FugIp9FroYzX0nZyoAD/EIENVyXo88aa3U
hav37GVH73qdMDif1gWqlc3zTgjO+tSfVhpAD0JdcW2U65SNPyR/LhOsA+NX6n4Ozq2Y0ASx4T1x
hkWcY2wZuuhXITvw7YMZmFTb6RUhEwI9Fp5U5jcU7vrvDYsU0weceMWCrGOncQj9yQ0ggZQ6aeW1
yjMe17bTvSX/0O9YsBpWZDqvHrmDCIMl0SM31pp92AEYQ4yQ8kiRuiz59Oz2B+JwegacddOSCE1J
yIgDw/n0houVm+nhYuI0gP9rLIn1SOc0WOlP5cl7fv8ozL3SYGU1uNJEZ45HCZ1K8qKwYVs04HE+
fCyR8axdOSwETbWG5xV+hlBUNfNMKDFinZYF04pN27Su9MN9Os8YSL+ko7X9klwdqLi5XdPN9YcR
jtx1LQYbgcPGuPmt0XH2WpKsOVLSDqBBV5tw5kEPQ9czHDvtwuIz7LvooBcbeqSRWMyyqrFub9LR
YvhE86e3EQnqwc0iMzd2ZqBjq3OrTw8v+gexiG81ZQuCbzYA8DNzDC1WeJWER7jQrnTS5B3lFZc6
kH/SV0/Bnqa1PG55DOYBLZRTlBW+NbRn1/95ry7Pgk6ItTb7URKGGtQocisfR8jkqjEmNtcq0EvT
9j09PfmHys/0HgY5ZSZHg9SdJpTocRFZlPLNGqcxeHxpWsIQ0mjxtLuVTNU7cfOcxeFkx9BioRwG
oV7+EW1WIAV0ztvdHcqu0YfR0ntJuDVku56boiIbkj/wvyeIhUy8ASDK6SCcz/5pMipj5u1jmk4K
T1Y6P93Xv6TyWedJuqTJ2whk77ZewMtM7ibc0g6eCpdBUkQPC0rKNu2Rt2zNRRZFGJ1sUU6gvzFE
bKuEVDBcilFRBmyQy/u1FeC2rb8WgfVmN0hdh1FXjZqBIMYGPde0Z8zYgtkJqKZDp9u0FCHM+hlP
jpA8vfUFEp1s0XKn2mKWZ8QD9JKSkhH65Y7obgWR/4/ySJC5ao2BuGTM0Pb2KV7xczv3a5qtzepG
zVH1IlQ0FkfN/h8hPKOwk37UL+jSV9biR3oCk53b2iI9tHR7NsFPP//D5K9R6WmjHxmovgpU2rWa
wEhB16k0WI+92ZpxS3s1ji7ab5dvD0pfM6o3VIy7hwTt07ZgDrA1rnJSK+oBHYw7PVtYeepMzRhS
2n4YRcNSihVvy9rQ1csB4i8gdtQJrYJE4z8Vnc7vG0wogjCQAWzgntuzgG/Dle91QTIc+BYiUuA5
SUh/WO+KN8VBgYEyDFuTB88kuZDRB5f1HdObLkS5hi8wvQ1cehj48qyhxUwpih4khib7PEjdrSuO
6oD8i+ssu8kkH4e9xA7xxCnkdNEwnWwZnBJZ0qJWxfsa5d3R6UeTYBjlt+MvU16kjwb782/i20zc
Vn/K6gvbn5a59jChcmnaWa8zLEe4gdKUZ6Z1RfkQw6STiLTl6KTQHIXyVlSo8X7oIr6g9xLJOb1y
9+IKT+zWs9RjIV8XSkt9BGmYWg5ENr3BhW51rjZEDhI7Q6GcXyPDud4gYasOa+YuPLiAsAPt5XRL
G2bzlvJchFvUA9cHFeOBA93BNdLdPlsRiOPST0ILflvzNX5S1zL01DBaD279I93sAcw78G4o8as4
ARNimFsRzN/nPDQ2BFNl1oY15cXj2FxITPiVDtcTp7CFRFKCtBpIoWu2U2o1oE6i/YVzFrcj8UyV
KPSYhaefIFOERtjNEiYjS4TduU3B9uRbzaOy9O6khnY9E2uAjkBuHT+RkOa4dGHdqn+HuYNNv2dw
jDzmFPHsiOZxj7KxlMHqN43CHb1XpqPcnJntantND4YRzkR7sFZ05IHzTnBx0oHmNw5OJJdwOgPM
7jDdGFzEzuCbi17bHixs4Aeuz/MpzWKAQkcfPR5AzZBLLTp75nBSwHHDDJdK9QDIQmonAUuLngFg
IcA/btCV4FoJ2UcJd1OHvVXm6thPV/AcIPu6bf8egwR8qCqNfz41FqSka2ggX69NUNa3e9gAXywF
Jnqe4m9EkoRYrK62f9Qg42rHHC9hxZYKFFpyiND8vdHAxg8eeXu6/sCNwezA/wZXjSHTD1IkpiqW
02MLgxkju2D5HOYArIarZ9gnnaxSSAc2/RM3YUFI2KvNEf5pXqhsBCE93acb3Z5sK44f8UfntzIb
+xwWbefLbK1oxUC2vYg0HD0kZ2tKQRfBSFHLYlmrbp97daxki/J5lbYDfuR2W/2zFLiuMWEX5Of1
uJaM01PcBr1DAmdurX5krEA9V3GNZmxy30zraU0FRJjPC3nYAONah2Q5IVNJrMJXMlMuFHQ+4OvM
CkqAS4CA2u2z+hwtkAO0zY5vk/zWOM7DZrG1OulTXqejyEagXT3ccwdDbUGJeWZ+sYuJl6+ho9pW
8IQ+AxecXFZdtWZN8azs933INDaHwdriH7Lu3x6V9nwEaIr8iqliTvSFMU42RkpGSYlAFyjM8egl
HLf0/O89z+8/xIjRbdvHk2qDRTyDtBpnGgTAjHA0Hy/anFDJOSaeWQ9lZxhmk1BStocmNgfc8LoW
BYuHpgKksBcqms2hLfYc6vuhO7DNBo2LYkq0FRFqA2/VUhtsJnLbriUlnkvzfqO2Ei3YzmI3GXFv
9eVFy5PpPZf/xVCCE8j73hdWbFdTGXtxkqMsbfUIpY1sscwHDkdrhMdm3db9hqTHdWaimpTBV3Jd
n+TTg64Pc5PHQFYSgbP+4kpjPGnvHfjbkYjHJT5t6TfwA8kLZvVfr0rl+YtHjjdvl1uE41PGpe66
WeV73jRkUkPjGKkZ/jf2X8Dogfzd1yQ5xDPHTeOth9kPbJwHnBAhACb3N2QzS9giOnwgHwIDPilD
Guxo+I+Te/QjVGaBHHXBd2w5Biz1RGwEARk70h7ohMw8aqTWPeML66puaZDybX75yFuYnoxsDyRa
NyK59i2NwP111L2ZnWukvTTOGnZvdnrZxlsEwpAxsSwY514nRUMEipnXZlYJrur2Yv2G3eZfnI+S
zhdP6Sk3zNVpqxDbBgQgnHl9UUzBYVZhmfabfTdHEpnrTpJ/nserkOGwzR6cq3TATYynpLh4td3v
SIEVUgmG4pmozjO5tGMrF3Zxdaw2/R4rlq2d0+S3QXYw6CFKaOxNv1ru7Rke3uPh51fOVos3ed6W
3JQ28jKQImOIF+iDf1DpMGj7IyiBOGaIKZBU2j8bjtwmpQBmI4iM8McXFhUaTSf1TAzqaP63RCqF
IW5wm+KWJz1Z63tHm33/d0Zi3FXjvM5vvBwDtvJi3Ex2xGV8Rf0QI0QURVACdi3JAGjUM0yF3DiY
SjmZ0BzjUS60xtcOOWq3cbDN16VyjHgY95qELlsppnG33WtSXfI1k9uucLazooIo28v+09ASM31N
R7BXBbRoZMUoTk0hmhmzeMXbiw2bO7IQ31C/oh8xGUiMKHoOf6Vx87KKyGo72wAEw6KsfYy2TjmR
KEGKRTu+A9nc4rID36wvkxBp06NyMhGUWEsJloIsRqC/xMSiu+EUZjPcSe5etuzyCIssxZKMC1QU
IrYjgF4O9E8YvBzsEIS5qRdMCUEuNEqepYLP4owgqdgp78pi9O6RTwGdvuTAiqLpnU2EeOgBJjAj
u+sNxnoj0xys4PrKlKANYrI3WqvR0laXnnbXJi8W3JiH9Tncfz4aM6MQlmhhv1kgAEl3MLYtDdDb
vFWhVG4X19RhiT801TDf3SQLN0mz9Swbt8wuhzzonT40pEQMs/VHPGFpkLklaSU7OiedgSQlOhqP
8JvWLhCdt9drb00Yo4rAhMr9lc+UsC0B58bfhoi+oMRg/q6KI09qEYqi3dzT+QIPn+yWMOlbBwC0
clL6HqCnDlbdaIb0+m4VyoHIQF0c3NQ6ZOmo7jbw0s89Y7DS2dxABmWjgUYSV4cOn3O9RHnd2uCi
KAF2dk/0QLoOSo7KOfK69wtsbeC2RfKL6dXDxY6QMuyxyQo9p4/gKNyhei68jvhk4kchI07onQn4
0watwLnRb1P23CTNh1a/1SJQTx5BN4JkGWw2zUPSypTmr676kdgUFMhR6wKGc0IpQQGuX/NkGAEq
U22cMO3dd8oxArK3AavO7hmwjN1U63SI52a45b/xWNEV7mFB/6svb4e2DhZne4AOAWdqrDvyPocS
nCUITDrUvjz/6LxhPv0IA1MRSq96btVpAwr7imG5Rp5lV1FUkGMug5Fw8SApZuFaPAxgGu3uh9fS
J/VvnqYwxRoofPuoOJ40d1Z7YT2m3EWZG4phzqBeBUO97ExNgWOE8a15JCKmvOzgL1eMyKlRbh2P
8pLeZIAB36FOKuS284UlV64tgWwSE8jI80sJVYuDY8loGwnjjVEDhbU3Yz674fzZQHbxM296MulN
XfIC/yYSR5NwELEUET2JfakmMNBhX1SlplcfY0LdegosWy0UHefKrLd6jMpZOZEPUR0kKSfEcIav
vkTK8DEmQln/FgxEhIZWRp5mKMaU6TIrsM0oxXqUvQaBs4/64lYrVHQWsV+xicH3f2b8NEiFerKr
bSPcSK5InuVhn3CIGij6mgdi5j1Fg2aLF53BqUzhtNiCwV1SntsD3bcoXwVzWX7h+2L3SwpUILVD
xGbzlIBOnOwDbjG5Hx0mOc8E3EIBn3YJQm3UaDXebhQJq9L0mKN7H1KQczblz2pIfxKgKJm7kzno
dzHjEc45j4f3JJFnr/Sgg7CIv+uRiX4UaZXE0vN49X1J2JZXnofSEcTn3x1IR/MIyO8yUP6sTMQY
QFvomo9Sa87EkVuqft/cJ8U8rO34i5lA5F8sMbrZSVBZLoD00I8HLLQAgSJWpPb2OJENCyz32m3h
ITTFQoxH3ZDvZEzmJ+WmdWxX5/wPWL9aADYTypQVLklYNPHVXrO9uqd/Ih8WCPV/LfnqPv/+tEwh
2FVOYs6rpFQhTAiZjjhUtCIFJYypSdd6eJ38r7y8zT7KVK8x/S2DUZXPOVmrhbqq42y4hWu+fW0p
fQe1sTwUST/5mCjf2fX2XwlCirpL7RtPQfLnSzXKGluRrz2Q2LjvkXxMK6hB7j1DuzwnsD6y2a9i
xNM5NijKrn8NHvCt/JuJ2OzxDHS2s5K4BdnJytFQEozANxZ+Rj5OEXshxK6a+JidFTOy0dKyIr5R
liewQscHWs4aIdDT+tuIsylcBeQKIJmYMD44l/pNjVAp0vFIHAS1Nh6cI6Gs9VfaMhFN/lZEqbWJ
VHohY4BToHk5dMplwpd6ffw0uoc4rlbSnJLCCeHQpzrTtr+3/bp0R0/QV85wZ3NQn0mGcL4NDxqt
CPejZsxaYsZ9bR7bKuq03j9uOFgWsCiF4DXexh1r5trLOe0jeyMWtuN/RLx2h94s6mbadlk2GJ+3
ZTJlSQQrDzyZlq2iKkaKcelgDkHkdT6cU6Fu1wbnL6z0v5dsf4/sA7KvJzX9YEPxuodeGhtbSL8y
5hTe8ZvAhvnOa/oSNne4CsLr4YMhQJGqQQV3oJiEndBrhO/UHkt63NPNBWHmbRa52YBXAdpnUwfC
T5TRl4Y8gAe+LO27+WkQNdBLVY6dzay9mVFHSwdedJzT9rPhQvjIUhOCOgx9wiSwiiwYqNgk5k3n
zw7JO3R3bLdBhULY4j2mI8Hldj+PjHWz0WCbXuFaRCHfeyXCu59tP4iT8w4w+DM0gRjJaio0Pj7P
I5lT6CmGr+1l3tSv6z6WLtYBVuUwkcRwaa+Gh1i/UI2mICK/VURmrvmExQgWT3i79dzMeEj6BxD3
LjY4X+JaZDJwHLNVa6Grs+caDfubXaovRvKKTKbDA0Jl+dMB1Ki+0ggPM1H7GwnrDkaVM4rb+wrY
zGAX6ZVaWuXBopc3HC6SnzXFJwD/HWOAG8QTw8v6u3auGCypJPHGcWBUTh56JJFUa/Batw60h692
8qOAJmFnT+TN3I2T9ill7zUikjbswYEbZgXbrfYglLOYMIZAINyy1s5svR8Adu6P0O7eVtEl3JFe
QjeLVY9q27RsWZI/0sTzsb6arpHGGADD/eHWOMPbByxxvdyrmhRh+g13h9Hq5xMdlYoWbKmgGrof
ZeL33U9QA3rWJ2tKqRImXCy+yZEV3hvkCGDgt5ECm4UaQLTxP7kx1x0NkUZxP3JJulglbix8Qtme
JeIyDgJVKD8jgp4jU9B1lI3Ykc4etM1LUj4sfAV2G0oGHc72iUh1licDFgAZKhzbHcJfhWxCpfn2
1N3nod1unYa63Z39YZx5VHgX5Hzbt046KxE562mAYOj9pq6AgZ/Dr1sbyJkh1hzkcaD0u+UwIncF
RPddtBs3Ik51VesGChdBKvwuuYlwNP7RzPfFBEnCV1U6pd8lmDG1lTRvKzO71rwA1d6UBXhYKETi
vzCidtby8uhnFQtLDPjo8EjOh057fAeEfVMIUEvsUlnvt3j0Hp3iCv98+7EqB81FjUd23iT7oYQy
h0BUqP5ee+laY64cGYmEpZ57iEc5amG2okQJaFjSKNClUUkvDxKZzFQfXI6BsVBghe2DiVk/GT8x
tJTewbk17ublKeaInmsFQxlrFCkGAzHiCIFQIq84+tD68JlVTcJD8NlDGlMxSlRKVS8pTcSMZTZZ
uAZLbiIFPHkVBuCkWvuUBZyVCqBhmW5rIrH8U4GFDXSqZj0rLGzny48PxPb1TszEoKOd+zpLbKIl
bkaiGr65eUb9WV7X4Cv7X/T26HjcYxyDgnDI4Hsm9eitzDebF32DcYasJLAsqlFaxo3bDtKRhhuB
swi3XB5XtzbjxtSBPkHsrtFalmKi8mywE3FamaIXcyPUntOYdtjlbPWG3WKaTbcgkBAGZaim56oF
9QY5C5wCy3W3ocUh/iZSoD0VCXtpF0VSr4jElG/HTjXQqN3e9FfEn6xTXACZs20JcQg7U/wsFxgx
lJ4zd+bjhQ5oKsQOw0jhG0Q5zcd4gdundbqdXH8sboc9KEUjqS90uuRMmZxcRwEAppGGu/MjKDMB
Y3jDSIY4V0712WzDKO1SoAd7dOlUbBjO4Gtd+WlV3G8IVxwORvXbknqiiSel6HiRqdo0W3XDOII9
O6OyWHYcYCcV7BfjDxMjgAbdnXwGIGSvfYGsyD77bnIqhWNSg1Du4d3szFke0rUfqH3itohuvoQ7
EQmkBXtNEV0RCzjoroLayKy6T/kRtEBY3PuQQF/mzrUTmWXETrouR5fiyrEsAKmHfhAwDXw4kmRa
OGsgmYAn+xFd+y69mHEXG0ilWXk9oYNTY4yql+hG7kwUCgBURdlSyQTAf1uSZdL5nQRKVnh31P7R
DZJzU4edwMHHVWn4YGZLCudJhx9EJvPL0ctyQUVDHAuHn059ts9dXR0OXj5pGguEB3pai2VNpbaQ
IONbVPYp6XzGp55axfVfZnQTW7QrDXa5L0bmX/4g0yUwGFY7TIVESi86hNoMf6dodl8g8P5oytbu
5n+92PSwXHNLYEQYDHm3EezdTxLnHdKwbCdrhLqN+wUNifJ/1l8pzh3olKSUr/Xu6vSRjeYXwiCr
0qoNr39rQgxVFg8ikVJhPxvVzo2ptDC01/HNVDt52WWuL+Sagpc5uyr1v2g/VGq0rLELYN2kbGpn
tR0hjiD+nir417dkQf7dh4cauv3KkSJLAjbjkefCmjbzjTJPkInws9nT2OZ7cDnpfR0D3yBGsB8N
sQiZdWlsvL80+DEUN/hwUr0prac45SDsyllGqFbIqk8uCOYCS+EyB7mgO4NqerevHPMICJiMR3FD
DWuoVv5Jo2KUcYfmtfP1UE3Xo6QlBBKulm53J20SDRbl8O/NmQL8tMOsLb1oXSXYvwXz7lur26CV
ZU/EPGD6prNDPhpOViN6aPjRp3/jFP6MJcLg/AVs5HnQ79Qzu1nLt+dJliDg0oF+LtY0w7GtE42P
twfgGJcaD8ExVM2ZSwAlubJNj6gGj7Dtw+Io49MvmnBDrvW456HCg4L7n/EZxUjHSEEMnvE/9QRV
dHk8wx85eN6CAXp/pWy9i6QYaZRFyoz0FDnHJkpVy7BEAvtUo1+LU7gM36EQnmQpqg4rSYHdsPHH
1AVVVD1LjF4tis2hVtIVrCvuRUjiqpw0GG6UQ3iOViRSXLg48rEKirH2L2SxtcWg3KDxTvX7evG9
GfYtU+modYICutlR9dA65TlYhvkNBEB0V/T3Jp1XavJP1JZuLQ9AvWkT8rYlczu7hq7pk/scgOIq
DJCtjX6fSwkOGcC62XFva1SUjww6ljmBr6euJlf25vtEk40IamyeL8BfZ3y7Rrado7HxNoiCoyLz
JPA5o6DW3BcVNUvsHGuMGLPq6HQFh9Jf79LlIFIVx5NMvS+sjekL9FSwS28gbAC+9ZUtY0mZCe5x
juc67b0fv3Hvr/lqHpPJs7hyPm1Dy9XjGv8iPnCGedXR6zyZWsK05GqzIm7pn8S52yyikonBDiFb
Lcw+DUZC49NpMlmbZe0fAvFN8IlWiPY60ekJ1OcFnvNqW9L2AF/x5f83dMz1EawRPr3nMwtuQSIC
TTnBtAPWqmTHwFKzih0gckUn1jtj1iyUZZjGwzzgBFTLHv/AAul5SXEglrWtrB8Vzaar10+2afYL
YnIJEtx0wiIhtHQg9AXlkreyFyYVprkwHDXqHXlNgX8tmtlNkLQHLsnGgRqUh6Vntc38/HIlk5EN
iAgie2YvidIZw8Yh6p2ftIxTIMKGSWRExhQbJrCDubUHxtbT5NXvh7l/qXxPMgtxCSWMuq1e1Bnk
zmXUBsyDylRTRCoQYdjiAOSK71mq8rvlw4+PTXWM12Ru+3owmrLg7Xk2m9z5nY0cHZ5sVra+IV0K
Aak3Nf5IJdOAMcWzkZ+9EZBWulLML73Zw36vFuhKz1OS1AdvBYzDzAllg0c689/gh58cAZZIVoe2
zThw/JjYUxUW81cxhhmnxmK+MxTGyVFYxDri4bmV8aLepyr+42qzdc2gMkTALB9gdIsleabV84f3
C9Qe/PPezx0wmbqhqOqLBamVxQar44UCBQge2qzx90gaqIzmHKCyWgm2ySABbI9Iff6f4Mq843x6
6erjdTX7tN9Sct944y0lkscNUKr+so1OZ/TiKUFtgjdcPj1nNKT00d6YcRg0mpgJHo4pRKn35Viq
JUymGwSgXdiAVBu82f2fCL6nT0tQXBzpqCQOugvkQOMfX63uKpqsrYLJ8u+rE0DtG4fzBEKmnDcu
h3JDjMITVMU2lrMzmARTAJnMAHl/7rIqJS61ebKJKjr3SjNL3EdRQuFxai8onpz6pPSXz6nimlgs
SsqOj1Z9NrXvT+bWUnmQsYyllz1GmJvFUY+v3a3HnVd0NB3hiwMEgW2jTvWd49eVc1Q/e+YRaMBM
DRujRJUAU9binpr5kuxgU+uuddwyMpCRdbna6FCa/7nJgEN1Incwhll+v9hlJi+5MxOgEFxjju6H
E0neRIdnCtSTr0H1FlsUGK1JHIAvVeZbpr9s8/SGi+8hAuV9S5rHFODrDc6UvhroL6Y2xrvXfW+N
rPMy6AuqxaRJFC8Fl7heTSbiVnE4NKfO0PGQ6CkJybOUuCaODfZ17tBeHiJLnYDdsxKwyNy3154Y
cD4hmK5CAcXoR3effR1kKdqQPKIg9bVkIjOxfre0M347BSGdfTglnGTQK8piSPqAIdMDML0fo3MM
qxr/LLldEx5mUvmmbEq69llDhkCVGxq7Zo+ynhEmhXvgPUWn3Pzt3Ppg2JeWIw6MDhCqKbNpRvSg
pIpTKdIHSrYlul75czfifa1Io9cFC15VfBQiNV3Zx3j5bCTZk7+bTqYq1EZ3QIuvgy0AeR10n6WR
YvOqD5bv1rxF//imLL9a1XX0uPL0A4bUo5Fnv+xiUSGnxywfN9T6sRvdVIn6UU41m4YA11wmUuyV
y16PKdw1bm9XKuwJUL9UFZaUkWv0EA1ALrZ+kPLl18XIABFWCdgpp5ScEmi97KAFZSklrYLcjSsU
6YxDtGMTVtzlugS6xKfRXKKfbeDc9VzghS5NTxrEUpCY9kFyLRuwXHy1hRCJmotmD4NjjVUUhOd6
IMn9nzHslos3K8CR5kM0+7whQ0hKhrv2zUtd5isZReOHcjHpmDVoQCdkMm3oMfSCm+WEVz+Y/GS3
e/cm3WAxuXGo/+EKCf2+gFKxuVZRsUPWFuNrJU89tflPidts5I99mQeNc/faSjYzJQ51iP25m+Bt
+tdLAsDWnJq64Rf+9I6xDcnF3o7bDBuUW7r6xW7YwbbGw5rZaMIHuDpMe922h3dYpK+V/ZKZNr0J
SKP+BNROZ5KGE7butR3THZ25adeJhMdLosERTaqM3Yue8Afszh5D0PTzPJNlSOE4idNvgkXApCz7
sUCI/Jxj5CXj24oUWKgyv979hUFFTdVi+lEtlUPSj029VdKwFooXLSTzBkCNDjyG3zwQn7cVIm8e
3AndKIbx0K8kP1yqMDdVti3cuCeeVI+SMo0l6vYIifyoiLp5+IGrSw6Vcx3sObsbHcgZ/DGuGsRt
d7ox1lNL6c0MwJo/jrvjtadaDamFQlht6AXEmCsLN3RYyY62hHZ1K4KfzSaRBcNF2DCvny6y/jDD
BIQiNcrjA94YJH7zbEuxYNpL65YZS3ZLcw7QXXB4TjFBy+1elaM6Aq4iI5g6VMGSfeIZvcONGgUI
TZyfy4PlIExF+p4J5zS6LE0ZH28Ux2B10wmqjs1ZQ+97CMsFDEYnWkOUHxGGdWQFDOKQjeUawe4W
SuwXrwHjn7i3AaW+AyHMPPEXO+zi1kYpOrRH9ejsX3jF/fG9OzjU53WSf0AHJx1oYQOIXStw1AOQ
m0CxJ/KCGI4M8yDkK0jkh+5a3FbKRmB7aiFZ6DvF/UQy4ys84U8CrmGx5IdI4UU0iC5NGYyxvzlp
iMLpJ3NHPOoX5VjzH5LuJSU9wNEb8nuvSaiHSubSBu1ad5W3uqwlqO8P8p2pRbj1IldKOHA+5NNL
pSnIgHxqv/cDGPeo12wT0ajQ55lgKNEgCpnLP+Fu4chChpQ8ZIyK01Mh17m8K35k0IJMe0kDm2VE
UVBLEJ+ANivZ9DrdrzyCyX+YATrICNJsdapuwRW1AFnameR8fVScpeeZ1ETmXhRcBpPlvWAr5QIr
21PHhBqMwEAsbpwzDeWQGgSQsRTcnopnSvOA5woCRgvyDk5t+VBxdZoScSY1c3BVnCbysmgAjXhk
r1OM7Aw+clx8bsn5/t4d2V/vgTvyXfMng0dWlFl63XxvScU4Y+2qKye1Hh17Svh7PkN5Nb64SS8A
0Hq9nNZK+TCvbqZWcwbvO+PWl7D9ySqhmpBMkosw7BRcVtEdNl0dKwhe0GzMLqoXZGpHEt72SF1z
qA+TAUTxE2z8Z2nuw+krlklzpnSJyp7J/pQ1kCFpg15oiG1fq8HyS/W6eGnqY2ECL441JlMRURlz
FPbcNCq5AgYP10cvmNz1QjX6i697UrySpncsByiIJNMwcnDOXXKyZ1yYQHyuZEfKGxSENz9LWe7L
wqQb5r4jstXzGyLmfq+N6q5P3oAn8lYGIZjWBRkLn0yUPle7KssPBGxIWnWYBXMp3zYGFuCIiRJf
uwdudGIGJ6xDkCy3yUQqJNlGxtDI4hNTPVb+UXkuHJEK1dmx9Ux/YS+xYyZI9fdULNFMhXdqkc3h
7RWefeBMqlxjbgLgp/N4EOh/Rfi9xMwOoo4IjfH8L6MsmNgnWXC2J2+0M0wV8pY+dqDK/BPYpQyd
mc5tEfrqKvdTBs1pe/ssfJ/9lb4HiUCYQrizXUXCthTKTBK2wbEdvQF3Pen/3L/FZCOeG9DWrYKX
DIBdyNvalV1O6QMm7Ddnv5URCf6Yn89umt8wdeFMbXKAPNFLGqaR+6bVXf5yg1Dpprko35D2AQdG
wm5fTkJ+bS70kXTXlKNtg5UyhvmUF9BITt7eZjSPI8wQwPFU7o66Y5ObcC2DD/HARKk1NGaQmO2/
qOEjN7ODAzVHg8jgaVWLL8tgj1kQE1RIcJptHz2/285PwUk7lvjK7Fku5sho1wKiAy4+qlFmP/M4
QHgWYjNrPy0VIQF4y0i45EG4L1TQ2rzJwaYjiJzsWD8xkv6clL/mB2iHWqLr5B/GAiobm+lkvph4
5WiteylnzcLGDy/yVHZHTKqOiWOp/A6iLKWqErezDgbUIUVUH/GEtHM0mPd3D3wAdrWhKde+53zu
PHpKI/+FfvUEwgUVEkLD6ff1uOkXuf3ZuUQkWJDicnkBVK4IRtiYNq88s6HwyoinIenxVpCWKfbI
+zyRzRAtJmWB+/fRT/c8m8NdZ6wzc5qdgVxaX6IfNynTljq1OAntpVmRridaszMoE/bJ2fYHo3g6
iF0g4Bb/UagWav+Cr9/4U0yaqCTez+wHMlEXNfaEBkrUlYSRBlPXRuued2XkWFAPxyu1a9Bg9LL/
2X1AJzmBpbgakA0sq13Gs3gPVTv9wl5uLBbsdTQXwgdetvlKt5LcKbE2gmt42N9Zd5C4Bx61ghP4
EnmSmPkzl1Dtc23+Brir6I2dnwE+JBJO3JTXrAuMelAIHFBLx6MttfTpPLY3MVXfod9L4GqQG82c
4yJhRlE9iE9I6bccjcGAumigED8xvCC+Nb9PXhW0EjkuRUtEgjjGmTk01gwsKS/wPGykMz3WtLsW
CVQy0wAC4I2RPPHWFox6ynYt6J7gk7kXhwoshcIW0gjYhfhBYAs9jfGn+xZ9nJ8+TpRPY0ILcmv+
UfiKfBudzmGHZ3uOJMo0T1vJ39HMeTVgwxKoMb7CIuX1BWpB5RbNQwgRGj1TeKthHBpH/I9K44Uj
ONrjlr+IQpcJeqoPmFN0BjS10Hh37ZyDB3SoZuduw1sFU44ZlpPxE7Y0j4jWpjMnWYmj8c3Ti9dh
hxY0pVS778btD72tLeeaP3Rr3WFhG82PFmfAyHmelaTblZCbsbWpS3HUQy3Noj52w50CNvl8h0Rr
PKV966YFWJJ1klsWIv6XE8tp7KLKGe007zCfZIktVrjk1/hYWrrupkson+DiisGxt0GvbsgtvTsS
XKV3GNtbK3AMy502KzZTqbWBs8pQNQ3Qp8MOlQ1a31rYFcit2hcgAXKPgaglEQzk5VEQ/h9p9qd2
VFJeFbb8FkhHgg6/Q1BJwb0ZbzdFt6PGT/LM4ithBZYRkmUzm6TBitwpxEMLqfO2GYfNg/k5Wsxe
DYm4mdGRt0L7lfaE3OfagMX7szND6FBcqeOG9oG7/mqoDqo47wYWZELY2pumJCG5V0HdCI/DP+or
WxyoaBDEs92zlnfNQ9g1mK5Fbg6SgnLUQYcVvgU2WuRtoD/aMtz58JD9vLSKzrPXuytMVl6mWdWN
mMnxUVIfp7jY7nSBC2QGbYAxtDJp+CTQqaA1rCmu8iaH7Y6HXlR2IZD5emz866ouy9XCzrSpC0Jw
LbQManmP03lZj0Tqb/fqdFmaFCxoyBjTG+D3YWmXst/QY3nmDa6+QFAFT0G3oQVygSmYLn0Jfgmi
TVoiJlIAbdpE73BCuYQoqHj8QpQ7FjHaKpRk9VbLjyzEEkfY2INDCAg/VThMkl0isAW0i/y+gRrp
SFRUDbHnh0++zrjVTpIG62l+ZeQRhsxVPUt+gMKWTto5y3MugpR4VKjQsHl+633tEUcLmvJuyX2k
dSIFy6Ai5qRbh9apOSLqglDTpn7UMfZkrAS5Vik4fYWgwMRgGGV9QWaVj4T0QdgSoeJDIEFypvvu
yYN8xOa0ZyrOX6XOs7mV5Otgw3Nmy3Fb80aIb/daM2Epgr9vmj8dpFuzgfT6A0jGTighMhrmCc38
aDlwqcf0DNMQVr+ruEVn4OJ3PlcGcuWd2cfsMGaoDwvfSwfFzaNhmluIAIe2up7PDwTD+gBV4CA1
gfTSZ76iM+RUKisyy2rND/tTaBa5lpnp7LTQmovL+zN30Fn7/0m9RjBY72/PVUjzW4voKGb8sUnC
dFfEygb9DjvGEQMZVsnf8A1i1UWbL6/8hwFvYCzmHzUeRfUz8XSHuviVJSfRLB1BgRvbMjq+PMno
U9K8Zdc/qM6hIPlmzqgJg48MtP5smp+2+xAEwtxqFKW0BvdpZlj5bM8g+l9YV01hPnoriLhqKasH
eoDp7ataH08+4geDERFaaOPo13WQ2H9AiN8yPKprsajtPqa4q0fmKeYIhdwQw1mfHbpsVDv6WpZr
HsEht2T2l0vNptpKUtWieBF2UQ+duydDMgYE0f4N+vFjxxtD11MhhJLWkJUspwRl3+5+UbGqyk7c
LQpgQeuAPZDk8K5j1SbzhjTQK40yYR5V/frahlvWHLizuWG6zJvEGuTW29/IsB65S1/zCsumqW2c
GVW2zboaA9DyMxcq+A7z/fI7tLl3lsy00ve7udowa5V1mnnKIfvtok6cbdvVxo7+KwedfqH3XZxw
m0GRULfDA0iNh06tO4jz5aTFO+C2d6S8dNV+bgmnTDiLBgceLXI4l+H6w3C1/upIZSi0BfwykoOG
zJAv8M9Z4xi+fKdKO6MNcKgNfvx5ofeVfgNYa1ig/mo3i93ZosG6kgmNOE1ZYeNx2A4fSy+OtWDP
rzyh1LGli/hyASf25NY5g0nlYr79kffZh8G7ND7zbbpGUyrodOcuB18k84H2er+Pdj/4InRFCqSo
fbJcHMB910HgLohpXD6NTwAjj+cPEE5mQSoNAyWslbQ52jm4zyEd0o8rRfybV1zwb2x0y2wHSd3C
xBLiSmRn6W+f1ZHmwi8ZmIq0lCqU3QzqEIvqo4u1HKv4AsJ/IeN33tjJ3FKPvSiePNrqALfjnLmv
Y8AoD/IfsIG5lzoPdjr3+qVc3NC8mLiRyT7F1KI40l04dm5U+UDF6jRmcCchXvAQEZBqhekBhI6p
TsF07p1k5ru2h5f0r7XTOyUA1krx88FGvFkZ/wRu/vKGZi6dc4/cnUXOx+b7wghMrQmDMDOBRIVb
cldW5wCpxyWslHNPXnNMKwrN9jaylHjbPvaOgznnMlMvn+OegOggC9R6wd3OcjmyzWwvEucU1cD/
cM5T+YkzYqi3lKLcQ7w6OatRIl8kFGOyD8OapS49cPwgwGhPl9l8XsNSOKqwEUQsK9nmNfdH/gUM
uO+AX5xcjAIL5BH5/2Ula7Myz8FqEgfazwZF0WRg1rywkoKYY1FWPgC63UAMa5YX7rsHya31/KNa
9MKHtFLqbg2dmN6L16Ylc+ePY1NyMl17vGiqEu9AbDgRhB3NeW8lV4aZBYPNWhTfTzipHh/dT6qO
W4468yiNgtYlM/YBlg5s2kUMlHMx1LWdc1Ksa7Vj9wUOJaA9ZprCVmVfx8AgE8YVbCB+0Ittcszd
m41hjVmL2oHD5+bpjNtpjUoykvY3XN2/MSkWpXUPjozMBNPd7HEP7+d6H5mN06hct+0vL6p5Sk2n
Mej9ftbDsAH+Zt4zkKA3aOeSt+skz/jPC8Tw88j0ZJh6u3kKrekiXTX9IFtThxsWkrxEtOs+3VDw
BZirkm5mi20VdKs1RJEQxAhugnuiQppYI8D/iyi6GKbz3Pq+8DsTMJoYRm+Glvq6D5UWpd4r9mBm
7aW4CEr1TMVu6EwvvcdxRQYJzcxDTBCFB4SwfggRE+1vTGwL22SifOEvDVnp4C13CAsSFKf9AQ/D
ojqUkXfxrintIRmhmIPn+TNF9+hGBDs3iJRJrxKZLAjkzHY5R+qCSD9b9sfCVAAoQeCLIL1Zrh5B
gKnGlcf5EgZGHWGQ0hviJLC3y5onWYcnD27CktF8XUaNP59CZWSxr++yyXTr5c+KDHSKqkrUMzVo
PvKLTVpe0nNvCRWBEUqHpKlnPUf6qLO4Qq5BHqZotIdHxsCmRWK37/whcuTtefzhD6pts8NSWBY5
bx6icXhXlbE66D5jlcu0wm88bcldpyJEaqci3XNLRJ3BhMXzEKdxj6nekQJr7BU+98pJIJltWlZE
HyE00+bjzDi5osI9eKa3TIdxB7W1z1ubq3LHYbs0I7aMBvYRNnf+5wzfDcKqv2O2jrP8FjXVyLz/
BAHCkEdQyeCTmY6xor2TEA9pjrWiX+TDG9ILNUlfYPLEB1GF9vNoTel16D59J03KPX3/aQ87sIZz
WzcmecUx6SShCNWZEB5WVyc30yqui/L+N20RYn90rjhe82iTv4ug7p5R+oPkVfJLs8HRG9B4oadJ
D/O39bzh8Uv5x0PoCW/eI8Qzyl9L8fIoQC02NE8h9S0CGKAixMlTaUehSaCZ+cnKMkMxO3LI3Go/
OTXxj+v+WgdaimkIO6iD8OFp8SEkDczYo2X2sUD31YP7iMap9tvviHFhfgnAfShv/nAmXHqc87jS
M//Hob6D8MuNJNSnjlERKg+kqBltZkDi7pkH3yQciA9QPtX5ZilOUoHC+zwbNXOAbVVVrc5xebmY
qCn1VLm186nVA4D1CybsyKqMm62OemIVMBwf9fPkA1kCq3NLJC44NhS8llhKdkcboMEB/diVAnDR
Yp+K+reb2ETwOsF2zbkB0BfCC2f9Nr4ppB3W/ZhTwkI1yAmPkR+nb9BczOZ6kYPfwpD6Ob1wQdZD
/ZUeiDCF0enCtAdu4M3Mpzx24f5rj0A2mHUUlMI2YHLSAPnWJ6UF/4VnFdiAZ0RkTevunHnDQWJF
+/7/VRLGTdio8fzrFQtHBjFfneewY6wRJuomwEjLeOeCQB1iRQoIJKB5Hb/id+4QUhlZLFh7YJyv
d2ev2htpLrsA1LYhlIZRGUneL+FrcQBb0qtFN1UWb9kou5ympduU1QM1KeYFylxepS2psRUOGvnn
2a2uwlHs4KE7IlYS1LElsIxv88hdP304dMzbpmj9CnFNnxkkqHx1AYS3UaxpO5mvuZQtGB0obaST
PZRxfUJ4JwSxmUbgfZq9SAY+fUZRG0lg7xOsnIbL2VmtdC3P2tNNFbodBzNVoC80dnPiuuc5MBMz
hgqMGJ1yS9nv9XdtxJjV7kv3JhEgDEbde4xoiSzqZqlewUKNfRLv0RBBkE3AWF35G8EkEan74Znc
6ozFxRpmV40jdGgaE2N0kkkYg+oL0KBVP4STeZ/a3tYzcX7ipzmfg4rBpTgkX7TBoYeVI+hb74vP
lytmv3FL6ztEb99RYx8SmikvGBDICsXVgBOYber8ePsjRWPP1i1DX3IqSVkNQQGcnfj2ojjaQ4cj
H1YI66MlXfmAP2Bp9Q83R4305mbgQwvcftmaBJH9vDshtKtajfma44hoIfTMOUhQlDEtLJsS+Vr9
QbPPhxA4TpXQzSjiUbjoZGq8UAIhGcVIeeWFOGWhLcQ7zLULlcmgPXsJPRt3oN9W3/qJOeI3zmjL
A6n5zUlhd+Dw1KOsEkxcKgi/AwLtWqC9UZFbLK1j+FLDdMe4HuOGVnUhGmG5KoLJZO+etiEmLxy3
KQtj4kaPnAZnu8SP1rC/nUQcx8XUYEPsxPqVdOEnZVS/ezfSc8rlHggVj1ujqC9WAymI4tne0Iqs
4017MG270zdyXwV3hXZkFqxFpXaJ17SR/oTGcTM1bbW/dCl38S5q8Zy9ofqwt/oV21fF1lQ63dWh
/Bc5fOq8vm8+p58iSFvdrR5lzTR5ostJBwQPARNLaFDik/VMp2UBgUKdPaVmkmjZFI0um1+rtzIA
28fkasLLU11KHWo4YG4yld2llqhqkHtn43aAPVrqDSvr0bPfb0UGBZk7GGrXnljXAWwcC6cbdUDY
+omLb5TCPnzK1ekLy+lF7fQ+v0ytPvUHao4gqknjPglSHv1mnshZKfjIt2ltIdlnahacE43pOEoM
FQvCT/M7oeHIEQKskWRXRr2AWoEwjwCrY1ZR49LQiYFS8CyOBV+KKhvwF/BLvuy2SZmZqO27bZMb
Ioen/J27jsK1Y6jtreN3rDsR3nkMLjfc2xAG6VkYUwRW5BKENhWqD+1ObldGP7yEsT3vOJskznbf
XpKutaEzaSCMQuvqeci+1Xoh91F6DnElxUuRHO70qc9StRE0sj/FJsDclv/nEo1xzobwC5/FWNXU
VPFRC9GQOsc1l6ATNjlg8lnGeWfeAbHHwZh9p4dYRZ2RWcKi4lFou2rCn2AlI2xaDZkQEZtKpTBV
kuBBUoIC2XSiiMEzMeBudroHqA8oUVHurn4wFe5u5b0JDNOFTriqWcSD7EtRU8SogOjOKwl8lnxO
qlOFHvuYbZ7Sd5bldLVM3l6BIgBmHsdNeI4EyPn9bsvHLOWdB/PXZUl9awE73RuqrAmHjM0/gx2Q
zdcCJ2vXZz33HmxZrXHU12E7u9nvNaS0YwU/gQCBHWlDKott2nPkZ1/HCZQZpST13z9DXhmVoQqE
pJ0FL6bXm4h7Q1MsDLWhyAn9TxQj7lk49WiRoui6DJEH3dqYtVqEHse5Nfyg/1tPtiesBlxyE5ml
GiiHm/P6xv5T6DtWZ8DZl8NmRyv4p0mdamrIFmuyPei2EP8o/MW5YpVl4rtUCWNHRHbPuY4qoQGw
XdKa7KQLPJeT2AzP0wycau9DHm7UBiDiiJDHVkOnQ5SjVSloniedwKihnbKuhQINXevjMMi+Ddzd
Cdhup1PIr+SdhEgOw6Xw5aAOON5/Ibhfaf6Ox3aVmMWOVKvfJX4uWVTdof+pKrtYJMTp+f7cdLbo
tcdodNMsH5qfhPkQ0uJMq8yQqEpqSUW4SekT7J0PJXToLnAIZGKh9HV76lTN6fALHO5EDGihQ1ln
qvKYSTa/8rop88/PwltMui+25IBSgfERpAkoiDrEl78i3GOXbE25gmnuuzjm+FeB1yFshALWA2Wf
GizjzYkg04GgexPWoD7JwPMGilSKeNItp8/IiFJsk5RK395OxE6l4b5xKSDdoQUW6xfzEAxPGWkm
zYOEppY1EoAr5XhSl3es1UnujOuyDkLQW8oi6X4HvAh/T0FPcowX7KZMFvdUBMeHrSIXf6USj1R0
On0Ow5mwTE0kKFx6dF7VLDN64Ag/kMT5OBtaNZ9qirQi20R8YlzjQZfdDVr2STLBT+AMfRnC8X7G
uX6julnfNrTyugoRhp1LXo2YdZ0gijsQE0cVfhJLaI9yySHjdqH2DjV4KVCplofW8AHL3Afaj70C
J992JvSQNX7MtBAxZv4XgBnNUw1vjoqivoHZ7C8EWO2ze8Vyxs27ktvmtqE4j5V6hzELybX7HbTO
n5PzCYsCXMPVxXEAfw0ZWt2TabwUhA/Z9FrhHXMuhj0px6oO5L3pCmH7wqEBh0SvRq5886LDJs0t
4GhH1bOmHsikqUBzLp7BkQX/zLxhhOSCmoOhgr0Y/LQFaUILbyVvL1D3i9XEe7cEyIf8UkEwkc8t
xqXAX8/I8QRLypMPngt+cDrNGXBinsv7DN53dY3h2yvNxrLOLL3hPn7XzzO2U6ZREuMD3Chr4eiW
hMOkANx9rq8VQMYgmD810JmjtiKdzoQ40gOjbvoavbw9uf1opaUVHIbXQAz01rZqEU3+OPXBt8AB
UqFvEhcGRd5kSLdQ5PuUh0OUkHD3+u7tke2uF/wVwANZCzWalrVt+BLCd8x7ZdXoBtqUYSrSQoug
08vKGFtx0AC0MGy56l2Qj10n2yG90dT/+vjXx/Pv2sfZqYf6tlhmfc/K/h2z2GjkIIL4xUjXe6oL
9GjgXh9l3M2u8p94r1tO8HcFrbzHmljlCB345E/Cr3rtjPKWk2vtY2BLySQ5ho+ca6jECvjBE+KO
4qnTNBDf4A2X6OsP7rbE0IproinRPSyUCgZPRe2JMQJd5ETJbEFLwkSGYJ2PnXkw2hB51+l8zXDf
cONaRIKFyt8XPV0xK8KF81W1RsxjSBMZSb3OzGhUaIZuSXA5Ddo+uPZSXTz0U+PNYAQcdFfg+Vxm
0Vmes2D/ycRh3qjOCd9rkCVMEo4njRGQBvj0uhPg9KeitZ9C9N8BCshqob2WOkxsKyitx6wkVbWU
Zg4kLx6fBuHVCBrJ5zIq/SQ3ptv8OCd96WvDxeJXN9AHdYUKdeSqP0stCTwNfaqeUWLrtQwQX/05
A2SDGbR1eHYtra9s4G+3PXniYZiwNl17pkLfM9FOle92XeI/wjBnOxP1rf9NzXg88Y52k2SzJyo0
KNbyoG5DkCT8kFJbCJX5QeGp3Zs1yW3q9YSZF4NwIB+7I0qfrj1yCdskvRlqZ9Ld0ws6psmYLLEo
ciz6+rIATQKmlAwTVEdoMj8nKPPvjv8gctW8uZyjUb5p3Mv6MCBpmBTl4sftM7We6PwfOKS7/Kl+
ax4XIpN/4GHEtRuv/b50p5nvac6otF30IJooDF1dvra/kTMFIEUi60ALJ4eT3fa+UTc6Sc2CFDKb
urHq+/b9WPFIkulwEqcf9JFt9INZnoKtiNjB/iNa2768ko80shOm9WGThOTIA1Oc/SuzXN6zQ2b/
H1aefij3kgE7A1fjy0pGyapfM290/Qkv/DsIbuj5xPT7i5wQ4sMR1OF8m3qR/qcKnbKRH0ppQYWK
L4k8zU3g26H+Deq7QME3T8Ghn2PtQv1L78eALWOP7YmNzSIaoCnujK1dj1xcIZDopIrYSMTaQ1Bt
6MKjvhZiZgNUKqcn2/pf8iU9p0Eb3PZvEDIGlqci0yaqbHAogto8Latz3n/yqh+F9mxM7P1Xo2wZ
BYPh+QvQTSbu5CBYEj9MIBOk6CxVEHLXRYZNlnxGpyPmG68D5edc+dlfEv8Q2BAnYVnHF7YvdKwu
r76Pt/d16eo3bF1GFAa+FXoqBREply/QR5BoPlHKeTkxhbVgwX15yE1SC5Lc/icZbbs8uKDRO0q4
3vDQy0u5SHyvLwwV6pd3coh+/PgvHmYW28YLOMQDCZd+ixXI3OJGH5OZGSCRWjQnXQpTqP5IUmF5
PFttckC9Q3U8pBt0bs1gZPCmBqejU7EmbFz0ffJ/0luETAy5qRs3/MNpGHaZS/rUmJFL3OMMLB6w
GT7HW0wlezG/K1B2wgoxAoiO2a7VT8Ru0e351OM6VAyFwaf3t+/1v8E1Cj4GlzF95UUWou5f5+dk
awWjZkwyVkc4M9H0enBwnFiocHLqyu4N082zCfKWx0wdUGzQfH6Ra0kIf3JeJXfJxiU7VRosfid2
akgqDt2dBYnFOLpt0sFBz666fKAgwIH1vxCSrmSFFMXdWmmMLqVegKWp/NKtzUWbZu5eEMzm6BzE
xFVEPhQwB1Vh0hWBu2tO9nauaY+1Wdr0neP94xjN7YOFyu3dLw/YatnGW9sK/8mNK7gCopjO1Y2L
4nmCAqIJLArviL2IwldtaKeoGLfunpqcyGsUX6gGbwthF4PSJnwP9SCPG8PPK7xl52Sh6Xd5Plu7
pEdkqVYk117AefTFroeZZICWjXnX3rLLetNTR42n0xQ1oBeB0vBtI/MD7mxddVL7GxKhhQ7dmir5
dBvofE1bympLmoy9uyVI+LTeVgFO6wlLrXlPNko9bfpYO7iVSvNFg0UB2f8Zy9KUHpCbuRXTXBBF
oHFuIpBdZOtzQQ2ZQaNyZdIi+g4VlAPqtfv3CTlDIDiDt3Zh8IGtoiHA0CYv6hyJ4nCNrWuX/D0/
gujR4hRi/1+sOahEgufLSqcePYd9+YBONP1lc8V3uZ/dPT4+lkOb+Zq9LmGWhTweXGU5rd6ZwvVM
2WYassoPxN+IXuXEupUaKmqkS/ETUvA5Hwml9m7HUpV6JlzUSVSFMNDRE/qudmMCldPT+s6LSFMp
/GIaAoTNFYJ0Us7dmjneIF6q5V1qDmcRgUi/ivuqLNR9UNhPRaRIzXzTHy1kLDCvOl/uLllBoPq9
woTGBUkMYtV591LWqhwjSbvGMckGr5+1v4mqyDGcPKS6RF78DmvUILeg7rWh4b8aIbA8CE93whmG
kMEWj38dZgNZh/eXzean2aKgmgDVkM5z+g2zQYHeDZyyHZk7NH/XKHQ4yNxnioCLg3T/rhxRnumG
VjnAnf3nEOY4rwvl6XveEupJ9Z7u8UCI/LplSG2CXYnh5cfppozKOy77enwbUKEuZMrmFBEnYuGs
ojg0d6kpfsfTOqf6+TTGmvlBWSBhvpKILqoCz+X2/BJgrpVFrRyNkyaP+52uDpdNmSX67UKaEJ2w
TQmzdr4tQRldE/y3v/qFLMgquFNZXeP09/jzyoHqfj8HJ0MITy+WxPboKkSAlB5mpracAS4vxgzR
hmB7WlPj2JTyk3fdAwF6/stqcNkDE7lZdeNc3It8ZMLzCEmBBOlVMlswrkQVTL97+Bm7v1xq8zsw
9+pHdeC/5gyposox3ZgrQAPQcGSbohvl0bX584Kc5mVGfzTpuMIG6swqLiNtQeFGZJpNv7/ZzBgS
F/zU6jZ1py5gB9G0qq6qK/2zzfUQDFafyuFF+odJWgVQ8OoXo3wNmYcursaCGln5df/bFuJ5k3zk
E6Ig2IatWDmaHExexpa1ssXQh+jY4+pqZlvqnrXcM/SMgQIr/h8q4dK1JZb+r/oIeSxD22rOId7J
kXARG8oHW/MSSCio1KbDx0sRowvW/foOnqUSkB/OicpJqL/p2uCraD5JjGSp9ESInQMGTUTUZ47S
mV/cV+D4qO4V1865UUlxwdYRl14q808140CPNOYqa6Cre+aMu/Z9f+P7vHgfokxFpiNKOCxj3/rW
3xhra1Y8RcLh4DUQik873RSq9ekkHNSFXI4QwvUSasih+9Qrsqp9GmdESRPMjLf1Zd+bpFPTZES/
DuTwrF+aZTg2C4iduyEDsgd+A6KfWTIHM4fos/yJMou43VFjPK6aDV634ukLRERFlNyh213wmPLc
YCDtJiYM2mADqeHwuaoMuYa3/vTT+Brz3qyWBeW1B+JiOGGcSR/GehQYfdRCO3TSX9FlH700FIfS
HYgNrYmWYC2LrEpMTEumR4eT9yHZNhI+qrxRjcGzn/Uv/kjgFBTr9mrXeQHsauFF0ZBRP2bMaiVw
GWyBFRG1Gqh069QDhrcwr8UdK/3rqGfsx/ZmxyFFeLME/Z4k7BpMU5ibrBGAz3LNfCwLSU0S2D9F
0OHwWr7EzZ1rsZe/4KMh/xYfPHsetZX88Pe1vjEzUvVkM6sC+JqTd4ASTXq2onBjY8oiEzhaMCng
oGSMvDRlNsUBYZxDJ2rbETO/1mxe3GM9g4KF56YVo2hDgpO/hDFvszgoA3p8SdFBw5u4nrKAZs44
r3QqcJRK9YZlznOkUOfq1Th9IwHNSHTDXkmyGDabyduUHumF8USC0Js7RWyEsbqMADNCOnWUEfGg
v6YFfMfMKlY0ywR7E7SiDbCXxAXB62X7nBXnJNGBWTx9CAusPEhoE1Wj6fQehJTSbuxhp9+u9hSD
f9bdI6KXITwvQRUnABdltnEjA2rFTSjE50bif8RJjMT5nep21ZvG6nYOaDczkSWqp7s/lG8UUgqE
e7j78vW1AokmVi0dWvQ9qVL14LgpXLjYxWwUvJqlZBY8nnNRmJGu8LnslSw8qvSw/Q2hb7c+K9F1
KzGzdAW4HQvEx718UewImx3BKM+CwURC6sgtsdtjoAey9fhpTw/pD8xlz0RD8rMf810jXn3bMvAL
xx2ibo1hLpPQ+cv/vSg0RBrGfDIkmE+rivpoQhIKlKeK685Zc5j6mDmaKFO+ZFKYLSIvqyneABW3
ewRqyQeA1n3q/hSSrYwrC4IDmRO6/gPmzzHMpcMw0Xkf62ZCKFSBXynQNBCStuiqg/EK/qY5imeX
moDm0lQ2jKu+i3Dn8TuQkqIOLeg3wHnqJk8muEnxncTYmcSyLdY/wTsOeAx5fEKMxcj8Q419I3lO
tpMJkd9E0G0q1Ljz6f56BflEnPfsgN3HRojX6TK+7gy/d89SInTBSXzabknk9iNbAMY5m4UBktn4
xNlj84cEfKVoRvJxAvqxeTbGwZiBCdCBY49KYKPBfonriDrG6BuqETBIFOym7qJ4Cq3T7pjfDl5q
TxowziNDPYBejz+9OldUbZU8+ZouQlkJ0JgsQoXzRh73jAWXwFOPep+YK2yIMudd22y0CtL93dMQ
1KA2pLMd/fxjlf4VxfJUWYSdn0vUqnhFjtqcyKZwv/gMYVeyGo35zrv+1o4F+oBz+K59e8f+rFVP
XvxGzgxfZJHJwKAgQ3Lwh4EEwm5XmRo6K8JKPBeRJa+Lc+5gwKhi6xpXLK5IYoPQC8etzmMrbZRv
OuKyJHcCNq82NgdhUPbhFZaVZL1KiHuWKxCEir1lAsP8ImVrF8l0sxaNN2bjmn5yUJ9mXxgycdfL
vQo7ccImTyQ864H74LiTD1YZpTXMeRqIacVRn4p75LEn22wLuLa5QRodBb7PYfe6gcABPayGSmke
+rUH1K1MjzhMoTXwfqBVnQknsqleMkucjap+R3FV0XpLmBDHdQiKqba4xCRqJmVvbx4/w+ID4c7+
nZhiHELYCSVIFe0DQkvlt3zuPE3ClA3+TLieKwmn6Nr+z2Zqmt1VKGjOgT0k1OCIEnMQXPHeT/mr
+CnLWkveIeBYuFkQdDI1bnicNmWF6XLNputHcqeajC+H1tQwEKAjD8tducdLVVoNIXqoGsM5AFX3
KjsZBuDAzEyZDWyA+7Q6zgpRIe4/mMsb2e8KojxD8IayYandwrfx/rJsTg/dg+n5jHC6qM2c+4ne
+QgaYsat9nB/pJLKvClxPH9CgIHo6pm3ww+2y83TJXSKH8uQM/HtPL4PpOPan3n4boTan2AKY63P
vcUuwkGexuwKUjWX8CMX/EYqsbK2tWO8EfUnphE08pNSc7kLwjEh/b625CWw4AP79WMO1scS7m+q
BxbG5d/8E/tA1qgLG2qe7JeaFGBdUukR49EvCvLQmiE9xq1cR4tiHyfapY5qs6Q04BZD1t8A73Mk
vYdIjLOSbercHP6LMmuV/6gVQqrYsoh/QJBuJzw6u4btTLHa88IlpQSlZ1xg2RHxC/vzKvUGeyue
+/X7KXbqt3KGJvvaW0KCCfUmEHISmkjQicTP+fF7WdmXmJnxWx6kEtdi9jD6EunnwAt7QGRKA6Gq
xqMQ5Ju9MKn93hezzMEbM/Xh8RKvmhriRcmYKQuyLgZayYtHFZnbJnLpThFfIG7wJda9qEcLe8xC
rza6jmSyHLEkqrdNFaUwnvgfZE9z6PHTRGzf7pCMDgOXQojqTp8HYsDrT5tVqZH9Vc/kzrNtmdjM
tBuLbDx1IZ7NHWS1ZsjP2kktm8foEPzuSsF9O05sSnT+gMYjWLaF4cGt17hiEQOKrY0ZjQRmNzX/
Npb59Xhy+h8JsWVaSKYA3NB8bghmOwNAaRSXvPnlDUiJ0vQ56RgPfcEt6kiwGbqAvmKMJ33NY9LM
BzxtXUeN7HLvbVmvsi05Bt279CIovXtYns4NnalQ1HSrvhX967k8ePcEsRC3CqojU9wxMHK5IhN5
ZM+mshdvYtUlDeNw70jEW5WRTaGfzdNIFMIKghdWWwLSyAUxmcLE2WQU6lR3XcdhsWhT8uRYGexF
YhMgiMSTnvVj6DSUF+gscMd2WDU7Li9liA3Tbbtpo78hhxozINxStMq+d//PfeDmaDDDw5rVakjX
yQElOE2CEHHelCws5S2nE9mzkBOG/cgpv5BOx9tCSyNQmQ7jnYHb6/+2jFGOFrG2NDX0rwDTaLe8
V180j7OteGWZozhIJFGAADOw2mK/lmkjqs/DEFtTu9pw9lsAx9y2DjZbBSr/TO4w9/2XqQBhbjY0
JYEAH3I0SAjOvb7DbRXNjBUnPjVmizE9/9rhC6WKeiXrbmaS948hqcnBorABx9YkwRs6Uy2WBfGA
LQf2xDrMet4eBl58s5+nsY3EQir54qBlK3HL1ps3B3z7igxf/GYbQZbPU1i8jfePbKwpTIKVDfEY
Zl8y81XWorq/Imj+tn9XpN4/j2YBF9b1YBA5ZsNIF3UXOOhH8+nSaqoTGA9NzYFbN2eU7HjMc/dq
wjNyVDqllKDGJh9VtPd6v+IlAFywyEEOUhw56AtHgIQlUs8cmW4+llpDsITTugd0RGLP0bVAxLjY
v90yY3mCxJ8YGTB1qFaucjEOLgfFj3EIQ4IyfCH35zqHvS5Fw7SZpw5O+Q0uA1qBWgU4kxxUipSl
z3ISQUDx3VFKanbSZa/bzMJnuSEEjnCjU4hCorDoLasZThVnFQlkcsXTrUc07gZF+XlASX61LkRr
KV6wcGqdRvaH0Tu/pZaQV5TtIX2Y/DmSLcSknR9A6kCDN3jQ3i942C44lR4kPGd30rbriSv+IE9m
LtbiO7jKzKl9r/m1lLu8HQDLetHd6B2Oo7nsUlos7XJYAqxgTMusg9oUMxSKlsONDCy4Z0Gp/4LS
vU6mTO+RytrezZxttBqr6jSEjDrRK0JMXOUgR/xe9ePRLjNRXFzH6iHXLnm9fJ8WTKhkPBjVRYqo
rOFAoD+IpyeXHhxTYdu3Dybt0bvOEFpdq9k5BsZponHHrgm/xjbL4TB+aYjDULoRer8Q4L91VDzQ
tzEmsvZhgpW+YABzDNKM88eGbRlDUR6lYuumE5JoKvOBqP52q4/RZGsWYj95h2LOZMPYr5hCueOf
RxQCVp29TJRVEptJ+2Rg6BlXJs1nYChlvejD4wScrPlicl8uqjpz0EFzS6+KrHZmkSK1jVleSsX/
iNLp7iQFHpdr7Rsg0IkB2jhuC2LPmY0tDQMMFV/o4mlWqLxuyKbsdqlgI8O8WFYgGG1CyC9vhWH+
RJEQEKm1n/HRMhLbEKyYS7E8FNhnRD1ctfVxtbXGN8lEIwVENszn6fRV/kXqE+7U+WMZ2Z97WOmu
mfRCx7Kz5nijG2cko2l/nquxgVE1uPWdbCDMucASmjt5NwxEfohM37qU/55RTYhPUEzgqfMZtuaw
yM+5HYW8i6Y5zXIUhWOgsPbDhARGj+9pX3XDlYWZMZiEl84Rla/VSEKY9rpdoLJoFha8tYBHhcMI
zy3VwcX4+2monhgfdVxlJ48d0+SFy0VKU+s+036aeTFqzvN8qRdpltEFp9NnhsYsTGFQ06Xe+QqF
W35MJV4E/XdQQqnUB5vdBhRE7Ckm4xOIU4hIhHhQlT31TPjOXDsfC/TreIbI9SyrJ8HBGEx9lS4o
uOa3/aRqoZhGBZk+XBg+CLi/rwOOOUzkCSL3XeUIESInalPcSOv1pORCYlQIEl5Pd9uxIrgHMlea
8sb6Ynx75VJYdxhQjytzcf0MsyhT+/+z2oXn7e/m5u/LBkd7C6Q0KBNmArYbFprCNkYQsuu7/axJ
B7piKj0SA3vd0gaXjmOOVXOhkgBhAOieugRyEbVMVs+WQdnPfX2/1FTkfvs7sDrXnmpJJ8qzk9kd
dhD2htFou36vIHnpxOs7bEyvs9luPbS37l+cR8YCPTFgx5D8QFvtwg3J4hWxBarfGyKjb+5Kj3ub
Oy+sFXRxvGLXwvVzRpmW54dRNcG67po+c74Xgcut1yzEIoASEF/d6aymaEJefYjF+mn9rLU2GXhm
c22o2ZbbjnzYPiZ/GMCh6cZFSTj/hXD6o9fGZqsJhoXOS5vOFVqEnE0f5h21AF8DDCdSWE/Wrt4t
6cixbexszfG4z4dw5asLm+8ITTjKosgUiYqS21RZf0Qky4qxV9qKehz2JP2JpgV3VIomxTVxPK9x
pNm0k2+zNJUFUfxxCHXB7XzU0DZEptmmksXAP36YmTXX27MYn8ZCdDB564a4+MwckXsjGY6XPvJe
2l/3HIFWRj7exEU/fxotlNZpOJ52jzoGwHsAzuxin9waMx1z1HZqLd0zUKTBkkbNTxeYpIoP7qE+
rxK4rLUZ77uVf8PVElVYVmUmmAAZMdDHy8N83Jpg8PHoRtdj8a+oh5naLJ/uG/yvRPp2hfdjlSxE
ngrcvQncyrxsWw3qpzqVkMXEkpLz1twno+AKJyKKlvyiT057DTdrEkIjCxK5ORJvMR737wn3KV6M
FpmbNu5lbPoSrX+25ALktu1hFnqbVnydV6Az3Ttqc+O3T1Tr/5DYl8efYxS6vl9bkYbkxOIYdVo3
c1z/8VeIahy5/Xy2pxk9MeOIfL5L4fjVNKlHDNso9C/SW9Of8NTtlSmPcPY8M0inxveEDHiZ8iOV
cWlOZVovWCzhI3wDNM4MnCwgCSu9CHJDECiQv2/Ur4kdE/qGiMTUYmAwGIy8tPzJhogZ9pooLAKX
o9kDHKJzHsDQk7jNcgy40KEekh4iwv2yRTgk7oo+WritRuAGOwio7GdHbLalZnEPEaKKLDGCA7VW
sm7FJ3CLMPXhnIuhHy1DzRIKJUKY0mKcbqGTUzoiTmtio/ypIVHk5cdN81eEdvgz5jP3YaBDKraH
eTJXr73NHF8UJUhrP3GgplpUdHYeCK0JwK6nGmfgMRI1HlIlQThvRj8tbr4pS3ahr4jparXbD/Ni
3CCdm67WIEsEpIzq3XSuOV9Yn94YwtVYW34U3AVKIt65UEN26pEOClSpbUt63J/Wfic4Ikt+vF7K
84qibEfJxxw0naUDOV+dtrlWcXHcMYhXxrbHpu98Z7UydXcJBT6YhAC/1gYpwQcRdL7x8j8FVWib
G8i7kdL/eWrfuZQjxORPNWHvUlAmC4j7NBxhN2yMerFZb+6Gz7U/ZsSwx4iWV7UqXmkEVzUm6e11
W6oC69oKr16DAcXKcDlo+84eUYSa0GN25KGxhl27XkUxiX2REHAMV+frKpSZh2DCGtoAtTAvQTOP
xmCbbQKf7DdePrfgZ3qpxJMCIcdKRn2NJhiZ0FJkCZrg7f2YI+47K/qYq2h8KDXTuM/qhAj4DRzj
D+DmNhD1qcpweaxDvuWAevHJkfuOdskAkdeJX953zn1vRLc+YjJq2DywuuhHgFs26z1mmZ311Pw0
U8PrZ/VwaKaXfwgYPub04HVmVYw9HHvcMpWLZwUozxwTq6uS2PwaPqwDkOIEMnG+JbS8Phvf5CK8
ZS/CTn1gnLc6hgv5wAp+pYf41NdAeTA4l9gzE779bdxLAfBoGIs4mtORjNtmGUJ+qilB+QKjbwg6
fNmBnhptFk4TQgzyIEtT+EKf/xC+rfcEGRJ2tR6RyIy2LfaulCCaBZY0URcSjO6W7+cZ2m/DVWAl
CQwtLIGEOCAmPP1WaVxUB6fyyiWDWn70hmrwCW9Usa/NP2aF5Z0SfBtGPBCvXBa36fQ5rX/teYqE
1CNFKJFPhdGTyODgAQOyK0redqkLp0vnfwKpM14+vqDwneh3GwEv/NPTl7guPRzaE7OQnZ4iw2mi
KJzoA39JPgm+Hqd/5LlRItx+L+qtuZp1bsIGp7U26IAae9Gl16GTTDKMP66ykWU40ngaK0KxNk+X
4J5vRMveFPhnvacY4NvxSK47aeq+IGSAvT/FpuUUE6dHH4EUzp1EaIwLZ+B2aTHzZ7UeoCyOUcFX
5YGkHT3TTq1vSe/INl4fkm5mZou+f8ywNHi7igHY1neXaCzlKG7IWxhwjNroNDbYSVMjDimKjoAk
6sPRAiF4Cyr+KFOGINla38zCgQhdUrNPN7AxncUY6HSXpcpXhAjx2nV4oXTiVuA2u+179ibrO+ps
/+h8nVk9WyC0/RLAzECPTzKl/gSkCiPVC56dZZS7yskReG5kiT3MlLxdeTZ1Tw0Pb8q/SFA6D5GJ
qS6xS1ZSZBbvsjDelc8unXOve7txLnOCefOOH6y59tSfZUtNhz9Y7RPO+mtJ3Vv2xnOuk86vyIzD
9iadoF7c4Gn2Kn8BJLgI3Zoiee3nDI40udFZyeXLWHzmTGuxCOCfGn7YPQsdmIexNf6UA3FUy7X4
3CD9wkCJ7VAItAiRWQ2va+XpRG7XE64W6YD3xmbYwNVscdKx+isLKwrI8zciN6Un5cvLbW2Gxtdi
So6pjLAFb188A4ZNSYjjWk8lgZ9vcWmh8BfFyTwHpVIeV0HJIfnXD+0EnHgNcfsb2m3Aw5njz8Ca
YRYNFIPad+1mLgKTcg0qFaphT+CuNq+F8BoMRH9lIDPdj8ZdPmLqhuLnrz9zQ/V6ri21Ft6pBPsf
VrgclyVLnwPshxMCpHax0RPPRPE+FBYqgSBtakubnqD9zPRHMlLnkZeob6k5VsSKoHRN/mvwamUD
v+u1KqOBaa+uKknntrTHc/Joti7KywwYNwAHTfHjVwZS3K3o3SjPDIMj0L2u9JSMbnsNawAx/xmp
lzDteTcs4/m5OXFGYL8zni6VqtYPIXQ0QVOfobvw74c+Y1gAhRAJDvCbd0j6hVgUnJ07dau0x4Iz
Vfb7+BEVMy620qp+KKT0RulLAElaJ1ah3H7mQbChqQDO9Fh2hBWDuRkcg4aLA5r240RBFcuYWDt6
eF8vDbo/z4x5DlfUWacjIf5vGuPZBxclxCnmAMsF4aaUo3VWZIE9+pE4HECLtCiJGZMlOSo0QYLJ
yJjUOCW6asaRCbV/gf23BvXXmt/SPTpDchYFnRymoxJQ3gCEVu2F2mGGetKB5akDx4lpZe0O9nxR
uAlP9naxfppDmEG1YoHDZI00WvaomuN4og3DeOUvbAQNBg0nl2xe+v5kEyx82MD4FsrgGw0i35e1
GoGIgppzIVUIpuNQFgmaPRk6joh+9h28kM8cydzHCYBk9MfQlGTqOlvvRxRQKa9yVImHe3E49Vc1
X2lsQG4AAQr+m638widYYoDGGKeSwOfBsCf9tcfe45LfLUBmC51EfVe/CJKFXY3BP1baGR1ePkW9
ecxbrEWqZDwMa36KIhkybeCcce3qwbzWhYhBQDKzgwk7le5m6zIzoO7KpV9C8O73wjhMWYQbgKUW
Iw+RBadH811jKQ4f6jJ2qxC1W3ACsvZRU2b2e4mUbWY+ADag3eBdRhZhTammQ9cLZuEt/iKtg88Y
P4wj5naiRzcOPXLjcIDaE4BvW8CNz5zvxNdVWs1SIwTQv5ka2UPQklOWSW47snnWYUmZ/gwYmAGH
/uN3D7GFHWY0mvvIBky7mpj6P3k1Wuwu7Og/QW2E48PR8NVzSv55614HomLPWrR6YtpB9SOhu23g
d4qR4r4HVIc0dltJG0FtK6icDE3FzeEZQb2X5Uh9N08De9w+EK5P2/PQzb+5GZhX5KguCMrTNl6s
T4YBznsWB/8W7UXs/0fYgT6qBFEYaaQ8qy2ZtQz4nOHRPRyJvQQD0vDrwABzZRlCvXoZbDuy5CeF
9H2aedqFuDFdoBu54MBpN2xO0C4XPqy4sryM2VQxGnq0DPZRgqZ7Vf3Uo4NzsACudWlNyGvO1Lfq
jsD5Bx5Fw853pNgD4yBWX/c25I3hmj+KWCdrcgANtqGkQyNTHxSvqd1QdHllmzseds1swhCUieX4
JLaBj6H+GxNMjIdVFH89RHlOqcoG4PluEl5o+zVS7rYnsXN1nXBw/oygbhCiRpdO2x+3r+5OoGaC
Y6Z+4hCSLVFN2mYcpu24lWE1FYznxqOUz3WtiySzVlsSXEf7gEDhMAWJKABFesmz8KG88TgfR92u
Gfvr/X6MGp+ulZsgSAFqYATyNM7SNsA2GQSGwZ0tSY7lgqYDKMjL6VeC1Vf+xmqR5te34N3sV47o
xpyUhZvSX0Om5YrG5l2yYRGtIT2CIZOlGyvg9niZnhpx0AF2i28UBTfbB+CxrkFvh1USB02hHZEa
cbae5NS/6hQWrP5Ucuxs1LCt333+cb0LWtkPljazNKUwX3UpQDTqH2GffoLfDOnBu+11/cIXbuGZ
WyARxC6oRucrOrG+gDNVVb1Jn5SM+adYrloRXNjqU2yLcxDQL26QV94GSDSYljK9YJr2eENx/trP
ASohAwYxBE6aWDtLPfnCAqPboD2UFGOR8IZZyXBg1EsO5G5reinmaMvVFq9IO6Lw/klNtLWHtF7u
VTAKi88rKT2+HxslXKtOyv7qoc1fshYRKpykP/5JxgDwGU2fSp4zxGh7TDLTWAaaii0DaH325lP0
EOv2wbd8NIrqn1QVnQtdH8Xmp/48Ib9vLPReCCGEkFm217fSCuXIXm2MwHETzbaGX4upwacalHm2
3EjkOwVDTRtolrCf0TT/Hckkyj/OAp+eiU8EtC7lDGUHgTdrPfIicHx/KNOHDnUBJXfc7fDfNxiI
NH/lkjjTlQ5Jk37znuT2JH/9r9uDiffQ/96H2W7e7lMxOL/yEaacFX+2HCVIXgSex9VkiqG7GcxR
MdeL+9JnCGF+K+HRuLNUmb+LDmGA/Fp5dXUUwajETOk35VLM4lQN7uQHhQDN3+dYapbhdd0Sd9zF
GH/eK9RjqooOLYHMYl8H3HfsUGIlepdZytkmISOG+naZV3CzSE1o2zis1sk9M+FuBmqmcLL6Ky1q
LiEfZdRiaB+EdkzIuJYG9Ztomzvg898UbkO/1hXvCrpevKVEYlzqjXZAdaUsoTfWSKIQoSfBDnpO
gyuawxfHOCNd11RvLm66GhLn8GDexge5Y78sLE8praKbVrQnoPrYUzP9Cc3B8EME6ZSXmKarPb7c
voaAr0DXMZPEh3BKG3JoNS39yRTiIa0QQ6mOFQLEz/W8tIAe7tN70dUe+Sba20p4DbQuUnO2wq4b
/YritGwWSyHOUzwMQlGL44vkz2MXLr0R4yNVZ2P556RL5QfEaAuQNWbLnkjtF3z0/zUoN/WKVzeG
54nhshkYdckTLEPf6cqFsWGISWtKB66S8vZMqioPJ3Ri0d5x+Rdrc8xQ6hNE8LJo+GLxdGPzD+Uv
5XCnCkkX5SNMM/+bqTYa8NeojAHpS85z5At6KuDye+uJ3BaPEYOqnFTHNfoMtwlusc4rEPmPl8mO
kZ91FKq2dMMxgNoB5cHNb2gsF/O/+wunML8bRmMI3wUbNcBpV5ntOOituaz2zquuvqcaxiHLxHwl
KYLmv94X78BlEs4WTaRkKYCDCzKeWi4evbSsZHYK7N0KmiYuv3rTQ/5rfnLMbOofcXbjHmCQoBFO
T3sp9JkWQbHQoriCAOcaFsh5lLo/OEInBdPcfiqee63ciuk/pjhr3zSqv5VNMbxtpcQrPMRYbE5l
taezqgKBiJ5ZQuqD75MmYGKZgCD4e6angYUfDT7k7hkj5BYldCVUjKaN3ePCApsy/8h/BHz0xgtb
XercOl/A5v2vnzj5nfwUqeS7seKxYrZ9UVZ8H37zGiWLu76xBpCvP/s9boJXlSawAxtT6RsgnZpq
XkpJR0FCrJk9/W+O1V5G/B3MPR6kuV1j7f1i5asPRasZXPxM0gjI4hh3WY1Nw/wuPwo6ViFmg1v5
+YYNWX/d+sn2Gn1nipC8tKw9k7KhIteoiZwYyUyGWpbuOy+80RujfTpBFVLy2r85IcPttlzSh3pb
Jy2YPAzyx4K9MRCV4Yn/EDxeeL8bI7wd+UHS/kbCJg45w1IWJ2bVJTf1dG2UHY69iHg/vZvQgJKH
7ILhSsJbw4xenFRFNF66tVcmC8+0cP71xC/yewgoOpCRY98VhdIvJPWJtBnzVRdpBYaJi+UCoMfX
c6olIUFCZ6k7rMNxvDDEoKWSlUyA+RUQW2yQlpz05npJiHTJ5kqpfPrBBmP80Jd1VNGzEYnANOc6
dIy6QMNlyXZEXbI5n+TXdB+Htiawflz/JaxbyVvykqJoYf6x76Nxj57dn/20DiYaw/z7h5nGrbZl
RjWdUjCsHKBdUybU+fkqT8jT10d0Vt1I2paLBNSTkvHLUQVtDMAk/BBht20mYJhGavDPBOh2Bz7N
JzW4CYSrVmyjWBzyRj6aAMVa/EeVUpGWv2GsZqV7AZXeX/pAZO0z7vEIs2cCfL0DsrdYwVQKz3su
5y8NIiettkoO6Aol6quo/rM/pqC1M+9OTjdVHVPgRj4UVtoJWxH2fVRH3xNv1EtuIoiWGmTkf29t
Q2Vetj7yn09lUwpddL17W87rtI3wF3Ou9Lzch9wSCjW1bwFiH8/GAsziY1626JyD4rShYtVUZhsO
thRpWbssKNEzu1dWEA60nZ2gQnsDbh9kqyDflb5x46bjqO1yhKKs7o8TXCe5J6RRzU2T2Jr9zunI
QzDhMovr0jpO7pBV0RwHNGiZ3rktVhpUt6Tvlf9bXo70j1hRNfFgXX8nwAebrBtJnQpXMVR4T3NF
VcCH49nrIizzOM6rcFiiL8T889kds7x0SSft2iPGHiEn2EXTr3JhZXP3pzeIPlHjpMCGaNbS8vk1
ut1SQbZ0/du/z6EdaBdBBov2p6F/re+3iPVrhB1bgjG2hxSM3KIqFFQvscJNptoUV6e8BfuM85Fv
uuVTSTB8s63W4fAZ5xNMX+vYhBuRbldbn6TTZV0QzGiH/ixx4QuVSsscxwU1oEqfLnshoDYnIO+A
M05peRPFFbdB4ZO+CnzmwJKSpBe3WB6+dNQvd7RoU2PUeYkvQelfMGbSvG37cO5Ag+Mhe2jrpMZ4
Y0mPv+Qm91mtsq3UnKNFb88ALQo6ZWqJNGYhL45Jdw2pKcTYe7S96AHbzSZ2tQwFzeityv2jukqP
rw5GdALOvUIWLypeg3lQ8bq2tlsjsb7HYdpMb6qYFMRD9XfTu7XopzSWSpMOudPNQfswKxNZonPW
b2AIeIHmFt4UdZYDBaNGZ7/3qDHN0hYp4PCO9lbdj4ItXwjopXVRp/EmjIMsnYCz7nt63uEn8DKd
V5ML8Ttv9/Ip88W9/edPQaA6zttiDGROAk3f1OLAHibHDmbj2cS3HzufKg3VjhNoqamWYMAakCZZ
xGE/UllWjG1XOy9HHovkaOpzvYHWmI5ukWrYGprbE2uM/0aV6lkLoEKgecOSHwnITKniBNsNj+9U
1G2UHinBI9sw3lp7kCETQVm1mxuYjoWU5NZiLsOvD9YU/Yl0Sf9STDg5A0uAJk6cwYSl3lbRYMwG
hrPVvnSCAyea72seeqCYfVz1kKWW1DOqEolp9GZxUP7Y3iJeGBmwRz19uxP02yovtBg7lFJTKAeY
hQQBFCdGpkG7tAYf+209T6oY/TtZ61I1s+tSyDsBlS7fIOOyEhaixz7JUhPtJSjDzlNcMrCPv7wZ
2A+I4cfoZmkRbkfeDUkrmGnyoO2IMYFK3kSuUTLtFlFnAL5l+1IMKmH29at/m+sVYi4vgzgxkUei
BP08TsVp6agiNK7mk1JA2v+Z8HUYC0xijuzpNCwj+LPLS51nqPW4DJWC2HFSM0+MvQnXNVU2NMNX
iqBv2656HfLE21RVpgAQHx/3KTJnvjlbEgEMdqjjBGuJ5H4dz3u2vHQfV51gBV/zavrRGcmJZsRn
tz5aKC7gNJj6RE6kcF83IgOoQOJWB/dx2CGj2N39/IpylgN/sRsHoUbREquNIx7vmpGtm2NRhJKy
2oNfP1IV90GIGDz1wSKcLiR5Pc3GYgQWr7+iHaoyE6zHLeSMFlmw/KB1bja/jsGyQQvd+hzBNcEL
KS9AvHtKmYpW62xMnfwwgBryPzpxgE73sT6dz0ersKb2hEPXNpLQAQWuXSmW6V50DBkoET3SzTqc
gA+Vk9cbvEMCl0jwokdw11D5Xf8czuJHTqmTKoF20fmhKqdb3l6a41E4mKyyoMr6EuSiU66Ha2pz
6c1RF9b29IqRlIni042jBS5HEWeQzBbDBu/ETXcpBISUdpJKNz7e71LSqtNDAC9d1y9KaeL4Sg+K
mjXgy1ZXjlC9ASdjv2lX6mB6z+5EXqpSssrWQI1P/XjD1U4Mb2vTt8QFwdwCtzdYAORhOITLPG3z
NHjsLyAAnkoZUXMGnnrCBiyLv9dWYJKAzcsyo6eJtTVOjlIVMBy3JqMNpoPg6hHd5PIkahiPGFTO
X1UIpd2XS6TIeToaeM++J444njnYURwcmdpT+TK6zIfdoSmCHc5Hhmn2mtbwjgA5/o44HMS50tDk
5LzDkjsr63kj6Wp52M5si3HWOaoJ2l9iYhW9fLBCTvjbzsuhqUqPVgEFxbnPRGSBWlpgLh8pmUDx
d58eQigK2ZXLrpdqtkqeDewQUtiHZ0sL3VL0ndEFqJjWrfza3wcSOkFwn1BxS21HFCVuYrAddC+S
3LyPKjqvvaP41menu/a+IphTfI/gms+fcfeExS0tlaXUsb2TqZMgwDQtD7tSOgCBywjUCU/hGzu6
Ccv4zifHJ0aT48FlXTsEjZY6rfEg4+ZMbfKIG2tZ76Jc6cczWGRC0lS6eHu+PN89tKF6HcAFpBY0
TxN2nY8dBppg9ONRWtwwWKwlcsNilySyfytDbLORGFEVBljMXhbU8gjwB7wQX9zqiWDHrcOX+Pea
0VXG64uSO/3Q9xYFcWqeYC4+LxNMqLLODmZO+jMen19tL3mrMN9jUgqrMkMAbibUG8sSJVK1xCdP
9qYjv3DvZikUocT3V9Ujxc8hHQmrrl2SsA2cNnPn3dp0csaFwUJJqwP2g8ywmicUvzZwjp9SmoO1
cx09WcnUA5TXYMnWJqB3EWrb3mGbzJCXhUogcTEfkkeXdBAa1s1tTRabfTwF8BkNuwCxM4aBkxH0
ytgMrmo9WWTUNIbUPMCxPdJyJijY1LOEFHOuf+NA6nUw9WvNTHU2dIucUft3H9ntVQQnAfREH10l
w+ewt8dj/jLAatzF53xrFqSh6/cmpCFT9FPO/RH1mFhtBsax1ZXxsmzHXohVzwluD1nNekjbsGah
SKOrX1kPcmW4t9AFBb55AH4/mncyyukxUCfalwPmaRLXQI/AFpBb7brGvoTOYmhfVtnjz4R089KW
/e5DGHV7v9for5WqWRJfrzkTh89oLS89Oq+0kQRzWvezieBlSUoOKXYghz5X6HGV2hZr/hG+L9Oi
NcTnkq5qVGGFBXf/jk4LbmX8JyuDTiriH0DRmVCYP09UoWbmGDYbptm6l8sSmtaUUhIf9PBgV/eC
n20W1RME1FtVVsgME1v+/M5vyfQq4M9PawC3LoohwT8zYehr9szuD61euMv3kdAsLYDzX0tZzm7O
oHfx3HohHPh0K5miQume78IIzLLnwDpNrMIDajo9uLJZxbnxPK6Rz58IoXhEPo6zIz+udeuWA2mh
UZeskveRqmE7713RLz9MAYfVQ9X7ouI2sYmjtKYYEx1sYZMjG8CXlDc91Y3Pr6EBjDa3DLboLpD4
VF8PU0LJiLe5Dv6w23oA53kdZj4ZxrR1c2OkyNHadQMazsQHEmDC61MYNYGveQUBJkoRyeyv/zAu
9HhUik/QtFTeLPtHhY7oMTs1aW3UWtiq4nbXpw0X+7HqqlcPKoTjjX2GWOi8h/4esEzjMJfroU4h
9EoID57BiNCaSUeA813zClHIFwt7h+LfBizVa9+JKC5OrPUg8ydmvIn/WW84TBeKoUUeuunv1dwa
mIUngQUD2Tu6LDUJ1wJT/fRi03WdIY+OYHGGjmT9n5FBnbk+d8yXiYn0hOtY8kJ/vKfjX3jiPykV
P6B9FfLeQdIh/q89dE4yTRJ+dvME7IWp/rYH9XNSS+VT3W14eSzmlsBZUh7bYmYHd2ZwOO53NlzL
L6+bVcgWeufO7Aj4WetTAf1hgVCVidPahQg5iv4UihuOIbLe8GUzoap61+U0CPenKp5NRzUHC5XY
Gfw7vwapRsezaQSQaAH+RYk3FqDK2iLw27PkE07zrFj4LJXzvwNIp5Fl4zzYRUtf7UY3QYcQTLfm
anmfss6N73NWczn2gh79ttyc8nkWjZRoaj8i5apx5ZP//CdGg7kS5Wa/yCypryeGc5laUQ==
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2014"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
lz3B4KHX5z7HJK6kHiZGMmcEnUqLtTRT/n7HdY7szClNEEBtVq2UQW/wdwwMN27AnOLZPVfuS67c
Y2O4fk1xOw==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OUoXLY9rVEqAKiJgtR19Q8FIQUm9wPmLFXF2sem6w9gJVRflCYIHWjOAqv6eppRvqeqcjaja3KKN
iRxsDXzkmdVb18CNyYXYPgZU4MySqAPoAE8BZ3alC446EKqG5bo3Faah4iFiaQ2fsSYQDhznQFWV
FIedseAJGSJjdgeT43M=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2014_03", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
bHuGx6phwwi065A2gw0E1Tqc2OLDUoohEHY7mOoJcUQwvr9OEJ4yz01Uls3wx2UOc24N+ANXe8aM
YdyfwspjYSBviz8nI/XUT5fPMjNbtL8HFChLorcX+K00Sc+A9m1I9+5W+Wd6GLSKBCVYKnWRn9Os
rc68y/GTowadTW08aEEccqOavDD8XG+R6gQqGpi5C8xq75oqBRmE5yNpxpBXxQRz9mmAsJcZ773H
BpObF8UUngkYlRzDjfxz3vzf6lVAPrLm55l1zEsel1LRtdqlRT8kBTrz1kke43v4c6xNv0u+i1Y0
dvxmNCEmLNrwBuVbcA8l6Jjp0k0WZScEgrEOCA==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
4sCk5d4E+rPjLUhUiUrzCNkXo2ztvWgfU4Ic3n3YDGHZzWC7cjzTKSJroiCXwtIaQEIL5FpdrGOo
eHf9JlqikZvG/pLSpSZr6BTZioOpsjgI4CJq9n0wGhpyClKm24hGzYEPH8AkBs4wVmgt4sOHvyYc
mYqTUQDFFlehrx6Wh0E=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
cjjanW9F+fseEMt2SDd6R3KYZVrfLHKeq8ULFHbP0E7BiwY4Vkec6zVJkc5FOAAhZdR5Ywc2FOnS
jk9bJ37QuAeSdAcrSzysHiIJYxA3kbMVuIa63kiSn3dKlLmPc1gZ2/UtM3HTBff0RPQzxl944kH8
SUid8bQM/bx+7wxLnTLuo6uTok/+c8ipzvZZ5iJ9DgzZyHiiuOtKu8JWNRVw1P5d1QqQT3EZ7Q8j
fnqcUNAmoR2w1hlmAhXTJgZbpiKUcMF+Y9/twpUzFl3rdEE6PKGzb5YQ/Re4uf+MJU96/KSTzmBR
Xfe8WjI4zLk+NlEm8eNku5cgYGTA1pkwApl+6w==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 82816)
`protect data_block
PKlpisMKFINH4hoELw81Ae+vpIr0xr/BIQZISQh02QmAYRngfWchi+A+2gXJ0ErM+PWm3fbvLHaf
UADT/opvnHMCrmwuOuQX48J/a1y0sztlHgsA7XTu3se9+qgRV127UsInIis4R+Arq69Sq2p8iQGa
1PD0yZk9bi6uA/bjwC/f0K4UDBZkBXzLgK8AKLyDRJmdnfTtG8KKVneUKGDkFJT/39R+ORlmjO1K
XG/kacw4HFvvx7d5zMmCVk65vch85G59cYj3oe9/dp+HeiNRQLeMPV8FtUC0j0/RKxrMAO+QOmF0
ERBQCHzifcxvPU4x/b51WVf9/zo5hEy7xHsvq6Gr/13z/wDwkNa+YPTJyWFr0XuiAw+KF9ipUo4x
gH1etQv38h/IUdmUpOcxElZzljx39pYb18ji+xL+nhrZ1Ac6sJjE7pdZiri/9xL7H1szzwA4RcCz
yyuOZXt8EURJ9h82hCDThzRDyluIzrwN/ciAVptMgYO6ozB7grEBz/iup4xRWP2gv89ezT0rg6vR
496XDHiQy8HsHmOlpPavfboF7FGgYJQZqrKfeqsoQHmz+dGTQ+1EC+sWnmqIHiwqGOWBHo9DXIsy
nSKVQmVA34iNf/mCOMeUFIjslHhMfuS6kS08B7zoWwoNLrzd0WEgVwsjy1qK84Ck/BfC8nYq9eOU
MvGQvNIzinz71GbUM79wlIdGOtkJszEKsR/hEWC2F339ASr//5+Qp5c4bRPBlgopO61i6ru+t3XK
YXb1pSColJ5eWLwqwgL+xJqNMuDULtXnREaaNx9pQm0D8HihoJXYwKfVN/QHqW5V1DCGCnmkHiBA
wIp+DY5kePLolhMmNJDLhl+BmT8VaWRmMwQBFQUlVDrBpQiWbpABx3xIKDMg323XW7mETqSrdipG
apggRa3y7ra85AHQgLyi/NvVT6TjJBlUhPpQcO+VkUXSC6F8hiHnpIhQKTJ26KSaaICSdR6rochg
RSk/PxvD12im8tj0fb/zT20G2Fah+omaNG6ayEVO00uLw2BdSeFyOiI+67MvIjzu0yLEgrBBSnJ6
CGAoN/7vwoPzxIjeDoKwdsFUCiKAjFMffXf8On6unogQud23p8iZyvdi5fzPgaWasp6lcVy6+EDN
cipbCcAHFWy9v+mCF7kaYiUjj5X1DXRFnNfSvWazczEmCv8gk6LPFgr/+kM9fxoJw/JFAzH533rC
YuOb5f6X5X0EPTdJ/xJNgQq33F2u5288g/LqiR3U+KvcKww9O/bzUei9xJPbdHGz1QXyDl6x45UD
mtF7Tx1BncNanvMkj28TyOHSdnZznRjHnZ+C4mIpR8oElrZ/kNBtjfX6uB40NK+xWzK5lSd4enja
8QVrKkQmfpbsFaYVxU6JJ1K8RdsRzIEfLKPKQgPlLCEtEvqe71Ob4VhcaldeizHxPHT7emlb+UpF
csLtBsu23jf6GMkltI7CHWGCMt5v4bGnt8V5W6pvfRo7Uzc45O1RUcLYETkJVTNOA0f0oZIwzzG6
oLrdF4u4A1nd4em8yz8erQHt+JWRZjuNOCvU0FrexgI4ye9hvYdGRtnqWECUEmC+9bAaTNhpz0RK
zpppgXZQNf3PhPRjcdV18C9kHr8xvK9TLmLqmzoUq2BtslvJtUzxPlLiBDbVkHiDBa2quq3uN/bX
6e3RU/OZflLx63FMA8Ly/mYcaApdDre/wj9U8rVky1xnqoAVYd63pwAeg1e5VN6dEkbGvA4Ilze1
1zlXwqjPrXFFTkchsMoYk/U+SvgqSEoQC4oWTr/wN1mbu3UoI+EpZtK45pXOQkMdS8ExqiIpITIZ
iWodd2/MAiAyhkayopiCWPEy1jj9uknlRRi1jQy/oBHpDRrekYmRMAVMwQtF4btRnv7BXW8INNE9
ln1hYwDJ+kKEUwG6OENJ3jOcSqroUquo6FuiX5HMg1XEUOcPyXt9XX85Au8i5Q1JdVw8BAeore7m
5q9ggtwf7Z6KmvE+6PnMPrfyMAiO+TO+z2jp/nbSm3mtLAoKAELcFXJ/NtXUwl7iE9HIDxpvgD9d
iFXaqQa7V/Q7ECPsqMALzfqmi1uJpCYIbOhaiunf4GY8el7eljC2CSvEi8LuKsPoYe6e2XbSFBas
2kiaw4o8G9YcUxyBJGkJSE7IngOTRDpXTKOEZ05btmg9iQMpQgkQRLUIKBiOnuHlWUpmE7xu6I4z
Tf3TxMAjGbO0sC8J+dxBzeVRDi9hxH2hVV5tNkErq1+87+BnhVHm2MmD/pymKNxi5cNX/FexiLLK
wjt58y2HmhcPuYib1+7czTXV7eP1aQkHrg2+mFmaxYy9X76du1DjC31Bi2TZCG2ilC0caCfcdg3e
JKg+aPtxCoijjNB7W61o0d3plpwnJQZsptKlLmtXP96GKCD8a32/WlVIrMFWp5SUbf6ggWqEusTW
MdxTbBcw8kDDIubMZjymOABdYFosaWfhmRap7HBodohX95I9pw8B8vmWll9icw2fd2hU9gkjzWuF
xVvkRuWsIuT7c/x8Hki3zaaDfTarVw1DinqLnn1f6IZfqNaqHhpA31oi3cfITJwleHS5wYNovj5f
erHd2jyxLdvB/4vkoy3InDw3n7x4w9YC0kweEyaHjbK8Q/1TTPEQf4Di+o3TMmLMScbxJMAF5gqK
gDbUR/AdJrLjTzOO1kpeXPhUlqaUvQBXne1F/N+oQj9KARG2LKii38ZRzl4wzFeJLbaHrlnRM8jR
lf00OwX/GvQJS7+aBoTdy8pbf3WMTRgyW1onApjm2JwZEmVLNB58CHtvj9HrOEx2hf8deEa/c9r/
ghS7Tva9ypnBZS1TKkCBamOysNwjLAtSFPedJqNIsXjDvdYX4T25ZMJWwfcKH6i22Sj7CFPhgUQg
BNOGvXttR1wGbCMmdh6Krdq2e+VcQijvArkt2tRTLx4GCp95T+oZ/CZo8dNj66cKNdMjL+exAcLC
zzlKsqpAVebefwCul3JVG1YLB3Ntpw1+i6hCc4ggsMR83MlP2T/B0A9Tk/o3h+CRDU3un2mAYKcw
ZbiCcpnoEuPWUbxdxN31az5xSewxsNkFPMqCcFW5uZHvFuRV55mMDeEJTxpDqIXiPHdSTUm+P2BL
bDcozga1rhoiqEsjCWIfptUBuVwdg9Xgb9dNx2s7YWVLgisJk2nEHQONBxyEStBJNhRh8YFVOYyw
/N+Wx9v/pyZFQyK3BMx4aJk8PqYECZKS3kDT8gxo96HGZu9Qv3a2iKakWdfVLuTyV3Ug4kaQBR81
zXIAUQo3uLHfwwITDjVJ363ZZ6xAre3Q51Ryndeqnp/9kZKtv9koF3gyLPSsUUrfXJVQNwMCgQu5
TtvT8EFBZ1I+LE5Ehlm4U50fxkDhCGFLLdr3EWvehcxjTkbJLqZIj2ZWuLVMB78bmQSUHmtFSAwu
sdNfj2l9NrUl+J0QAonF/qKVBV6u07e/w3Sibj6ruM5k37QA4BC5Dpjnksuys7BLBvFLM45YR1XX
JxQn6NMD08yFMz22Sp1VUDwnCjchS7wobrHTPMonTBGWEMEV/hbK573hquFoRFyTGVGBoeSgSfN+
DDcXIm2qoicZWezBQcsr2J9H6Y7qyGhDAvp6PDW6BQqD28yj/0mgo8cnxlQ5btPzvSqhzm2D6o8B
tVRLHbJAANknQ+8RSWH2POMFT10aqftNbe1zm2V40ooBxbN+kxKc640IYEiScSAEhPULLRXAHspd
QpkT0BZkB47K01kPf5a5d1N6Yr1E/xORHAb64nn4NHkEyuTusno6hHlqQDKfq5CDFNJmr1qAmkE5
Bxkjft9wL/JigRN01Psr/pX/3RNdaycs3lTKbSXofOmL7TzHNY1wmHzLNBVULt7ewmvFWo3lxBUV
55eWilrReGlk8hBO/tBGI4fedqQ8AXg0jjIMi0DmQUFBfdugV7qntf5lwPW7D216aMex0KRwEMup
GOqdTkW70Pv2HSJYc6eN45q5pS8TP1szMna+KP0nKezHHJorWa+j97qcHIGlQzUdD3oi7VG9AjsP
0vLZb84N65CPn4DvdILC3EHuttTZaNWzl+FMBjln1WEyFhWTvOwEDlHnhJlC35m48d+7GZzudu1e
opdUPGDRm29j17/tVysn46sFExzvyo5XTsgNHmoRZNwimAmXn43T3qTLOfsiOvdzCHr3dhV/N8RP
X7Llah7gW1ciRZ7Ljwsd6T6H24B2bEzV2qH1KIV/WdqPGK07rM0joYzB4hXrpOkZnKxEYRlFoIR/
ARCCOlX59he853aq39Oc5SAAXSHsohw7Ktq6CAJnFYqN2uA7y4TOZTCQi0KJj23sEZZ90bjglR2d
lXoBiaH7KeNUNra5aN+ICVa7lrb7IieqV3pmBi53xcHPM+NqX7c3KmEKv+8wNiqK4mI8Oggwo5xU
sJGa8aBXYEmcKw2qCbllHLMz1bZTBwVFtPgwZH5EHxphmvRk7p/BwNPzgFv1AgjyGyzX2WcLvnAl
CbINUV6Y9s1n4FoWyZKBVHsRt4MgTVoddmylXo6uS5oPI982oM+ifIKwZMQFQ+9ijUekSxnoKE8V
/MHE+OahSVRf0zM4rJmk8qdA/GsLDz8UUkKjRlxQKhh2HTEL/q+rDfX1Z0mnTb7PFywwT0zfnOLk
Jg5neZ5eBPh3zmFAjj19G41T5QHHfSlVxkhqHIufpcYnwlq0NO6fM6u6GK7d6NDaIHszskOujnuX
n7xRgZmA5aVZzgBwYM43y2jLZG2u9xds8RW69UrI0IpJ+w+prRebwwfN0OVvk2yKgxe1r6dWpN+q
6Vnm0L9nrH/pgP7J/78rRhPPkd87pYukJt+UH0n5+c5akxNNqcXjvw4VwIzoFfJHi2eahO8b+OYv
DzWsFy0G+zGTgPB2PjntUrFehdC9WmiUIqYGm/je5lxXXJCLRzMGSzsYsKG5ruUPewa8+BSotrbl
diyZV0jdoI7pnpbix6VKEklLOfvC2TogcQd7tPRK9kiIX6nfQvfFpRFi8pPzlVkzpM90Ne7WnMtG
i2p/IhF0beNsBKJOR8lxv7UkUNMvwjLIoC6JlpZzyMBjC9vu4O9twOaS9t0qsIO0PWuTaygICJWF
EJI3EUzVVXmkGsNtbUB9RPv43UHex05WvNiEIcQJ6Zi9g8jxtbMxCOKV1F4Y4qUIDH1C7LG8yVy8
/PB5oUEPolkbFoZVcKbUP9YggmeGXFKnoWn7fA93wb49K64t2UStaBleGNFdwKaI3O7YX2JwrZdu
V/6WJ46bEcfQ48DrVquvAsDu/Qte18hwq6AI8Q8wwBtc3yDMTgQ/F4o3hsKx2fKtwF45KS0N7gxk
3MDhygVlnV/n5EG0T4y2PuTcxiNRnYXNWHC7g4mEMK8J0i5HIfMKVGinj7FxfjeWeJnuwOLIbvWp
4or3GyP6gBIpQb+PHzc9B9Cskxt3toHQeQh3H/KAvEL/uTp4+N941dAU63HPmFAzGDJIHwUKKyEL
7Efc7jxL2AMJ+54irCxUXixt/Mf4EFUFeRX9Usfe3c3/0mu9d/Sn3kMEunIogqBdUTdAnDDO/DoZ
uNww22SXb9UlAdEgJAvek4cVX13GAHFrVKU6yPtUJTux8qTCvKgxRNBuM/h3KbVdm4P2ljhPVvon
YCUBNGXdjQD6LKha3CusIet0Ekwlu8ZLnCdgHEAqfT/z+WvzHKFvDo1qb1QA15XFo9EXcFE+lQuF
QTSvtb4Wo1lAb22E5sO7I2FZWmdqR6v7skvCnzT8btNQmbZitkIcFm4l4aqVuhB/QhsWLD0jvEt7
t7X6UzkRHs1NWtO4zSaDu5aFt0QR352AaUDzKBzSB1qdQfLp5JcXN4vwcwrJPNi13hgVQMAoOU8S
osgsTvP1b8QTzoO8ixR6xU02RPM4PZLO7gGrx0ykMrY34fnm5Ff+KKmLUdWStLwy11nandXepuxo
fP9bLHjW9QdAW0yrmYip/G3rkD9i/OzjWkhr9e8/dwIiuNGt9QfCBIQwc5HMNcH1vTsf8takLld/
/oFkvWHfxqw5xkiUJ5/8J1AcbZP9MBjjZ6XDztz/COro05yjbNenJGeBi0krvbvE1s+G3EvsCN4G
BLmmnuzGsEDJw37L1/a78qTMif+zUkfqHsZjLnI7Bvwo9EgiackDcpeU6KOh4vp6ygA6VbFKd2EN
YdREefq7BBZYKvbU2a5dQmuwjXrPLqPgLAZQ4gmLayoj8XDSOf1Ksvb7Sok26ptqyj++iwt6RwBj
/YsmDf+bEzFYAO+8e0hqrpOqylfeMN+JdSPLS+tFbBCQq0wtPPxilOzIbhaFwMMb9ZfIoxcY7qvG
YWC85mF8KXrRZKOFdR+ejw2jPdP9zNKXjlVFnIA2nw5T1F4ARmArbk+rSvujjZc15jsE56be0its
U5EsLpR/iUdQH+lmpm+51z8SSJVviYAmSsPiYm8hJoohgZH3b61qPgoIVBu0TmdQmb47Mv1uHbZJ
u2XVnCiK5y9gMkc8sRAIizunal/2jYYBDDL8E6r3KA/q+eIJyCD5kmGFKDb/vBfZeLPEtNaFTvVa
sX4hj58ndGYKTfHEetLwLu0hjRt4wFG6+S2jsS0Rf6ApIhDr5nHT+pqzaJhORoaix4HJtvjzgzhL
eDwBOqAfyRiJvTSwxTik/fGnX1YRyUeDOhIv5IXw1ZScGEvdIWb0RpKbl6uCFefIBSPbSEW1hMRj
wkSm0C4jCBJ2jogVxAf13pGUeV5t/IYtETyynHRtssHUuDgjpD3Fc1G8/KNUbYD07X++Lav4iH5V
LrCR9Gxrl+tHfKc1s3/RyQ08Nfjh5zTEClHS2my7PDpf38e6QwQDwq5l3OCZxWjztI9pAZqzEUcs
0uMiADDOxBBtFr6MRvfY9xJoIyb2xINI8RtWDdpx5U3rBTHjRUFlK8xiGaipFnom0XBfmNPfFREZ
U3ZrHWwGea0c55S5/134dNhlQT8SRnklMpKel0kCEMx/v3QC2V4fkL030oeLqUc5cfE43Uz3XD/X
JX3dZwidB7LN4eEgAOTHn/WsW288rXkBJAApGZr9QNzj2z3EijzlfSuvrhTY3IudYSvPbolq7uZq
ZUgddFnu0Z1DdRneCmTRIXpl/TOszFel9I1qcT9WUID86yCqXmAstwTP67djxrBQxL88iABniItY
GUYDdyEVO1Eth4G6oI0r/uJYzxj2ekEr1y90bnB3eETYaMU8LbyxUqZ5p79HeWmG9UO18848HO+Z
oHe+dF96apaQoiOnw4HNNLjrg87Fy6RqRjKXbIwQsYOUwOYUtIh7R4RtGs3sc+8o7pprFqwY2I0W
BYu9VLn9f5ZiaXgz7kJVmKNtdESAP7ZK9A+qlfGKEGF/A60GoQhHWSxlpJNidkdYHWf7dHm4KE0x
5PmNdSKB1GKNi0bH0r+Cng0RbkBP400tkZURLLxhI/40kBEoW88tTMC3WEkoNYz0j7FQBMZaOEix
UI2peq4kFnNKSgYkJl8NScOxX5ZHWrH4/aDws6zHczxNceoQJ9uL+CUifQoJKecew6Im8OTW7rPj
L33KCsouDuAc2ou89ekHahblEWAjIhYGuV2TqEmeCFHYtXxpta2Q5ZgYm/MTbrY4ndNgixT6tcZK
aPDHjUKMhjKJYfFBx1nmtKNgj28dcZ1xzdyPXRmyu4f5PS7hfhCdIDapZKcpOH3krS1eaoBqrPaH
EzJ/5xGhx0IsNtdLvOmNVY1odHOYrYMXQatws+xecoBD3NyghMEle1xc7gYe9F8TaYR2bFNz6kqQ
arN/bNuCtIdrKEIOguFIJev1/XTr/wixnLH+r1MwZZ+RQ1XW/GPqeSVduXo7BGEYUo7hCBIDJ+Aj
aOL3eNQYaqEmuWqZoTcPn6+u7S6Cp3gaj5YGdmpwxFptcy6kS31scDvOwFlKnBVKAZdkqS0ObGMH
RTgZcvyRS6O/WPgiQKas1+Qvw59gEDkwexG5XCs/wV88C9QyUqGZm+UZ7h6RsecO5xl2an5udfwx
BSA0NB+OKsP2RbG40oHvSDsNsDxpTKdPx8LM4NGwOo7shB1z3+57ObX4wSnIvInCsD2L4vsfh1K+
fzRYUBPNgKV/XWIk+MKk0TaldbyLyVzCXafyvUdjGsmgLtoRaXnzT3XDWpDmvClprJdgf558QuAy
+rcPrwMrZh6inr74HJ7rIUKZuIxdCnLynyloHSsFvZfOMq5/uyYcn818/gaNlLqITW2ayENgTcom
v5GJL3yBtVxAJhhH9eGFiiqBn05RLFGuqj120cvNK/KyRIic0q0o8cWKFBe6JrJ2AsP7/YvEJslm
ykdsSbaYUKi5ujcp5jO37sLWCs2BZtR26cPz5aubb8Lz1mv/9rNfPpl6kVKMdhWyxCWBFAl40IFJ
mdWYmfWh7L+cZVzjy09iS6h98uDJy+8YsslU0Sii21PnT86Aa2+LnEQRtYyawO3fayrFffV2h5uV
KKL1SxpaNthRLFRwAVjAkm+FMvFaSzlt12db1pommbcR64mNzAwwfI0Od366USZf1ndSzhbpTlXM
bQWRITeSNEjlx46KGGWB94EpbcnPXKsHMujKiSPLONY00dWArnoyJMgZ4POq94JOxC77PcAdu674
gYKo+/5A7n1tnSDB4+aJMLxQx5InYlPAeZYC9v5DWnfitYOiDi5QaS7WR/T3GAjhaU2GBDOPErlv
IV3hz6ZqnkA372K7R69ZFBpf38CCczvMsqg0FEhBYj8L55NsWa0trB+D6/Qn4TjKHM+cGYpHWHmD
6vJAGuh5Wl+hUeCL93HYXX1dOI+2a+YbbMFvNmtVObkr/fLW5oWkZXNYxiSpfXJMvy//ECx6Id6+
035AH0WDQf/Co2zFHWwMAp/1CkVGYaoy7HF1RsxQyA07fOuZLjCBwT+6r7vcF8aBrL/RZYpRt01Z
CDvIi2j7qf5km08E4bvfkIWdQUCW1ZcIPDlL7U8ky58aOp8NIofpjM43CwGhKwPtJtUjFHwWov3/
eevef1J0mrXAzG9XuLRChuDw9to1k2eWYUHWO2Yrl+ESrCqPAuGaCIhDrhIxbB3Np3EDd/3MQzSg
bnzH1cg5LP29hRm45+nQmtOZ5q4OpzpROCIZaueW4T6FHAlMJvz++e36vTSS8fxz2OAGtqKfFovx
x2Zpxxxubuoj/v+zE3KruZV7FIvc6DCT3EH4+GD/b7Ytq4A5VG5DixoxUc3Mq8CJFh15J7jWeCbO
jc3r3l1IjNUOjMenHyaY4gXEzr6a+xZzvJbpaojHC/tVpGTIBAmx4nkSsoMNoR/qv6B1uehkt0H5
GceF++3TDUpO6VsWhWzNSFNeCVXQIURbUD8SUFdNW+CJNjpSCfzfNooVSFgwZRDt9GydSHa6u7zt
SjK/Gc44EQ/Av4LxvHptvu1FurKi8Ld0sHJXcNvIi3SwSkdjX04OCFlZezws+0yNdnl0z7o90oKC
gOiwk/60T+jtIh0gzwiu7BeAL/+gvz3Aj0G8Y78mCUEuOQ075A57QMZ/o2TeNgEIqNh2ovEAALua
DG1qMMAhjtgVlIgfG5XYcvUfzGUBJTFb1fX8y77IeA3h0XPvV5dh2QzQ51T290kA+JcCgmqghaIq
iPhVGAz+01HqQ4EAF+3KbIPR1zzjtvlsV9O0txPhBkaNmsxxZQ5+oMhdjC67U/QQsx81yOQZkfvk
ASu0Ul6C2eiD+GaNLNc/ntyUgpV1W6KAareX2kxvBnC+HioFNrrgieO9K2MdspeM9i8ZWaHHFdx0
EuxuNrRTYnhal07PWa90cHlYxDrxOMExVT4HBRKxZN0gqLyUDTnUZI9U3uZbdndOLI3xU4J1ppbx
F5TqDJVTn7Gu/Efm2UTYZRZsJzGHYLrlg0W2lX80iZcgwYiqR7Pz4glUQ/kB1awqUYNGhca5QSug
omJiTF3GDQFJ6CoVIbZVCho7OREj0Cyq5lxgdzmvnyJAXCiU7Y0/naAz/MHbTpqJ/RgmVWmlwbdE
+KhrRSYS4xaIvRJpRmZnsLdG+zpNJOvXcHGu/9UA1bIV65Ui5af/ZRIQc+oNFTgR6dQRlsglA6/j
MyX1jtNXhyNFcXG3H29hNBe0JOi0bRHyzpsrlmOhzQKJVEnAO1cuUHG8Jt4XBPm0eQF/lyb4O8TJ
inXQCN/uerEYJ6T7KiHjXsPz8mJfeHuw4Vs37NbIMIxTCCP+gAOsJZvg0mFbsq+R0CZJwxcqpEF9
C7KcR7mvETL44Et9duyiEyLvhdShV+C67lfJ6kStlTSVeaXIM/YBI1mChT17FgwaSYMS3QuaNOUG
0d6VeQ88yBs1v3wSclum0j25OmytK94YQR9vZfIHCaYMrbXXwr4AjB0R0Wf+nJTgd6ouOa+Q2gOl
9/Ig5+li7twa/aietTZayjbxVur6dpmhklj1ARMYaBtz1gdQGSGX9a94C5yKruK1DaLcXp7EZhaU
5DzSTZjHrgVFAxALbdmbWEEP+ovg1C6Jlo2NjH5DWW45L6FCHsKwfraqvwSp8MBuJL6PpaHuDq20
8O+Rll8wMIS74p+kd0QMFjl7Aijpa1/ikkbCQC/ngafF8XJqs7+ooXxFBdMOH1i74/qAuguotZJp
G7kHtmurecj0H40tskKJwb0muZlTJmofY/t+OYPnOQP5Ra/DbBPXk0wV+KOy/Iu8Gtk4iVsPqDOe
6PRlQ8WSXxNFdGcqL922k8l7G+LwN1ewO8CxGZ1NQmc5raxfUSrrayhdUuit7NFpfHYfk7gbwyMp
Pi4Xrg+HLoaL0oK7tPajr02R1W5dJeA6LxozDxyvcL7jUZUwd5LiW+SAsSWzLi1+Cwm/IeBcyU0h
8PuGCxaBYq81I3VGy5XBF6EVVRv2cXag4+/LHQExPnWy7xm1PVGlUkzTYyxcTjk77sMcystbjqTl
PtlRuJEPg1BSpLDuPdQ47o+2aQX/I583OnCxoDaOmI/63VJS0iklh7Tkn3s0/mmZATijJmGZh4BL
H+LzOwVvkq8qIUH4tXqkQletqSysboj6wcfjE3jbzJRcCIGF3nYJ53SnSkjSaM1LHOZfLZQ3r8Q9
TJNpoba4MIpC0JQhcMf2SKsb2iTfb6Nm2lZUaS5N30XFYw8lWectepJ7yy14cP+BoLeORYfMJ+rD
b2NNhERzWrEO94q03OlpELV45hfGHEhHwNG3kSW8WT+QIrPnzktIRY1Y5BGXC2HLGJyOZR6QpCBE
ORzuAMjVd9G6FkBeFBfP07vPP3yNStKBUAaXWZaGdA8ZDc/VyCFYJq4l0vCPomHadOFyZucpWrMy
7a/9EVeS52Ty5s+NgXsklHkTsBNjXfS/kjnUt5abiu1+EwhG90omPvMrSfS/5dXiYNEaJkiGmSqm
ZZrDyQkQISA3QFjEdEBQ7JjTpJkT+oT0kBFW44qnVtzyjqcw809baFelSk3Gw5TJcTksKbVRPELY
lUd0m6LwetMIT56l/zHbXTUFT/al/VREww2knekbLRHhD7hs/d4znC+D3aSYEz546PHz/J1HYB2J
A1DT4QSXKe6MQHI3FMZ28rs8q9rPIEmbvz/tnVwD7py+PmupsQLJWkyPQBZg+LJBXMcNHBsfby3o
/gexS7+um5xCfAY0yyOzn05NHE7ITgyrCFxV+cNHW9G4Up7gzAcV4hNyccGKUcjXtC7BO+8QQqo9
SJiMEnUtMljeNzRCtyBuE3BbhdUCYhnBZpWGAiFNDH0FH3pkNW0jcgdRecL9L8/OIWhRnd9T4dLn
J6RC/15YkK9CRWKbxk4ToeZNt9QlYoU2sWzT+mSQeb709tby7qZMP+4JYOBdaXJ3/b+lMFDVcLiw
tK2yGc+ti4n+gTDsEyOjLjJGRTV0IVFpxzKcSi3FIJS6VdehZCAotqz6rBHFO+aJA8euYgzCMD/3
xd2EiCtbx+LviHOCGDAe3UVzkDY8Roi2OuFZNuK5dEMWVKpuUULvv/SwWHrhzbbPlmON8WRqCktQ
2FcJBkM5o3U3cSu9GPy842+GeJRRi68wg0JsNsTNRPcd6kdIELgxOisNlebs54pLkBi68IkdGMPr
FUYTVohkGsBLbsv5NDOrUc+QFNBvq9iOMeTs3yFwWGbSYcoOei6OGedCP63iqf3MY9l6sdVRu94L
+JO7aukUUFvqS5rdDx726DA9YP3UOa2nx+Ihu2zlmuGo//awmNlhATQHuef6J92SFC3Kc3A7fCsa
3hugml6ecqmWs5f+9RE01gyZ+lNorgM8J3802OgOw2aAkLrtpT4BM7cvLnmpffCPophxgIoJblPC
KD5tAQdEoszBUsXc9bROdR7rmfI2sVwKDfARzA9pg3NmxDFDWKX6vrl4MN0nWZb8xN1OlF5KocrW
9UagIL9+Qt1UyaX8N+mcud4lJsuIRjJV/KvCZh9l8561JxKiCu6preV/wUF3fLuP7DWuBSSDsazR
9N3fllb931y9MqxVxH2p8rCqlxX+GatzSO7at2KERZCCQ4u5uhkEf2ImoYeaX71x7ohqjdYefF/u
JlPdqsJdGH5aqj8OxJE0FEGaXdlkQSxoPSiHZyJF/bgiSarcvbyCfyUBAyRw+LMMTt84oMHglJ/L
7jAXltqlSf14iH+r6rBiWaYgBaft7JDHPTwyzOYURI9uc/2ex1knZwDTrmhA1HEHusn/xDi8woED
3eMZ3rCxOXO6TdwS9QPWNb193g9v4m3FuwB9Cojb6oj31CVGff4JFW/6BoYaWZvM8jsRTo77ILPn
RTR4DkmFMYFK4sHbDIQxlv9dbnp4pgX3lleOy/SR8LstYK6nkz6TRyZ9F0S06fjzKqra5FCbthay
oiXsehLGgJuS9Kn5kVhMFRqdfPNXLPqjIpVbubcPEFBs5O07nN96bnrQjo0+rBm/4Pvdo4C8AVCN
jRKYYmmeE45UUhN0E3+pAMUO+Indoq/eOuOvNdtZ87YLh7cD3Y86BIE1kcpRETG8N3WTvgTOKnTw
FGWPukbQIdQmu98tvaw/MgQqDigFaZhzpUSnh4RIL/9/2YqAWwFhTQTPeWvt0IubSSLXYVqI1/5N
ntICRoyryffeUHeVeGJDjUPW9xkNhQ6/Ly7ObqYKRWe/ZT/EsxnoWTz58OMDMkjdtjTDuiedTK2E
wdnZf1AGrohlDuRTz1/gOoo/PnW0rC1EpCShKLLy8vGOk4OFnljkOE0NahM+8kH8dfZCivz1qQR3
IX9I4zkWGToYVja5EEt97LhTSPaQjJNWp35OO9dAsfr3IOS5wH0LlbCYFNiS79p2qzlN67NGPzPs
9dUQ5eAsn0YW3hc9r5YudyeKaaUkk520Q1XTtk+EqemJJ3qbBbuY0eSnFOP+Kh48YD6UoS0eH99n
In14GlcXBor6jEP1o+488uyEZ2CrGxihyKsJykEOTh5podH2zJnkL8IIfkG1ey0lsZOetMEgx0MS
YYiE+k2CgYzFxxYwXVmwVKQuxIsKodmX7ZzBSjLQ4cItiNpWegHMUSuD+JjuvN9oM0Tj6QaUx5hB
KztuOdkkxsNSD4l54Vr4U1fe1a4bWpeV1GbasERvwQb+XMNrOiepf4gJSqcfiZQKZy96qnSJaKfd
waoo84moAZivqXN9p2S/sRTnmMqdDYAWMaH8ZlobO/ont2G0gVf5N215H9eAbQEP00w7Xycwvemu
VFXLXG3TtjdrV99ypzbbvSEcBBdTXVWOaNsx6BkYcSTdJ+s4dfJ/96CEtAWU03okdfa+WBHkvp8Y
LgT/iCrO2OinxvSkAWsYG599KlTGAePOWTsnHG3wpc5EI6aU9CmYoC/UQ/mzzpQx2EpQ7oVYxqsl
aR8fdqdtNkg1HMxXpGucJP1D1KjRHn+G22PK2EYAbx8AvB+KvNjrvD1UFBcBJvILOOlmPM0dTJmp
nhPAMii1PA50fBpxtWVu5Htf5HNKvACMoD5SYHAmEM10EmN4KlLqERoXwL6ZNjyq20NOR0Xpxf2W
m9Pvml0+t5bx6wqsA9bIr4/vfQYBd9QyYNS196Scykb+ohG/E/sNpoIXhO7qmNVRQ8mBiiZVWQLB
M7dpOsD/2Cb9ZiNCCQ6wetjaBEX49voopqvPgZyTWortBZHzyLE51gNY9nq/2tn8pm7lCQo9EHbV
2UNEv1txNKK6Ri0tbhIIVU99vOp6X9nzQsGpH0PyPRgOlnCKH2CxcXk8NeV3sGO+qojthC54Fg4K
U6eTHZumq+ppwWrPkjt1EGdf0+iwSgaMwmwwydfL9zH7YluVGC32s2G90+SCFkCmRIkx1UjnWurF
A+U6h7q7tsju44p1jC4z4F7yBfeK0PO2RNnxhYSGwqb8Gl/cWZgWtKR2bkPrkjBqmsfItU0tvwTq
rEQ+iQUnM9RhH8GxBs+s9H5oNlnu6FQWme/9KvhK3WyVmL0On6b4HnBvZqeRW3g3W3c/18yC3MiY
py19mPrM62EEPd+w6NYq+EJ2z9dv0uJvq+sE/fXj7P2Xaxe04NDz3D8d5Z0VnTrSwrczZxCFfQ1E
c8MtmLdYXsblB/brmnnvzbAJu7z/SwmD2eiy/iv5e2uiHeDlzWTdUu90O4tCgEzcUtgNCq0IKmH6
ZK4xuqY47My7jvHC5ClW0X7usDA523RuPRRST72X2mKNr7LF2KC4e0p3PqCA13K2bz6YoXaSruIa
qGAU03h2tG7vo0/RjiRmKpiRG9TDlQckd+7dl89NezZCNPe3VTCfEaoaPWjcw+31/ejdKmVRdeou
3OkSCI7SgeQqQ8dHzPmvUrQ4/RR8L44IVgw6Xx8yg0U/LO6U9KHJvLnbeL3AgjjbuzjtCEZRzvNZ
8TRisA1HTh5SQJPgNE1VoKxyUbyyPPj0KpCQxUio9+BwK3HgE9hxgxSzOUgNKBP90gvjW4nTs0Bd
lcHw4hsSOq8/fghgZAXZWqvvIeqPfb0wFqqtb6Syc7dnTtrrUuNDNRjafd4Qj5oKGLvQxgDGWz9M
8AkKPOZnBsj6FW15y6YSxgm0xg1lRdScL1Bj/bz13FEln6AbKnOwnKBpTsK3q1r8G5z0dmrfgTNh
Lis639cvfI9ZzSNndl1MHGypMJk2eLMSs8OC9YwKikzNy4SG1IocfwKsB1wfgCoIuEva0r9NmGgv
CaXVMbcowIm6T2BJxqOeFO99ICpw+C+v9QVOliWVnuTmvBY/idejA3a+QWcsg9YoNdQa+NAi5vPq
XMC7fjXgfJkNS5NmjH4eOX3CtMFLPR3PTjp9yQayjK8riwceI0DWFFF2mJrcMilbqVWKmOzfsrCb
/aP/ZrsifmzbvLig7PuVAh0c8LyIvG64cVaUvUhBV9TEOr4WiTdj+l6/oNYbx9rhmPXE1x3vg7kH
LP47wbvcHKP0RY6tfLDKgKVXldRWU3f4VCDOxebvjLXhOnpi+bmXkxB2WL79PVS4EvUhUHH+STIL
80yUt65auwp/WYs8d31rNd8z60HTes/qwas0kz+M9JJNh8NAlbufKPz8rauKzA1qQRL0p0P+gaUE
wfbwausT62ltU7kGVp1+c1AmO0lM9NbzMgoVmIyzevtGqkbYJ66P7ZmchXo3+OfYdpsFNqsB9K38
7+7k5y93X73MlIHmLvumsLL/ALyVX+kmJlw9+DQV97CdiM4DBzWjnlCcd42Xt9okMMU9rB4sMooy
TWAEWcH3gRguycmfFlw3W3LDn+P/bVjR/pIRODbt2MsVW5xMFmrF/evItM0On/jwcjE3qwyKjnt4
w12ZwYQXj1Kd6pamdQGSqnqkOnijQfs+RdhSLLXampgtYAloOFEXnmEu7ecVQOWNdmaLKAPXSRcA
6fR8rP1BhBXz2R5mluQfkwwk5hWJMUWoxn8LDKgigSt3k8g+h7+47qQbaLCtmwGWM48iPpuy8Zlg
H+N7KbLuT4Q1r5BOU3AuI584WccLKICtWjlfYPXJ+DkUJuwKpBjWOdzaPZ4uvZbh5wybQ/x866T8
DHT78etecwK7ROg+yjGtIPADQVOOMSAgVVadgoGCNsKrPOBkuoUQzYKenUzxkDnXHkdO7GPwmgad
oVWAwbjgTp6n1zhKlai3MkvhYyD1eS9bKxYNX8PEPGE+U22MoVrZcroPNgBwUBz6RgruusRs0LdN
UivNjr7nPt6iLv95nLGWjR1fDiOgiRX3WnIn1hDwm1PcmarLgmc7soWuQ7sHeFaW7XZgpP6nh+Uq
gL68+L0QBIUjjJspQuWJBXw2Q6ysVb1XB4dpqlsx+LfsVO40q2hW/eLHmil/jDkGRJvwhEEnsoie
e1wOugjDg4GfMZzxTMikwAwqp4oHEhtKjw9821MTXhIzwgVTz7Qcc9lp7PhGuuHkP0N56AQqfJSa
+bIVUddfxWyiAZhpmB2sqpTcnzaQZGaoD2knCSzyZ4hK9zWAtpkcckjzOVqZIXDLJ4Pf0T09AmFr
RJIem4+5dyYq4/SQJSVkKyIJKUFjB3n+ATva68A8vtaelqB77wi3PYLMYCgFi/2+WGB8/4HoJuDl
qqzYW5HTIiB+dLQ5YaqCZhCxUkuq3OfT0DkqeoEKihk+KKqaIMMQXbmAqiztmsaeI89SlkTQjH5z
Uba41WSTcHeC9F6ssHjAa7EcIhvno195tPcAD+AIcXulboyYxF8RmtZCxABVPaHTlRn7jhjBiYUw
NQ2JkAmpuw1vgjfZpH8/i/orV0J27OUpckB33OdKJPOaDvHp9plxkrZ/Aaw5UWIdwr1hpB3b6443
XKKBFTRVIiYY6c+ZiaUeTHP1ZBQ+r174vfKG9WZzOHmWXecEQs90DxfjVrE4SyfBC9aF/yN3Giax
eI620G0z/ldtWQxIh80AXVDJmmZMn/5Lu4JxH4bNEok3FSpY7vaVIavXUCoOaODSbPAT4+gTA3td
a394aCIHkqpbSvWKIzIzk75aE/gR3s2pHBJfZuNSgwsIAOkK49SbRz1+WvtsEhDKSWzZytFB23iS
pEBVPXpq87HGB0ttt+2fydcEHQh13lTxwBBf+vtYhRqrPvCsiOFLuGzSXkb794l1cwOgFsliFUN8
+IxKgq6rqVZMaWNewsOvHeqAlsXSkWn5/eXQqeL8i3aeNRk0tgxHPj3VRAspydqFELsU4JIKfg70
UFXGFUF7rKaJSvAwtZ67Yh2a0OcWO9Z88CSAp52O3kuTLMpu+9S+ECWBFPGg3Lb8kg42GgeekC1P
yKFOziDt8f3WgKXTeGK73E0SaY2BKUSWT8hcpfdVkSCpkmmWeJ3/bsY8xyTj+643DhJZCHzTGncQ
qTXzTj5LIRSAq/MHWUdF60m5ZFQUk6L8ttvUi+G/FGsXZakK7ArNjqkWRyC13n84lOJJaV/ueNhy
C2lFC2V4ZupWekBi9eqXNfOEQ/ix2M5Qmn2CTML1CT7hiHpJBpkGaiy/0XHGDjfT4/FQQ/uNwDOd
azjX0iLA+NvrCdZd61tQSwbQH75OJaBdsF/LKPqIMb1ESaA6VitTmFq5mwTQ4FWw11Mt9jhvMMwO
b+vf/vvfJ6ON8wpiWC+LZv4i9MOiPf4rtkAF/fz/L5Evw5cIwqpMuDxSMMgLpdXM5V0SLKLHmo4w
NpUl3f7PAMtMbYAHo7gYKXkIJ6kE4z2heMtPWhfR2SYSlAVmf1czvrQSnRTLOZBq7E4n/23J4QzF
8sDaD1pk5ZK1qyLl21TQc2XEts4l8kTL60dVtKXZSP13YK3dvOqyfD0N6zFMMEvnSrkWktv3AmTJ
Pd40DX2k7800dR/p68v8MxYoJTtN4uE8wUYRir+LfWKoYYT5vZ+bI0bFN0en20G7rkDenP4JfOEP
iXujycse9MoptK8dMEsl5cTNHbka87tkw7Ab8hSlaudvmmZbqfEYmjxe/suEnYX5Yc9eTEGYbG+h
TuXR673G1CrXnH3sl9ql5QIN9b/6pBYuP1/UplE1n5LKfarztSbFDgBrPo5Qymqx+SuE1fT0DxCz
VySAZyn2rv5bIBygIEk+dqrv2YeYa4oWeILGS0658/374RO9QR6Apng+Lferv5IguVqgo94jXy3t
480OMFmYoxBAEYKdiv6pa3oclL6tojhDo3wUvijBFdCguDOYwAMbRuqVLiKAseelgEeqrgsyxwu+
N3accHZn49hvF6CB8zFKtOO8E5Wv/HF7zhhThIpQfs0Jdy+HlIelK3DMi6I/ymoasYmQm6o/5TpR
ni84AdIUnBtfI43X1tNsvafSuAJMTNR0nt4lHIGelJU2CC9VhLFwO24U5I0LvolmfniI0HpZUDbz
0Im0smD001YfvNMB4qLDvW7Csek7ZPBuJyazkT4lLW3ySCCLDtVZvHy/BcYrj/0g1KUJiPMdnarM
HVChYx/DFGyY1d4hTuq4RDe5skpPhXkY9HIxcn00A0rMDGtltJG64XTq4gIDV5RzfDHbTgZHFfQ0
R2O4D5lPYfLLtaU5Rx6VX+AISAt7GZdjRaWUkc6RWF81Bnkn9ldhDKCkXZltBCK+10t9kJwawKHi
3BMxf3L9O2Bjhc7Wgt8JGfszhhxhOW8CL0PvrbmQYixK0Lkc9R3fqBTTDPLwMPjCS680VqdV5Bk6
q0qjkx4zcAbhtaq2Ws39TfctM1blPLDM0Akln2ACpaofI5wWE16AVz+iK7zoj0RqQOBVo03iJg38
R4jkmL2/eyLamJo23cAKeD44pbdbB5gr7BTjIf2dpB+7/2GQBneLVz0ZURtcMZvGp5y6rxhMXRz7
04x8266pSUWmRD9peKAaMXm5xRXxbSulHiSzrqNrqGVGitqSHuwF5sRNUxAVtdulaC3ABXxpdvnl
BBZGauXJDXy8IquYsJBKiktDc5qdijtTJ2xAs8ufaU0pq7D9oZtnYri4ZBApcI3UJzfoW1u+mtna
Gq4PQaGFIsv09raQzqIuCzoLC9fv3UIZVM+qx4mPD777RxhrnV9OYHbtIaadH4enFLCVXJME1113
DeRSRoH0qIro7YvOSrH4eVv9w9S0rEYXJGBX0uqd/3gx0rxtNwlTWaAQhvPgZ+I1d7pPv8YqwGtB
Pz8sz73S08Hyg9sy9LT4MWRICjaD+BHmiqrXo8deqqZBwv5s+SMWUA5tbdCfBaj4rijJQsQffMCK
2z9IzSpZ2Q0xRSh5yH/yEFCB2IlDDwWZZgdTi0543sL40C/L44qQoQzCF4fP1hBSW2DHbswxGWoh
mfR5XrMHAU2DopYWbwqh4MG7jGH63LlVspUAZl3hr4gmgcrfNEvTN1o4XTTsBGGWJYA/qCONQLN/
wjihU27KzOsMU2ZF6MEaoMjB5uTnecbdu0brbmZfVdEVUoOhLQCdsyQ3gSU/VzWA+PjRsWtC3N5u
IgzqvXkj4IuJQ3OfoaLxo0nuWDIqXchsDLflnzs5LE+y5DRO/TlalsbwvcM/TO9cZQ1i7AZUPumg
l9LoV5x5s7J2rNtVckGJcaP12zZ+BqjMls/MSpMy4gH4YIpsciXvK76Bn8cvsj1xyfPNYqCcTLgn
tkZxAMtt92xXzoMMxc/gWGuyhJYMyDj1o+84FlY1B/7GDmb56sd76gKYkKoXVsGbmfa05qnXc0va
Ok1EzE5nEZqunPHWO5xcxUsIGuBpfQB2s9lW3MbZtmPtnQkp20a7M0GPTPlM/T9x+6ClsKdR/qLr
flPZOj3M3IpFKnWJPVycncjw0NgbISfkeMD2MeRyXh4lXIRr9D7G/XxwUFh0js53obnhyvfMWzFR
5fY5EZ6Xvbk0wWpudPPIi1zS/cZGIJhXMr5/he2rhKzbVf3DPcf82S+j4qhewljyyxZJ4RdvUHEF
TDv1nMb0K0b9ZshuMR7Kelfz3PFAKVL3V2MGwhpVBKl9znwbLSb1mRtmEwZFSJsPhb5FfnxMggWR
t5JN6fML1XhX2UjiUC7cENqAg6XkixC+KKQlFoUrdv8x2Fa9LocsAG474iHDr0PgC/wTN1g1ZTpY
vN2l4M84wLwFhCwvVB/qiTmTyjakykHL+a4VczA1mPPqhhwFIlO7n9AmSOHmPCmGBGELfBTkJp0N
homOHBXyDXELR3urRiCbRDXdWZB7On8b8XX+GeWamRpMyRrvi2ewLb/X0cT3Zb+3r5dcxij0S0xs
HPAxOuESZQci918CLXkleu7FPesrGEEKE9v+NiDtsb/5gzgDoBCI3dCIU0LXKVwgALH9WnI19Qli
3JWhCeHAcz8HYvoBZHx6BU5hyy3Z931ka8bT8fNWapZ87azfikyexu2RSw1fhIfy0FaQ0HnDxo4G
xCGguuTSDJUI7v0NuqktM/+myG3kQ8MgYAAzEYbnQBV9k5ux4r9yTcwV6Vj3wC/PZ0RM2URyCJsu
78DSBvowZBWFS3OdNJQRS2ldVin4v9K9BlBVRe8lq2JCvSYCSNnI+H4zw7MNu8dotNv+Ot9HFw9T
gUA2ItQFqWB0J9hi5Y511IZ6lr1zZLdpwSOPbCUZiXK2KohUNwqhzDY92U2ge1G2NS2WpH4nWQjV
qejoxPPFXjc8zg+pDY69hbHmu5RO/YEwj4UnM5stzZUrkET/Do20QFocx5bdnTwcbjkBO9sV+ckD
9nXeV4TDGg5ESi+4LaByc+aKez/+9CCokSoUHGd2LWPdjkVwEh6N0ldw0LW0V5ltHdhE4KZXl249
dItmjcJic4oiTKEy/XaccY9bxQS44iOgqikX0TuClzhrAP+DjX3RBCBK1Ss8N1WvH3PBttC45iOP
Vy+agx24XYqE9waEPiYFqWQ+H0DaQE9Jli53i2QTTqDjJz4GFIIW24MctPz4AXwvJq+GzC2/pMNt
D6Q/qhrw3zI83MBCekMZ/HFHJA8vvnQyQW3i640hGe/6CGy9LWT/A89HW+LQ9Fly1VKzvmtf0A8N
VCVvvTuEn3ns+lSBI+QQT9R29Y0EFQSGDtSl33Iu/Hf/1VQEM62MA0j883WucglYvV2Tq89d4Kpq
uUvetSWLLNYTtvMHpVqdX/LwU9MEalm3Uj/AsSFrxMaN+rhYWffPmlaPum2ECO5btH009ZpWye/I
3tVdXXFETtgkUD2itZDKbguEMeUpe5vBLMPiqniUuUPv67FGH2DMR2zV6eQm1w3M0FX5LifPT11O
xSQeo9qFoq08t85mu2REIieIdwS+d1q+hhDbiN88NmScS6L1lBFqM7yUZEVuf3WaiNi5N2V5/yqH
GRNEprA6ppgV+bmGOjVo8Qwx4i5+62RBobcxo4uke2kyT8VRttfVft8f2SZZp6LAE5tKdNSK495h
Wf3pEFTH4Jnro81SQQ4pbfwo3x+UszVRuuiBB5pG3GHxyVXAA1PZTGFe9TbkPyFf/8RkOBVGFeDO
//DMqMwC8jQZAQT4oDMaup3WGRAzZoeLjO651f2BHi032zoyKAPva1BQpd5xfUxwnMCyuaGVSfJP
RkjkWiOa1bVmbTyXvqa4ldiJAlMOCzBwbFtp8F+7nc0QoOgZBh2Hz586VAQV1tYp8LA6p7a/2kld
pX+Akql/ZXSl/oMw5NWNInEHVz5oTnzfZRHT5PXapoclekxTT3ANjLvmqUFZnhvslEGeUFTf9UhL
hQPLx8iuPZbCYML0E/18EeAwLyEYFaZqtN2xr9Kb8cUu9/ApIiZ1lTX51VU6iRBtrfHwrcewHaKF
9my6tgDRwInA9JXYPZaMp8lcu+1tNPn0t5ObGnsowUHp3Gd7gZO2LlDo607m12rO4bn6p4j08wpj
Lo85vNq1Annp4pf2CIQCchuH2b2ZSkL5VZM5oQvqEW3Q3nAidvP4u1Vs1UdTfF5hk9y0MqrcCj7n
VvSk3a9x4CLEvo9ARQp5EX9uBaUpiqCbVSqZmV4hSzB4aeva8BS1iEhTb/cov7U+2CVMR5Uc53ed
3CfGEaCS3ixkY10hNQf0eIE5itlTCNlMBmnv08vcJ016vEt9QMU9ngtajNq0l6O/5VXA6U6BHfJR
grxfiiBeUbLMn728RTgrcSHyZo3E6CPmU6vwr2tdd9ecUAJ0m9GQyspBxnj3iXtCnhw3x8X0f79G
HxOsUfMl4aTiW8lbUZb/pgBD1FU8BPswoU2A15JjQdyopaNUby6qLjGtsnXKILWRLRYe++1zsDhY
d3813Z//7N6KyAPRvorvfmOyX56oDlHaoVVmEzmaxRjZb54zK2fcmNOEluwzZmKm6Cx8ckeZhzpu
Djg1i/eLwunKVTh+YlfIL4e/Oitupqx5bFIrquf+P2cLx/UosqMspbbq7Uvy1k/yJ739pCcsPL/X
PpikZ2qWUtDAlBn+3MRfP++wzcxoti1K9mLrTjwt4hKW8haD9UaRsdmgWj3pllLmdkQgnk4PoJ+s
dULuwcxfHK8HEJ7t/kBtdycQd2BredvBQbY+On4jhinNptSXewrxTGIHRpFGxwBraDD9v+B7A2LE
1ERX428Na3fnLzg+ggDmXTES4zLA+dReL5XalTILloZc/5z/jTGclioEPtZCfRjpzBEYAuiOoiSR
sDtGo+JzumOGCjpcxvpm6Qp5VHWDxWRGNyeJvbLVtFtkh+FXlWmYZf/ejbLicUm+8yiBBo2+4HPJ
dmLaZAm3LrpbIaRKB94RtglcWVPZkdB5bqEU2MWrsOAYYMxAIgDkx9yjaTw4dvrvD7u1Fxcd2DCK
mKQ9xSgekX0ZUCXHHgnIcSM5ZlTmC+CqQgWwBb3Az1kO+fGGp3/zTyJADtHqZGGC/zpUS5OkS6rh
jqjRdUU2UN3YEMm6X+G2SHobT9Bo2o5Zy0y7wWJ9ZcWBV20FiSkwjQ7buYZfiixhdePLKkD095Gn
EwRSxH7H0ClekeQWw6yQxqRTq3vEUHqm3O8NhbETkiBF1dRR5FGBL9Ji5EviMo7NXcXEz1XMft/L
4r9Hvs72W+DQmP/34MsvthKHrWY0FXlXcbcazB7E/xenKm4GIiO/qMmIbsi5T12kZZmmCOY2eFDi
roY1JBrj0b43NXHCheEnfVzHecBkr7Ig/cEbXU2c4P2JtkhCYaC6SNjoJZthikzAASFsIe9GHwfb
0YItFAz6CZOhZlfrE42k8ERWNvn2JQLwAt0hb2RLAhwclmTQzBAi9wC2teNCA2XCUexMXaY76C+p
ASFShTxnHyF4s8mn8Mo3b/3RK5C1JuSjeVhsQIdsX2AcHOSSudne4S30myXtur9AN+lGX6fraypc
2y8pqR9pqYIIYzDK9B4V9m4UchNT46wiRqCHrGjLJxIzLOzIeUDyTE9PuFxLUVKs8oeyGgMzUW+F
FjqHDp/NGTnVDd0CIbAoPqSPu4dkAgoMgIRcVqeoHOLUFXzTs7JaAkFDs20GBA1/cDNb+GtS0zgX
gGFBNC6+TrQ8NyP9LEAriIQGLRs+9bnBdFL0SksmjBTCvuCqPWFrSA+tU3Atrzs5G7FV9raoeIDd
FD+RhToqZouTGN+rirDqQwnJUYeyNrw3J82upOhoGofC2R5sjG65FkfRP7Rz+uKGgaPbPxbFor9t
zYeHzUjkLeuLGmFUtqzkpIl8rpOyQlCeEcWPqlHDpdVbncbQIoYU71ETxGyHxhrG7zfC18mH30nS
EsgodaXu/bP4TBU0r5/KMirjTmrO9QYZgoQOySux+IQh5SUU6yvYJln2+jSuFQHumYJpar7OZEFX
RbtC199OwFvhd1+zocEm8Ho4QCYfdFMOHIrsIsQLY0nz+BEfyFywDp2yZS2ed7xLBw5jnKlhC3Pi
tyQfK1elHVWspP1OBTHE3VYK3g05VXBLRVUV6+mN94k41AO7VvVQHFRvIRcdfAYC44NydpjDUmVT
RgqWoycbzQSRXly1RHrTojkBeh6bV8zknnbW7bvUM3h/F07cYhuIEj9f/yqkaaSnnpQkhFo+zuK3
SiDcc2pcu+lIhuuwR8XAO/Vst+K353m7pSpG87JI2QoZXTnB6UP3Z2iWBZOXrAuedLwdgmRuLuK9
zuuAyGvwOJUYo5fb7ekfa/q6/0kyGSjJa/hSLF6I1AF5xZNEvNFkUnQYxLichYDz62vbfqSI70OC
ZiBObc10qmtmVcb8GdKbfbwcMUeC8A47nwrgRLd/TXgNuCJufCBmDCne5q1RJZjkj4UEZqlxZpfC
4S8EWfJFHzjgEQ3qj10i8F6bk/wzsd9q620t8Svidg6bDqxPmwXYPuI03R7rERjQgyTMUdmnqB0d
cFxJJCmvhuXTX+zXrV2eKCr2vBRInDRtiXKmT4ohmIKgDY2oRqATHLOLJKsB5eKU5mu3qEBecoFQ
jjtHn0qHTG7rC8LkXxXgGFlQOPifHG2arGpGipVUcSi3B4nZC+7ynWGrioxQZUQwkg3NRBf1rw2q
wRGfKZK7jgv7WPX/iy3M8HXemk/YsTaOjaOI6jbVOMDt62NLxvgb0lMLF0TqD8kfee3l3i5+6+GP
x2hxHg5ZGGfB5pXZxMzz7gKp85aXVuYVeL9Yk1V0vVkoA40bo4qU4Gep1/3wXbMyZoczoiFODRSq
X/oUfN9NBze7DeIDACAstV93OH0TWJ4CGRkllWadUaluWhOjXGhV33WYqnr9TPM0reQiLQQXFbr2
iukdxOgNofS6VxiwQCdd82O3HK13FK7K06DdpSAZ/vV2CrsvYHEI08j39MPbbQTH745fVda7wJ9Z
IG0qNumaENvMeVuoXhCypuvQCaUwMH7p30GcnTPxngi1E6yeRgZAPg/p45x33xQewrSaIAdBgGTC
kvI2eZMi7ViVd8z9ouKFVaf5+F/iCBhyum4K7BOU7/xaUTZRBns14kp1mQ7WXDe2DhUV5z0aSzYc
SpHzol1fsyhmt6IkFnv0AqOfIWWKEHSGwEeZEgZEf5qtXUCuMeNCJH7tWtuK6sMTUYD7unQGsxp8
87Al8/6mKjl2HmStbK5jhvTD4meWfOKvz31K5d+j8Mxwi0o91CgjgIEWOjKUOYlbBxhROZpvQKXs
JqNfMFVvmA8vodHf3NBxZd6FNZvU8JvY/iAmA9Eqg6UyWZ+cVymHcqTqEYkkRwD3L8F1iIx+NFBN
ecv+KF1UyWxQjTWGltaL6Z3FUCIgBTpBMJ94p1UoqVqs2Dx22PkYiN6Q0twjbup03eF1k5jlyuIc
QBn8NJKNXNSznc4NsSPdLe43ivf8zEQOz/anCIbbPHuBXLNw7xGt7C7i1hOvJ7TzDN/7pPgcyf4O
9W2XQsMvstEA3Ogmok2juymDQpdBmfJiuv0pcZDhWyNyqmf9ajIIhK6tbQ7586BzdGFEaTr/8Ezd
xAUfcUzryphdIx5eG5gjFsH/uPiKw2RwBwa3mc8MmHfiNWotefIcXAnU0h4tcJcxY6qJBjSwslgV
GS9pbVkbTTOVG+elrmrJdyXjph7RsT+vBMKrKlEhqZlB/9jpH4QloVIfDHUuepsvAG1bZ1bE85x2
qGNhV/+FTxI6NPAcz2UCrtHVQEOFAoy1U84XzFT2pA31OZgmIOCGtuM2FSR9jovWFBxNMAEss7U6
WSTb2KmB2lTdtTKdhcT/vi1/En7/ceKHlOkTa5IHjddJbX7VK+GDxezpgpsYd3QvNPGTy7eC+JT0
C2g52WimnByfbwZY2ZU8CitzeKswjUGu4CMNfDDlAG1r9bf/3mfUwT/4wupXNcIoHyZX/eZ2eigN
xpwN0y61z5pIEf4zK23Zh125/rhSKafJR3FEc0hyIRYSWmjrEKiVx30UZg6MTmrr3tMoUSKDWbfJ
Ir70MpBwq0xESIrgFT11MspEJmLxLUTn3aSAhnfKxw8iSGqqrElMKXCayl3o1icA3QQdRwbPjXeU
mRxwqQ8XzT7T01KtfPGlTSdqwc98IfZNvio+9T0y6WZaFsr756+TWzBojpwMQejaBL7jWn5wpuyn
dB1cA3fOB4OjE3xh5IpHkd0we/eShM3NL1Oti4/3NGukhUlodMC2O91r828QVPKWJtEDuXtshMbV
/GgcmOt5jvpOSQzq3AECquUQrx8iB5lTTvFXcPIfB57Nv8AfNEQFd3uJxZqSY1Kx4syKfIn9SsP6
v2aW8fgVAF4RC/ixbsVydWaDZcfHlkgBTqAv4u4kj/uWqNgrLk67i7Dik/AWXCStovmgLW20izNx
XmW8gLTXjfLshqBcPBY/djWLc+qelm04EK4B8oAwNb1sLirv7QyWc1LdbM9DkBWiabBiKG3ESY1X
YGjCiu/o7DbsUbvZMInfEQjQ+asgaAdl5r9hK9yFAllmDPqp4IFotve/H4QuP7etm8wUDupPElOU
gIt7Hj3sxr3EvQeCElAqL6Z4H3yYCtKZlJLktRM41Y5PUPlIgpX7NmahB53B+adQWD7Y5uYP7cS6
Y/d84qZN+W0oZfdr7NbYZWzVxYkLIpExSgN4WKjny/L3yDuS3xAFk1xBuGn+C0KRkwZU7K9001We
7Fm2yXlTkwQVVo9Pw0mXGo2rVmPjb2gbkG7Q8SsIXGxpnNmC/gx78B6yyHnJrRzQZwgjkV8DlanB
KQtRjBoAUeTWqTtTPJBCge+jSJfDmyrwdTIekS5s4559NmkdC+JPiPzr36cZ+6pcbaCWXv0BdvSz
EvN7VORJn8toCc1/E1OhovTE6+epj41sn0ARYgAVYIBfhf+1wh5Cu1Ymu8NjWQpJgMN3YAGaBKDE
Qqtzduy/yL17r0y0o6hvKRPeXB/xViVNK2bCSxADb8jxqlNgCyeKpff8dnX16COaCGbVncOaVGX3
gdMuI3V9o06a9t/ATFZBGnZtrSndwiGmnZIpCdErefRcsiiJtFxMnvRsQH9JHwGuW70YlkteF/rM
MPlTh9lSPlaY5EwIJU3GUC2nW2+FNiwpnQO46EOLKytSfu59WgCF4c6iNJDFDjykLVoZoNcscHt9
qcC2ulJFsXCKbTo0vq9vphIB9KgHhmk7xinn+XYwmBFgShUYl1wKrZPCROVAJoznDmu3LOJBe9dG
ooG0NQndIFQpzmKms8oxTi7ko6BNhWiw/M/ZMOr6f1djYFFp9YkzY/U65USR3lIcuqBxuPajZShi
B2jnIIoiuJVBRG66oVwq8jftMBoEym0yqQQIiyVRnDZUqvTQ938xUlePcgOS9WVZ2t/Akkpjmw+C
eyqVpI9liiwx+/Pj1V404EZ89W2UdOwP9sJ1Nb6MP3vObQZBxYEJWIVs6LRKVhls0F3YpEgFUb8t
wRAOP8CdTBJX6cuKUYVSgzkfSlP+QNtjd9rGY+X31c6V0g73ZbVJmVb26mwdmdhAU8GMrnPakZQx
FHL66uXbXxQiPd/bZmpqDAaRrtzDdxo6w9B3HbSC8SvsKTYYYTER3nkRZ/5SvHRrMtWjomh5FPJJ
6xIJvILH2tqe0QaxDNXy6/XtjM1ieCt5vq3Bd31ulbXWUk9aQ2GKED167LWw4L/fAY3TUly7H7lW
ebuu0BopLD7/PLYEvsZ3Gi43lYfNN6plYH2KU6cELUZ9mwQtzJwL/oN6Dm+asiBZqKAlxm8kfXQV
G7wFtn/Zj3SkNUDy3R6kE7OTCeAbz3YDziiS9mKuhJWyYGjTTam3ddjnnFZ6LtrP0f5m2gMj4uLu
5bt+/0DfVGWgQL8FAUUK8AgjhKhFtS1i0RgwRzIfyVFUDxsNfCOrNOhoQ7c4TMQsppkovVGglIeq
S8hiJk+4tiutq9G6LV06UL6ldo37JE/fAWOr9YuCiqCfwovEasEiRump0+naqc1rlvKIiAistL2C
6YhtNaCIc0Yi7MDCqXJJHdHrDzxw/2C66Qzzq4AEQ2TBC4WRVvt+ZB24IX0cC4QTF3duRDJuGLYc
1vZXTlJxxk8dP27gxFsF6TzKK0UMzW3z13IlH0MghSTE0aCiZ7Pf5UYfkwuv4iebucb1wQNPZ3no
rjrb0iuUKcIqW1ro/b6Vv4ZMpkGsdY+lW5mQVeKcgiqVy3r1SvpwFwyCMUTnwXEGOrlEft3Et7Ag
r9bxbX7orqdappkzQ9OkVbVUpFYKm43XSLXD6Ld758I2nRB/O8dimeOxIgEH68qilS7kx5wvlrEl
ORwVHKw/e62DQFr41jNn1NrCm9WFouWi/ACle/iyAzeJDkcQOeq5MY69LQOjITiVsjivanpdiG74
DKYTk0KcuDdF6BtPYomixj3/oaWHmFwWAGBDmPB62pWJYLlzypFg+tkoVy92EQa29hYRqjEMm5YP
Sg4njudPynXg00WzbpyelVEXjyvELpXRsUSV62DFoUGSflSFJ3OCr3GQBKZ2q/xuez8qVIEYLwPh
9aQSjAGciWGjbYhm91QuVq6Xlv/vN9QSxg7DK6qlpncBSWhkqUcGJSN0Vmvn19FC8WdwcIhtITER
PQdESLeMMu1FJcYEvB2mjNhTOKkCj/VYaiNRA4XUFN8+pxnJ7gu+Pi1mugp+dUQKKFedX1sl6js0
w2xCVh6qJPRJmS4Gp0UCDX7cml811Y9i1H0ZhBBqsmqxytLR3huFWvEdp7Tew5sBGBma9l6qO8Hf
ZFr2pKkoUPNTFmFWrOIX7YaiKuCoiswIqYkUNNQIoGcxEkta80XrwVRAyCql0Dg2YUvv5QvyjGBe
J+5rIZvn05X13mdQWTYSXI/BLJ8xs0hUK6NAhj0V8SDSbgNCaSTGXrxlwhiBQrYNeA7/YGlsnAgj
oTaAw+DkBWPXF8C2ShAj/K1N5sX1kbpor6tb7/bJMW1QGLCUDSwbkgU7G19Q1qJKQWYcSgFH5blB
S9HDgLkzOBC+am5kXAsCaFwCrydmRUEcbFduDwFhIxhfCY/mNSWiQXhhJmD+D0Whcq8s7HG8vLHU
G5qiBuLEq7ReHC0P74Ui9CHiALaWAnuzqkXtkvtNtG7KymFhXqiMQpbTNYNNfL1x9To/BDN0VdvJ
fdVRle1abthXY1BV7HThlP/NY76UIcnQJzgR8d8iJAvhQc4kDjnf2O+HzmYM88BouZEYNcw17dna
r6X+l+aUkiutHYN4pZxzrTmrwKyDhR2v//w6LR1nmSNYdG+Mmkid5BeNdZQvFFUoTqPySpTHZ+qh
GLgPBACmqaLhpWXUQYNhsR91wW3PZAgrGg+N968YBlK7nbyz1/00wrx2It387soQMdXYOp8waNSY
6NoSEg7sBmhyg0vaawCGpTB0KtbNcFft8E29798w/idgRx1G0aOYPFJQ/pE9e9dGffOli7vL2Cz7
qHfMKJqCUx7y9A5QnFM9dz2QRH6Qwel+aoe+j3pWzPgeKHwQtVGxoTK1j0QSbUagHv/TgT1agYNt
BDUdL+S0aFRj7pJ9QBkgoim36bEh+dTeAUQ9jH9gktYY8BH3jVuw6D+UJvj9WCeRzNoZfr0E5yEk
UI+J64PzXHdkFf/kqzWCDpcmFSSzILkJ7+njyeRM+17huFGTaIvAtzYEJT4arMv8cXRuJAWRuue7
bqJVnj0OcAWz23IvUu4h+f/pKo69CjI0QMOCksbx4vDZEZvIy2OhNVbgT1xWLRkR/YjaKt74P+oX
GUCIj/9f8NeU1e+cL5GECH4GbcG0uWlUw+h1dSgDFAtCoALkfqntKEqhCD6E+e1YJvvnbg9os5tH
crCojiCRzgrkOLnWaU417M5tOxvr3L1S24Y0K3pCdnsFWnhqGZjfmLypcNBw23QGlicQP9G/sOEF
a9WZdcqb1S2n5iRCEXiD551xYzDy5Nis7mEHVNhkyAjrZwUZ1FhQ2eCrokZoVOhOSgZO7y+0UWYP
ZOGAnzgm7dXB8MDxRZn+316FViWFzlg/g7W7qvHYXBS0XgkasiH4alapGMNgP9CFzAII8jC2idqN
w46SPpne9NOQcdv5AL8O7vDfyxqh4yzgLNuWjc4RxJIs4KcI7szDWn4DEKEK+3Epw1udBZyiA4P7
/60yRHKwax+q5NlYaf/ZwkeWLRzPZOF3sbeGNThCUuLX5Wv27vmS0VIHXfLurDt8xdWC26ftiMBP
6LQoaWaGb3f0QB5eHbTShvOEXeIp/VJqE7IAZYCznUkgLXhLpMh2iDYf3UlmzxJC5jY+S2o5WfNd
Bn9LRjaSR/XSa4Aw3/h7vxWd+i8he+pTqqRGf2qmPaCjOpN7VPgtB6srlO9lAy0HqxOAQJ5FgYtD
5SK5x8wLF3jDoq2UNnWINX3v0dya2mMskJQ7iiMEGR//pcXG9blS7G5+39SRrytKU8togxN4wP0d
lY7MgAEA9wrCAnw2+nkTWvPRpw2eBErK4JpAdmIqzm3et2ufOGbkxcdc0Gp1MiP2pib+k7bxJSMR
OHfFmET1kJp9PvYTaIBc0ycnF1YbEDvPSILuTZvs+SipJKmMJy9CFI9M8gHMbsLKrK5QORURK74h
LafRTpIOiBXXzLTMFfqwJhL5DyshtgzzdI6NMuuS/ilU8oC+fr2o6SYn9AoHrirAdIHhVn/T3ElO
lI3+3OyO15i+FduZ5fPjr2b6DAWqjeC2HrWhy3aJi9+c3C+zU+43YmG9kwyqtMq+rJ3Zs8ONjOPH
hfHxYh2ctvNzles72WEfzItrukyg7ZiqUez44Gw5gic9QbbXL45aQG1Crb0+4wwEz/gkYW4CPQtD
45fn1sfM7vRe33TqFItQtObbB4MSD8v4W1KHpas8XdoQDaNhGnflmjgl5HEGlrbi6JMKkBR9ASpM
j4Mg3ljdaGbyd9m8d6BT0arQSRcYNxF/3XT1LUcDdj5ZSR555pLBlI2x7gGrVxAgdVF1mX1fy2kQ
1/TNqBxKbVY9d7tg61YSrrb67Kk9cz9oB9p9SVPeNkc0RVVVwqcN6SVXdjramb/HwZfyVlD56Vwe
BYQ762/1Yx6egHUkDHpiXWb/NRrER74IVO335uSEBK7CuUsV052OFRqV2yGmBy4gpoc2x4aT+yWI
WDmjXSkaD/e6I8O73q9nyf6vNastqw41AlYqulzLp3Ctw1oQWZBLpkg4moB3H6WkRV2sO2+XnzTC
7Bpv3fjie7iCu08opr+XXSQKmR7nSz1jG7XeQFOgt6ACPDHBN8beBKy8xmlB9ETZFr70st9KfZpn
MNtsF4NjPSgiKJb8qJ3+iReSgbkwnen9E0BqKeBtLPiTyqMDDByOPBSVNr+Qc/v3k9AH3phRxq/m
9ogm7V26i7p2y9Jo9xVile8KzANbjqC5LnWDV9CA3yUiGmHuKZVUVVSPDDviakSQ6ut3bJ0XUjtn
j+QP0YNjI4H8DpftwSzkAiP7EMK1w8/FivuNuE54qfUCV7ukAX4kLAO9y8oNJp7pCgf8VKPxqxVV
Sj9+jTcHVopUs/IFWEBdkMHEJK90xRowQoCdzWuUnB4MGwu2xKHLZ6kbjrbqp52w2111gCeEG9k+
ceieeKNpYQW38LSXo+2XYDIJ/xvTYPm4Yj/GJHzmNIDzacAZBG23+uuR4LZJ48f5ZdSL/5EFVg67
7PTPYiejvFQLbtoSy4nvPGZTosOIL+8jN3NQ2yM4/Ixn4svk+xCIMqHnwT5Dsl3K/+H+mx8ACjmC
c8cNNpuq8S3qfvcooGJBRdxSH03nNR6INDW6bJeqg8YX+jFqaXsEg55qn6/TSYaOmOb3snCZN/8h
TyxkUHV2PMhAgTxPHOt1gqmWF+X5vj6hMI3runE92XF7yFXy5C5v3yO6XtpA8nUyE+Am4p2voAYD
r8Ap6yPt/2wyxGFPC/Xp8CoAEuOtMtMXqhHL2jK6lmWQq/YjqrNVyDXbMPSXpD8339ezp7IDqOfZ
8wGMxuJFJJSJsLcootdwtPgg8Kzu6qp/qkLS9IFzZUIfyMnYLZ9J/Ilw82u44SJ88GUDc1jeS8dL
O4WCUQk0pLKNgMXN9IrpaVjSqS78/SK10oCaVeZfZnE9NE9hpw85eh5bXrgLVUE1Qa6bREIrY4ZP
hKqRGE0m5LSXOc5HPvi8olFa7qez36vYnat80FmkUCxS3tnK6Ld/rfr3FrCgIg7oj1MBGYz6/6Bv
P6c2e3npjxFROH62fLbQ5BagIr0oiU51Wnr+59zC3P7kRCaV+D8QIGF4Ll9DeYhCffPBBmKkXpkB
FE+mwapEYalZOW9YOGNW18+B2rhJ36AuZbCCEj+9Rn1duD0MoXQXP8Qw3Jqy3VHXmMLXFCIdcF5M
bNTZM9PO6AmoRfMN8/fTz2vzwZQhszkTH2VZXbN4Z6KQ87Fx33zwnRnoWUwqN3feIXctW0hLh8q9
Fq9lf4vNpqk0r1erI2+rhgQj0TF0grDjFx/yKwmS6S/uSenG7GVZetVZ9FFnYsL8Sc2wLmbarQ8s
4ZKEud2V61ydRBjvi64d+go7HFIqqX47rwE9KDatlZm/ySWfIz9MFyVgRySHzbxKa0OnrbIp4eBy
DvdbcNU8KUY/CuN7ZtU8KmsmVpZYPCoVnmPNDmss1ZZJTiYRaMJwA0LHFFQULytF43wHG8qCaWrh
ZUFydzZxLN7CCBlZ4mjsbm0qQGxxOxha5m/HWaOWZyN7UjROEpA4oWDGcO2Hic4Qqev39Doo48fi
lCu1B9WsW5LZ2pOZue4cisKTMEAjOGtgTNSIdrpkv6nVff6Ntioqt2+1fmUePbH+pjD7YbG4/Gub
/EmKaRaXqnIRhybSNe7y4jo0H7mnnqQhdd9Lg2wXwlqKY3b00MU4mMfUwrpd2XZ62rjbNiadvumx
tKjjfU2riCQ+7YR3jH5sgWxk0pyZiFY+rr8ZF5l1Mb1KY9YoOXmcnixd+lNZ0X9TEHwkZQ63AVVq
Hq8fC5WxKB1nNKUHIR19x01aQXMKpCJY34wGgevMO5Tf7GTr2vnap7NVXpYfh7l+Rj2GFQYp23o1
8+sA3alFkbYhBL8PedCFjBAd4rmOpDncWxr04GFczik8jydK8ctpMg6feZsBEWu5mSi3XzUPx5cE
OoJkUdLbzk9DjlNdw7njkOLtN1tMOff10T27JtkUMbJ1EuCFPSS2GuvHjKt8oMhCVAp6ke3EmnD5
Q35I/xAfN82Lf+EE1SDs0rPQen8DYZaNRwSn1kdtNWqtWgpOQGf8KV5A/N0iP66FmYm6097F0gVG
wakTZvBAxsUIkTkTLdX4InnkSe9+mlNWHxFPDCIsF+DeC8j2ardlw2aPiMWp4aaQ52VW36p3YjZQ
j5JmSBseWfLahJMUkyERE3D4iKtoNDTPVcXtG7Ovu2DvHFCHsjmzE444BtRzUIamJ4aFoVZtrwtT
gi3t955KYnRVXsGDsLlqwCKtMB87MquPtbMXXt6LkN1wrAbF1K5+TsaHCig7TiPdgKnE4LFE0ege
HMlEkPkzlZ2uKNnJq07IuTXBOSNivrlCsVGM9mQexNh7YzDzznqbXBiUzDQcuttMTf4pPN/SN/L1
bJ8LfK4wIS2cxfunqseeHxHsGem6JIUeQ9rMRbl0vGtMLa1jlMOBadGms7JgTtxDX4m7jhtLsVxX
0ErRJBNwx4o9IQ92E2lk/Gr9GLcO/zjZMucySInoR03G7e21n27PYZpKrqmicRg3rBf5dePkQ9fn
hiEgEYXfacxUmh2K/aANdBAvN0cOUe+u04RlLcS7JeqHcG9gKcWAKSJ/xwBXUqhnn73Z4OjTytul
RfR+sVFCKqmFPPyHhwaTjs1eqRpnZYOb+e5q+OJ4Gi6YPkn7PhhutsCkkWpGyg7tT9S+2jbG7wS1
kmby75KmJ7H3dsD3mErUsly58eIMvKYK0/YlERn58HFQ/p+y7lXtkoHk3ZIg45yZzaLnB+LTM966
Sbn0Bwcm5QSWCPfJ7gTLC6JVlGW352KzPLiYTIIcs4n/AZXeRRhniU3XwjehyUgI/jsnHrGQTr9I
ir45/+wZCvFj6b8SQ+HW38Y5b2UTiL/18Uaedm2AuptNARnRFv8dWe/ft5T+gzbQVFYIQmNiZDnP
UxA5ZAR7BwoizxUdApbrKXoVB3f0wfnVKb0yTPRemze/LkYL96rpYxVnQP/mmRr6lQx3RlFWME7f
4p4pyavLHE0d+fUQZfW7l6iHGraMEwGNkdQgEvLDzGU/VkE8aETnUm0URpWVvjaXH6zw18XLl3Qv
mIRhS/16Q69nIrOeIFMDXv7P6oZxav+36eA+u5yMpz2BVYBj9TDPSE+veEiQK0BX1iZvishtbsMe
nCjG6OVVijVYKVobhwmKiFjtcAVOz3A/DgQqSItX+61wsbHmjwV+iNyKP7WLAYxDd0R54C5j/zIH
oMFUSpFBCho8XOf/uasa8gD+pmWi1aa3cXAQjchT9NhnCyQBF+PvKQK67cj9wSyoSg5OluTCt/IS
aEIDJVjwvEtf3i4uibWDOyx51ccW/0tCpmzTzY3e/id4hGCZTC/A+gd56t0qM1tM5Yx623fDuRkI
W9DcOsACSWMFdC2mFdB0kwf7+zVy6qzK3ZjEDYf98fESgJ3AvVCQsjcfhW6ZBFUfTXt4EDkAv/kh
Kh2sZ8R0U13OWhtyvLg1CC2zBBIJr2aN9Y9FAWErBs2lv0y+CuU5cQRacj3GnjDJymyukNgBM0NP
/Ksm04Yuoz2rvqQ8dXQu21qLWVFzf+wNTZLns5lNmCgBxNEw1aX35ioMTK33c8+YKVsTtGO9I4RK
TDmW+6vGicliJkE8ZcUtxV5EcEHuIPNnAXA/cLiPs6VGcSvYwsnERtyzpZi8wITrqq0Mqs1+dLjj
xAYx3G+xbMSh9XUQSN9zGCbdxMWkEEnb5gbgRdtueytzJ56/Qc+1/sQCZD3fsyGkSx8lHpNdSi+B
yW4kEG8M5GLMtnvu80bWSUZ9OjwjwG6LPCP/mbUupgHG30U0NEI2FOJ80xBBGCGY86Gg3iQ4uUUP
Z8PfgT8o4VdeybTPPSCULqUmXhfKrhyeAOvAlwPrwvFYrqM71o8QQd8+g1DVNGemVDTDcmHAx3ST
P9b2KPTGGLhQ7AoWcViJ3F4ehToubAnSmF2BHW3MrFa6svdCAimxeV2E6lQ8G2VlaEg1wfMlmV/p
5fcTnradI4GRAIkqN78tlHLUUOTlqJkdDw1RsJyy1WuruWfz78H0He6kmXJzyVlhUYdIKUpEB9ol
na+V1h0eMCCb05tjYReSohF56DW4XQGf4CXxjqN1pAqWxeYgogpgkdaI3bcBEpkzRbbP6UZdDZsb
WGwF118easB4j7uGIyjmjLANUvLGfFipysYuLFBhX+apGl8fx4iXfFSjAd2Qh+Owa8Ab8oz6kXQ+
r8zEdBjPWrgKpfQx2DcrdzZ33Bw17bKxzc0PgopdclM3HdruS+UMBH7ReABesG+Ui+9x+7p7nGXZ
IOmxiIT0dpO2gQmLdtCsxFKbrXndMPnEkLt2hoewW6jsXTv/dduL5Ag1ggStMf4DIdoKfOsZqDgM
DDW2Qwi/19lXGvvGr2Unw0kFklRdQDcHKRWgKXb4+cO9eT9yhtjtRX4HNyOwwcg850bbYFrAHO79
9hDb6P1jpgw+BOBybvZFSWSoPCJoDx7fOBTJNgnmMB4JxTsl2ufwRfr+lCXKCOapKi5CAh3fyHaT
lYd9wln3lSGb5mNYpwYkQ7pIZ6psGKy+nD2bV/+F5GJ//i6WsnOCXYmH3DlQ396oCLJJVmU53LrK
mynaJ9TsomkzfUVtm5jJkmafRdPgrCnW+koBtjIPNyA4wnnEza88umoYcFwt05JqgMogNnt4cxLW
+iIZx8c3aoq6Do6IQLtDUd/07Ip54/F3xya0Azy4vc3L2vaHPsn0QPvAbEPV/25Nt3XOZj0x5EmT
6BfWSujk8FK4X3wjnQ223b2XUK5Im5R51BYGUSBwyQxsOSY7W/qjbB5eLBwytHvz+J9n94Wu6n71
Pv3bAHmuklKDyhhcWaobM2OZzsxLn14z6MQZOTkNaAvordO8dr2y8r/ah/XJC9XwOpdH6Ac8Hsyo
zO122nCW1RtzZjINQqdd89b9sL1MWIvwC79F+sFotbfTWsjxjQG5DO6C/rlAnUt0izGMLYNRD/ST
axS3TT0sxEQwGF2AUP5d501OlPp97aFhYkLi2rkLi1dNebGq6iDSvccDndq7nHnc120XnP0xalR8
0OuC64P8XCvhY+QQxUnhurmwj5p5TcDVMLKVYBrFhOLDxGKUP4uWuH1GOUtd8xqKdOCWDCPrl9lq
3gg/i0pbpPDOXLrIXcZ8UAZ4Gx5NUnHQrfBCJcXKqDZzwQo54YJaCUN8ax+TKrVmAbI9vWEvzA7H
UyHeMkBGchNolXIDGWzO1zpwFmkfXBd+6WfYh1UQaYXuVz4m7J7JNKGP0VHQ9+B4/LdZ3VXilQ9r
y8RML+mgeXBE7UBmbPeOo73VDp7V/HvtgWxzrRA7q2bKF7202DEJC35mS1mLR5F4BNSR/0Po+/Jh
qBOL6JtoL4kdvEqHwp4g7x7H2VIV7IAPQN1/Pk90GaQADbEPN6h2FrtK8EV0PnbVuPbGjF6xRCbq
MRACtVW/Ue4ONrruMDyFYdF2FGnYBlObx23sPX/29IsYgcLPlprhgSbpk27uu/jH7lafr/zTMcfd
xskf6JXf6tyf+fYYT3DSSQeHBGit8bisLo2zKXUVd8QaYdy28q+U+JKl7hWZOjbm521xdJgfHMaS
w4N3fd/6g46LWO+jsCsa69Gs6c8KAoJzsDy/9/uAqW7BlUqux8i2tPaXRtRqThGY51lFWhBZsj8B
IwnY6ap+xofYFdSABQq3/OLZewbPRxxUvblATq7kHhV/prgsJEl2ZGUL8fJ+e7KjgMPYuM++WDdu
80VrWJiY2GvrhQqD+uWrlhOa+Mw1Ebh+FmhfwjDCZskIFX0pj4+C8PHN2Vd24DyRmZX87mbviIsy
XcpUHqyIUAnglxalPhxDqA06MwOSuHqbj1oMYnyod5gWQNPRcXNyfTkB1AwodCw+eUTNpOb9xX6T
ZB0EtAaUNxhqasS6ZseRKPapqd3XxXb9u7A1vOS0H0DHt1E0T5LzQSbzIUUDVA+YPhmcaAxDWzP0
sa+oRos1l0lHa0DhYiGk5+wovNzhFQqquTpdg6zR1OAOz/ukXDCin2fKwbmrY1EfIIafzSLx+Vec
OUJ5+fE1k/QsdnWpldzwIqUWUH036grOiSn2qafGPW4drRyjSLQ8gVCbgi0CSb2x1utZ/2F6Nukf
NSLvnFPB6+LgNONy0Fs119ZbCmp9uAupxkeG3cRvx9U+n9szfwMRK8yv05w+0WRtBRWWyUZeuYMt
a4IYUli8qO4QjxPRh532kZsXO8EWOOj0V9BvKlUKZGb4wNFGBdxY3sgymeb1vxfP9Q0tdjBiwG0e
0gBWOSFh4jmN/0so0/ctsqvIdswIAtFfRJv+rp/rXzDA6T1WQfBehyoeCzrIfvhZCuOdS/i/PHjJ
UOef4dupFbJfrC/Qzl9GQZ8BbUB0VZiGvn2tOP0g+mnkS2OFaSck45H3L4HDdQwjGqcMNwMBtz/1
yUCs3i9uNtOhEbH2QX80LAVCZUSjbQ1IqWWS/VTV1C+EqzSTRqCy6WU9++8XHstI/fS7QZ+08Zv3
0hIGk4C4E0l49PG/WixeOIIQoBCjcrhyzvw11IlZi7h0Ct+dBYdIFlXkx+o/vZ2aVLu9fDfTA8Cn
dkIpzUGdHksa6gLRn+EuW0NH4kNki4jhbN5INekpzKPDBNDWlQxlgEJdBlw+7s4eoVWvGBtweo/k
P/6jjkv2JfUiOev1dX95Yw4LXu5zanWWsMzoQtwKEN4jeRvNfeFzm0YDlInAIAQLv+SqboiWYfKV
0zj63VH3ITmHdV1WSU/aNXPDK8u0uiymZeU8rsZ9mCPNcIjDK3/+oVM9lrRatmMrndv8Na2NKl0D
7JKOl9l6CAyaH/02oDywHoG8xEkcJSwbF75B7t2SDl4KRq+Jtq2btqrY2mFESQ7fKi/Z7plCekI9
234ObnR3QBjITEt5hZ2qf4pHY6LgNwxqOouwBhfaYh230gvIwZKveKCOE9H/gekjoGAmb3jSn1lB
jr9/uDfIcnxTQ4BwzT9XI7hZEeJYb7q6JpJIyi9paGzPgrn5MlropUskH6GdKp7WDOLNfKj4/iUQ
Q7D+GwqZNYRmSiWWqtVZTQDHw3X+tGG+MbKL3m4KNAoCjMn4F/yiklG3WslXWmqN+iUN82huh6A/
XOkQdA4lrMtDrebkdd2ekZNRAqt3vJo+nIh5owv2sW1zUWEap5qlgT6xZlxCjov9nAjGUcagciIq
vBaQYLSuG4674E1FcOSPn1+wSTwPl7VcILtFtGZk+tdQNa1npfsZdepyax52TlHzXKDOUoF0I/18
TJ+HiEA3IZgVhkDKdpPKOkTKI2Sw/gZ8O+ckvIKZpNzN0D1bWzVOhkslrkQboISkFyFkiNK+3S80
ShX0mG/IIz/Q3vs5+cI0ntzs+lvoRBLj/GmDM2PGxQ8gZhI8XKfGzqC77NdGvGkyu+7yw3/timf5
CJAKpxAwK/CsWEUb1muY58gJDGdBj0LY2UDFv/abWrasbfyFDWbgKF0IezSMcGDNIyicWLsUzDM3
/OaxzWgHypeYWzphz5LvcRnZIXPT3cLlPq9k5qSTKKylJPxuGC2fjQGgDLX4sEpw/HLjdr/w6XW1
eHXTfy6/6ECaIz13WEyczdju+vShsk8pEJuxCepLDgqUHLDMvja6mKUeKzolze7h+ZZUqOpCweMI
6O58d9D3uYgwsmmD/HNQu8wlSKU+0mkPaRlU4illxgeXu8UIiKOCRGN0n0dA/Q+CXzQhJY31UJg7
qHBXDdMhLAOqQIT5aCAHqDgGTGrWki6HZyR228cP5rWfdfNGPbm+pE86HA3ySiTdzroMgMa8lZZR
bjj7PRwwDFJcy2G/NFXoAI9IDBR9dsLqcsGVmKkD9HxLs+ZQEtuJ/G8KJlhEvefbS/t7u22N7OAs
J5qrGRa7kzajZy5vugWdqS4JoHtNqkH41Yc8vdWW7nbXzYQ+d9RfBs1YoEBevTDRwgs6ru1V9jIU
oMQLQ9vjD9b3RPYDw0WV7NlVOpI5DCduvzryV2FH0g3yUX+ABUZ4CpQtEsAiYOAMVspAWrcBx3q5
ypURa6JccuyHsmQzyLTp5/3wFZRJ9gWRACaVNkl6VeR8G6iJw3VHrmDje7it3ISiUFoJkX5Vs53M
1QtgDuW1D+N5gpAaWny0uHG5UleEMj5VHGC9YEjFnYQgFrqZh7CJUCnSLVZICKqrxvkerqUVflyP
vhkm71hRr33UcDEwDFCAcKxorD5ix1euyYibX+o/lrDebCCMGMJXfFSnm5iDCdVjiFl5DEjCvW4j
QvkAyZAM9vCX382+kxLtGexyV67FSNcGvIp0qLBHHpBuJt0N0j6IP3TUyajILJX5Ezjq9wxot8mb
oBN7uiEYVZHZB9ZuOm7oHzLqrtYpKLqYcwzsY7ULX3BJun5B7ayDBB9AQY2F/aq5AAWdCe1pt4E/
MfwxO6M4IhrCugizJ3ozuldlHOCxeAS3/rmgnGo0raRn2GGEjeRQsaj86vyRCqpmBSjRxgSX1gUs
z/guFusMPMerLSE9Nl18RXb/wkmmnCudJxEMT+sch+BMnCz3JFgNsSCIJ3izn5l2wQipSSCTdELp
8S1nE4pzzuUpngTHLEUk3tnEadOLu1gB4rh+SKV0RB/0/COIBX1NqXgJ8k/04wKXeld0e93DzFmD
RCj4Fc3Fkkq5IybxiHjmAtnlhANtGD8BXXHqRB3kXKQTUzCI4lG6yenQzHREm8/5LN6OTjKdYjCo
+2MGNi39LFbUZWQq1egxvgJAcpNlhl2DrXNjjthbTfxLFxWOo/26GkHIEO1V50GFGXPsbzvhbOkM
ARvdLDKsDnMQpzEBfo9hPjlKWlJ2FvAKGaNFC5f+ZRrQsqc65gQtZb37zO/SykhykkFi35M8shxf
T0MYJiI7twOdx962s1S82fqZqENV5pQBQL7laHEPMbMu6vOY621Bf/MtWKlMdlDdB8M6FmIB0yF2
usZUqFZEq28vIztxG0cZ8qxwxSiOU2ZgVYy0mnx+tNUCq2sjKuAgrwT1jySVV/Tp9IjE2YI4gXw+
bCvCIYuazCZ4l7zsgPh2HMH7hfTPrDPio1rLRsTYm1xXHRFMNbjNN+tAvKUSgiSVgYueRlAN9WSU
U0oN/0o2yn8XIbc8RDnajHhaP9M6jtn3q0H8hGsCcshujvhAxjUX2Rqm5c004azOgemuPvke+JS8
HalTVhpQbziq68Qe+yUFzTPdIbnwM5U016cdR2JiZuRwOb31E9nkUDg7dzrbOxca+INZMB0vmZdM
ff/gO1IYEa/82WPnXV2oqbtc6qvxJOJTaC5PFEsMGy3zBi7GccnUYj+51cY5j2lOezYDyGKco/xG
KZDGJtm6/Csin4jwpw/8swHRFxaM8nuqPqucBpfhqN4thnh83i8h6UR5TEHo9Zo/dRGXeBABjCS+
WZlmCW6z2zlWhojqJmiKhQ461cFVZ3uc9f2ibeY5fyZi8nZ56PC+Kt+qqhILld8NhsHQXWnyuh3+
MCZmNlO082F0+5tfuYwOJuDOSsPVIXpMe0f7ZUnswDSfTTFlMi28d/btY127Em6snOpJjRNA9mUf
GZp0uc+pzToAFD3cw5KZD0guoxLaKMNpglAvTs2i+KJlZie27roRl7sQ59zaJGe3nVuT9AVodzel
QRhRsjmpmatWBMHRnmVAz6qkJaGfKFsUIxd3yIgDT4vpuL/69ohIATxHxGQaTh3CvBbFNKEOecPN
jTfKu0267WH41EJD17aqKzmf/yaxHk4yCysealbIdDumqYtNAR1l53zQTCNChCZFGlbhw1aEGelm
RCbZ9+Pbhri06G97GEKT+0QbmY/ch/v5xnTLgr5Yrjmi03PzF8o0+B8F2ak+VDhC87roquJBDDKQ
bO06C3kztjWzmTf69XVUeKFCPwN5WWhjZG+xJT5zAFZL9Znk+CPss3O24nwVviVceVmS7/Wk9rTY
cFxdxpkbPpzl3uTv8FOrA3iFlL+Md4eStVB11bj4G6qOcDot2oSVC0QVAbi019ZLTK6tWhGQOcv5
LMiaL7merQC34o/0TiA4aM+3WHBm32XxPAOgomB5ilVFdSFfmmntL62jEd3htYZxhZR9kn+GYOuB
Sv+Q22NGDJlAW3cHrSebK54wVw2uNtjPUDyobEtp9HHjdRVl9j2O6FlMoNVZTDG4xCLQ72QYZ7iS
Eii2px2augN2Uwdesunx3Y04FjnmDdQq4csFckLJpBMHXwutugAJDhPY6mEK+TScieUvt8rNmTki
sscB99Xka1JWAFrm5gjj2gQw1KD9oI+/+JDurTiVAft4Z7kWyBojfwkTyv6ZbK2bSmINv6DCbvXq
Yo8oSp/dOcushWWH7mWBVqY2LJo2VtZRmSDiUZ8Zri9P5Foc2ZBRv6AvXLunv6Iyxtg6uBgXFmU7
OZ1XezE8tTxEwh/LFRLFI3zahSDz604MboU9nBhhUSzPI9hKb/Kkv4ZyhMUPDjZWjdmCri8kH/p/
dLu5GXfWA3X0q1FIhIabZR2CtAyvFFWFzd4B32m3NT94k3cJXo4V3kvUirUhAXyl714zJxtWwyIp
rkTWp1/w+UqFSUBKqlscWJaIiPOc5sApluaao4ERufMcDADG8iAv0OljClk8lTK5XHEAXkTDXRY2
xJonExn4fLTC3I8x88un+QZT4W5RRZt+PxE/i4fDm/GUoTDK2Tu4xIU7nKQy2+vHjdtlNH9vcCLA
Hpv90XAFmyTnxQ1ke5ZJ7uMlvgLSL2eWnRsO3WH1YERQCRL8vDAlEiZZBLclKvIn9X/HK0UU9a2L
7uv2M1hjV2XyBVuInTsOeHeYWIB8wRPTez+YjjsgBQs8laujhus4ZIJmvSCvvS5qEBlthHTHpS5n
GxjyEtoVYE13QCf1elVW5nBonEPRseGSLSwYfFMIsgXAcShRH0WW4HJhIFmqfoL0tm90dSTKCAYS
PJh6errWc8hb10VyohUn3qBl0hxP2Ihbma8sxaBE12DxX5v3OkmZCWzDWNPyW7Hy+e2CkNr582ZX
LV9rHVWeOp03/E+iY1G8eTtFy14kDJ+RxqOjvc7hX0R16o5QRBAzYn2BF8vJz2Ou0BppePXji5MY
iYttiFwbc6kKu9Cwsub2qqzpTyJJv1EVEA96ROG0qzrf4k1dAOHx2oRH2Wf2sLywvwTuCLWAirQh
NBYqzuE78/T0/UlQljVMdFQh3mDHgFoU58b+inHQRucEeRBgxp1O4au9nJjasHwykHwe+bwTveqD
tSDm5rsNZKt1FcDvT1U/17bGR6X5Fu8lAvpZ7GEV8V+9UoPQOdpKbzD9+5jpbW9pKQ7gl0VzpHic
v6uWuxz8gu6jx5QPOCtbSGLwjhvYzVbaZWu4SbwJ2rybZEaPvSsNip6m6Klatr4HsSjdgfF52ZEK
el7sJFr3w9LHBTrQVyQxQfp21qAXDMI71fzOWMb5iP5s1J+9VayL4mVcySdeSxUqSsXu2Iou3pmG
qGn6YaC42vvrX5ABvx0DdsyMSywaovZkjlHUw1eNjY/JMO1B9owLdGI5WNyeRV9EKZ+dFib1TJg0
45mkjDanqRgfsNhHqQWmhCHV2yh+hB0OCgVIFTkKzF3UYjkM8o+dwz5+zl2WMfeII8VvqXETBRHr
VETp2X3LKoiSgLCHlKoFZP8Qe3ACjP4K20f1fCgEcDAkq5uhnAnb0h/Xzjt9+6Z00Bh5vhR1x+Sl
Qly5wbLi2F0bKx0fgxHkpgxWfD1+GdWYQ2NL0/DMNYrpRZTA0CYb9vGdn9NttQneGETXlQZ3tX1G
Q+r4lOQtE/eSHDSv5RRYROAO6ZCjZ0mGwVH9aNsj2iTv4yLxmFC9FlOWl20UMCnYuHbyPUoQVUXE
A/x7QFq+kh9zkLAVRYmsxfpP6gffwPZveaksHl4iOQlSMffufNkWSGBMxB1FPHWy+bpym8PxxYix
5Rm9VN70xPR8cew4l17PvcUnNMJF9jRxLQ0nyGtSQ2WjI/lqKSBp+6qqI47E0NmfgmBQDTf7Jzn5
bjEWMAZ9WOndWC1Q4JIfFhyIvDAM/Oj+bzyNOhzPdkGn8EAlxAZEH+N4fyX+vuC09+JVEkdDe4Ep
MnNvhbnamdqXqfIGjK8spcm1vWHDnDpKsefzlseC9jndAPv7B78mWchobXgTkOr76ooALUNoCJor
tn3E/ii/CCO5AhoyRxkB2to7bE027soGpoQcjnbqt+TkA1C84aZnqywC8V7DoFZLSAP0ORtgWlIt
x8Zl+ijdacHa5rLaZgKp0Uf3BaUw7u1J9B0ZakLNKpCOoemCjLtSETLznkrrCA7NGnZUyugKFHVQ
1c5CLieffxMzHwLk/Z0Cl9dzSSnHofMjg10Sj5mtYSgmXqWshjFhhCqqLs0aPSK5mcY23os02hH5
yxYQ+J7efJLJ87EhiuOzfcRpGdd0THQDZSRAiNZG/fetLa1QUbgAKpR53029VCjqoSV9KUvkr9sX
pyr5lJE9YosRL1RmCL3deshKcbEXYfgXALzGGMix/dD81HDznwmXDyLzHP/dVsHgT6b9y4T47gPI
sOqX8CksGvZSuZTen+JX1XPni/RTODs3G9QJkul1koh0qhcaokkyeb3djjTm777hIfHzJx94Ezt5
/TKGiucYGBHT8svh/wbrB4XFPxw/yFuOgx1se1B9WhNDGXk6Xk18nHedv7PxyKpHGd13ToC5ZXhl
HeALJ8drQHMxbipAJ/jkYXsA9zU9GjwXTKK3Rb8iuWqq4DefOVOJfBAkDVoOJ/7xgmn+wEJwPZlK
q4SbSI+sqmLEdI2QIgdAQQ3/wUNq6lgSRZb9o85ijX8FumfUTkK6JA/LfksVM69zP6QBmt0Qcw9B
TFQRMmyb3KIkBwdMu8jQ0LE5dt3mpRopT31m2acLUaROZSupSW40/MicTlDbUl2DuzNV6TbtilmF
lurM6LNbLXFRI1+R1I9mqsi0a4igfXzcQ/Oy3ephbRe4hiL0vJD13SJakCkfNIeTC8PY/l8ldJS1
hwHAIxygB/j5pNyo+e9Nb56bAMr7SLJWxvfrr2Ecfj9LHAeVs/gPDJKTQnXytBAVND+lt+Mn5PaS
u0hFZpQG4AlfjlrbWw8abnYgFo9kl4skodPHg2XEsKqboay6kA16zIbLSJG/y30bQbK2b39DADhR
TE726CCJc61mtljV1yCPElFLqtlheS/EJRsK8gIvOFITOZJeWqXvEliSDzq3G7GK0U5zCBcqm0mg
ISosAyVd/ZfabB+ufgQtVKMn9iLkpPGPY+lwzz8UdiTRMjlM0NaPXaRc2RQbFsEUtrKJ/3M27n9W
GP++5wBUOUDeOGdDnwqqqIgnOhK5GUFjfqbOs/cxB45LDHkSPUK1xlKQ15NZ4/JfrePjlgVvTjXa
LctZfmO2LZq2vodUJ/6aeslLmCDuG2r3qKbvjXDl7W8rKHOad08wAa1cxQH0OJEVc4jg7Cnamzeg
w9mkE6mPy52JT+bMaG+15ox/oYldaBK88ZIq4r+xONhm3o0eC25yWDQduZ0EiWZMgOG6gVt1hX4M
vgWn9B0P85F88sSL7lm0qWvwFGniMNKXLG4cGjn1vNWrABuTLYMF8E7NonNhwLYGN6FXEthA9gyP
ks4kfDy/WVBqQY1NA1kwbUlW4T+fNQXhphFAO6SEWhd7f3zPc7/4eQ2QJ/xtVowFNt6esJ0o89O4
DR3DUDZSBo7p7ZZrW1kWuiTzOvMs0sXWs+blh6pCLseHrB77qUSRvR733XD4DFWoIGaRSpQpmt7+
6BjPpc+K2pIPoOiHNV+RtOe2nULwAzStTAeWUmc7kSTfjU1tgCdTcL7oJKxUEXJ/4dvk4m0kV4Gi
Rbtd08IpWLz1Ha6V5qq5jnuWNALwnbFrfubtB+SdiduyOqUle3fTpTZ7Q/KOk8l87nER0RblPMhr
eytKwlw/9ArXFhM2v/mCL31GuQgHvqT9Lo1DSARrtsMviCsGmnt8ZqRaP7Djv30Z5Rf97cZM8Fdj
n+aJh8JGyKAPqjWbntyGnOrwdxAZgfQGKt0yQyAdgqgG8iuHwr8UplWCzMuDBpI0Q7f/q5uh0oBc
DWGxLkafkxGHoxAhrqbRzTthLxJCPj8jJWp7RTJGUUBBYM1258rQyGIS2qiFn/bYInWFkxCbnaQx
58lH4xOMN9mwZo2up2JJqqFQznYUxpLId2t2h01v87IpNy+L8hauVvgw18jOtTt90x3caiTiPmpP
iZImKFHDuVG6740ymQphi5tEiDkFEd/6zyjmJ+Cbz/iK8DlE1ATtf0VPpF47S3N2+C7E0EBRBhCc
6R/FVOsySJRlB6+Lqm73Pr1I311sscgPRTTPhjBh8u2bPJmlr248M2CllbS9jG2dCFEhHdEjM8AF
p71cG/FO4Qc5C7/e80bgj/PFrvM9hXsnuzTZpIjVsOQtSJm4Nx/IwSJZvHJ+R2Yijc/9ntQHeays
4AsTn0xrlbDzc5Gzf4PPFSTBDo1r9xaVF5BpN2SUWsuaFwh6OpIzJSRHxW+ShNRPUq8+dxkzhO2I
OmB8BZxeCXIfTJwo/itZOQg3BsS185CwKCsAwLyBL0qeHDsJDQtWptMqoXYSBjSsLPsIuPOzAbyM
79+mfOPD7Q8C0+/O2L3VGAdbJmNmr+EWnHLqly5Xo69q6zG4zJV0Q3syFPQhZhlpnhEgC7Sf9gn1
3VVbBjNIHYQ/+k8UywPaqE3z2eTknjLCxz3DfHOUYa3KI5Sa1JriJaFuG35DD3IXom+5psBwaYQ0
/QtfqsZVxexXZe04QSx8xnU85suJfznm792HOhax930ewwVl50DSytA8xPOifDP4sLC49ByCzelf
Ltw3jIgpBqSylxCxfn/X3WTAYA+OQ4Vg+w6BpkkwAPtbcVJ511G07XyZx/q1/6ZgSh07U1ubDACt
QZZJ1URpw3PqabvdrfokBxwqIjJTrcap5Wt0ecW6PLbLdSGTuiZvyXJwYaf7XjBre16BI9DpD2TU
qrvuogMUAiwnlizjUbvhR4R6mYutXLObdwkWY8Q1aaAL0KwqAc38U2tGaWqiW0Q3Kcrd3eb9R96c
0dioPX2kyGlLBoUwyB3Se8Pmjd1xlIl5k2f4v/51ZR4oLOU74j4kmpkjPBlyQuLl9VEGkxlshnP3
Qng7cXP/MuN4cnov/4mhZ81x8RuIR8XMQZXoaj8OlZt4P5Ur/INlnUEYK8UvcR51JLrioIXFE3jh
qI28EginKpJ+p353aj4mFGGo4sF3y7ablQRICDHn+H054kJeSj7NPhOb8HFkar3RTAZnP0F5C1LG
hrR2sCyvh5hOAZS8l0vPzpheiS6dQjXvHr5VoL94sRh/C1b7liPKV2wQiPmsJ745LBY4MqB5rNJq
53Svu/nK8v9kHrFjfqf85KPswbHKQCrHV0mB6IlJNJqhXoxLBA/IlyKWty+lfrRvR7qhore96HUF
boUZcakPwqwHLmJ6ZNsDWSFhpuqIiyeiQjBhq0k6kEDCiJ7sxR/q1tgVFaum/lw5RI5TA6aSr/IX
t2owC5LQIjmfauEVLx5qnzPgnYDSNEOQecB8lmHB2gPeIVznQnh/otkJZop0mGAfXEfg5e4j2mt3
Ga3tFZNXNOq2Ol/4GDa7Mo70JHzybhw34fJvk1g7sBRF+d/9Lz0KD63VUfcGwm3Ace0+IxCTBkjY
BRu8ahnNunIwnMQqUIQLfKMuiWu2rtqxw+Foxw/aQZaM8IbFRAUyEIzB1zXy/zIJLGpYaRDS3TjX
J55Z7CN0zHXfL6fiDkNLHUpKF2ZMK5jIhfXAjcmUmfFdOSgsanbXJEKFTsNcAY6mIu6QgfdL7Gm/
JGZxfIm1xTK7Hjd4h2YNsVJbDw93DLsnlXa1dZx7ADlSQRe0xxKr62ALQ+E/PNHg+9hgk8uXpFWE
iW/yaCd2MeyjoWRs/GrU/7JBzbcfpxoVy5lH5nxaeIiSOcKRGkra9gdsSM86Xdm4POzSYn2pTZqU
BGe4oHknoXkoWsxDQ0h1eFjSmzA/eciwmsVfXeRB3tTmUlgHWqweB4uocbdBQATmYlcTqDw3ijOU
e+Inv9yT/w2e/B2eg35tO0pn8sJTUlOpnbL4Hx0Bxs879I4rLZ7MDBAxL6KCNbYgDxg/jEldxGS4
YhpgZfC78w6WqEUkDiEvPDOYGt19jDhr305WQEYK1dwEXGS5yVktqlqMPrL0fDv6yY6EnaZOGts0
yjs6u9JMM8fOM7qnkp7IGw1sNTnaA+HvnqqXex7DL542PmaHBS63iM9BOB4vImh1Lx8tqYk6vefa
vCpcEJ7KGyZKPcbMlkkDDro3XLt7By3Y3kHjIOdl9MxAdUka+1pytAfXNd0fFJxOGCwBokWhCA0h
wKKpsPdLiucunnsSALiTslhWKnVGkyMMll9TQ5SRa0gsfIYbCLwHrPUNBOw1e713JNgWG28Hhe9q
vT1EXr4eIVN9FPHnHkWIjgw4Q+9QDZyEVUcRIhmrUKEKWp9BphNVsPTLVwe/wkKmtYwaLKfDuN2j
0WCgYq6WZjMdmJpJg4anO4VIJEepphkPq54x7OeYQ5X/Rvpzim9Sua5ipSgIZz7dtRsstmcYsmvk
NQmKpId4T9BTKkCarZgQsleCGzCDQG20qmxrg+N9Rf1Es220E6faNj3GY/trvEusfP3IfxgXuoUM
9ZN6gtOBOqjNePyI5Pk8pnGpHWh0f4GK3plROxUBqsBMUFZDmJLrH3+UOuvnRO1SYM1RAtE9ojGN
YHrJUwlKz2VIkT1suy01jJLSAed2YN1avsmjXGayA24sJVMomHx/A03UhQxKsrjwz7QZtbudSDx0
TRsqAHIFTQb9C/Jzq++eaRzr63kDICGsvxdroNjl4tBTmv0lPoenQzXcQan5eX9v9HtOwemxLYBe
GlLyhaAZgYVAb820UaUzmUF7nBJyYhGPkuSQYKNIXIl3RpHUGCaMsl1sIZNeiJOplmwtke28NF1+
tQIOX6qJIgauP6BskQ6P4+6LBslNVWHwwbm471bDHGA6DNlMZAWMPnZRoyIosj3ytIqLsLUE7uJX
EgycMjVcCzf3lpVUDz/OTAQEl2fraC5J1v4buFJXYknZo/W74l6QBAdYmxtbjKPSu6BDANhP+I+6
rt0cMHBg0Di/G57jaSTPvfkSATkKQDFCTF4xyG67YU7dXyCPByTXclCFJSezHMKZsj75zXfpgF2g
zXq3flPCBCb7WXt5PJMenRz8bOBLJiSN2orhQkZTDKzHdi6UFX4xht8m+sLv8G24GyW7hBYZp5LC
+5LrPetNvSQD14Uw1IxNlmHfDMnrlIvQkq0OOeGgl4HbdHJKyr+5vLmdBp6In5CRpC7AAqjAoTJ/
aWVKUbYmnK1Y1sENrXNNLjhOGw0JQWdk40HM+HqfLZ7RdVxkL2AG3H5BhF6SGBoMe30wdorAUUaE
9rYRCUEZRZ2RtCkVrb1UBHCDqVQmPY94H9yzhz2zamej3nP/t17tWRpw+YXQvKCrc/TIoTwx19Ae
dtHuyqAEZw9DkQBd3N7EP9j7EN78zPzC7jB0yWUWh+iDixtIWYU7QICVaXZYDsEH0oFN2vJDU/32
QyBO3LYg20EEraAT2C4Fy+jjNb9W1wUOHyqNywO9Q6g5MxCXnI0kaz/NIC8aZdqkiFdeI17W0wJJ
UQMR0P3yIvk4HCoyk8ipVlbaaU1j4ZV4rhPT7Px1Lxmb2Qx4x/NhHR3LlWOqFuxWmUCt5aQf12tJ
lP1CCoGxDYxUKFTNr+1/5WrzxMjU3fdAvrJSwO5t+pHvC0iq6hB3tjDnoUVABPijv0wIFHbUFugQ
axrveYDKs1XccT+33/DmkniCALc5l05Ano4Kq8LaGpG1l8r61CF+bBRk4hiNqRdL9vNkZXwVlM8W
1RKRmsbtWvxCL3sMIH8CX7FCORrH3CinQv0OOfSnTbhWg8CoVeR65dh3lPFmoN6bwhmyU4JC+oCn
vvUmNsmjILDd9GD8KjjqC6LdLebzVF8cG3HBK3KK3KWInm+oJSZZrfHVfLkG54tGJaCJj92g7yEB
Q8PiNu8blnprxUCR221bnoF3Vt63akywABrkg81vjGaUkxFOIxJO48qSPy2LSwWUdxgEf2qXd8cQ
TwOLLiwvnhZbc3pgqdOI5ZbPwWo7davXCAfPmNaqhdquopYtR848d1XdwimEqjJ1SAaIsA8Z+nzT
Zn2Fc1hliqW35SIBr0U3xmaDXXbF7W0Pg7QV9anDOnPe3KjUKc4JeDZtxMSH/SsuQ9w6HGPMIbba
+fbnVt3oFCG4RqMIYGNWwcJzM5PEu1w6gz8T5fJTQZmaOHXUf8amyPw7crt0bUj/VsOWplbBLsVr
t8RZX54ziyniX8JomtISm7YSRDquw5Qp3uwafHLIMlbms4YMVcBZL89Y1C5b799QMGCPm1rEmH6a
0XhO6JkXk8fNKpEZdVaSPIkyUUbsTZfoYY83O9c3hGtB1Qo0XVBqICbckp9YGxMSdzGS4Hwjqbjg
uZL9OhYIslKXUZxe2jqOXzKfnzrh11Qh12+l18iItVjCvVkgiMRYxJ7jaVdghco2UdljbAOyo0eb
s9XWndO5HtsHhgmvVKXH0bSLF4HIsGZSsmwOnn7SNgAUnK6ghX1WTMk5/HoMZ6pJsK1VIzwPUimK
x8knDPQb0uJN/gqCOjIYbMD9aIqBu+qgy8xFPjfWesgXswo1dlcbOhj3OKNqxsr5NTS5MTSjlRv9
fNGyA7AodhunPP2Gb4YHR2yjZGRIjjtQqDcxRzzbxqKf9xOLRq8wg4SpdHXru5JtoESe3p8QQ+tq
YkDbVCLn7DNnRs6a1C5981WqU4z3qlbldE7g8OU+McvGzzW9/jSQnnwKZKiFeKJTLYJMcgE7WFCe
cRgUYcjapcKIKdlQ1z2NLCaZGJTOCE8Xj6LHUcJcUe7WUc8Cc0hwrn25zlDsTl5/4Y1pfdVPx6yD
iqsPRSV42Ct5LoZRG6rChd2FL7Qu+dFHs65kNbjEfWKVyDVa/77cjACkW2GTkqOr0U+gNKFc0qpn
J5RuWTu3mgG/hsWK0Jvr68hpOVyAF6OkwscDtEdcin5Pv3Kos+UUHgfCar2YaqVEFcv7DrMxo7Kt
6kWqFYe7mSrfkiRiwfBUiNMqbWQLgL5a5W4UrmvmynjI9GKiDNIgBN27mt7Ka9PtwuvHgdG/qS4J
9yUE/jAnQilx8Bl18aCPX+CzoX1KvB7C3ksDZHHUuUAFOR/Rq5uGDNJVkqZ7YkzcBTDFNzJd4j0C
HaCX6NT+TrnGilXb4I1PUj+q4AdpRN64cZN/rC1DVJsnFbPWRInsxMYa3VkQjm/hOnNcpiSvHM2O
dv03ANjV87RWctbkpVxs/nJ11zur4moFS5tkevWCDfZSJAzewA3Dx5VZsFiAlS+8Fw7+Ei9Exy1A
4XUQeX/F0SQqucxMozVBTc3nM28SJDu0DYLMG2ximYpUdxmFzgwQK2x2nBWZ6frf0hnRcYv8fzZk
+FbQIkczrq2z6irj/v2LL5xWk70r96z8PpypnGQpxgoHKbR1tKxN2ZbGD3qVXbFqj8lrzLWdGg24
cQdiv7E3ZZdkjo0lPm2kWTQBIiXNv6A0cq2005NiuqiUi8gIXPKXt8PrHBYPKQcDcNO1yopdo1iq
77vZ1c8EC18WyKjNZg8WSABPcrVCp0ELhM5z+xt8vj/S5XYSvHzAynVg+8WrtJK5YCYd5CAuxiUa
cwk8GYg/VPcibc366kA1SOWBjyJEMLmRIzeoqZvhMx98zHpXXlBny8WiUYsvszjAzpxPPcVoHpMM
S/F90t9Pa4OQklKAwe+ifSAOOB5SgpBCyTAU5e4+nm+b6FBJ4d/Xbp0tMi8kkAm/MnA1wGJtDL3o
O2BCy+AEM/zGyyCvvMNL8zdj/W02BhNhJkhQYXT4xu7zjeyF2B+oWHGJVi/rPxsCQcyQrQ3AXcSF
brW2Fglo7Wwg4AglkYXtTMcYgu5dyceyUkZkOeK5Obxh7+cEFMQh2HxhnoXBm2c2hm4tyKyx5l6x
ohoTFjQ4YxZZ66+zmuGUokhu84k61Jwlf+qLA7m1sLMxJhHszuJa12YGdpADzGHR0JNdaMw7Mrb/
Rg4zEfsLSriKmkbyYgmOT6H3XfOrGWUU7O7MUxOQsBwFT4Q8xCCCtkK+RgwrAPzKGRlnptxkasDq
BYPHdUNpoZWqAR5uyh3oTYOOydmxHShvzDsMqP7DvxwiBZFBOx/fj6z+wN8xvRAnw8phhJcB+yG5
W6ojpwmu0C+MuDDp0g8ZGMZLkvttHc0I8IcGZtsFjTMjv2wMCKHO9kBBvUXnkDlfFFurtdyrQ8jk
S+fND7fsyF4t1P3aQrHjSMN7+2iOlFuETacvvGVTkelbcnUXCWSmGB6qesHmEuvx6nnGtZCQPBxN
IGuYItsoWBUCwuxseQVGJWPVagmln8HAXxv1BnEqNEKzL0armi2NusD1Ke1RVAkzqKX+YsUikhQQ
/1rJI0GUc1gEi9qqjLWTxm+loIEkP4IWBHlY6jfB1PtBDWmVOXwn/XB1vjVz54yhoIXtX5IBmt73
T0/m1WU26s6oI+6AH445dGutiN3Q/sBj74Mhj0HCRVyjnwZqyqKQNXe9CkJIuJUb8WiBbs7FJYFJ
0LPVcZXYovh0nTZgnm/id2c5ts4WLloer/MX9Q/hHDcxKX3dmZAO8ZfDeHhux92ysxTdxD2azGFc
HMsmIiWeUE4pUTU05F+/MOZLHn9LWFQ2IUAEmSDM3ipM+yrcCahaTGHB835yJc6Dl/D61VCPXKZ1
L1xL0n4UOzaqON1KQC7ZKnuK6ZAEYmstettyZNkLyCwZqHnFkzYR9bpIEk9LDXaBkAHGXi5QloEv
tGSpBr2nRKWJNu20sR3JZCZUS/gtuxX2Fg40X2PhOzLZABTB7FJtQ30rzDBlfHe7Yga9OrhjgXDc
KdDJ7Z/n9bwvb4tS/p18NpMDhOK7lpj5P4bnKZ7V4ZpnlWlgLQ6x3UK5BCK6DFsJNtdk6d50Olc5
3bTU0Q6pisRGClm0ARcM+M+8RrGQllKuWXzaOY+yxieonhNY0fMtmB2f/GjrgSqUDTPLPAL2zVXE
qG95D6cpc/GwDpcwfLpUvq9ni9yp+6YCmIkHIhGRw2f4WHXz4UfYRRBxqfoINzbBwKTEmi31eiqF
B1aN5+U4iBXQLrkPRGAfHzR87YD6djXQOOSyHMAzXN2Fw37I97MOgQybtrwBP7WkkH5Xo1t1qRwt
uMnZKWSLLvNsoDWBgQ9MqVUm7iXo1W68zwTa9U8CTtpkjRhVLNqcJIwj5QoGvx327Ibf0/7BUjnm
BKDGT1lr4WhIWd2fdVkBposDzd0WNFY//TJ542ciBHtQMFiiv7+xLh7AMYcuvpXJHGhMb3xFbMcp
3C9wTI6gzMd2TW6K9HxzzzSrQ4EfdGkrw+iVC5JxQ+frvZBo6jdzILkc+GbPqjbaSZ81+mOSfnPo
/jHJlZnr3dw/iglzgykrDdLAnGsLUa56/Ummb11Z0EflcelLN+wpjgIfwB0esFiFVJfE0BzqMtBB
VfGUDuBhNd/BEPIW7ypP2p0CEn8jHJYIAj1vC8WoAsw+rjspi4uygoYG/spjaMhhUigNT1sIamGk
ElTCjKRQqDQ+TZTlE1W+d7mL0uAUy32eXa0avJVmIYbnUBtOB6x+zI0MM8i86ob5+g+bKtjPf1Mf
Hvod6255cXQ9TISH65/24u6jVBW3uTuRQAxEzIPrdudG/7McOGpIOWkemzM+JRzkIjykx4Oop5Bb
dUapHXD83SfOnyiS84eMK9LifgM0OWGmsJ3H2xavrLBHYbYElJFOhHGb1AhARJBcQ1JwOO4a0fTO
Og+B6nFz7U1znn9ItdcJKt3zSuvhuUeVKYFHw9cOcDGYO29ULkRrEwXAx1VIATYJFdHzMq8bfE1H
pxSyTGfDWTeJ/QNtPiWRFl+wmTtTsZyClql0VumBx1ibTHUbc4iENz78RTwJOeSaytyO5nAq+luB
Rowm+q1EQ7Yfn1dhHUboiw9uqBBlThs9XEl5iXr8wks1OFiFF1vxt+0kWzfKFyUt6EOye4dz8OQ2
0NHmez3h7i5tU/rYoc2lCfqzjmBcDnEcKRxP4UQG2wYmQvlSNbP7SAZjfxWuDaxT9Vb2rF3iY9k6
rvkFMP9ZQsxm0jri/MfuwmQQ3XJ+J64kcpQd7JZ3nmGpsHokfXL9dj+YiAjN5H6fAo4CKc1uUzJj
/xOKnx0GIRmCu/ifh3X5yNYDY0vSD6CKXnBnlgYgExVLgX3r4eutDcM5b7hieO3D7fIA0SNrV8T/
QcC1ovlsW6bzF6yMkWJe3SFViWaa+kcJt0/M/62nkUyJHhwNSWh7KUTiUarw457X6JH0epHlaQFH
A/M+ZoNHuBsDEmOak+c0syrOCz8fSpyf7xPNyvqa1UagoHKpqGspCYt9bJTvqP2QGjmjvG6Wofro
+LMQihv/9waewWoQn+nd0HuFswagEi0tZbmlBxL5E8pss1tSFJvqNHSDjx6onX+WZOaJmJdbi7dd
VvVRAueDtxc5kD9g/7HTeSKpMgO2WSnMEhUzt6suEzPsYqRPCVoefr6sJusBYcjnNHWPq5WTlAgk
mKKPpL1lUDBcWS4EdTGHWUItFjYnka06laJExSi/Z6I/CRNS76QKnMlBWMiNkRp6zLPQbp+Q2wAv
M4A3CkNXaU3PspK0f8QjLLdQ13vgdG5vi1N49zQ3MGQsuKrwIz9Vyp/I3cRLxzDkJCp0QFxM1I/K
YmY2WmxfTAkddzGdQ7r17ITQe/D/w2iYnLkKLAZH9JUt/WuvSWrEa0cXjtOZvdkmPk1Jnn4YhKbD
zKymYQZSz+Q48YZJk4jDlzoHGGBlGWFggnlk+XAuESxzAbNuED3FMig0EjzQ5Krl0sTwAcViTnVf
cAlzB822GyRZNIiJ4u8IpjuuwRZb3n/Doetvo+e+dsQ9SJJ+37KaTnUvDi3yVGn5MG9EfCMC/wkw
lz4dk+9zWnZ0+E27nKINJYethL6eL5Aebu3yqm1BPilG4MkOQIlAuoTYPFkerPOqzoHDX6T+FlRH
sNDQpVH4iHx+BaBXMAgq6PVaY6qApY8UZQYYPurDA/nokM5+rL60UjrjvZJGv5xlhYHS+CWe/q7G
bLOS3KuT7CEsdsPy6Gkez3o2KR8Xo4Gm7vgDxU9KiNP7DGxQev8S7KjZw+Xo0PzkkiXEM0ixJ1F9
AJzTj3QkCoQxxED3mbMaOV7ysdqt+Pqw/hm/LTOCj3jZ0ymyQAY3j5Vr0A4ruPGAIdkxJ5eFW0hE
E3Gj2x+L04NM11kjz2xbNUQh/C3FEIs8i6XT/gqi2JrA4YfdJWAdwvRK58chtakvfK0hv43S+VOB
NNqzOBdG0S7G6x+QhoaDpNADRuZ17eztaHIaRUwp011rJPPGYGC8chIgLJ9ZF+ZmDFwn/4OYjczn
nSPYIA/Kt2rChKGXSKmDGVudTipDEKaTxV2klo1dC+x3GUTxR4yvES7R09Ee3SJl1qVjbBO0V3Ga
6aBa7ULX4BqYU1eKvLYj0Z3G3dDDbPKk5AK2YivmtHyG1p/f86PGwTqnh1poeFodDjnEk1V2gmkT
Nrne/pkZDN3BXs61R931Ly31k9aG17HO/E8nADHvH+ty1CCsJcq+RtXx4uvTE68Pj9VKr1ZDo/hs
WPSLjUglnNii48twt4qo6vZiriIvSFXZ4MqxIx8W/IZralVAEM48hxQYCHa8+Ojd1pch6vOR1LvZ
B4qoXgpxulWyZUfBdN5fw5aR1i3Lc2lHGfntnpOQrwbr/1n/sVck/KBfMpJNg9cYKjRimEfbvlvd
JX70vzJs1oZJMPBH/BjE31WH0WxL3BQrrweNTfAjV9/7P3/UVZWt8+HBNvjO6WWeXqf1CVZ8CTMM
90FBEgrFsXG21RN6HS/sPGujkhsvg/gd1k9UDXZc8Oe/y9zPvhguTTH5fzYpWvPBYHUDyugcM/sS
wTmrkvGZbuEkEhF27qrgzknH1FDKFD7SyVbVGJcGgIEH+bm5shh7gx9nM3iO3ExsJzxEoE0xKkiN
1wazInn0bYWPcGFdgRGus3fnj9LBS5Fb+exhm2bN7lg07aPST5sqg2OiOeDAkvQY8AD9TOV2Zv5L
9NQhRF+BTxwkJF3UYOgwTtbltc5FxNd5sz0teuBv9TQGXpB/tz3Tfx1BPjGrHJ7d2/r4xgbKk/XV
0pHJzblP+I/QHh9vGnZXgnkmQbXgOfgrfDv1gMjwfZYcHbypHp1sRwKdaypSG6ss+kIltL+XD13t
MqhM2o2FRsmF4o8iT6YfITqhWyCNVmuCVBTv39wq7LrCL+jh3CqQLxk3G/ju9oq2YFxB6tyIHtEr
6fawSeDQH7OryY+piw+HhqTgGRlcJTtydYBcvpokA3NYJBCQE/AOiwhp8Z7MouF+jWiJK/2TuA/G
m9dYGpi/l0o0BHxC0+1NJchDDbOMypCMVOi3yupxhnGjXM49/U9tRu1mpxJRekx5GrVKRiqpZxEv
uqJZQaCrrIzPPO+jYl4TjHUer9xCoQOhEkaTakX7AP5bhtVhqlCf8R/dcC3Bwl5n39GhybFk3CwQ
dWVHE3L71Ml3bprxbL7Lz7rijit3K7+x0ZZ+72XDZSJLL3/GKFtGafkrXTYj354fW830jooZPfgp
OaOup5sgnkIyLW+pvGVg22VhWX3uVbl5/DalX0Pxr1migITAJExXfe6DWbQGCyjBD1jR4WWFUL1H
46O3RG2oVut4UELNs9IJeWmRBaOaglNVKu180zgVd/DmkXG7G0AEI2FNVy1gFOPYSG42CyTmmkC2
vBTNFDq4U/xzSvjR3dUFXUAqGT8URKlLuy5b/RZkcHr9hF6UuERbliTWrwhwPw59/H3qRERjnztJ
2PmRzZEpJ9/j2S05L9PwFbZ2NP/qakKzg9aRA5gBwfcs2+t0zN2vgB8wnpdF9MhG3h3MX+PX6Qfh
jQtJYe/IuSrvRPi5VFlX5M8JvJHvInL1vySmnCuC6Wj/061fUFJYmfZeqspyIfvWQOCGZkBKk8fK
3tJKmaFEaLDc8Jalsd7SxtDTW5FWAMgQ0bivTbhw2Kdjo3c6xCDF2L6vfvVdcq9ceNnOUQu5o27i
aiY7pnG9//WlQz60+ewYkH/skyF/WHxsPAoJmyjdKbfVVn5+b+Uu/Zdiq7fI/ZJoZgRk73U924Sc
IgwUOauoc5w3HFHuTqvC/8OcVyU4pbIrf/Zf6Jr47/luVTFbOsl4o1HMojUO7yw7vnqJ4/X8sgI2
faH6P8fenfzf0qXkVt/aY9j8GTe9QveqrqpYXs+zO5pBtK3uYSaFYXlct9MIi1OOAjdIjLiUQM0S
fl0kkpEJfPoVWaFrADBJEt3jtH6ttiVSR2NXQeBXPmJ9aTk2NZFVEX19VhBA3EhggSKi1a5qA5XN
5DFZNiRi8qHxQjhT118b5+hXTzttBSEw6Mp3jv5QPHiZAO2vf9FgzDIe9NR9MTuJMgpjud6Ond7j
4BDws+n+Ak4MVDzybrSyEJM9BRkOqQFIfXHyTl4zTHjlb6XZawkam4SNKFi4XyAl9vAPv94nowAC
F+iXP5eKtgNWMYxaZe9v/pY4TeJKJY//r8VnEvEn91G/VEJPAUvwzQrry4Sv+Oo9aD8A1ctpLQqR
yY4leHRxfLfIM1kCeJZrr4UpBgS475RKSvF3dYuVd0BE0pNB1TnbCwWmKJ5j/g5+mI8+QzqP544r
X5OCdK07r2DR99cysSf7+kce61rEuFyIdiaZrz6x2h+BnOQy2mW+0HFifM6PpLGE8Ma4DIgBptod
82+jR/I2bg13pEtaz/yTYtQgfytQAXcyKIMn2crhV4SMfMYzt3KEX09rZ64cK0kQ7eur1yhc0Gqc
UXqNFcLWlJSYohfjuHadtc3zKYvcJ/YCXT2ERS9NcBY6e3HGP2qfzZFKethHk5KZ5Px9b+5cz5uQ
cqdfqn+PDTfNobmNFNkUrrmKmPVkyIOdfMkb0hc+/0IPvpswsUlC0DLFpDh8uch/gFgRhLfpXTfq
GoxMm/snwxD89h2PG4pjBc3ORE+3VGEBsQtfWkm8LPhkVsWGkB6ykIzKZ4NfzhT5O6ARmdR0Fgsj
kaS8wpp259VotZ/LWyhXoiVOdkRAaBRNwU5MDddXUcJjv9ewrDeDzZ07HizXgWUGuxsfi4fLs0XD
duCh5oJxFifCW4/VUqVkbh9h1oVsseZqKKUDz+gnm6CmaeDXDlQ/0Fcdau/WGgEvlfeuGwwk9Mwd
gNQUSdCIzqT4Ob5PkRjPY378PhsVb6ZI1nUH9i7LjcyK0zbQHqKAdjkZko56rzt6Gqy4+5WuS9TJ
egcPRwPMSWYwwTqoVnREnjlIjdsgLZHBmtNfQVsVjpBTqRCfeZColscEcmIXd321eC3HvOgBFOyw
IhdYs91PF3IMNM/A4xa/PNbIQ0hD0qOFhUmx7kUmaoYL2t2tEENhiJlNputZcX4Ei3GCJABKjoFt
9hhBURwFaLt4MRGlv72ManRDlx8WwDwBz5P4Pl0tP+/DriS2FzW5vpWb6OycUhwwzGLm2CSUk7vE
weFJ+mE1g7Aj7NFIHYXejCeP49kWbD1JWpEP5DpyDb3nlTD8bQROt2upCt5VHHdFDJOBa6t7lSbR
E8lNnWBLTCChZ0wyBKcaRNc0p4ckRI11bkdKn72ppJxXUqpmch2129VX/fWDU3Q6xn2D7Ov8q0A4
eqlRjyAIzGt9RshYa4gCEJzuUVK1/3Jse08gF0Cqo0qShB4++mz9WA566eR2IBi2fq3Inoh15Prn
jgfxT4JRWxf9NSY+SnC0UZqKZ/1mpWlA/JQs/LDA1WrIJZSadmtN6vdABI/5WeZhalOvC4O1cGPy
qJQJ4JbWInZzMPi1dqWeXBaeZbEnbpTF0ZAOhA/R3SaDKB70EusTWz65YcmD0xvrn7kkNTcfYdFl
LaLRmuHyr879P+F7HMcWCqCSL+5iXB9DGriouP7t47WLRkCfX67BC+SnQo/UPVMBZdIi/51+W/sa
VeJbDzibV0m6Y4tt00ZCkkHfrX5JMUMRBKGgbOkg7qUWgpvDfk5aHTRVOvQIE6LG1KJbUYFx+N2m
x7CCJgDjGCHo2VBaMqvxyjyineDmnLXgZx2q0pLOZFqqgiqzCLtU/qQsaYbOz55E6ROOsp6c8pI1
7HBFycQJodRs+b/Xp9qE8fQ3/0Quw9DVcnA/ErmsglCzdtrEdY3K2FeiVFJGBYOtzqGLMt6GuC17
LgFT19dO8Wgc20gLlbyxj6CvSrIU5dihAA8BQTjQHQiePfYtNOSgKhPNhoBv/FO0RmNPktIxna3u
xm4N1vLBlaO2oJts8D9/LI/vOwLJLeA1qP2ao7XomvtxiIwUbR99OI9Pj5TkOBzthIhsfnxaHN/l
S2OqEPOVl1OpQJP9cdmaka3OoXDsZHLGpwEpkEv3jYSf3jPN/ZhImSZk3wTrjsHpVydblKstTxrl
WGntQupWXIMOP5exTVhZqp5YWObHLpDEZSjc34kXCokLHuhUrcOvynRsrBQ/rtYO9J1kuI5kqX1K
2KGep7j9e0nWzPqKmYZJK4pacm0iPH400xJ+WZe9ZIxCM5172q9mI69hkPNFoAw2bCJ9UBTMR2jD
cQhyLQMEPa7qIICfErUx25gT0tAH2NbPU9FCzo7CMBb9LD8MxOACxa767ZcBjqnAhn493KJCQJYV
h13KdzI1JDKFABffQb44ZopEpUIBRkmuuBymYqYPJiNWSnVJrY2COzDE6zSCKEaOJz3h//vj9qQg
SqZVsnZSXB+2kwfVrdyDf9wgDoHzl4l0dd8pHvUNJMz8tnOxDTsEFBzon/xJVDQ39regzZfgJvJC
rGhT1ko58MsFfCAIoJvt39t92Zll7ejDx5QcnAFtFbTxgUejJ+L58gaRXVWp7zATcfw8UQqKQnVe
i5nCnLZ4Zuul44mKX9meZCF6fId6SJ3qXhsHFNKARe0SOirTKK7JsIOVmzib6kZf1CU46O28Oj7W
C0YKipmsRwq/ImvAcP7joD1is3/CvroTCK2uwHPHGK+aYU9I5UDScWg2MzOHTP4zpwvBPZCqwDd1
RtAXfJk6j6PWzabKi92E8Ab8IRLqcRdpcBzjo8rcsdHck4atoSUxhRM8EgPLaxl5ftIuz9k4r9kv
FcNPpQh6CozPeSupGoVvR9KOOp2AMNiy+vHdHgRO6Ygscz3ChvYxpjzJkd3g8NuB0f/wRn8WOxbi
l2n+VBkwIujWMXkMn2kheXfaj89ndM1TvlojBxnD54CQ4svQNL5WcVcBPj9MVNttT39DxjbojCpZ
+kYpqaC0bpTb6Noqk1LLkRX8rtitqMBE5TO6HwWUifw+JyDbKGJ1yqvrIBBK6+vQttdm68jiwARF
Uf7JNb/G/YhP/arXbWJTjkfvtPjq/g2tgwIpow7m9SCuB9yMLCfXeHGqxn0TswdHCtyAaVTU0u3E
InBylxeOvJEYcpVHq78vSpn2TJO1ypEhAWD//90VeutgaioHHPE2auTdojOONEGt4u9mjrrGOnI+
PtFtSFzWR1cB+IT9t6Bh+pb73N0ML+FcxGQdpb9qvnoF5mO/FaL1syDef6nwIJcLvn1KaSUAo8nE
6TU9JsLEqKb7vJ2v39LNjytbK0PDXwO0v0u1AsglgkAL1ME3yAJtTnbOBWnNS3nQk+ekz76VNbcb
vLnSPk/ZRw1DW6ymwbaLM2VWy9Uz6g/TcOXxtQSWTnwPw8iNM/wLvlLZ6MozTIXUnrwiMNxncIp8
+/KWmA4HQvmQWqvLop2ybd0CMQmkvcNeevhXHDtnJ0Cl60rjr6Z5hLyedyDloMYwbxHujJB54w4g
+BWHx3YcKMVqIE+DkCPZiwong34oqf+BheoPObaMK6hsguacAe7nkpixCZEUADvRjhh8u2M1eNXr
m3QAdKcni6hl5S/zIEhF5lpmWNXCAm/fg3GgBxJh1fnj0aloxL1B1CTaCTCAfF4kPrEK5aA+ZjKH
QdJyn12vRE0Mra9s7kDUHycFNFmr2wgUVYxofff/JzRb7fO006zGvoZCpXxQ5vVS5fh88iCy4PM3
7PBYL6asp0yFu7yjk8lTTJITFXDkOwli/Rd7TecdGtRGmSXxL3jZ2NqcxsBuwgTLQwen6BL/0K7Q
srsVX4u/ef57xtknd00dyfjcQLmZ7PAwMAdQabYTxWXIxjzlVlQfrirQqfdlA1xW7qvI1+N4E3cj
AJqtXgGAVuueXgLdIjLdf6XXKI4u4Otn/3YOgc6ILLmtSUPzbzEwttEDRMypqU4TmOpm4BAVbDQf
6eT5y7S/4eAmQ0sNAqoUir0gn/V/XFvuLbXpPEFAu3qJrnOwsHBKd/Q94uV0jb275vIfBJtdaCLE
+FvQSODHEUChDTK1UpaKXlrFXla6NJwvAnr22d8egIWP2OkrGx4pmqqTqarVvizA8CnGXRHHJUp/
gs1AC++jfakLIqeJqj/QToYkoc1nTbNZzbltA93OnQ1jtMn9URGE1gFVokiUOz4i1quSqa1nkmfx
2SMmkk5uF7SSUypsbCEYg9aI/wfWUTQ2DMtbXpgGwdtMJYRcBxKEJdQ5J734NddQDLCKPQ9sOwM3
74wOyrgnCWBBtzRV+7blj5E45n+bh/NTlcJf1CvxuwECEUkcpEVIaB5zlFQuUJMluw7Ml1/JQfTN
GJam4+Bb2aIO8PJ1st4sn3+qox59ytUlDjHyeqZw2mAJYBjYk3qSK3EFhLqjM9zWnyAMvX93OBo8
h9NHm6vAwBzjyNXQaC9DmDiZyw0AsW4OtGM6NIhmEH287ZyrFUB0TqoAtrZy/rH3hv5+O83C0xCs
F6dqlMQLOIyeP+makgU2swPFhy8tpyngbid9HrWgPfWVgcFmh5Zzc0gOLgOLh+13FWJiFgoAAQZK
WG04ED9gmhMn0HlAWQvFM26qO3f6yRkulp22tR5ofoXDlTD2VCwcIp2wEyjitGlxuT395NULuSAl
/JdJ4yH5O7PkxzrVFHn8IQ8e3wAUCWXUN/OASN2PydwT0AK6s2+iI38jEbUw/605RxPAvSjaml9p
BjhZ7CqJuV28WIXQnWOwOso02ZSeIWPcJi1NHHCbJ61wUQQAeA0zrP9zLpfBE6Jkz6BIsk3IKRRe
G76A+qv+YWtJ7wyam/bhtMaKkkZsUkgY5cAFn9q4vxuQtqksC+t0LtkfOmSnJwZs4jlB1Tc2aiOX
tObMifGQkInybnQUS3FRVNNnFqxIaZL0LCXsbDoItsWJKbF1Cu/6+5Hd/V6h7UjvTrvmdgrRKS/V
/0DCtRn3uLtr6/kKiI/DNRXgqlL8XOCjP9RitbscmRcGuO2uh+h5yUlTaziD624J70sMhlkukXuW
S+hRR0B5XYFC6Q1Cs0h3XPPslifHy9mckJSQBSkZvhdz7VkhC3B+tVvSkEWA1rrIGGDlONvKS42V
aLwXTcaPYmZ1xMIR0FLS6jUUg85tpeFssySbovyay48LSo+b0s9Y/lUpVGiqjhWUey+1vWl6h3jX
MMmW/caSoAamxCI3pOSzZcmYMedT48kpqpNAQRvkjNGFoI3NdxXZD2RSZwlAtqixBc8Z29UHXCyZ
9v/w6QFzCEs9WXbV+D90ln8NVGE9rmvb1WVbKLdLg/Dggqvb+J33jaCqkbYaSRZnu0Va+rHkQCRS
Du8GxH+SD8rZhL6TFkwC5I3lSD+JPm7oeJFdYBqnHP5RHU0ExhFLSrQwrv4hFte8hnZjpnkt9jLa
CcBjk2oR1rL4LIe6nw8+tbkR8CWkjenGBTh7Z8zxwjxvrTClVaprRGmL7O/44qEoZ+qMvnvldAoA
vn7rRlNsMhCdhqWFqqEQeBY0PiykNTsVxNO+ZtDWcXnR9h705RagOkJ4KvRbo+WKErbC1DPEnlyo
k1bNDitUzoPvQr3tLK+TY4+x84vkT1L75yl6SHYNaviZaKZTY0/lohrQah4wG2HfWdPB+h//fRKB
GaAegszObgZZWYbln8JXVwcLZ7oCu56waUPsprS6Cdq3m5NsAHpFeBZEGw2D+ewMQg/GebRDqVnh
DjQP+Axf/Z2AZonTeEC0d6SxZsWue4CAUPGGC36z8FwjmzLUg/Xnaf08N3FY//MfRYqWgqEUiKkP
EXJ/DFVzW7DnEUxQJ/yWsZVLwVs4N4X2EPTN1czgp63CrPeDrGR3UPo08k31qsBAnvgz66gjkOCc
5CE8M65NjbypUx38OxrAqGN3Pp1s1/2AFaYoEnmuDpsxRupevxfc53uv3r4w/sR6oRNuoCov2Msi
BrQvbnctu6qX8OKUKO40kjx2dgyVGHcBqJLGsUpWA1BgUX/QkwkFUx89BIT2aOvE8y1rxRSClpwk
AsZZ8/IMn5Mwv08FdBfJ1urgBKO6SA5XrHv30iadpSDvZbMMTVGuLeGM5E+fsmFA22T/IT/KhZib
98bEy8hd+pkBZWryit34+Q7o/6n4y89ezZPZdp3vxRekqgMFfzW993N2tHxi5BJuPtITTXXso8Gw
z22R89SvWkEmKxTTFKMQoD05+5DVqsG5OglzLb1/vFBpA0JQbh5rsjryVDCo6pdD4qldOkEr4/Po
E/bx+q5GqmnimLdUq+qUoX3gt8KOK1ntqj6U9Sf6dKaG8XX/uS3F8t627Q8kRV0SW71IczLnxOJA
IEPqh/a5BywLifXMxAt8pwI5tRPSZa3/AW6zYZ+rRx3IHkwuWmSXTDiFsdW0q5ZLjfR+LZ46FZYV
NWDW4RruRNdOBa/7Acb+dzVQdzBlvKp6R/6PBXOn/abcA4HZUpFy4awyqfp1bpUncKGqqHCdvOWl
QPZesTCgKQVLdnBpGcRbJyzfXXkMcrXkTcTJkiCauUlTWYVfBsWz9w8cROGC09cFcUI/gHeSVygH
VjVRKyhQLFgN9G1vkV2dh9Te2dmZ6ReOiRRYt0DAzKgrAGVJ9KngPk3oYJC8iToT943UCJrVENSl
5kx68TdwcYrUeIny2PccWlGuS5uc19GY3XZpP8Hyf3zvbIs6ZGeqG4eDYXp3TyXyB7ejdQhX/m/y
LBN6SjkMOh/MfX7Gi7Xv0/rOFedugS4z1np+I2svbGFr+YwAk54MaUo170t+C6FmbuNCjgsSuOen
3ZZgzy+ghCe/xyUp9+cSjMc7xI2MsRduowyI/T9MIRf+S3cl3miNC/KEOn+J+QtZYf73nQ4VOIC6
gF0FqZ/YlBj+Go5NGgwLKHzc3pXgcaDtcPjgLPqVMgr4WYSpUSEuLXsbriCA+fXNiEBoSuVQYoMu
QgSgg3+2nvVcJSlNZjqQ7D/D5/eP7mfWq3z60mSoJSaIE/D/5/+F0pQWHv01HTvdwmTcwOce2uvl
qwsJG/foXHYyMymc6VjRJRrDlTG07b1+R0AkVV2amiRtsDCwIIYuyoNASUDQDA2iFzbBr4xRcEUn
mL9kQlRf2MVr9orC045jaoPUx0TC3pB8vndnOL19+BA/+Dn0wYYYsAD4gorJkVqfRGDsRigSjQLK
CoDEU3GS+tPjA3BUX2zTYeNcxwmE9I+1WjLbGkeJmyKfnmi8I+2M2yD2rWBp4Ce+1pQGFy41mDJA
hJ6yQ90ySKwaEY3F8X93wS6ubunvmDI3CAuox2ulPIZncKqsQyea9fTw5aMpXeWAwtRIJb2KW6Ja
rkW9L9RlC0h6gA67Ust3kKG3DS29jPxzaMSEiFHDOSEN32jRmMLmAaYkBXvxHjJUoP9POS3kg0Oi
qglwjZcLSGJyWEk9OFDsRnOr1fdCVVhkw1ath8TTDGYouzCWxslNf2drWiqkbfWI5GzlaamAyuTR
8XHtBv3b2NMgNWDfv1d0Nq2YLFC5SVHaJOPm9o4uqNp5my2YcyYRvLAN7LtG3kY/nftRLqag5sDm
hhGUe0R/H+BsfCC8A5wrIB6rN9hVHxgDHIXjIUDMDCSzcZR+fSWe65RSe/C/YytMMhhqrONVBlpN
sqqg4MYTD+tSfybWDOfaXiMHhJknNetmBqKAgiX8RQfQZaSsQTL55hF2X8GkT3Yr1Ce94Dx0F5UN
sg8p019KXHIOr0aIy/YU6sw0deK67uz6h5rGiP0wkv/UR0VZWv5zhZlJpaRYAfvGdGbj47jYBkfQ
zQtOnF7un4JBG3HQv30t60KuY+HiQr04ayHdLyu6GQZ5BY6F2M0qO9UftVtkjnREPZwDWttITvf+
wr6Xu380tgv7j01Hokf/TnngSEjgJ2wSrzVprELpr1utCk9hm5SIwKYxM9htmHmy0+6Xfr+eMKnR
kiqJPWcVNh+7yP0BfrTMqRliVe739XriFnxN1mkQmNEz589LLTEHGWaBzzP8Yx4Qzdm/GFZbjhKl
SoAQWoo0+YN7kbYN5gjJmV6WDSw5/xqsJ4isniQl2wc8xwVs3we8JpPuqSoS8xJXKtvHcNFIYxPK
LZKYhsdz+VSwtk3Lmq/p1uepykzxyKnQe54SCHwT43mymc8ZRxgT2D+m9lahxxlhY6Fz2BklT/nW
QT5comUIVdminQMuhQXJqfZGQ+cR4crnEPAydMqKMM31IqECnkxe++R6vIOv+MhvzHCE/hnDeim6
ftRYWOHq0uY+Fsiq8VXhMXahr96McldmQb9eSIoUPTanvPxYLEmVAs+VMAgCrzD5UDrxRCarAazg
EpP964ytQwBvhBesTUsU8+wZUQoSsuwSaVKwUDNvwoAVA4uX83r+4oe10WHakGTH1DdRCkW70heq
TI7/wZYhEFyKoylIJtCcGXkr2HaRdz81/Gzih1bGipOY0QrcIRyHP8BU+kJPKnvHiTr0+Zu6EfDY
BftkODIcBtMv955YaaBSANeDqqNl7bFM9C9gYXt0kbGCeBN1QTsYHq5I6CheeJ9cKYQgUMPH2Pgq
T7W00RLPwvg9PBhn1QDPmZussTXI8K4Jbz0WfdJq6YJqfmrSmxZy8CtEBOWk5jff5MuvNRQA0iWc
AtUgG8qSdqNNMMJ5WAzsP5XhaKPu/5B26CyRWo9I7Zt0aa/Lmo04rV3/NgwWvm+8DTcuH0D9pOtE
E59Zvgm9e9jU663LepY/dOBDqFRFyQdAH3CXzgOsIE31hPg/akgG4wGzoViyqHLS9HOJrLNs5Ce+
He2rx+D0lYrVVkYnIeQnodRJUqnNjvxl4tgvuQqAdXqmdpf3CUvVkO4OQBWGQ+g/FxKUlzukXrJy
lYzqnlemNiQuuc6KR3M6XdzOZmtmf64QiZtRGA43Mbb5ArxFBvGeQIp3wBaK3pZ/15GPEjAmYjY9
UmwYnqOZCftQ/bGZC7m6O8XXEh9YsU2oanW519l0/XqdDC1I8Ohj3SxTUa5eEVfSmJK9fpeCqoA0
gJqw0lPUDx3ETagPmYlmlld8956+6W91SEeLcr4fa/FJUcYN6AFKl1j3HPuTWIqlXsE0QcGyj/FV
nT/nb3niRFTe4GmNHO/Lto99pM3SAHqOGrHac5jJci8XjKyajQ/3i6mGxR5VMyjYzDAhPJz4+IoM
jiFAp69i4ZUx1KBqDse4CbysB4b5rMeKDNGfRHyZms2xrD6JVWs8GiMuHTlHTipX1TSIhzUOFhFX
ppEOiCyGl3UKDGTHMwPjVXYqCz8ERyjbXrAxq7bTIa2OdLeQRdyAwCsXOtsTgsuCai5J0GkMcZYc
A5D+9hn9XBDV05K12OugT+S5AjKGs9rcj+zJeDHLxYu5VciwKoFtpbAdJGrfIMmpZhgwuNMYbrVa
dcFhvd5+9ammeed8lzGPBM693AuZh6MNOwgua1pbYvBGW+pAHwAlrDD1lCcjA/EVDP+uykdKFGrJ
VXEWe2VkmmUUxYyyZ8P9p1RI6d2BJC4BlNI3O154SX4gJt2+nc1hBHPBiU2Ksq0T7wAFzEstbv7F
VRm5QggONni3BxIJuf9qaKr1/C4WEYo6NRdH9kz3wsLtkRDsCmjTUMXArraMS8/QKC2Q14w/s/GZ
nXw1dtLh0QvLbX4YQFLlWxrWiL6rjdUbX9PNfG07wmFNZEvAsiqvIgJQBTci0OiBYPUCB8o2AEx/
5inL5Df0pIW3ZyZtxA+gMmn8j6WaA1QWfSRM4D2CVIBDXdl5efhYx9O8SwpKFOnAHQAL9LCh4kUp
DNBgFcW2I7guk5+cCvlzii04FC3bZU0i46lNbbo7Ge37hNdQ+56vm4OzUS6FIIzMN4kRtR9cp3Zd
pH+xR7LdXXN9jubnKgFDN4Y4LzXXw7j5cbIcuwKlSYOYrn4rPFXQXT0e7IE1Mt5wZQ6G/ym1o4mo
KvhFVrBWb+aUcrKci3f4ISOXv/JQjiy+Wpy9XTxYb4OQSliwBwDfy0ZzozN0y4Nfl33wv8ZXQdj+
jOiDVHhH6fegbA4loY+zwMd4Qm4mVFM8NPNYnGLMOaBgxS0vw4vy6vaKTV0RcV4PiZ8f+wQXLBAG
Frdum/oXXxH3cQc+KZKspXxCxUfnQbaqDH/MAqEoUW0x33JoPuxdeUsEw1XmFdw3JFfd/UcH+2yb
S7eihHb2Z9m3z5qZEmGzzmRRWnm1m9mDV+gwUV2TcL9oiP0YWZ4MKWw6heLghsl11TCkwayjtG9S
VK2/j+1s43J69mnWCFIFzQ74ZezVjnCspczmXOWDDRAjcurZNRCUkLVSb8OIsTqlvGhQyf0chn1v
VMKTmAlmNVH50UnlWbE9pxz9V+KiiS89JrYaIOigcW0WldV1nD/6j66AhD9XINMKNft1mzq3z+An
UrY30dkxkBeDvttBhPZ9N8lbEIdFkFT9VC2XL4RbbmPYPfwilGdRF05x30ciYrYe7u7aBolOeNMe
g6Ekgui5IT5fwkw+NamhxWqpTYvfOogCFHQSjlU63Oa9QEe7Vrf4nGsYBAn/j2OsCyeI4bGEEb5I
chYF0kiVGaD8UAsNA/cqDFDb8yTmZajbgjJRKdlOf0TzyeS2ZZUa2lUl1AERSj1j8AB9PLY/WMyJ
M0UhsQGduVMQFfWaQycIsjcv07G7Ufzk/+FENYiF6elQKyHN744HdY0Ocw45l0ANn1sasB7JxYq9
+9tb0eBahW4tL5AcLhnGQFW0C/rS7mWl0Ca2Ctb51/M3wVDvvjOrsBSn25i53rsrt+NAwzAjEjSw
7V7KxWsJZb+cB39/lyt3b2OmEJ1QSSmxAaZyPOZmSGCDysLvlbYtpvXdGNNXUxnrhUPDRSt9BLQF
KQBWdjDmXpISqJ8qCyoGcAvJMd5dgEBWvvTaW+TY+pLQmAKC6tbVSwVji2rn7iRSgH9BXh6hSduK
CS60RpA81gg5H0edxzCzM3QmBgLG9LGbDUxrzN5LPPG+OUGfXtrwZ0RijbMeuujylA8CAdx6pSPe
YPWZelMihiPIqw8o49+UWas+CScRIhHrE15xvrKdGMeJaYJ5CL+AK2UPnlDFlTiIgUBYMzHv/8gp
Ac76S0nZc5PWTsY5aXgLT48kOF0aYBosaGfpkBlmcn1OmwmAHTvhhY86mGpe8zf40gtvMaGyP5t1
qvaVgRjDOjlJiAL9ROGMU1noCcnu66m0JfqnydyvkIPrJWB5dmh1fE7jLcplQbD2/er40geiLCwH
pnU/gQw/Bt2xAPNLPx9PhZdKG1pHRjRAyU4hD4d4m30FwObi6WbAgbyivbZsF7SxZWEUoY1mU6Ro
jag5wIWeE7l9xfS0NeXqoFr5GoMkdmHCFUqO/R56N8v3NbCnGpr4hpiuKfsFoVmc4GUsAyg2NaZ2
y4ypmpq18d0iWUKu8cz0TjQNeMuDhqkTnTpzTCtSqNw492DUADxlGkW2YXcfwd4O3VktXssPX1Rn
rjWqwR/ctap2d+16ZnQ3EaWGDL8izB6EYxWKSVxSIhmcNtyLSrPhczYTu9J9JgPVULNhGMRb5wM1
tsB7TYQVVkjPas0tkwrZCC7lsQl9icIBA2q5OA1/h8ddsQ5VkTXLi9/tSBhpwvh6bUYoxQsWoPGH
h99lYIK93hxSEzuG2Sc+b91+AJAcnEf/D+CiR9YCaYoy42WeyrrMWU6QuurKav7V1aaWzgeva04c
a3S53eal93C1EwTcDJUHOT8QryTsfhTRz6yFezfI8sMeaU58LX2Nplz/9qGZCdYqxzgD+3vKEhlV
7lIvnD7sgYw/O8fC+o0BTUQcc2cReQ1epboa9A2vLAq42yGwVGk37AhzWAUiv8xb0Aq+f9gCEDyB
FWgabjcJidRRC/JUCAZqO/xxY4nkqxlrtRFZYqC6odD+RMXinf6ozmVm/zEB1Yo4GG7iWe94Y9DH
1956g1rK7jj2IcRWD32Jw087HCzoxVGYSkIplGKmmP5QXPzpgRjHMKfY4nf/wgcK3Vgt63GcQrU0
HFrbC96r6lOmkPpeIHJQRwxWtzDFMMy6aSz1qlw9a8U/oTJo5m07Dy7dVSuG8DDgaqBY3gyy3kcY
fpePmvniDBbMOOOYJrk3BomCcD4Y2B2XOdscGqI6ji1+bYTWMSTHOZg7jm89ZBsWfngUIiB2HHHB
XMkUqVdsqVA2XoqvWscZCIqfBQpHz0VmQvMl/wHk9RXpOmeL9k7rrGxbdgwIgPHWvgGw872zOdvO
h0YunzLaeAPLlx0Qyx6QmONmCUPmsEmlZxOXsj/ZmWSKBnSDUqun2zpLVN1ErJ0iV71dhfVq1SQp
f1fPpUx4i1FZwANZdbYrMU0+7l1hHsaE4IvtgP858wiKk0CB2ZYDzbtu8X/I/cQLoATw7AcrGph6
LMPX+9y5dgG5Y3kSS+ST/7eZLzFd2DyjzA2TGsUuwAhJVisKUbgGXBDhMlkjV9OpBx3I8bw56y77
f/ASX8oSrevJVV0pkDslW8BxkHMsl0t8x9x2O4ABFf/o7UpS7Bo9vSq+Ck46SiWCLqJv/yBRfVbO
SVYoG8ilzewBEM1xap8+3uk0MvvUyxaejUDmnD3At3weIgfYPYcMKPmdMJwKliNVlneSoevyU5L8
kneMN/BIb09oAJrAqUMbNjZ2BHC0YUTsdapOv/iT6wlbUx5aweLVGYK+QuUx+IP46XjMQET+G6bF
ASAxjhGzwIvuflfV6RmbXZ8hNKrV5dIe5kJJF3MTrnzWfet/hMFvhtw8eBcfJwG/oNp/gKAHdM8U
phYuS7FoeHFGlht1vbDj71mNUsYCUlG+otM1Rmxa6IrXCbAJM0w5nXXJeDYpzH7xuT378AMc5Ibn
uzgYXuqYrDM/zggXQDDvUe1ppMnsJvZb7nprqkfiWUq4QiqkxG/kVZSJMTSsdaGerx1Iu+BD6Xk+
8+YmEIE/m2N4rnsCw8U6blrz22d550SBlqqRun4HH4nEgkVPyQpCKAycf8NVr1ODvdFMZ8lP6gSP
7J6ObsESN5v5/F7X2fPNghT2VPda+/+TERfreqQy7K/lhTtJbiR5kKXdZQYzegd9ILhcERgB2+af
x02+Rb0aPaykqYHTkfIk1r4RKYlo3NTiAbpMJGE5P7ygkq43eMN6UeQ4QMbM/A6QJ7TZkoCnhWbS
dI/cA/fPg0dPa5jkkaCYuDOkT23UYexJrvIHQ3A9QIfyHPkalUGvdXmYNrM34NLt1sZf2xol5is0
f0fUGTAcL1v+clyRV7bhIVxFC6eYnIcCkm/wsFeHg1eY1h5JPENpayzdiQJE2zS6NYoDqQxcGYcy
4BUAJkS80LbdITk9JRPdSGwpwOxnVyYsHy6XAsnh6DEO9EOi2ubdYXTBDb5SKvtRZxT5SzcINSai
1h0QpM/Jlg1ClZl8ZXEZlU8MoGEKLy/M3vIH8bB/CVVVbQ18pyWy7lXnya3t0yH2RnXXK8cyzcVC
mG998/iz106y+D9Z+5cuXOEaaUQtcZBMgR/cLKYaOFTe7h3fusgF5oSUozbY7gfdY28u76Z4x8L/
WbyRsw1iUmPO2YMtTs+PbejA33RiSkXoXYqpbNFsTCzPuRhXTixTJvoDxtCVJa0HEvzqWJhx+C+B
D/IajZQo+JXYedSsZ3t9b4b1TLK9qZuhT/BQtH8a89jN+wcSapzT4+AWLivqqwmfUBHaPpw5TFL9
QJb4c+7ZjcUa1LlCUygZEDQngWqpWAZTdLLZ0FhIshIizr9N6B1rg3MW7r0+VPDTZ3EehTFrznbX
2OU2qPcpw966WGFx02eODhJQvXKHPQzLb3yrhyEJs22dNoArwnp4kGNxpOjMBchUv9sHWxIeLLa7
CGBCzba9oDGmrlvrJcgPjbZIBEYWuxL7JBxxPwj1I4GdQkq1xPpStBRZgEVkJIMFLvMRUzPRfHrx
8lLRGqfs/Upfc/iB9PEdn12xGUt2mQlpDVxGItssDqwC+UXrzkomWEbkk2v4HMgPbrRVvCbuvQWM
QXjZkLytb1u3p2kHBOQ1zX7uHIuIAtpBspMj/q/E2DJnPjhOu/y2t/AOeubSL16dPMAzgi0EvOZx
XzybSOFQ3jsbLzOZjuoknYSEcHt1GAGzWL1r3q7mCgMWIcClFfIEO1CdbqYWXpQS/h2b8/sraLg+
4Sg9jINkPo5ElGNAVFZHdRYhvA3Zw666egKBzPaboaigMG2aMasXNmM3j2QN2qbvqPttouTmjPWL
pOeHar2RO/u7EHNF0Yo6G0bVofzLDd3+fTXTUJSHJIZ1EW7DKURRcR6QYjMyfV5EI9ErkkIZB83j
iPhvnOZTWKmOwNZt79BJB7Y1NXbnolirNoC3sdxW06oLc2uAQyrN472F6QdBAir7LLMmMGUdGUHj
AQRhLydFuEIqTY7ESeYNfAzuPTyp8H7u2pIFasm5XhPPl9ZR/L2Gg+C2q7SG3iEBzDjENK4OaTZU
lhbR1sWYZEF6WTseGx3lvMk1hyTJyb6wPid4hMQ/d7fv5R6DMSDgLYRrfh6Gs720VhItG/mcbqZz
NQHYTUhyRXQBgECVXe0IhJ3CkSl72raotQihhF0BmcknJE04K0Gfdkuq1bTvvX3SJvY32FgxI1pr
nOye/4VbOBKdKdA+vtpAhWJg32OPWcAlVwsUhgwcn/7S42XYBkUwxbwTfKGvvqS+h3ga+zYoo3u5
2nqWiiJjBe2IMuzNQ2hhsLje2xjpLlKcQv2iGRIAj/8DwBNha97QGik/90iadJ2npODS5KZ+n5xr
4eHVv9JqPjGamL+fLVKcpkwow9Ms2sYuV+TBQgJKxOmLM/QaULP9kvZFr8Kq+pMakfouFDo0xEar
Xvt8zZp+0YVJblhNxTjemOwhdbG2O/NM5W7S/6k3v+oGU7qjwnCNIIffeE2eS/9+0LNHL2TkWn2G
B6RrReYNjL8KvIzxk93nQO+FJw6GabRhQ+Us/CLCp/exEDZJg68AqF6GHFSw8CaW758xaI2ANp/X
W5zFI+jx1ckq39oIp0wCD28zqb9mz6Pdb/QTyBpF29O+xve10YGDiGL3OZic9R2568ZqKJfZEdg7
2dWxIFsZfYXBFzw34btxpiriiEf3pJQbe8z9jWrYhiwoP1NIpSPKfucz3RLlMKgJ8yyXv6s1aH9t
OD4QzulMe9wOuOhDC1xOAY0ar1XWdf+0L8uRYto3LhmMV3lp1njM9n+/dmjEwNEeHvrKejlFIYth
RaWYm9qv6FIdlSq/GM+sqwC7h27Io8UdnnPpUZTr2KzHTD86h/d1P4l674JtHjrlgbgvYFgzWlN8
co73ftn80Dynk8NmTeeXT9i6tqJNsLMRz9yTHY/Pson+XEumR+4eF1j27aCXGyL2h+Wx5VW6Acs/
rwrCpLmNEATXASYjQ5R2h/UHiXY/UpnV+qA8b0Yf82vimRz8zCYBCGEiMKM/a2RQLMhlI6iKubhz
hvJlcyKzcU2RA1G1x5dsW/ujEoEOjP2EfgL/NNB/VEXzS3fUedsb6W9Eyqs9UzEVaht6Tz4IuALB
EYpyHi74hcrY2Uv1WjBsEq/89duujR1ssrdzDq0QC6WOcCAvGFEbgZV1gH0h4BfJXgsfYV/1Sp3w
79g9GtkrRzi/LtpbRDy4hqWeaDBwkK/gZRdA1eeZbxaC1GGyCoVry7ClqyhRA+SxQmxGhSILb9++
pMxurDtCmWdTIiI9JnWOf5uYu6lrvVG2jP+Cc8yVfaoo0OQe60geHgke7jLFqdNjeR//T0SwQLYT
/pqczMrF9T0RFcfx7RrbdA9ybjOHlFA3Zur4tifwHxR6XM+/wI1MgK6BbYGYRCNg9mqIt6xfe6Hx
Xdig7WZAb10cuuZFBD5g8756znCEWnt0pCuZgTtEqwQRvG47o2VtZM36OKtq/wg5Ke/8FQQkqKZD
8nCarVX3Sx8gQEqWy39Csz/jFJ1VgbPdKUtLZRpAI/8f7wFWXBIH10uh9yzVNR26+unmDYORfE2C
pt/52nfR1MtwRHRGKLe4ZzTy/ZLA7vzXV87CPQYXIedq0sVZup1q7rQEnfF1byFXXXw+6J9QdFLx
3P7vGnDecwq6ABeRzFIj8t8q08dr4UpzNI5THtSy/Xl1PK+WTB168/j11rP1dYCIle2p8Lgx8JG9
4i/kM82nuP4aM4z/f4ttPZAL4GqZJQMXw6RhDDx3fKdoslH6vcKv1ad9+9m4e9H9d4/wuUoSPVNR
AAuUf5v9J1YfgwxwWtQO+WJKfoWpRgPb3ICLptXXx2ffSntk60aV7GOgdWCplR8t005v/xPUS/+I
rqbLIeVyY8C3aQrkfxWEtqvCRhqHB0dS2aO6CM/twClc1l4SwoUgDvlnq8kcjMu6AdzP2YFH+msc
pmiZQPpoOtradlbQY6VHzgwaik5yS8BagMzWjBvBwuZocSeTx4lPIAlBjWzf7NODgMW0llPpR/e/
vOs1Wbx0fnxQSDWKuCYYRA/Qis2FvdxDF9idlDWzrYAyr+ip5iHnO5PMVOEQFF1Bh0AsaD6H504q
/pOSqWF6O2+YMDBtSNb5o61M/LLjbql+oUoxbVvXtGIBut3u+aLFIEY660Q9TiWdDLAeRUVRtqy2
/C1QQK45zAavSyy2a/EXcLN90nV+NcGRjSiqdVG0iLlWqoirEEc806vBtFMPh1SQCfpqpwv9c18z
9mB1VYwCAFRYgDJo0InJkM8UzSxLdwFr7uSRaUBRdygExqjusKzeezpBakxEaW8pdC/6ygAz8xT8
zgtq7VGJ0FxjjsqKFVmdM6/StLTpNe+v1/QjebPXrjMNmytJmNR3q5ptpJwNE4HAepvhCEokG3au
itv3Xhu8qiD5eUN6jYthgR/4NJmQhz3RH0Crt1h+W2Rbwbkieh4Petps3BO9c72scO1yfyjw3chC
61NpK1W9fdSDfTFNd54vwjI0N5gBx/uJ9FZzhVAhF8iRirsQpE1mPLhDHOccqHOgleOIzz6WjBzb
2sqDAEhe0PLGzQA+tqDOdFrZVujOhoAe+Kjsj5QsP3zNWKTuuNruno4CBiC1ueVDkxbsCsl9Fb6i
S5JL1DyPp6TsYWSEewsKm1+4MINw0SpB/DFDSxNDujFnf4AjG3YK7Um+FK+79/+MRiteeQybBlzs
B6vg68BnJC85zXAYNjCBb9DDyENl4QfEey8ORgv32KP45RzrBT4qgU/4EAcjdxlvNq96EgiSMDoT
ty5Kqx04emle2fTkh5TxD/fL4io8V9SmvXkiXZB6q6FugIp9FroYzX0nZyoAD/EIENVyXo88aa3U
hav37GVH73qdMDif1gWqlc3zTgjO+tSfVhpAD0JdcW2U65SNPyR/LhOsA+NX6n4Ozq2Y0ASx4T1x
hkWcY2wZuuhXITvw7YMZmFTb6RUhEwI9Fp5U5jcU7vrvDYsU0weceMWCrGOncQj9yQ0ggZQ6aeW1
yjMe17bTvSX/0O9YsBpWZDqvHrmDCIMl0SM31pp92AEYQ4yQ8kiRuiz59Oz2B+JwegacddOSCE1J
yIgDw/n0houVm+nhYuI0gP9rLIn1SOc0WOlP5cl7fv8ozL3SYGU1uNJEZ45HCZ1K8qKwYVs04HE+
fCyR8axdOSwETbWG5xV+hlBUNfNMKDFinZYF04pN27Su9MN9Os8YSL+ko7X9klwdqLi5XdPN9YcR
jtx1LQYbgcPGuPmt0XH2WpKsOVLSDqBBV5tw5kEPQ9czHDvtwuIz7LvooBcbeqSRWMyyqrFub9LR
YvhE86e3EQnqwc0iMzd2ZqBjq3OrTw8v+gexiG81ZQuCbzYA8DNzDC1WeJWER7jQrnTS5B3lFZc6
kH/SV0/Bnqa1PG55DOYBLZRTlBW+NbRn1/95ry7Pgk6ItTb7URKGGtQocisfR8jkqjEmNtcq0EvT
9j09PfmHys/0HgY5ZSZHg9SdJpTocRFZlPLNGqcxeHxpWsIQ0mjxtLuVTNU7cfOcxeFkx9BioRwG
oV7+EW1WIAV0ztvdHcqu0YfR0ntJuDVku56boiIbkj/wvyeIhUy8ASDK6SCcz/5pMipj5u1jmk4K
T1Y6P93Xv6TyWedJuqTJ2whk77ZewMtM7ibc0g6eCpdBUkQPC0rKNu2Rt2zNRRZFGJ1sUU6gvzFE
bKuEVDBcilFRBmyQy/u1FeC2rb8WgfVmN0hdh1FXjZqBIMYGPde0Z8zYgtkJqKZDp9u0FCHM+hlP
jpA8vfUFEp1s0XKn2mKWZ8QD9JKSkhH65Y7obgWR/4/ySJC5ao2BuGTM0Pb2KV7xczv3a5qtzepG
zVH1IlQ0FkfN/h8hPKOwk37UL+jSV9biR3oCk53b2iI9tHR7NsFPP//D5K9R6WmjHxmovgpU2rWa
wEhB16k0WI+92ZpxS3s1ji7ab5dvD0pfM6o3VIy7hwTt07ZgDrA1rnJSK+oBHYw7PVtYeepMzRhS
2n4YRcNSihVvy9rQ1csB4i8gdtQJrYJE4z8Vnc7vG0wogjCQAWzgntuzgG/Dle91QTIc+BYiUuA5
SUh/WO+KN8VBgYEyDFuTB88kuZDRB5f1HdObLkS5hi8wvQ1cehj48qyhxUwpih4khib7PEjdrSuO
6oD8i+ssu8kkH4e9xA7xxCnkdNEwnWwZnBJZ0qJWxfsa5d3R6UeTYBjlt+MvU16kjwb782/i20zc
Vn/K6gvbn5a59jChcmnaWa8zLEe4gdKUZ6Z1RfkQw6STiLTl6KTQHIXyVlSo8X7oIr6g9xLJOb1y
9+IKT+zWs9RjIV8XSkt9BGmYWg5ENr3BhW51rjZEDhI7Q6GcXyPDud4gYasOa+YuPLiAsAPt5XRL
G2bzlvJchFvUA9cHFeOBA93BNdLdPlsRiOPST0ILflvzNX5S1zL01DBaD279I93sAcw78G4o8as4
ARNimFsRzN/nPDQ2BFNl1oY15cXj2FxITPiVDtcTp7CFRFKCtBpIoWu2U2o1oE6i/YVzFrcj8UyV
KPSYhaefIFOERtjNEiYjS4TduU3B9uRbzaOy9O6khnY9E2uAjkBuHT+RkOa4dGHdqn+HuYNNv2dw
jDzmFPHsiOZxj7KxlMHqN43CHb1XpqPcnJntantND4YRzkR7sFZ05IHzTnBx0oHmNw5OJJdwOgPM
7jDdGFzEzuCbi17bHixs4Aeuz/MpzWKAQkcfPR5AzZBLLTp75nBSwHHDDJdK9QDIQmonAUuLngFg
IcA/btCV4FoJ2UcJd1OHvVXm6thPV/AcIPu6bf8egwR8qCqNfz41FqSka2ggX69NUNa3e9gAXywF
Jnqe4m9EkoRYrK62f9Qg42rHHC9hxZYKFFpyiND8vdHAxg8eeXu6/sCNwezA/wZXjSHTD1IkpiqW
02MLgxkju2D5HOYArIarZ9gnnaxSSAc2/RM3YUFI2KvNEf5pXqhsBCE93acb3Z5sK44f8UfntzIb
+xwWbefLbK1oxUC2vYg0HD0kZ2tKQRfBSFHLYlmrbp97daxki/J5lbYDfuR2W/2zFLiuMWEX5Of1
uJaM01PcBr1DAmdurX5krEA9V3GNZmxy30zraU0FRJjPC3nYAONah2Q5IVNJrMJXMlMuFHQ+4OvM
CkqAS4CA2u2z+hwtkAO0zY5vk/zWOM7DZrG1OulTXqejyEagXT3ccwdDbUGJeWZ+sYuJl6+ho9pW
8IQ+AxecXFZdtWZN8azs933INDaHwdriH7Lu3x6V9nwEaIr8iqliTvSFMU42RkpGSYlAFyjM8egl
HLf0/O89z+8/xIjRbdvHk2qDRTyDtBpnGgTAjHA0Hy/anFDJOSaeWQ9lZxhmk1BStocmNgfc8LoW
BYuHpgKksBcqms2hLfYc6vuhO7DNBo2LYkq0FRFqA2/VUhtsJnLbriUlnkvzfqO2Ei3YzmI3GXFv
9eVFy5PpPZf/xVCCE8j73hdWbFdTGXtxkqMsbfUIpY1sscwHDkdrhMdm3db9hqTHdWaimpTBV3Jd
n+TTg64Pc5PHQFYSgbP+4kpjPGnvHfjbkYjHJT5t6TfwA8kLZvVfr0rl+YtHjjdvl1uE41PGpe66
WeV73jRkUkPjGKkZ/jf2X8Dogfzd1yQ5xDPHTeOth9kPbJwHnBAhACb3N2QzS9giOnwgHwIDPilD
Guxo+I+Te/QjVGaBHHXBd2w5Biz1RGwEARk70h7ohMw8aqTWPeML66puaZDybX75yFuYnoxsDyRa
NyK59i2NwP111L2ZnWukvTTOGnZvdnrZxlsEwpAxsSwY514nRUMEipnXZlYJrur2Yv2G3eZfnI+S
zhdP6Sk3zNVpqxDbBgQgnHl9UUzBYVZhmfabfTdHEpnrTpJ/nserkOGwzR6cq3TATYynpLh4td3v
SIEVUgmG4pmozjO5tGMrF3Zxdaw2/R4rlq2d0+S3QXYw6CFKaOxNv1ru7Rke3uPh51fOVos3ed6W
3JQ28jKQImOIF+iDf1DpMGj7IyiBOGaIKZBU2j8bjtwmpQBmI4iM8McXFhUaTSf1TAzqaP63RCqF
IW5wm+KWJz1Z63tHm33/d0Zi3FXjvM5vvBwDtvJi3Ex2xGV8Rf0QI0QURVACdi3JAGjUM0yF3DiY
SjmZ0BzjUS60xtcOOWq3cbDN16VyjHgY95qELlsppnG33WtSXfI1k9uucLazooIo28v+09ASM31N
R7BXBbRoZMUoTk0hmhmzeMXbiw2bO7IQ31C/oh8xGUiMKHoOf6Vx87KKyGo72wAEw6KsfYy2TjmR
KEGKRTu+A9nc4rID36wvkxBp06NyMhGUWEsJloIsRqC/xMSiu+EUZjPcSe5etuzyCIssxZKMC1QU
IrYjgF4O9E8YvBzsEIS5qRdMCUEuNEqepYLP4owgqdgp78pi9O6RTwGdvuTAiqLpnU2EeOgBJjAj
u+sNxnoj0xys4PrKlKANYrI3WqvR0laXnnbXJi8W3JiH9Tncfz4aM6MQlmhhv1kgAEl3MLYtDdDb
vFWhVG4X19RhiT801TDf3SQLN0mz9Swbt8wuhzzonT40pEQMs/VHPGFpkLklaSU7OiedgSQlOhqP
8JvWLhCdt9drb00Yo4rAhMr9lc+UsC0B58bfhoi+oMRg/q6KI09qEYqi3dzT+QIPn+yWMOlbBwC0
clL6HqCnDlbdaIb0+m4VyoHIQF0c3NQ6ZOmo7jbw0s89Y7DS2dxABmWjgUYSV4cOn3O9RHnd2uCi
KAF2dk/0QLoOSo7KOfK69wtsbeC2RfKL6dXDxY6QMuyxyQo9p4/gKNyhei68jvhk4kchI07onQn4
0watwLnRb1P23CTNh1a/1SJQTx5BN4JkGWw2zUPSypTmr676kdgUFMhR6wKGc0IpQQGuX/NkGAEq
U22cMO3dd8oxArK3AavO7hmwjN1U63SI52a45b/xWNEV7mFB/6svb4e2DhZne4AOAWdqrDvyPocS
nCUITDrUvjz/6LxhPv0IA1MRSq96btVpAwr7imG5Rp5lV1FUkGMug5Fw8SApZuFaPAxgGu3uh9fS
J/VvnqYwxRoofPuoOJ40d1Z7YT2m3EWZG4phzqBeBUO97ExNgWOE8a15JCKmvOzgL1eMyKlRbh2P
8pLeZIAB36FOKuS284UlV64tgWwSE8jI80sJVYuDY8loGwnjjVEDhbU3Yz674fzZQHbxM296MulN
XfIC/yYSR5NwELEUET2JfakmMNBhX1SlplcfY0LdegosWy0UHefKrLd6jMpZOZEPUR0kKSfEcIav
vkTK8DEmQln/FgxEhIZWRp5mKMaU6TIrsM0oxXqUvQaBs4/64lYrVHQWsV+xicH3f2b8NEiFerKr
bSPcSK5InuVhn3CIGij6mgdi5j1Fg2aLF53BqUzhtNiCwV1SntsD3bcoXwVzWX7h+2L3SwpUILVD
xGbzlIBOnOwDbjG5Hx0mOc8E3EIBn3YJQm3UaDXebhQJq9L0mKN7H1KQczblz2pIfxKgKJm7kzno
dzHjEc45j4f3JJFnr/Sgg7CIv+uRiX4UaZXE0vN49X1J2JZXnofSEcTn3x1IR/MIyO8yUP6sTMQY
QFvomo9Sa87EkVuqft/cJ8U8rO34i5lA5F8sMbrZSVBZLoD00I8HLLQAgSJWpPb2OJENCyz32m3h
ITTFQoxH3ZDvZEzmJ+WmdWxX5/wPWL9aADYTypQVLklYNPHVXrO9uqd/Ih8WCPV/LfnqPv/+tEwh
2FVOYs6rpFQhTAiZjjhUtCIFJYypSdd6eJ38r7y8zT7KVK8x/S2DUZXPOVmrhbqq42y4hWu+fW0p
fQe1sTwUST/5mCjf2fX2XwlCirpL7RtPQfLnSzXKGluRrz2Q2LjvkXxMK6hB7j1DuzwnsD6y2a9i
xNM5NijKrn8NHvCt/JuJ2OzxDHS2s5K4BdnJytFQEozANxZ+Rj5OEXshxK6a+JidFTOy0dKyIr5R
liewQscHWs4aIdDT+tuIsylcBeQKIJmYMD44l/pNjVAp0vFIHAS1Nh6cI6Gs9VfaMhFN/lZEqbWJ
VHohY4BToHk5dMplwpd6ffw0uoc4rlbSnJLCCeHQpzrTtr+3/bp0R0/QV85wZ3NQn0mGcL4NDxqt
CPejZsxaYsZ9bR7bKuq03j9uOFgWsCiF4DXexh1r5trLOe0jeyMWtuN/RLx2h94s6mbadlk2GJ+3
ZTJlSQQrDzyZlq2iKkaKcelgDkHkdT6cU6Fu1wbnL6z0v5dsf4/sA7KvJzX9YEPxuodeGhtbSL8y
5hTe8ZvAhvnOa/oSNne4CsLr4YMhQJGqQQV3oJiEndBrhO/UHkt63NPNBWHmbRa52YBXAdpnUwfC
T5TRl4Y8gAe+LO27+WkQNdBLVY6dzay9mVFHSwdedJzT9rPhQvjIUhOCOgx9wiSwiiwYqNgk5k3n
zw7JO3R3bLdBhULY4j2mI8Hldj+PjHWz0WCbXuFaRCHfeyXCu59tP4iT8w4w+DM0gRjJaio0Pj7P
I5lT6CmGr+1l3tSv6z6WLtYBVuUwkcRwaa+Gh1i/UI2mICK/VURmrvmExQgWT3i79dzMeEj6BxD3
LjY4X+JaZDJwHLNVa6Grs+caDfubXaovRvKKTKbDA0Jl+dMB1Ki+0ggPM1H7GwnrDkaVM4rb+wrY
zGAX6ZVaWuXBopc3HC6SnzXFJwD/HWOAG8QTw8v6u3auGCypJPHGcWBUTh56JJFUa/Batw60h692
8qOAJmFnT+TN3I2T9ill7zUikjbswYEbZgXbrfYglLOYMIZAINyy1s5svR8Adu6P0O7eVtEl3JFe
QjeLVY9q27RsWZI/0sTzsb6arpHGGADD/eHWOMPbByxxvdyrmhRh+g13h9Hq5xMdlYoWbKmgGrof
ZeL33U9QA3rWJ2tKqRImXCy+yZEV3hvkCGDgt5ECm4UaQLTxP7kx1x0NkUZxP3JJulglbix8Qtme
JeIyDgJVKD8jgp4jU9B1lI3Ykc4etM1LUj4sfAV2G0oGHc72iUh1licDFgAZKhzbHcJfhWxCpfn2
1N3nod1unYa63Z39YZx5VHgX5Hzbt046KxE562mAYOj9pq6AgZ/Dr1sbyJkh1hzkcaD0u+UwIncF
RPddtBs3Ik51VesGChdBKvwuuYlwNP7RzPfFBEnCV1U6pd8lmDG1lTRvKzO71rwA1d6UBXhYKETi
vzCidtby8uhnFQtLDPjo8EjOh057fAeEfVMIUEvsUlnvt3j0Hp3iCv98+7EqB81FjUd23iT7oYQy
h0BUqP5ee+laY64cGYmEpZ57iEc5amG2okQJaFjSKNClUUkvDxKZzFQfXI6BsVBghe2DiVk/GT8x
tJTewbk17ublKeaInmsFQxlrFCkGAzHiCIFQIq84+tD68JlVTcJD8NlDGlMxSlRKVS8pTcSMZTZZ
uAZLbiIFPHkVBuCkWvuUBZyVCqBhmW5rIrH8U4GFDXSqZj0rLGzny48PxPb1TszEoKOd+zpLbKIl
bkaiGr65eUb9WV7X4Cv7X/T26HjcYxyDgnDI4Hsm9eitzDebF32DcYasJLAsqlFaxo3bDtKRhhuB
swi3XB5XtzbjxtSBPkHsrtFalmKi8mywE3FamaIXcyPUntOYdtjlbPWG3WKaTbcgkBAGZaim56oF
9QY5C5wCy3W3ocUh/iZSoD0VCXtpF0VSr4jElG/HTjXQqN3e9FfEn6xTXACZs20JcQg7U/wsFxgx
lJ4zd+bjhQ5oKsQOw0jhG0Q5zcd4gdundbqdXH8sboc9KEUjqS90uuRMmZxcRwEAppGGu/MjKDMB
Y3jDSIY4V0712WzDKO1SoAd7dOlUbBjO4Gtd+WlV3G8IVxwORvXbknqiiSel6HiRqdo0W3XDOII9
O6OyWHYcYCcV7BfjDxMjgAbdnXwGIGSvfYGsyD77bnIqhWNSg1Du4d3szFke0rUfqH3itohuvoQ7
EQmkBXtNEV0RCzjoroLayKy6T/kRtEBY3PuQQF/mzrUTmWXETrouR5fiyrEsAKmHfhAwDXw4kmRa
OGsgmYAn+xFd+y69mHEXG0ilWXk9oYNTY4yql+hG7kwUCgBURdlSyQTAf1uSZdL5nQRKVnh31P7R
DZJzU4edwMHHVWn4YGZLCudJhx9EJvPL0ctyQUVDHAuHn059ts9dXR0OXj5pGguEB3pai2VNpbaQ
IONbVPYp6XzGp55axfVfZnQTW7QrDXa5L0bmX/4g0yUwGFY7TIVESi86hNoMf6dodl8g8P5oytbu
5n+92PSwXHNLYEQYDHm3EezdTxLnHdKwbCdrhLqN+wUNifJ/1l8pzh3olKSUr/Xu6vSRjeYXwiCr
0qoNr39rQgxVFg8ikVJhPxvVzo2ptDC01/HNVDt52WWuL+Sagpc5uyr1v2g/VGq0rLELYN2kbGpn
tR0hjiD+nir417dkQf7dh4cauv3KkSJLAjbjkefCmjbzjTJPkInws9nT2OZ7cDnpfR0D3yBGsB8N
sQiZdWlsvL80+DEUN/hwUr0prac45SDsyllGqFbIqk8uCOYCS+EyB7mgO4NqerevHPMICJiMR3FD
DWuoVv5Jo2KUcYfmtfP1UE3Xo6QlBBKulm53J20SDRbl8O/NmQL8tMOsLb1oXSXYvwXz7lur26CV
ZU/EPGD6prNDPhpOViN6aPjRp3/jFP6MJcLg/AVs5HnQ79Qzu1nLt+dJliDg0oF+LtY0w7GtE42P
twfgGJcaD8ExVM2ZSwAlubJNj6gGj7Dtw+Io49MvmnBDrvW456HCg4L7n/EZxUjHSEEMnvE/9QRV
dHk8wx85eN6CAXp/pWy9i6QYaZRFyoz0FDnHJkpVy7BEAvtUo1+LU7gM36EQnmQpqg4rSYHdsPHH
1AVVVD1LjF4tis2hVtIVrCvuRUjiqpw0GG6UQ3iOViRSXLg48rEKirH2L2SxtcWg3KDxTvX7evG9
GfYtU+modYICutlR9dA65TlYhvkNBEB0V/T3Jp1XavJP1JZuLQ9AvWkT8rYlczu7hq7pk/scgOIq
DJCtjX6fSwkOGcC62XFva1SUjww6ljmBr6euJlf25vtEk40IamyeL8BfZ3y7Rrado7HxNoiCoyLz
JPA5o6DW3BcVNUvsHGuMGLPq6HQFh9Jf79LlIFIVx5NMvS+sjekL9FSwS28gbAC+9ZUtY0mZCe5x
juc67b0fv3Hvr/lqHpPJs7hyPm1Dy9XjGv8iPnCGedXR6zyZWsK05GqzIm7pn8S52yyikonBDiFb
Lcw+DUZC49NpMlmbZe0fAvFN8IlWiPY60ekJ1OcFnvNqW9L2AF/x5f83dMz1EawRPr3nMwtuQSIC
TTnBtAPWqmTHwFKzih0gckUn1jtj1iyUZZjGwzzgBFTLHv/AAul5SXEglrWtrB8Vzaar10+2afYL
YnIJEtx0wiIhtHQg9AXlkreyFyYVprkwHDXqHXlNgX8tmtlNkLQHLsnGgRqUh6Vntc38/HIlk5EN
iAgie2YvidIZw8Yh6p2ftIxTIMKGSWRExhQbJrCDubUHxtbT5NXvh7l/qXxPMgtxCSWMuq1e1Bnk
zmXUBsyDylRTRCoQYdjiAOSK71mq8rvlw4+PTXWM12Ru+3owmrLg7Xk2m9z5nY0cHZ5sVra+IV0K
Aak3Nf5IJdOAMcWzkZ+9EZBWulLML73Zw36vFuhKz1OS1AdvBYzDzAllg0c689/gh58cAZZIVoe2
zThw/JjYUxUW81cxhhmnxmK+MxTGyVFYxDri4bmV8aLepyr+42qzdc2gMkTALB9gdIsleabV84f3
C9Qe/PPezx0wmbqhqOqLBamVxQar44UCBQge2qzx90gaqIzmHKCyWgm2ySABbI9Iff6f4Mq843x6
6erjdTX7tN9Sct944y0lkscNUKr+so1OZ/TiKUFtgjdcPj1nNKT00d6YcRg0mpgJHo4pRKn35Viq
JUymGwSgXdiAVBu82f2fCL6nT0tQXBzpqCQOugvkQOMfX63uKpqsrYLJ8u+rE0DtG4fzBEKmnDcu
h3JDjMITVMU2lrMzmARTAJnMAHl/7rIqJS61ebKJKjr3SjNL3EdRQuFxai8onpz6pPSXz6nimlgs
SsqOj1Z9NrXvT+bWUnmQsYyllz1GmJvFUY+v3a3HnVd0NB3hiwMEgW2jTvWd49eVc1Q/e+YRaMBM
DRujRJUAU9binpr5kuxgU+uuddwyMpCRdbna6FCa/7nJgEN1Incwhll+v9hlJi+5MxOgEFxjju6H
E0neRIdnCtSTr0H1FlsUGK1JHIAvVeZbpr9s8/SGi+8hAuV9S5rHFODrDc6UvhroL6Y2xrvXfW+N
rPMy6AuqxaRJFC8Fl7heTSbiVnE4NKfO0PGQ6CkJybOUuCaODfZ17tBeHiJLnYDdsxKwyNy3154Y
cD4hmK5CAcXoR3effR1kKdqQPKIg9bVkIjOxfre0M347BSGdfTglnGTQK8piSPqAIdMDML0fo3MM
qxr/LLldEx5mUvmmbEq69llDhkCVGxq7Zo+ynhEmhXvgPUWn3Pzt3Ppg2JeWIw6MDhCqKbNpRvSg
pIpTKdIHSrYlul75czfifa1Io9cFC15VfBQiNV3Zx3j5bCTZk7+bTqYq1EZ3QIuvgy0AeR10n6WR
YvOqD5bv1rxF//imLL9a1XX0uPL0A4bUo5Fnv+xiUSGnxywfN9T6sRvdVIn6UU41m4YA11wmUuyV
y16PKdw1bm9XKuwJUL9UFZaUkWv0EA1ALrZ+kPLl18XIABFWCdgpp5ScEmi97KAFZSklrYLcjSsU
6YxDtGMTVtzlugS6xKfRXKKfbeDc9VzghS5NTxrEUpCY9kFyLRuwXHy1hRCJmotmD4NjjVUUhOd6
IMn9nzHslos3K8CR5kM0+7whQ0hKhrv2zUtd5isZReOHcjHpmDVoQCdkMm3oMfSCm+WEVz+Y/GS3
e/cm3WAxuXGo/+EKCf2+gFKxuVZRsUPWFuNrJU89tflPidts5I99mQeNc/faSjYzJQ51iP25m+Bt
+tdLAsDWnJq64Rf+9I6xDcnF3o7bDBuUW7r6xW7YwbbGw5rZaMIHuDpMe922h3dYpK+V/ZKZNr0J
SKP+BNROZ5KGE7butR3THZ25adeJhMdLosERTaqM3Yue8Afszh5D0PTzPJNlSOE4idNvgkXApCz7
sUCI/Jxj5CXj24oUWKgyv979hUFFTdVi+lEtlUPSj029VdKwFooXLSTzBkCNDjyG3zwQn7cVIm8e
3AndKIbx0K8kP1yqMDdVti3cuCeeVI+SMo0l6vYIifyoiLp5+IGrSw6Vcx3sObsbHcgZ/DGuGsRt
d7ox1lNL6c0MwJo/jrvjtadaDamFQlht6AXEmCsLN3RYyY62hHZ1K4KfzSaRBcNF2DCvny6y/jDD
BIQiNcrjA94YJH7zbEuxYNpL65YZS3ZLcw7QXXB4TjFBy+1elaM6Aq4iI5g6VMGSfeIZvcONGgUI
TZyfy4PlIExF+p4J5zS6LE0ZH28Ux2B10wmqjs1ZQ+97CMsFDEYnWkOUHxGGdWQFDOKQjeUawe4W
SuwXrwHjn7i3AaW+AyHMPPEXO+zi1kYpOrRH9ejsX3jF/fG9OzjU53WSf0AHJx1oYQOIXStw1AOQ
m0CxJ/KCGI4M8yDkK0jkh+5a3FbKRmB7aiFZ6DvF/UQy4ys84U8CrmGx5IdI4UU0iC5NGYyxvzlp
iMLpJ3NHPOoX5VjzH5LuJSU9wNEb8nuvSaiHSubSBu1ad5W3uqwlqO8P8p2pRbj1IldKOHA+5NNL
pSnIgHxqv/cDGPeo12wT0ajQ55lgKNEgCpnLP+Fu4chChpQ8ZIyK01Mh17m8K35k0IJMe0kDm2VE
UVBLEJ+ANivZ9DrdrzyCyX+YATrICNJsdapuwRW1AFnameR8fVScpeeZ1ETmXhRcBpPlvWAr5QIr
21PHhBqMwEAsbpwzDeWQGgSQsRTcnopnSvOA5woCRgvyDk5t+VBxdZoScSY1c3BVnCbysmgAjXhk
r1OM7Aw+clx8bsn5/t4d2V/vgTvyXfMng0dWlFl63XxvScU4Y+2qKye1Hh17Svh7PkN5Nb64SS8A
0Hq9nNZK+TCvbqZWcwbvO+PWl7D9ySqhmpBMkosw7BRcVtEdNl0dKwhe0GzMLqoXZGpHEt72SF1z
qA+TAUTxE2z8Z2nuw+krlklzpnSJyp7J/pQ1kCFpg15oiG1fq8HyS/W6eGnqY2ECL441JlMRURlz
FPbcNCq5AgYP10cvmNz1QjX6i697UrySpncsByiIJNMwcnDOXXKyZ1yYQHyuZEfKGxSENz9LWe7L
wqQb5r4jstXzGyLmfq+N6q5P3oAn8lYGIZjWBRkLn0yUPle7KssPBGxIWnWYBXMp3zYGFuCIiRJf
uwdudGIGJ6xDkCy3yUQqJNlGxtDI4hNTPVb+UXkuHJEK1dmx9Ux/YS+xYyZI9fdULNFMhXdqkc3h
7RWefeBMqlxjbgLgp/N4EOh/Rfi9xMwOoo4IjfH8L6MsmNgnWXC2J2+0M0wV8pY+dqDK/BPYpQyd
mc5tEfrqKvdTBs1pe/ssfJ/9lb4HiUCYQrizXUXCthTKTBK2wbEdvQF3Pen/3L/FZCOeG9DWrYKX
DIBdyNvalV1O6QMm7Ddnv5URCf6Yn89umt8wdeFMbXKAPNFLGqaR+6bVXf5yg1Dpprko35D2AQdG
wm5fTkJ+bS70kXTXlKNtg5UyhvmUF9BITt7eZjSPI8wQwPFU7o66Y5ObcC2DD/HARKk1NGaQmO2/
qOEjN7ODAzVHg8jgaVWLL8tgj1kQE1RIcJptHz2/285PwUk7lvjK7Fku5sho1wKiAy4+qlFmP/M4
QHgWYjNrPy0VIQF4y0i45EG4L1TQ2rzJwaYjiJzsWD8xkv6clL/mB2iHWqLr5B/GAiobm+lkvph4
5WiteylnzcLGDy/yVHZHTKqOiWOp/A6iLKWqErezDgbUIUVUH/GEtHM0mPd3D3wAdrWhKde+53zu
PHpKI/+FfvUEwgUVEkLD6ff1uOkXuf3ZuUQkWJDicnkBVK4IRtiYNq88s6HwyoinIenxVpCWKfbI
+zyRzRAtJmWB+/fRT/c8m8NdZ6wzc5qdgVxaX6IfNynTljq1OAntpVmRridaszMoE/bJ2fYHo3g6
iF0g4Bb/UagWav+Cr9/4U0yaqCTez+wHMlEXNfaEBkrUlYSRBlPXRuued2XkWFAPxyu1a9Bg9LL/
2X1AJzmBpbgakA0sq13Gs3gPVTv9wl5uLBbsdTQXwgdetvlKt5LcKbE2gmt42N9Zd5C4Bx61ghP4
EnmSmPkzl1Dtc23+Brir6I2dnwE+JBJO3JTXrAuMelAIHFBLx6MttfTpPLY3MVXfod9L4GqQG82c
4yJhRlE9iE9I6bccjcGAumigED8xvCC+Nb9PXhW0EjkuRUtEgjjGmTk01gwsKS/wPGykMz3WtLsW
CVQy0wAC4I2RPPHWFox6ynYt6J7gk7kXhwoshcIW0gjYhfhBYAs9jfGn+xZ9nJ8+TpRPY0ILcmv+
UfiKfBudzmGHZ3uOJMo0T1vJ39HMeTVgwxKoMb7CIuX1BWpB5RbNQwgRGj1TeKthHBpH/I9K44Uj
ONrjlr+IQpcJeqoPmFN0BjS10Hh37ZyDB3SoZuduw1sFU44ZlpPxE7Y0j4jWpjMnWYmj8c3Ti9dh
hxY0pVS778btD72tLeeaP3Rr3WFhG82PFmfAyHmelaTblZCbsbWpS3HUQy3Noj52w50CNvl8h0Rr
PKV966YFWJJ1klsWIv6XE8tp7KLKGe007zCfZIktVrjk1/hYWrrupkson+DiisGxt0GvbsgtvTsS
XKV3GNtbK3AMy502KzZTqbWBs8pQNQ3Qp8MOlQ1a31rYFcit2hcgAXKPgaglEQzk5VEQ/h9p9qd2
VFJeFbb8FkhHgg6/Q1BJwb0ZbzdFt6PGT/LM4ithBZYRkmUzm6TBitwpxEMLqfO2GYfNg/k5Wsxe
DYm4mdGRt0L7lfaE3OfagMX7szND6FBcqeOG9oG7/mqoDqo47wYWZELY2pumJCG5V0HdCI/DP+or
WxyoaBDEs92zlnfNQ9g1mK5Fbg6SgnLUQYcVvgU2WuRtoD/aMtz58JD9vLSKzrPXuytMVl6mWdWN
mMnxUVIfp7jY7nSBC2QGbYAxtDJp+CTQqaA1rCmu8iaH7Y6HXlR2IZD5emz866ouy9XCzrSpC0Jw
LbQManmP03lZj0Tqb/fqdFmaFCxoyBjTG+D3YWmXst/QY3nmDa6+QFAFT0G3oQVygSmYLn0Jfgmi
TVoiJlIAbdpE73BCuYQoqHj8QpQ7FjHaKpRk9VbLjyzEEkfY2INDCAg/VThMkl0isAW0i/y+gRrp
SFRUDbHnh0++zrjVTpIG62l+ZeQRhsxVPUt+gMKWTto5y3MugpR4VKjQsHl+633tEUcLmvJuyX2k
dSIFy6Ai5qRbh9apOSLqglDTpn7UMfZkrAS5Vik4fYWgwMRgGGV9QWaVj4T0QdgSoeJDIEFypvvu
yYN8xOa0ZyrOX6XOs7mV5Otgw3Nmy3Fb80aIb/daM2Epgr9vmj8dpFuzgfT6A0jGTighMhrmCc38
aDlwqcf0DNMQVr+ruEVn4OJ3PlcGcuWd2cfsMGaoDwvfSwfFzaNhmluIAIe2up7PDwTD+gBV4CA1
gfTSZ76iM+RUKisyy2rND/tTaBa5lpnp7LTQmovL+zN30Fn7/0m9RjBY72/PVUjzW4voKGb8sUnC
dFfEygb9DjvGEQMZVsnf8A1i1UWbL6/8hwFvYCzmHzUeRfUz8XSHuviVJSfRLB1BgRvbMjq+PMno
U9K8Zdc/qM6hIPlmzqgJg48MtP5smp+2+xAEwtxqFKW0BvdpZlj5bM8g+l9YV01hPnoriLhqKasH
eoDp7ataH08+4geDERFaaOPo13WQ2H9AiN8yPKprsajtPqa4q0fmKeYIhdwQw1mfHbpsVDv6WpZr
HsEht2T2l0vNptpKUtWieBF2UQ+duydDMgYE0f4N+vFjxxtD11MhhJLWkJUspwRl3+5+UbGqyk7c
LQpgQeuAPZDk8K5j1SbzhjTQK40yYR5V/frahlvWHLizuWG6zJvEGuTW29/IsB65S1/zCsumqW2c
GVW2zboaA9DyMxcq+A7z/fI7tLl3lsy00ve7udowa5V1mnnKIfvtok6cbdvVxo7+KwedfqH3XZxw
m0GRULfDA0iNh06tO4jz5aTFO+C2d6S8dNV+bgmnTDiLBgceLXI4l+H6w3C1/upIZSi0BfwykoOG
zJAv8M9Z4xi+fKdKO6MNcKgNfvx5ofeVfgNYa1ig/mo3i93ZosG6kgmNOE1ZYeNx2A4fSy+OtWDP
rzyh1LGli/hyASf25NY5g0nlYr79kffZh8G7ND7zbbpGUyrodOcuB18k84H2er+Pdj/4InRFCqSo
fbJcHMB910HgLohpXD6NTwAjj+cPEE5mQSoNAyWslbQ52jm4zyEd0o8rRfybV1zwb2x0y2wHSd3C
xBLiSmRn6W+f1ZHmwi8ZmIq0lCqU3QzqEIvqo4u1HKv4AsJ/IeN33tjJ3FKPvSiePNrqALfjnLmv
Y8AoD/IfsIG5lzoPdjr3+qVc3NC8mLiRyT7F1KI40l04dm5U+UDF6jRmcCchXvAQEZBqhekBhI6p
TsF07p1k5ru2h5f0r7XTOyUA1krx88FGvFkZ/wRu/vKGZi6dc4/cnUXOx+b7wghMrQmDMDOBRIVb
cldW5wCpxyWslHNPXnNMKwrN9jaylHjbPvaOgznnMlMvn+OegOggC9R6wd3OcjmyzWwvEucU1cD/
cM5T+YkzYqi3lKLcQ7w6OatRIl8kFGOyD8OapS49cPwgwGhPl9l8XsNSOKqwEUQsK9nmNfdH/gUM
uO+AX5xcjAIL5BH5/2Ula7Myz8FqEgfazwZF0WRg1rywkoKYY1FWPgC63UAMa5YX7rsHya31/KNa
9MKHtFLqbg2dmN6L16Ylc+ePY1NyMl17vGiqEu9AbDgRhB3NeW8lV4aZBYPNWhTfTzipHh/dT6qO
W4468yiNgtYlM/YBlg5s2kUMlHMx1LWdc1Ksa7Vj9wUOJaA9ZprCVmVfx8AgE8YVbCB+0Ittcszd
m41hjVmL2oHD5+bpjNtpjUoykvY3XN2/MSkWpXUPjozMBNPd7HEP7+d6H5mN06hct+0vL6p5Sk2n
Mej9ftbDsAH+Zt4zkKA3aOeSt+skz/jPC8Tw88j0ZJh6u3kKrekiXTX9IFtThxsWkrxEtOs+3VDw
BZirkm5mi20VdKs1RJEQxAhugnuiQppYI8D/iyi6GKbz3Pq+8DsTMJoYRm+Glvq6D5UWpd4r9mBm
7aW4CEr1TMVu6EwvvcdxRQYJzcxDTBCFB4SwfggRE+1vTGwL22SifOEvDVnp4C13CAsSFKf9AQ/D
ojqUkXfxrintIRmhmIPn+TNF9+hGBDs3iJRJrxKZLAjkzHY5R+qCSD9b9sfCVAAoQeCLIL1Zrh5B
gKnGlcf5EgZGHWGQ0hviJLC3y5onWYcnD27CktF8XUaNP59CZWSxr++yyXTr5c+KDHSKqkrUMzVo
PvKLTVpe0nNvCRWBEUqHpKlnPUf6qLO4Qq5BHqZotIdHxsCmRWK37/whcuTtefzhD6pts8NSWBY5
bx6icXhXlbE66D5jlcu0wm88bcldpyJEaqci3XNLRJ3BhMXzEKdxj6nekQJr7BU+98pJIJltWlZE
HyE00+bjzDi5osI9eKa3TIdxB7W1z1ubq3LHYbs0I7aMBvYRNnf+5wzfDcKqv2O2jrP8FjXVyLz/
BAHCkEdQyeCTmY6xor2TEA9pjrWiX+TDG9ILNUlfYPLEB1GF9vNoTel16D59J03KPX3/aQ87sIZz
WzcmecUx6SShCNWZEB5WVyc30yqui/L+N20RYn90rjhe82iTv4ug7p5R+oPkVfJLs8HRG9B4oadJ
D/O39bzh8Uv5x0PoCW/eI8Qzyl9L8fIoQC02NE8h9S0CGKAixMlTaUehSaCZ+cnKMkMxO3LI3Go/
OTXxj+v+WgdaimkIO6iD8OFp8SEkDczYo2X2sUD31YP7iMap9tvviHFhfgnAfShv/nAmXHqc87jS
M//Hob6D8MuNJNSnjlERKg+kqBltZkDi7pkH3yQciA9QPtX5ZilOUoHC+zwbNXOAbVVVrc5xebmY
qCn1VLm186nVA4D1CybsyKqMm62OemIVMBwf9fPkA1kCq3NLJC44NhS8llhKdkcboMEB/diVAnDR
Yp+K+reb2ETwOsF2zbkB0BfCC2f9Nr4ppB3W/ZhTwkI1yAmPkR+nb9BczOZ6kYPfwpD6Ob1wQdZD
/ZUeiDCF0enCtAdu4M3Mpzx24f5rj0A2mHUUlMI2YHLSAPnWJ6UF/4VnFdiAZ0RkTevunHnDQWJF
+/7/VRLGTdio8fzrFQtHBjFfneewY6wRJuomwEjLeOeCQB1iRQoIJKB5Hb/id+4QUhlZLFh7YJyv
d2ev2htpLrsA1LYhlIZRGUneL+FrcQBb0qtFN1UWb9kou5ympduU1QM1KeYFylxepS2psRUOGvnn
2a2uwlHs4KE7IlYS1LElsIxv88hdP304dMzbpmj9CnFNnxkkqHx1AYS3UaxpO5mvuZQtGB0obaST
PZRxfUJ4JwSxmUbgfZq9SAY+fUZRG0lg7xOsnIbL2VmtdC3P2tNNFbodBzNVoC80dnPiuuc5MBMz
hgqMGJ1yS9nv9XdtxJjV7kv3JhEgDEbde4xoiSzqZqlewUKNfRLv0RBBkE3AWF35G8EkEan74Znc
6ozFxRpmV40jdGgaE2N0kkkYg+oL0KBVP4STeZ/a3tYzcX7ipzmfg4rBpTgkX7TBoYeVI+hb74vP
lytmv3FL6ztEb99RYx8SmikvGBDICsXVgBOYber8ePsjRWPP1i1DX3IqSVkNQQGcnfj2ojjaQ4cj
H1YI66MlXfmAP2Bp9Q83R4305mbgQwvcftmaBJH9vDshtKtajfma44hoIfTMOUhQlDEtLJsS+Vr9
QbPPhxA4TpXQzSjiUbjoZGq8UAIhGcVIeeWFOGWhLcQ7zLULlcmgPXsJPRt3oN9W3/qJOeI3zmjL
A6n5zUlhd+Dw1KOsEkxcKgi/AwLtWqC9UZFbLK1j+FLDdMe4HuOGVnUhGmG5KoLJZO+etiEmLxy3
KQtj4kaPnAZnu8SP1rC/nUQcx8XUYEPsxPqVdOEnZVS/ezfSc8rlHggVj1ujqC9WAymI4tne0Iqs
4017MG270zdyXwV3hXZkFqxFpXaJ17SR/oTGcTM1bbW/dCl38S5q8Zy9ofqwt/oV21fF1lQ63dWh
/Bc5fOq8vm8+p58iSFvdrR5lzTR5ostJBwQPARNLaFDik/VMp2UBgUKdPaVmkmjZFI0um1+rtzIA
28fkasLLU11KHWo4YG4yld2llqhqkHtn43aAPVrqDSvr0bPfb0UGBZk7GGrXnljXAWwcC6cbdUDY
+omLb5TCPnzK1ekLy+lF7fQ+v0ytPvUHao4gqknjPglSHv1mnshZKfjIt2ltIdlnahacE43pOEoM
FQvCT/M7oeHIEQKskWRXRr2AWoEwjwCrY1ZR49LQiYFS8CyOBV+KKhvwF/BLvuy2SZmZqO27bZMb
Ioen/J27jsK1Y6jtreN3rDsR3nkMLjfc2xAG6VkYUwRW5BKENhWqD+1ObldGP7yEsT3vOJskznbf
XpKutaEzaSCMQuvqeci+1Xoh91F6DnElxUuRHO70qc9StRE0sj/FJsDclv/nEo1xzobwC5/FWNXU
VPFRC9GQOsc1l6ATNjlg8lnGeWfeAbHHwZh9p4dYRZ2RWcKi4lFou2rCn2AlI2xaDZkQEZtKpTBV
kuBBUoIC2XSiiMEzMeBudroHqA8oUVHurn4wFe5u5b0JDNOFTriqWcSD7EtRU8SogOjOKwl8lnxO
qlOFHvuYbZ7Sd5bldLVM3l6BIgBmHsdNeI4EyPn9bsvHLOWdB/PXZUl9awE73RuqrAmHjM0/gx2Q
zdcCJ2vXZz33HmxZrXHU12E7u9nvNaS0YwU/gQCBHWlDKott2nPkZ1/HCZQZpST13z9DXhmVoQqE
pJ0FL6bXm4h7Q1MsDLWhyAn9TxQj7lk49WiRoui6DJEH3dqYtVqEHse5Nfyg/1tPtiesBlxyE5ml
GiiHm/P6xv5T6DtWZ8DZl8NmRyv4p0mdamrIFmuyPei2EP8o/MW5YpVl4rtUCWNHRHbPuY4qoQGw
XdKa7KQLPJeT2AzP0wycau9DHm7UBiDiiJDHVkOnQ5SjVSloniedwKihnbKuhQINXevjMMi+Ddzd
Cdhup1PIr+SdhEgOw6Xw5aAOON5/Ibhfaf6Ox3aVmMWOVKvfJX4uWVTdof+pKrtYJMTp+f7cdLbo
tcdodNMsH5qfhPkQ0uJMq8yQqEpqSUW4SekT7J0PJXToLnAIZGKh9HV76lTN6fALHO5EDGihQ1ln
qvKYSTa/8rop88/PwltMui+25IBSgfERpAkoiDrEl78i3GOXbE25gmnuuzjm+FeB1yFshALWA2Wf
GizjzYkg04GgexPWoD7JwPMGilSKeNItp8/IiFJsk5RK395OxE6l4b5xKSDdoQUW6xfzEAxPGWkm
zYOEppY1EoAr5XhSl3es1UnujOuyDkLQW8oi6X4HvAh/T0FPcowX7KZMFvdUBMeHrSIXf6USj1R0
On0Ow5mwTE0kKFx6dF7VLDN64Ag/kMT5OBtaNZ9qirQi20R8YlzjQZfdDVr2STLBT+AMfRnC8X7G
uX6julnfNrTyugoRhp1LXo2YdZ0gijsQE0cVfhJLaI9yySHjdqH2DjV4KVCplofW8AHL3Afaj70C
J992JvSQNX7MtBAxZv4XgBnNUw1vjoqivoHZ7C8EWO2ze8Vyxs27ktvmtqE4j5V6hzELybX7HbTO
n5PzCYsCXMPVxXEAfw0ZWt2TabwUhA/Z9FrhHXMuhj0px6oO5L3pCmH7wqEBh0SvRq5886LDJs0t
4GhH1bOmHsikqUBzLp7BkQX/zLxhhOSCmoOhgr0Y/LQFaUILbyVvL1D3i9XEe7cEyIf8UkEwkc8t
xqXAX8/I8QRLypMPngt+cDrNGXBinsv7DN53dY3h2yvNxrLOLL3hPn7XzzO2U6ZREuMD3Chr4eiW
hMOkANx9rq8VQMYgmD810JmjtiKdzoQ40gOjbvoavbw9uf1opaUVHIbXQAz01rZqEU3+OPXBt8AB
UqFvEhcGRd5kSLdQ5PuUh0OUkHD3+u7tke2uF/wVwANZCzWalrVt+BLCd8x7ZdXoBtqUYSrSQoug
08vKGFtx0AC0MGy56l2Qj10n2yG90dT/+vjXx/Pv2sfZqYf6tlhmfc/K/h2z2GjkIIL4xUjXe6oL
9GjgXh9l3M2u8p94r1tO8HcFrbzHmljlCB345E/Cr3rtjPKWk2vtY2BLySQ5ho+ca6jECvjBE+KO
4qnTNBDf4A2X6OsP7rbE0IproinRPSyUCgZPRe2JMQJd5ETJbEFLwkSGYJ2PnXkw2hB51+l8zXDf
cONaRIKFyt8XPV0xK8KF81W1RsxjSBMZSb3OzGhUaIZuSXA5Ddo+uPZSXTz0U+PNYAQcdFfg+Vxm
0Vmes2D/ycRh3qjOCd9rkCVMEo4njRGQBvj0uhPg9KeitZ9C9N8BCshqob2WOkxsKyitx6wkVbWU
Zg4kLx6fBuHVCBrJ5zIq/SQ3ptv8OCd96WvDxeJXN9AHdYUKdeSqP0stCTwNfaqeUWLrtQwQX/05
A2SDGbR1eHYtra9s4G+3PXniYZiwNl17pkLfM9FOle92XeI/wjBnOxP1rf9NzXg88Y52k2SzJyo0
KNbyoG5DkCT8kFJbCJX5QeGp3Zs1yW3q9YSZF4NwIB+7I0qfrj1yCdskvRlqZ9Ld0ws6psmYLLEo
ciz6+rIATQKmlAwTVEdoMj8nKPPvjv8gctW8uZyjUb5p3Mv6MCBpmBTl4sftM7We6PwfOKS7/Kl+
ax4XIpN/4GHEtRuv/b50p5nvac6otF30IJooDF1dvra/kTMFIEUi60ALJ4eT3fa+UTc6Sc2CFDKb
urHq+/b9WPFIkulwEqcf9JFt9INZnoKtiNjB/iNa2768ko80shOm9WGThOTIA1Oc/SuzXN6zQ2b/
H1aefij3kgE7A1fjy0pGyapfM290/Qkv/DsIbuj5xPT7i5wQ4sMR1OF8m3qR/qcKnbKRH0ppQYWK
L4k8zU3g26H+Deq7QME3T8Ghn2PtQv1L78eALWOP7YmNzSIaoCnujK1dj1xcIZDopIrYSMTaQ1Bt
6MKjvhZiZgNUKqcn2/pf8iU9p0Eb3PZvEDIGlqci0yaqbHAogto8Latz3n/yqh+F9mxM7P1Xo2wZ
BYPh+QvQTSbu5CBYEj9MIBOk6CxVEHLXRYZNlnxGpyPmG68D5edc+dlfEv8Q2BAnYVnHF7YvdKwu
r76Pt/d16eo3bF1GFAa+FXoqBREply/QR5BoPlHKeTkxhbVgwX15yE1SC5Lc/icZbbs8uKDRO0q4
3vDQy0u5SHyvLwwV6pd3coh+/PgvHmYW28YLOMQDCZd+ixXI3OJGH5OZGSCRWjQnXQpTqP5IUmF5
PFttckC9Q3U8pBt0bs1gZPCmBqejU7EmbFz0ffJ/0luETAy5qRs3/MNpGHaZS/rUmJFL3OMMLB6w
GT7HW0wlezG/K1B2wgoxAoiO2a7VT8Ru0e351OM6VAyFwaf3t+/1v8E1Cj4GlzF95UUWou5f5+dk
awWjZkwyVkc4M9H0enBwnFiocHLqyu4N082zCfKWx0wdUGzQfH6Ra0kIf3JeJXfJxiU7VRosfid2
akgqDt2dBYnFOLpt0sFBz666fKAgwIH1vxCSrmSFFMXdWmmMLqVegKWp/NKtzUWbZu5eEMzm6BzE
xFVEPhQwB1Vh0hWBu2tO9nauaY+1Wdr0neP94xjN7YOFyu3dLw/YatnGW9sK/8mNK7gCopjO1Y2L
4nmCAqIJLArviL2IwldtaKeoGLfunpqcyGsUX6gGbwthF4PSJnwP9SCPG8PPK7xl52Sh6Xd5Plu7
pEdkqVYk117AefTFroeZZICWjXnX3rLLetNTR42n0xQ1oBeB0vBtI/MD7mxddVL7GxKhhQ7dmir5
dBvofE1bympLmoy9uyVI+LTeVgFO6wlLrXlPNko9bfpYO7iVSvNFg0UB2f8Zy9KUHpCbuRXTXBBF
oHFuIpBdZOtzQQ2ZQaNyZdIi+g4VlAPqtfv3CTlDIDiDt3Zh8IGtoiHA0CYv6hyJ4nCNrWuX/D0/
gujR4hRi/1+sOahEgufLSqcePYd9+YBONP1lc8V3uZ/dPT4+lkOb+Zq9LmGWhTweXGU5rd6ZwvVM
2WYassoPxN+IXuXEupUaKmqkS/ETUvA5Hwml9m7HUpV6JlzUSVSFMNDRE/qudmMCldPT+s6LSFMp
/GIaAoTNFYJ0Us7dmjneIF6q5V1qDmcRgUi/ivuqLNR9UNhPRaRIzXzTHy1kLDCvOl/uLllBoPq9
woTGBUkMYtV591LWqhwjSbvGMckGr5+1v4mqyDGcPKS6RF78DmvUILeg7rWh4b8aIbA8CE93whmG
kMEWj38dZgNZh/eXzean2aKgmgDVkM5z+g2zQYHeDZyyHZk7NH/XKHQ4yNxnioCLg3T/rhxRnumG
VjnAnf3nEOY4rwvl6XveEupJ9Z7u8UCI/LplSG2CXYnh5cfppozKOy77enwbUKEuZMrmFBEnYuGs
ojg0d6kpfsfTOqf6+TTGmvlBWSBhvpKILqoCz+X2/BJgrpVFrRyNkyaP+52uDpdNmSX67UKaEJ2w
TQmzdr4tQRldE/y3v/qFLMgquFNZXeP09/jzyoHqfj8HJ0MITy+WxPboKkSAlB5mpracAS4vxgzR
hmB7WlPj2JTyk3fdAwF6/stqcNkDE7lZdeNc3It8ZMLzCEmBBOlVMlswrkQVTL97+Bm7v1xq8zsw
9+pHdeC/5gyposox3ZgrQAPQcGSbohvl0bX584Kc5mVGfzTpuMIG6swqLiNtQeFGZJpNv7/ZzBgS
F/zU6jZ1py5gB9G0qq6qK/2zzfUQDFafyuFF+odJWgVQ8OoXo3wNmYcursaCGln5df/bFuJ5k3zk
E6Ig2IatWDmaHExexpa1ssXQh+jY4+pqZlvqnrXcM/SMgQIr/h8q4dK1JZb+r/oIeSxD22rOId7J
kXARG8oHW/MSSCio1KbDx0sRowvW/foOnqUSkB/OicpJqL/p2uCraD5JjGSp9ESInQMGTUTUZ47S
mV/cV+D4qO4V1865UUlxwdYRl14q808140CPNOYqa6Cre+aMu/Z9f+P7vHgfokxFpiNKOCxj3/rW
3xhra1Y8RcLh4DUQik873RSq9ekkHNSFXI4QwvUSasih+9Qrsqp9GmdESRPMjLf1Zd+bpFPTZES/
DuTwrF+aZTg2C4iduyEDsgd+A6KfWTIHM4fos/yJMou43VFjPK6aDV634ukLRERFlNyh213wmPLc
YCDtJiYM2mADqeHwuaoMuYa3/vTT+Brz3qyWBeW1B+JiOGGcSR/GehQYfdRCO3TSX9FlH700FIfS
HYgNrYmWYC2LrEpMTEumR4eT9yHZNhI+qrxRjcGzn/Uv/kjgFBTr9mrXeQHsauFF0ZBRP2bMaiVw
GWyBFRG1Gqh069QDhrcwr8UdK/3rqGfsx/ZmxyFFeLME/Z4k7BpMU5ibrBGAz3LNfCwLSU0S2D9F
0OHwWr7EzZ1rsZe/4KMh/xYfPHsetZX88Pe1vjEzUvVkM6sC+JqTd4ASTXq2onBjY8oiEzhaMCng
oGSMvDRlNsUBYZxDJ2rbETO/1mxe3GM9g4KF56YVo2hDgpO/hDFvszgoA3p8SdFBw5u4nrKAZs44
r3QqcJRK9YZlznOkUOfq1Th9IwHNSHTDXkmyGDabyduUHumF8USC0Js7RWyEsbqMADNCOnWUEfGg
v6YFfMfMKlY0ywR7E7SiDbCXxAXB62X7nBXnJNGBWTx9CAusPEhoE1Wj6fQehJTSbuxhp9+u9hSD
f9bdI6KXITwvQRUnABdltnEjA2rFTSjE50bif8RJjMT5nep21ZvG6nYOaDczkSWqp7s/lG8UUgqE
e7j78vW1AokmVi0dWvQ9qVL14LgpXLjYxWwUvJqlZBY8nnNRmJGu8LnslSw8qvSw/Q2hb7c+K9F1
KzGzdAW4HQvEx718UewImx3BKM+CwURC6sgtsdtjoAey9fhpTw/pD8xlz0RD8rMf810jXn3bMvAL
xx2ibo1hLpPQ+cv/vSg0RBrGfDIkmE+rivpoQhIKlKeK685Zc5j6mDmaKFO+ZFKYLSIvqyneABW3
ewRqyQeA1n3q/hSSrYwrC4IDmRO6/gPmzzHMpcMw0Xkf62ZCKFSBXynQNBCStuiqg/EK/qY5imeX
moDm0lQ2jKu+i3Dn8TuQkqIOLeg3wHnqJk8muEnxncTYmcSyLdY/wTsOeAx5fEKMxcj8Q419I3lO
tpMJkd9E0G0q1Ljz6f56BflEnPfsgN3HRojX6TK+7gy/d89SInTBSXzabknk9iNbAMY5m4UBktn4
xNlj84cEfKVoRvJxAvqxeTbGwZiBCdCBY49KYKPBfonriDrG6BuqETBIFOym7qJ4Cq3T7pjfDl5q
TxowziNDPYBejz+9OldUbZU8+ZouQlkJ0JgsQoXzRh73jAWXwFOPep+YK2yIMudd22y0CtL93dMQ
1KA2pLMd/fxjlf4VxfJUWYSdn0vUqnhFjtqcyKZwv/gMYVeyGo35zrv+1o4F+oBz+K59e8f+rFVP
XvxGzgxfZJHJwKAgQ3Lwh4EEwm5XmRo6K8JKPBeRJa+Lc+5gwKhi6xpXLK5IYoPQC8etzmMrbZRv
OuKyJHcCNq82NgdhUPbhFZaVZL1KiHuWKxCEir1lAsP8ImVrF8l0sxaNN2bjmn5yUJ9mXxgycdfL
vQo7ccImTyQ864H74LiTD1YZpTXMeRqIacVRn4p75LEn22wLuLa5QRodBb7PYfe6gcABPayGSmke
+rUH1K1MjzhMoTXwfqBVnQknsqleMkucjap+R3FV0XpLmBDHdQiKqba4xCRqJmVvbx4/w+ID4c7+
nZhiHELYCSVIFe0DQkvlt3zuPE3ClA3+TLieKwmn6Nr+z2Zqmt1VKGjOgT0k1OCIEnMQXPHeT/mr
+CnLWkveIeBYuFkQdDI1bnicNmWF6XLNputHcqeajC+H1tQwEKAjD8tducdLVVoNIXqoGsM5AFX3
KjsZBuDAzEyZDWyA+7Q6zgpRIe4/mMsb2e8KojxD8IayYandwrfx/rJsTg/dg+n5jHC6qM2c+4ne
+QgaYsat9nB/pJLKvClxPH9CgIHo6pm3ww+2y83TJXSKH8uQM/HtPL4PpOPan3n4boTan2AKY63P
vcUuwkGexuwKUjWX8CMX/EYqsbK2tWO8EfUnphE08pNSc7kLwjEh/b625CWw4AP79WMO1scS7m+q
BxbG5d/8E/tA1qgLG2qe7JeaFGBdUukR49EvCvLQmiE9xq1cR4tiHyfapY5qs6Q04BZD1t8A73Mk
vYdIjLOSbercHP6LMmuV/6gVQqrYsoh/QJBuJzw6u4btTLHa88IlpQSlZ1xg2RHxC/vzKvUGeyue
+/X7KXbqt3KGJvvaW0KCCfUmEHISmkjQicTP+fF7WdmXmJnxWx6kEtdi9jD6EunnwAt7QGRKA6Gq
xqMQ5Ju9MKn93hezzMEbM/Xh8RKvmhriRcmYKQuyLgZayYtHFZnbJnLpThFfIG7wJda9qEcLe8xC
rza6jmSyHLEkqrdNFaUwnvgfZE9z6PHTRGzf7pCMDgOXQojqTp8HYsDrT5tVqZH9Vc/kzrNtmdjM
tBuLbDx1IZ7NHWS1ZsjP2kktm8foEPzuSsF9O05sSnT+gMYjWLaF4cGt17hiEQOKrY0ZjQRmNzX/
Npb59Xhy+h8JsWVaSKYA3NB8bghmOwNAaRSXvPnlDUiJ0vQ56RgPfcEt6kiwGbqAvmKMJ33NY9LM
BzxtXUeN7HLvbVmvsi05Bt279CIovXtYns4NnalQ1HSrvhX967k8ePcEsRC3CqojU9wxMHK5IhN5
ZM+mshdvYtUlDeNw70jEW5WRTaGfzdNIFMIKghdWWwLSyAUxmcLE2WQU6lR3XcdhsWhT8uRYGexF
YhMgiMSTnvVj6DSUF+gscMd2WDU7Li9liA3Tbbtpo78hhxozINxStMq+d//PfeDmaDDDw5rVakjX
yQElOE2CEHHelCws5S2nE9mzkBOG/cgpv5BOx9tCSyNQmQ7jnYHb6/+2jFGOFrG2NDX0rwDTaLe8
V180j7OteGWZozhIJFGAADOw2mK/lmkjqs/DEFtTu9pw9lsAx9y2DjZbBSr/TO4w9/2XqQBhbjY0
JYEAH3I0SAjOvb7DbRXNjBUnPjVmizE9/9rhC6WKeiXrbmaS948hqcnBorABx9YkwRs6Uy2WBfGA
LQf2xDrMet4eBl58s5+nsY3EQir54qBlK3HL1ps3B3z7igxf/GYbQZbPU1i8jfePbKwpTIKVDfEY
Zl8y81XWorq/Imj+tn9XpN4/j2YBF9b1YBA5ZsNIF3UXOOhH8+nSaqoTGA9NzYFbN2eU7HjMc/dq
wjNyVDqllKDGJh9VtPd6v+IlAFywyEEOUhw56AtHgIQlUs8cmW4+llpDsITTugd0RGLP0bVAxLjY
v90yY3mCxJ8YGTB1qFaucjEOLgfFj3EIQ4IyfCH35zqHvS5Fw7SZpw5O+Q0uA1qBWgU4kxxUipSl
z3ISQUDx3VFKanbSZa/bzMJnuSEEjnCjU4hCorDoLasZThVnFQlkcsXTrUc07gZF+XlASX61LkRr
KV6wcGqdRvaH0Tu/pZaQV5TtIX2Y/DmSLcSknR9A6kCDN3jQ3i942C44lR4kPGd30rbriSv+IE9m
LtbiO7jKzKl9r/m1lLu8HQDLetHd6B2Oo7nsUlos7XJYAqxgTMusg9oUMxSKlsONDCy4Z0Gp/4LS
vU6mTO+RytrezZxttBqr6jSEjDrRK0JMXOUgR/xe9ePRLjNRXFzH6iHXLnm9fJ8WTKhkPBjVRYqo
rOFAoD+IpyeXHhxTYdu3Dybt0bvOEFpdq9k5BsZponHHrgm/xjbL4TB+aYjDULoRer8Q4L91VDzQ
tzEmsvZhgpW+YABzDNKM88eGbRlDUR6lYuumE5JoKvOBqP52q4/RZGsWYj95h2LOZMPYr5hCueOf
RxQCVp29TJRVEptJ+2Rg6BlXJs1nYChlvejD4wScrPlicl8uqjpz0EFzS6+KrHZmkSK1jVleSsX/
iNLp7iQFHpdr7Rsg0IkB2jhuC2LPmY0tDQMMFV/o4mlWqLxuyKbsdqlgI8O8WFYgGG1CyC9vhWH+
RJEQEKm1n/HRMhLbEKyYS7E8FNhnRD1ctfVxtbXGN8lEIwVENszn6fRV/kXqE+7U+WMZ2Z97WOmu
mfRCx7Kz5nijG2cko2l/nquxgVE1uPWdbCDMucASmjt5NwxEfohM37qU/55RTYhPUEzgqfMZtuaw
yM+5HYW8i6Y5zXIUhWOgsPbDhARGj+9pX3XDlYWZMZiEl84Rla/VSEKY9rpdoLJoFha8tYBHhcMI
zy3VwcX4+2monhgfdVxlJ48d0+SFy0VKU+s+036aeTFqzvN8qRdpltEFp9NnhsYsTGFQ06Xe+QqF
W35MJV4E/XdQQqnUB5vdBhRE7Ckm4xOIU4hIhHhQlT31TPjOXDsfC/TreIbI9SyrJ8HBGEx9lS4o
uOa3/aRqoZhGBZk+XBg+CLi/rwOOOUzkCSL3XeUIESInalPcSOv1pORCYlQIEl5Pd9uxIrgHMlea
8sb6Ynx75VJYdxhQjytzcf0MsyhT+/+z2oXn7e/m5u/LBkd7C6Q0KBNmArYbFprCNkYQsuu7/axJ
B7piKj0SA3vd0gaXjmOOVXOhkgBhAOieugRyEbVMVs+WQdnPfX2/1FTkfvs7sDrXnmpJJ8qzk9kd
dhD2htFou36vIHnpxOs7bEyvs9luPbS37l+cR8YCPTFgx5D8QFvtwg3J4hWxBarfGyKjb+5Kj3ub
Oy+sFXRxvGLXwvVzRpmW54dRNcG67po+c74Xgcut1yzEIoASEF/d6aymaEJefYjF+mn9rLU2GXhm
c22o2ZbbjnzYPiZ/GMCh6cZFSTj/hXD6o9fGZqsJhoXOS5vOFVqEnE0f5h21AF8DDCdSWE/Wrt4t
6cixbexszfG4z4dw5asLm+8ITTjKosgUiYqS21RZf0Qky4qxV9qKehz2JP2JpgV3VIomxTVxPK9x
pNm0k2+zNJUFUfxxCHXB7XzU0DZEptmmksXAP36YmTXX27MYn8ZCdDB564a4+MwckXsjGY6XPvJe
2l/3HIFWRj7exEU/fxotlNZpOJ52jzoGwHsAzuxin9waMx1z1HZqLd0zUKTBkkbNTxeYpIoP7qE+
rxK4rLUZ77uVf8PVElVYVmUmmAAZMdDHy8N83Jpg8PHoRtdj8a+oh5naLJ/uG/yvRPp2hfdjlSxE
ngrcvQncyrxsWw3qpzqVkMXEkpLz1twno+AKJyKKlvyiT057DTdrEkIjCxK5ORJvMR737wn3KV6M
FpmbNu5lbPoSrX+25ALktu1hFnqbVnydV6Az3Ttqc+O3T1Tr/5DYl8efYxS6vl9bkYbkxOIYdVo3
c1z/8VeIahy5/Xy2pxk9MeOIfL5L4fjVNKlHDNso9C/SW9Of8NTtlSmPcPY8M0inxveEDHiZ8iOV
cWlOZVovWCzhI3wDNM4MnCwgCSu9CHJDECiQv2/Ur4kdE/qGiMTUYmAwGIy8tPzJhogZ9pooLAKX
o9kDHKJzHsDQk7jNcgy40KEekh4iwv2yRTgk7oo+WritRuAGOwio7GdHbLalZnEPEaKKLDGCA7VW
sm7FJ3CLMPXhnIuhHy1DzRIKJUKY0mKcbqGTUzoiTmtio/ypIVHk5cdN81eEdvgz5jP3YaBDKraH
eTJXr73NHF8UJUhrP3GgplpUdHYeCK0JwK6nGmfgMRI1HlIlQThvRj8tbr4pS3ahr4jparXbD/Ni
3CCdm67WIEsEpIzq3XSuOV9Yn94YwtVYW34U3AVKIt65UEN26pEOClSpbUt63J/Wfic4Ikt+vF7K
84qibEfJxxw0naUDOV+dtrlWcXHcMYhXxrbHpu98Z7UydXcJBT6YhAC/1gYpwQcRdL7x8j8FVWib
G8i7kdL/eWrfuZQjxORPNWHvUlAmC4j7NBxhN2yMerFZb+6Gz7U/ZsSwx4iWV7UqXmkEVzUm6e11
W6oC69oKr16DAcXKcDlo+84eUYSa0GN25KGxhl27XkUxiX2REHAMV+frKpSZh2DCGtoAtTAvQTOP
xmCbbQKf7DdePrfgZ3qpxJMCIcdKRn2NJhiZ0FJkCZrg7f2YI+47K/qYq2h8KDXTuM/qhAj4DRzj
D+DmNhD1qcpweaxDvuWAevHJkfuOdskAkdeJX953zn1vRLc+YjJq2DywuuhHgFs26z1mmZ311Pw0
U8PrZ/VwaKaXfwgYPub04HVmVYw9HHvcMpWLZwUozxwTq6uS2PwaPqwDkOIEMnG+JbS8Phvf5CK8
ZS/CTn1gnLc6hgv5wAp+pYf41NdAeTA4l9gzE779bdxLAfBoGIs4mtORjNtmGUJ+qilB+QKjbwg6
fNmBnhptFk4TQgzyIEtT+EKf/xC+rfcEGRJ2tR6RyIy2LfaulCCaBZY0URcSjO6W7+cZ2m/DVWAl
CQwtLIGEOCAmPP1WaVxUB6fyyiWDWn70hmrwCW9Usa/NP2aF5Z0SfBtGPBCvXBa36fQ5rX/teYqE
1CNFKJFPhdGTyODgAQOyK0redqkLp0vnfwKpM14+vqDwneh3GwEv/NPTl7guPRzaE7OQnZ4iw2mi
KJzoA39JPgm+Hqd/5LlRItx+L+qtuZp1bsIGp7U26IAae9Gl16GTTDKMP66ykWU40ngaK0KxNk+X
4J5vRMveFPhnvacY4NvxSK47aeq+IGSAvT/FpuUUE6dHH4EUzp1EaIwLZ+B2aTHzZ7UeoCyOUcFX
5YGkHT3TTq1vSe/INl4fkm5mZou+f8ywNHi7igHY1neXaCzlKG7IWxhwjNroNDbYSVMjDimKjoAk
6sPRAiF4Cyr+KFOGINla38zCgQhdUrNPN7AxncUY6HSXpcpXhAjx2nV4oXTiVuA2u+179ibrO+ps
/+h8nVk9WyC0/RLAzECPTzKl/gSkCiPVC56dZZS7yskReG5kiT3MlLxdeTZ1Tw0Pb8q/SFA6D5GJ
qS6xS1ZSZBbvsjDelc8unXOve7txLnOCefOOH6y59tSfZUtNhz9Y7RPO+mtJ3Vv2xnOuk86vyIzD
9iadoF7c4Gn2Kn8BJLgI3Zoiee3nDI40udFZyeXLWHzmTGuxCOCfGn7YPQsdmIexNf6UA3FUy7X4
3CD9wkCJ7VAItAiRWQ2va+XpRG7XE64W6YD3xmbYwNVscdKx+isLKwrI8zciN6Un5cvLbW2Gxtdi
So6pjLAFb188A4ZNSYjjWk8lgZ9vcWmh8BfFyTwHpVIeV0HJIfnXD+0EnHgNcfsb2m3Aw5njz8Ca
YRYNFIPad+1mLgKTcg0qFaphT+CuNq+F8BoMRH9lIDPdj8ZdPmLqhuLnrz9zQ/V6ri21Ft6pBPsf
VrgclyVLnwPshxMCpHax0RPPRPE+FBYqgSBtakubnqD9zPRHMlLnkZeob6k5VsSKoHRN/mvwamUD
v+u1KqOBaa+uKknntrTHc/Joti7KywwYNwAHTfHjVwZS3K3o3SjPDIMj0L2u9JSMbnsNawAx/xmp
lzDteTcs4/m5OXFGYL8zni6VqtYPIXQ0QVOfobvw74c+Y1gAhRAJDvCbd0j6hVgUnJ07dau0x4Iz
Vfb7+BEVMy620qp+KKT0RulLAElaJ1ah3H7mQbChqQDO9Fh2hBWDuRkcg4aLA5r240RBFcuYWDt6
eF8vDbo/z4x5DlfUWacjIf5vGuPZBxclxCnmAMsF4aaUo3VWZIE9+pE4HECLtCiJGZMlOSo0QYLJ
yJjUOCW6asaRCbV/gf23BvXXmt/SPTpDchYFnRymoxJQ3gCEVu2F2mGGetKB5akDx4lpZe0O9nxR
uAlP9naxfppDmEG1YoHDZI00WvaomuN4og3DeOUvbAQNBg0nl2xe+v5kEyx82MD4FsrgGw0i35e1
GoGIgppzIVUIpuNQFgmaPRk6joh+9h28kM8cydzHCYBk9MfQlGTqOlvvRxRQKa9yVImHe3E49Vc1
X2lsQG4AAQr+m638widYYoDGGKeSwOfBsCf9tcfe45LfLUBmC51EfVe/CJKFXY3BP1baGR1ePkW9
ecxbrEWqZDwMa36KIhkybeCcce3qwbzWhYhBQDKzgwk7le5m6zIzoO7KpV9C8O73wjhMWYQbgKUW
Iw+RBadH811jKQ4f6jJ2qxC1W3ACsvZRU2b2e4mUbWY+ADag3eBdRhZhTammQ9cLZuEt/iKtg88Y
P4wj5naiRzcOPXLjcIDaE4BvW8CNz5zvxNdVWs1SIwTQv5ka2UPQklOWSW47snnWYUmZ/gwYmAGH
/uN3D7GFHWY0mvvIBky7mpj6P3k1Wuwu7Og/QW2E48PR8NVzSv55614HomLPWrR6YtpB9SOhu23g
d4qR4r4HVIc0dltJG0FtK6icDE3FzeEZQb2X5Uh9N08De9w+EK5P2/PQzb+5GZhX5KguCMrTNl6s
T4YBznsWB/8W7UXs/0fYgT6qBFEYaaQ8qy2ZtQz4nOHRPRyJvQQD0vDrwABzZRlCvXoZbDuy5CeF
9H2aedqFuDFdoBu54MBpN2xO0C4XPqy4sryM2VQxGnq0DPZRgqZ7Vf3Uo4NzsACudWlNyGvO1Lfq
jsD5Bx5Fw853pNgD4yBWX/c25I3hmj+KWCdrcgANtqGkQyNTHxSvqd1QdHllmzseds1swhCUieX4
JLaBj6H+GxNMjIdVFH89RHlOqcoG4PluEl5o+zVS7rYnsXN1nXBw/oygbhCiRpdO2x+3r+5OoGaC
Y6Z+4hCSLVFN2mYcpu24lWE1FYznxqOUz3WtiySzVlsSXEf7gEDhMAWJKABFesmz8KG88TgfR92u
Gfvr/X6MGp+ulZsgSAFqYATyNM7SNsA2GQSGwZ0tSY7lgqYDKMjL6VeC1Vf+xmqR5te34N3sV47o
xpyUhZvSX0Om5YrG5l2yYRGtIT2CIZOlGyvg9niZnhpx0AF2i28UBTfbB+CxrkFvh1USB02hHZEa
cbae5NS/6hQWrP5Ucuxs1LCt333+cb0LWtkPljazNKUwX3UpQDTqH2GffoLfDOnBu+11/cIXbuGZ
WyARxC6oRucrOrG+gDNVVb1Jn5SM+adYrloRXNjqU2yLcxDQL26QV94GSDSYljK9YJr2eENx/trP
ASohAwYxBE6aWDtLPfnCAqPboD2UFGOR8IZZyXBg1EsO5G5reinmaMvVFq9IO6Lw/klNtLWHtF7u
VTAKi88rKT2+HxslXKtOyv7qoc1fshYRKpykP/5JxgDwGU2fSp4zxGh7TDLTWAaaii0DaH325lP0
EOv2wbd8NIrqn1QVnQtdH8Xmp/48Ib9vLPReCCGEkFm217fSCuXIXm2MwHETzbaGX4upwacalHm2
3EjkOwVDTRtolrCf0TT/Hckkyj/OAp+eiU8EtC7lDGUHgTdrPfIicHx/KNOHDnUBJXfc7fDfNxiI
NH/lkjjTlQ5Jk37znuT2JH/9r9uDiffQ/96H2W7e7lMxOL/yEaacFX+2HCVIXgSex9VkiqG7GcxR
MdeL+9JnCGF+K+HRuLNUmb+LDmGA/Fp5dXUUwajETOk35VLM4lQN7uQHhQDN3+dYapbhdd0Sd9zF
GH/eK9RjqooOLYHMYl8H3HfsUGIlepdZytkmISOG+naZV3CzSE1o2zis1sk9M+FuBmqmcLL6Ky1q
LiEfZdRiaB+EdkzIuJYG9Ztomzvg898UbkO/1hXvCrpevKVEYlzqjXZAdaUsoTfWSKIQoSfBDnpO
gyuawxfHOCNd11RvLm66GhLn8GDexge5Y78sLE8praKbVrQnoPrYUzP9Cc3B8EME6ZSXmKarPb7c
voaAr0DXMZPEh3BKG3JoNS39yRTiIa0QQ6mOFQLEz/W8tIAe7tN70dUe+Sba20p4DbQuUnO2wq4b
/YritGwWSyHOUzwMQlGL44vkz2MXLr0R4yNVZ2P556RL5QfEaAuQNWbLnkjtF3z0/zUoN/WKVzeG
54nhshkYdckTLEPf6cqFsWGISWtKB66S8vZMqioPJ3Ri0d5x+Rdrc8xQ6hNE8LJo+GLxdGPzD+Uv
5XCnCkkX5SNMM/+bqTYa8NeojAHpS85z5At6KuDye+uJ3BaPEYOqnFTHNfoMtwlusc4rEPmPl8mO
kZ91FKq2dMMxgNoB5cHNb2gsF/O/+wunML8bRmMI3wUbNcBpV5ntOOituaz2zquuvqcaxiHLxHwl
KYLmv94X78BlEs4WTaRkKYCDCzKeWi4evbSsZHYK7N0KmiYuv3rTQ/5rfnLMbOofcXbjHmCQoBFO
T3sp9JkWQbHQoriCAOcaFsh5lLo/OEInBdPcfiqee63ciuk/pjhr3zSqv5VNMbxtpcQrPMRYbE5l
taezqgKBiJ5ZQuqD75MmYGKZgCD4e6angYUfDT7k7hkj5BYldCVUjKaN3ePCApsy/8h/BHz0xgtb
XercOl/A5v2vnzj5nfwUqeS7seKxYrZ9UVZ8H37zGiWLu76xBpCvP/s9boJXlSawAxtT6RsgnZpq
XkpJR0FCrJk9/W+O1V5G/B3MPR6kuV1j7f1i5asPRasZXPxM0gjI4hh3WY1Nw/wuPwo6ViFmg1v5
+YYNWX/d+sn2Gn1nipC8tKw9k7KhIteoiZwYyUyGWpbuOy+80RujfTpBFVLy2r85IcPttlzSh3pb
Jy2YPAzyx4K9MRCV4Yn/EDxeeL8bI7wd+UHS/kbCJg45w1IWJ2bVJTf1dG2UHY69iHg/vZvQgJKH
7ILhSsJbw4xenFRFNF66tVcmC8+0cP71xC/yewgoOpCRY98VhdIvJPWJtBnzVRdpBYaJi+UCoMfX
c6olIUFCZ6k7rMNxvDDEoKWSlUyA+RUQW2yQlpz05npJiHTJ5kqpfPrBBmP80Jd1VNGzEYnANOc6
dIy6QMNlyXZEXbI5n+TXdB+Htiawflz/JaxbyVvykqJoYf6x76Nxj57dn/20DiYaw/z7h5nGrbZl
RjWdUjCsHKBdUybU+fkqT8jT10d0Vt1I2paLBNSTkvHLUQVtDMAk/BBht20mYJhGavDPBOh2Bz7N
JzW4CYSrVmyjWBzyRj6aAMVa/EeVUpGWv2GsZqV7AZXeX/pAZO0z7vEIs2cCfL0DsrdYwVQKz3su
5y8NIiettkoO6Aol6quo/rM/pqC1M+9OTjdVHVPgRj4UVtoJWxH2fVRH3xNv1EtuIoiWGmTkf29t
Q2Vetj7yn09lUwpddL17W87rtI3wF3Ou9Lzch9wSCjW1bwFiH8/GAsziY1626JyD4rShYtVUZhsO
thRpWbssKNEzu1dWEA60nZ2gQnsDbh9kqyDflb5x46bjqO1yhKKs7o8TXCe5J6RRzU2T2Jr9zunI
QzDhMovr0jpO7pBV0RwHNGiZ3rktVhpUt6Tvlf9bXo70j1hRNfFgXX8nwAebrBtJnQpXMVR4T3NF
VcCH49nrIizzOM6rcFiiL8T889kds7x0SSft2iPGHiEn2EXTr3JhZXP3pzeIPlHjpMCGaNbS8vk1
ut1SQbZ0/du/z6EdaBdBBov2p6F/re+3iPVrhB1bgjG2hxSM3KIqFFQvscJNptoUV6e8BfuM85Fv
uuVTSTB8s63W4fAZ5xNMX+vYhBuRbldbn6TTZV0QzGiH/ixx4QuVSsscxwU1oEqfLnshoDYnIO+A
M05peRPFFbdB4ZO+CnzmwJKSpBe3WB6+dNQvd7RoU2PUeYkvQelfMGbSvG37cO5Ag+Mhe2jrpMZ4
Y0mPv+Qm91mtsq3UnKNFb88ALQo6ZWqJNGYhL45Jdw2pKcTYe7S96AHbzSZ2tQwFzeityv2jukqP
rw5GdALOvUIWLypeg3lQ8bq2tlsjsb7HYdpMb6qYFMRD9XfTu7XopzSWSpMOudPNQfswKxNZonPW
b2AIeIHmFt4UdZYDBaNGZ7/3qDHN0hYp4PCO9lbdj4ItXwjopXVRp/EmjIMsnYCz7nt63uEn8DKd
V5ML8Ttv9/Ip88W9/edPQaA6zttiDGROAk3f1OLAHibHDmbj2cS3HzufKg3VjhNoqamWYMAakCZZ
xGE/UllWjG1XOy9HHovkaOpzvYHWmI5ukWrYGprbE2uM/0aV6lkLoEKgecOSHwnITKniBNsNj+9U
1G2UHinBI9sw3lp7kCETQVm1mxuYjoWU5NZiLsOvD9YU/Yl0Sf9STDg5A0uAJk6cwYSl3lbRYMwG
hrPVvnSCAyea72seeqCYfVz1kKWW1DOqEolp9GZxUP7Y3iJeGBmwRz19uxP02yovtBg7lFJTKAeY
hQQBFCdGpkG7tAYf+209T6oY/TtZ61I1s+tSyDsBlS7fIOOyEhaixz7JUhPtJSjDzlNcMrCPv7wZ
2A+I4cfoZmkRbkfeDUkrmGnyoO2IMYFK3kSuUTLtFlFnAL5l+1IMKmH29at/m+sVYi4vgzgxkUei
BP08TsVp6agiNK7mk1JA2v+Z8HUYC0xijuzpNCwj+LPLS51nqPW4DJWC2HFSM0+MvQnXNVU2NMNX
iqBv2656HfLE21RVpgAQHx/3KTJnvjlbEgEMdqjjBGuJ5H4dz3u2vHQfV51gBV/zavrRGcmJZsRn
tz5aKC7gNJj6RE6kcF83IgOoQOJWB/dx2CGj2N39/IpylgN/sRsHoUbREquNIx7vmpGtm2NRhJKy
2oNfP1IV90GIGDz1wSKcLiR5Pc3GYgQWr7+iHaoyE6zHLeSMFlmw/KB1bja/jsGyQQvd+hzBNcEL
KS9AvHtKmYpW62xMnfwwgBryPzpxgE73sT6dz0ersKb2hEPXNpLQAQWuXSmW6V50DBkoET3SzTqc
gA+Vk9cbvEMCl0jwokdw11D5Xf8czuJHTqmTKoF20fmhKqdb3l6a41E4mKyyoMr6EuSiU66Ha2pz
6c1RF9b29IqRlIni042jBS5HEWeQzBbDBu/ETXcpBISUdpJKNz7e71LSqtNDAC9d1y9KaeL4Sg+K
mjXgy1ZXjlC9ASdjv2lX6mB6z+5EXqpSssrWQI1P/XjD1U4Mb2vTt8QFwdwCtzdYAORhOITLPG3z
NHjsLyAAnkoZUXMGnnrCBiyLv9dWYJKAzcsyo6eJtTVOjlIVMBy3JqMNpoPg6hHd5PIkahiPGFTO
X1UIpd2XS6TIeToaeM++J444njnYURwcmdpT+TK6zIfdoSmCHc5Hhmn2mtbwjgA5/o44HMS50tDk
5LzDkjsr63kj6Wp52M5si3HWOaoJ2l9iYhW9fLBCTvjbzsuhqUqPVgEFxbnPRGSBWlpgLh8pmUDx
d58eQigK2ZXLrpdqtkqeDewQUtiHZ0sL3VL0ndEFqJjWrfza3wcSOkFwn1BxS21HFCVuYrAddC+S
3LyPKjqvvaP41menu/a+IphTfI/gms+fcfeExS0tlaXUsb2TqZMgwDQtD7tSOgCBywjUCU/hGzu6
Ccv4zifHJ0aT48FlXTsEjZY6rfEg4+ZMbfKIG2tZ76Jc6cczWGRC0lS6eHu+PN89tKF6HcAFpBY0
TxN2nY8dBppg9ONRWtwwWKwlcsNilySyfytDbLORGFEVBljMXhbU8gjwB7wQX9zqiWDHrcOX+Pea
0VXG64uSO/3Q9xYFcWqeYC4+LxNMqLLODmZO+jMen19tL3mrMN9jUgqrMkMAbibUG8sSJVK1xCdP
9qYjv3DvZikUocT3V9Ujxc8hHQmrrl2SsA2cNnPn3dp0csaFwUJJqwP2g8ywmicUvzZwjp9SmoO1
cx09WcnUA5TXYMnWJqB3EWrb3mGbzJCXhUogcTEfkkeXdBAa1s1tTRabfTwF8BkNuwCxM4aBkxH0
ytgMrmo9WWTUNIbUPMCxPdJyJijY1LOEFHOuf+NA6nUw9WvNTHU2dIucUft3H9ntVQQnAfREH10l
w+ewt8dj/jLAatzF53xrFqSh6/cmpCFT9FPO/RH1mFhtBsax1ZXxsmzHXohVzwluD1nNekjbsGah
SKOrX1kPcmW4t9AFBb55AH4/mncyyukxUCfalwPmaRLXQI/AFpBb7brGvoTOYmhfVtnjz4R089KW
/e5DGHV7v9for5WqWRJfrzkTh89oLS89Oq+0kQRzWvezieBlSUoOKXYghz5X6HGV2hZr/hG+L9Oi
NcTnkq5qVGGFBXf/jk4LbmX8JyuDTiriH0DRmVCYP09UoWbmGDYbptm6l8sSmtaUUhIf9PBgV/eC
n20W1RME1FtVVsgME1v+/M5vyfQq4M9PawC3LoohwT8zYehr9szuD61euMv3kdAsLYDzX0tZzm7O
oHfx3HohHPh0K5miQume78IIzLLnwDpNrMIDajo9uLJZxbnxPK6Rz58IoXhEPo6zIz+udeuWA2mh
UZeskveRqmE7713RLz9MAYfVQ9X7ouI2sYmjtKYYEx1sYZMjG8CXlDc91Y3Pr6EBjDa3DLboLpD4
VF8PU0LJiLe5Dv6w23oA53kdZj4ZxrR1c2OkyNHadQMazsQHEmDC61MYNYGveQUBJkoRyeyv/zAu
9HhUik/QtFTeLPtHhY7oMTs1aW3UWtiq4nbXpw0X+7HqqlcPKoTjjX2GWOi8h/4esEzjMJfroU4h
9EoID57BiNCaSUeA813zClHIFwt7h+LfBizVa9+JKC5OrPUg8ydmvIn/WW84TBeKoUUeuunv1dwa
mIUngQUD2Tu6LDUJ1wJT/fRi03WdIY+OYHGGjmT9n5FBnbk+d8yXiYn0hOtY8kJ/vKfjX3jiPykV
P6B9FfLeQdIh/q89dE4yTRJ+dvME7IWp/rYH9XNSS+VT3W14eSzmlsBZUh7bYmYHd2ZwOO53NlzL
L6+bVcgWeufO7Aj4WetTAf1hgVCVidPahQg5iv4UihuOIbLe8GUzoap61+U0CPenKp5NRzUHC5XY
Gfw7vwapRsezaQSQaAH+RYk3FqDK2iLw27PkE07zrFj4LJXzvwNIp5Fl4zzYRUtf7UY3QYcQTLfm
anmfss6N73NWczn2gh79ttyc8nkWjZRoaj8i5apx5ZP//CdGg7kS5Wa/yCypryeGc5laUQ==
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2014"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
lz3B4KHX5z7HJK6kHiZGMmcEnUqLtTRT/n7HdY7szClNEEBtVq2UQW/wdwwMN27AnOLZPVfuS67c
Y2O4fk1xOw==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OUoXLY9rVEqAKiJgtR19Q8FIQUm9wPmLFXF2sem6w9gJVRflCYIHWjOAqv6eppRvqeqcjaja3KKN
iRxsDXzkmdVb18CNyYXYPgZU4MySqAPoAE8BZ3alC446EKqG5bo3Faah4iFiaQ2fsSYQDhznQFWV
FIedseAJGSJjdgeT43M=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2014_03", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
bHuGx6phwwi065A2gw0E1Tqc2OLDUoohEHY7mOoJcUQwvr9OEJ4yz01Uls3wx2UOc24N+ANXe8aM
YdyfwspjYSBviz8nI/XUT5fPMjNbtL8HFChLorcX+K00Sc+A9m1I9+5W+Wd6GLSKBCVYKnWRn9Os
rc68y/GTowadTW08aEEccqOavDD8XG+R6gQqGpi5C8xq75oqBRmE5yNpxpBXxQRz9mmAsJcZ773H
BpObF8UUngkYlRzDjfxz3vzf6lVAPrLm55l1zEsel1LRtdqlRT8kBTrz1kke43v4c6xNv0u+i1Y0
dvxmNCEmLNrwBuVbcA8l6Jjp0k0WZScEgrEOCA==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
4sCk5d4E+rPjLUhUiUrzCNkXo2ztvWgfU4Ic3n3YDGHZzWC7cjzTKSJroiCXwtIaQEIL5FpdrGOo
eHf9JlqikZvG/pLSpSZr6BTZioOpsjgI4CJq9n0wGhpyClKm24hGzYEPH8AkBs4wVmgt4sOHvyYc
mYqTUQDFFlehrx6Wh0E=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
cjjanW9F+fseEMt2SDd6R3KYZVrfLHKeq8ULFHbP0E7BiwY4Vkec6zVJkc5FOAAhZdR5Ywc2FOnS
jk9bJ37QuAeSdAcrSzysHiIJYxA3kbMVuIa63kiSn3dKlLmPc1gZ2/UtM3HTBff0RPQzxl944kH8
SUid8bQM/bx+7wxLnTLuo6uTok/+c8ipzvZZ5iJ9DgzZyHiiuOtKu8JWNRVw1P5d1QqQT3EZ7Q8j
fnqcUNAmoR2w1hlmAhXTJgZbpiKUcMF+Y9/twpUzFl3rdEE6PKGzb5YQ/Re4uf+MJU96/KSTzmBR
Xfe8WjI4zLk+NlEm8eNku5cgYGTA1pkwApl+6w==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 82816)
`protect data_block
PKlpisMKFINH4hoELw81Ae+vpIr0xr/BIQZISQh02QmAYRngfWchi+A+2gXJ0ErM+PWm3fbvLHaf
UADT/opvnHMCrmwuOuQX48J/a1y0sztlHgsA7XTu3se9+qgRV127UsInIis4R+Arq69Sq2p8iQGa
1PD0yZk9bi6uA/bjwC/f0K4UDBZkBXzLgK8AKLyDRJmdnfTtG8KKVneUKGDkFJT/39R+ORlmjO1K
XG/kacw4HFvvx7d5zMmCVk65vch85G59cYj3oe9/dp+HeiNRQLeMPV8FtUC0j0/RKxrMAO+QOmF0
ERBQCHzifcxvPU4x/b51WVf9/zo5hEy7xHsvq6Gr/13z/wDwkNa+YPTJyWFr0XuiAw+KF9ipUo4x
gH1etQv38h/IUdmUpOcxElZzljx39pYb18ji+xL+nhrZ1Ac6sJjE7pdZiri/9xL7H1szzwA4RcCz
yyuOZXt8EURJ9h82hCDThzRDyluIzrwN/ciAVptMgYO6ozB7grEBz/iup4xRWP2gv89ezT0rg6vR
496XDHiQy8HsHmOlpPavfboF7FGgYJQZqrKfeqsoQHmz+dGTQ+1EC+sWnmqIHiwqGOWBHo9DXIsy
nSKVQmVA34iNf/mCOMeUFIjslHhMfuS6kS08B7zoWwoNLrzd0WEgVwsjy1qK84Ck/BfC8nYq9eOU
MvGQvNIzinz71GbUM79wlIdGOtkJszEKsR/hEWC2F339ASr//5+Qp5c4bRPBlgopO61i6ru+t3XK
YXb1pSColJ5eWLwqwgL+xJqNMuDULtXnREaaNx9pQm0D8HihoJXYwKfVN/QHqW5V1DCGCnmkHiBA
wIp+DY5kePLolhMmNJDLhl+BmT8VaWRmMwQBFQUlVDrBpQiWbpABx3xIKDMg323XW7mETqSrdipG
apggRa3y7ra85AHQgLyi/NvVT6TjJBlUhPpQcO+VkUXSC6F8hiHnpIhQKTJ26KSaaICSdR6rochg
RSk/PxvD12im8tj0fb/zT20G2Fah+omaNG6ayEVO00uLw2BdSeFyOiI+67MvIjzu0yLEgrBBSnJ6
CGAoN/7vwoPzxIjeDoKwdsFUCiKAjFMffXf8On6unogQud23p8iZyvdi5fzPgaWasp6lcVy6+EDN
cipbCcAHFWy9v+mCF7kaYiUjj5X1DXRFnNfSvWazczEmCv8gk6LPFgr/+kM9fxoJw/JFAzH533rC
YuOb5f6X5X0EPTdJ/xJNgQq33F2u5288g/LqiR3U+KvcKww9O/bzUei9xJPbdHGz1QXyDl6x45UD
mtF7Tx1BncNanvMkj28TyOHSdnZznRjHnZ+C4mIpR8oElrZ/kNBtjfX6uB40NK+xWzK5lSd4enja
8QVrKkQmfpbsFaYVxU6JJ1K8RdsRzIEfLKPKQgPlLCEtEvqe71Ob4VhcaldeizHxPHT7emlb+UpF
csLtBsu23jf6GMkltI7CHWGCMt5v4bGnt8V5W6pvfRo7Uzc45O1RUcLYETkJVTNOA0f0oZIwzzG6
oLrdF4u4A1nd4em8yz8erQHt+JWRZjuNOCvU0FrexgI4ye9hvYdGRtnqWECUEmC+9bAaTNhpz0RK
zpppgXZQNf3PhPRjcdV18C9kHr8xvK9TLmLqmzoUq2BtslvJtUzxPlLiBDbVkHiDBa2quq3uN/bX
6e3RU/OZflLx63FMA8Ly/mYcaApdDre/wj9U8rVky1xnqoAVYd63pwAeg1e5VN6dEkbGvA4Ilze1
1zlXwqjPrXFFTkchsMoYk/U+SvgqSEoQC4oWTr/wN1mbu3UoI+EpZtK45pXOQkMdS8ExqiIpITIZ
iWodd2/MAiAyhkayopiCWPEy1jj9uknlRRi1jQy/oBHpDRrekYmRMAVMwQtF4btRnv7BXW8INNE9
ln1hYwDJ+kKEUwG6OENJ3jOcSqroUquo6FuiX5HMg1XEUOcPyXt9XX85Au8i5Q1JdVw8BAeore7m
5q9ggtwf7Z6KmvE+6PnMPrfyMAiO+TO+z2jp/nbSm3mtLAoKAELcFXJ/NtXUwl7iE9HIDxpvgD9d
iFXaqQa7V/Q7ECPsqMALzfqmi1uJpCYIbOhaiunf4GY8el7eljC2CSvEi8LuKsPoYe6e2XbSFBas
2kiaw4o8G9YcUxyBJGkJSE7IngOTRDpXTKOEZ05btmg9iQMpQgkQRLUIKBiOnuHlWUpmE7xu6I4z
Tf3TxMAjGbO0sC8J+dxBzeVRDi9hxH2hVV5tNkErq1+87+BnhVHm2MmD/pymKNxi5cNX/FexiLLK
wjt58y2HmhcPuYib1+7czTXV7eP1aQkHrg2+mFmaxYy9X76du1DjC31Bi2TZCG2ilC0caCfcdg3e
JKg+aPtxCoijjNB7W61o0d3plpwnJQZsptKlLmtXP96GKCD8a32/WlVIrMFWp5SUbf6ggWqEusTW
MdxTbBcw8kDDIubMZjymOABdYFosaWfhmRap7HBodohX95I9pw8B8vmWll9icw2fd2hU9gkjzWuF
xVvkRuWsIuT7c/x8Hki3zaaDfTarVw1DinqLnn1f6IZfqNaqHhpA31oi3cfITJwleHS5wYNovj5f
erHd2jyxLdvB/4vkoy3InDw3n7x4w9YC0kweEyaHjbK8Q/1TTPEQf4Di+o3TMmLMScbxJMAF5gqK
gDbUR/AdJrLjTzOO1kpeXPhUlqaUvQBXne1F/N+oQj9KARG2LKii38ZRzl4wzFeJLbaHrlnRM8jR
lf00OwX/GvQJS7+aBoTdy8pbf3WMTRgyW1onApjm2JwZEmVLNB58CHtvj9HrOEx2hf8deEa/c9r/
ghS7Tva9ypnBZS1TKkCBamOysNwjLAtSFPedJqNIsXjDvdYX4T25ZMJWwfcKH6i22Sj7CFPhgUQg
BNOGvXttR1wGbCMmdh6Krdq2e+VcQijvArkt2tRTLx4GCp95T+oZ/CZo8dNj66cKNdMjL+exAcLC
zzlKsqpAVebefwCul3JVG1YLB3Ntpw1+i6hCc4ggsMR83MlP2T/B0A9Tk/o3h+CRDU3un2mAYKcw
ZbiCcpnoEuPWUbxdxN31az5xSewxsNkFPMqCcFW5uZHvFuRV55mMDeEJTxpDqIXiPHdSTUm+P2BL
bDcozga1rhoiqEsjCWIfptUBuVwdg9Xgb9dNx2s7YWVLgisJk2nEHQONBxyEStBJNhRh8YFVOYyw
/N+Wx9v/pyZFQyK3BMx4aJk8PqYECZKS3kDT8gxo96HGZu9Qv3a2iKakWdfVLuTyV3Ug4kaQBR81
zXIAUQo3uLHfwwITDjVJ363ZZ6xAre3Q51Ryndeqnp/9kZKtv9koF3gyLPSsUUrfXJVQNwMCgQu5
TtvT8EFBZ1I+LE5Ehlm4U50fxkDhCGFLLdr3EWvehcxjTkbJLqZIj2ZWuLVMB78bmQSUHmtFSAwu
sdNfj2l9NrUl+J0QAonF/qKVBV6u07e/w3Sibj6ruM5k37QA4BC5Dpjnksuys7BLBvFLM45YR1XX
JxQn6NMD08yFMz22Sp1VUDwnCjchS7wobrHTPMonTBGWEMEV/hbK573hquFoRFyTGVGBoeSgSfN+
DDcXIm2qoicZWezBQcsr2J9H6Y7qyGhDAvp6PDW6BQqD28yj/0mgo8cnxlQ5btPzvSqhzm2D6o8B
tVRLHbJAANknQ+8RSWH2POMFT10aqftNbe1zm2V40ooBxbN+kxKc640IYEiScSAEhPULLRXAHspd
QpkT0BZkB47K01kPf5a5d1N6Yr1E/xORHAb64nn4NHkEyuTusno6hHlqQDKfq5CDFNJmr1qAmkE5
Bxkjft9wL/JigRN01Psr/pX/3RNdaycs3lTKbSXofOmL7TzHNY1wmHzLNBVULt7ewmvFWo3lxBUV
55eWilrReGlk8hBO/tBGI4fedqQ8AXg0jjIMi0DmQUFBfdugV7qntf5lwPW7D216aMex0KRwEMup
GOqdTkW70Pv2HSJYc6eN45q5pS8TP1szMna+KP0nKezHHJorWa+j97qcHIGlQzUdD3oi7VG9AjsP
0vLZb84N65CPn4DvdILC3EHuttTZaNWzl+FMBjln1WEyFhWTvOwEDlHnhJlC35m48d+7GZzudu1e
opdUPGDRm29j17/tVysn46sFExzvyo5XTsgNHmoRZNwimAmXn43T3qTLOfsiOvdzCHr3dhV/N8RP
X7Llah7gW1ciRZ7Ljwsd6T6H24B2bEzV2qH1KIV/WdqPGK07rM0joYzB4hXrpOkZnKxEYRlFoIR/
ARCCOlX59he853aq39Oc5SAAXSHsohw7Ktq6CAJnFYqN2uA7y4TOZTCQi0KJj23sEZZ90bjglR2d
lXoBiaH7KeNUNra5aN+ICVa7lrb7IieqV3pmBi53xcHPM+NqX7c3KmEKv+8wNiqK4mI8Oggwo5xU
sJGa8aBXYEmcKw2qCbllHLMz1bZTBwVFtPgwZH5EHxphmvRk7p/BwNPzgFv1AgjyGyzX2WcLvnAl
CbINUV6Y9s1n4FoWyZKBVHsRt4MgTVoddmylXo6uS5oPI982oM+ifIKwZMQFQ+9ijUekSxnoKE8V
/MHE+OahSVRf0zM4rJmk8qdA/GsLDz8UUkKjRlxQKhh2HTEL/q+rDfX1Z0mnTb7PFywwT0zfnOLk
Jg5neZ5eBPh3zmFAjj19G41T5QHHfSlVxkhqHIufpcYnwlq0NO6fM6u6GK7d6NDaIHszskOujnuX
n7xRgZmA5aVZzgBwYM43y2jLZG2u9xds8RW69UrI0IpJ+w+prRebwwfN0OVvk2yKgxe1r6dWpN+q
6Vnm0L9nrH/pgP7J/78rRhPPkd87pYukJt+UH0n5+c5akxNNqcXjvw4VwIzoFfJHi2eahO8b+OYv
DzWsFy0G+zGTgPB2PjntUrFehdC9WmiUIqYGm/je5lxXXJCLRzMGSzsYsKG5ruUPewa8+BSotrbl
diyZV0jdoI7pnpbix6VKEklLOfvC2TogcQd7tPRK9kiIX6nfQvfFpRFi8pPzlVkzpM90Ne7WnMtG
i2p/IhF0beNsBKJOR8lxv7UkUNMvwjLIoC6JlpZzyMBjC9vu4O9twOaS9t0qsIO0PWuTaygICJWF
EJI3EUzVVXmkGsNtbUB9RPv43UHex05WvNiEIcQJ6Zi9g8jxtbMxCOKV1F4Y4qUIDH1C7LG8yVy8
/PB5oUEPolkbFoZVcKbUP9YggmeGXFKnoWn7fA93wb49K64t2UStaBleGNFdwKaI3O7YX2JwrZdu
V/6WJ46bEcfQ48DrVquvAsDu/Qte18hwq6AI8Q8wwBtc3yDMTgQ/F4o3hsKx2fKtwF45KS0N7gxk
3MDhygVlnV/n5EG0T4y2PuTcxiNRnYXNWHC7g4mEMK8J0i5HIfMKVGinj7FxfjeWeJnuwOLIbvWp
4or3GyP6gBIpQb+PHzc9B9Cskxt3toHQeQh3H/KAvEL/uTp4+N941dAU63HPmFAzGDJIHwUKKyEL
7Efc7jxL2AMJ+54irCxUXixt/Mf4EFUFeRX9Usfe3c3/0mu9d/Sn3kMEunIogqBdUTdAnDDO/DoZ
uNww22SXb9UlAdEgJAvek4cVX13GAHFrVKU6yPtUJTux8qTCvKgxRNBuM/h3KbVdm4P2ljhPVvon
YCUBNGXdjQD6LKha3CusIet0Ekwlu8ZLnCdgHEAqfT/z+WvzHKFvDo1qb1QA15XFo9EXcFE+lQuF
QTSvtb4Wo1lAb22E5sO7I2FZWmdqR6v7skvCnzT8btNQmbZitkIcFm4l4aqVuhB/QhsWLD0jvEt7
t7X6UzkRHs1NWtO4zSaDu5aFt0QR352AaUDzKBzSB1qdQfLp5JcXN4vwcwrJPNi13hgVQMAoOU8S
osgsTvP1b8QTzoO8ixR6xU02RPM4PZLO7gGrx0ykMrY34fnm5Ff+KKmLUdWStLwy11nandXepuxo
fP9bLHjW9QdAW0yrmYip/G3rkD9i/OzjWkhr9e8/dwIiuNGt9QfCBIQwc5HMNcH1vTsf8takLld/
/oFkvWHfxqw5xkiUJ5/8J1AcbZP9MBjjZ6XDztz/COro05yjbNenJGeBi0krvbvE1s+G3EvsCN4G
BLmmnuzGsEDJw37L1/a78qTMif+zUkfqHsZjLnI7Bvwo9EgiackDcpeU6KOh4vp6ygA6VbFKd2EN
YdREefq7BBZYKvbU2a5dQmuwjXrPLqPgLAZQ4gmLayoj8XDSOf1Ksvb7Sok26ptqyj++iwt6RwBj
/YsmDf+bEzFYAO+8e0hqrpOqylfeMN+JdSPLS+tFbBCQq0wtPPxilOzIbhaFwMMb9ZfIoxcY7qvG
YWC85mF8KXrRZKOFdR+ejw2jPdP9zNKXjlVFnIA2nw5T1F4ARmArbk+rSvujjZc15jsE56be0its
U5EsLpR/iUdQH+lmpm+51z8SSJVviYAmSsPiYm8hJoohgZH3b61qPgoIVBu0TmdQmb47Mv1uHbZJ
u2XVnCiK5y9gMkc8sRAIizunal/2jYYBDDL8E6r3KA/q+eIJyCD5kmGFKDb/vBfZeLPEtNaFTvVa
sX4hj58ndGYKTfHEetLwLu0hjRt4wFG6+S2jsS0Rf6ApIhDr5nHT+pqzaJhORoaix4HJtvjzgzhL
eDwBOqAfyRiJvTSwxTik/fGnX1YRyUeDOhIv5IXw1ZScGEvdIWb0RpKbl6uCFefIBSPbSEW1hMRj
wkSm0C4jCBJ2jogVxAf13pGUeV5t/IYtETyynHRtssHUuDgjpD3Fc1G8/KNUbYD07X++Lav4iH5V
LrCR9Gxrl+tHfKc1s3/RyQ08Nfjh5zTEClHS2my7PDpf38e6QwQDwq5l3OCZxWjztI9pAZqzEUcs
0uMiADDOxBBtFr6MRvfY9xJoIyb2xINI8RtWDdpx5U3rBTHjRUFlK8xiGaipFnom0XBfmNPfFREZ
U3ZrHWwGea0c55S5/134dNhlQT8SRnklMpKel0kCEMx/v3QC2V4fkL030oeLqUc5cfE43Uz3XD/X
JX3dZwidB7LN4eEgAOTHn/WsW288rXkBJAApGZr9QNzj2z3EijzlfSuvrhTY3IudYSvPbolq7uZq
ZUgddFnu0Z1DdRneCmTRIXpl/TOszFel9I1qcT9WUID86yCqXmAstwTP67djxrBQxL88iABniItY
GUYDdyEVO1Eth4G6oI0r/uJYzxj2ekEr1y90bnB3eETYaMU8LbyxUqZ5p79HeWmG9UO18848HO+Z
oHe+dF96apaQoiOnw4HNNLjrg87Fy6RqRjKXbIwQsYOUwOYUtIh7R4RtGs3sc+8o7pprFqwY2I0W
BYu9VLn9f5ZiaXgz7kJVmKNtdESAP7ZK9A+qlfGKEGF/A60GoQhHWSxlpJNidkdYHWf7dHm4KE0x
5PmNdSKB1GKNi0bH0r+Cng0RbkBP400tkZURLLxhI/40kBEoW88tTMC3WEkoNYz0j7FQBMZaOEix
UI2peq4kFnNKSgYkJl8NScOxX5ZHWrH4/aDws6zHczxNceoQJ9uL+CUifQoJKecew6Im8OTW7rPj
L33KCsouDuAc2ou89ekHahblEWAjIhYGuV2TqEmeCFHYtXxpta2Q5ZgYm/MTbrY4ndNgixT6tcZK
aPDHjUKMhjKJYfFBx1nmtKNgj28dcZ1xzdyPXRmyu4f5PS7hfhCdIDapZKcpOH3krS1eaoBqrPaH
EzJ/5xGhx0IsNtdLvOmNVY1odHOYrYMXQatws+xecoBD3NyghMEle1xc7gYe9F8TaYR2bFNz6kqQ
arN/bNuCtIdrKEIOguFIJev1/XTr/wixnLH+r1MwZZ+RQ1XW/GPqeSVduXo7BGEYUo7hCBIDJ+Aj
aOL3eNQYaqEmuWqZoTcPn6+u7S6Cp3gaj5YGdmpwxFptcy6kS31scDvOwFlKnBVKAZdkqS0ObGMH
RTgZcvyRS6O/WPgiQKas1+Qvw59gEDkwexG5XCs/wV88C9QyUqGZm+UZ7h6RsecO5xl2an5udfwx
BSA0NB+OKsP2RbG40oHvSDsNsDxpTKdPx8LM4NGwOo7shB1z3+57ObX4wSnIvInCsD2L4vsfh1K+
fzRYUBPNgKV/XWIk+MKk0TaldbyLyVzCXafyvUdjGsmgLtoRaXnzT3XDWpDmvClprJdgf558QuAy
+rcPrwMrZh6inr74HJ7rIUKZuIxdCnLynyloHSsFvZfOMq5/uyYcn818/gaNlLqITW2ayENgTcom
v5GJL3yBtVxAJhhH9eGFiiqBn05RLFGuqj120cvNK/KyRIic0q0o8cWKFBe6JrJ2AsP7/YvEJslm
ykdsSbaYUKi5ujcp5jO37sLWCs2BZtR26cPz5aubb8Lz1mv/9rNfPpl6kVKMdhWyxCWBFAl40IFJ
mdWYmfWh7L+cZVzjy09iS6h98uDJy+8YsslU0Sii21PnT86Aa2+LnEQRtYyawO3fayrFffV2h5uV
KKL1SxpaNthRLFRwAVjAkm+FMvFaSzlt12db1pommbcR64mNzAwwfI0Od366USZf1ndSzhbpTlXM
bQWRITeSNEjlx46KGGWB94EpbcnPXKsHMujKiSPLONY00dWArnoyJMgZ4POq94JOxC77PcAdu674
gYKo+/5A7n1tnSDB4+aJMLxQx5InYlPAeZYC9v5DWnfitYOiDi5QaS7WR/T3GAjhaU2GBDOPErlv
IV3hz6ZqnkA372K7R69ZFBpf38CCczvMsqg0FEhBYj8L55NsWa0trB+D6/Qn4TjKHM+cGYpHWHmD
6vJAGuh5Wl+hUeCL93HYXX1dOI+2a+YbbMFvNmtVObkr/fLW5oWkZXNYxiSpfXJMvy//ECx6Id6+
035AH0WDQf/Co2zFHWwMAp/1CkVGYaoy7HF1RsxQyA07fOuZLjCBwT+6r7vcF8aBrL/RZYpRt01Z
CDvIi2j7qf5km08E4bvfkIWdQUCW1ZcIPDlL7U8ky58aOp8NIofpjM43CwGhKwPtJtUjFHwWov3/
eevef1J0mrXAzG9XuLRChuDw9to1k2eWYUHWO2Yrl+ESrCqPAuGaCIhDrhIxbB3Np3EDd/3MQzSg
bnzH1cg5LP29hRm45+nQmtOZ5q4OpzpROCIZaueW4T6FHAlMJvz++e36vTSS8fxz2OAGtqKfFovx
x2Zpxxxubuoj/v+zE3KruZV7FIvc6DCT3EH4+GD/b7Ytq4A5VG5DixoxUc3Mq8CJFh15J7jWeCbO
jc3r3l1IjNUOjMenHyaY4gXEzr6a+xZzvJbpaojHC/tVpGTIBAmx4nkSsoMNoR/qv6B1uehkt0H5
GceF++3TDUpO6VsWhWzNSFNeCVXQIURbUD8SUFdNW+CJNjpSCfzfNooVSFgwZRDt9GydSHa6u7zt
SjK/Gc44EQ/Av4LxvHptvu1FurKi8Ld0sHJXcNvIi3SwSkdjX04OCFlZezws+0yNdnl0z7o90oKC
gOiwk/60T+jtIh0gzwiu7BeAL/+gvz3Aj0G8Y78mCUEuOQ075A57QMZ/o2TeNgEIqNh2ovEAALua
DG1qMMAhjtgVlIgfG5XYcvUfzGUBJTFb1fX8y77IeA3h0XPvV5dh2QzQ51T290kA+JcCgmqghaIq
iPhVGAz+01HqQ4EAF+3KbIPR1zzjtvlsV9O0txPhBkaNmsxxZQ5+oMhdjC67U/QQsx81yOQZkfvk
ASu0Ul6C2eiD+GaNLNc/ntyUgpV1W6KAareX2kxvBnC+HioFNrrgieO9K2MdspeM9i8ZWaHHFdx0
EuxuNrRTYnhal07PWa90cHlYxDrxOMExVT4HBRKxZN0gqLyUDTnUZI9U3uZbdndOLI3xU4J1ppbx
F5TqDJVTn7Gu/Efm2UTYZRZsJzGHYLrlg0W2lX80iZcgwYiqR7Pz4glUQ/kB1awqUYNGhca5QSug
omJiTF3GDQFJ6CoVIbZVCho7OREj0Cyq5lxgdzmvnyJAXCiU7Y0/naAz/MHbTpqJ/RgmVWmlwbdE
+KhrRSYS4xaIvRJpRmZnsLdG+zpNJOvXcHGu/9UA1bIV65Ui5af/ZRIQc+oNFTgR6dQRlsglA6/j
MyX1jtNXhyNFcXG3H29hNBe0JOi0bRHyzpsrlmOhzQKJVEnAO1cuUHG8Jt4XBPm0eQF/lyb4O8TJ
inXQCN/uerEYJ6T7KiHjXsPz8mJfeHuw4Vs37NbIMIxTCCP+gAOsJZvg0mFbsq+R0CZJwxcqpEF9
C7KcR7mvETL44Et9duyiEyLvhdShV+C67lfJ6kStlTSVeaXIM/YBI1mChT17FgwaSYMS3QuaNOUG
0d6VeQ88yBs1v3wSclum0j25OmytK94YQR9vZfIHCaYMrbXXwr4AjB0R0Wf+nJTgd6ouOa+Q2gOl
9/Ig5+li7twa/aietTZayjbxVur6dpmhklj1ARMYaBtz1gdQGSGX9a94C5yKruK1DaLcXp7EZhaU
5DzSTZjHrgVFAxALbdmbWEEP+ovg1C6Jlo2NjH5DWW45L6FCHsKwfraqvwSp8MBuJL6PpaHuDq20
8O+Rll8wMIS74p+kd0QMFjl7Aijpa1/ikkbCQC/ngafF8XJqs7+ooXxFBdMOH1i74/qAuguotZJp
G7kHtmurecj0H40tskKJwb0muZlTJmofY/t+OYPnOQP5Ra/DbBPXk0wV+KOy/Iu8Gtk4iVsPqDOe
6PRlQ8WSXxNFdGcqL922k8l7G+LwN1ewO8CxGZ1NQmc5raxfUSrrayhdUuit7NFpfHYfk7gbwyMp
Pi4Xrg+HLoaL0oK7tPajr02R1W5dJeA6LxozDxyvcL7jUZUwd5LiW+SAsSWzLi1+Cwm/IeBcyU0h
8PuGCxaBYq81I3VGy5XBF6EVVRv2cXag4+/LHQExPnWy7xm1PVGlUkzTYyxcTjk77sMcystbjqTl
PtlRuJEPg1BSpLDuPdQ47o+2aQX/I583OnCxoDaOmI/63VJS0iklh7Tkn3s0/mmZATijJmGZh4BL
H+LzOwVvkq8qIUH4tXqkQletqSysboj6wcfjE3jbzJRcCIGF3nYJ53SnSkjSaM1LHOZfLZQ3r8Q9
TJNpoba4MIpC0JQhcMf2SKsb2iTfb6Nm2lZUaS5N30XFYw8lWectepJ7yy14cP+BoLeORYfMJ+rD
b2NNhERzWrEO94q03OlpELV45hfGHEhHwNG3kSW8WT+QIrPnzktIRY1Y5BGXC2HLGJyOZR6QpCBE
ORzuAMjVd9G6FkBeFBfP07vPP3yNStKBUAaXWZaGdA8ZDc/VyCFYJq4l0vCPomHadOFyZucpWrMy
7a/9EVeS52Ty5s+NgXsklHkTsBNjXfS/kjnUt5abiu1+EwhG90omPvMrSfS/5dXiYNEaJkiGmSqm
ZZrDyQkQISA3QFjEdEBQ7JjTpJkT+oT0kBFW44qnVtzyjqcw809baFelSk3Gw5TJcTksKbVRPELY
lUd0m6LwetMIT56l/zHbXTUFT/al/VREww2knekbLRHhD7hs/d4znC+D3aSYEz546PHz/J1HYB2J
A1DT4QSXKe6MQHI3FMZ28rs8q9rPIEmbvz/tnVwD7py+PmupsQLJWkyPQBZg+LJBXMcNHBsfby3o
/gexS7+um5xCfAY0yyOzn05NHE7ITgyrCFxV+cNHW9G4Up7gzAcV4hNyccGKUcjXtC7BO+8QQqo9
SJiMEnUtMljeNzRCtyBuE3BbhdUCYhnBZpWGAiFNDH0FH3pkNW0jcgdRecL9L8/OIWhRnd9T4dLn
J6RC/15YkK9CRWKbxk4ToeZNt9QlYoU2sWzT+mSQeb709tby7qZMP+4JYOBdaXJ3/b+lMFDVcLiw
tK2yGc+ti4n+gTDsEyOjLjJGRTV0IVFpxzKcSi3FIJS6VdehZCAotqz6rBHFO+aJA8euYgzCMD/3
xd2EiCtbx+LviHOCGDAe3UVzkDY8Roi2OuFZNuK5dEMWVKpuUULvv/SwWHrhzbbPlmON8WRqCktQ
2FcJBkM5o3U3cSu9GPy842+GeJRRi68wg0JsNsTNRPcd6kdIELgxOisNlebs54pLkBi68IkdGMPr
FUYTVohkGsBLbsv5NDOrUc+QFNBvq9iOMeTs3yFwWGbSYcoOei6OGedCP63iqf3MY9l6sdVRu94L
+JO7aukUUFvqS5rdDx726DA9YP3UOa2nx+Ihu2zlmuGo//awmNlhATQHuef6J92SFC3Kc3A7fCsa
3hugml6ecqmWs5f+9RE01gyZ+lNorgM8J3802OgOw2aAkLrtpT4BM7cvLnmpffCPophxgIoJblPC
KD5tAQdEoszBUsXc9bROdR7rmfI2sVwKDfARzA9pg3NmxDFDWKX6vrl4MN0nWZb8xN1OlF5KocrW
9UagIL9+Qt1UyaX8N+mcud4lJsuIRjJV/KvCZh9l8561JxKiCu6preV/wUF3fLuP7DWuBSSDsazR
9N3fllb931y9MqxVxH2p8rCqlxX+GatzSO7at2KERZCCQ4u5uhkEf2ImoYeaX71x7ohqjdYefF/u
JlPdqsJdGH5aqj8OxJE0FEGaXdlkQSxoPSiHZyJF/bgiSarcvbyCfyUBAyRw+LMMTt84oMHglJ/L
7jAXltqlSf14iH+r6rBiWaYgBaft7JDHPTwyzOYURI9uc/2ex1knZwDTrmhA1HEHusn/xDi8woED
3eMZ3rCxOXO6TdwS9QPWNb193g9v4m3FuwB9Cojb6oj31CVGff4JFW/6BoYaWZvM8jsRTo77ILPn
RTR4DkmFMYFK4sHbDIQxlv9dbnp4pgX3lleOy/SR8LstYK6nkz6TRyZ9F0S06fjzKqra5FCbthay
oiXsehLGgJuS9Kn5kVhMFRqdfPNXLPqjIpVbubcPEFBs5O07nN96bnrQjo0+rBm/4Pvdo4C8AVCN
jRKYYmmeE45UUhN0E3+pAMUO+Indoq/eOuOvNdtZ87YLh7cD3Y86BIE1kcpRETG8N3WTvgTOKnTw
FGWPukbQIdQmu98tvaw/MgQqDigFaZhzpUSnh4RIL/9/2YqAWwFhTQTPeWvt0IubSSLXYVqI1/5N
ntICRoyryffeUHeVeGJDjUPW9xkNhQ6/Ly7ObqYKRWe/ZT/EsxnoWTz58OMDMkjdtjTDuiedTK2E
wdnZf1AGrohlDuRTz1/gOoo/PnW0rC1EpCShKLLy8vGOk4OFnljkOE0NahM+8kH8dfZCivz1qQR3
IX9I4zkWGToYVja5EEt97LhTSPaQjJNWp35OO9dAsfr3IOS5wH0LlbCYFNiS79p2qzlN67NGPzPs
9dUQ5eAsn0YW3hc9r5YudyeKaaUkk520Q1XTtk+EqemJJ3qbBbuY0eSnFOP+Kh48YD6UoS0eH99n
In14GlcXBor6jEP1o+488uyEZ2CrGxihyKsJykEOTh5podH2zJnkL8IIfkG1ey0lsZOetMEgx0MS
YYiE+k2CgYzFxxYwXVmwVKQuxIsKodmX7ZzBSjLQ4cItiNpWegHMUSuD+JjuvN9oM0Tj6QaUx5hB
KztuOdkkxsNSD4l54Vr4U1fe1a4bWpeV1GbasERvwQb+XMNrOiepf4gJSqcfiZQKZy96qnSJaKfd
waoo84moAZivqXN9p2S/sRTnmMqdDYAWMaH8ZlobO/ont2G0gVf5N215H9eAbQEP00w7Xycwvemu
VFXLXG3TtjdrV99ypzbbvSEcBBdTXVWOaNsx6BkYcSTdJ+s4dfJ/96CEtAWU03okdfa+WBHkvp8Y
LgT/iCrO2OinxvSkAWsYG599KlTGAePOWTsnHG3wpc5EI6aU9CmYoC/UQ/mzzpQx2EpQ7oVYxqsl
aR8fdqdtNkg1HMxXpGucJP1D1KjRHn+G22PK2EYAbx8AvB+KvNjrvD1UFBcBJvILOOlmPM0dTJmp
nhPAMii1PA50fBpxtWVu5Htf5HNKvACMoD5SYHAmEM10EmN4KlLqERoXwL6ZNjyq20NOR0Xpxf2W
m9Pvml0+t5bx6wqsA9bIr4/vfQYBd9QyYNS196Scykb+ohG/E/sNpoIXhO7qmNVRQ8mBiiZVWQLB
M7dpOsD/2Cb9ZiNCCQ6wetjaBEX49voopqvPgZyTWortBZHzyLE51gNY9nq/2tn8pm7lCQo9EHbV
2UNEv1txNKK6Ri0tbhIIVU99vOp6X9nzQsGpH0PyPRgOlnCKH2CxcXk8NeV3sGO+qojthC54Fg4K
U6eTHZumq+ppwWrPkjt1EGdf0+iwSgaMwmwwydfL9zH7YluVGC32s2G90+SCFkCmRIkx1UjnWurF
A+U6h7q7tsju44p1jC4z4F7yBfeK0PO2RNnxhYSGwqb8Gl/cWZgWtKR2bkPrkjBqmsfItU0tvwTq
rEQ+iQUnM9RhH8GxBs+s9H5oNlnu6FQWme/9KvhK3WyVmL0On6b4HnBvZqeRW3g3W3c/18yC3MiY
py19mPrM62EEPd+w6NYq+EJ2z9dv0uJvq+sE/fXj7P2Xaxe04NDz3D8d5Z0VnTrSwrczZxCFfQ1E
c8MtmLdYXsblB/brmnnvzbAJu7z/SwmD2eiy/iv5e2uiHeDlzWTdUu90O4tCgEzcUtgNCq0IKmH6
ZK4xuqY47My7jvHC5ClW0X7usDA523RuPRRST72X2mKNr7LF2KC4e0p3PqCA13K2bz6YoXaSruIa
qGAU03h2tG7vo0/RjiRmKpiRG9TDlQckd+7dl89NezZCNPe3VTCfEaoaPWjcw+31/ejdKmVRdeou
3OkSCI7SgeQqQ8dHzPmvUrQ4/RR8L44IVgw6Xx8yg0U/LO6U9KHJvLnbeL3AgjjbuzjtCEZRzvNZ
8TRisA1HTh5SQJPgNE1VoKxyUbyyPPj0KpCQxUio9+BwK3HgE9hxgxSzOUgNKBP90gvjW4nTs0Bd
lcHw4hsSOq8/fghgZAXZWqvvIeqPfb0wFqqtb6Syc7dnTtrrUuNDNRjafd4Qj5oKGLvQxgDGWz9M
8AkKPOZnBsj6FW15y6YSxgm0xg1lRdScL1Bj/bz13FEln6AbKnOwnKBpTsK3q1r8G5z0dmrfgTNh
Lis639cvfI9ZzSNndl1MHGypMJk2eLMSs8OC9YwKikzNy4SG1IocfwKsB1wfgCoIuEva0r9NmGgv
CaXVMbcowIm6T2BJxqOeFO99ICpw+C+v9QVOliWVnuTmvBY/idejA3a+QWcsg9YoNdQa+NAi5vPq
XMC7fjXgfJkNS5NmjH4eOX3CtMFLPR3PTjp9yQayjK8riwceI0DWFFF2mJrcMilbqVWKmOzfsrCb
/aP/ZrsifmzbvLig7PuVAh0c8LyIvG64cVaUvUhBV9TEOr4WiTdj+l6/oNYbx9rhmPXE1x3vg7kH
LP47wbvcHKP0RY6tfLDKgKVXldRWU3f4VCDOxebvjLXhOnpi+bmXkxB2WL79PVS4EvUhUHH+STIL
80yUt65auwp/WYs8d31rNd8z60HTes/qwas0kz+M9JJNh8NAlbufKPz8rauKzA1qQRL0p0P+gaUE
wfbwausT62ltU7kGVp1+c1AmO0lM9NbzMgoVmIyzevtGqkbYJ66P7ZmchXo3+OfYdpsFNqsB9K38
7+7k5y93X73MlIHmLvumsLL/ALyVX+kmJlw9+DQV97CdiM4DBzWjnlCcd42Xt9okMMU9rB4sMooy
TWAEWcH3gRguycmfFlw3W3LDn+P/bVjR/pIRODbt2MsVW5xMFmrF/evItM0On/jwcjE3qwyKjnt4
w12ZwYQXj1Kd6pamdQGSqnqkOnijQfs+RdhSLLXampgtYAloOFEXnmEu7ecVQOWNdmaLKAPXSRcA
6fR8rP1BhBXz2R5mluQfkwwk5hWJMUWoxn8LDKgigSt3k8g+h7+47qQbaLCtmwGWM48iPpuy8Zlg
H+N7KbLuT4Q1r5BOU3AuI584WccLKICtWjlfYPXJ+DkUJuwKpBjWOdzaPZ4uvZbh5wybQ/x866T8
DHT78etecwK7ROg+yjGtIPADQVOOMSAgVVadgoGCNsKrPOBkuoUQzYKenUzxkDnXHkdO7GPwmgad
oVWAwbjgTp6n1zhKlai3MkvhYyD1eS9bKxYNX8PEPGE+U22MoVrZcroPNgBwUBz6RgruusRs0LdN
UivNjr7nPt6iLv95nLGWjR1fDiOgiRX3WnIn1hDwm1PcmarLgmc7soWuQ7sHeFaW7XZgpP6nh+Uq
gL68+L0QBIUjjJspQuWJBXw2Q6ysVb1XB4dpqlsx+LfsVO40q2hW/eLHmil/jDkGRJvwhEEnsoie
e1wOugjDg4GfMZzxTMikwAwqp4oHEhtKjw9821MTXhIzwgVTz7Qcc9lp7PhGuuHkP0N56AQqfJSa
+bIVUddfxWyiAZhpmB2sqpTcnzaQZGaoD2knCSzyZ4hK9zWAtpkcckjzOVqZIXDLJ4Pf0T09AmFr
RJIem4+5dyYq4/SQJSVkKyIJKUFjB3n+ATva68A8vtaelqB77wi3PYLMYCgFi/2+WGB8/4HoJuDl
qqzYW5HTIiB+dLQ5YaqCZhCxUkuq3OfT0DkqeoEKihk+KKqaIMMQXbmAqiztmsaeI89SlkTQjH5z
Uba41WSTcHeC9F6ssHjAa7EcIhvno195tPcAD+AIcXulboyYxF8RmtZCxABVPaHTlRn7jhjBiYUw
NQ2JkAmpuw1vgjfZpH8/i/orV0J27OUpckB33OdKJPOaDvHp9plxkrZ/Aaw5UWIdwr1hpB3b6443
XKKBFTRVIiYY6c+ZiaUeTHP1ZBQ+r174vfKG9WZzOHmWXecEQs90DxfjVrE4SyfBC9aF/yN3Giax
eI620G0z/ldtWQxIh80AXVDJmmZMn/5Lu4JxH4bNEok3FSpY7vaVIavXUCoOaODSbPAT4+gTA3td
a394aCIHkqpbSvWKIzIzk75aE/gR3s2pHBJfZuNSgwsIAOkK49SbRz1+WvtsEhDKSWzZytFB23iS
pEBVPXpq87HGB0ttt+2fydcEHQh13lTxwBBf+vtYhRqrPvCsiOFLuGzSXkb794l1cwOgFsliFUN8
+IxKgq6rqVZMaWNewsOvHeqAlsXSkWn5/eXQqeL8i3aeNRk0tgxHPj3VRAspydqFELsU4JIKfg70
UFXGFUF7rKaJSvAwtZ67Yh2a0OcWO9Z88CSAp52O3kuTLMpu+9S+ECWBFPGg3Lb8kg42GgeekC1P
yKFOziDt8f3WgKXTeGK73E0SaY2BKUSWT8hcpfdVkSCpkmmWeJ3/bsY8xyTj+643DhJZCHzTGncQ
qTXzTj5LIRSAq/MHWUdF60m5ZFQUk6L8ttvUi+G/FGsXZakK7ArNjqkWRyC13n84lOJJaV/ueNhy
C2lFC2V4ZupWekBi9eqXNfOEQ/ix2M5Qmn2CTML1CT7hiHpJBpkGaiy/0XHGDjfT4/FQQ/uNwDOd
azjX0iLA+NvrCdZd61tQSwbQH75OJaBdsF/LKPqIMb1ESaA6VitTmFq5mwTQ4FWw11Mt9jhvMMwO
b+vf/vvfJ6ON8wpiWC+LZv4i9MOiPf4rtkAF/fz/L5Evw5cIwqpMuDxSMMgLpdXM5V0SLKLHmo4w
NpUl3f7PAMtMbYAHo7gYKXkIJ6kE4z2heMtPWhfR2SYSlAVmf1czvrQSnRTLOZBq7E4n/23J4QzF
8sDaD1pk5ZK1qyLl21TQc2XEts4l8kTL60dVtKXZSP13YK3dvOqyfD0N6zFMMEvnSrkWktv3AmTJ
Pd40DX2k7800dR/p68v8MxYoJTtN4uE8wUYRir+LfWKoYYT5vZ+bI0bFN0en20G7rkDenP4JfOEP
iXujycse9MoptK8dMEsl5cTNHbka87tkw7Ab8hSlaudvmmZbqfEYmjxe/suEnYX5Yc9eTEGYbG+h
TuXR673G1CrXnH3sl9ql5QIN9b/6pBYuP1/UplE1n5LKfarztSbFDgBrPo5Qymqx+SuE1fT0DxCz
VySAZyn2rv5bIBygIEk+dqrv2YeYa4oWeILGS0658/374RO9QR6Apng+Lferv5IguVqgo94jXy3t
480OMFmYoxBAEYKdiv6pa3oclL6tojhDo3wUvijBFdCguDOYwAMbRuqVLiKAseelgEeqrgsyxwu+
N3accHZn49hvF6CB8zFKtOO8E5Wv/HF7zhhThIpQfs0Jdy+HlIelK3DMi6I/ymoasYmQm6o/5TpR
ni84AdIUnBtfI43X1tNsvafSuAJMTNR0nt4lHIGelJU2CC9VhLFwO24U5I0LvolmfniI0HpZUDbz
0Im0smD001YfvNMB4qLDvW7Csek7ZPBuJyazkT4lLW3ySCCLDtVZvHy/BcYrj/0g1KUJiPMdnarM
HVChYx/DFGyY1d4hTuq4RDe5skpPhXkY9HIxcn00A0rMDGtltJG64XTq4gIDV5RzfDHbTgZHFfQ0
R2O4D5lPYfLLtaU5Rx6VX+AISAt7GZdjRaWUkc6RWF81Bnkn9ldhDKCkXZltBCK+10t9kJwawKHi
3BMxf3L9O2Bjhc7Wgt8JGfszhhxhOW8CL0PvrbmQYixK0Lkc9R3fqBTTDPLwMPjCS680VqdV5Bk6
q0qjkx4zcAbhtaq2Ws39TfctM1blPLDM0Akln2ACpaofI5wWE16AVz+iK7zoj0RqQOBVo03iJg38
R4jkmL2/eyLamJo23cAKeD44pbdbB5gr7BTjIf2dpB+7/2GQBneLVz0ZURtcMZvGp5y6rxhMXRz7
04x8266pSUWmRD9peKAaMXm5xRXxbSulHiSzrqNrqGVGitqSHuwF5sRNUxAVtdulaC3ABXxpdvnl
BBZGauXJDXy8IquYsJBKiktDc5qdijtTJ2xAs8ufaU0pq7D9oZtnYri4ZBApcI3UJzfoW1u+mtna
Gq4PQaGFIsv09raQzqIuCzoLC9fv3UIZVM+qx4mPD777RxhrnV9OYHbtIaadH4enFLCVXJME1113
DeRSRoH0qIro7YvOSrH4eVv9w9S0rEYXJGBX0uqd/3gx0rxtNwlTWaAQhvPgZ+I1d7pPv8YqwGtB
Pz8sz73S08Hyg9sy9LT4MWRICjaD+BHmiqrXo8deqqZBwv5s+SMWUA5tbdCfBaj4rijJQsQffMCK
2z9IzSpZ2Q0xRSh5yH/yEFCB2IlDDwWZZgdTi0543sL40C/L44qQoQzCF4fP1hBSW2DHbswxGWoh
mfR5XrMHAU2DopYWbwqh4MG7jGH63LlVspUAZl3hr4gmgcrfNEvTN1o4XTTsBGGWJYA/qCONQLN/
wjihU27KzOsMU2ZF6MEaoMjB5uTnecbdu0brbmZfVdEVUoOhLQCdsyQ3gSU/VzWA+PjRsWtC3N5u
IgzqvXkj4IuJQ3OfoaLxo0nuWDIqXchsDLflnzs5LE+y5DRO/TlalsbwvcM/TO9cZQ1i7AZUPumg
l9LoV5x5s7J2rNtVckGJcaP12zZ+BqjMls/MSpMy4gH4YIpsciXvK76Bn8cvsj1xyfPNYqCcTLgn
tkZxAMtt92xXzoMMxc/gWGuyhJYMyDj1o+84FlY1B/7GDmb56sd76gKYkKoXVsGbmfa05qnXc0va
Ok1EzE5nEZqunPHWO5xcxUsIGuBpfQB2s9lW3MbZtmPtnQkp20a7M0GPTPlM/T9x+6ClsKdR/qLr
flPZOj3M3IpFKnWJPVycncjw0NgbISfkeMD2MeRyXh4lXIRr9D7G/XxwUFh0js53obnhyvfMWzFR
5fY5EZ6Xvbk0wWpudPPIi1zS/cZGIJhXMr5/he2rhKzbVf3DPcf82S+j4qhewljyyxZJ4RdvUHEF
TDv1nMb0K0b9ZshuMR7Kelfz3PFAKVL3V2MGwhpVBKl9znwbLSb1mRtmEwZFSJsPhb5FfnxMggWR
t5JN6fML1XhX2UjiUC7cENqAg6XkixC+KKQlFoUrdv8x2Fa9LocsAG474iHDr0PgC/wTN1g1ZTpY
vN2l4M84wLwFhCwvVB/qiTmTyjakykHL+a4VczA1mPPqhhwFIlO7n9AmSOHmPCmGBGELfBTkJp0N
homOHBXyDXELR3urRiCbRDXdWZB7On8b8XX+GeWamRpMyRrvi2ewLb/X0cT3Zb+3r5dcxij0S0xs
HPAxOuESZQci918CLXkleu7FPesrGEEKE9v+NiDtsb/5gzgDoBCI3dCIU0LXKVwgALH9WnI19Qli
3JWhCeHAcz8HYvoBZHx6BU5hyy3Z931ka8bT8fNWapZ87azfikyexu2RSw1fhIfy0FaQ0HnDxo4G
xCGguuTSDJUI7v0NuqktM/+myG3kQ8MgYAAzEYbnQBV9k5ux4r9yTcwV6Vj3wC/PZ0RM2URyCJsu
78DSBvowZBWFS3OdNJQRS2ldVin4v9K9BlBVRe8lq2JCvSYCSNnI+H4zw7MNu8dotNv+Ot9HFw9T
gUA2ItQFqWB0J9hi5Y511IZ6lr1zZLdpwSOPbCUZiXK2KohUNwqhzDY92U2ge1G2NS2WpH4nWQjV
qejoxPPFXjc8zg+pDY69hbHmu5RO/YEwj4UnM5stzZUrkET/Do20QFocx5bdnTwcbjkBO9sV+ckD
9nXeV4TDGg5ESi+4LaByc+aKez/+9CCokSoUHGd2LWPdjkVwEh6N0ldw0LW0V5ltHdhE4KZXl249
dItmjcJic4oiTKEy/XaccY9bxQS44iOgqikX0TuClzhrAP+DjX3RBCBK1Ss8N1WvH3PBttC45iOP
Vy+agx24XYqE9waEPiYFqWQ+H0DaQE9Jli53i2QTTqDjJz4GFIIW24MctPz4AXwvJq+GzC2/pMNt
D6Q/qhrw3zI83MBCekMZ/HFHJA8vvnQyQW3i640hGe/6CGy9LWT/A89HW+LQ9Fly1VKzvmtf0A8N
VCVvvTuEn3ns+lSBI+QQT9R29Y0EFQSGDtSl33Iu/Hf/1VQEM62MA0j883WucglYvV2Tq89d4Kpq
uUvetSWLLNYTtvMHpVqdX/LwU9MEalm3Uj/AsSFrxMaN+rhYWffPmlaPum2ECO5btH009ZpWye/I
3tVdXXFETtgkUD2itZDKbguEMeUpe5vBLMPiqniUuUPv67FGH2DMR2zV6eQm1w3M0FX5LifPT11O
xSQeo9qFoq08t85mu2REIieIdwS+d1q+hhDbiN88NmScS6L1lBFqM7yUZEVuf3WaiNi5N2V5/yqH
GRNEprA6ppgV+bmGOjVo8Qwx4i5+62RBobcxo4uke2kyT8VRttfVft8f2SZZp6LAE5tKdNSK495h
Wf3pEFTH4Jnro81SQQ4pbfwo3x+UszVRuuiBB5pG3GHxyVXAA1PZTGFe9TbkPyFf/8RkOBVGFeDO
//DMqMwC8jQZAQT4oDMaup3WGRAzZoeLjO651f2BHi032zoyKAPva1BQpd5xfUxwnMCyuaGVSfJP
RkjkWiOa1bVmbTyXvqa4ldiJAlMOCzBwbFtp8F+7nc0QoOgZBh2Hz586VAQV1tYp8LA6p7a/2kld
pX+Akql/ZXSl/oMw5NWNInEHVz5oTnzfZRHT5PXapoclekxTT3ANjLvmqUFZnhvslEGeUFTf9UhL
hQPLx8iuPZbCYML0E/18EeAwLyEYFaZqtN2xr9Kb8cUu9/ApIiZ1lTX51VU6iRBtrfHwrcewHaKF
9my6tgDRwInA9JXYPZaMp8lcu+1tNPn0t5ObGnsowUHp3Gd7gZO2LlDo607m12rO4bn6p4j08wpj
Lo85vNq1Annp4pf2CIQCchuH2b2ZSkL5VZM5oQvqEW3Q3nAidvP4u1Vs1UdTfF5hk9y0MqrcCj7n
VvSk3a9x4CLEvo9ARQp5EX9uBaUpiqCbVSqZmV4hSzB4aeva8BS1iEhTb/cov7U+2CVMR5Uc53ed
3CfGEaCS3ixkY10hNQf0eIE5itlTCNlMBmnv08vcJ016vEt9QMU9ngtajNq0l6O/5VXA6U6BHfJR
grxfiiBeUbLMn728RTgrcSHyZo3E6CPmU6vwr2tdd9ecUAJ0m9GQyspBxnj3iXtCnhw3x8X0f79G
HxOsUfMl4aTiW8lbUZb/pgBD1FU8BPswoU2A15JjQdyopaNUby6qLjGtsnXKILWRLRYe++1zsDhY
d3813Z//7N6KyAPRvorvfmOyX56oDlHaoVVmEzmaxRjZb54zK2fcmNOEluwzZmKm6Cx8ckeZhzpu
Djg1i/eLwunKVTh+YlfIL4e/Oitupqx5bFIrquf+P2cLx/UosqMspbbq7Uvy1k/yJ739pCcsPL/X
PpikZ2qWUtDAlBn+3MRfP++wzcxoti1K9mLrTjwt4hKW8haD9UaRsdmgWj3pllLmdkQgnk4PoJ+s
dULuwcxfHK8HEJ7t/kBtdycQd2BredvBQbY+On4jhinNptSXewrxTGIHRpFGxwBraDD9v+B7A2LE
1ERX428Na3fnLzg+ggDmXTES4zLA+dReL5XalTILloZc/5z/jTGclioEPtZCfRjpzBEYAuiOoiSR
sDtGo+JzumOGCjpcxvpm6Qp5VHWDxWRGNyeJvbLVtFtkh+FXlWmYZf/ejbLicUm+8yiBBo2+4HPJ
dmLaZAm3LrpbIaRKB94RtglcWVPZkdB5bqEU2MWrsOAYYMxAIgDkx9yjaTw4dvrvD7u1Fxcd2DCK
mKQ9xSgekX0ZUCXHHgnIcSM5ZlTmC+CqQgWwBb3Az1kO+fGGp3/zTyJADtHqZGGC/zpUS5OkS6rh
jqjRdUU2UN3YEMm6X+G2SHobT9Bo2o5Zy0y7wWJ9ZcWBV20FiSkwjQ7buYZfiixhdePLKkD095Gn
EwRSxH7H0ClekeQWw6yQxqRTq3vEUHqm3O8NhbETkiBF1dRR5FGBL9Ji5EviMo7NXcXEz1XMft/L
4r9Hvs72W+DQmP/34MsvthKHrWY0FXlXcbcazB7E/xenKm4GIiO/qMmIbsi5T12kZZmmCOY2eFDi
roY1JBrj0b43NXHCheEnfVzHecBkr7Ig/cEbXU2c4P2JtkhCYaC6SNjoJZthikzAASFsIe9GHwfb
0YItFAz6CZOhZlfrE42k8ERWNvn2JQLwAt0hb2RLAhwclmTQzBAi9wC2teNCA2XCUexMXaY76C+p
ASFShTxnHyF4s8mn8Mo3b/3RK5C1JuSjeVhsQIdsX2AcHOSSudne4S30myXtur9AN+lGX6fraypc
2y8pqR9pqYIIYzDK9B4V9m4UchNT46wiRqCHrGjLJxIzLOzIeUDyTE9PuFxLUVKs8oeyGgMzUW+F
FjqHDp/NGTnVDd0CIbAoPqSPu4dkAgoMgIRcVqeoHOLUFXzTs7JaAkFDs20GBA1/cDNb+GtS0zgX
gGFBNC6+TrQ8NyP9LEAriIQGLRs+9bnBdFL0SksmjBTCvuCqPWFrSA+tU3Atrzs5G7FV9raoeIDd
FD+RhToqZouTGN+rirDqQwnJUYeyNrw3J82upOhoGofC2R5sjG65FkfRP7Rz+uKGgaPbPxbFor9t
zYeHzUjkLeuLGmFUtqzkpIl8rpOyQlCeEcWPqlHDpdVbncbQIoYU71ETxGyHxhrG7zfC18mH30nS
EsgodaXu/bP4TBU0r5/KMirjTmrO9QYZgoQOySux+IQh5SUU6yvYJln2+jSuFQHumYJpar7OZEFX
RbtC199OwFvhd1+zocEm8Ho4QCYfdFMOHIrsIsQLY0nz+BEfyFywDp2yZS2ed7xLBw5jnKlhC3Pi
tyQfK1elHVWspP1OBTHE3VYK3g05VXBLRVUV6+mN94k41AO7VvVQHFRvIRcdfAYC44NydpjDUmVT
RgqWoycbzQSRXly1RHrTojkBeh6bV8zknnbW7bvUM3h/F07cYhuIEj9f/yqkaaSnnpQkhFo+zuK3
SiDcc2pcu+lIhuuwR8XAO/Vst+K353m7pSpG87JI2QoZXTnB6UP3Z2iWBZOXrAuedLwdgmRuLuK9
zuuAyGvwOJUYo5fb7ekfa/q6/0kyGSjJa/hSLF6I1AF5xZNEvNFkUnQYxLichYDz62vbfqSI70OC
ZiBObc10qmtmVcb8GdKbfbwcMUeC8A47nwrgRLd/TXgNuCJufCBmDCne5q1RJZjkj4UEZqlxZpfC
4S8EWfJFHzjgEQ3qj10i8F6bk/wzsd9q620t8Svidg6bDqxPmwXYPuI03R7rERjQgyTMUdmnqB0d
cFxJJCmvhuXTX+zXrV2eKCr2vBRInDRtiXKmT4ohmIKgDY2oRqATHLOLJKsB5eKU5mu3qEBecoFQ
jjtHn0qHTG7rC8LkXxXgGFlQOPifHG2arGpGipVUcSi3B4nZC+7ynWGrioxQZUQwkg3NRBf1rw2q
wRGfKZK7jgv7WPX/iy3M8HXemk/YsTaOjaOI6jbVOMDt62NLxvgb0lMLF0TqD8kfee3l3i5+6+GP
x2hxHg5ZGGfB5pXZxMzz7gKp85aXVuYVeL9Yk1V0vVkoA40bo4qU4Gep1/3wXbMyZoczoiFODRSq
X/oUfN9NBze7DeIDACAstV93OH0TWJ4CGRkllWadUaluWhOjXGhV33WYqnr9TPM0reQiLQQXFbr2
iukdxOgNofS6VxiwQCdd82O3HK13FK7K06DdpSAZ/vV2CrsvYHEI08j39MPbbQTH745fVda7wJ9Z
IG0qNumaENvMeVuoXhCypuvQCaUwMH7p30GcnTPxngi1E6yeRgZAPg/p45x33xQewrSaIAdBgGTC
kvI2eZMi7ViVd8z9ouKFVaf5+F/iCBhyum4K7BOU7/xaUTZRBns14kp1mQ7WXDe2DhUV5z0aSzYc
SpHzol1fsyhmt6IkFnv0AqOfIWWKEHSGwEeZEgZEf5qtXUCuMeNCJH7tWtuK6sMTUYD7unQGsxp8
87Al8/6mKjl2HmStbK5jhvTD4meWfOKvz31K5d+j8Mxwi0o91CgjgIEWOjKUOYlbBxhROZpvQKXs
JqNfMFVvmA8vodHf3NBxZd6FNZvU8JvY/iAmA9Eqg6UyWZ+cVymHcqTqEYkkRwD3L8F1iIx+NFBN
ecv+KF1UyWxQjTWGltaL6Z3FUCIgBTpBMJ94p1UoqVqs2Dx22PkYiN6Q0twjbup03eF1k5jlyuIc
QBn8NJKNXNSznc4NsSPdLe43ivf8zEQOz/anCIbbPHuBXLNw7xGt7C7i1hOvJ7TzDN/7pPgcyf4O
9W2XQsMvstEA3Ogmok2juymDQpdBmfJiuv0pcZDhWyNyqmf9ajIIhK6tbQ7586BzdGFEaTr/8Ezd
xAUfcUzryphdIx5eG5gjFsH/uPiKw2RwBwa3mc8MmHfiNWotefIcXAnU0h4tcJcxY6qJBjSwslgV
GS9pbVkbTTOVG+elrmrJdyXjph7RsT+vBMKrKlEhqZlB/9jpH4QloVIfDHUuepsvAG1bZ1bE85x2
qGNhV/+FTxI6NPAcz2UCrtHVQEOFAoy1U84XzFT2pA31OZgmIOCGtuM2FSR9jovWFBxNMAEss7U6
WSTb2KmB2lTdtTKdhcT/vi1/En7/ceKHlOkTa5IHjddJbX7VK+GDxezpgpsYd3QvNPGTy7eC+JT0
C2g52WimnByfbwZY2ZU8CitzeKswjUGu4CMNfDDlAG1r9bf/3mfUwT/4wupXNcIoHyZX/eZ2eigN
xpwN0y61z5pIEf4zK23Zh125/rhSKafJR3FEc0hyIRYSWmjrEKiVx30UZg6MTmrr3tMoUSKDWbfJ
Ir70MpBwq0xESIrgFT11MspEJmLxLUTn3aSAhnfKxw8iSGqqrElMKXCayl3o1icA3QQdRwbPjXeU
mRxwqQ8XzT7T01KtfPGlTSdqwc98IfZNvio+9T0y6WZaFsr756+TWzBojpwMQejaBL7jWn5wpuyn
dB1cA3fOB4OjE3xh5IpHkd0we/eShM3NL1Oti4/3NGukhUlodMC2O91r828QVPKWJtEDuXtshMbV
/GgcmOt5jvpOSQzq3AECquUQrx8iB5lTTvFXcPIfB57Nv8AfNEQFd3uJxZqSY1Kx4syKfIn9SsP6
v2aW8fgVAF4RC/ixbsVydWaDZcfHlkgBTqAv4u4kj/uWqNgrLk67i7Dik/AWXCStovmgLW20izNx
XmW8gLTXjfLshqBcPBY/djWLc+qelm04EK4B8oAwNb1sLirv7QyWc1LdbM9DkBWiabBiKG3ESY1X
YGjCiu/o7DbsUbvZMInfEQjQ+asgaAdl5r9hK9yFAllmDPqp4IFotve/H4QuP7etm8wUDupPElOU
gIt7Hj3sxr3EvQeCElAqL6Z4H3yYCtKZlJLktRM41Y5PUPlIgpX7NmahB53B+adQWD7Y5uYP7cS6
Y/d84qZN+W0oZfdr7NbYZWzVxYkLIpExSgN4WKjny/L3yDuS3xAFk1xBuGn+C0KRkwZU7K9001We
7Fm2yXlTkwQVVo9Pw0mXGo2rVmPjb2gbkG7Q8SsIXGxpnNmC/gx78B6yyHnJrRzQZwgjkV8DlanB
KQtRjBoAUeTWqTtTPJBCge+jSJfDmyrwdTIekS5s4559NmkdC+JPiPzr36cZ+6pcbaCWXv0BdvSz
EvN7VORJn8toCc1/E1OhovTE6+epj41sn0ARYgAVYIBfhf+1wh5Cu1Ymu8NjWQpJgMN3YAGaBKDE
Qqtzduy/yL17r0y0o6hvKRPeXB/xViVNK2bCSxADb8jxqlNgCyeKpff8dnX16COaCGbVncOaVGX3
gdMuI3V9o06a9t/ATFZBGnZtrSndwiGmnZIpCdErefRcsiiJtFxMnvRsQH9JHwGuW70YlkteF/rM
MPlTh9lSPlaY5EwIJU3GUC2nW2+FNiwpnQO46EOLKytSfu59WgCF4c6iNJDFDjykLVoZoNcscHt9
qcC2ulJFsXCKbTo0vq9vphIB9KgHhmk7xinn+XYwmBFgShUYl1wKrZPCROVAJoznDmu3LOJBe9dG
ooG0NQndIFQpzmKms8oxTi7ko6BNhWiw/M/ZMOr6f1djYFFp9YkzY/U65USR3lIcuqBxuPajZShi
B2jnIIoiuJVBRG66oVwq8jftMBoEym0yqQQIiyVRnDZUqvTQ938xUlePcgOS9WVZ2t/Akkpjmw+C
eyqVpI9liiwx+/Pj1V404EZ89W2UdOwP9sJ1Nb6MP3vObQZBxYEJWIVs6LRKVhls0F3YpEgFUb8t
wRAOP8CdTBJX6cuKUYVSgzkfSlP+QNtjd9rGY+X31c6V0g73ZbVJmVb26mwdmdhAU8GMrnPakZQx
FHL66uXbXxQiPd/bZmpqDAaRrtzDdxo6w9B3HbSC8SvsKTYYYTER3nkRZ/5SvHRrMtWjomh5FPJJ
6xIJvILH2tqe0QaxDNXy6/XtjM1ieCt5vq3Bd31ulbXWUk9aQ2GKED167LWw4L/fAY3TUly7H7lW
ebuu0BopLD7/PLYEvsZ3Gi43lYfNN6plYH2KU6cELUZ9mwQtzJwL/oN6Dm+asiBZqKAlxm8kfXQV
G7wFtn/Zj3SkNUDy3R6kE7OTCeAbz3YDziiS9mKuhJWyYGjTTam3ddjnnFZ6LtrP0f5m2gMj4uLu
5bt+/0DfVGWgQL8FAUUK8AgjhKhFtS1i0RgwRzIfyVFUDxsNfCOrNOhoQ7c4TMQsppkovVGglIeq
S8hiJk+4tiutq9G6LV06UL6ldo37JE/fAWOr9YuCiqCfwovEasEiRump0+naqc1rlvKIiAistL2C
6YhtNaCIc0Yi7MDCqXJJHdHrDzxw/2C66Qzzq4AEQ2TBC4WRVvt+ZB24IX0cC4QTF3duRDJuGLYc
1vZXTlJxxk8dP27gxFsF6TzKK0UMzW3z13IlH0MghSTE0aCiZ7Pf5UYfkwuv4iebucb1wQNPZ3no
rjrb0iuUKcIqW1ro/b6Vv4ZMpkGsdY+lW5mQVeKcgiqVy3r1SvpwFwyCMUTnwXEGOrlEft3Et7Ag
r9bxbX7orqdappkzQ9OkVbVUpFYKm43XSLXD6Ld758I2nRB/O8dimeOxIgEH68qilS7kx5wvlrEl
ORwVHKw/e62DQFr41jNn1NrCm9WFouWi/ACle/iyAzeJDkcQOeq5MY69LQOjITiVsjivanpdiG74
DKYTk0KcuDdF6BtPYomixj3/oaWHmFwWAGBDmPB62pWJYLlzypFg+tkoVy92EQa29hYRqjEMm5YP
Sg4njudPynXg00WzbpyelVEXjyvELpXRsUSV62DFoUGSflSFJ3OCr3GQBKZ2q/xuez8qVIEYLwPh
9aQSjAGciWGjbYhm91QuVq6Xlv/vN9QSxg7DK6qlpncBSWhkqUcGJSN0Vmvn19FC8WdwcIhtITER
PQdESLeMMu1FJcYEvB2mjNhTOKkCj/VYaiNRA4XUFN8+pxnJ7gu+Pi1mugp+dUQKKFedX1sl6js0
w2xCVh6qJPRJmS4Gp0UCDX7cml811Y9i1H0ZhBBqsmqxytLR3huFWvEdp7Tew5sBGBma9l6qO8Hf
ZFr2pKkoUPNTFmFWrOIX7YaiKuCoiswIqYkUNNQIoGcxEkta80XrwVRAyCql0Dg2YUvv5QvyjGBe
J+5rIZvn05X13mdQWTYSXI/BLJ8xs0hUK6NAhj0V8SDSbgNCaSTGXrxlwhiBQrYNeA7/YGlsnAgj
oTaAw+DkBWPXF8C2ShAj/K1N5sX1kbpor6tb7/bJMW1QGLCUDSwbkgU7G19Q1qJKQWYcSgFH5blB
S9HDgLkzOBC+am5kXAsCaFwCrydmRUEcbFduDwFhIxhfCY/mNSWiQXhhJmD+D0Whcq8s7HG8vLHU
G5qiBuLEq7ReHC0P74Ui9CHiALaWAnuzqkXtkvtNtG7KymFhXqiMQpbTNYNNfL1x9To/BDN0VdvJ
fdVRle1abthXY1BV7HThlP/NY76UIcnQJzgR8d8iJAvhQc4kDjnf2O+HzmYM88BouZEYNcw17dna
r6X+l+aUkiutHYN4pZxzrTmrwKyDhR2v//w6LR1nmSNYdG+Mmkid5BeNdZQvFFUoTqPySpTHZ+qh
GLgPBACmqaLhpWXUQYNhsR91wW3PZAgrGg+N968YBlK7nbyz1/00wrx2It387soQMdXYOp8waNSY
6NoSEg7sBmhyg0vaawCGpTB0KtbNcFft8E29798w/idgRx1G0aOYPFJQ/pE9e9dGffOli7vL2Cz7
qHfMKJqCUx7y9A5QnFM9dz2QRH6Qwel+aoe+j3pWzPgeKHwQtVGxoTK1j0QSbUagHv/TgT1agYNt
BDUdL+S0aFRj7pJ9QBkgoim36bEh+dTeAUQ9jH9gktYY8BH3jVuw6D+UJvj9WCeRzNoZfr0E5yEk
UI+J64PzXHdkFf/kqzWCDpcmFSSzILkJ7+njyeRM+17huFGTaIvAtzYEJT4arMv8cXRuJAWRuue7
bqJVnj0OcAWz23IvUu4h+f/pKo69CjI0QMOCksbx4vDZEZvIy2OhNVbgT1xWLRkR/YjaKt74P+oX
GUCIj/9f8NeU1e+cL5GECH4GbcG0uWlUw+h1dSgDFAtCoALkfqntKEqhCD6E+e1YJvvnbg9os5tH
crCojiCRzgrkOLnWaU417M5tOxvr3L1S24Y0K3pCdnsFWnhqGZjfmLypcNBw23QGlicQP9G/sOEF
a9WZdcqb1S2n5iRCEXiD551xYzDy5Nis7mEHVNhkyAjrZwUZ1FhQ2eCrokZoVOhOSgZO7y+0UWYP
ZOGAnzgm7dXB8MDxRZn+316FViWFzlg/g7W7qvHYXBS0XgkasiH4alapGMNgP9CFzAII8jC2idqN
w46SPpne9NOQcdv5AL8O7vDfyxqh4yzgLNuWjc4RxJIs4KcI7szDWn4DEKEK+3Epw1udBZyiA4P7
/60yRHKwax+q5NlYaf/ZwkeWLRzPZOF3sbeGNThCUuLX5Wv27vmS0VIHXfLurDt8xdWC26ftiMBP
6LQoaWaGb3f0QB5eHbTShvOEXeIp/VJqE7IAZYCznUkgLXhLpMh2iDYf3UlmzxJC5jY+S2o5WfNd
Bn9LRjaSR/XSa4Aw3/h7vxWd+i8he+pTqqRGf2qmPaCjOpN7VPgtB6srlO9lAy0HqxOAQJ5FgYtD
5SK5x8wLF3jDoq2UNnWINX3v0dya2mMskJQ7iiMEGR//pcXG9blS7G5+39SRrytKU8togxN4wP0d
lY7MgAEA9wrCAnw2+nkTWvPRpw2eBErK4JpAdmIqzm3et2ufOGbkxcdc0Gp1MiP2pib+k7bxJSMR
OHfFmET1kJp9PvYTaIBc0ycnF1YbEDvPSILuTZvs+SipJKmMJy9CFI9M8gHMbsLKrK5QORURK74h
LafRTpIOiBXXzLTMFfqwJhL5DyshtgzzdI6NMuuS/ilU8oC+fr2o6SYn9AoHrirAdIHhVn/T3ElO
lI3+3OyO15i+FduZ5fPjr2b6DAWqjeC2HrWhy3aJi9+c3C+zU+43YmG9kwyqtMq+rJ3Zs8ONjOPH
hfHxYh2ctvNzles72WEfzItrukyg7ZiqUez44Gw5gic9QbbXL45aQG1Crb0+4wwEz/gkYW4CPQtD
45fn1sfM7vRe33TqFItQtObbB4MSD8v4W1KHpas8XdoQDaNhGnflmjgl5HEGlrbi6JMKkBR9ASpM
j4Mg3ljdaGbyd9m8d6BT0arQSRcYNxF/3XT1LUcDdj5ZSR555pLBlI2x7gGrVxAgdVF1mX1fy2kQ
1/TNqBxKbVY9d7tg61YSrrb67Kk9cz9oB9p9SVPeNkc0RVVVwqcN6SVXdjramb/HwZfyVlD56Vwe
BYQ762/1Yx6egHUkDHpiXWb/NRrER74IVO335uSEBK7CuUsV052OFRqV2yGmBy4gpoc2x4aT+yWI
WDmjXSkaD/e6I8O73q9nyf6vNastqw41AlYqulzLp3Ctw1oQWZBLpkg4moB3H6WkRV2sO2+XnzTC
7Bpv3fjie7iCu08opr+XXSQKmR7nSz1jG7XeQFOgt6ACPDHBN8beBKy8xmlB9ETZFr70st9KfZpn
MNtsF4NjPSgiKJb8qJ3+iReSgbkwnen9E0BqKeBtLPiTyqMDDByOPBSVNr+Qc/v3k9AH3phRxq/m
9ogm7V26i7p2y9Jo9xVile8KzANbjqC5LnWDV9CA3yUiGmHuKZVUVVSPDDviakSQ6ut3bJ0XUjtn
j+QP0YNjI4H8DpftwSzkAiP7EMK1w8/FivuNuE54qfUCV7ukAX4kLAO9y8oNJp7pCgf8VKPxqxVV
Sj9+jTcHVopUs/IFWEBdkMHEJK90xRowQoCdzWuUnB4MGwu2xKHLZ6kbjrbqp52w2111gCeEG9k+
ceieeKNpYQW38LSXo+2XYDIJ/xvTYPm4Yj/GJHzmNIDzacAZBG23+uuR4LZJ48f5ZdSL/5EFVg67
7PTPYiejvFQLbtoSy4nvPGZTosOIL+8jN3NQ2yM4/Ixn4svk+xCIMqHnwT5Dsl3K/+H+mx8ACjmC
c8cNNpuq8S3qfvcooGJBRdxSH03nNR6INDW6bJeqg8YX+jFqaXsEg55qn6/TSYaOmOb3snCZN/8h
TyxkUHV2PMhAgTxPHOt1gqmWF+X5vj6hMI3runE92XF7yFXy5C5v3yO6XtpA8nUyE+Am4p2voAYD
r8Ap6yPt/2wyxGFPC/Xp8CoAEuOtMtMXqhHL2jK6lmWQq/YjqrNVyDXbMPSXpD8339ezp7IDqOfZ
8wGMxuJFJJSJsLcootdwtPgg8Kzu6qp/qkLS9IFzZUIfyMnYLZ9J/Ilw82u44SJ88GUDc1jeS8dL
O4WCUQk0pLKNgMXN9IrpaVjSqS78/SK10oCaVeZfZnE9NE9hpw85eh5bXrgLVUE1Qa6bREIrY4ZP
hKqRGE0m5LSXOc5HPvi8olFa7qez36vYnat80FmkUCxS3tnK6Ld/rfr3FrCgIg7oj1MBGYz6/6Bv
P6c2e3npjxFROH62fLbQ5BagIr0oiU51Wnr+59zC3P7kRCaV+D8QIGF4Ll9DeYhCffPBBmKkXpkB
FE+mwapEYalZOW9YOGNW18+B2rhJ36AuZbCCEj+9Rn1duD0MoXQXP8Qw3Jqy3VHXmMLXFCIdcF5M
bNTZM9PO6AmoRfMN8/fTz2vzwZQhszkTH2VZXbN4Z6KQ87Fx33zwnRnoWUwqN3feIXctW0hLh8q9
Fq9lf4vNpqk0r1erI2+rhgQj0TF0grDjFx/yKwmS6S/uSenG7GVZetVZ9FFnYsL8Sc2wLmbarQ8s
4ZKEud2V61ydRBjvi64d+go7HFIqqX47rwE9KDatlZm/ySWfIz9MFyVgRySHzbxKa0OnrbIp4eBy
DvdbcNU8KUY/CuN7ZtU8KmsmVpZYPCoVnmPNDmss1ZZJTiYRaMJwA0LHFFQULytF43wHG8qCaWrh
ZUFydzZxLN7CCBlZ4mjsbm0qQGxxOxha5m/HWaOWZyN7UjROEpA4oWDGcO2Hic4Qqev39Doo48fi
lCu1B9WsW5LZ2pOZue4cisKTMEAjOGtgTNSIdrpkv6nVff6Ntioqt2+1fmUePbH+pjD7YbG4/Gub
/EmKaRaXqnIRhybSNe7y4jo0H7mnnqQhdd9Lg2wXwlqKY3b00MU4mMfUwrpd2XZ62rjbNiadvumx
tKjjfU2riCQ+7YR3jH5sgWxk0pyZiFY+rr8ZF5l1Mb1KY9YoOXmcnixd+lNZ0X9TEHwkZQ63AVVq
Hq8fC5WxKB1nNKUHIR19x01aQXMKpCJY34wGgevMO5Tf7GTr2vnap7NVXpYfh7l+Rj2GFQYp23o1
8+sA3alFkbYhBL8PedCFjBAd4rmOpDncWxr04GFczik8jydK8ctpMg6feZsBEWu5mSi3XzUPx5cE
OoJkUdLbzk9DjlNdw7njkOLtN1tMOff10T27JtkUMbJ1EuCFPSS2GuvHjKt8oMhCVAp6ke3EmnD5
Q35I/xAfN82Lf+EE1SDs0rPQen8DYZaNRwSn1kdtNWqtWgpOQGf8KV5A/N0iP66FmYm6097F0gVG
wakTZvBAxsUIkTkTLdX4InnkSe9+mlNWHxFPDCIsF+DeC8j2ardlw2aPiMWp4aaQ52VW36p3YjZQ
j5JmSBseWfLahJMUkyERE3D4iKtoNDTPVcXtG7Ovu2DvHFCHsjmzE444BtRzUIamJ4aFoVZtrwtT
gi3t955KYnRVXsGDsLlqwCKtMB87MquPtbMXXt6LkN1wrAbF1K5+TsaHCig7TiPdgKnE4LFE0ege
HMlEkPkzlZ2uKNnJq07IuTXBOSNivrlCsVGM9mQexNh7YzDzznqbXBiUzDQcuttMTf4pPN/SN/L1
bJ8LfK4wIS2cxfunqseeHxHsGem6JIUeQ9rMRbl0vGtMLa1jlMOBadGms7JgTtxDX4m7jhtLsVxX
0ErRJBNwx4o9IQ92E2lk/Gr9GLcO/zjZMucySInoR03G7e21n27PYZpKrqmicRg3rBf5dePkQ9fn
hiEgEYXfacxUmh2K/aANdBAvN0cOUe+u04RlLcS7JeqHcG9gKcWAKSJ/xwBXUqhnn73Z4OjTytul
RfR+sVFCKqmFPPyHhwaTjs1eqRpnZYOb+e5q+OJ4Gi6YPkn7PhhutsCkkWpGyg7tT9S+2jbG7wS1
kmby75KmJ7H3dsD3mErUsly58eIMvKYK0/YlERn58HFQ/p+y7lXtkoHk3ZIg45yZzaLnB+LTM966
Sbn0Bwcm5QSWCPfJ7gTLC6JVlGW352KzPLiYTIIcs4n/AZXeRRhniU3XwjehyUgI/jsnHrGQTr9I
ir45/+wZCvFj6b8SQ+HW38Y5b2UTiL/18Uaedm2AuptNARnRFv8dWe/ft5T+gzbQVFYIQmNiZDnP
UxA5ZAR7BwoizxUdApbrKXoVB3f0wfnVKb0yTPRemze/LkYL96rpYxVnQP/mmRr6lQx3RlFWME7f
4p4pyavLHE0d+fUQZfW7l6iHGraMEwGNkdQgEvLDzGU/VkE8aETnUm0URpWVvjaXH6zw18XLl3Qv
mIRhS/16Q69nIrOeIFMDXv7P6oZxav+36eA+u5yMpz2BVYBj9TDPSE+veEiQK0BX1iZvishtbsMe
nCjG6OVVijVYKVobhwmKiFjtcAVOz3A/DgQqSItX+61wsbHmjwV+iNyKP7WLAYxDd0R54C5j/zIH
oMFUSpFBCho8XOf/uasa8gD+pmWi1aa3cXAQjchT9NhnCyQBF+PvKQK67cj9wSyoSg5OluTCt/IS
aEIDJVjwvEtf3i4uibWDOyx51ccW/0tCpmzTzY3e/id4hGCZTC/A+gd56t0qM1tM5Yx623fDuRkI
W9DcOsACSWMFdC2mFdB0kwf7+zVy6qzK3ZjEDYf98fESgJ3AvVCQsjcfhW6ZBFUfTXt4EDkAv/kh
Kh2sZ8R0U13OWhtyvLg1CC2zBBIJr2aN9Y9FAWErBs2lv0y+CuU5cQRacj3GnjDJymyukNgBM0NP
/Ksm04Yuoz2rvqQ8dXQu21qLWVFzf+wNTZLns5lNmCgBxNEw1aX35ioMTK33c8+YKVsTtGO9I4RK
TDmW+6vGicliJkE8ZcUtxV5EcEHuIPNnAXA/cLiPs6VGcSvYwsnERtyzpZi8wITrqq0Mqs1+dLjj
xAYx3G+xbMSh9XUQSN9zGCbdxMWkEEnb5gbgRdtueytzJ56/Qc+1/sQCZD3fsyGkSx8lHpNdSi+B
yW4kEG8M5GLMtnvu80bWSUZ9OjwjwG6LPCP/mbUupgHG30U0NEI2FOJ80xBBGCGY86Gg3iQ4uUUP
Z8PfgT8o4VdeybTPPSCULqUmXhfKrhyeAOvAlwPrwvFYrqM71o8QQd8+g1DVNGemVDTDcmHAx3ST
P9b2KPTGGLhQ7AoWcViJ3F4ehToubAnSmF2BHW3MrFa6svdCAimxeV2E6lQ8G2VlaEg1wfMlmV/p
5fcTnradI4GRAIkqN78tlHLUUOTlqJkdDw1RsJyy1WuruWfz78H0He6kmXJzyVlhUYdIKUpEB9ol
na+V1h0eMCCb05tjYReSohF56DW4XQGf4CXxjqN1pAqWxeYgogpgkdaI3bcBEpkzRbbP6UZdDZsb
WGwF118easB4j7uGIyjmjLANUvLGfFipysYuLFBhX+apGl8fx4iXfFSjAd2Qh+Owa8Ab8oz6kXQ+
r8zEdBjPWrgKpfQx2DcrdzZ33Bw17bKxzc0PgopdclM3HdruS+UMBH7ReABesG+Ui+9x+7p7nGXZ
IOmxiIT0dpO2gQmLdtCsxFKbrXndMPnEkLt2hoewW6jsXTv/dduL5Ag1ggStMf4DIdoKfOsZqDgM
DDW2Qwi/19lXGvvGr2Unw0kFklRdQDcHKRWgKXb4+cO9eT9yhtjtRX4HNyOwwcg850bbYFrAHO79
9hDb6P1jpgw+BOBybvZFSWSoPCJoDx7fOBTJNgnmMB4JxTsl2ufwRfr+lCXKCOapKi5CAh3fyHaT
lYd9wln3lSGb5mNYpwYkQ7pIZ6psGKy+nD2bV/+F5GJ//i6WsnOCXYmH3DlQ396oCLJJVmU53LrK
mynaJ9TsomkzfUVtm5jJkmafRdPgrCnW+koBtjIPNyA4wnnEza88umoYcFwt05JqgMogNnt4cxLW
+iIZx8c3aoq6Do6IQLtDUd/07Ip54/F3xya0Azy4vc3L2vaHPsn0QPvAbEPV/25Nt3XOZj0x5EmT
6BfWSujk8FK4X3wjnQ223b2XUK5Im5R51BYGUSBwyQxsOSY7W/qjbB5eLBwytHvz+J9n94Wu6n71
Pv3bAHmuklKDyhhcWaobM2OZzsxLn14z6MQZOTkNaAvordO8dr2y8r/ah/XJC9XwOpdH6Ac8Hsyo
zO122nCW1RtzZjINQqdd89b9sL1MWIvwC79F+sFotbfTWsjxjQG5DO6C/rlAnUt0izGMLYNRD/ST
axS3TT0sxEQwGF2AUP5d501OlPp97aFhYkLi2rkLi1dNebGq6iDSvccDndq7nHnc120XnP0xalR8
0OuC64P8XCvhY+QQxUnhurmwj5p5TcDVMLKVYBrFhOLDxGKUP4uWuH1GOUtd8xqKdOCWDCPrl9lq
3gg/i0pbpPDOXLrIXcZ8UAZ4Gx5NUnHQrfBCJcXKqDZzwQo54YJaCUN8ax+TKrVmAbI9vWEvzA7H
UyHeMkBGchNolXIDGWzO1zpwFmkfXBd+6WfYh1UQaYXuVz4m7J7JNKGP0VHQ9+B4/LdZ3VXilQ9r
y8RML+mgeXBE7UBmbPeOo73VDp7V/HvtgWxzrRA7q2bKF7202DEJC35mS1mLR5F4BNSR/0Po+/Jh
qBOL6JtoL4kdvEqHwp4g7x7H2VIV7IAPQN1/Pk90GaQADbEPN6h2FrtK8EV0PnbVuPbGjF6xRCbq
MRACtVW/Ue4ONrruMDyFYdF2FGnYBlObx23sPX/29IsYgcLPlprhgSbpk27uu/jH7lafr/zTMcfd
xskf6JXf6tyf+fYYT3DSSQeHBGit8bisLo2zKXUVd8QaYdy28q+U+JKl7hWZOjbm521xdJgfHMaS
w4N3fd/6g46LWO+jsCsa69Gs6c8KAoJzsDy/9/uAqW7BlUqux8i2tPaXRtRqThGY51lFWhBZsj8B
IwnY6ap+xofYFdSABQq3/OLZewbPRxxUvblATq7kHhV/prgsJEl2ZGUL8fJ+e7KjgMPYuM++WDdu
80VrWJiY2GvrhQqD+uWrlhOa+Mw1Ebh+FmhfwjDCZskIFX0pj4+C8PHN2Vd24DyRmZX87mbviIsy
XcpUHqyIUAnglxalPhxDqA06MwOSuHqbj1oMYnyod5gWQNPRcXNyfTkB1AwodCw+eUTNpOb9xX6T
ZB0EtAaUNxhqasS6ZseRKPapqd3XxXb9u7A1vOS0H0DHt1E0T5LzQSbzIUUDVA+YPhmcaAxDWzP0
sa+oRos1l0lHa0DhYiGk5+wovNzhFQqquTpdg6zR1OAOz/ukXDCin2fKwbmrY1EfIIafzSLx+Vec
OUJ5+fE1k/QsdnWpldzwIqUWUH036grOiSn2qafGPW4drRyjSLQ8gVCbgi0CSb2x1utZ/2F6Nukf
NSLvnFPB6+LgNONy0Fs119ZbCmp9uAupxkeG3cRvx9U+n9szfwMRK8yv05w+0WRtBRWWyUZeuYMt
a4IYUli8qO4QjxPRh532kZsXO8EWOOj0V9BvKlUKZGb4wNFGBdxY3sgymeb1vxfP9Q0tdjBiwG0e
0gBWOSFh4jmN/0so0/ctsqvIdswIAtFfRJv+rp/rXzDA6T1WQfBehyoeCzrIfvhZCuOdS/i/PHjJ
UOef4dupFbJfrC/Qzl9GQZ8BbUB0VZiGvn2tOP0g+mnkS2OFaSck45H3L4HDdQwjGqcMNwMBtz/1
yUCs3i9uNtOhEbH2QX80LAVCZUSjbQ1IqWWS/VTV1C+EqzSTRqCy6WU9++8XHstI/fS7QZ+08Zv3
0hIGk4C4E0l49PG/WixeOIIQoBCjcrhyzvw11IlZi7h0Ct+dBYdIFlXkx+o/vZ2aVLu9fDfTA8Cn
dkIpzUGdHksa6gLRn+EuW0NH4kNki4jhbN5INekpzKPDBNDWlQxlgEJdBlw+7s4eoVWvGBtweo/k
P/6jjkv2JfUiOev1dX95Yw4LXu5zanWWsMzoQtwKEN4jeRvNfeFzm0YDlInAIAQLv+SqboiWYfKV
0zj63VH3ITmHdV1WSU/aNXPDK8u0uiymZeU8rsZ9mCPNcIjDK3/+oVM9lrRatmMrndv8Na2NKl0D
7JKOl9l6CAyaH/02oDywHoG8xEkcJSwbF75B7t2SDl4KRq+Jtq2btqrY2mFESQ7fKi/Z7plCekI9
234ObnR3QBjITEt5hZ2qf4pHY6LgNwxqOouwBhfaYh230gvIwZKveKCOE9H/gekjoGAmb3jSn1lB
jr9/uDfIcnxTQ4BwzT9XI7hZEeJYb7q6JpJIyi9paGzPgrn5MlropUskH6GdKp7WDOLNfKj4/iUQ
Q7D+GwqZNYRmSiWWqtVZTQDHw3X+tGG+MbKL3m4KNAoCjMn4F/yiklG3WslXWmqN+iUN82huh6A/
XOkQdA4lrMtDrebkdd2ekZNRAqt3vJo+nIh5owv2sW1zUWEap5qlgT6xZlxCjov9nAjGUcagciIq
vBaQYLSuG4674E1FcOSPn1+wSTwPl7VcILtFtGZk+tdQNa1npfsZdepyax52TlHzXKDOUoF0I/18
TJ+HiEA3IZgVhkDKdpPKOkTKI2Sw/gZ8O+ckvIKZpNzN0D1bWzVOhkslrkQboISkFyFkiNK+3S80
ShX0mG/IIz/Q3vs5+cI0ntzs+lvoRBLj/GmDM2PGxQ8gZhI8XKfGzqC77NdGvGkyu+7yw3/timf5
CJAKpxAwK/CsWEUb1muY58gJDGdBj0LY2UDFv/abWrasbfyFDWbgKF0IezSMcGDNIyicWLsUzDM3
/OaxzWgHypeYWzphz5LvcRnZIXPT3cLlPq9k5qSTKKylJPxuGC2fjQGgDLX4sEpw/HLjdr/w6XW1
eHXTfy6/6ECaIz13WEyczdju+vShsk8pEJuxCepLDgqUHLDMvja6mKUeKzolze7h+ZZUqOpCweMI
6O58d9D3uYgwsmmD/HNQu8wlSKU+0mkPaRlU4illxgeXu8UIiKOCRGN0n0dA/Q+CXzQhJY31UJg7
qHBXDdMhLAOqQIT5aCAHqDgGTGrWki6HZyR228cP5rWfdfNGPbm+pE86HA3ySiTdzroMgMa8lZZR
bjj7PRwwDFJcy2G/NFXoAI9IDBR9dsLqcsGVmKkD9HxLs+ZQEtuJ/G8KJlhEvefbS/t7u22N7OAs
J5qrGRa7kzajZy5vugWdqS4JoHtNqkH41Yc8vdWW7nbXzYQ+d9RfBs1YoEBevTDRwgs6ru1V9jIU
oMQLQ9vjD9b3RPYDw0WV7NlVOpI5DCduvzryV2FH0g3yUX+ABUZ4CpQtEsAiYOAMVspAWrcBx3q5
ypURa6JccuyHsmQzyLTp5/3wFZRJ9gWRACaVNkl6VeR8G6iJw3VHrmDje7it3ISiUFoJkX5Vs53M
1QtgDuW1D+N5gpAaWny0uHG5UleEMj5VHGC9YEjFnYQgFrqZh7CJUCnSLVZICKqrxvkerqUVflyP
vhkm71hRr33UcDEwDFCAcKxorD5ix1euyYibX+o/lrDebCCMGMJXfFSnm5iDCdVjiFl5DEjCvW4j
QvkAyZAM9vCX382+kxLtGexyV67FSNcGvIp0qLBHHpBuJt0N0j6IP3TUyajILJX5Ezjq9wxot8mb
oBN7uiEYVZHZB9ZuOm7oHzLqrtYpKLqYcwzsY7ULX3BJun5B7ayDBB9AQY2F/aq5AAWdCe1pt4E/
MfwxO6M4IhrCugizJ3ozuldlHOCxeAS3/rmgnGo0raRn2GGEjeRQsaj86vyRCqpmBSjRxgSX1gUs
z/guFusMPMerLSE9Nl18RXb/wkmmnCudJxEMT+sch+BMnCz3JFgNsSCIJ3izn5l2wQipSSCTdELp
8S1nE4pzzuUpngTHLEUk3tnEadOLu1gB4rh+SKV0RB/0/COIBX1NqXgJ8k/04wKXeld0e93DzFmD
RCj4Fc3Fkkq5IybxiHjmAtnlhANtGD8BXXHqRB3kXKQTUzCI4lG6yenQzHREm8/5LN6OTjKdYjCo
+2MGNi39LFbUZWQq1egxvgJAcpNlhl2DrXNjjthbTfxLFxWOo/26GkHIEO1V50GFGXPsbzvhbOkM
ARvdLDKsDnMQpzEBfo9hPjlKWlJ2FvAKGaNFC5f+ZRrQsqc65gQtZb37zO/SykhykkFi35M8shxf
T0MYJiI7twOdx962s1S82fqZqENV5pQBQL7laHEPMbMu6vOY621Bf/MtWKlMdlDdB8M6FmIB0yF2
usZUqFZEq28vIztxG0cZ8qxwxSiOU2ZgVYy0mnx+tNUCq2sjKuAgrwT1jySVV/Tp9IjE2YI4gXw+
bCvCIYuazCZ4l7zsgPh2HMH7hfTPrDPio1rLRsTYm1xXHRFMNbjNN+tAvKUSgiSVgYueRlAN9WSU
U0oN/0o2yn8XIbc8RDnajHhaP9M6jtn3q0H8hGsCcshujvhAxjUX2Rqm5c004azOgemuPvke+JS8
HalTVhpQbziq68Qe+yUFzTPdIbnwM5U016cdR2JiZuRwOb31E9nkUDg7dzrbOxca+INZMB0vmZdM
ff/gO1IYEa/82WPnXV2oqbtc6qvxJOJTaC5PFEsMGy3zBi7GccnUYj+51cY5j2lOezYDyGKco/xG
KZDGJtm6/Csin4jwpw/8swHRFxaM8nuqPqucBpfhqN4thnh83i8h6UR5TEHo9Zo/dRGXeBABjCS+
WZlmCW6z2zlWhojqJmiKhQ461cFVZ3uc9f2ibeY5fyZi8nZ56PC+Kt+qqhILld8NhsHQXWnyuh3+
MCZmNlO082F0+5tfuYwOJuDOSsPVIXpMe0f7ZUnswDSfTTFlMi28d/btY127Em6snOpJjRNA9mUf
GZp0uc+pzToAFD3cw5KZD0guoxLaKMNpglAvTs2i+KJlZie27roRl7sQ59zaJGe3nVuT9AVodzel
QRhRsjmpmatWBMHRnmVAz6qkJaGfKFsUIxd3yIgDT4vpuL/69ohIATxHxGQaTh3CvBbFNKEOecPN
jTfKu0267WH41EJD17aqKzmf/yaxHk4yCysealbIdDumqYtNAR1l53zQTCNChCZFGlbhw1aEGelm
RCbZ9+Pbhri06G97GEKT+0QbmY/ch/v5xnTLgr5Yrjmi03PzF8o0+B8F2ak+VDhC87roquJBDDKQ
bO06C3kztjWzmTf69XVUeKFCPwN5WWhjZG+xJT5zAFZL9Znk+CPss3O24nwVviVceVmS7/Wk9rTY
cFxdxpkbPpzl3uTv8FOrA3iFlL+Md4eStVB11bj4G6qOcDot2oSVC0QVAbi019ZLTK6tWhGQOcv5
LMiaL7merQC34o/0TiA4aM+3WHBm32XxPAOgomB5ilVFdSFfmmntL62jEd3htYZxhZR9kn+GYOuB
Sv+Q22NGDJlAW3cHrSebK54wVw2uNtjPUDyobEtp9HHjdRVl9j2O6FlMoNVZTDG4xCLQ72QYZ7iS
Eii2px2augN2Uwdesunx3Y04FjnmDdQq4csFckLJpBMHXwutugAJDhPY6mEK+TScieUvt8rNmTki
sscB99Xka1JWAFrm5gjj2gQw1KD9oI+/+JDurTiVAft4Z7kWyBojfwkTyv6ZbK2bSmINv6DCbvXq
Yo8oSp/dOcushWWH7mWBVqY2LJo2VtZRmSDiUZ8Zri9P5Foc2ZBRv6AvXLunv6Iyxtg6uBgXFmU7
OZ1XezE8tTxEwh/LFRLFI3zahSDz604MboU9nBhhUSzPI9hKb/Kkv4ZyhMUPDjZWjdmCri8kH/p/
dLu5GXfWA3X0q1FIhIabZR2CtAyvFFWFzd4B32m3NT94k3cJXo4V3kvUirUhAXyl714zJxtWwyIp
rkTWp1/w+UqFSUBKqlscWJaIiPOc5sApluaao4ERufMcDADG8iAv0OljClk8lTK5XHEAXkTDXRY2
xJonExn4fLTC3I8x88un+QZT4W5RRZt+PxE/i4fDm/GUoTDK2Tu4xIU7nKQy2+vHjdtlNH9vcCLA
Hpv90XAFmyTnxQ1ke5ZJ7uMlvgLSL2eWnRsO3WH1YERQCRL8vDAlEiZZBLclKvIn9X/HK0UU9a2L
7uv2M1hjV2XyBVuInTsOeHeYWIB8wRPTez+YjjsgBQs8laujhus4ZIJmvSCvvS5qEBlthHTHpS5n
GxjyEtoVYE13QCf1elVW5nBonEPRseGSLSwYfFMIsgXAcShRH0WW4HJhIFmqfoL0tm90dSTKCAYS
PJh6errWc8hb10VyohUn3qBl0hxP2Ihbma8sxaBE12DxX5v3OkmZCWzDWNPyW7Hy+e2CkNr582ZX
LV9rHVWeOp03/E+iY1G8eTtFy14kDJ+RxqOjvc7hX0R16o5QRBAzYn2BF8vJz2Ou0BppePXji5MY
iYttiFwbc6kKu9Cwsub2qqzpTyJJv1EVEA96ROG0qzrf4k1dAOHx2oRH2Wf2sLywvwTuCLWAirQh
NBYqzuE78/T0/UlQljVMdFQh3mDHgFoU58b+inHQRucEeRBgxp1O4au9nJjasHwykHwe+bwTveqD
tSDm5rsNZKt1FcDvT1U/17bGR6X5Fu8lAvpZ7GEV8V+9UoPQOdpKbzD9+5jpbW9pKQ7gl0VzpHic
v6uWuxz8gu6jx5QPOCtbSGLwjhvYzVbaZWu4SbwJ2rybZEaPvSsNip6m6Klatr4HsSjdgfF52ZEK
el7sJFr3w9LHBTrQVyQxQfp21qAXDMI71fzOWMb5iP5s1J+9VayL4mVcySdeSxUqSsXu2Iou3pmG
qGn6YaC42vvrX5ABvx0DdsyMSywaovZkjlHUw1eNjY/JMO1B9owLdGI5WNyeRV9EKZ+dFib1TJg0
45mkjDanqRgfsNhHqQWmhCHV2yh+hB0OCgVIFTkKzF3UYjkM8o+dwz5+zl2WMfeII8VvqXETBRHr
VETp2X3LKoiSgLCHlKoFZP8Qe3ACjP4K20f1fCgEcDAkq5uhnAnb0h/Xzjt9+6Z00Bh5vhR1x+Sl
Qly5wbLi2F0bKx0fgxHkpgxWfD1+GdWYQ2NL0/DMNYrpRZTA0CYb9vGdn9NttQneGETXlQZ3tX1G
Q+r4lOQtE/eSHDSv5RRYROAO6ZCjZ0mGwVH9aNsj2iTv4yLxmFC9FlOWl20UMCnYuHbyPUoQVUXE
A/x7QFq+kh9zkLAVRYmsxfpP6gffwPZveaksHl4iOQlSMffufNkWSGBMxB1FPHWy+bpym8PxxYix
5Rm9VN70xPR8cew4l17PvcUnNMJF9jRxLQ0nyGtSQ2WjI/lqKSBp+6qqI47E0NmfgmBQDTf7Jzn5
bjEWMAZ9WOndWC1Q4JIfFhyIvDAM/Oj+bzyNOhzPdkGn8EAlxAZEH+N4fyX+vuC09+JVEkdDe4Ep
MnNvhbnamdqXqfIGjK8spcm1vWHDnDpKsefzlseC9jndAPv7B78mWchobXgTkOr76ooALUNoCJor
tn3E/ii/CCO5AhoyRxkB2to7bE027soGpoQcjnbqt+TkA1C84aZnqywC8V7DoFZLSAP0ORtgWlIt
x8Zl+ijdacHa5rLaZgKp0Uf3BaUw7u1J9B0ZakLNKpCOoemCjLtSETLznkrrCA7NGnZUyugKFHVQ
1c5CLieffxMzHwLk/Z0Cl9dzSSnHofMjg10Sj5mtYSgmXqWshjFhhCqqLs0aPSK5mcY23os02hH5
yxYQ+J7efJLJ87EhiuOzfcRpGdd0THQDZSRAiNZG/fetLa1QUbgAKpR53029VCjqoSV9KUvkr9sX
pyr5lJE9YosRL1RmCL3deshKcbEXYfgXALzGGMix/dD81HDznwmXDyLzHP/dVsHgT6b9y4T47gPI
sOqX8CksGvZSuZTen+JX1XPni/RTODs3G9QJkul1koh0qhcaokkyeb3djjTm777hIfHzJx94Ezt5
/TKGiucYGBHT8svh/wbrB4XFPxw/yFuOgx1se1B9WhNDGXk6Xk18nHedv7PxyKpHGd13ToC5ZXhl
HeALJ8drQHMxbipAJ/jkYXsA9zU9GjwXTKK3Rb8iuWqq4DefOVOJfBAkDVoOJ/7xgmn+wEJwPZlK
q4SbSI+sqmLEdI2QIgdAQQ3/wUNq6lgSRZb9o85ijX8FumfUTkK6JA/LfksVM69zP6QBmt0Qcw9B
TFQRMmyb3KIkBwdMu8jQ0LE5dt3mpRopT31m2acLUaROZSupSW40/MicTlDbUl2DuzNV6TbtilmF
lurM6LNbLXFRI1+R1I9mqsi0a4igfXzcQ/Oy3ephbRe4hiL0vJD13SJakCkfNIeTC8PY/l8ldJS1
hwHAIxygB/j5pNyo+e9Nb56bAMr7SLJWxvfrr2Ecfj9LHAeVs/gPDJKTQnXytBAVND+lt+Mn5PaS
u0hFZpQG4AlfjlrbWw8abnYgFo9kl4skodPHg2XEsKqboay6kA16zIbLSJG/y30bQbK2b39DADhR
TE726CCJc61mtljV1yCPElFLqtlheS/EJRsK8gIvOFITOZJeWqXvEliSDzq3G7GK0U5zCBcqm0mg
ISosAyVd/ZfabB+ufgQtVKMn9iLkpPGPY+lwzz8UdiTRMjlM0NaPXaRc2RQbFsEUtrKJ/3M27n9W
GP++5wBUOUDeOGdDnwqqqIgnOhK5GUFjfqbOs/cxB45LDHkSPUK1xlKQ15NZ4/JfrePjlgVvTjXa
LctZfmO2LZq2vodUJ/6aeslLmCDuG2r3qKbvjXDl7W8rKHOad08wAa1cxQH0OJEVc4jg7Cnamzeg
w9mkE6mPy52JT+bMaG+15ox/oYldaBK88ZIq4r+xONhm3o0eC25yWDQduZ0EiWZMgOG6gVt1hX4M
vgWn9B0P85F88sSL7lm0qWvwFGniMNKXLG4cGjn1vNWrABuTLYMF8E7NonNhwLYGN6FXEthA9gyP
ks4kfDy/WVBqQY1NA1kwbUlW4T+fNQXhphFAO6SEWhd7f3zPc7/4eQ2QJ/xtVowFNt6esJ0o89O4
DR3DUDZSBo7p7ZZrW1kWuiTzOvMs0sXWs+blh6pCLseHrB77qUSRvR733XD4DFWoIGaRSpQpmt7+
6BjPpc+K2pIPoOiHNV+RtOe2nULwAzStTAeWUmc7kSTfjU1tgCdTcL7oJKxUEXJ/4dvk4m0kV4Gi
Rbtd08IpWLz1Ha6V5qq5jnuWNALwnbFrfubtB+SdiduyOqUle3fTpTZ7Q/KOk8l87nER0RblPMhr
eytKwlw/9ArXFhM2v/mCL31GuQgHvqT9Lo1DSARrtsMviCsGmnt8ZqRaP7Djv30Z5Rf97cZM8Fdj
n+aJh8JGyKAPqjWbntyGnOrwdxAZgfQGKt0yQyAdgqgG8iuHwr8UplWCzMuDBpI0Q7f/q5uh0oBc
DWGxLkafkxGHoxAhrqbRzTthLxJCPj8jJWp7RTJGUUBBYM1258rQyGIS2qiFn/bYInWFkxCbnaQx
58lH4xOMN9mwZo2up2JJqqFQznYUxpLId2t2h01v87IpNy+L8hauVvgw18jOtTt90x3caiTiPmpP
iZImKFHDuVG6740ymQphi5tEiDkFEd/6zyjmJ+Cbz/iK8DlE1ATtf0VPpF47S3N2+C7E0EBRBhCc
6R/FVOsySJRlB6+Lqm73Pr1I311sscgPRTTPhjBh8u2bPJmlr248M2CllbS9jG2dCFEhHdEjM8AF
p71cG/FO4Qc5C7/e80bgj/PFrvM9hXsnuzTZpIjVsOQtSJm4Nx/IwSJZvHJ+R2Yijc/9ntQHeays
4AsTn0xrlbDzc5Gzf4PPFSTBDo1r9xaVF5BpN2SUWsuaFwh6OpIzJSRHxW+ShNRPUq8+dxkzhO2I
OmB8BZxeCXIfTJwo/itZOQg3BsS185CwKCsAwLyBL0qeHDsJDQtWptMqoXYSBjSsLPsIuPOzAbyM
79+mfOPD7Q8C0+/O2L3VGAdbJmNmr+EWnHLqly5Xo69q6zG4zJV0Q3syFPQhZhlpnhEgC7Sf9gn1
3VVbBjNIHYQ/+k8UywPaqE3z2eTknjLCxz3DfHOUYa3KI5Sa1JriJaFuG35DD3IXom+5psBwaYQ0
/QtfqsZVxexXZe04QSx8xnU85suJfznm792HOhax930ewwVl50DSytA8xPOifDP4sLC49ByCzelf
Ltw3jIgpBqSylxCxfn/X3WTAYA+OQ4Vg+w6BpkkwAPtbcVJ511G07XyZx/q1/6ZgSh07U1ubDACt
QZZJ1URpw3PqabvdrfokBxwqIjJTrcap5Wt0ecW6PLbLdSGTuiZvyXJwYaf7XjBre16BI9DpD2TU
qrvuogMUAiwnlizjUbvhR4R6mYutXLObdwkWY8Q1aaAL0KwqAc38U2tGaWqiW0Q3Kcrd3eb9R96c
0dioPX2kyGlLBoUwyB3Se8Pmjd1xlIl5k2f4v/51ZR4oLOU74j4kmpkjPBlyQuLl9VEGkxlshnP3
Qng7cXP/MuN4cnov/4mhZ81x8RuIR8XMQZXoaj8OlZt4P5Ur/INlnUEYK8UvcR51JLrioIXFE3jh
qI28EginKpJ+p353aj4mFGGo4sF3y7ablQRICDHn+H054kJeSj7NPhOb8HFkar3RTAZnP0F5C1LG
hrR2sCyvh5hOAZS8l0vPzpheiS6dQjXvHr5VoL94sRh/C1b7liPKV2wQiPmsJ745LBY4MqB5rNJq
53Svu/nK8v9kHrFjfqf85KPswbHKQCrHV0mB6IlJNJqhXoxLBA/IlyKWty+lfrRvR7qhore96HUF
boUZcakPwqwHLmJ6ZNsDWSFhpuqIiyeiQjBhq0k6kEDCiJ7sxR/q1tgVFaum/lw5RI5TA6aSr/IX
t2owC5LQIjmfauEVLx5qnzPgnYDSNEOQecB8lmHB2gPeIVznQnh/otkJZop0mGAfXEfg5e4j2mt3
Ga3tFZNXNOq2Ol/4GDa7Mo70JHzybhw34fJvk1g7sBRF+d/9Lz0KD63VUfcGwm3Ace0+IxCTBkjY
BRu8ahnNunIwnMQqUIQLfKMuiWu2rtqxw+Foxw/aQZaM8IbFRAUyEIzB1zXy/zIJLGpYaRDS3TjX
J55Z7CN0zHXfL6fiDkNLHUpKF2ZMK5jIhfXAjcmUmfFdOSgsanbXJEKFTsNcAY6mIu6QgfdL7Gm/
JGZxfIm1xTK7Hjd4h2YNsVJbDw93DLsnlXa1dZx7ADlSQRe0xxKr62ALQ+E/PNHg+9hgk8uXpFWE
iW/yaCd2MeyjoWRs/GrU/7JBzbcfpxoVy5lH5nxaeIiSOcKRGkra9gdsSM86Xdm4POzSYn2pTZqU
BGe4oHknoXkoWsxDQ0h1eFjSmzA/eciwmsVfXeRB3tTmUlgHWqweB4uocbdBQATmYlcTqDw3ijOU
e+Inv9yT/w2e/B2eg35tO0pn8sJTUlOpnbL4Hx0Bxs879I4rLZ7MDBAxL6KCNbYgDxg/jEldxGS4
YhpgZfC78w6WqEUkDiEvPDOYGt19jDhr305WQEYK1dwEXGS5yVktqlqMPrL0fDv6yY6EnaZOGts0
yjs6u9JMM8fOM7qnkp7IGw1sNTnaA+HvnqqXex7DL542PmaHBS63iM9BOB4vImh1Lx8tqYk6vefa
vCpcEJ7KGyZKPcbMlkkDDro3XLt7By3Y3kHjIOdl9MxAdUka+1pytAfXNd0fFJxOGCwBokWhCA0h
wKKpsPdLiucunnsSALiTslhWKnVGkyMMll9TQ5SRa0gsfIYbCLwHrPUNBOw1e713JNgWG28Hhe9q
vT1EXr4eIVN9FPHnHkWIjgw4Q+9QDZyEVUcRIhmrUKEKWp9BphNVsPTLVwe/wkKmtYwaLKfDuN2j
0WCgYq6WZjMdmJpJg4anO4VIJEepphkPq54x7OeYQ5X/Rvpzim9Sua5ipSgIZz7dtRsstmcYsmvk
NQmKpId4T9BTKkCarZgQsleCGzCDQG20qmxrg+N9Rf1Es220E6faNj3GY/trvEusfP3IfxgXuoUM
9ZN6gtOBOqjNePyI5Pk8pnGpHWh0f4GK3plROxUBqsBMUFZDmJLrH3+UOuvnRO1SYM1RAtE9ojGN
YHrJUwlKz2VIkT1suy01jJLSAed2YN1avsmjXGayA24sJVMomHx/A03UhQxKsrjwz7QZtbudSDx0
TRsqAHIFTQb9C/Jzq++eaRzr63kDICGsvxdroNjl4tBTmv0lPoenQzXcQan5eX9v9HtOwemxLYBe
GlLyhaAZgYVAb820UaUzmUF7nBJyYhGPkuSQYKNIXIl3RpHUGCaMsl1sIZNeiJOplmwtke28NF1+
tQIOX6qJIgauP6BskQ6P4+6LBslNVWHwwbm471bDHGA6DNlMZAWMPnZRoyIosj3ytIqLsLUE7uJX
EgycMjVcCzf3lpVUDz/OTAQEl2fraC5J1v4buFJXYknZo/W74l6QBAdYmxtbjKPSu6BDANhP+I+6
rt0cMHBg0Di/G57jaSTPvfkSATkKQDFCTF4xyG67YU7dXyCPByTXclCFJSezHMKZsj75zXfpgF2g
zXq3flPCBCb7WXt5PJMenRz8bOBLJiSN2orhQkZTDKzHdi6UFX4xht8m+sLv8G24GyW7hBYZp5LC
+5LrPetNvSQD14Uw1IxNlmHfDMnrlIvQkq0OOeGgl4HbdHJKyr+5vLmdBp6In5CRpC7AAqjAoTJ/
aWVKUbYmnK1Y1sENrXNNLjhOGw0JQWdk40HM+HqfLZ7RdVxkL2AG3H5BhF6SGBoMe30wdorAUUaE
9rYRCUEZRZ2RtCkVrb1UBHCDqVQmPY94H9yzhz2zamej3nP/t17tWRpw+YXQvKCrc/TIoTwx19Ae
dtHuyqAEZw9DkQBd3N7EP9j7EN78zPzC7jB0yWUWh+iDixtIWYU7QICVaXZYDsEH0oFN2vJDU/32
QyBO3LYg20EEraAT2C4Fy+jjNb9W1wUOHyqNywO9Q6g5MxCXnI0kaz/NIC8aZdqkiFdeI17W0wJJ
UQMR0P3yIvk4HCoyk8ipVlbaaU1j4ZV4rhPT7Px1Lxmb2Qx4x/NhHR3LlWOqFuxWmUCt5aQf12tJ
lP1CCoGxDYxUKFTNr+1/5WrzxMjU3fdAvrJSwO5t+pHvC0iq6hB3tjDnoUVABPijv0wIFHbUFugQ
axrveYDKs1XccT+33/DmkniCALc5l05Ano4Kq8LaGpG1l8r61CF+bBRk4hiNqRdL9vNkZXwVlM8W
1RKRmsbtWvxCL3sMIH8CX7FCORrH3CinQv0OOfSnTbhWg8CoVeR65dh3lPFmoN6bwhmyU4JC+oCn
vvUmNsmjILDd9GD8KjjqC6LdLebzVF8cG3HBK3KK3KWInm+oJSZZrfHVfLkG54tGJaCJj92g7yEB
Q8PiNu8blnprxUCR221bnoF3Vt63akywABrkg81vjGaUkxFOIxJO48qSPy2LSwWUdxgEf2qXd8cQ
TwOLLiwvnhZbc3pgqdOI5ZbPwWo7davXCAfPmNaqhdquopYtR848d1XdwimEqjJ1SAaIsA8Z+nzT
Zn2Fc1hliqW35SIBr0U3xmaDXXbF7W0Pg7QV9anDOnPe3KjUKc4JeDZtxMSH/SsuQ9w6HGPMIbba
+fbnVt3oFCG4RqMIYGNWwcJzM5PEu1w6gz8T5fJTQZmaOHXUf8amyPw7crt0bUj/VsOWplbBLsVr
t8RZX54ziyniX8JomtISm7YSRDquw5Qp3uwafHLIMlbms4YMVcBZL89Y1C5b799QMGCPm1rEmH6a
0XhO6JkXk8fNKpEZdVaSPIkyUUbsTZfoYY83O9c3hGtB1Qo0XVBqICbckp9YGxMSdzGS4Hwjqbjg
uZL9OhYIslKXUZxe2jqOXzKfnzrh11Qh12+l18iItVjCvVkgiMRYxJ7jaVdghco2UdljbAOyo0eb
s9XWndO5HtsHhgmvVKXH0bSLF4HIsGZSsmwOnn7SNgAUnK6ghX1WTMk5/HoMZ6pJsK1VIzwPUimK
x8knDPQb0uJN/gqCOjIYbMD9aIqBu+qgy8xFPjfWesgXswo1dlcbOhj3OKNqxsr5NTS5MTSjlRv9
fNGyA7AodhunPP2Gb4YHR2yjZGRIjjtQqDcxRzzbxqKf9xOLRq8wg4SpdHXru5JtoESe3p8QQ+tq
YkDbVCLn7DNnRs6a1C5981WqU4z3qlbldE7g8OU+McvGzzW9/jSQnnwKZKiFeKJTLYJMcgE7WFCe
cRgUYcjapcKIKdlQ1z2NLCaZGJTOCE8Xj6LHUcJcUe7WUc8Cc0hwrn25zlDsTl5/4Y1pfdVPx6yD
iqsPRSV42Ct5LoZRG6rChd2FL7Qu+dFHs65kNbjEfWKVyDVa/77cjACkW2GTkqOr0U+gNKFc0qpn
J5RuWTu3mgG/hsWK0Jvr68hpOVyAF6OkwscDtEdcin5Pv3Kos+UUHgfCar2YaqVEFcv7DrMxo7Kt
6kWqFYe7mSrfkiRiwfBUiNMqbWQLgL5a5W4UrmvmynjI9GKiDNIgBN27mt7Ka9PtwuvHgdG/qS4J
9yUE/jAnQilx8Bl18aCPX+CzoX1KvB7C3ksDZHHUuUAFOR/Rq5uGDNJVkqZ7YkzcBTDFNzJd4j0C
HaCX6NT+TrnGilXb4I1PUj+q4AdpRN64cZN/rC1DVJsnFbPWRInsxMYa3VkQjm/hOnNcpiSvHM2O
dv03ANjV87RWctbkpVxs/nJ11zur4moFS5tkevWCDfZSJAzewA3Dx5VZsFiAlS+8Fw7+Ei9Exy1A
4XUQeX/F0SQqucxMozVBTc3nM28SJDu0DYLMG2ximYpUdxmFzgwQK2x2nBWZ6frf0hnRcYv8fzZk
+FbQIkczrq2z6irj/v2LL5xWk70r96z8PpypnGQpxgoHKbR1tKxN2ZbGD3qVXbFqj8lrzLWdGg24
cQdiv7E3ZZdkjo0lPm2kWTQBIiXNv6A0cq2005NiuqiUi8gIXPKXt8PrHBYPKQcDcNO1yopdo1iq
77vZ1c8EC18WyKjNZg8WSABPcrVCp0ELhM5z+xt8vj/S5XYSvHzAynVg+8WrtJK5YCYd5CAuxiUa
cwk8GYg/VPcibc366kA1SOWBjyJEMLmRIzeoqZvhMx98zHpXXlBny8WiUYsvszjAzpxPPcVoHpMM
S/F90t9Pa4OQklKAwe+ifSAOOB5SgpBCyTAU5e4+nm+b6FBJ4d/Xbp0tMi8kkAm/MnA1wGJtDL3o
O2BCy+AEM/zGyyCvvMNL8zdj/W02BhNhJkhQYXT4xu7zjeyF2B+oWHGJVi/rPxsCQcyQrQ3AXcSF
brW2Fglo7Wwg4AglkYXtTMcYgu5dyceyUkZkOeK5Obxh7+cEFMQh2HxhnoXBm2c2hm4tyKyx5l6x
ohoTFjQ4YxZZ66+zmuGUokhu84k61Jwlf+qLA7m1sLMxJhHszuJa12YGdpADzGHR0JNdaMw7Mrb/
Rg4zEfsLSriKmkbyYgmOT6H3XfOrGWUU7O7MUxOQsBwFT4Q8xCCCtkK+RgwrAPzKGRlnptxkasDq
BYPHdUNpoZWqAR5uyh3oTYOOydmxHShvzDsMqP7DvxwiBZFBOx/fj6z+wN8xvRAnw8phhJcB+yG5
W6ojpwmu0C+MuDDp0g8ZGMZLkvttHc0I8IcGZtsFjTMjv2wMCKHO9kBBvUXnkDlfFFurtdyrQ8jk
S+fND7fsyF4t1P3aQrHjSMN7+2iOlFuETacvvGVTkelbcnUXCWSmGB6qesHmEuvx6nnGtZCQPBxN
IGuYItsoWBUCwuxseQVGJWPVagmln8HAXxv1BnEqNEKzL0armi2NusD1Ke1RVAkzqKX+YsUikhQQ
/1rJI0GUc1gEi9qqjLWTxm+loIEkP4IWBHlY6jfB1PtBDWmVOXwn/XB1vjVz54yhoIXtX5IBmt73
T0/m1WU26s6oI+6AH445dGutiN3Q/sBj74Mhj0HCRVyjnwZqyqKQNXe9CkJIuJUb8WiBbs7FJYFJ
0LPVcZXYovh0nTZgnm/id2c5ts4WLloer/MX9Q/hHDcxKX3dmZAO8ZfDeHhux92ysxTdxD2azGFc
HMsmIiWeUE4pUTU05F+/MOZLHn9LWFQ2IUAEmSDM3ipM+yrcCahaTGHB835yJc6Dl/D61VCPXKZ1
L1xL0n4UOzaqON1KQC7ZKnuK6ZAEYmstettyZNkLyCwZqHnFkzYR9bpIEk9LDXaBkAHGXi5QloEv
tGSpBr2nRKWJNu20sR3JZCZUS/gtuxX2Fg40X2PhOzLZABTB7FJtQ30rzDBlfHe7Yga9OrhjgXDc
KdDJ7Z/n9bwvb4tS/p18NpMDhOK7lpj5P4bnKZ7V4ZpnlWlgLQ6x3UK5BCK6DFsJNtdk6d50Olc5
3bTU0Q6pisRGClm0ARcM+M+8RrGQllKuWXzaOY+yxieonhNY0fMtmB2f/GjrgSqUDTPLPAL2zVXE
qG95D6cpc/GwDpcwfLpUvq9ni9yp+6YCmIkHIhGRw2f4WHXz4UfYRRBxqfoINzbBwKTEmi31eiqF
B1aN5+U4iBXQLrkPRGAfHzR87YD6djXQOOSyHMAzXN2Fw37I97MOgQybtrwBP7WkkH5Xo1t1qRwt
uMnZKWSLLvNsoDWBgQ9MqVUm7iXo1W68zwTa9U8CTtpkjRhVLNqcJIwj5QoGvx327Ibf0/7BUjnm
BKDGT1lr4WhIWd2fdVkBposDzd0WNFY//TJ542ciBHtQMFiiv7+xLh7AMYcuvpXJHGhMb3xFbMcp
3C9wTI6gzMd2TW6K9HxzzzSrQ4EfdGkrw+iVC5JxQ+frvZBo6jdzILkc+GbPqjbaSZ81+mOSfnPo
/jHJlZnr3dw/iglzgykrDdLAnGsLUa56/Ummb11Z0EflcelLN+wpjgIfwB0esFiFVJfE0BzqMtBB
VfGUDuBhNd/BEPIW7ypP2p0CEn8jHJYIAj1vC8WoAsw+rjspi4uygoYG/spjaMhhUigNT1sIamGk
ElTCjKRQqDQ+TZTlE1W+d7mL0uAUy32eXa0avJVmIYbnUBtOB6x+zI0MM8i86ob5+g+bKtjPf1Mf
Hvod6255cXQ9TISH65/24u6jVBW3uTuRQAxEzIPrdudG/7McOGpIOWkemzM+JRzkIjykx4Oop5Bb
dUapHXD83SfOnyiS84eMK9LifgM0OWGmsJ3H2xavrLBHYbYElJFOhHGb1AhARJBcQ1JwOO4a0fTO
Og+B6nFz7U1znn9ItdcJKt3zSuvhuUeVKYFHw9cOcDGYO29ULkRrEwXAx1VIATYJFdHzMq8bfE1H
pxSyTGfDWTeJ/QNtPiWRFl+wmTtTsZyClql0VumBx1ibTHUbc4iENz78RTwJOeSaytyO5nAq+luB
Rowm+q1EQ7Yfn1dhHUboiw9uqBBlThs9XEl5iXr8wks1OFiFF1vxt+0kWzfKFyUt6EOye4dz8OQ2
0NHmez3h7i5tU/rYoc2lCfqzjmBcDnEcKRxP4UQG2wYmQvlSNbP7SAZjfxWuDaxT9Vb2rF3iY9k6
rvkFMP9ZQsxm0jri/MfuwmQQ3XJ+J64kcpQd7JZ3nmGpsHokfXL9dj+YiAjN5H6fAo4CKc1uUzJj
/xOKnx0GIRmCu/ifh3X5yNYDY0vSD6CKXnBnlgYgExVLgX3r4eutDcM5b7hieO3D7fIA0SNrV8T/
QcC1ovlsW6bzF6yMkWJe3SFViWaa+kcJt0/M/62nkUyJHhwNSWh7KUTiUarw457X6JH0epHlaQFH
A/M+ZoNHuBsDEmOak+c0syrOCz8fSpyf7xPNyvqa1UagoHKpqGspCYt9bJTvqP2QGjmjvG6Wofro
+LMQihv/9waewWoQn+nd0HuFswagEi0tZbmlBxL5E8pss1tSFJvqNHSDjx6onX+WZOaJmJdbi7dd
VvVRAueDtxc5kD9g/7HTeSKpMgO2WSnMEhUzt6suEzPsYqRPCVoefr6sJusBYcjnNHWPq5WTlAgk
mKKPpL1lUDBcWS4EdTGHWUItFjYnka06laJExSi/Z6I/CRNS76QKnMlBWMiNkRp6zLPQbp+Q2wAv
M4A3CkNXaU3PspK0f8QjLLdQ13vgdG5vi1N49zQ3MGQsuKrwIz9Vyp/I3cRLxzDkJCp0QFxM1I/K
YmY2WmxfTAkddzGdQ7r17ITQe/D/w2iYnLkKLAZH9JUt/WuvSWrEa0cXjtOZvdkmPk1Jnn4YhKbD
zKymYQZSz+Q48YZJk4jDlzoHGGBlGWFggnlk+XAuESxzAbNuED3FMig0EjzQ5Krl0sTwAcViTnVf
cAlzB822GyRZNIiJ4u8IpjuuwRZb3n/Doetvo+e+dsQ9SJJ+37KaTnUvDi3yVGn5MG9EfCMC/wkw
lz4dk+9zWnZ0+E27nKINJYethL6eL5Aebu3yqm1BPilG4MkOQIlAuoTYPFkerPOqzoHDX6T+FlRH
sNDQpVH4iHx+BaBXMAgq6PVaY6qApY8UZQYYPurDA/nokM5+rL60UjrjvZJGv5xlhYHS+CWe/q7G
bLOS3KuT7CEsdsPy6Gkez3o2KR8Xo4Gm7vgDxU9KiNP7DGxQev8S7KjZw+Xo0PzkkiXEM0ixJ1F9
AJzTj3QkCoQxxED3mbMaOV7ysdqt+Pqw/hm/LTOCj3jZ0ymyQAY3j5Vr0A4ruPGAIdkxJ5eFW0hE
E3Gj2x+L04NM11kjz2xbNUQh/C3FEIs8i6XT/gqi2JrA4YfdJWAdwvRK58chtakvfK0hv43S+VOB
NNqzOBdG0S7G6x+QhoaDpNADRuZ17eztaHIaRUwp011rJPPGYGC8chIgLJ9ZF+ZmDFwn/4OYjczn
nSPYIA/Kt2rChKGXSKmDGVudTipDEKaTxV2klo1dC+x3GUTxR4yvES7R09Ee3SJl1qVjbBO0V3Ga
6aBa7ULX4BqYU1eKvLYj0Z3G3dDDbPKk5AK2YivmtHyG1p/f86PGwTqnh1poeFodDjnEk1V2gmkT
Nrne/pkZDN3BXs61R931Ly31k9aG17HO/E8nADHvH+ty1CCsJcq+RtXx4uvTE68Pj9VKr1ZDo/hs
WPSLjUglnNii48twt4qo6vZiriIvSFXZ4MqxIx8W/IZralVAEM48hxQYCHa8+Ojd1pch6vOR1LvZ
B4qoXgpxulWyZUfBdN5fw5aR1i3Lc2lHGfntnpOQrwbr/1n/sVck/KBfMpJNg9cYKjRimEfbvlvd
JX70vzJs1oZJMPBH/BjE31WH0WxL3BQrrweNTfAjV9/7P3/UVZWt8+HBNvjO6WWeXqf1CVZ8CTMM
90FBEgrFsXG21RN6HS/sPGujkhsvg/gd1k9UDXZc8Oe/y9zPvhguTTH5fzYpWvPBYHUDyugcM/sS
wTmrkvGZbuEkEhF27qrgzknH1FDKFD7SyVbVGJcGgIEH+bm5shh7gx9nM3iO3ExsJzxEoE0xKkiN
1wazInn0bYWPcGFdgRGus3fnj9LBS5Fb+exhm2bN7lg07aPST5sqg2OiOeDAkvQY8AD9TOV2Zv5L
9NQhRF+BTxwkJF3UYOgwTtbltc5FxNd5sz0teuBv9TQGXpB/tz3Tfx1BPjGrHJ7d2/r4xgbKk/XV
0pHJzblP+I/QHh9vGnZXgnkmQbXgOfgrfDv1gMjwfZYcHbypHp1sRwKdaypSG6ss+kIltL+XD13t
MqhM2o2FRsmF4o8iT6YfITqhWyCNVmuCVBTv39wq7LrCL+jh3CqQLxk3G/ju9oq2YFxB6tyIHtEr
6fawSeDQH7OryY+piw+HhqTgGRlcJTtydYBcvpokA3NYJBCQE/AOiwhp8Z7MouF+jWiJK/2TuA/G
m9dYGpi/l0o0BHxC0+1NJchDDbOMypCMVOi3yupxhnGjXM49/U9tRu1mpxJRekx5GrVKRiqpZxEv
uqJZQaCrrIzPPO+jYl4TjHUer9xCoQOhEkaTakX7AP5bhtVhqlCf8R/dcC3Bwl5n39GhybFk3CwQ
dWVHE3L71Ml3bprxbL7Lz7rijit3K7+x0ZZ+72XDZSJLL3/GKFtGafkrXTYj354fW830jooZPfgp
OaOup5sgnkIyLW+pvGVg22VhWX3uVbl5/DalX0Pxr1migITAJExXfe6DWbQGCyjBD1jR4WWFUL1H
46O3RG2oVut4UELNs9IJeWmRBaOaglNVKu180zgVd/DmkXG7G0AEI2FNVy1gFOPYSG42CyTmmkC2
vBTNFDq4U/xzSvjR3dUFXUAqGT8URKlLuy5b/RZkcHr9hF6UuERbliTWrwhwPw59/H3qRERjnztJ
2PmRzZEpJ9/j2S05L9PwFbZ2NP/qakKzg9aRA5gBwfcs2+t0zN2vgB8wnpdF9MhG3h3MX+PX6Qfh
jQtJYe/IuSrvRPi5VFlX5M8JvJHvInL1vySmnCuC6Wj/061fUFJYmfZeqspyIfvWQOCGZkBKk8fK
3tJKmaFEaLDc8Jalsd7SxtDTW5FWAMgQ0bivTbhw2Kdjo3c6xCDF2L6vfvVdcq9ceNnOUQu5o27i
aiY7pnG9//WlQz60+ewYkH/skyF/WHxsPAoJmyjdKbfVVn5+b+Uu/Zdiq7fI/ZJoZgRk73U924Sc
IgwUOauoc5w3HFHuTqvC/8OcVyU4pbIrf/Zf6Jr47/luVTFbOsl4o1HMojUO7yw7vnqJ4/X8sgI2
faH6P8fenfzf0qXkVt/aY9j8GTe9QveqrqpYXs+zO5pBtK3uYSaFYXlct9MIi1OOAjdIjLiUQM0S
fl0kkpEJfPoVWaFrADBJEt3jtH6ttiVSR2NXQeBXPmJ9aTk2NZFVEX19VhBA3EhggSKi1a5qA5XN
5DFZNiRi8qHxQjhT118b5+hXTzttBSEw6Mp3jv5QPHiZAO2vf9FgzDIe9NR9MTuJMgpjud6Ond7j
4BDws+n+Ak4MVDzybrSyEJM9BRkOqQFIfXHyTl4zTHjlb6XZawkam4SNKFi4XyAl9vAPv94nowAC
F+iXP5eKtgNWMYxaZe9v/pY4TeJKJY//r8VnEvEn91G/VEJPAUvwzQrry4Sv+Oo9aD8A1ctpLQqR
yY4leHRxfLfIM1kCeJZrr4UpBgS475RKSvF3dYuVd0BE0pNB1TnbCwWmKJ5j/g5+mI8+QzqP544r
X5OCdK07r2DR99cysSf7+kce61rEuFyIdiaZrz6x2h+BnOQy2mW+0HFifM6PpLGE8Ma4DIgBptod
82+jR/I2bg13pEtaz/yTYtQgfytQAXcyKIMn2crhV4SMfMYzt3KEX09rZ64cK0kQ7eur1yhc0Gqc
UXqNFcLWlJSYohfjuHadtc3zKYvcJ/YCXT2ERS9NcBY6e3HGP2qfzZFKethHk5KZ5Px9b+5cz5uQ
cqdfqn+PDTfNobmNFNkUrrmKmPVkyIOdfMkb0hc+/0IPvpswsUlC0DLFpDh8uch/gFgRhLfpXTfq
GoxMm/snwxD89h2PG4pjBc3ORE+3VGEBsQtfWkm8LPhkVsWGkB6ykIzKZ4NfzhT5O6ARmdR0Fgsj
kaS8wpp259VotZ/LWyhXoiVOdkRAaBRNwU5MDddXUcJjv9ewrDeDzZ07HizXgWUGuxsfi4fLs0XD
duCh5oJxFifCW4/VUqVkbh9h1oVsseZqKKUDz+gnm6CmaeDXDlQ/0Fcdau/WGgEvlfeuGwwk9Mwd
gNQUSdCIzqT4Ob5PkRjPY378PhsVb6ZI1nUH9i7LjcyK0zbQHqKAdjkZko56rzt6Gqy4+5WuS9TJ
egcPRwPMSWYwwTqoVnREnjlIjdsgLZHBmtNfQVsVjpBTqRCfeZColscEcmIXd321eC3HvOgBFOyw
IhdYs91PF3IMNM/A4xa/PNbIQ0hD0qOFhUmx7kUmaoYL2t2tEENhiJlNputZcX4Ei3GCJABKjoFt
9hhBURwFaLt4MRGlv72ManRDlx8WwDwBz5P4Pl0tP+/DriS2FzW5vpWb6OycUhwwzGLm2CSUk7vE
weFJ+mE1g7Aj7NFIHYXejCeP49kWbD1JWpEP5DpyDb3nlTD8bQROt2upCt5VHHdFDJOBa6t7lSbR
E8lNnWBLTCChZ0wyBKcaRNc0p4ckRI11bkdKn72ppJxXUqpmch2129VX/fWDU3Q6xn2D7Ov8q0A4
eqlRjyAIzGt9RshYa4gCEJzuUVK1/3Jse08gF0Cqo0qShB4++mz9WA566eR2IBi2fq3Inoh15Prn
jgfxT4JRWxf9NSY+SnC0UZqKZ/1mpWlA/JQs/LDA1WrIJZSadmtN6vdABI/5WeZhalOvC4O1cGPy
qJQJ4JbWInZzMPi1dqWeXBaeZbEnbpTF0ZAOhA/R3SaDKB70EusTWz65YcmD0xvrn7kkNTcfYdFl
LaLRmuHyr879P+F7HMcWCqCSL+5iXB9DGriouP7t47WLRkCfX67BC+SnQo/UPVMBZdIi/51+W/sa
VeJbDzibV0m6Y4tt00ZCkkHfrX5JMUMRBKGgbOkg7qUWgpvDfk5aHTRVOvQIE6LG1KJbUYFx+N2m
x7CCJgDjGCHo2VBaMqvxyjyineDmnLXgZx2q0pLOZFqqgiqzCLtU/qQsaYbOz55E6ROOsp6c8pI1
7HBFycQJodRs+b/Xp9qE8fQ3/0Quw9DVcnA/ErmsglCzdtrEdY3K2FeiVFJGBYOtzqGLMt6GuC17
LgFT19dO8Wgc20gLlbyxj6CvSrIU5dihAA8BQTjQHQiePfYtNOSgKhPNhoBv/FO0RmNPktIxna3u
xm4N1vLBlaO2oJts8D9/LI/vOwLJLeA1qP2ao7XomvtxiIwUbR99OI9Pj5TkOBzthIhsfnxaHN/l
S2OqEPOVl1OpQJP9cdmaka3OoXDsZHLGpwEpkEv3jYSf3jPN/ZhImSZk3wTrjsHpVydblKstTxrl
WGntQupWXIMOP5exTVhZqp5YWObHLpDEZSjc34kXCokLHuhUrcOvynRsrBQ/rtYO9J1kuI5kqX1K
2KGep7j9e0nWzPqKmYZJK4pacm0iPH400xJ+WZe9ZIxCM5172q9mI69hkPNFoAw2bCJ9UBTMR2jD
cQhyLQMEPa7qIICfErUx25gT0tAH2NbPU9FCzo7CMBb9LD8MxOACxa767ZcBjqnAhn493KJCQJYV
h13KdzI1JDKFABffQb44ZopEpUIBRkmuuBymYqYPJiNWSnVJrY2COzDE6zSCKEaOJz3h//vj9qQg
SqZVsnZSXB+2kwfVrdyDf9wgDoHzl4l0dd8pHvUNJMz8tnOxDTsEFBzon/xJVDQ39regzZfgJvJC
rGhT1ko58MsFfCAIoJvt39t92Zll7ejDx5QcnAFtFbTxgUejJ+L58gaRXVWp7zATcfw8UQqKQnVe
i5nCnLZ4Zuul44mKX9meZCF6fId6SJ3qXhsHFNKARe0SOirTKK7JsIOVmzib6kZf1CU46O28Oj7W
C0YKipmsRwq/ImvAcP7joD1is3/CvroTCK2uwHPHGK+aYU9I5UDScWg2MzOHTP4zpwvBPZCqwDd1
RtAXfJk6j6PWzabKi92E8Ab8IRLqcRdpcBzjo8rcsdHck4atoSUxhRM8EgPLaxl5ftIuz9k4r9kv
FcNPpQh6CozPeSupGoVvR9KOOp2AMNiy+vHdHgRO6Ygscz3ChvYxpjzJkd3g8NuB0f/wRn8WOxbi
l2n+VBkwIujWMXkMn2kheXfaj89ndM1TvlojBxnD54CQ4svQNL5WcVcBPj9MVNttT39DxjbojCpZ
+kYpqaC0bpTb6Noqk1LLkRX8rtitqMBE5TO6HwWUifw+JyDbKGJ1yqvrIBBK6+vQttdm68jiwARF
Uf7JNb/G/YhP/arXbWJTjkfvtPjq/g2tgwIpow7m9SCuB9yMLCfXeHGqxn0TswdHCtyAaVTU0u3E
InBylxeOvJEYcpVHq78vSpn2TJO1ypEhAWD//90VeutgaioHHPE2auTdojOONEGt4u9mjrrGOnI+
PtFtSFzWR1cB+IT9t6Bh+pb73N0ML+FcxGQdpb9qvnoF5mO/FaL1syDef6nwIJcLvn1KaSUAo8nE
6TU9JsLEqKb7vJ2v39LNjytbK0PDXwO0v0u1AsglgkAL1ME3yAJtTnbOBWnNS3nQk+ekz76VNbcb
vLnSPk/ZRw1DW6ymwbaLM2VWy9Uz6g/TcOXxtQSWTnwPw8iNM/wLvlLZ6MozTIXUnrwiMNxncIp8
+/KWmA4HQvmQWqvLop2ybd0CMQmkvcNeevhXHDtnJ0Cl60rjr6Z5hLyedyDloMYwbxHujJB54w4g
+BWHx3YcKMVqIE+DkCPZiwong34oqf+BheoPObaMK6hsguacAe7nkpixCZEUADvRjhh8u2M1eNXr
m3QAdKcni6hl5S/zIEhF5lpmWNXCAm/fg3GgBxJh1fnj0aloxL1B1CTaCTCAfF4kPrEK5aA+ZjKH
QdJyn12vRE0Mra9s7kDUHycFNFmr2wgUVYxofff/JzRb7fO006zGvoZCpXxQ5vVS5fh88iCy4PM3
7PBYL6asp0yFu7yjk8lTTJITFXDkOwli/Rd7TecdGtRGmSXxL3jZ2NqcxsBuwgTLQwen6BL/0K7Q
srsVX4u/ef57xtknd00dyfjcQLmZ7PAwMAdQabYTxWXIxjzlVlQfrirQqfdlA1xW7qvI1+N4E3cj
AJqtXgGAVuueXgLdIjLdf6XXKI4u4Otn/3YOgc6ILLmtSUPzbzEwttEDRMypqU4TmOpm4BAVbDQf
6eT5y7S/4eAmQ0sNAqoUir0gn/V/XFvuLbXpPEFAu3qJrnOwsHBKd/Q94uV0jb275vIfBJtdaCLE
+FvQSODHEUChDTK1UpaKXlrFXla6NJwvAnr22d8egIWP2OkrGx4pmqqTqarVvizA8CnGXRHHJUp/
gs1AC++jfakLIqeJqj/QToYkoc1nTbNZzbltA93OnQ1jtMn9URGE1gFVokiUOz4i1quSqa1nkmfx
2SMmkk5uF7SSUypsbCEYg9aI/wfWUTQ2DMtbXpgGwdtMJYRcBxKEJdQ5J734NddQDLCKPQ9sOwM3
74wOyrgnCWBBtzRV+7blj5E45n+bh/NTlcJf1CvxuwECEUkcpEVIaB5zlFQuUJMluw7Ml1/JQfTN
GJam4+Bb2aIO8PJ1st4sn3+qox59ytUlDjHyeqZw2mAJYBjYk3qSK3EFhLqjM9zWnyAMvX93OBo8
h9NHm6vAwBzjyNXQaC9DmDiZyw0AsW4OtGM6NIhmEH287ZyrFUB0TqoAtrZy/rH3hv5+O83C0xCs
F6dqlMQLOIyeP+makgU2swPFhy8tpyngbid9HrWgPfWVgcFmh5Zzc0gOLgOLh+13FWJiFgoAAQZK
WG04ED9gmhMn0HlAWQvFM26qO3f6yRkulp22tR5ofoXDlTD2VCwcIp2wEyjitGlxuT395NULuSAl
/JdJ4yH5O7PkxzrVFHn8IQ8e3wAUCWXUN/OASN2PydwT0AK6s2+iI38jEbUw/605RxPAvSjaml9p
BjhZ7CqJuV28WIXQnWOwOso02ZSeIWPcJi1NHHCbJ61wUQQAeA0zrP9zLpfBE6Jkz6BIsk3IKRRe
G76A+qv+YWtJ7wyam/bhtMaKkkZsUkgY5cAFn9q4vxuQtqksC+t0LtkfOmSnJwZs4jlB1Tc2aiOX
tObMifGQkInybnQUS3FRVNNnFqxIaZL0LCXsbDoItsWJKbF1Cu/6+5Hd/V6h7UjvTrvmdgrRKS/V
/0DCtRn3uLtr6/kKiI/DNRXgqlL8XOCjP9RitbscmRcGuO2uh+h5yUlTaziD624J70sMhlkukXuW
S+hRR0B5XYFC6Q1Cs0h3XPPslifHy9mckJSQBSkZvhdz7VkhC3B+tVvSkEWA1rrIGGDlONvKS42V
aLwXTcaPYmZ1xMIR0FLS6jUUg85tpeFssySbovyay48LSo+b0s9Y/lUpVGiqjhWUey+1vWl6h3jX
MMmW/caSoAamxCI3pOSzZcmYMedT48kpqpNAQRvkjNGFoI3NdxXZD2RSZwlAtqixBc8Z29UHXCyZ
9v/w6QFzCEs9WXbV+D90ln8NVGE9rmvb1WVbKLdLg/Dggqvb+J33jaCqkbYaSRZnu0Va+rHkQCRS
Du8GxH+SD8rZhL6TFkwC5I3lSD+JPm7oeJFdYBqnHP5RHU0ExhFLSrQwrv4hFte8hnZjpnkt9jLa
CcBjk2oR1rL4LIe6nw8+tbkR8CWkjenGBTh7Z8zxwjxvrTClVaprRGmL7O/44qEoZ+qMvnvldAoA
vn7rRlNsMhCdhqWFqqEQeBY0PiykNTsVxNO+ZtDWcXnR9h705RagOkJ4KvRbo+WKErbC1DPEnlyo
k1bNDitUzoPvQr3tLK+TY4+x84vkT1L75yl6SHYNaviZaKZTY0/lohrQah4wG2HfWdPB+h//fRKB
GaAegszObgZZWYbln8JXVwcLZ7oCu56waUPsprS6Cdq3m5NsAHpFeBZEGw2D+ewMQg/GebRDqVnh
DjQP+Axf/Z2AZonTeEC0d6SxZsWue4CAUPGGC36z8FwjmzLUg/Xnaf08N3FY//MfRYqWgqEUiKkP
EXJ/DFVzW7DnEUxQJ/yWsZVLwVs4N4X2EPTN1czgp63CrPeDrGR3UPo08k31qsBAnvgz66gjkOCc
5CE8M65NjbypUx38OxrAqGN3Pp1s1/2AFaYoEnmuDpsxRupevxfc53uv3r4w/sR6oRNuoCov2Msi
BrQvbnctu6qX8OKUKO40kjx2dgyVGHcBqJLGsUpWA1BgUX/QkwkFUx89BIT2aOvE8y1rxRSClpwk
AsZZ8/IMn5Mwv08FdBfJ1urgBKO6SA5XrHv30iadpSDvZbMMTVGuLeGM5E+fsmFA22T/IT/KhZib
98bEy8hd+pkBZWryit34+Q7o/6n4y89ezZPZdp3vxRekqgMFfzW993N2tHxi5BJuPtITTXXso8Gw
z22R89SvWkEmKxTTFKMQoD05+5DVqsG5OglzLb1/vFBpA0JQbh5rsjryVDCo6pdD4qldOkEr4/Po
E/bx+q5GqmnimLdUq+qUoX3gt8KOK1ntqj6U9Sf6dKaG8XX/uS3F8t627Q8kRV0SW71IczLnxOJA
IEPqh/a5BywLifXMxAt8pwI5tRPSZa3/AW6zYZ+rRx3IHkwuWmSXTDiFsdW0q5ZLjfR+LZ46FZYV
NWDW4RruRNdOBa/7Acb+dzVQdzBlvKp6R/6PBXOn/abcA4HZUpFy4awyqfp1bpUncKGqqHCdvOWl
QPZesTCgKQVLdnBpGcRbJyzfXXkMcrXkTcTJkiCauUlTWYVfBsWz9w8cROGC09cFcUI/gHeSVygH
VjVRKyhQLFgN9G1vkV2dh9Te2dmZ6ReOiRRYt0DAzKgrAGVJ9KngPk3oYJC8iToT943UCJrVENSl
5kx68TdwcYrUeIny2PccWlGuS5uc19GY3XZpP8Hyf3zvbIs6ZGeqG4eDYXp3TyXyB7ejdQhX/m/y
LBN6SjkMOh/MfX7Gi7Xv0/rOFedugS4z1np+I2svbGFr+YwAk54MaUo170t+C6FmbuNCjgsSuOen
3ZZgzy+ghCe/xyUp9+cSjMc7xI2MsRduowyI/T9MIRf+S3cl3miNC/KEOn+J+QtZYf73nQ4VOIC6
gF0FqZ/YlBj+Go5NGgwLKHzc3pXgcaDtcPjgLPqVMgr4WYSpUSEuLXsbriCA+fXNiEBoSuVQYoMu
QgSgg3+2nvVcJSlNZjqQ7D/D5/eP7mfWq3z60mSoJSaIE/D/5/+F0pQWHv01HTvdwmTcwOce2uvl
qwsJG/foXHYyMymc6VjRJRrDlTG07b1+R0AkVV2amiRtsDCwIIYuyoNASUDQDA2iFzbBr4xRcEUn
mL9kQlRf2MVr9orC045jaoPUx0TC3pB8vndnOL19+BA/+Dn0wYYYsAD4gorJkVqfRGDsRigSjQLK
CoDEU3GS+tPjA3BUX2zTYeNcxwmE9I+1WjLbGkeJmyKfnmi8I+2M2yD2rWBp4Ce+1pQGFy41mDJA
hJ6yQ90ySKwaEY3F8X93wS6ubunvmDI3CAuox2ulPIZncKqsQyea9fTw5aMpXeWAwtRIJb2KW6Ja
rkW9L9RlC0h6gA67Ust3kKG3DS29jPxzaMSEiFHDOSEN32jRmMLmAaYkBXvxHjJUoP9POS3kg0Oi
qglwjZcLSGJyWEk9OFDsRnOr1fdCVVhkw1ath8TTDGYouzCWxslNf2drWiqkbfWI5GzlaamAyuTR
8XHtBv3b2NMgNWDfv1d0Nq2YLFC5SVHaJOPm9o4uqNp5my2YcyYRvLAN7LtG3kY/nftRLqag5sDm
hhGUe0R/H+BsfCC8A5wrIB6rN9hVHxgDHIXjIUDMDCSzcZR+fSWe65RSe/C/YytMMhhqrONVBlpN
sqqg4MYTD+tSfybWDOfaXiMHhJknNetmBqKAgiX8RQfQZaSsQTL55hF2X8GkT3Yr1Ce94Dx0F5UN
sg8p019KXHIOr0aIy/YU6sw0deK67uz6h5rGiP0wkv/UR0VZWv5zhZlJpaRYAfvGdGbj47jYBkfQ
zQtOnF7un4JBG3HQv30t60KuY+HiQr04ayHdLyu6GQZ5BY6F2M0qO9UftVtkjnREPZwDWttITvf+
wr6Xu380tgv7j01Hokf/TnngSEjgJ2wSrzVprELpr1utCk9hm5SIwKYxM9htmHmy0+6Xfr+eMKnR
kiqJPWcVNh+7yP0BfrTMqRliVe739XriFnxN1mkQmNEz589LLTEHGWaBzzP8Yx4Qzdm/GFZbjhKl
SoAQWoo0+YN7kbYN5gjJmV6WDSw5/xqsJ4isniQl2wc8xwVs3we8JpPuqSoS8xJXKtvHcNFIYxPK
LZKYhsdz+VSwtk3Lmq/p1uepykzxyKnQe54SCHwT43mymc8ZRxgT2D+m9lahxxlhY6Fz2BklT/nW
QT5comUIVdminQMuhQXJqfZGQ+cR4crnEPAydMqKMM31IqECnkxe++R6vIOv+MhvzHCE/hnDeim6
ftRYWOHq0uY+Fsiq8VXhMXahr96McldmQb9eSIoUPTanvPxYLEmVAs+VMAgCrzD5UDrxRCarAazg
EpP964ytQwBvhBesTUsU8+wZUQoSsuwSaVKwUDNvwoAVA4uX83r+4oe10WHakGTH1DdRCkW70heq
TI7/wZYhEFyKoylIJtCcGXkr2HaRdz81/Gzih1bGipOY0QrcIRyHP8BU+kJPKnvHiTr0+Zu6EfDY
BftkODIcBtMv955YaaBSANeDqqNl7bFM9C9gYXt0kbGCeBN1QTsYHq5I6CheeJ9cKYQgUMPH2Pgq
T7W00RLPwvg9PBhn1QDPmZussTXI8K4Jbz0WfdJq6YJqfmrSmxZy8CtEBOWk5jff5MuvNRQA0iWc
AtUgG8qSdqNNMMJ5WAzsP5XhaKPu/5B26CyRWo9I7Zt0aa/Lmo04rV3/NgwWvm+8DTcuH0D9pOtE
E59Zvgm9e9jU663LepY/dOBDqFRFyQdAH3CXzgOsIE31hPg/akgG4wGzoViyqHLS9HOJrLNs5Ce+
He2rx+D0lYrVVkYnIeQnodRJUqnNjvxl4tgvuQqAdXqmdpf3CUvVkO4OQBWGQ+g/FxKUlzukXrJy
lYzqnlemNiQuuc6KR3M6XdzOZmtmf64QiZtRGA43Mbb5ArxFBvGeQIp3wBaK3pZ/15GPEjAmYjY9
UmwYnqOZCftQ/bGZC7m6O8XXEh9YsU2oanW519l0/XqdDC1I8Ohj3SxTUa5eEVfSmJK9fpeCqoA0
gJqw0lPUDx3ETagPmYlmlld8956+6W91SEeLcr4fa/FJUcYN6AFKl1j3HPuTWIqlXsE0QcGyj/FV
nT/nb3niRFTe4GmNHO/Lto99pM3SAHqOGrHac5jJci8XjKyajQ/3i6mGxR5VMyjYzDAhPJz4+IoM
jiFAp69i4ZUx1KBqDse4CbysB4b5rMeKDNGfRHyZms2xrD6JVWs8GiMuHTlHTipX1TSIhzUOFhFX
ppEOiCyGl3UKDGTHMwPjVXYqCz8ERyjbXrAxq7bTIa2OdLeQRdyAwCsXOtsTgsuCai5J0GkMcZYc
A5D+9hn9XBDV05K12OugT+S5AjKGs9rcj+zJeDHLxYu5VciwKoFtpbAdJGrfIMmpZhgwuNMYbrVa
dcFhvd5+9ammeed8lzGPBM693AuZh6MNOwgua1pbYvBGW+pAHwAlrDD1lCcjA/EVDP+uykdKFGrJ
VXEWe2VkmmUUxYyyZ8P9p1RI6d2BJC4BlNI3O154SX4gJt2+nc1hBHPBiU2Ksq0T7wAFzEstbv7F
VRm5QggONni3BxIJuf9qaKr1/C4WEYo6NRdH9kz3wsLtkRDsCmjTUMXArraMS8/QKC2Q14w/s/GZ
nXw1dtLh0QvLbX4YQFLlWxrWiL6rjdUbX9PNfG07wmFNZEvAsiqvIgJQBTci0OiBYPUCB8o2AEx/
5inL5Df0pIW3ZyZtxA+gMmn8j6WaA1QWfSRM4D2CVIBDXdl5efhYx9O8SwpKFOnAHQAL9LCh4kUp
DNBgFcW2I7guk5+cCvlzii04FC3bZU0i46lNbbo7Ge37hNdQ+56vm4OzUS6FIIzMN4kRtR9cp3Zd
pH+xR7LdXXN9jubnKgFDN4Y4LzXXw7j5cbIcuwKlSYOYrn4rPFXQXT0e7IE1Mt5wZQ6G/ym1o4mo
KvhFVrBWb+aUcrKci3f4ISOXv/JQjiy+Wpy9XTxYb4OQSliwBwDfy0ZzozN0y4Nfl33wv8ZXQdj+
jOiDVHhH6fegbA4loY+zwMd4Qm4mVFM8NPNYnGLMOaBgxS0vw4vy6vaKTV0RcV4PiZ8f+wQXLBAG
Frdum/oXXxH3cQc+KZKspXxCxUfnQbaqDH/MAqEoUW0x33JoPuxdeUsEw1XmFdw3JFfd/UcH+2yb
S7eihHb2Z9m3z5qZEmGzzmRRWnm1m9mDV+gwUV2TcL9oiP0YWZ4MKWw6heLghsl11TCkwayjtG9S
VK2/j+1s43J69mnWCFIFzQ74ZezVjnCspczmXOWDDRAjcurZNRCUkLVSb8OIsTqlvGhQyf0chn1v
VMKTmAlmNVH50UnlWbE9pxz9V+KiiS89JrYaIOigcW0WldV1nD/6j66AhD9XINMKNft1mzq3z+An
UrY30dkxkBeDvttBhPZ9N8lbEIdFkFT9VC2XL4RbbmPYPfwilGdRF05x30ciYrYe7u7aBolOeNMe
g6Ekgui5IT5fwkw+NamhxWqpTYvfOogCFHQSjlU63Oa9QEe7Vrf4nGsYBAn/j2OsCyeI4bGEEb5I
chYF0kiVGaD8UAsNA/cqDFDb8yTmZajbgjJRKdlOf0TzyeS2ZZUa2lUl1AERSj1j8AB9PLY/WMyJ
M0UhsQGduVMQFfWaQycIsjcv07G7Ufzk/+FENYiF6elQKyHN744HdY0Ocw45l0ANn1sasB7JxYq9
+9tb0eBahW4tL5AcLhnGQFW0C/rS7mWl0Ca2Ctb51/M3wVDvvjOrsBSn25i53rsrt+NAwzAjEjSw
7V7KxWsJZb+cB39/lyt3b2OmEJ1QSSmxAaZyPOZmSGCDysLvlbYtpvXdGNNXUxnrhUPDRSt9BLQF
KQBWdjDmXpISqJ8qCyoGcAvJMd5dgEBWvvTaW+TY+pLQmAKC6tbVSwVji2rn7iRSgH9BXh6hSduK
CS60RpA81gg5H0edxzCzM3QmBgLG9LGbDUxrzN5LPPG+OUGfXtrwZ0RijbMeuujylA8CAdx6pSPe
YPWZelMihiPIqw8o49+UWas+CScRIhHrE15xvrKdGMeJaYJ5CL+AK2UPnlDFlTiIgUBYMzHv/8gp
Ac76S0nZc5PWTsY5aXgLT48kOF0aYBosaGfpkBlmcn1OmwmAHTvhhY86mGpe8zf40gtvMaGyP5t1
qvaVgRjDOjlJiAL9ROGMU1noCcnu66m0JfqnydyvkIPrJWB5dmh1fE7jLcplQbD2/er40geiLCwH
pnU/gQw/Bt2xAPNLPx9PhZdKG1pHRjRAyU4hD4d4m30FwObi6WbAgbyivbZsF7SxZWEUoY1mU6Ro
jag5wIWeE7l9xfS0NeXqoFr5GoMkdmHCFUqO/R56N8v3NbCnGpr4hpiuKfsFoVmc4GUsAyg2NaZ2
y4ypmpq18d0iWUKu8cz0TjQNeMuDhqkTnTpzTCtSqNw492DUADxlGkW2YXcfwd4O3VktXssPX1Rn
rjWqwR/ctap2d+16ZnQ3EaWGDL8izB6EYxWKSVxSIhmcNtyLSrPhczYTu9J9JgPVULNhGMRb5wM1
tsB7TYQVVkjPas0tkwrZCC7lsQl9icIBA2q5OA1/h8ddsQ5VkTXLi9/tSBhpwvh6bUYoxQsWoPGH
h99lYIK93hxSEzuG2Sc+b91+AJAcnEf/D+CiR9YCaYoy42WeyrrMWU6QuurKav7V1aaWzgeva04c
a3S53eal93C1EwTcDJUHOT8QryTsfhTRz6yFezfI8sMeaU58LX2Nplz/9qGZCdYqxzgD+3vKEhlV
7lIvnD7sgYw/O8fC+o0BTUQcc2cReQ1epboa9A2vLAq42yGwVGk37AhzWAUiv8xb0Aq+f9gCEDyB
FWgabjcJidRRC/JUCAZqO/xxY4nkqxlrtRFZYqC6odD+RMXinf6ozmVm/zEB1Yo4GG7iWe94Y9DH
1956g1rK7jj2IcRWD32Jw087HCzoxVGYSkIplGKmmP5QXPzpgRjHMKfY4nf/wgcK3Vgt63GcQrU0
HFrbC96r6lOmkPpeIHJQRwxWtzDFMMy6aSz1qlw9a8U/oTJo5m07Dy7dVSuG8DDgaqBY3gyy3kcY
fpePmvniDBbMOOOYJrk3BomCcD4Y2B2XOdscGqI6ji1+bYTWMSTHOZg7jm89ZBsWfngUIiB2HHHB
XMkUqVdsqVA2XoqvWscZCIqfBQpHz0VmQvMl/wHk9RXpOmeL9k7rrGxbdgwIgPHWvgGw872zOdvO
h0YunzLaeAPLlx0Qyx6QmONmCUPmsEmlZxOXsj/ZmWSKBnSDUqun2zpLVN1ErJ0iV71dhfVq1SQp
f1fPpUx4i1FZwANZdbYrMU0+7l1hHsaE4IvtgP858wiKk0CB2ZYDzbtu8X/I/cQLoATw7AcrGph6
LMPX+9y5dgG5Y3kSS+ST/7eZLzFd2DyjzA2TGsUuwAhJVisKUbgGXBDhMlkjV9OpBx3I8bw56y77
f/ASX8oSrevJVV0pkDslW8BxkHMsl0t8x9x2O4ABFf/o7UpS7Bo9vSq+Ck46SiWCLqJv/yBRfVbO
SVYoG8ilzewBEM1xap8+3uk0MvvUyxaejUDmnD3At3weIgfYPYcMKPmdMJwKliNVlneSoevyU5L8
kneMN/BIb09oAJrAqUMbNjZ2BHC0YUTsdapOv/iT6wlbUx5aweLVGYK+QuUx+IP46XjMQET+G6bF
ASAxjhGzwIvuflfV6RmbXZ8hNKrV5dIe5kJJF3MTrnzWfet/hMFvhtw8eBcfJwG/oNp/gKAHdM8U
phYuS7FoeHFGlht1vbDj71mNUsYCUlG+otM1Rmxa6IrXCbAJM0w5nXXJeDYpzH7xuT378AMc5Ibn
uzgYXuqYrDM/zggXQDDvUe1ppMnsJvZb7nprqkfiWUq4QiqkxG/kVZSJMTSsdaGerx1Iu+BD6Xk+
8+YmEIE/m2N4rnsCw8U6blrz22d550SBlqqRun4HH4nEgkVPyQpCKAycf8NVr1ODvdFMZ8lP6gSP
7J6ObsESN5v5/F7X2fPNghT2VPda+/+TERfreqQy7K/lhTtJbiR5kKXdZQYzegd9ILhcERgB2+af
x02+Rb0aPaykqYHTkfIk1r4RKYlo3NTiAbpMJGE5P7ygkq43eMN6UeQ4QMbM/A6QJ7TZkoCnhWbS
dI/cA/fPg0dPa5jkkaCYuDOkT23UYexJrvIHQ3A9QIfyHPkalUGvdXmYNrM34NLt1sZf2xol5is0
f0fUGTAcL1v+clyRV7bhIVxFC6eYnIcCkm/wsFeHg1eY1h5JPENpayzdiQJE2zS6NYoDqQxcGYcy
4BUAJkS80LbdITk9JRPdSGwpwOxnVyYsHy6XAsnh6DEO9EOi2ubdYXTBDb5SKvtRZxT5SzcINSai
1h0QpM/Jlg1ClZl8ZXEZlU8MoGEKLy/M3vIH8bB/CVVVbQ18pyWy7lXnya3t0yH2RnXXK8cyzcVC
mG998/iz106y+D9Z+5cuXOEaaUQtcZBMgR/cLKYaOFTe7h3fusgF5oSUozbY7gfdY28u76Z4x8L/
WbyRsw1iUmPO2YMtTs+PbejA33RiSkXoXYqpbNFsTCzPuRhXTixTJvoDxtCVJa0HEvzqWJhx+C+B
D/IajZQo+JXYedSsZ3t9b4b1TLK9qZuhT/BQtH8a89jN+wcSapzT4+AWLivqqwmfUBHaPpw5TFL9
QJb4c+7ZjcUa1LlCUygZEDQngWqpWAZTdLLZ0FhIshIizr9N6B1rg3MW7r0+VPDTZ3EehTFrznbX
2OU2qPcpw966WGFx02eODhJQvXKHPQzLb3yrhyEJs22dNoArwnp4kGNxpOjMBchUv9sHWxIeLLa7
CGBCzba9oDGmrlvrJcgPjbZIBEYWuxL7JBxxPwj1I4GdQkq1xPpStBRZgEVkJIMFLvMRUzPRfHrx
8lLRGqfs/Upfc/iB9PEdn12xGUt2mQlpDVxGItssDqwC+UXrzkomWEbkk2v4HMgPbrRVvCbuvQWM
QXjZkLytb1u3p2kHBOQ1zX7uHIuIAtpBspMj/q/E2DJnPjhOu/y2t/AOeubSL16dPMAzgi0EvOZx
XzybSOFQ3jsbLzOZjuoknYSEcHt1GAGzWL1r3q7mCgMWIcClFfIEO1CdbqYWXpQS/h2b8/sraLg+
4Sg9jINkPo5ElGNAVFZHdRYhvA3Zw666egKBzPaboaigMG2aMasXNmM3j2QN2qbvqPttouTmjPWL
pOeHar2RO/u7EHNF0Yo6G0bVofzLDd3+fTXTUJSHJIZ1EW7DKURRcR6QYjMyfV5EI9ErkkIZB83j
iPhvnOZTWKmOwNZt79BJB7Y1NXbnolirNoC3sdxW06oLc2uAQyrN472F6QdBAir7LLMmMGUdGUHj
AQRhLydFuEIqTY7ESeYNfAzuPTyp8H7u2pIFasm5XhPPl9ZR/L2Gg+C2q7SG3iEBzDjENK4OaTZU
lhbR1sWYZEF6WTseGx3lvMk1hyTJyb6wPid4hMQ/d7fv5R6DMSDgLYRrfh6Gs720VhItG/mcbqZz
NQHYTUhyRXQBgECVXe0IhJ3CkSl72raotQihhF0BmcknJE04K0Gfdkuq1bTvvX3SJvY32FgxI1pr
nOye/4VbOBKdKdA+vtpAhWJg32OPWcAlVwsUhgwcn/7S42XYBkUwxbwTfKGvvqS+h3ga+zYoo3u5
2nqWiiJjBe2IMuzNQ2hhsLje2xjpLlKcQv2iGRIAj/8DwBNha97QGik/90iadJ2npODS5KZ+n5xr
4eHVv9JqPjGamL+fLVKcpkwow9Ms2sYuV+TBQgJKxOmLM/QaULP9kvZFr8Kq+pMakfouFDo0xEar
Xvt8zZp+0YVJblhNxTjemOwhdbG2O/NM5W7S/6k3v+oGU7qjwnCNIIffeE2eS/9+0LNHL2TkWn2G
B6RrReYNjL8KvIzxk93nQO+FJw6GabRhQ+Us/CLCp/exEDZJg68AqF6GHFSw8CaW758xaI2ANp/X
W5zFI+jx1ckq39oIp0wCD28zqb9mz6Pdb/QTyBpF29O+xve10YGDiGL3OZic9R2568ZqKJfZEdg7
2dWxIFsZfYXBFzw34btxpiriiEf3pJQbe8z9jWrYhiwoP1NIpSPKfucz3RLlMKgJ8yyXv6s1aH9t
OD4QzulMe9wOuOhDC1xOAY0ar1XWdf+0L8uRYto3LhmMV3lp1njM9n+/dmjEwNEeHvrKejlFIYth
RaWYm9qv6FIdlSq/GM+sqwC7h27Io8UdnnPpUZTr2KzHTD86h/d1P4l674JtHjrlgbgvYFgzWlN8
co73ftn80Dynk8NmTeeXT9i6tqJNsLMRz9yTHY/Pson+XEumR+4eF1j27aCXGyL2h+Wx5VW6Acs/
rwrCpLmNEATXASYjQ5R2h/UHiXY/UpnV+qA8b0Yf82vimRz8zCYBCGEiMKM/a2RQLMhlI6iKubhz
hvJlcyKzcU2RA1G1x5dsW/ujEoEOjP2EfgL/NNB/VEXzS3fUedsb6W9Eyqs9UzEVaht6Tz4IuALB
EYpyHi74hcrY2Uv1WjBsEq/89duujR1ssrdzDq0QC6WOcCAvGFEbgZV1gH0h4BfJXgsfYV/1Sp3w
79g9GtkrRzi/LtpbRDy4hqWeaDBwkK/gZRdA1eeZbxaC1GGyCoVry7ClqyhRA+SxQmxGhSILb9++
pMxurDtCmWdTIiI9JnWOf5uYu6lrvVG2jP+Cc8yVfaoo0OQe60geHgke7jLFqdNjeR//T0SwQLYT
/pqczMrF9T0RFcfx7RrbdA9ybjOHlFA3Zur4tifwHxR6XM+/wI1MgK6BbYGYRCNg9mqIt6xfe6Hx
Xdig7WZAb10cuuZFBD5g8756znCEWnt0pCuZgTtEqwQRvG47o2VtZM36OKtq/wg5Ke/8FQQkqKZD
8nCarVX3Sx8gQEqWy39Csz/jFJ1VgbPdKUtLZRpAI/8f7wFWXBIH10uh9yzVNR26+unmDYORfE2C
pt/52nfR1MtwRHRGKLe4ZzTy/ZLA7vzXV87CPQYXIedq0sVZup1q7rQEnfF1byFXXXw+6J9QdFLx
3P7vGnDecwq6ABeRzFIj8t8q08dr4UpzNI5THtSy/Xl1PK+WTB168/j11rP1dYCIle2p8Lgx8JG9
4i/kM82nuP4aM4z/f4ttPZAL4GqZJQMXw6RhDDx3fKdoslH6vcKv1ad9+9m4e9H9d4/wuUoSPVNR
AAuUf5v9J1YfgwxwWtQO+WJKfoWpRgPb3ICLptXXx2ffSntk60aV7GOgdWCplR8t005v/xPUS/+I
rqbLIeVyY8C3aQrkfxWEtqvCRhqHB0dS2aO6CM/twClc1l4SwoUgDvlnq8kcjMu6AdzP2YFH+msc
pmiZQPpoOtradlbQY6VHzgwaik5yS8BagMzWjBvBwuZocSeTx4lPIAlBjWzf7NODgMW0llPpR/e/
vOs1Wbx0fnxQSDWKuCYYRA/Qis2FvdxDF9idlDWzrYAyr+ip5iHnO5PMVOEQFF1Bh0AsaD6H504q
/pOSqWF6O2+YMDBtSNb5o61M/LLjbql+oUoxbVvXtGIBut3u+aLFIEY660Q9TiWdDLAeRUVRtqy2
/C1QQK45zAavSyy2a/EXcLN90nV+NcGRjSiqdVG0iLlWqoirEEc806vBtFMPh1SQCfpqpwv9c18z
9mB1VYwCAFRYgDJo0InJkM8UzSxLdwFr7uSRaUBRdygExqjusKzeezpBakxEaW8pdC/6ygAz8xT8
zgtq7VGJ0FxjjsqKFVmdM6/StLTpNe+v1/QjebPXrjMNmytJmNR3q5ptpJwNE4HAepvhCEokG3au
itv3Xhu8qiD5eUN6jYthgR/4NJmQhz3RH0Crt1h+W2Rbwbkieh4Petps3BO9c72scO1yfyjw3chC
61NpK1W9fdSDfTFNd54vwjI0N5gBx/uJ9FZzhVAhF8iRirsQpE1mPLhDHOccqHOgleOIzz6WjBzb
2sqDAEhe0PLGzQA+tqDOdFrZVujOhoAe+Kjsj5QsP3zNWKTuuNruno4CBiC1ueVDkxbsCsl9Fb6i
S5JL1DyPp6TsYWSEewsKm1+4MINw0SpB/DFDSxNDujFnf4AjG3YK7Um+FK+79/+MRiteeQybBlzs
B6vg68BnJC85zXAYNjCBb9DDyENl4QfEey8ORgv32KP45RzrBT4qgU/4EAcjdxlvNq96EgiSMDoT
ty5Kqx04emle2fTkh5TxD/fL4io8V9SmvXkiXZB6q6FugIp9FroYzX0nZyoAD/EIENVyXo88aa3U
hav37GVH73qdMDif1gWqlc3zTgjO+tSfVhpAD0JdcW2U65SNPyR/LhOsA+NX6n4Ozq2Y0ASx4T1x
hkWcY2wZuuhXITvw7YMZmFTb6RUhEwI9Fp5U5jcU7vrvDYsU0weceMWCrGOncQj9yQ0ggZQ6aeW1
yjMe17bTvSX/0O9YsBpWZDqvHrmDCIMl0SM31pp92AEYQ4yQ8kiRuiz59Oz2B+JwegacddOSCE1J
yIgDw/n0houVm+nhYuI0gP9rLIn1SOc0WOlP5cl7fv8ozL3SYGU1uNJEZ45HCZ1K8qKwYVs04HE+
fCyR8axdOSwETbWG5xV+hlBUNfNMKDFinZYF04pN27Su9MN9Os8YSL+ko7X9klwdqLi5XdPN9YcR
jtx1LQYbgcPGuPmt0XH2WpKsOVLSDqBBV5tw5kEPQ9czHDvtwuIz7LvooBcbeqSRWMyyqrFub9LR
YvhE86e3EQnqwc0iMzd2ZqBjq3OrTw8v+gexiG81ZQuCbzYA8DNzDC1WeJWER7jQrnTS5B3lFZc6
kH/SV0/Bnqa1PG55DOYBLZRTlBW+NbRn1/95ry7Pgk6ItTb7URKGGtQocisfR8jkqjEmNtcq0EvT
9j09PfmHys/0HgY5ZSZHg9SdJpTocRFZlPLNGqcxeHxpWsIQ0mjxtLuVTNU7cfOcxeFkx9BioRwG
oV7+EW1WIAV0ztvdHcqu0YfR0ntJuDVku56boiIbkj/wvyeIhUy8ASDK6SCcz/5pMipj5u1jmk4K
T1Y6P93Xv6TyWedJuqTJ2whk77ZewMtM7ibc0g6eCpdBUkQPC0rKNu2Rt2zNRRZFGJ1sUU6gvzFE
bKuEVDBcilFRBmyQy/u1FeC2rb8WgfVmN0hdh1FXjZqBIMYGPde0Z8zYgtkJqKZDp9u0FCHM+hlP
jpA8vfUFEp1s0XKn2mKWZ8QD9JKSkhH65Y7obgWR/4/ySJC5ao2BuGTM0Pb2KV7xczv3a5qtzepG
zVH1IlQ0FkfN/h8hPKOwk37UL+jSV9biR3oCk53b2iI9tHR7NsFPP//D5K9R6WmjHxmovgpU2rWa
wEhB16k0WI+92ZpxS3s1ji7ab5dvD0pfM6o3VIy7hwTt07ZgDrA1rnJSK+oBHYw7PVtYeepMzRhS
2n4YRcNSihVvy9rQ1csB4i8gdtQJrYJE4z8Vnc7vG0wogjCQAWzgntuzgG/Dle91QTIc+BYiUuA5
SUh/WO+KN8VBgYEyDFuTB88kuZDRB5f1HdObLkS5hi8wvQ1cehj48qyhxUwpih4khib7PEjdrSuO
6oD8i+ssu8kkH4e9xA7xxCnkdNEwnWwZnBJZ0qJWxfsa5d3R6UeTYBjlt+MvU16kjwb782/i20zc
Vn/K6gvbn5a59jChcmnaWa8zLEe4gdKUZ6Z1RfkQw6STiLTl6KTQHIXyVlSo8X7oIr6g9xLJOb1y
9+IKT+zWs9RjIV8XSkt9BGmYWg5ENr3BhW51rjZEDhI7Q6GcXyPDud4gYasOa+YuPLiAsAPt5XRL
G2bzlvJchFvUA9cHFeOBA93BNdLdPlsRiOPST0ILflvzNX5S1zL01DBaD279I93sAcw78G4o8as4
ARNimFsRzN/nPDQ2BFNl1oY15cXj2FxITPiVDtcTp7CFRFKCtBpIoWu2U2o1oE6i/YVzFrcj8UyV
KPSYhaefIFOERtjNEiYjS4TduU3B9uRbzaOy9O6khnY9E2uAjkBuHT+RkOa4dGHdqn+HuYNNv2dw
jDzmFPHsiOZxj7KxlMHqN43CHb1XpqPcnJntantND4YRzkR7sFZ05IHzTnBx0oHmNw5OJJdwOgPM
7jDdGFzEzuCbi17bHixs4Aeuz/MpzWKAQkcfPR5AzZBLLTp75nBSwHHDDJdK9QDIQmonAUuLngFg
IcA/btCV4FoJ2UcJd1OHvVXm6thPV/AcIPu6bf8egwR8qCqNfz41FqSka2ggX69NUNa3e9gAXywF
Jnqe4m9EkoRYrK62f9Qg42rHHC9hxZYKFFpyiND8vdHAxg8eeXu6/sCNwezA/wZXjSHTD1IkpiqW
02MLgxkju2D5HOYArIarZ9gnnaxSSAc2/RM3YUFI2KvNEf5pXqhsBCE93acb3Z5sK44f8UfntzIb
+xwWbefLbK1oxUC2vYg0HD0kZ2tKQRfBSFHLYlmrbp97daxki/J5lbYDfuR2W/2zFLiuMWEX5Of1
uJaM01PcBr1DAmdurX5krEA9V3GNZmxy30zraU0FRJjPC3nYAONah2Q5IVNJrMJXMlMuFHQ+4OvM
CkqAS4CA2u2z+hwtkAO0zY5vk/zWOM7DZrG1OulTXqejyEagXT3ccwdDbUGJeWZ+sYuJl6+ho9pW
8IQ+AxecXFZdtWZN8azs933INDaHwdriH7Lu3x6V9nwEaIr8iqliTvSFMU42RkpGSYlAFyjM8egl
HLf0/O89z+8/xIjRbdvHk2qDRTyDtBpnGgTAjHA0Hy/anFDJOSaeWQ9lZxhmk1BStocmNgfc8LoW
BYuHpgKksBcqms2hLfYc6vuhO7DNBo2LYkq0FRFqA2/VUhtsJnLbriUlnkvzfqO2Ei3YzmI3GXFv
9eVFy5PpPZf/xVCCE8j73hdWbFdTGXtxkqMsbfUIpY1sscwHDkdrhMdm3db9hqTHdWaimpTBV3Jd
n+TTg64Pc5PHQFYSgbP+4kpjPGnvHfjbkYjHJT5t6TfwA8kLZvVfr0rl+YtHjjdvl1uE41PGpe66
WeV73jRkUkPjGKkZ/jf2X8Dogfzd1yQ5xDPHTeOth9kPbJwHnBAhACb3N2QzS9giOnwgHwIDPilD
Guxo+I+Te/QjVGaBHHXBd2w5Biz1RGwEARk70h7ohMw8aqTWPeML66puaZDybX75yFuYnoxsDyRa
NyK59i2NwP111L2ZnWukvTTOGnZvdnrZxlsEwpAxsSwY514nRUMEipnXZlYJrur2Yv2G3eZfnI+S
zhdP6Sk3zNVpqxDbBgQgnHl9UUzBYVZhmfabfTdHEpnrTpJ/nserkOGwzR6cq3TATYynpLh4td3v
SIEVUgmG4pmozjO5tGMrF3Zxdaw2/R4rlq2d0+S3QXYw6CFKaOxNv1ru7Rke3uPh51fOVos3ed6W
3JQ28jKQImOIF+iDf1DpMGj7IyiBOGaIKZBU2j8bjtwmpQBmI4iM8McXFhUaTSf1TAzqaP63RCqF
IW5wm+KWJz1Z63tHm33/d0Zi3FXjvM5vvBwDtvJi3Ex2xGV8Rf0QI0QURVACdi3JAGjUM0yF3DiY
SjmZ0BzjUS60xtcOOWq3cbDN16VyjHgY95qELlsppnG33WtSXfI1k9uucLazooIo28v+09ASM31N
R7BXBbRoZMUoTk0hmhmzeMXbiw2bO7IQ31C/oh8xGUiMKHoOf6Vx87KKyGo72wAEw6KsfYy2TjmR
KEGKRTu+A9nc4rID36wvkxBp06NyMhGUWEsJloIsRqC/xMSiu+EUZjPcSe5etuzyCIssxZKMC1QU
IrYjgF4O9E8YvBzsEIS5qRdMCUEuNEqepYLP4owgqdgp78pi9O6RTwGdvuTAiqLpnU2EeOgBJjAj
u+sNxnoj0xys4PrKlKANYrI3WqvR0laXnnbXJi8W3JiH9Tncfz4aM6MQlmhhv1kgAEl3MLYtDdDb
vFWhVG4X19RhiT801TDf3SQLN0mz9Swbt8wuhzzonT40pEQMs/VHPGFpkLklaSU7OiedgSQlOhqP
8JvWLhCdt9drb00Yo4rAhMr9lc+UsC0B58bfhoi+oMRg/q6KI09qEYqi3dzT+QIPn+yWMOlbBwC0
clL6HqCnDlbdaIb0+m4VyoHIQF0c3NQ6ZOmo7jbw0s89Y7DS2dxABmWjgUYSV4cOn3O9RHnd2uCi
KAF2dk/0QLoOSo7KOfK69wtsbeC2RfKL6dXDxY6QMuyxyQo9p4/gKNyhei68jvhk4kchI07onQn4
0watwLnRb1P23CTNh1a/1SJQTx5BN4JkGWw2zUPSypTmr676kdgUFMhR6wKGc0IpQQGuX/NkGAEq
U22cMO3dd8oxArK3AavO7hmwjN1U63SI52a45b/xWNEV7mFB/6svb4e2DhZne4AOAWdqrDvyPocS
nCUITDrUvjz/6LxhPv0IA1MRSq96btVpAwr7imG5Rp5lV1FUkGMug5Fw8SApZuFaPAxgGu3uh9fS
J/VvnqYwxRoofPuoOJ40d1Z7YT2m3EWZG4phzqBeBUO97ExNgWOE8a15JCKmvOzgL1eMyKlRbh2P
8pLeZIAB36FOKuS284UlV64tgWwSE8jI80sJVYuDY8loGwnjjVEDhbU3Yz674fzZQHbxM296MulN
XfIC/yYSR5NwELEUET2JfakmMNBhX1SlplcfY0LdegosWy0UHefKrLd6jMpZOZEPUR0kKSfEcIav
vkTK8DEmQln/FgxEhIZWRp5mKMaU6TIrsM0oxXqUvQaBs4/64lYrVHQWsV+xicH3f2b8NEiFerKr
bSPcSK5InuVhn3CIGij6mgdi5j1Fg2aLF53BqUzhtNiCwV1SntsD3bcoXwVzWX7h+2L3SwpUILVD
xGbzlIBOnOwDbjG5Hx0mOc8E3EIBn3YJQm3UaDXebhQJq9L0mKN7H1KQczblz2pIfxKgKJm7kzno
dzHjEc45j4f3JJFnr/Sgg7CIv+uRiX4UaZXE0vN49X1J2JZXnofSEcTn3x1IR/MIyO8yUP6sTMQY
QFvomo9Sa87EkVuqft/cJ8U8rO34i5lA5F8sMbrZSVBZLoD00I8HLLQAgSJWpPb2OJENCyz32m3h
ITTFQoxH3ZDvZEzmJ+WmdWxX5/wPWL9aADYTypQVLklYNPHVXrO9uqd/Ih8WCPV/LfnqPv/+tEwh
2FVOYs6rpFQhTAiZjjhUtCIFJYypSdd6eJ38r7y8zT7KVK8x/S2DUZXPOVmrhbqq42y4hWu+fW0p
fQe1sTwUST/5mCjf2fX2XwlCirpL7RtPQfLnSzXKGluRrz2Q2LjvkXxMK6hB7j1DuzwnsD6y2a9i
xNM5NijKrn8NHvCt/JuJ2OzxDHS2s5K4BdnJytFQEozANxZ+Rj5OEXshxK6a+JidFTOy0dKyIr5R
liewQscHWs4aIdDT+tuIsylcBeQKIJmYMD44l/pNjVAp0vFIHAS1Nh6cI6Gs9VfaMhFN/lZEqbWJ
VHohY4BToHk5dMplwpd6ffw0uoc4rlbSnJLCCeHQpzrTtr+3/bp0R0/QV85wZ3NQn0mGcL4NDxqt
CPejZsxaYsZ9bR7bKuq03j9uOFgWsCiF4DXexh1r5trLOe0jeyMWtuN/RLx2h94s6mbadlk2GJ+3
ZTJlSQQrDzyZlq2iKkaKcelgDkHkdT6cU6Fu1wbnL6z0v5dsf4/sA7KvJzX9YEPxuodeGhtbSL8y
5hTe8ZvAhvnOa/oSNne4CsLr4YMhQJGqQQV3oJiEndBrhO/UHkt63NPNBWHmbRa52YBXAdpnUwfC
T5TRl4Y8gAe+LO27+WkQNdBLVY6dzay9mVFHSwdedJzT9rPhQvjIUhOCOgx9wiSwiiwYqNgk5k3n
zw7JO3R3bLdBhULY4j2mI8Hldj+PjHWz0WCbXuFaRCHfeyXCu59tP4iT8w4w+DM0gRjJaio0Pj7P
I5lT6CmGr+1l3tSv6z6WLtYBVuUwkcRwaa+Gh1i/UI2mICK/VURmrvmExQgWT3i79dzMeEj6BxD3
LjY4X+JaZDJwHLNVa6Grs+caDfubXaovRvKKTKbDA0Jl+dMB1Ki+0ggPM1H7GwnrDkaVM4rb+wrY
zGAX6ZVaWuXBopc3HC6SnzXFJwD/HWOAG8QTw8v6u3auGCypJPHGcWBUTh56JJFUa/Batw60h692
8qOAJmFnT+TN3I2T9ill7zUikjbswYEbZgXbrfYglLOYMIZAINyy1s5svR8Adu6P0O7eVtEl3JFe
QjeLVY9q27RsWZI/0sTzsb6arpHGGADD/eHWOMPbByxxvdyrmhRh+g13h9Hq5xMdlYoWbKmgGrof
ZeL33U9QA3rWJ2tKqRImXCy+yZEV3hvkCGDgt5ECm4UaQLTxP7kx1x0NkUZxP3JJulglbix8Qtme
JeIyDgJVKD8jgp4jU9B1lI3Ykc4etM1LUj4sfAV2G0oGHc72iUh1licDFgAZKhzbHcJfhWxCpfn2
1N3nod1unYa63Z39YZx5VHgX5Hzbt046KxE562mAYOj9pq6AgZ/Dr1sbyJkh1hzkcaD0u+UwIncF
RPddtBs3Ik51VesGChdBKvwuuYlwNP7RzPfFBEnCV1U6pd8lmDG1lTRvKzO71rwA1d6UBXhYKETi
vzCidtby8uhnFQtLDPjo8EjOh057fAeEfVMIUEvsUlnvt3j0Hp3iCv98+7EqB81FjUd23iT7oYQy
h0BUqP5ee+laY64cGYmEpZ57iEc5amG2okQJaFjSKNClUUkvDxKZzFQfXI6BsVBghe2DiVk/GT8x
tJTewbk17ublKeaInmsFQxlrFCkGAzHiCIFQIq84+tD68JlVTcJD8NlDGlMxSlRKVS8pTcSMZTZZ
uAZLbiIFPHkVBuCkWvuUBZyVCqBhmW5rIrH8U4GFDXSqZj0rLGzny48PxPb1TszEoKOd+zpLbKIl
bkaiGr65eUb9WV7X4Cv7X/T26HjcYxyDgnDI4Hsm9eitzDebF32DcYasJLAsqlFaxo3bDtKRhhuB
swi3XB5XtzbjxtSBPkHsrtFalmKi8mywE3FamaIXcyPUntOYdtjlbPWG3WKaTbcgkBAGZaim56oF
9QY5C5wCy3W3ocUh/iZSoD0VCXtpF0VSr4jElG/HTjXQqN3e9FfEn6xTXACZs20JcQg7U/wsFxgx
lJ4zd+bjhQ5oKsQOw0jhG0Q5zcd4gdundbqdXH8sboc9KEUjqS90uuRMmZxcRwEAppGGu/MjKDMB
Y3jDSIY4V0712WzDKO1SoAd7dOlUbBjO4Gtd+WlV3G8IVxwORvXbknqiiSel6HiRqdo0W3XDOII9
O6OyWHYcYCcV7BfjDxMjgAbdnXwGIGSvfYGsyD77bnIqhWNSg1Du4d3szFke0rUfqH3itohuvoQ7
EQmkBXtNEV0RCzjoroLayKy6T/kRtEBY3PuQQF/mzrUTmWXETrouR5fiyrEsAKmHfhAwDXw4kmRa
OGsgmYAn+xFd+y69mHEXG0ilWXk9oYNTY4yql+hG7kwUCgBURdlSyQTAf1uSZdL5nQRKVnh31P7R
DZJzU4edwMHHVWn4YGZLCudJhx9EJvPL0ctyQUVDHAuHn059ts9dXR0OXj5pGguEB3pai2VNpbaQ
IONbVPYp6XzGp55axfVfZnQTW7QrDXa5L0bmX/4g0yUwGFY7TIVESi86hNoMf6dodl8g8P5oytbu
5n+92PSwXHNLYEQYDHm3EezdTxLnHdKwbCdrhLqN+wUNifJ/1l8pzh3olKSUr/Xu6vSRjeYXwiCr
0qoNr39rQgxVFg8ikVJhPxvVzo2ptDC01/HNVDt52WWuL+Sagpc5uyr1v2g/VGq0rLELYN2kbGpn
tR0hjiD+nir417dkQf7dh4cauv3KkSJLAjbjkefCmjbzjTJPkInws9nT2OZ7cDnpfR0D3yBGsB8N
sQiZdWlsvL80+DEUN/hwUr0prac45SDsyllGqFbIqk8uCOYCS+EyB7mgO4NqerevHPMICJiMR3FD
DWuoVv5Jo2KUcYfmtfP1UE3Xo6QlBBKulm53J20SDRbl8O/NmQL8tMOsLb1oXSXYvwXz7lur26CV
ZU/EPGD6prNDPhpOViN6aPjRp3/jFP6MJcLg/AVs5HnQ79Qzu1nLt+dJliDg0oF+LtY0w7GtE42P
twfgGJcaD8ExVM2ZSwAlubJNj6gGj7Dtw+Io49MvmnBDrvW456HCg4L7n/EZxUjHSEEMnvE/9QRV
dHk8wx85eN6CAXp/pWy9i6QYaZRFyoz0FDnHJkpVy7BEAvtUo1+LU7gM36EQnmQpqg4rSYHdsPHH
1AVVVD1LjF4tis2hVtIVrCvuRUjiqpw0GG6UQ3iOViRSXLg48rEKirH2L2SxtcWg3KDxTvX7evG9
GfYtU+modYICutlR9dA65TlYhvkNBEB0V/T3Jp1XavJP1JZuLQ9AvWkT8rYlczu7hq7pk/scgOIq
DJCtjX6fSwkOGcC62XFva1SUjww6ljmBr6euJlf25vtEk40IamyeL8BfZ3y7Rrado7HxNoiCoyLz
JPA5o6DW3BcVNUvsHGuMGLPq6HQFh9Jf79LlIFIVx5NMvS+sjekL9FSwS28gbAC+9ZUtY0mZCe5x
juc67b0fv3Hvr/lqHpPJs7hyPm1Dy9XjGv8iPnCGedXR6zyZWsK05GqzIm7pn8S52yyikonBDiFb
Lcw+DUZC49NpMlmbZe0fAvFN8IlWiPY60ekJ1OcFnvNqW9L2AF/x5f83dMz1EawRPr3nMwtuQSIC
TTnBtAPWqmTHwFKzih0gckUn1jtj1iyUZZjGwzzgBFTLHv/AAul5SXEglrWtrB8Vzaar10+2afYL
YnIJEtx0wiIhtHQg9AXlkreyFyYVprkwHDXqHXlNgX8tmtlNkLQHLsnGgRqUh6Vntc38/HIlk5EN
iAgie2YvidIZw8Yh6p2ftIxTIMKGSWRExhQbJrCDubUHxtbT5NXvh7l/qXxPMgtxCSWMuq1e1Bnk
zmXUBsyDylRTRCoQYdjiAOSK71mq8rvlw4+PTXWM12Ru+3owmrLg7Xk2m9z5nY0cHZ5sVra+IV0K
Aak3Nf5IJdOAMcWzkZ+9EZBWulLML73Zw36vFuhKz1OS1AdvBYzDzAllg0c689/gh58cAZZIVoe2
zThw/JjYUxUW81cxhhmnxmK+MxTGyVFYxDri4bmV8aLepyr+42qzdc2gMkTALB9gdIsleabV84f3
C9Qe/PPezx0wmbqhqOqLBamVxQar44UCBQge2qzx90gaqIzmHKCyWgm2ySABbI9Iff6f4Mq843x6
6erjdTX7tN9Sct944y0lkscNUKr+so1OZ/TiKUFtgjdcPj1nNKT00d6YcRg0mpgJHo4pRKn35Viq
JUymGwSgXdiAVBu82f2fCL6nT0tQXBzpqCQOugvkQOMfX63uKpqsrYLJ8u+rE0DtG4fzBEKmnDcu
h3JDjMITVMU2lrMzmARTAJnMAHl/7rIqJS61ebKJKjr3SjNL3EdRQuFxai8onpz6pPSXz6nimlgs
SsqOj1Z9NrXvT+bWUnmQsYyllz1GmJvFUY+v3a3HnVd0NB3hiwMEgW2jTvWd49eVc1Q/e+YRaMBM
DRujRJUAU9binpr5kuxgU+uuddwyMpCRdbna6FCa/7nJgEN1Incwhll+v9hlJi+5MxOgEFxjju6H
E0neRIdnCtSTr0H1FlsUGK1JHIAvVeZbpr9s8/SGi+8hAuV9S5rHFODrDc6UvhroL6Y2xrvXfW+N
rPMy6AuqxaRJFC8Fl7heTSbiVnE4NKfO0PGQ6CkJybOUuCaODfZ17tBeHiJLnYDdsxKwyNy3154Y
cD4hmK5CAcXoR3effR1kKdqQPKIg9bVkIjOxfre0M347BSGdfTglnGTQK8piSPqAIdMDML0fo3MM
qxr/LLldEx5mUvmmbEq69llDhkCVGxq7Zo+ynhEmhXvgPUWn3Pzt3Ppg2JeWIw6MDhCqKbNpRvSg
pIpTKdIHSrYlul75czfifa1Io9cFC15VfBQiNV3Zx3j5bCTZk7+bTqYq1EZ3QIuvgy0AeR10n6WR
YvOqD5bv1rxF//imLL9a1XX0uPL0A4bUo5Fnv+xiUSGnxywfN9T6sRvdVIn6UU41m4YA11wmUuyV
y16PKdw1bm9XKuwJUL9UFZaUkWv0EA1ALrZ+kPLl18XIABFWCdgpp5ScEmi97KAFZSklrYLcjSsU
6YxDtGMTVtzlugS6xKfRXKKfbeDc9VzghS5NTxrEUpCY9kFyLRuwXHy1hRCJmotmD4NjjVUUhOd6
IMn9nzHslos3K8CR5kM0+7whQ0hKhrv2zUtd5isZReOHcjHpmDVoQCdkMm3oMfSCm+WEVz+Y/GS3
e/cm3WAxuXGo/+EKCf2+gFKxuVZRsUPWFuNrJU89tflPidts5I99mQeNc/faSjYzJQ51iP25m+Bt
+tdLAsDWnJq64Rf+9I6xDcnF3o7bDBuUW7r6xW7YwbbGw5rZaMIHuDpMe922h3dYpK+V/ZKZNr0J
SKP+BNROZ5KGE7butR3THZ25adeJhMdLosERTaqM3Yue8Afszh5D0PTzPJNlSOE4idNvgkXApCz7
sUCI/Jxj5CXj24oUWKgyv979hUFFTdVi+lEtlUPSj029VdKwFooXLSTzBkCNDjyG3zwQn7cVIm8e
3AndKIbx0K8kP1yqMDdVti3cuCeeVI+SMo0l6vYIifyoiLp5+IGrSw6Vcx3sObsbHcgZ/DGuGsRt
d7ox1lNL6c0MwJo/jrvjtadaDamFQlht6AXEmCsLN3RYyY62hHZ1K4KfzSaRBcNF2DCvny6y/jDD
BIQiNcrjA94YJH7zbEuxYNpL65YZS3ZLcw7QXXB4TjFBy+1elaM6Aq4iI5g6VMGSfeIZvcONGgUI
TZyfy4PlIExF+p4J5zS6LE0ZH28Ux2B10wmqjs1ZQ+97CMsFDEYnWkOUHxGGdWQFDOKQjeUawe4W
SuwXrwHjn7i3AaW+AyHMPPEXO+zi1kYpOrRH9ejsX3jF/fG9OzjU53WSf0AHJx1oYQOIXStw1AOQ
m0CxJ/KCGI4M8yDkK0jkh+5a3FbKRmB7aiFZ6DvF/UQy4ys84U8CrmGx5IdI4UU0iC5NGYyxvzlp
iMLpJ3NHPOoX5VjzH5LuJSU9wNEb8nuvSaiHSubSBu1ad5W3uqwlqO8P8p2pRbj1IldKOHA+5NNL
pSnIgHxqv/cDGPeo12wT0ajQ55lgKNEgCpnLP+Fu4chChpQ8ZIyK01Mh17m8K35k0IJMe0kDm2VE
UVBLEJ+ANivZ9DrdrzyCyX+YATrICNJsdapuwRW1AFnameR8fVScpeeZ1ETmXhRcBpPlvWAr5QIr
21PHhBqMwEAsbpwzDeWQGgSQsRTcnopnSvOA5woCRgvyDk5t+VBxdZoScSY1c3BVnCbysmgAjXhk
r1OM7Aw+clx8bsn5/t4d2V/vgTvyXfMng0dWlFl63XxvScU4Y+2qKye1Hh17Svh7PkN5Nb64SS8A
0Hq9nNZK+TCvbqZWcwbvO+PWl7D9ySqhmpBMkosw7BRcVtEdNl0dKwhe0GzMLqoXZGpHEt72SF1z
qA+TAUTxE2z8Z2nuw+krlklzpnSJyp7J/pQ1kCFpg15oiG1fq8HyS/W6eGnqY2ECL441JlMRURlz
FPbcNCq5AgYP10cvmNz1QjX6i697UrySpncsByiIJNMwcnDOXXKyZ1yYQHyuZEfKGxSENz9LWe7L
wqQb5r4jstXzGyLmfq+N6q5P3oAn8lYGIZjWBRkLn0yUPle7KssPBGxIWnWYBXMp3zYGFuCIiRJf
uwdudGIGJ6xDkCy3yUQqJNlGxtDI4hNTPVb+UXkuHJEK1dmx9Ux/YS+xYyZI9fdULNFMhXdqkc3h
7RWefeBMqlxjbgLgp/N4EOh/Rfi9xMwOoo4IjfH8L6MsmNgnWXC2J2+0M0wV8pY+dqDK/BPYpQyd
mc5tEfrqKvdTBs1pe/ssfJ/9lb4HiUCYQrizXUXCthTKTBK2wbEdvQF3Pen/3L/FZCOeG9DWrYKX
DIBdyNvalV1O6QMm7Ddnv5URCf6Yn89umt8wdeFMbXKAPNFLGqaR+6bVXf5yg1Dpprko35D2AQdG
wm5fTkJ+bS70kXTXlKNtg5UyhvmUF9BITt7eZjSPI8wQwPFU7o66Y5ObcC2DD/HARKk1NGaQmO2/
qOEjN7ODAzVHg8jgaVWLL8tgj1kQE1RIcJptHz2/285PwUk7lvjK7Fku5sho1wKiAy4+qlFmP/M4
QHgWYjNrPy0VIQF4y0i45EG4L1TQ2rzJwaYjiJzsWD8xkv6clL/mB2iHWqLr5B/GAiobm+lkvph4
5WiteylnzcLGDy/yVHZHTKqOiWOp/A6iLKWqErezDgbUIUVUH/GEtHM0mPd3D3wAdrWhKde+53zu
PHpKI/+FfvUEwgUVEkLD6ff1uOkXuf3ZuUQkWJDicnkBVK4IRtiYNq88s6HwyoinIenxVpCWKfbI
+zyRzRAtJmWB+/fRT/c8m8NdZ6wzc5qdgVxaX6IfNynTljq1OAntpVmRridaszMoE/bJ2fYHo3g6
iF0g4Bb/UagWav+Cr9/4U0yaqCTez+wHMlEXNfaEBkrUlYSRBlPXRuued2XkWFAPxyu1a9Bg9LL/
2X1AJzmBpbgakA0sq13Gs3gPVTv9wl5uLBbsdTQXwgdetvlKt5LcKbE2gmt42N9Zd5C4Bx61ghP4
EnmSmPkzl1Dtc23+Brir6I2dnwE+JBJO3JTXrAuMelAIHFBLx6MttfTpPLY3MVXfod9L4GqQG82c
4yJhRlE9iE9I6bccjcGAumigED8xvCC+Nb9PXhW0EjkuRUtEgjjGmTk01gwsKS/wPGykMz3WtLsW
CVQy0wAC4I2RPPHWFox6ynYt6J7gk7kXhwoshcIW0gjYhfhBYAs9jfGn+xZ9nJ8+TpRPY0ILcmv+
UfiKfBudzmGHZ3uOJMo0T1vJ39HMeTVgwxKoMb7CIuX1BWpB5RbNQwgRGj1TeKthHBpH/I9K44Uj
ONrjlr+IQpcJeqoPmFN0BjS10Hh37ZyDB3SoZuduw1sFU44ZlpPxE7Y0j4jWpjMnWYmj8c3Ti9dh
hxY0pVS778btD72tLeeaP3Rr3WFhG82PFmfAyHmelaTblZCbsbWpS3HUQy3Noj52w50CNvl8h0Rr
PKV966YFWJJ1klsWIv6XE8tp7KLKGe007zCfZIktVrjk1/hYWrrupkson+DiisGxt0GvbsgtvTsS
XKV3GNtbK3AMy502KzZTqbWBs8pQNQ3Qp8MOlQ1a31rYFcit2hcgAXKPgaglEQzk5VEQ/h9p9qd2
VFJeFbb8FkhHgg6/Q1BJwb0ZbzdFt6PGT/LM4ithBZYRkmUzm6TBitwpxEMLqfO2GYfNg/k5Wsxe
DYm4mdGRt0L7lfaE3OfagMX7szND6FBcqeOG9oG7/mqoDqo47wYWZELY2pumJCG5V0HdCI/DP+or
WxyoaBDEs92zlnfNQ9g1mK5Fbg6SgnLUQYcVvgU2WuRtoD/aMtz58JD9vLSKzrPXuytMVl6mWdWN
mMnxUVIfp7jY7nSBC2QGbYAxtDJp+CTQqaA1rCmu8iaH7Y6HXlR2IZD5emz866ouy9XCzrSpC0Jw
LbQManmP03lZj0Tqb/fqdFmaFCxoyBjTG+D3YWmXst/QY3nmDa6+QFAFT0G3oQVygSmYLn0Jfgmi
TVoiJlIAbdpE73BCuYQoqHj8QpQ7FjHaKpRk9VbLjyzEEkfY2INDCAg/VThMkl0isAW0i/y+gRrp
SFRUDbHnh0++zrjVTpIG62l+ZeQRhsxVPUt+gMKWTto5y3MugpR4VKjQsHl+633tEUcLmvJuyX2k
dSIFy6Ai5qRbh9apOSLqglDTpn7UMfZkrAS5Vik4fYWgwMRgGGV9QWaVj4T0QdgSoeJDIEFypvvu
yYN8xOa0ZyrOX6XOs7mV5Otgw3Nmy3Fb80aIb/daM2Epgr9vmj8dpFuzgfT6A0jGTighMhrmCc38
aDlwqcf0DNMQVr+ruEVn4OJ3PlcGcuWd2cfsMGaoDwvfSwfFzaNhmluIAIe2up7PDwTD+gBV4CA1
gfTSZ76iM+RUKisyy2rND/tTaBa5lpnp7LTQmovL+zN30Fn7/0m9RjBY72/PVUjzW4voKGb8sUnC
dFfEygb9DjvGEQMZVsnf8A1i1UWbL6/8hwFvYCzmHzUeRfUz8XSHuviVJSfRLB1BgRvbMjq+PMno
U9K8Zdc/qM6hIPlmzqgJg48MtP5smp+2+xAEwtxqFKW0BvdpZlj5bM8g+l9YV01hPnoriLhqKasH
eoDp7ataH08+4geDERFaaOPo13WQ2H9AiN8yPKprsajtPqa4q0fmKeYIhdwQw1mfHbpsVDv6WpZr
HsEht2T2l0vNptpKUtWieBF2UQ+duydDMgYE0f4N+vFjxxtD11MhhJLWkJUspwRl3+5+UbGqyk7c
LQpgQeuAPZDk8K5j1SbzhjTQK40yYR5V/frahlvWHLizuWG6zJvEGuTW29/IsB65S1/zCsumqW2c
GVW2zboaA9DyMxcq+A7z/fI7tLl3lsy00ve7udowa5V1mnnKIfvtok6cbdvVxo7+KwedfqH3XZxw
m0GRULfDA0iNh06tO4jz5aTFO+C2d6S8dNV+bgmnTDiLBgceLXI4l+H6w3C1/upIZSi0BfwykoOG
zJAv8M9Z4xi+fKdKO6MNcKgNfvx5ofeVfgNYa1ig/mo3i93ZosG6kgmNOE1ZYeNx2A4fSy+OtWDP
rzyh1LGli/hyASf25NY5g0nlYr79kffZh8G7ND7zbbpGUyrodOcuB18k84H2er+Pdj/4InRFCqSo
fbJcHMB910HgLohpXD6NTwAjj+cPEE5mQSoNAyWslbQ52jm4zyEd0o8rRfybV1zwb2x0y2wHSd3C
xBLiSmRn6W+f1ZHmwi8ZmIq0lCqU3QzqEIvqo4u1HKv4AsJ/IeN33tjJ3FKPvSiePNrqALfjnLmv
Y8AoD/IfsIG5lzoPdjr3+qVc3NC8mLiRyT7F1KI40l04dm5U+UDF6jRmcCchXvAQEZBqhekBhI6p
TsF07p1k5ru2h5f0r7XTOyUA1krx88FGvFkZ/wRu/vKGZi6dc4/cnUXOx+b7wghMrQmDMDOBRIVb
cldW5wCpxyWslHNPXnNMKwrN9jaylHjbPvaOgznnMlMvn+OegOggC9R6wd3OcjmyzWwvEucU1cD/
cM5T+YkzYqi3lKLcQ7w6OatRIl8kFGOyD8OapS49cPwgwGhPl9l8XsNSOKqwEUQsK9nmNfdH/gUM
uO+AX5xcjAIL5BH5/2Ula7Myz8FqEgfazwZF0WRg1rywkoKYY1FWPgC63UAMa5YX7rsHya31/KNa
9MKHtFLqbg2dmN6L16Ylc+ePY1NyMl17vGiqEu9AbDgRhB3NeW8lV4aZBYPNWhTfTzipHh/dT6qO
W4468yiNgtYlM/YBlg5s2kUMlHMx1LWdc1Ksa7Vj9wUOJaA9ZprCVmVfx8AgE8YVbCB+0Ittcszd
m41hjVmL2oHD5+bpjNtpjUoykvY3XN2/MSkWpXUPjozMBNPd7HEP7+d6H5mN06hct+0vL6p5Sk2n
Mej9ftbDsAH+Zt4zkKA3aOeSt+skz/jPC8Tw88j0ZJh6u3kKrekiXTX9IFtThxsWkrxEtOs+3VDw
BZirkm5mi20VdKs1RJEQxAhugnuiQppYI8D/iyi6GKbz3Pq+8DsTMJoYRm+Glvq6D5UWpd4r9mBm
7aW4CEr1TMVu6EwvvcdxRQYJzcxDTBCFB4SwfggRE+1vTGwL22SifOEvDVnp4C13CAsSFKf9AQ/D
ojqUkXfxrintIRmhmIPn+TNF9+hGBDs3iJRJrxKZLAjkzHY5R+qCSD9b9sfCVAAoQeCLIL1Zrh5B
gKnGlcf5EgZGHWGQ0hviJLC3y5onWYcnD27CktF8XUaNP59CZWSxr++yyXTr5c+KDHSKqkrUMzVo
PvKLTVpe0nNvCRWBEUqHpKlnPUf6qLO4Qq5BHqZotIdHxsCmRWK37/whcuTtefzhD6pts8NSWBY5
bx6icXhXlbE66D5jlcu0wm88bcldpyJEaqci3XNLRJ3BhMXzEKdxj6nekQJr7BU+98pJIJltWlZE
HyE00+bjzDi5osI9eKa3TIdxB7W1z1ubq3LHYbs0I7aMBvYRNnf+5wzfDcKqv2O2jrP8FjXVyLz/
BAHCkEdQyeCTmY6xor2TEA9pjrWiX+TDG9ILNUlfYPLEB1GF9vNoTel16D59J03KPX3/aQ87sIZz
WzcmecUx6SShCNWZEB5WVyc30yqui/L+N20RYn90rjhe82iTv4ug7p5R+oPkVfJLs8HRG9B4oadJ
D/O39bzh8Uv5x0PoCW/eI8Qzyl9L8fIoQC02NE8h9S0CGKAixMlTaUehSaCZ+cnKMkMxO3LI3Go/
OTXxj+v+WgdaimkIO6iD8OFp8SEkDczYo2X2sUD31YP7iMap9tvviHFhfgnAfShv/nAmXHqc87jS
M//Hob6D8MuNJNSnjlERKg+kqBltZkDi7pkH3yQciA9QPtX5ZilOUoHC+zwbNXOAbVVVrc5xebmY
qCn1VLm186nVA4D1CybsyKqMm62OemIVMBwf9fPkA1kCq3NLJC44NhS8llhKdkcboMEB/diVAnDR
Yp+K+reb2ETwOsF2zbkB0BfCC2f9Nr4ppB3W/ZhTwkI1yAmPkR+nb9BczOZ6kYPfwpD6Ob1wQdZD
/ZUeiDCF0enCtAdu4M3Mpzx24f5rj0A2mHUUlMI2YHLSAPnWJ6UF/4VnFdiAZ0RkTevunHnDQWJF
+/7/VRLGTdio8fzrFQtHBjFfneewY6wRJuomwEjLeOeCQB1iRQoIJKB5Hb/id+4QUhlZLFh7YJyv
d2ev2htpLrsA1LYhlIZRGUneL+FrcQBb0qtFN1UWb9kou5ympduU1QM1KeYFylxepS2psRUOGvnn
2a2uwlHs4KE7IlYS1LElsIxv88hdP304dMzbpmj9CnFNnxkkqHx1AYS3UaxpO5mvuZQtGB0obaST
PZRxfUJ4JwSxmUbgfZq9SAY+fUZRG0lg7xOsnIbL2VmtdC3P2tNNFbodBzNVoC80dnPiuuc5MBMz
hgqMGJ1yS9nv9XdtxJjV7kv3JhEgDEbde4xoiSzqZqlewUKNfRLv0RBBkE3AWF35G8EkEan74Znc
6ozFxRpmV40jdGgaE2N0kkkYg+oL0KBVP4STeZ/a3tYzcX7ipzmfg4rBpTgkX7TBoYeVI+hb74vP
lytmv3FL6ztEb99RYx8SmikvGBDICsXVgBOYber8ePsjRWPP1i1DX3IqSVkNQQGcnfj2ojjaQ4cj
H1YI66MlXfmAP2Bp9Q83R4305mbgQwvcftmaBJH9vDshtKtajfma44hoIfTMOUhQlDEtLJsS+Vr9
QbPPhxA4TpXQzSjiUbjoZGq8UAIhGcVIeeWFOGWhLcQ7zLULlcmgPXsJPRt3oN9W3/qJOeI3zmjL
A6n5zUlhd+Dw1KOsEkxcKgi/AwLtWqC9UZFbLK1j+FLDdMe4HuOGVnUhGmG5KoLJZO+etiEmLxy3
KQtj4kaPnAZnu8SP1rC/nUQcx8XUYEPsxPqVdOEnZVS/ezfSc8rlHggVj1ujqC9WAymI4tne0Iqs
4017MG270zdyXwV3hXZkFqxFpXaJ17SR/oTGcTM1bbW/dCl38S5q8Zy9ofqwt/oV21fF1lQ63dWh
/Bc5fOq8vm8+p58iSFvdrR5lzTR5ostJBwQPARNLaFDik/VMp2UBgUKdPaVmkmjZFI0um1+rtzIA
28fkasLLU11KHWo4YG4yld2llqhqkHtn43aAPVrqDSvr0bPfb0UGBZk7GGrXnljXAWwcC6cbdUDY
+omLb5TCPnzK1ekLy+lF7fQ+v0ytPvUHao4gqknjPglSHv1mnshZKfjIt2ltIdlnahacE43pOEoM
FQvCT/M7oeHIEQKskWRXRr2AWoEwjwCrY1ZR49LQiYFS8CyOBV+KKhvwF/BLvuy2SZmZqO27bZMb
Ioen/J27jsK1Y6jtreN3rDsR3nkMLjfc2xAG6VkYUwRW5BKENhWqD+1ObldGP7yEsT3vOJskznbf
XpKutaEzaSCMQuvqeci+1Xoh91F6DnElxUuRHO70qc9StRE0sj/FJsDclv/nEo1xzobwC5/FWNXU
VPFRC9GQOsc1l6ATNjlg8lnGeWfeAbHHwZh9p4dYRZ2RWcKi4lFou2rCn2AlI2xaDZkQEZtKpTBV
kuBBUoIC2XSiiMEzMeBudroHqA8oUVHurn4wFe5u5b0JDNOFTriqWcSD7EtRU8SogOjOKwl8lnxO
qlOFHvuYbZ7Sd5bldLVM3l6BIgBmHsdNeI4EyPn9bsvHLOWdB/PXZUl9awE73RuqrAmHjM0/gx2Q
zdcCJ2vXZz33HmxZrXHU12E7u9nvNaS0YwU/gQCBHWlDKott2nPkZ1/HCZQZpST13z9DXhmVoQqE
pJ0FL6bXm4h7Q1MsDLWhyAn9TxQj7lk49WiRoui6DJEH3dqYtVqEHse5Nfyg/1tPtiesBlxyE5ml
GiiHm/P6xv5T6DtWZ8DZl8NmRyv4p0mdamrIFmuyPei2EP8o/MW5YpVl4rtUCWNHRHbPuY4qoQGw
XdKa7KQLPJeT2AzP0wycau9DHm7UBiDiiJDHVkOnQ5SjVSloniedwKihnbKuhQINXevjMMi+Ddzd
Cdhup1PIr+SdhEgOw6Xw5aAOON5/Ibhfaf6Ox3aVmMWOVKvfJX4uWVTdof+pKrtYJMTp+f7cdLbo
tcdodNMsH5qfhPkQ0uJMq8yQqEpqSUW4SekT7J0PJXToLnAIZGKh9HV76lTN6fALHO5EDGihQ1ln
qvKYSTa/8rop88/PwltMui+25IBSgfERpAkoiDrEl78i3GOXbE25gmnuuzjm+FeB1yFshALWA2Wf
GizjzYkg04GgexPWoD7JwPMGilSKeNItp8/IiFJsk5RK395OxE6l4b5xKSDdoQUW6xfzEAxPGWkm
zYOEppY1EoAr5XhSl3es1UnujOuyDkLQW8oi6X4HvAh/T0FPcowX7KZMFvdUBMeHrSIXf6USj1R0
On0Ow5mwTE0kKFx6dF7VLDN64Ag/kMT5OBtaNZ9qirQi20R8YlzjQZfdDVr2STLBT+AMfRnC8X7G
uX6julnfNrTyugoRhp1LXo2YdZ0gijsQE0cVfhJLaI9yySHjdqH2DjV4KVCplofW8AHL3Afaj70C
J992JvSQNX7MtBAxZv4XgBnNUw1vjoqivoHZ7C8EWO2ze8Vyxs27ktvmtqE4j5V6hzELybX7HbTO
n5PzCYsCXMPVxXEAfw0ZWt2TabwUhA/Z9FrhHXMuhj0px6oO5L3pCmH7wqEBh0SvRq5886LDJs0t
4GhH1bOmHsikqUBzLp7BkQX/zLxhhOSCmoOhgr0Y/LQFaUILbyVvL1D3i9XEe7cEyIf8UkEwkc8t
xqXAX8/I8QRLypMPngt+cDrNGXBinsv7DN53dY3h2yvNxrLOLL3hPn7XzzO2U6ZREuMD3Chr4eiW
hMOkANx9rq8VQMYgmD810JmjtiKdzoQ40gOjbvoavbw9uf1opaUVHIbXQAz01rZqEU3+OPXBt8AB
UqFvEhcGRd5kSLdQ5PuUh0OUkHD3+u7tke2uF/wVwANZCzWalrVt+BLCd8x7ZdXoBtqUYSrSQoug
08vKGFtx0AC0MGy56l2Qj10n2yG90dT/+vjXx/Pv2sfZqYf6tlhmfc/K/h2z2GjkIIL4xUjXe6oL
9GjgXh9l3M2u8p94r1tO8HcFrbzHmljlCB345E/Cr3rtjPKWk2vtY2BLySQ5ho+ca6jECvjBE+KO
4qnTNBDf4A2X6OsP7rbE0IproinRPSyUCgZPRe2JMQJd5ETJbEFLwkSGYJ2PnXkw2hB51+l8zXDf
cONaRIKFyt8XPV0xK8KF81W1RsxjSBMZSb3OzGhUaIZuSXA5Ddo+uPZSXTz0U+PNYAQcdFfg+Vxm
0Vmes2D/ycRh3qjOCd9rkCVMEo4njRGQBvj0uhPg9KeitZ9C9N8BCshqob2WOkxsKyitx6wkVbWU
Zg4kLx6fBuHVCBrJ5zIq/SQ3ptv8OCd96WvDxeJXN9AHdYUKdeSqP0stCTwNfaqeUWLrtQwQX/05
A2SDGbR1eHYtra9s4G+3PXniYZiwNl17pkLfM9FOle92XeI/wjBnOxP1rf9NzXg88Y52k2SzJyo0
KNbyoG5DkCT8kFJbCJX5QeGp3Zs1yW3q9YSZF4NwIB+7I0qfrj1yCdskvRlqZ9Ld0ws6psmYLLEo
ciz6+rIATQKmlAwTVEdoMj8nKPPvjv8gctW8uZyjUb5p3Mv6MCBpmBTl4sftM7We6PwfOKS7/Kl+
ax4XIpN/4GHEtRuv/b50p5nvac6otF30IJooDF1dvra/kTMFIEUi60ALJ4eT3fa+UTc6Sc2CFDKb
urHq+/b9WPFIkulwEqcf9JFt9INZnoKtiNjB/iNa2768ko80shOm9WGThOTIA1Oc/SuzXN6zQ2b/
H1aefij3kgE7A1fjy0pGyapfM290/Qkv/DsIbuj5xPT7i5wQ4sMR1OF8m3qR/qcKnbKRH0ppQYWK
L4k8zU3g26H+Deq7QME3T8Ghn2PtQv1L78eALWOP7YmNzSIaoCnujK1dj1xcIZDopIrYSMTaQ1Bt
6MKjvhZiZgNUKqcn2/pf8iU9p0Eb3PZvEDIGlqci0yaqbHAogto8Latz3n/yqh+F9mxM7P1Xo2wZ
BYPh+QvQTSbu5CBYEj9MIBOk6CxVEHLXRYZNlnxGpyPmG68D5edc+dlfEv8Q2BAnYVnHF7YvdKwu
r76Pt/d16eo3bF1GFAa+FXoqBREply/QR5BoPlHKeTkxhbVgwX15yE1SC5Lc/icZbbs8uKDRO0q4
3vDQy0u5SHyvLwwV6pd3coh+/PgvHmYW28YLOMQDCZd+ixXI3OJGH5OZGSCRWjQnXQpTqP5IUmF5
PFttckC9Q3U8pBt0bs1gZPCmBqejU7EmbFz0ffJ/0luETAy5qRs3/MNpGHaZS/rUmJFL3OMMLB6w
GT7HW0wlezG/K1B2wgoxAoiO2a7VT8Ru0e351OM6VAyFwaf3t+/1v8E1Cj4GlzF95UUWou5f5+dk
awWjZkwyVkc4M9H0enBwnFiocHLqyu4N082zCfKWx0wdUGzQfH6Ra0kIf3JeJXfJxiU7VRosfid2
akgqDt2dBYnFOLpt0sFBz666fKAgwIH1vxCSrmSFFMXdWmmMLqVegKWp/NKtzUWbZu5eEMzm6BzE
xFVEPhQwB1Vh0hWBu2tO9nauaY+1Wdr0neP94xjN7YOFyu3dLw/YatnGW9sK/8mNK7gCopjO1Y2L
4nmCAqIJLArviL2IwldtaKeoGLfunpqcyGsUX6gGbwthF4PSJnwP9SCPG8PPK7xl52Sh6Xd5Plu7
pEdkqVYk117AefTFroeZZICWjXnX3rLLetNTR42n0xQ1oBeB0vBtI/MD7mxddVL7GxKhhQ7dmir5
dBvofE1bympLmoy9uyVI+LTeVgFO6wlLrXlPNko9bfpYO7iVSvNFg0UB2f8Zy9KUHpCbuRXTXBBF
oHFuIpBdZOtzQQ2ZQaNyZdIi+g4VlAPqtfv3CTlDIDiDt3Zh8IGtoiHA0CYv6hyJ4nCNrWuX/D0/
gujR4hRi/1+sOahEgufLSqcePYd9+YBONP1lc8V3uZ/dPT4+lkOb+Zq9LmGWhTweXGU5rd6ZwvVM
2WYassoPxN+IXuXEupUaKmqkS/ETUvA5Hwml9m7HUpV6JlzUSVSFMNDRE/qudmMCldPT+s6LSFMp
/GIaAoTNFYJ0Us7dmjneIF6q5V1qDmcRgUi/ivuqLNR9UNhPRaRIzXzTHy1kLDCvOl/uLllBoPq9
woTGBUkMYtV591LWqhwjSbvGMckGr5+1v4mqyDGcPKS6RF78DmvUILeg7rWh4b8aIbA8CE93whmG
kMEWj38dZgNZh/eXzean2aKgmgDVkM5z+g2zQYHeDZyyHZk7NH/XKHQ4yNxnioCLg3T/rhxRnumG
VjnAnf3nEOY4rwvl6XveEupJ9Z7u8UCI/LplSG2CXYnh5cfppozKOy77enwbUKEuZMrmFBEnYuGs
ojg0d6kpfsfTOqf6+TTGmvlBWSBhvpKILqoCz+X2/BJgrpVFrRyNkyaP+52uDpdNmSX67UKaEJ2w
TQmzdr4tQRldE/y3v/qFLMgquFNZXeP09/jzyoHqfj8HJ0MITy+WxPboKkSAlB5mpracAS4vxgzR
hmB7WlPj2JTyk3fdAwF6/stqcNkDE7lZdeNc3It8ZMLzCEmBBOlVMlswrkQVTL97+Bm7v1xq8zsw
9+pHdeC/5gyposox3ZgrQAPQcGSbohvl0bX584Kc5mVGfzTpuMIG6swqLiNtQeFGZJpNv7/ZzBgS
F/zU6jZ1py5gB9G0qq6qK/2zzfUQDFafyuFF+odJWgVQ8OoXo3wNmYcursaCGln5df/bFuJ5k3zk
E6Ig2IatWDmaHExexpa1ssXQh+jY4+pqZlvqnrXcM/SMgQIr/h8q4dK1JZb+r/oIeSxD22rOId7J
kXARG8oHW/MSSCio1KbDx0sRowvW/foOnqUSkB/OicpJqL/p2uCraD5JjGSp9ESInQMGTUTUZ47S
mV/cV+D4qO4V1865UUlxwdYRl14q808140CPNOYqa6Cre+aMu/Z9f+P7vHgfokxFpiNKOCxj3/rW
3xhra1Y8RcLh4DUQik873RSq9ekkHNSFXI4QwvUSasih+9Qrsqp9GmdESRPMjLf1Zd+bpFPTZES/
DuTwrF+aZTg2C4iduyEDsgd+A6KfWTIHM4fos/yJMou43VFjPK6aDV634ukLRERFlNyh213wmPLc
YCDtJiYM2mADqeHwuaoMuYa3/vTT+Brz3qyWBeW1B+JiOGGcSR/GehQYfdRCO3TSX9FlH700FIfS
HYgNrYmWYC2LrEpMTEumR4eT9yHZNhI+qrxRjcGzn/Uv/kjgFBTr9mrXeQHsauFF0ZBRP2bMaiVw
GWyBFRG1Gqh069QDhrcwr8UdK/3rqGfsx/ZmxyFFeLME/Z4k7BpMU5ibrBGAz3LNfCwLSU0S2D9F
0OHwWr7EzZ1rsZe/4KMh/xYfPHsetZX88Pe1vjEzUvVkM6sC+JqTd4ASTXq2onBjY8oiEzhaMCng
oGSMvDRlNsUBYZxDJ2rbETO/1mxe3GM9g4KF56YVo2hDgpO/hDFvszgoA3p8SdFBw5u4nrKAZs44
r3QqcJRK9YZlznOkUOfq1Th9IwHNSHTDXkmyGDabyduUHumF8USC0Js7RWyEsbqMADNCOnWUEfGg
v6YFfMfMKlY0ywR7E7SiDbCXxAXB62X7nBXnJNGBWTx9CAusPEhoE1Wj6fQehJTSbuxhp9+u9hSD
f9bdI6KXITwvQRUnABdltnEjA2rFTSjE50bif8RJjMT5nep21ZvG6nYOaDczkSWqp7s/lG8UUgqE
e7j78vW1AokmVi0dWvQ9qVL14LgpXLjYxWwUvJqlZBY8nnNRmJGu8LnslSw8qvSw/Q2hb7c+K9F1
KzGzdAW4HQvEx718UewImx3BKM+CwURC6sgtsdtjoAey9fhpTw/pD8xlz0RD8rMf810jXn3bMvAL
xx2ibo1hLpPQ+cv/vSg0RBrGfDIkmE+rivpoQhIKlKeK685Zc5j6mDmaKFO+ZFKYLSIvqyneABW3
ewRqyQeA1n3q/hSSrYwrC4IDmRO6/gPmzzHMpcMw0Xkf62ZCKFSBXynQNBCStuiqg/EK/qY5imeX
moDm0lQ2jKu+i3Dn8TuQkqIOLeg3wHnqJk8muEnxncTYmcSyLdY/wTsOeAx5fEKMxcj8Q419I3lO
tpMJkd9E0G0q1Ljz6f56BflEnPfsgN3HRojX6TK+7gy/d89SInTBSXzabknk9iNbAMY5m4UBktn4
xNlj84cEfKVoRvJxAvqxeTbGwZiBCdCBY49KYKPBfonriDrG6BuqETBIFOym7qJ4Cq3T7pjfDl5q
TxowziNDPYBejz+9OldUbZU8+ZouQlkJ0JgsQoXzRh73jAWXwFOPep+YK2yIMudd22y0CtL93dMQ
1KA2pLMd/fxjlf4VxfJUWYSdn0vUqnhFjtqcyKZwv/gMYVeyGo35zrv+1o4F+oBz+K59e8f+rFVP
XvxGzgxfZJHJwKAgQ3Lwh4EEwm5XmRo6K8JKPBeRJa+Lc+5gwKhi6xpXLK5IYoPQC8etzmMrbZRv
OuKyJHcCNq82NgdhUPbhFZaVZL1KiHuWKxCEir1lAsP8ImVrF8l0sxaNN2bjmn5yUJ9mXxgycdfL
vQo7ccImTyQ864H74LiTD1YZpTXMeRqIacVRn4p75LEn22wLuLa5QRodBb7PYfe6gcABPayGSmke
+rUH1K1MjzhMoTXwfqBVnQknsqleMkucjap+R3FV0XpLmBDHdQiKqba4xCRqJmVvbx4/w+ID4c7+
nZhiHELYCSVIFe0DQkvlt3zuPE3ClA3+TLieKwmn6Nr+z2Zqmt1VKGjOgT0k1OCIEnMQXPHeT/mr
+CnLWkveIeBYuFkQdDI1bnicNmWF6XLNputHcqeajC+H1tQwEKAjD8tducdLVVoNIXqoGsM5AFX3
KjsZBuDAzEyZDWyA+7Q6zgpRIe4/mMsb2e8KojxD8IayYandwrfx/rJsTg/dg+n5jHC6qM2c+4ne
+QgaYsat9nB/pJLKvClxPH9CgIHo6pm3ww+2y83TJXSKH8uQM/HtPL4PpOPan3n4boTan2AKY63P
vcUuwkGexuwKUjWX8CMX/EYqsbK2tWO8EfUnphE08pNSc7kLwjEh/b625CWw4AP79WMO1scS7m+q
BxbG5d/8E/tA1qgLG2qe7JeaFGBdUukR49EvCvLQmiE9xq1cR4tiHyfapY5qs6Q04BZD1t8A73Mk
vYdIjLOSbercHP6LMmuV/6gVQqrYsoh/QJBuJzw6u4btTLHa88IlpQSlZ1xg2RHxC/vzKvUGeyue
+/X7KXbqt3KGJvvaW0KCCfUmEHISmkjQicTP+fF7WdmXmJnxWx6kEtdi9jD6EunnwAt7QGRKA6Gq
xqMQ5Ju9MKn93hezzMEbM/Xh8RKvmhriRcmYKQuyLgZayYtHFZnbJnLpThFfIG7wJda9qEcLe8xC
rza6jmSyHLEkqrdNFaUwnvgfZE9z6PHTRGzf7pCMDgOXQojqTp8HYsDrT5tVqZH9Vc/kzrNtmdjM
tBuLbDx1IZ7NHWS1ZsjP2kktm8foEPzuSsF9O05sSnT+gMYjWLaF4cGt17hiEQOKrY0ZjQRmNzX/
Npb59Xhy+h8JsWVaSKYA3NB8bghmOwNAaRSXvPnlDUiJ0vQ56RgPfcEt6kiwGbqAvmKMJ33NY9LM
BzxtXUeN7HLvbVmvsi05Bt279CIovXtYns4NnalQ1HSrvhX967k8ePcEsRC3CqojU9wxMHK5IhN5
ZM+mshdvYtUlDeNw70jEW5WRTaGfzdNIFMIKghdWWwLSyAUxmcLE2WQU6lR3XcdhsWhT8uRYGexF
YhMgiMSTnvVj6DSUF+gscMd2WDU7Li9liA3Tbbtpo78hhxozINxStMq+d//PfeDmaDDDw5rVakjX
yQElOE2CEHHelCws5S2nE9mzkBOG/cgpv5BOx9tCSyNQmQ7jnYHb6/+2jFGOFrG2NDX0rwDTaLe8
V180j7OteGWZozhIJFGAADOw2mK/lmkjqs/DEFtTu9pw9lsAx9y2DjZbBSr/TO4w9/2XqQBhbjY0
JYEAH3I0SAjOvb7DbRXNjBUnPjVmizE9/9rhC6WKeiXrbmaS948hqcnBorABx9YkwRs6Uy2WBfGA
LQf2xDrMet4eBl58s5+nsY3EQir54qBlK3HL1ps3B3z7igxf/GYbQZbPU1i8jfePbKwpTIKVDfEY
Zl8y81XWorq/Imj+tn9XpN4/j2YBF9b1YBA5ZsNIF3UXOOhH8+nSaqoTGA9NzYFbN2eU7HjMc/dq
wjNyVDqllKDGJh9VtPd6v+IlAFywyEEOUhw56AtHgIQlUs8cmW4+llpDsITTugd0RGLP0bVAxLjY
v90yY3mCxJ8YGTB1qFaucjEOLgfFj3EIQ4IyfCH35zqHvS5Fw7SZpw5O+Q0uA1qBWgU4kxxUipSl
z3ISQUDx3VFKanbSZa/bzMJnuSEEjnCjU4hCorDoLasZThVnFQlkcsXTrUc07gZF+XlASX61LkRr
KV6wcGqdRvaH0Tu/pZaQV5TtIX2Y/DmSLcSknR9A6kCDN3jQ3i942C44lR4kPGd30rbriSv+IE9m
LtbiO7jKzKl9r/m1lLu8HQDLetHd6B2Oo7nsUlos7XJYAqxgTMusg9oUMxSKlsONDCy4Z0Gp/4LS
vU6mTO+RytrezZxttBqr6jSEjDrRK0JMXOUgR/xe9ePRLjNRXFzH6iHXLnm9fJ8WTKhkPBjVRYqo
rOFAoD+IpyeXHhxTYdu3Dybt0bvOEFpdq9k5BsZponHHrgm/xjbL4TB+aYjDULoRer8Q4L91VDzQ
tzEmsvZhgpW+YABzDNKM88eGbRlDUR6lYuumE5JoKvOBqP52q4/RZGsWYj95h2LOZMPYr5hCueOf
RxQCVp29TJRVEptJ+2Rg6BlXJs1nYChlvejD4wScrPlicl8uqjpz0EFzS6+KrHZmkSK1jVleSsX/
iNLp7iQFHpdr7Rsg0IkB2jhuC2LPmY0tDQMMFV/o4mlWqLxuyKbsdqlgI8O8WFYgGG1CyC9vhWH+
RJEQEKm1n/HRMhLbEKyYS7E8FNhnRD1ctfVxtbXGN8lEIwVENszn6fRV/kXqE+7U+WMZ2Z97WOmu
mfRCx7Kz5nijG2cko2l/nquxgVE1uPWdbCDMucASmjt5NwxEfohM37qU/55RTYhPUEzgqfMZtuaw
yM+5HYW8i6Y5zXIUhWOgsPbDhARGj+9pX3XDlYWZMZiEl84Rla/VSEKY9rpdoLJoFha8tYBHhcMI
zy3VwcX4+2monhgfdVxlJ48d0+SFy0VKU+s+036aeTFqzvN8qRdpltEFp9NnhsYsTGFQ06Xe+QqF
W35MJV4E/XdQQqnUB5vdBhRE7Ckm4xOIU4hIhHhQlT31TPjOXDsfC/TreIbI9SyrJ8HBGEx9lS4o
uOa3/aRqoZhGBZk+XBg+CLi/rwOOOUzkCSL3XeUIESInalPcSOv1pORCYlQIEl5Pd9uxIrgHMlea
8sb6Ynx75VJYdxhQjytzcf0MsyhT+/+z2oXn7e/m5u/LBkd7C6Q0KBNmArYbFprCNkYQsuu7/axJ
B7piKj0SA3vd0gaXjmOOVXOhkgBhAOieugRyEbVMVs+WQdnPfX2/1FTkfvs7sDrXnmpJJ8qzk9kd
dhD2htFou36vIHnpxOs7bEyvs9luPbS37l+cR8YCPTFgx5D8QFvtwg3J4hWxBarfGyKjb+5Kj3ub
Oy+sFXRxvGLXwvVzRpmW54dRNcG67po+c74Xgcut1yzEIoASEF/d6aymaEJefYjF+mn9rLU2GXhm
c22o2ZbbjnzYPiZ/GMCh6cZFSTj/hXD6o9fGZqsJhoXOS5vOFVqEnE0f5h21AF8DDCdSWE/Wrt4t
6cixbexszfG4z4dw5asLm+8ITTjKosgUiYqS21RZf0Qky4qxV9qKehz2JP2JpgV3VIomxTVxPK9x
pNm0k2+zNJUFUfxxCHXB7XzU0DZEptmmksXAP36YmTXX27MYn8ZCdDB564a4+MwckXsjGY6XPvJe
2l/3HIFWRj7exEU/fxotlNZpOJ52jzoGwHsAzuxin9waMx1z1HZqLd0zUKTBkkbNTxeYpIoP7qE+
rxK4rLUZ77uVf8PVElVYVmUmmAAZMdDHy8N83Jpg8PHoRtdj8a+oh5naLJ/uG/yvRPp2hfdjlSxE
ngrcvQncyrxsWw3qpzqVkMXEkpLz1twno+AKJyKKlvyiT057DTdrEkIjCxK5ORJvMR737wn3KV6M
FpmbNu5lbPoSrX+25ALktu1hFnqbVnydV6Az3Ttqc+O3T1Tr/5DYl8efYxS6vl9bkYbkxOIYdVo3
c1z/8VeIahy5/Xy2pxk9MeOIfL5L4fjVNKlHDNso9C/SW9Of8NTtlSmPcPY8M0inxveEDHiZ8iOV
cWlOZVovWCzhI3wDNM4MnCwgCSu9CHJDECiQv2/Ur4kdE/qGiMTUYmAwGIy8tPzJhogZ9pooLAKX
o9kDHKJzHsDQk7jNcgy40KEekh4iwv2yRTgk7oo+WritRuAGOwio7GdHbLalZnEPEaKKLDGCA7VW
sm7FJ3CLMPXhnIuhHy1DzRIKJUKY0mKcbqGTUzoiTmtio/ypIVHk5cdN81eEdvgz5jP3YaBDKraH
eTJXr73NHF8UJUhrP3GgplpUdHYeCK0JwK6nGmfgMRI1HlIlQThvRj8tbr4pS3ahr4jparXbD/Ni
3CCdm67WIEsEpIzq3XSuOV9Yn94YwtVYW34U3AVKIt65UEN26pEOClSpbUt63J/Wfic4Ikt+vF7K
84qibEfJxxw0naUDOV+dtrlWcXHcMYhXxrbHpu98Z7UydXcJBT6YhAC/1gYpwQcRdL7x8j8FVWib
G8i7kdL/eWrfuZQjxORPNWHvUlAmC4j7NBxhN2yMerFZb+6Gz7U/ZsSwx4iWV7UqXmkEVzUm6e11
W6oC69oKr16DAcXKcDlo+84eUYSa0GN25KGxhl27XkUxiX2REHAMV+frKpSZh2DCGtoAtTAvQTOP
xmCbbQKf7DdePrfgZ3qpxJMCIcdKRn2NJhiZ0FJkCZrg7f2YI+47K/qYq2h8KDXTuM/qhAj4DRzj
D+DmNhD1qcpweaxDvuWAevHJkfuOdskAkdeJX953zn1vRLc+YjJq2DywuuhHgFs26z1mmZ311Pw0
U8PrZ/VwaKaXfwgYPub04HVmVYw9HHvcMpWLZwUozxwTq6uS2PwaPqwDkOIEMnG+JbS8Phvf5CK8
ZS/CTn1gnLc6hgv5wAp+pYf41NdAeTA4l9gzE779bdxLAfBoGIs4mtORjNtmGUJ+qilB+QKjbwg6
fNmBnhptFk4TQgzyIEtT+EKf/xC+rfcEGRJ2tR6RyIy2LfaulCCaBZY0URcSjO6W7+cZ2m/DVWAl
CQwtLIGEOCAmPP1WaVxUB6fyyiWDWn70hmrwCW9Usa/NP2aF5Z0SfBtGPBCvXBa36fQ5rX/teYqE
1CNFKJFPhdGTyODgAQOyK0redqkLp0vnfwKpM14+vqDwneh3GwEv/NPTl7guPRzaE7OQnZ4iw2mi
KJzoA39JPgm+Hqd/5LlRItx+L+qtuZp1bsIGp7U26IAae9Gl16GTTDKMP66ykWU40ngaK0KxNk+X
4J5vRMveFPhnvacY4NvxSK47aeq+IGSAvT/FpuUUE6dHH4EUzp1EaIwLZ+B2aTHzZ7UeoCyOUcFX
5YGkHT3TTq1vSe/INl4fkm5mZou+f8ywNHi7igHY1neXaCzlKG7IWxhwjNroNDbYSVMjDimKjoAk
6sPRAiF4Cyr+KFOGINla38zCgQhdUrNPN7AxncUY6HSXpcpXhAjx2nV4oXTiVuA2u+179ibrO+ps
/+h8nVk9WyC0/RLAzECPTzKl/gSkCiPVC56dZZS7yskReG5kiT3MlLxdeTZ1Tw0Pb8q/SFA6D5GJ
qS6xS1ZSZBbvsjDelc8unXOve7txLnOCefOOH6y59tSfZUtNhz9Y7RPO+mtJ3Vv2xnOuk86vyIzD
9iadoF7c4Gn2Kn8BJLgI3Zoiee3nDI40udFZyeXLWHzmTGuxCOCfGn7YPQsdmIexNf6UA3FUy7X4
3CD9wkCJ7VAItAiRWQ2va+XpRG7XE64W6YD3xmbYwNVscdKx+isLKwrI8zciN6Un5cvLbW2Gxtdi
So6pjLAFb188A4ZNSYjjWk8lgZ9vcWmh8BfFyTwHpVIeV0HJIfnXD+0EnHgNcfsb2m3Aw5njz8Ca
YRYNFIPad+1mLgKTcg0qFaphT+CuNq+F8BoMRH9lIDPdj8ZdPmLqhuLnrz9zQ/V6ri21Ft6pBPsf
VrgclyVLnwPshxMCpHax0RPPRPE+FBYqgSBtakubnqD9zPRHMlLnkZeob6k5VsSKoHRN/mvwamUD
v+u1KqOBaa+uKknntrTHc/Joti7KywwYNwAHTfHjVwZS3K3o3SjPDIMj0L2u9JSMbnsNawAx/xmp
lzDteTcs4/m5OXFGYL8zni6VqtYPIXQ0QVOfobvw74c+Y1gAhRAJDvCbd0j6hVgUnJ07dau0x4Iz
Vfb7+BEVMy620qp+KKT0RulLAElaJ1ah3H7mQbChqQDO9Fh2hBWDuRkcg4aLA5r240RBFcuYWDt6
eF8vDbo/z4x5DlfUWacjIf5vGuPZBxclxCnmAMsF4aaUo3VWZIE9+pE4HECLtCiJGZMlOSo0QYLJ
yJjUOCW6asaRCbV/gf23BvXXmt/SPTpDchYFnRymoxJQ3gCEVu2F2mGGetKB5akDx4lpZe0O9nxR
uAlP9naxfppDmEG1YoHDZI00WvaomuN4og3DeOUvbAQNBg0nl2xe+v5kEyx82MD4FsrgGw0i35e1
GoGIgppzIVUIpuNQFgmaPRk6joh+9h28kM8cydzHCYBk9MfQlGTqOlvvRxRQKa9yVImHe3E49Vc1
X2lsQG4AAQr+m638widYYoDGGKeSwOfBsCf9tcfe45LfLUBmC51EfVe/CJKFXY3BP1baGR1ePkW9
ecxbrEWqZDwMa36KIhkybeCcce3qwbzWhYhBQDKzgwk7le5m6zIzoO7KpV9C8O73wjhMWYQbgKUW
Iw+RBadH811jKQ4f6jJ2qxC1W3ACsvZRU2b2e4mUbWY+ADag3eBdRhZhTammQ9cLZuEt/iKtg88Y
P4wj5naiRzcOPXLjcIDaE4BvW8CNz5zvxNdVWs1SIwTQv5ka2UPQklOWSW47snnWYUmZ/gwYmAGH
/uN3D7GFHWY0mvvIBky7mpj6P3k1Wuwu7Og/QW2E48PR8NVzSv55614HomLPWrR6YtpB9SOhu23g
d4qR4r4HVIc0dltJG0FtK6icDE3FzeEZQb2X5Uh9N08De9w+EK5P2/PQzb+5GZhX5KguCMrTNl6s
T4YBznsWB/8W7UXs/0fYgT6qBFEYaaQ8qy2ZtQz4nOHRPRyJvQQD0vDrwABzZRlCvXoZbDuy5CeF
9H2aedqFuDFdoBu54MBpN2xO0C4XPqy4sryM2VQxGnq0DPZRgqZ7Vf3Uo4NzsACudWlNyGvO1Lfq
jsD5Bx5Fw853pNgD4yBWX/c25I3hmj+KWCdrcgANtqGkQyNTHxSvqd1QdHllmzseds1swhCUieX4
JLaBj6H+GxNMjIdVFH89RHlOqcoG4PluEl5o+zVS7rYnsXN1nXBw/oygbhCiRpdO2x+3r+5OoGaC
Y6Z+4hCSLVFN2mYcpu24lWE1FYznxqOUz3WtiySzVlsSXEf7gEDhMAWJKABFesmz8KG88TgfR92u
Gfvr/X6MGp+ulZsgSAFqYATyNM7SNsA2GQSGwZ0tSY7lgqYDKMjL6VeC1Vf+xmqR5te34N3sV47o
xpyUhZvSX0Om5YrG5l2yYRGtIT2CIZOlGyvg9niZnhpx0AF2i28UBTfbB+CxrkFvh1USB02hHZEa
cbae5NS/6hQWrP5Ucuxs1LCt333+cb0LWtkPljazNKUwX3UpQDTqH2GffoLfDOnBu+11/cIXbuGZ
WyARxC6oRucrOrG+gDNVVb1Jn5SM+adYrloRXNjqU2yLcxDQL26QV94GSDSYljK9YJr2eENx/trP
ASohAwYxBE6aWDtLPfnCAqPboD2UFGOR8IZZyXBg1EsO5G5reinmaMvVFq9IO6Lw/klNtLWHtF7u
VTAKi88rKT2+HxslXKtOyv7qoc1fshYRKpykP/5JxgDwGU2fSp4zxGh7TDLTWAaaii0DaH325lP0
EOv2wbd8NIrqn1QVnQtdH8Xmp/48Ib9vLPReCCGEkFm217fSCuXIXm2MwHETzbaGX4upwacalHm2
3EjkOwVDTRtolrCf0TT/Hckkyj/OAp+eiU8EtC7lDGUHgTdrPfIicHx/KNOHDnUBJXfc7fDfNxiI
NH/lkjjTlQ5Jk37znuT2JH/9r9uDiffQ/96H2W7e7lMxOL/yEaacFX+2HCVIXgSex9VkiqG7GcxR
MdeL+9JnCGF+K+HRuLNUmb+LDmGA/Fp5dXUUwajETOk35VLM4lQN7uQHhQDN3+dYapbhdd0Sd9zF
GH/eK9RjqooOLYHMYl8H3HfsUGIlepdZytkmISOG+naZV3CzSE1o2zis1sk9M+FuBmqmcLL6Ky1q
LiEfZdRiaB+EdkzIuJYG9Ztomzvg898UbkO/1hXvCrpevKVEYlzqjXZAdaUsoTfWSKIQoSfBDnpO
gyuawxfHOCNd11RvLm66GhLn8GDexge5Y78sLE8praKbVrQnoPrYUzP9Cc3B8EME6ZSXmKarPb7c
voaAr0DXMZPEh3BKG3JoNS39yRTiIa0QQ6mOFQLEz/W8tIAe7tN70dUe+Sba20p4DbQuUnO2wq4b
/YritGwWSyHOUzwMQlGL44vkz2MXLr0R4yNVZ2P556RL5QfEaAuQNWbLnkjtF3z0/zUoN/WKVzeG
54nhshkYdckTLEPf6cqFsWGISWtKB66S8vZMqioPJ3Ri0d5x+Rdrc8xQ6hNE8LJo+GLxdGPzD+Uv
5XCnCkkX5SNMM/+bqTYa8NeojAHpS85z5At6KuDye+uJ3BaPEYOqnFTHNfoMtwlusc4rEPmPl8mO
kZ91FKq2dMMxgNoB5cHNb2gsF/O/+wunML8bRmMI3wUbNcBpV5ntOOituaz2zquuvqcaxiHLxHwl
KYLmv94X78BlEs4WTaRkKYCDCzKeWi4evbSsZHYK7N0KmiYuv3rTQ/5rfnLMbOofcXbjHmCQoBFO
T3sp9JkWQbHQoriCAOcaFsh5lLo/OEInBdPcfiqee63ciuk/pjhr3zSqv5VNMbxtpcQrPMRYbE5l
taezqgKBiJ5ZQuqD75MmYGKZgCD4e6angYUfDT7k7hkj5BYldCVUjKaN3ePCApsy/8h/BHz0xgtb
XercOl/A5v2vnzj5nfwUqeS7seKxYrZ9UVZ8H37zGiWLu76xBpCvP/s9boJXlSawAxtT6RsgnZpq
XkpJR0FCrJk9/W+O1V5G/B3MPR6kuV1j7f1i5asPRasZXPxM0gjI4hh3WY1Nw/wuPwo6ViFmg1v5
+YYNWX/d+sn2Gn1nipC8tKw9k7KhIteoiZwYyUyGWpbuOy+80RujfTpBFVLy2r85IcPttlzSh3pb
Jy2YPAzyx4K9MRCV4Yn/EDxeeL8bI7wd+UHS/kbCJg45w1IWJ2bVJTf1dG2UHY69iHg/vZvQgJKH
7ILhSsJbw4xenFRFNF66tVcmC8+0cP71xC/yewgoOpCRY98VhdIvJPWJtBnzVRdpBYaJi+UCoMfX
c6olIUFCZ6k7rMNxvDDEoKWSlUyA+RUQW2yQlpz05npJiHTJ5kqpfPrBBmP80Jd1VNGzEYnANOc6
dIy6QMNlyXZEXbI5n+TXdB+Htiawflz/JaxbyVvykqJoYf6x76Nxj57dn/20DiYaw/z7h5nGrbZl
RjWdUjCsHKBdUybU+fkqT8jT10d0Vt1I2paLBNSTkvHLUQVtDMAk/BBht20mYJhGavDPBOh2Bz7N
JzW4CYSrVmyjWBzyRj6aAMVa/EeVUpGWv2GsZqV7AZXeX/pAZO0z7vEIs2cCfL0DsrdYwVQKz3su
5y8NIiettkoO6Aol6quo/rM/pqC1M+9OTjdVHVPgRj4UVtoJWxH2fVRH3xNv1EtuIoiWGmTkf29t
Q2Vetj7yn09lUwpddL17W87rtI3wF3Ou9Lzch9wSCjW1bwFiH8/GAsziY1626JyD4rShYtVUZhsO
thRpWbssKNEzu1dWEA60nZ2gQnsDbh9kqyDflb5x46bjqO1yhKKs7o8TXCe5J6RRzU2T2Jr9zunI
QzDhMovr0jpO7pBV0RwHNGiZ3rktVhpUt6Tvlf9bXo70j1hRNfFgXX8nwAebrBtJnQpXMVR4T3NF
VcCH49nrIizzOM6rcFiiL8T889kds7x0SSft2iPGHiEn2EXTr3JhZXP3pzeIPlHjpMCGaNbS8vk1
ut1SQbZ0/du/z6EdaBdBBov2p6F/re+3iPVrhB1bgjG2hxSM3KIqFFQvscJNptoUV6e8BfuM85Fv
uuVTSTB8s63W4fAZ5xNMX+vYhBuRbldbn6TTZV0QzGiH/ixx4QuVSsscxwU1oEqfLnshoDYnIO+A
M05peRPFFbdB4ZO+CnzmwJKSpBe3WB6+dNQvd7RoU2PUeYkvQelfMGbSvG37cO5Ag+Mhe2jrpMZ4
Y0mPv+Qm91mtsq3UnKNFb88ALQo6ZWqJNGYhL45Jdw2pKcTYe7S96AHbzSZ2tQwFzeityv2jukqP
rw5GdALOvUIWLypeg3lQ8bq2tlsjsb7HYdpMb6qYFMRD9XfTu7XopzSWSpMOudPNQfswKxNZonPW
b2AIeIHmFt4UdZYDBaNGZ7/3qDHN0hYp4PCO9lbdj4ItXwjopXVRp/EmjIMsnYCz7nt63uEn8DKd
V5ML8Ttv9/Ip88W9/edPQaA6zttiDGROAk3f1OLAHibHDmbj2cS3HzufKg3VjhNoqamWYMAakCZZ
xGE/UllWjG1XOy9HHovkaOpzvYHWmI5ukWrYGprbE2uM/0aV6lkLoEKgecOSHwnITKniBNsNj+9U
1G2UHinBI9sw3lp7kCETQVm1mxuYjoWU5NZiLsOvD9YU/Yl0Sf9STDg5A0uAJk6cwYSl3lbRYMwG
hrPVvnSCAyea72seeqCYfVz1kKWW1DOqEolp9GZxUP7Y3iJeGBmwRz19uxP02yovtBg7lFJTKAeY
hQQBFCdGpkG7tAYf+209T6oY/TtZ61I1s+tSyDsBlS7fIOOyEhaixz7JUhPtJSjDzlNcMrCPv7wZ
2A+I4cfoZmkRbkfeDUkrmGnyoO2IMYFK3kSuUTLtFlFnAL5l+1IMKmH29at/m+sVYi4vgzgxkUei
BP08TsVp6agiNK7mk1JA2v+Z8HUYC0xijuzpNCwj+LPLS51nqPW4DJWC2HFSM0+MvQnXNVU2NMNX
iqBv2656HfLE21RVpgAQHx/3KTJnvjlbEgEMdqjjBGuJ5H4dz3u2vHQfV51gBV/zavrRGcmJZsRn
tz5aKC7gNJj6RE6kcF83IgOoQOJWB/dx2CGj2N39/IpylgN/sRsHoUbREquNIx7vmpGtm2NRhJKy
2oNfP1IV90GIGDz1wSKcLiR5Pc3GYgQWr7+iHaoyE6zHLeSMFlmw/KB1bja/jsGyQQvd+hzBNcEL
KS9AvHtKmYpW62xMnfwwgBryPzpxgE73sT6dz0ersKb2hEPXNpLQAQWuXSmW6V50DBkoET3SzTqc
gA+Vk9cbvEMCl0jwokdw11D5Xf8czuJHTqmTKoF20fmhKqdb3l6a41E4mKyyoMr6EuSiU66Ha2pz
6c1RF9b29IqRlIni042jBS5HEWeQzBbDBu/ETXcpBISUdpJKNz7e71LSqtNDAC9d1y9KaeL4Sg+K
mjXgy1ZXjlC9ASdjv2lX6mB6z+5EXqpSssrWQI1P/XjD1U4Mb2vTt8QFwdwCtzdYAORhOITLPG3z
NHjsLyAAnkoZUXMGnnrCBiyLv9dWYJKAzcsyo6eJtTVOjlIVMBy3JqMNpoPg6hHd5PIkahiPGFTO
X1UIpd2XS6TIeToaeM++J444njnYURwcmdpT+TK6zIfdoSmCHc5Hhmn2mtbwjgA5/o44HMS50tDk
5LzDkjsr63kj6Wp52M5si3HWOaoJ2l9iYhW9fLBCTvjbzsuhqUqPVgEFxbnPRGSBWlpgLh8pmUDx
d58eQigK2ZXLrpdqtkqeDewQUtiHZ0sL3VL0ndEFqJjWrfza3wcSOkFwn1BxS21HFCVuYrAddC+S
3LyPKjqvvaP41menu/a+IphTfI/gms+fcfeExS0tlaXUsb2TqZMgwDQtD7tSOgCBywjUCU/hGzu6
Ccv4zifHJ0aT48FlXTsEjZY6rfEg4+ZMbfKIG2tZ76Jc6cczWGRC0lS6eHu+PN89tKF6HcAFpBY0
TxN2nY8dBppg9ONRWtwwWKwlcsNilySyfytDbLORGFEVBljMXhbU8gjwB7wQX9zqiWDHrcOX+Pea
0VXG64uSO/3Q9xYFcWqeYC4+LxNMqLLODmZO+jMen19tL3mrMN9jUgqrMkMAbibUG8sSJVK1xCdP
9qYjv3DvZikUocT3V9Ujxc8hHQmrrl2SsA2cNnPn3dp0csaFwUJJqwP2g8ywmicUvzZwjp9SmoO1
cx09WcnUA5TXYMnWJqB3EWrb3mGbzJCXhUogcTEfkkeXdBAa1s1tTRabfTwF8BkNuwCxM4aBkxH0
ytgMrmo9WWTUNIbUPMCxPdJyJijY1LOEFHOuf+NA6nUw9WvNTHU2dIucUft3H9ntVQQnAfREH10l
w+ewt8dj/jLAatzF53xrFqSh6/cmpCFT9FPO/RH1mFhtBsax1ZXxsmzHXohVzwluD1nNekjbsGah
SKOrX1kPcmW4t9AFBb55AH4/mncyyukxUCfalwPmaRLXQI/AFpBb7brGvoTOYmhfVtnjz4R089KW
/e5DGHV7v9for5WqWRJfrzkTh89oLS89Oq+0kQRzWvezieBlSUoOKXYghz5X6HGV2hZr/hG+L9Oi
NcTnkq5qVGGFBXf/jk4LbmX8JyuDTiriH0DRmVCYP09UoWbmGDYbptm6l8sSmtaUUhIf9PBgV/eC
n20W1RME1FtVVsgME1v+/M5vyfQq4M9PawC3LoohwT8zYehr9szuD61euMv3kdAsLYDzX0tZzm7O
oHfx3HohHPh0K5miQume78IIzLLnwDpNrMIDajo9uLJZxbnxPK6Rz58IoXhEPo6zIz+udeuWA2mh
UZeskveRqmE7713RLz9MAYfVQ9X7ouI2sYmjtKYYEx1sYZMjG8CXlDc91Y3Pr6EBjDa3DLboLpD4
VF8PU0LJiLe5Dv6w23oA53kdZj4ZxrR1c2OkyNHadQMazsQHEmDC61MYNYGveQUBJkoRyeyv/zAu
9HhUik/QtFTeLPtHhY7oMTs1aW3UWtiq4nbXpw0X+7HqqlcPKoTjjX2GWOi8h/4esEzjMJfroU4h
9EoID57BiNCaSUeA813zClHIFwt7h+LfBizVa9+JKC5OrPUg8ydmvIn/WW84TBeKoUUeuunv1dwa
mIUngQUD2Tu6LDUJ1wJT/fRi03WdIY+OYHGGjmT9n5FBnbk+d8yXiYn0hOtY8kJ/vKfjX3jiPykV
P6B9FfLeQdIh/q89dE4yTRJ+dvME7IWp/rYH9XNSS+VT3W14eSzmlsBZUh7bYmYHd2ZwOO53NlzL
L6+bVcgWeufO7Aj4WetTAf1hgVCVidPahQg5iv4UihuOIbLe8GUzoap61+U0CPenKp5NRzUHC5XY
Gfw7vwapRsezaQSQaAH+RYk3FqDK2iLw27PkE07zrFj4LJXzvwNIp5Fl4zzYRUtf7UY3QYcQTLfm
anmfss6N73NWczn2gh79ttyc8nkWjZRoaj8i5apx5ZP//CdGg7kS5Wa/yCypryeGc5laUQ==
`protect end_protected
|
-- Copyright (C) 2001 Bill Billowitch.
-- Some of the work to develop this test suite was done with Air Force
-- support. The Air Force and Bill Billowitch assume no
-- responsibilities for this software.
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: tc2957.vhd,v 1.2 2001-10-26 16:30:24 paw Exp $
-- $Revision: 1.2 $
--
-- ---------------------------------------------------------------------
ENTITY c02s02b00x00p02n01i02957ent IS
procedure PX (signal I1: in Bit; signal I2 : out Bit; signal I3 : inout Integer);
procedure PX (signal I1: in Bit; signal I2 : out Bit; signal I3 : inout Integer) is
begin
assert (I1 /= '1')
report "No failure on test" ;
assert (I3 /= 5)
report "No failure on test" ;
; --Failure here
END c02s02b00x00p02n01i02957ent;
ARCHITECTURE c02s02b00x00p02n01i02957arch OF c02s02b00x00p02n01i02957ent IS
signal S1 : Bit := '1';
signal S2 : Integer := 5;
signal S3 : Bit;
BEGIN
TESTING: PROCESS
BEGIN
PX(S1,S3,S2);
wait for 5 ns;
assert FALSE
report "***FAILED TEST: c02s02b00x00p02n01i02957 - Missing keyword end."
severity ERROR;
wait;
END PROCESS TESTING;
END c02s02b00x00p02n01i02957arch;
|
-- Copyright (C) 2001 Bill Billowitch.
-- Some of the work to develop this test suite was done with Air Force
-- support. The Air Force and Bill Billowitch assume no
-- responsibilities for this software.
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: tc2957.vhd,v 1.2 2001-10-26 16:30:24 paw Exp $
-- $Revision: 1.2 $
--
-- ---------------------------------------------------------------------
ENTITY c02s02b00x00p02n01i02957ent IS
procedure PX (signal I1: in Bit; signal I2 : out Bit; signal I3 : inout Integer);
procedure PX (signal I1: in Bit; signal I2 : out Bit; signal I3 : inout Integer) is
begin
assert (I1 /= '1')
report "No failure on test" ;
assert (I3 /= 5)
report "No failure on test" ;
; --Failure here
END c02s02b00x00p02n01i02957ent;
ARCHITECTURE c02s02b00x00p02n01i02957arch OF c02s02b00x00p02n01i02957ent IS
signal S1 : Bit := '1';
signal S2 : Integer := 5;
signal S3 : Bit;
BEGIN
TESTING: PROCESS
BEGIN
PX(S1,S3,S2);
wait for 5 ns;
assert FALSE
report "***FAILED TEST: c02s02b00x00p02n01i02957 - Missing keyword end."
severity ERROR;
wait;
END PROCESS TESTING;
END c02s02b00x00p02n01i02957arch;
|
-- Copyright (C) 2001 Bill Billowitch.
-- Some of the work to develop this test suite was done with Air Force
-- support. The Air Force and Bill Billowitch assume no
-- responsibilities for this software.
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: tc2957.vhd,v 1.2 2001-10-26 16:30:24 paw Exp $
-- $Revision: 1.2 $
--
-- ---------------------------------------------------------------------
ENTITY c02s02b00x00p02n01i02957ent IS
procedure PX (signal I1: in Bit; signal I2 : out Bit; signal I3 : inout Integer);
procedure PX (signal I1: in Bit; signal I2 : out Bit; signal I3 : inout Integer) is
begin
assert (I1 /= '1')
report "No failure on test" ;
assert (I3 /= 5)
report "No failure on test" ;
; --Failure here
END c02s02b00x00p02n01i02957ent;
ARCHITECTURE c02s02b00x00p02n01i02957arch OF c02s02b00x00p02n01i02957ent IS
signal S1 : Bit := '1';
signal S2 : Integer := 5;
signal S3 : Bit;
BEGIN
TESTING: PROCESS
BEGIN
PX(S1,S3,S2);
wait for 5 ns;
assert FALSE
report "***FAILED TEST: c02s02b00x00p02n01i02957 - Missing keyword end."
severity ERROR;
wait;
END PROCESS TESTING;
END c02s02b00x00p02n01i02957arch;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE ieee.std_logic_arith.all;
--***************************************************
--*** ***
--*** DOUBLE PRECISION LOG(e) - CORE ***
--*** ***
--*** DP_LN_CORE.VHD ***
--*** ***
--*** Function: Double Precision LOG (LN) Core ***
--*** ***
--*** 18/02/08 ML ***
--*** ***
--*** (c) 2008 Altera Corporation ***
--*** ***
--*** Change History ***
--*** ***
--*** 24/04/09 - SIII/SIV multiplier support ***
--*** ***
--*** ***
--***************************************************
--***************************************************
--*** Notes: ***
--*** SII/SIII/SIV Latency = 26 + 7*doublespeed ***
--*** no 54x54 multipliers ***
--***************************************************
ENTITY dp_ln_core IS
GENERIC (
doublespeed : integer := 0; -- 0/1
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 1 -- 0/1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (52 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (53 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
ccsgn : OUT STD_LOGIC;
zeroout : OUT STD_LOGIC
);
END dp_ln_core;
ARCHITECTURE rtl OF dp_ln_core IS
signal zerovec : STD_LOGIC_VECTOR (64 DOWNTO 1);
--*** INPUT BLOCK ***
signal aamanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal aaexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal aaexpabsff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal aaexppos, aaexpneg : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal aaexpabs : STD_LOGIC_VECTOR (10 DOWNTO 1);
--*** TABLES ***
signal lutpowaddff : STD_LOGIC_VECTOR (10 DOWNTO 1);
signal lutoneaddff, luttwoaddff : STD_LOGIC_VECTOR (9 DOWNTO 1);
signal lutpowmanff, lutonemanff, luttwomanff : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpff, lutoneexpff, luttwoexpff : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvff : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvff : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal lutpowmannode, lutonemannode, luttwomannode : STD_LOGIC_VECTOR (52 DOWNTO 1);
signal lutpowexpnode, lutoneexpnode, luttwoexpnode : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal lutoneinvnode : STD_LOGIC_VECTOR (12 DOWNTO 1);
signal luttwoinvnode : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal aanum, aanumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal invonenum : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal mulonenode : STD_LOGIC_VECTOR (65 DOWNTO 1);
signal mulonenormff : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mulonenumdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal multwonode : STD_LOGIC_VECTOR (72 DOWNTO 1);
signal multwonormff : STD_LOGIC_VECTOR (71 DOWNTO 1);
--*** SERIES ***
signal squaredterm : STD_LOGIC_VECTOR (48 DOWNTO 1);
signal onethird : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal scaledterm, scaledtermdel : STD_LOGIC_VECTOR (18 DOWNTO 1);
signal cubedterm : STD_LOGIC_VECTOR (32 DOWNTO 1);
signal xtermdel : STD_LOGIC_VECTOR (54 DOWNTO 1);
signal oneterm, twoterm, thrterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal oneplustwoterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal seriesterm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaseries : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentseries : STD_LOGIC_VECTOR (11 DOWNTO 1);
--*** ADD LOGS ***
signal zeropow, zeroone, zerotwo : STD_LOGIC;
signal mantissapowernode : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissapower : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentpower : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberone, numberonedel : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissaone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissaaddone : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddone : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissatwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponenttwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numbertwo, numbertwodel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissaaddtwo : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentaddtwo : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal numberthr, numberthrdel : STD_LOGIC_VECTOR (75 DOWNTO 1);
signal mantissasum : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal mantissasumabs : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentsum : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal mantissanorm : STD_LOGIC_VECTOR (64 DOWNTO 1);
signal exponentnorm : STD_LOGIC_VECTOR (11 DOWNTO 1);
signal zeronorm : STD_LOGIC;
signal signff : STD_LOGIC_VECTOR (25+7*doublespeed DOWNTO 1);
component dp_lnlutpow
PORT (
add : IN STD_LOGIC_VECTOR (10 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut9
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (12 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnlut18
PORT (
add : IN STD_LOGIC_VECTOR (9 DOWNTO 1);
inv : OUT STD_LOGIC_VECTOR (18 DOWNTO 1);
logman : OUT STD_LOGIC_VECTOR (52 DOWNTO 1);
logexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component fp_del
GENERIC (
width : positive := 64;
pipes : positive := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa : IN STD_LOGIC_VECTOR (width DOWNTO 1);
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxadd
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
carryin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component dp_fxsub
GENERIC (
width : positive := 64;
pipes : positive := 1;
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aa, bb : IN STD_LOGIC_VECTOR (width DOWNTO 1);
borrowin : IN STD_LOGIC;
cc : OUT STD_LOGIC_VECTOR (width DOWNTO 1)
);
end component;
component fp_fxmul
GENERIC (
widthaa : positive := 18;
widthbb : positive := 18;
widthcc : positive := 36;
pipes : positive := 1;
accuracy : integer := 0; -- 0 = pruned multiplier, 1 = normal multiplier
device : integer := 0; -- 0 = "Stratix II", 1 = "Stratix III" (also 4)
synthesize : integer := 0
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
dataaa : IN STD_LOGIC_VECTOR (widthaa DOWNTO 1);
databb : IN STD_LOGIC_VECTOR (widthbb DOWNTO 1);
result : OUT STD_LOGIC_VECTOR (widthcc DOWNTO 1)
);
end component;
component dp_lnadd
GENERIC (
speed : integer := 1; -- '0' for unpiped adder, '1' for piped adder
synthesize : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
aaman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
aaexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
bbman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
bbexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
ccman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
ccexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1)
);
end component;
component dp_lnnorm
GENERIC (
speed : integer := 1
);
PORT (
sysclk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
inman : IN STD_LOGIC_VECTOR (64 DOWNTO 1);
inexp : IN STD_LOGIC_VECTOR (11 DOWNTO 1);
outman : OUT STD_LOGIC_VECTOR (64 DOWNTO 1);
outexp : OUT STD_LOGIC_VECTOR (11 DOWNTO 1);
zero : OUT STD_LOGIC
);
end component;
BEGIN
gza: FOR k IN 1 TO 64 GENERATE
zerovec(k) <= '0';
END GENERATE;
--*******************
--*** INPUT BLOCK ***
--*******************
ppin: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 52 LOOP
aamanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
aaexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 10 LOOP
aaexpabsff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
aamanff <= aaman; -- level 1
aaexpff <= aaexp; -- level 1
aaexpabsff <= aaexpabs; -- level 2
END IF;
END IF;
END PROCESS;
aaexppos <= ('0' & aaexpff) - "001111111111";
aaexpneg <= "001111111111" - ('0' & aaexpff);
gaba: FOR k IN 1 TO 10 GENERATE
aaexpabs(k) <= (aaexppos(k) AND NOT(aaexppos(12))) OR (aaexpneg(k) AND aaexppos(12));
END GENERATE;
--******************************************
--*** RANGE REDUCTION THROUGH LUT SERIES ***
--******************************************
plut: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 10 LOOP
lutpowaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 9 LOOP
lutoneaddff(k) <= '0';
luttwoaddff(k) <= '0';
END LOOP;
FOR k IN 1 TO 52 LOOP
lutpowmanff(k) <= '0';
lutonemanff(k) <= '0';
luttwomanff(k) <= '0';
END LOOP;
FOR k IN 1 TO 11 LOOP
lutpowexpff(k) <= '0';
lutoneexpff(k) <= '0';
luttwoexpff(k) <= '0';
END LOOP;
FOR k IN 1 TO 12 LOOP
lutoneinvff(k) <= '0';
END LOOP;
FOR k IN 1 TO 18 LOOP
luttwoinvff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
lutpowaddff <= aaexpabsff; -- level 3
lutoneaddff <= aamanff(52 DOWNTO 44); -- level 2
luttwoaddff <= mulonenormff(55 DOWNTO 47); -- level 8+speed
lutpowmanff <= lutpowmannode; -- level 4
lutpowexpff <= lutpowexpnode; -- level 4
lutoneinvff <= lutoneinvnode; -- level 3
lutonemanff <= lutonemannode; -- level 3
lutoneexpff <= lutoneexpnode; -- level 3
luttwoinvff <= luttwoinvnode; -- level 9+speed
luttwomanff <= luttwomannode; -- level 9+speed
luttwoexpff <= luttwoexpnode; -- level 9+speed
END IF;
END IF;
END PROCESS;
lutpow: dp_lnlutpow
PORT MAP (add=>lutpowaddff,
logman=>lutpowmannode,logexp=>lutpowexpnode);
lutone: dp_lnlut9
PORT MAP (add=>lutoneaddff,
inv=>lutoneinvnode,logman=>lutonemannode,logexp=>lutoneexpnode);
luttwo: dp_lnlut18
PORT MAP (add=>luttwoaddff,
inv=>luttwoinvnode,logman=>luttwomannode,logexp=>luttwoexpnode);
aanum <= '1' & aamanff & '0';
-- level 1 in, level 3 out
delone: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>aanum,cc=>aanumdel);
invonenum <= lutoneinvff & "000000";
--mulone <= aanum * invone; -- 53*12 = 65
-- level 3 in, level 6+doublespeed out
mulone: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>65,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>aanumdel,databb=>invonenum,
result=>mulonenode);
--multwo <= mulonenorm(64 DOWNTO 11) * invtwo; -- 54x18=72
-- level 7+speed in, level 9+speed out
deltwo: fp_del
GENERIC MAP (width=>54,pipes=>2)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>mulonenormff(64 DOWNTO 11),cc=>mulonenumdel);
-- level 9+doublespeed in, level 12+2*doublespeed out
multwo: fp_fxmul
GENERIC MAP (widthaa=>54,widthbb=>18,widthcc=>72,
pipes=>3+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>mulonenumdel,databb=>luttwoinvff,
result=>multwonode);
pmna: PROCESS (sysclk,reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= '0';
END LOOP;
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
IF (enable = '1') THEN
-- normalize in case input is 1.000000 and inv is 0.5
-- level 7+speed
FOR k IN 1 TO 64 LOOP
mulonenormff(k) <= (mulonenode(k+1) AND mulonenode(65)) OR
(mulonenode(k) AND NOT(mulonenode(65)));
END LOOP;
-- level 13+2*speed
FOR k IN 1 TO 71 LOOP
multwonormff(k) <= (multwonode(k+1) AND multwonode(72)) OR
(multwonode(k) AND NOT(multwonode(72)));
END LOOP;
END IF;
END IF;
END PROCESS;
--************************************
--*** TAYLOR SERIES OF SMALL RANGE ***
--************************************
-- taylor series expansion of subrange (36 bits)
-- x - x*x/2
-- 16 leading bits, so x*x 16 bits down, +1 bit for 1/2
-- 36 lower bits in multwo(54:19)
--square <= multwonorm(54 DOWNTO 19) * multwonorm(54 DOWNTO 19);
-- level 13+2*doublespeed in, 16+2*doublespeed out
multhr: fp_fxmul
GENERIC MAP (widthaa=>36,widthbb=>36,widthcc=>48,
pipes=>3,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 19),databb=>multwonormff(54 DOWNTO 19),
result=>squaredterm);
onethird <= "010101010101010101";
-- level 13+2*doublespeed in, level 15+2*doublespeed out
mulfor: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>18,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>multwonormff(54 DOWNTO 37),databb=>onethird,
result=>scaledterm);
--level 15+2*doublespeed in, level 16+2*doublespeed out
delthr: fp_del
GENERIC MAP (width=>18,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>scaledterm,cc=>scaledtermdel);
-- level 16+2*doublespeed in, level 18+2*doublespeed out
mulfiv: fp_fxmul
GENERIC MAP (widthaa=>18,widthbb=>18,widthcc=>32,
pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
dataaa=>squaredterm(48 DOWNTO 31),databb=>scaledtermdel,
result=>cubedterm);
--level 13+2*doublespeed in, level 16+2*doublespeed out
delfor: fp_del
GENERIC MAP (width=>54,pipes=>3)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>multwonormff(54 DOWNTO 1),cc=>xtermdel);
-- level 16+2*doublespeed
oneterm <= xtermdel & zerovec(10 DOWNTO 1);
twoterm <= zerovec(17 DOWNTO 1) & squaredterm(48 DOWNTO 2); -- x*x/2
-- level 18+2*doublespeed
thrterm <= zerovec(32 DOWNTO 1) & cubedterm;
--level 16+2*doublespeed in, level 18+2*doublespeed out
tayone: dp_fxsub
GENERIC MAP (width=>64,pipes=>2,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneterm,bb=>twoterm,borrowin=>'1',
cc=>oneplustwoterm);
--level 18+2*doublespeed in, level 19+3*doublespeed out
taytwo: dp_fxadd
GENERIC MAP (width=>64,pipes=>1+doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>oneplustwoterm,bb=>thrterm,carryin=>'0',
cc=>seriesterm);
--mantissaseries <= seriesterm;
mantissaseries <= '0' & seriesterm(64 DOWNTO 2);
exponentseries <= conv_std_logic_vector (1006,11);
--18x18
--cubed <= square(72 DOWNTO 55) * multwonorm(54 DOWNTO 37);
--cubedscale <= cubed(36 DOWNTO 19) * onethird;
--**************************
--*** ADD ALL LOGARITHMS ***
--**************************
zeropow <= lutpowexpff(11) OR lutpowexpff(10) OR lutpowexpff(9) OR
lutpowexpff(8) OR lutpowexpff(7) OR lutpowexpff(6) OR
lutpowexpff(5) OR lutpowexpff(4) OR lutpowexpff(3) OR
lutpowexpff(2) OR lutpowexpff(1);
-- level 4
--mantissapower <= zeropow & lutpowmanff & zerovec(11 DOWNTO 1);
--mantissapower <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
mantissapowernode <= '0' & zeropow & lutpowmanff & zerovec(10 DOWNTO 1);
gmpz: FOR k IN 1 TO 64 GENERATE
mantissapower(k) <= mantissapowernode(k) XOR signff(3);
END GENERATE;
exponentpower <= lutpowexpff;
zeroone <= lutoneexpff(11) OR lutoneexpff(10) OR lutoneexpff(9) OR
lutoneexpff(8) OR lutoneexpff(7) OR lutoneexpff(6) OR
lutoneexpff(5) OR lutoneexpff(4) OR lutoneexpff(3) OR
lutoneexpff(2) OR lutoneexpff(1);
-- level 3
numberone <= zeroone & lutonemanff & lutoneexpff;
-- level 3 in, level 4 out
delfiv: fp_del
GENERIC MAP (width=>64,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberone,cc=>numberonedel);
--mantissaone <= numberonedel(64 DOWNTO 12) & zerovec(11 DOWNTO 1);
mantissaone <= '0' & numberonedel(64 DOWNTO 12) & zerovec(10 DOWNTO 1);
exponentone <= numberonedel(11 DOWNTO 1);
-- level 4 in, level 10 out
addone: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissapower,aaexp=>exponentpower,
bbman=>mantissaone,bbexp=>exponentone,
ccman=>mantissaaddone,ccexp=>exponentaddone);
zerotwo <= luttwoexpff(11) OR luttwoexpff(10) OR luttwoexpff(9) OR
luttwoexpff(8) OR luttwoexpff(7) OR luttwoexpff(6) OR
luttwoexpff(5) OR luttwoexpff(4) OR luttwoexpff(3) OR
luttwoexpff(2) OR luttwoexpff(1);
-- level 9+doublespeed
--mantissatwo <= zerotwo & luttwomanff & zerovec(11 DOWNTO 1);
mantissatwo <= '0' & zerotwo & luttwomanff & zerovec(10 DOWNTO 1);
exponenttwo <= luttwoexpff;
numbertwo <= mantissatwo & exponenttwo;
gasa: IF (doublespeed = 0) GENERATE
delsix: fp_del
GENERIC MAP (width=>75,pipes=>1)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numbertwo,cc=>numbertwodel);
END GENERATE;
gasb: IF (doublespeed = 1) GENERATE
numbertwodel <= numbertwo;
END GENERATE;
-- level 10 in, level 16 out
addtwo: dp_lnadd
GENERIC MAP (speed=>1,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaaddone,aaexp=>exponentaddone,
bbman=>numbertwodel(75 DOWNTO 12),bbexp=>numbertwodel(11 DOWNTO 1),
ccman=>mantissaaddtwo,ccexp=>exponentaddtwo);
numberthr <= mantissaaddtwo & exponentaddtwo;
-- level 16 in, level 19+3*doublespeed out
delsev: fp_del
GENERIC MAP (width=>75,pipes=>3+3*doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aa=>numberthr,cc=>numberthrdel);
-- level 19+3*doublespeed in, level 23+5*doublespeed out
addthr: dp_lnadd
GENERIC MAP (speed=>doublespeed,synthesize=>synthesize)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
aaman=>mantissaseries,aaexp=>exponentseries,
bbman=>numberthrdel(75 DOWNTO 12),bbexp=>numberthrdel(11 DOWNTO 1),
ccman=>mantissasum,ccexp=>exponentsum);
gmsa: FOR k IN 1 TO 64 GENERATE
mantissasumabs(k) <= mantissasum(k) XOR signff(22+5*doublespeed);
END GENERATE;
-- level 23+5*doublespeed in, level 26+7*doublespeed out
norm: dp_lnnorm
GENERIC MAP (speed=>doublespeed)
PORT MAP (sysclk=>sysclk,reset=>reset,enable=>enable,
inman=>mantissasumabs,inexp=>exponentsum,
outman=>mantissanorm,outexp=>exponentnorm,
zero=>zeronorm);
psgna: PROCESS (sysclk, reset)
BEGIN
IF (reset = '1') THEN
FOR k IN 1 TO 25+7*doublespeed LOOP
signff(k) <= '0';
END LOOP;
ELSIF (rising_edge(sysclk)) THEN
signff(1) <= aaexppos(12);
FOR k IN 2 TO 25+7*doublespeed LOOP
signff(k) <= signff(k-1);
END LOOP;
END IF;
END PROCESS;
--***************
--*** OUTPUTS ***
--***************
ccman <= mantissanorm(63 DOWNTO 11);
ccexp <= exponentnorm;
ccsgn <= signff(25+7*doublespeed);
zeroout <= zeronorm;
END rtl;
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity outdata_comp_vpos is
port (
wa0_data : in std_logic_vector(31 downto 0);
wa0_addr : in std_logic_vector(1 downto 0);
clk : in std_logic;
ra0_addr : in std_logic_vector(1 downto 0);
ra0_data : out std_logic_vector(31 downto 0);
wa0_en : in std_logic
);
end outdata_comp_vpos;
architecture augh of outdata_comp_vpos is
-- Embedded RAM
type ram_type is array (0 to 2) of std_logic_vector(31 downto 0);
signal ram : ram_type := (others => (others => '0'));
-- Little utility functions to make VHDL syntactically correct
-- with the syntax to_integer(unsigned(vector)) when 'vector' is a std_logic.
-- This happens when accessing arrays with <= 2 cells, for example.
function to_integer(B: std_logic) return integer is
variable V: std_logic_vector(0 to 0);
begin
V(0) := B;
return to_integer(unsigned(V));
end;
function to_integer(V: std_logic_vector) return integer is
begin
return to_integer(unsigned(V));
end;
begin
-- Sequential process
-- It handles the Writes
process (clk)
begin
if rising_edge(clk) then
-- Write to the RAM
-- Note: there should be only one port.
if wa0_en = '1' then
ram( to_integer(wa0_addr) ) <= wa0_data;
end if;
end if;
end process;
-- The Read side (the outputs)
ra0_data <= ram( to_integer(ra0_addr) ) when to_integer(ra0_addr) < 3 else (others => '-');
end architecture;
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity outdata_comp_vpos is
port (
wa0_data : in std_logic_vector(31 downto 0);
wa0_addr : in std_logic_vector(1 downto 0);
clk : in std_logic;
ra0_addr : in std_logic_vector(1 downto 0);
ra0_data : out std_logic_vector(31 downto 0);
wa0_en : in std_logic
);
end outdata_comp_vpos;
architecture augh of outdata_comp_vpos is
-- Embedded RAM
type ram_type is array (0 to 2) of std_logic_vector(31 downto 0);
signal ram : ram_type := (others => (others => '0'));
-- Little utility functions to make VHDL syntactically correct
-- with the syntax to_integer(unsigned(vector)) when 'vector' is a std_logic.
-- This happens when accessing arrays with <= 2 cells, for example.
function to_integer(B: std_logic) return integer is
variable V: std_logic_vector(0 to 0);
begin
V(0) := B;
return to_integer(unsigned(V));
end;
function to_integer(V: std_logic_vector) return integer is
begin
return to_integer(unsigned(V));
end;
begin
-- Sequential process
-- It handles the Writes
process (clk)
begin
if rising_edge(clk) then
-- Write to the RAM
-- Note: there should be only one port.
if wa0_en = '1' then
ram( to_integer(wa0_addr) ) <= wa0_data;
end if;
end if;
end process;
-- The Read side (the outputs)
ra0_data <= ram( to_integer(ra0_addr) ) when to_integer(ra0_addr) < 3 else (others => '-');
end architecture;
|
--
-- Author: Pawel Szostek ([email protected])
-- Date: 28.07.2011
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity mask is
port (input : in std_logic_vector(15 downto 0);
mask : in std_logic_vector(15 downto 0);
output : out std_logic_vector(15 downto 0)
);
end;
architecture behaviour of mask is
begin
L: process(input)
variable tmp : std_logic_vector(15 downto 0);
begin
tmp := input;
tmp := tmp and mask;
output <= tmp;
end process;
end;
|
--
-- Author: Pawel Szostek ([email protected])
-- Date: 28.07.2011
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity mask is
port (input : in std_logic_vector(15 downto 0);
mask : in std_logic_vector(15 downto 0);
output : out std_logic_vector(15 downto 0)
);
end;
architecture behaviour of mask is
begin
L: process(input)
variable tmp : std_logic_vector(15 downto 0);
begin
tmp := input;
tmp := tmp and mask;
output <= tmp;
end process;
end;
|
-- ========== Copyright Header Begin =============================================
-- AmgPacman File: top.vhd
-- Copyright (c) 2015 Alberto Miedes Garcés
-- DO NOT ALTER OR REMOVE COPYRIGHT NOTICES.
--
-- The above named program is free software: you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation, either version 3 of the License, or
-- (at your option) any later version.
--
-- The above named program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with Foobar. If not, see <http://www.gnu.org/licenses/>.
-- ========== Copyright Header End ===============================================
----------------------------------------------------------------------------------
-- Engineer: Alberto Miedes Garcés
-- Correo: [email protected]
-- Create Date: January 2015
-- Target Devices: Spartan3E - XC3S500E - Nexys 2 (Digilent)
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
-- =================================================================================
-- ENTITY
-- =================================================================================
entity top is
Port ( clk_50MHz : in STD_LOGIC;
rst : in STD_LOGIC;
init_ini: in std_logic;
bt_db: in std_logic;
init_fin_led: out std_logic;
hsync : out STD_LOGIC;
vsync : out STD_LOGIC;
vga_red : out STD_LOGIC_VECTOR (2 downto 0);
vga_green : out STD_LOGIC_VECTOR (2 downto 0);
vga_blue : out STD_LOGIC_VECTOR (1 downto 0);
disp7seg_sel: out std_logic_vector(3 downto 0);
disp7seg_data: out std_logic_vector(6 downto 0);
ram_data_leds: out std_logic_vector(2 downto 0);
sw_debug: in std_logic_vector(1 downto 0)
);
end top;
-- =================================================================================
-- ARCHITECTURE
-- =================================================================================
architecture arq of top is
------------------------------------------------------------------------------------
-- Componentes
------------------------------------------------------------------------------------
COMPONENT sincronismo
PORT(
clk_50MHz : IN std_logic;
rst : IN std_logic;
hsync : OUT std_logic;
vsync : OUT std_logic;
pos_h : OUT std_logic_vector(9 downto 0);
pos_v : OUT std_logic_vector(9 downto 0)
);
END COMPONENT;
COMPONENT ram_dp_sr_sw
PORT(
rst : IN std_logic;
clk : IN std_logic;
address_0 : IN std_logic_vector(5 downto 0);
data_0 : IN std_logic_vector(2 downto 0);
wr_0 : IN std_logic;
address_1 : IN std_logic_vector(5 downto 0);
address_2 : IN std_logic_vector(5 downto 0);
bt_ld : IN std_logic;
data_1 : OUT std_logic_vector(2 downto 0);
data_2 : OUT std_logic_vector(2 downto 0);
addr_db : OUT std_logic_vector(5 downto 0);
data_db : OUT std_logic_vector(2 downto 0)
);
END COMPONENT;
COMPONENT init_ram
PORT(
clk_50MHz : IN std_logic;
rst : IN std_logic;
ini : IN std_logic;
ram_addr : OUT std_logic_vector(5 downto 0);
ram_data : OUT std_logic_vector(2 downto 0);
ram_we : OUT std_logic;
fin : OUT std_logic
);
END COMPONENT;
COMPONENT rgb_conv
PORT(
r : IN std_logic;
g : IN std_logic;
b : IN std_logic;
pos_h : in std_logic_vector(9 downto 0);
pos_v : in std_logic_vector(9 downto 0);
r_out : OUT std_logic_vector(2 downto 0);
g_out : OUT std_logic_vector(2 downto 0);
b_out : OUT std_logic_vector(1 downto 0)
);
END COMPONENT;
COMPONENT freqDividerV3
PORT(
clk : IN std_logic;
rst : IN std_logic;
clk_1KHz : OUT std_logic;
pulso_2Hz : OUT std_logic
);
END COMPONENT;
COMPONENT debouncer
PORT(
clk : IN std_logic;
rst : IN std_logic;
x : IN std_logic;
pulso2Hz : IN std_logic;
xDeb : OUT std_logic
);
END COMPONENT;
COMPONENT control7seg
PORT(
clk_1KHz : IN std_logic;
rst : IN std_logic;
data_in : IN std_logic_vector(15 downto 0);
data_out : OUT std_logic_vector(6 downto 0);
sel : OUT std_logic_vector(3 downto 0)
);
END COMPONENT;
COMPONENT fantasma_v0
PORT(
clk_50MHz : IN std_logic;
rst : IN std_logic;
p2Hz : IN std_logic;
ini : IN std_logic;
ram_data_rd : IN std_logic_vector(2 downto 0);
fin : OUT std_logic;
ram_addr_rd : OUT std_logic_vector(5 downto 0);
ram_addr_wr : OUT std_logic_vector(5 downto 0);
ram_data_wr : OUT std_logic_vector(2 downto 0);
ram_we : OUT std_logic;
sw_debug : in std_logic_vector(1 downto 0);
data_db : out std_logic_vector(2 downto 0);
bt_rand : in std_logic_vector(1 downto 0)
);
END COMPONENT;
COMPONENT fantasma2
PORT(
clk_50MHz : IN std_logic;
rst : IN std_logic;
p2Hz : IN std_logic;
ini : IN std_logic;
ram_data_rd : IN std_logic_vector(2 downto 0);
bt_rand : IN std_logic_vector(1 downto 0);
fin : OUT std_logic;
ram_addr_rd : OUT std_logic_vector(5 downto 0);
ram_addr_wr : OUT std_logic_vector(5 downto 0);
ram_data_wr : OUT std_logic_vector(2 downto 0);
ram_we : OUT std_logic
);
END COMPONENT;
COMPONENT fantasma3
PORT(
clk_50MHz : IN std_logic;
rst : IN std_logic;
p2Hz : IN std_logic;
ini : IN std_logic;
ram_data_rd : IN std_logic_vector(2 downto 0);
bt_rand : IN std_logic_vector(1 downto 0);
fin : OUT std_logic;
ram_addr_rd : OUT std_logic_vector(5 downto 0);
ram_addr_wr : OUT std_logic_vector(5 downto 0);
ram_data_wr : OUT std_logic_vector(2 downto 0);
ram_we : OUT std_logic
);
END COMPONENT;
------------------------------------------------------------------------------------
-- Declaración de señales
------------------------------------------------------------------------------------
-- Senales auxiliares (pos. pantalla VGA)
signal pos_h_aux: std_logic_vector(9 downto 0);
signal pos_v_aux: std_logic_vector(9 downto 0);
----------------------------------------------------------
-- Puerto 0 de solo escritura (inicializacion y fanstasma)
----------------------------------------------------------
-- Conexiones directas a los puertos de la RAM
signal ram_addr_0: std_logic_vector(5 downto 0);
signal ram_data_0: std_logic_vector(2 downto 0);
signal ram_wr_0 : std_logic;
-- Conexiones procedentes del módulo de inicialización:
signal ram_addr_0_init: std_logic_vector(5 downto 0);
signal ram_data_0_init: std_logic_vector(2 downto 0);
signal ram_wr_0_init : std_logic;
-- Conexiones procedentes del primer fantasma:
signal ram_addr_0_f1: std_logic_vector(5 downto 0);
signal ram_data_0_f1: std_logic_vector(2 downto 0);
signal ram_wr_0_f1 : std_logic;
-- Conexiones procedentes del segundo fantasma:
signal ram_addr_0_f2: std_logic_vector(5 downto 0);
signal ram_data_0_f2: std_logic_vector(2 downto 0);
signal ram_wr_0_f2 : std_logic;
-- Conexiones procedentes del tercer fantasma:
signal ram_addr_0_f3: std_logic_vector(5 downto 0);
signal ram_data_0_f3: std_logic_vector(2 downto 0);
signal ram_wr_0_f3 : std_logic;
----------------------------------------------------------
-- Puerto 1 de solo lectura: lectura VGA
----------------------------------------------------------
signal ram_addr_1: std_logic_vector(5 downto 0);
signal ram_data_1: std_logic_vector(2 downto 0);
----------------------------------------------------------
-- Puerto 2 de solo lectura: lectura fantasmas
----------------------------------------------------------
-- Conexiones directas a los puertos de la RAM:
signal ram_addr_2: std_logic_vector(5 downto 0);
signal ram_data_2: std_logic_vector(2 downto 0);
-- Conexiones procedentes del primer fantasma:
signal ram_addr_2_f1: std_logic_vector(5 downto 0);
signal ram_data_2_f1: std_logic_vector(2 downto 0);
-- Conexiones procedentes del segundo fantasma:
signal ram_addr_2_f2: std_logic_vector(5 downto 0);
signal ram_data_2_f2: std_logic_vector(2 downto 0);
-- Conexiones procedentes del tercer fantasma:
signal ram_addr_2_f3: std_logic_vector(5 downto 0);
signal ram_data_2_f3: std_logic_vector(2 downto 0);
----------------------------------------------------------
-- Señales de la FSM principal:
----------------------------------------------------------
type t_st is (s0, s1, fantasma1_st, fantasma2_st, fantasma3_st);
signal current_state, next_state : t_st; -- Estados actual y siguiente
signal init_fin: std_logic;
signal start_fantasma1 : std_logic;
signal fin_fantasma1 : std_logic;
signal start_fantasma2 : std_logic;
signal fin_fantasma2 : std_logic;
signal start_fantasma3 : std_logic;
signal fin_fantasma3 : std_logic;
----------------------------------------------------------
-- Señales Auxiliares:
----------------------------------------------------------
-- Señales de reloj auxiliares:
signal clk_1KHz_aux: std_logic;
signal pulso_2Hz_aux: std_logic;
-- Señales de depuración:
signal ram_addr_debug: std_logic_vector(5 downto 0);
signal ram_addr_debug_ext: std_logic_vector(15 downto 0);
signal fantasma_debug_data: std_logic_vector(2 downto 0);
signal bt_db_deb: std_logic;
-- Otros
signal rand_aux: std_logic_vector(1 downto 0);
begin
------------------------------------------------------------------------------------
-- Conexión de señales
------------------------------------------------------------------------------------
-- La direccion de lectura depende de las coordenadas:
ram_addr_1 <= pos_v_aux(6 downto 4) & pos_h_aux(6 downto 4); --Lectura VGA
init_fin_led <= init_fin;
ram_addr_debug_ext <= "00000" & fantasma_debug_data & "00" & ram_addr_debug;
rand_aux <= pos_v_aux(3) & pos_v_aux(2);
------------------------------------------------------------------------------------
-- Conexión de componentes
------------------------------------------------------------------------------------
Inst_sincronismo: sincronismo PORT MAP(
clk_50MHz => clk_50MHz,
rst => rst,
hsync => hsync,
vsync => vsync,
pos_h => pos_h_aux,
pos_v => pos_v_aux
);
Inst_rgb_conv: rgb_conv PORT MAP(
r => ram_data_1(2),
g => ram_data_1(1),
b => ram_data_1(0),
pos_h => pos_h_aux,
pos_v => pos_v_aux,
r_out => vga_red,
g_out => vga_green,
b_out => vga_blue
);
Inst_init_ram: init_ram PORT MAP(
clk_50MHz => clk_50MHz,
rst => rst,
ini => init_ini,
ram_addr => ram_addr_0_init,
ram_data => ram_data_0_init,
ram_we => ram_wr_0_init,
fin => init_fin
);
Inst_ram_dp_sr_sw: ram_dp_sr_sw PORT MAP(
rst => rst,
clk => clk_50MHz,
-- Puerto 0: solo escritura. (inicializacion y fantasma)
address_0 => ram_addr_0,
data_0 => ram_data_0,
wr_0 => ram_wr_0,
-- Puerto 1: solo lectura (VGA)
address_1 => ram_addr_1,
data_1 => ram_data_1,
-- Puerto 2: solo lectura (fantasma)
address_2 => ram_addr_2,
data_2 => ram_data_2,
-- Puertos de depuración
bt_ld => bt_db_deb,
addr_db => ram_addr_debug,
data_db => ram_data_leds
);
Inst_freqDividerV3: freqDividerV3 PORT MAP(
clk => clk_50MHz,
rst => rst,
clk_1KHz => clk_1KHz_aux,
pulso_2Hz => pulso_2Hz_aux
);
Inst_debouncer: debouncer PORT MAP(
clk => clk_50MHz,
rst => rst,
x => bt_db,
pulso2Hz => pulso_2Hz_aux,
xDeb => bt_db_deb
);
Inst_control7seg: control7seg PORT MAP(
clk_1KHz => clk_1KHz_aux,
rst => rst,
data_in => ram_addr_debug_ext,
data_out => disp7seg_data,
sel => disp7seg_sel
);
fantasma1: fantasma_v0 PORT MAP(
clk_50MHz => clk_50MHz,
rst => rst,
p2Hz => pulso_2Hz_aux,
ini => start_fantasma1,
fin => fin_fantasma1,
ram_addr_rd => ram_addr_2_f1,
ram_data_rd => ram_data_2_f1,
ram_addr_wr => ram_addr_0_f1,
ram_data_wr => ram_data_0_f1,
ram_we => ram_wr_0_f1,
sw_debug => sw_debug,
data_db => fantasma_debug_data,
bt_rand => rand_aux
);
Inst_fantasma2: fantasma2 PORT MAP(
clk_50MHz => clk_50MHz,
rst => rst,
p2Hz => pulso_2Hz_aux,
ini => start_fantasma2,
fin => fin_fantasma2,
ram_addr_rd => ram_addr_2_f2,
ram_data_rd => ram_data_2_f2,
ram_addr_wr => ram_addr_0_f2,
ram_data_wr => ram_data_0_f2,
ram_we => ram_wr_0_f2,
bt_rand => rand_aux
);
Inst_fantasma3: fantasma3 PORT MAP(
clk_50MHz => clk_50MHz,
rst => rst,
p2Hz => pulso_2Hz_aux,
ini => start_fantasma3,
fin => fin_fantasma3,
ram_addr_rd => ram_addr_2_f3,
ram_data_rd => ram_data_2_f3,
ram_addr_wr => ram_addr_0_f3,
ram_data_wr => ram_data_0_f3,
ram_we => ram_wr_0_f3,
bt_rand => rand_aux
);
------------------------------------------------------------------------------------
-- Procesos
------------------------------------------------------------------------------------
---------------------------------------------------
-- Cálculo del estado siguiente y salidas Mealy
---------------------------------------------------
p_next_state : process (current_state, init_fin, init_ini, fin_fantasma1, fin_fantasma2, fin_fantasma3) is
begin
case current_state is
when s0 =>
start_fantasma1 <= '0';
start_fantasma2 <= '0';
start_fantasma3 <= '0';
if init_ini = '1' then
next_state <= s1;
else
next_state <= s0;
end if;
when s1 =>
start_fantasma2 <= '0';
start_fantasma3 <= '0';
if init_fin = '1' then
start_fantasma1 <= '1';
next_state <= fantasma1_st;
else
start_fantasma1 <= '0';
next_state <= s1;
end if;
when fantasma1_st =>
start_fantasma1 <= '0';
start_fantasma3 <= '0';
if fin_fantasma1 = '1' then
start_fantasma2 <= '1';
next_state <= fantasma2_st;
else
start_fantasma2 <= '0';
next_state <= current_state;
end if;
when fantasma2_st =>
start_fantasma1 <= '0';
start_fantasma2 <= '0';
if fin_fantasma2 = '1' then
start_fantasma3 <= '1';
next_state <= fantasma3_st;
else
start_fantasma3 <= '0';
next_state <= current_state;
end if;
when fantasma3_st =>
start_fantasma2 <= '0';
start_fantasma3 <= '0';
if fin_fantasma3 = '1' then
start_fantasma1 <= '1';
next_state <= fantasma1_st;
else
start_fantasma1 <= '0';
next_state <= current_state;
end if;
end case;
end process p_next_state;
---------------------------------------------------
-- Multiplexor de la escritura en RAM (compartida por fantasmas e inicializacion)
---------------------------------------------------
p_mux_ram_wr_0: process(current_state, ram_wr_0_f1, ram_addr_0_f1, ram_data_0_f1, ram_wr_0_f2, ram_addr_0_f2, ram_data_0_f2, ram_wr_0_f3, ram_addr_0_f3, ram_data_0_f3, ram_wr_0_init, ram_addr_0_init, ram_data_0_init)
begin
if current_state = fantasma1_st then --Game
ram_wr_0 <= ram_wr_0_f1;
ram_addr_0 <= ram_addr_0_f1;
ram_data_0 <= ram_data_0_f1;
elsif current_state = fantasma2_st then
ram_wr_0 <= ram_wr_0_f2;
ram_addr_0 <= ram_addr_0_f2;
ram_data_0 <= ram_data_0_f2;
elsif current_state = fantasma3_st then
ram_wr_0 <= ram_wr_0_f3;
ram_addr_0 <= ram_addr_0_f3;
ram_data_0 <= ram_data_0_f3;
elsif current_state = s1 then
ram_wr_0 <= ram_wr_0_init;
ram_addr_0 <= ram_addr_0_init;
ram_data_0 <= ram_data_0_init;
else
ram_wr_0 <= '0';
ram_addr_0 <= (others => '0');
ram_data_0 <= (others => '0');
end if;
end process p_mux_ram_wr_0;
---------------------------------------------------
-- Multiplexor de la lectura de RAM (común a todos los fantasmas)
---------------------------------------------------
p_mux_ram_rd_2: process(current_state, ram_addr_2_f1, ram_addr_2_f2, ram_addr_2_f3, ram_data_2)
begin
if current_state = fantasma1_st then
ram_addr_2 <= ram_addr_2_f1;
ram_data_2_f1 <= ram_data_2;
ram_data_2_f2 <= (others => '0');
ram_data_2_f3 <= (others => '0');
elsif current_state = fantasma2_st then
ram_addr_2 <= ram_addr_2_f2;
ram_data_2_f2 <= ram_data_2;
ram_data_2_f1 <= (others => '0');
ram_data_2_f3 <= (others => '0');
elsif current_state = fantasma3_st then--
ram_addr_2 <= ram_addr_2_f3;
ram_data_2_f3 <= ram_data_2;
ram_data_2_f1 <= (others => '0');
ram_data_2_f2 <= (others => '0');
else
ram_addr_2 <= (others => '0');
ram_data_2_f3 <= (others => '0');
ram_data_2_f2 <= (others => '0');
ram_data_2_f1 <= (others => '0');
end if;
end process p_mux_ram_rd_2;
---------------------------------------------------
-- Proceso de actualizacion del estado
---------------------------------------------------
p_update_state: process (clk_50MHz, rst) is
begin
if rst = '1' then
current_state <= s0;
elsif rising_edge(clk_50MHz) then
current_state <= next_state;
end if;
end process p_update_state;
end arq;
|
----------------------------------------------------------------------------
-- axi_datamover_addr_cntl.vhd
----------------------------------------------------------------------------
--
-- *************************************************************************
--
-- (c) Copyright 2010-2011 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- *************************************************************************
--
-------------------------------------------------------------------------------
-- Filename: axi_datamover_addr_cntl.vhd
--
-- Description:
-- This file implements the axi_datamover Master Address Controller.
--
--
--
--
-- VHDL-Standard: VHDL'93
-------------------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library axi_datamover_v5_1;
Use axi_datamover_v5_1.axi_datamover_fifo;
-------------------------------------------------------------------------------
entity axi_datamover_addr_cntl is
generic (
C_ADDR_FIFO_DEPTH : Integer range 1 to 32 := 4;
-- sets the depth of the Command Queue FIFO
C_ADDR_WIDTH : Integer range 32 to 64 := 32;
-- Sets the address bus width
C_ADDR_ID : Integer range 0 to 255 := 0;
-- Sets the value to be on the AxID output
C_ADDR_ID_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the AxID output
C_TAG_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the Command Tag field width
C_FAMILY : String := "virtex7"
-- Specifies the target FPGA family
);
port (
-- Clock input ---------------------------------------------
primary_aclk : in std_logic; --
-- Primary synchronization clock for the Master side --
-- interface and internal logic. It is also used --
-- for the User interface synchronization when --
-- C_STSCMD_IS_ASYNC = 0. --
--
-- Reset input --
mmap_reset : in std_logic; --
-- Reset used for the internal master logic --
------------------------------------------------------------
-- AXI Address Channel I/O --------------------------------------------
addr2axi_aid : out std_logic_vector(C_ADDR_ID_WIDTH-1 downto 0); --
-- AXI Address Channel ID output --
--
addr2axi_aaddr : out std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- AXI Address Channel Address output --
--
addr2axi_alen : out std_logic_vector(7 downto 0); --
-- AXI Address Channel LEN output --
-- Sized to support 256 data beat bursts --
--
addr2axi_asize : out std_logic_vector(2 downto 0); --
-- AXI Address Channel SIZE output --
--
addr2axi_aburst : out std_logic_vector(1 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_acache : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_auser : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_aprot : out std_logic_vector(2 downto 0); --
-- AXI Address Channel PROT output --
--
addr2axi_avalid : out std_logic; --
-- AXI Address Channel VALID output --
--
axi2addr_aready : in std_logic; --
-- AXI Address Channel READY input --
------------------------------------------------------------------------
-- Currently unsupported AXI Address Channel output signals -------
-- addr2axi_alock : out std_logic_vector(2 downto 0); --
-- addr2axi_acache : out std_logic_vector(4 downto 0); --
-- addr2axi_aqos : out std_logic_vector(3 downto 0); --
-- addr2axi_aregion : out std_logic_vector(3 downto 0); --
-------------------------------------------------------------------
-- Command Calculation Interface -----------------------------------------
mstr2addr_tag : In std_logic_vector(C_TAG_WIDTH-1 downto 0); --
-- The next command tag --
--
mstr2addr_addr : In std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- The next command address to put on the AXI MMap ADDR --
--
mstr2addr_len : In std_logic_vector(7 downto 0); --
-- The next command length to put on the AXI MMap LEN --
-- Sized to support 256 data beat bursts --
--
mstr2addr_size : In std_logic_vector(2 downto 0); --
-- The next command size to put on the AXI MMap SIZE --
--
mstr2addr_burst : In std_logic_vector(1 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cache : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_user : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cmd_cmplt : In std_logic; --
-- The indication to the Address Channel that the current --
-- sub-command output is the last one compiled from the --
-- parent command pulled from the Command FIFO --
--
mstr2addr_calc_error : In std_logic; --
-- Indication if the next command in the calculation pipe --
-- has a calculation error --
--
mstr2addr_cmd_valid : in std_logic; --
-- The next command valid indication to the Address Channel --
-- Controller for the AXI MMap --
--
addr2mstr_cmd_ready : out std_logic; --
-- Indication to the Command Calculator that the --
-- command is being accepted --
--------------------------------------------------------------------------
-- Halted Indication to Reset Module ------------------------------
addr2rst_stop_cmplt : out std_logic; --
-- Output flag indicating the address controller has stopped --
-- posting commands to the Address Channel due to a stop --
-- request vai the data2addr_stop_req input port --
------------------------------------------------------------------
-- Address Generation Control ---------------------------------------
allow_addr_req : in std_logic; --
-- Input used to enable/stall the posting of address requests. --
-- 0 = stall address request generation. --
-- 1 = Enable Address request geneartion --
--
addr_req_posted : out std_logic; --
-- Indication from the Address Channel Controller to external --
-- User logic that an address has been posted to the --
-- AXI Address Channel. --
---------------------------------------------------------------------
-- Data Channel Interface ---------------------------------------------
addr2data_addr_posted : Out std_logic; --
-- Indication from the Address Channel Controller to the --
-- Data Controller that an address has been posted to the --
-- AXI Address Channel. --
--
data2addr_data_rdy : In std_logic; --
-- Indication that the Data Channel is ready to send the first --
-- databeat of the next command on the write data channel. --
-- This is used for the "wait for data" feature which keeps the --
-- address controller from issuing a transfer requset until the --
-- corresponding data is ready. This is expected to be held in --
-- the asserted state until the addr2data_addr_posted signal is --
-- asserted. --
--
data2addr_stop_req : In std_logic; --
-- Indication that the Data Channel has encountered an error --
-- or a soft shutdown request and needs the Address Controller --
-- to stop posting commands to the AXI Address channel --
-----------------------------------------------------------------------
-- Status Module Interface ---------------------------------------
addr2stat_calc_error : out std_logic; --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is loaded with a Calc error --
--
addr2stat_cmd_fifo_empty : out std_logic --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is empty --
------------------------------------------------------------------
);
end entity axi_datamover_addr_cntl;
architecture implementation of axi_datamover_addr_cntl is
attribute DowngradeIPIdentifiedWarnings: string;
attribute DowngradeIPIdentifiedWarnings of implementation : architecture is "yes";
-- Constant Declarations --------------------------------------------
Constant APROT_VALUE : std_logic_vector(2 downto 0) := (others => '0');
--'0' & -- bit 2, Normal Access
--'0' & -- bit 1, Nonsecure Access
--'0'; -- bit 0, Data Access
Constant LEN_WIDTH : integer := 8;
Constant SIZE_WIDTH : integer := 3;
Constant BURST_WIDTH : integer := 2;
Constant CMD_CMPLT_WIDTH : integer := 1;
Constant CALC_ERROR_WIDTH : integer := 1;
Constant ADDR_QUAL_WIDTH : integer := C_TAG_WIDTH + -- Cmd Tag field width
C_ADDR_WIDTH + -- Cmd Address field width
LEN_WIDTH + -- Cmd Len field width
SIZE_WIDTH + -- Cmd Size field width
BURST_WIDTH + -- Cmd Burst field width
CMD_CMPLT_WIDTH + -- Cmd Cmplt filed width
CALC_ERROR_WIDTH + -- Cmd Calc Error flag
8; -- Cmd Cache, user fields
Constant USE_SYNC_FIFO : integer := 0;
Constant REG_FIFO_PRIM : integer := 0;
Constant BRAM_FIFO_PRIM : integer := 1;
Constant SRL_FIFO_PRIM : integer := 2;
Constant FIFO_PRIM_TYPE : integer := SRL_FIFO_PRIM;
-- Signal Declarations --------------------------------------------
signal sig_axi_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_axi_alen : std_logic_vector(7 downto 0) := (others => '0');
signal sig_axi_asize : std_logic_vector(2 downto 0) := (others => '0');
signal sig_axi_aburst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_axi_acache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_auser : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_avalid : std_logic := '0';
signal sig_axi_aready : std_logic := '0';
signal sig_addr_posted : std_logic := '0';
signal sig_calc_error : std_logic := '0';
signal sig_cmd_fifo_empty : std_logic := '0';
Signal sig_aq_fifo_data_in : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
Signal sig_aq_fifo_data_out : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_tag : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_len : std_logic_vector(7 downto 0) := (others => '0');
signal sig_fifo_next_size : std_logic_vector(2 downto 0) := (others => '0');
signal sig_fifo_next_burst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_fifo_next_user : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cmd_cmplt : std_logic := '0';
signal sig_fifo_calc_error : std_logic := '0';
signal sig_fifo_wr_cmd_valid : std_logic := '0';
signal sig_fifo_wr_cmd_ready : std_logic := '0';
signal sig_fifo_rd_cmd_valid : std_logic := '0';
signal sig_fifo_rd_cmd_ready : std_logic := '0';
signal sig_next_tag_reg : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_next_addr_reg : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_next_len_reg : std_logic_vector(7 downto 0) := (others => '0');
signal sig_next_size_reg : std_logic_vector(2 downto 0) := (others => '0');
signal sig_next_burst_reg : std_logic_vector(1 downto 0) := (others => '0');
signal sig_next_cache_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_user_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_cmd_cmplt_reg : std_logic := '0';
signal sig_addr_valid_reg : std_logic := '0';
signal sig_calc_error_reg : std_logic := '0';
signal sig_pop_addr_reg : std_logic := '0';
signal sig_push_addr_reg : std_logic := '0';
signal sig_addr_reg_empty : std_logic := '0';
signal sig_addr_reg_full : std_logic := '0';
signal sig_posted_to_axi : std_logic := '0';
-- obsoleted signal sig_set_wfd_flop : std_logic := '0';
-- obsoleted signal sig_clr_wfd_flop : std_logic := '0';
-- obsoleted signal sig_wait_for_data : std_logic := '0';
-- obsoleted signal sig_data2addr_data_rdy_reg : std_logic := '0';
signal sig_allow_addr_req : std_logic := '0';
signal sig_posted_to_axi_2 : std_logic := '0';
signal new_cmd_in : std_logic;
signal first_addr_valid : std_logic;
signal first_addr_valid_del : std_logic;
signal first_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal last_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal addr2axi_cache_int : std_logic_vector (7 downto 0);
signal addr2axi_cache_int1 : std_logic_vector (7 downto 0);
signal last_one : std_logic;
signal latch : std_logic;
signal first_one : std_logic;
signal latch_n : std_logic;
signal latch_n_del : std_logic;
signal mstr2addr_cache_info_int : std_logic_vector (7 downto 0);
-- Register duplication attribute assignments to control fanout
-- on handshake output signals
Attribute KEEP : string; -- declaration
Attribute EQUIVALENT_REGISTER_REMOVAL : string; -- declaration
Attribute KEEP of sig_posted_to_axi : signal is "TRUE"; -- definition
Attribute KEEP of sig_posted_to_axi_2 : signal is "TRUE"; -- definition
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi : signal is "no";
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi_2 : signal is "no";
begin --(architecture implementation)
-- AXI I/O Port assignments
addr2axi_aid <= STD_LOGIC_VECTOR(TO_UNSIGNED(C_ADDR_ID, C_ADDR_ID_WIDTH));
addr2axi_aaddr <= sig_axi_addr ;
addr2axi_alen <= sig_axi_alen ;
addr2axi_asize <= sig_axi_asize ;
addr2axi_aburst <= sig_axi_aburst;
addr2axi_acache <= sig_axi_acache;
addr2axi_auser <= sig_axi_auser;
addr2axi_aprot <= APROT_VALUE ;
addr2axi_avalid <= sig_axi_avalid;
sig_axi_aready <= axi2addr_aready;
-- Command Calculator Handshake output
sig_fifo_wr_cmd_valid <= mstr2addr_cmd_valid ;
addr2mstr_cmd_ready <= sig_fifo_wr_cmd_ready;
-- Data Channel Controller synchro pulse output
addr2data_addr_posted <= sig_addr_posted;
-- Status Module Interface outputs
addr2stat_calc_error <= sig_calc_error ;
addr2stat_cmd_fifo_empty <= sig_addr_reg_empty and
sig_cmd_fifo_empty;
-- Flag Indicating the Address Controller has completed a Stop
addr2rst_stop_cmplt <= (data2addr_stop_req and -- normal shutdown case
sig_addr_reg_empty) or
(data2addr_stop_req and -- shutdown after error trap
sig_calc_error);
-- Assign the address posting control and status
sig_allow_addr_req <= allow_addr_req ;
addr_req_posted <= sig_posted_to_axi_2 ;
-- Internal logic ------------------------------
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where the cmd qualifier depth is
-- greater than 1.
--
------------------------------------------------------------
GEN_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH > 1) generate
begin
-- Format the input FIFO data word
sig_aq_fifo_data_in <= mstr2addr_cache &
mstr2addr_user &
mstr2addr_calc_error &
mstr2addr_cmd_cmplt &
mstr2addr_burst &
mstr2addr_size &
mstr2addr_len &
mstr2addr_addr &
mstr2addr_tag ;
-- Rip fields from FIFO output data word
sig_fifo_next_cache <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 7)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 4)
);
sig_fifo_next_user <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 3)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)
);
sig_fifo_calc_error <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)-1);
sig_fifo_next_cmd_cmplt <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH)-1);
sig_fifo_next_burst <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH) ;
sig_fifo_next_size <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH) ;
sig_fifo_next_len <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH) ;
sig_fifo_next_addr <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH)-1
downto
C_TAG_WIDTH) ;
sig_fifo_next_tag <= sig_aq_fifo_data_out(C_TAG_WIDTH-1 downto 0);
------------------------------------------------------------
-- Instance: I_ADDR_QUAL_FIFO
--
-- Description:
-- Instance for the Address/Qualifier FIFO
--
------------------------------------------------------------
I_ADDR_QUAL_FIFO : entity axi_datamover_v5_1.axi_datamover_fifo
generic map (
C_DWIDTH => ADDR_QUAL_WIDTH ,
C_DEPTH => C_ADDR_FIFO_DEPTH ,
C_IS_ASYNC => USE_SYNC_FIFO ,
C_PRIM_TYPE => FIFO_PRIM_TYPE ,
C_FAMILY => C_FAMILY
)
port map (
-- Write Clock and reset
fifo_wr_reset => mmap_reset ,
fifo_wr_clk => primary_aclk ,
-- Write Side
fifo_wr_tvalid => sig_fifo_wr_cmd_valid ,
fifo_wr_tready => sig_fifo_wr_cmd_ready ,
fifo_wr_tdata => sig_aq_fifo_data_in ,
fifo_wr_full => open ,
-- Read Clock and reset
fifo_async_rd_reset => mmap_reset ,
fifo_async_rd_clk => primary_aclk ,
-- Read Side
fifo_rd_tvalid => sig_fifo_rd_cmd_valid ,
fifo_rd_tready => sig_fifo_rd_cmd_ready ,
fifo_rd_tdata => sig_aq_fifo_data_out ,
fifo_rd_empty => sig_cmd_fifo_empty
);
end generate GEN_ADDR_FIFO;
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_NO_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where no additional FIFOing is needed
-- on the input command address/qualifiers.
--
------------------------------------------------------------
GEN_NO_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH = 1) generate
begin
-- Bypass FIFO
sig_fifo_next_tag <= mstr2addr_tag ;
sig_fifo_next_addr <= mstr2addr_addr ;
sig_fifo_next_len <= mstr2addr_len ;
sig_fifo_next_size <= mstr2addr_size ;
sig_fifo_next_burst <= mstr2addr_burst ;
sig_fifo_next_cache <= mstr2addr_cache ;
sig_fifo_next_user <= mstr2addr_user ;
sig_fifo_next_cmd_cmplt <= mstr2addr_cmd_cmplt ;
sig_fifo_calc_error <= mstr2addr_calc_error ;
sig_cmd_fifo_empty <= sig_addr_reg_empty ;
sig_fifo_wr_cmd_ready <= sig_fifo_rd_cmd_ready ;
sig_fifo_rd_cmd_valid <= sig_fifo_wr_cmd_valid ;
end generate GEN_NO_ADDR_FIFO;
-- Output Register Logic -------------------------------------------
sig_axi_addr <= sig_next_addr_reg ;
sig_axi_alen <= sig_next_len_reg ;
sig_axi_asize <= sig_next_size_reg ;
sig_axi_aburst <= sig_next_burst_reg ;
sig_axi_acache <= sig_next_cache_reg ;
sig_axi_auser <= sig_next_user_reg ;
sig_axi_avalid <= sig_addr_valid_reg ;
sig_calc_error <= sig_calc_error_reg ;
sig_fifo_rd_cmd_ready <= sig_addr_reg_empty and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_addr_posted <= sig_posted_to_axi ;
-- Internal signals
sig_push_addr_reg <= sig_addr_reg_empty and
sig_fifo_rd_cmd_valid and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_pop_addr_reg <= not(sig_calc_error_reg) and
sig_axi_aready and
sig_addr_reg_full;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_ADDR_FIFO_REG
--
-- Process Description:
-- This process implements a register for the Address
-- Control FIFO that operates like a 1 deep Sync FIFO.
--
-------------------------------------------------------------
IMP_ADDR_FIFO_REG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1' or
sig_pop_addr_reg = '1') then
sig_next_tag_reg <= (others => '0') ;
sig_next_addr_reg <= (others => '0') ;
sig_next_len_reg <= (others => '0') ;
sig_next_size_reg <= (others => '0') ;
sig_next_burst_reg <= (others => '0') ;
sig_next_cache_reg <= (others => '0') ;
sig_next_user_reg <= (others => '0') ;
sig_next_cmd_cmplt_reg <= '0' ;
sig_addr_valid_reg <= '0' ;
sig_calc_error_reg <= '0' ;
sig_addr_reg_empty <= '1' ;
sig_addr_reg_full <= '0' ;
elsif (sig_push_addr_reg = '1') then
sig_next_tag_reg <= sig_fifo_next_tag ;
sig_next_addr_reg <= sig_fifo_next_addr ;
sig_next_len_reg <= sig_fifo_next_len ;
sig_next_size_reg <= sig_fifo_next_size ;
sig_next_burst_reg <= sig_fifo_next_burst ;
sig_next_cache_reg <= sig_fifo_next_cache ;
sig_next_user_reg <= sig_fifo_next_user ;
sig_next_cmd_cmplt_reg <= sig_fifo_next_cmd_cmplt ;
sig_addr_valid_reg <= not(sig_fifo_calc_error);
sig_calc_error_reg <= sig_fifo_calc_error ;
sig_addr_reg_empty <= '0' ;
sig_addr_reg_full <= '1' ;
else
null; -- don't change state
end if;
end if;
end process IMP_ADDR_FIFO_REG;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_POSTED_FLAG
--
-- Process Description:
-- This implements a FLOP that creates a 1 clock wide pulse
-- indicating a new address/qualifier set has been posted to
-- the AXI Addres Channel outputs. This is used to synchronize
-- the Data Channel Controller.
--
-------------------------------------------------------------
IMP_POSTED_FLAG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1') then
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
elsif (sig_push_addr_reg = '1') then
sig_posted_to_axi <= '1';
sig_posted_to_axi_2 <= '1';
else
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
end if;
end if;
end process IMP_POSTED_FLAG;
-- PROC_CMD_DETECT : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_addr_valid_del <= first_addr_valid;
-- end if;
-- end process PROC_CMD_DETECT;
--
-- PROC_ADDR_DET : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= (others => '0');
-- last_addr_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (mstr2addr_cmd_valid = '1' and first_addr_valid = '0') then
-- first_addr_valid <= '1';
-- first_addr_int <= mstr2addr_addr;
-- last_addr_int <= last_addr_int;
-- elsif (mstr2addr_cmd_cmplt = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= first_addr_int;
-- last_addr_int <= mstr2addr_addr;
-- end if;
-- end if;
-- end process PROC_ADDR_DET;
--
-- latch <= first_addr_valid and (not first_addr_valid_del);
-- latch_n <= (not first_addr_valid) and first_addr_valid_del;
--
-- PROC_CACHE1 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- mstr2addr_cache_info_int <= (others => '0');
-- latch_n_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (latch_n = '1') then
-- mstr2addr_cache_info_int <= mstr2addr_cache_info;
-- end if;
-- latch_n_del <= latch_n;
-- end if;
-- end process PROC_CACHE1;
--
--
-- PROC_CACHE : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int1 <= (others => '0');
-- first_one <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_one <= '0';
---- if (latch = '1' and first_one = '0') then -- first one
-- if (sig_addr_valid_reg = '0' and first_addr_valid = '0') then
-- addr2axi_cache_int1 <= mstr2addr_cache_info;
---- first_one <= '1';
---- elsif (latch_n_del = '1') then
---- addr2axi_cache_int <= mstr2addr_cache_info_int;
-- elsif ((first_addr_int = sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- elsif ((last_addr_int >= sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- end if;
-- end if;
-- end process PROC_CACHE;
--
--
-- PROC_CACHE2 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- addr2axi_cache_int <= addr2axi_cache_int1;
-- end if;
-- end process PROC_CACHE2;
--
--addr2axi_cache <= addr2axi_cache_int (3 downto 0);
--addr2axi_user <= addr2axi_cache_int (7 downto 4);
--
end implementation;
|
----------------------------------------------------------------------------
-- axi_datamover_addr_cntl.vhd
----------------------------------------------------------------------------
--
-- *************************************************************************
--
-- (c) Copyright 2010-2011 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- *************************************************************************
--
-------------------------------------------------------------------------------
-- Filename: axi_datamover_addr_cntl.vhd
--
-- Description:
-- This file implements the axi_datamover Master Address Controller.
--
--
--
--
-- VHDL-Standard: VHDL'93
-------------------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library axi_datamover_v5_1;
Use axi_datamover_v5_1.axi_datamover_fifo;
-------------------------------------------------------------------------------
entity axi_datamover_addr_cntl is
generic (
C_ADDR_FIFO_DEPTH : Integer range 1 to 32 := 4;
-- sets the depth of the Command Queue FIFO
C_ADDR_WIDTH : Integer range 32 to 64 := 32;
-- Sets the address bus width
C_ADDR_ID : Integer range 0 to 255 := 0;
-- Sets the value to be on the AxID output
C_ADDR_ID_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the AxID output
C_TAG_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the Command Tag field width
C_FAMILY : String := "virtex7"
-- Specifies the target FPGA family
);
port (
-- Clock input ---------------------------------------------
primary_aclk : in std_logic; --
-- Primary synchronization clock for the Master side --
-- interface and internal logic. It is also used --
-- for the User interface synchronization when --
-- C_STSCMD_IS_ASYNC = 0. --
--
-- Reset input --
mmap_reset : in std_logic; --
-- Reset used for the internal master logic --
------------------------------------------------------------
-- AXI Address Channel I/O --------------------------------------------
addr2axi_aid : out std_logic_vector(C_ADDR_ID_WIDTH-1 downto 0); --
-- AXI Address Channel ID output --
--
addr2axi_aaddr : out std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- AXI Address Channel Address output --
--
addr2axi_alen : out std_logic_vector(7 downto 0); --
-- AXI Address Channel LEN output --
-- Sized to support 256 data beat bursts --
--
addr2axi_asize : out std_logic_vector(2 downto 0); --
-- AXI Address Channel SIZE output --
--
addr2axi_aburst : out std_logic_vector(1 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_acache : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_auser : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_aprot : out std_logic_vector(2 downto 0); --
-- AXI Address Channel PROT output --
--
addr2axi_avalid : out std_logic; --
-- AXI Address Channel VALID output --
--
axi2addr_aready : in std_logic; --
-- AXI Address Channel READY input --
------------------------------------------------------------------------
-- Currently unsupported AXI Address Channel output signals -------
-- addr2axi_alock : out std_logic_vector(2 downto 0); --
-- addr2axi_acache : out std_logic_vector(4 downto 0); --
-- addr2axi_aqos : out std_logic_vector(3 downto 0); --
-- addr2axi_aregion : out std_logic_vector(3 downto 0); --
-------------------------------------------------------------------
-- Command Calculation Interface -----------------------------------------
mstr2addr_tag : In std_logic_vector(C_TAG_WIDTH-1 downto 0); --
-- The next command tag --
--
mstr2addr_addr : In std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- The next command address to put on the AXI MMap ADDR --
--
mstr2addr_len : In std_logic_vector(7 downto 0); --
-- The next command length to put on the AXI MMap LEN --
-- Sized to support 256 data beat bursts --
--
mstr2addr_size : In std_logic_vector(2 downto 0); --
-- The next command size to put on the AXI MMap SIZE --
--
mstr2addr_burst : In std_logic_vector(1 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cache : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_user : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cmd_cmplt : In std_logic; --
-- The indication to the Address Channel that the current --
-- sub-command output is the last one compiled from the --
-- parent command pulled from the Command FIFO --
--
mstr2addr_calc_error : In std_logic; --
-- Indication if the next command in the calculation pipe --
-- has a calculation error --
--
mstr2addr_cmd_valid : in std_logic; --
-- The next command valid indication to the Address Channel --
-- Controller for the AXI MMap --
--
addr2mstr_cmd_ready : out std_logic; --
-- Indication to the Command Calculator that the --
-- command is being accepted --
--------------------------------------------------------------------------
-- Halted Indication to Reset Module ------------------------------
addr2rst_stop_cmplt : out std_logic; --
-- Output flag indicating the address controller has stopped --
-- posting commands to the Address Channel due to a stop --
-- request vai the data2addr_stop_req input port --
------------------------------------------------------------------
-- Address Generation Control ---------------------------------------
allow_addr_req : in std_logic; --
-- Input used to enable/stall the posting of address requests. --
-- 0 = stall address request generation. --
-- 1 = Enable Address request geneartion --
--
addr_req_posted : out std_logic; --
-- Indication from the Address Channel Controller to external --
-- User logic that an address has been posted to the --
-- AXI Address Channel. --
---------------------------------------------------------------------
-- Data Channel Interface ---------------------------------------------
addr2data_addr_posted : Out std_logic; --
-- Indication from the Address Channel Controller to the --
-- Data Controller that an address has been posted to the --
-- AXI Address Channel. --
--
data2addr_data_rdy : In std_logic; --
-- Indication that the Data Channel is ready to send the first --
-- databeat of the next command on the write data channel. --
-- This is used for the "wait for data" feature which keeps the --
-- address controller from issuing a transfer requset until the --
-- corresponding data is ready. This is expected to be held in --
-- the asserted state until the addr2data_addr_posted signal is --
-- asserted. --
--
data2addr_stop_req : In std_logic; --
-- Indication that the Data Channel has encountered an error --
-- or a soft shutdown request and needs the Address Controller --
-- to stop posting commands to the AXI Address channel --
-----------------------------------------------------------------------
-- Status Module Interface ---------------------------------------
addr2stat_calc_error : out std_logic; --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is loaded with a Calc error --
--
addr2stat_cmd_fifo_empty : out std_logic --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is empty --
------------------------------------------------------------------
);
end entity axi_datamover_addr_cntl;
architecture implementation of axi_datamover_addr_cntl is
attribute DowngradeIPIdentifiedWarnings: string;
attribute DowngradeIPIdentifiedWarnings of implementation : architecture is "yes";
-- Constant Declarations --------------------------------------------
Constant APROT_VALUE : std_logic_vector(2 downto 0) := (others => '0');
--'0' & -- bit 2, Normal Access
--'0' & -- bit 1, Nonsecure Access
--'0'; -- bit 0, Data Access
Constant LEN_WIDTH : integer := 8;
Constant SIZE_WIDTH : integer := 3;
Constant BURST_WIDTH : integer := 2;
Constant CMD_CMPLT_WIDTH : integer := 1;
Constant CALC_ERROR_WIDTH : integer := 1;
Constant ADDR_QUAL_WIDTH : integer := C_TAG_WIDTH + -- Cmd Tag field width
C_ADDR_WIDTH + -- Cmd Address field width
LEN_WIDTH + -- Cmd Len field width
SIZE_WIDTH + -- Cmd Size field width
BURST_WIDTH + -- Cmd Burst field width
CMD_CMPLT_WIDTH + -- Cmd Cmplt filed width
CALC_ERROR_WIDTH + -- Cmd Calc Error flag
8; -- Cmd Cache, user fields
Constant USE_SYNC_FIFO : integer := 0;
Constant REG_FIFO_PRIM : integer := 0;
Constant BRAM_FIFO_PRIM : integer := 1;
Constant SRL_FIFO_PRIM : integer := 2;
Constant FIFO_PRIM_TYPE : integer := SRL_FIFO_PRIM;
-- Signal Declarations --------------------------------------------
signal sig_axi_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_axi_alen : std_logic_vector(7 downto 0) := (others => '0');
signal sig_axi_asize : std_logic_vector(2 downto 0) := (others => '0');
signal sig_axi_aburst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_axi_acache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_auser : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_avalid : std_logic := '0';
signal sig_axi_aready : std_logic := '0';
signal sig_addr_posted : std_logic := '0';
signal sig_calc_error : std_logic := '0';
signal sig_cmd_fifo_empty : std_logic := '0';
Signal sig_aq_fifo_data_in : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
Signal sig_aq_fifo_data_out : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_tag : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_len : std_logic_vector(7 downto 0) := (others => '0');
signal sig_fifo_next_size : std_logic_vector(2 downto 0) := (others => '0');
signal sig_fifo_next_burst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_fifo_next_user : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cmd_cmplt : std_logic := '0';
signal sig_fifo_calc_error : std_logic := '0';
signal sig_fifo_wr_cmd_valid : std_logic := '0';
signal sig_fifo_wr_cmd_ready : std_logic := '0';
signal sig_fifo_rd_cmd_valid : std_logic := '0';
signal sig_fifo_rd_cmd_ready : std_logic := '0';
signal sig_next_tag_reg : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_next_addr_reg : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_next_len_reg : std_logic_vector(7 downto 0) := (others => '0');
signal sig_next_size_reg : std_logic_vector(2 downto 0) := (others => '0');
signal sig_next_burst_reg : std_logic_vector(1 downto 0) := (others => '0');
signal sig_next_cache_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_user_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_cmd_cmplt_reg : std_logic := '0';
signal sig_addr_valid_reg : std_logic := '0';
signal sig_calc_error_reg : std_logic := '0';
signal sig_pop_addr_reg : std_logic := '0';
signal sig_push_addr_reg : std_logic := '0';
signal sig_addr_reg_empty : std_logic := '0';
signal sig_addr_reg_full : std_logic := '0';
signal sig_posted_to_axi : std_logic := '0';
-- obsoleted signal sig_set_wfd_flop : std_logic := '0';
-- obsoleted signal sig_clr_wfd_flop : std_logic := '0';
-- obsoleted signal sig_wait_for_data : std_logic := '0';
-- obsoleted signal sig_data2addr_data_rdy_reg : std_logic := '0';
signal sig_allow_addr_req : std_logic := '0';
signal sig_posted_to_axi_2 : std_logic := '0';
signal new_cmd_in : std_logic;
signal first_addr_valid : std_logic;
signal first_addr_valid_del : std_logic;
signal first_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal last_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal addr2axi_cache_int : std_logic_vector (7 downto 0);
signal addr2axi_cache_int1 : std_logic_vector (7 downto 0);
signal last_one : std_logic;
signal latch : std_logic;
signal first_one : std_logic;
signal latch_n : std_logic;
signal latch_n_del : std_logic;
signal mstr2addr_cache_info_int : std_logic_vector (7 downto 0);
-- Register duplication attribute assignments to control fanout
-- on handshake output signals
Attribute KEEP : string; -- declaration
Attribute EQUIVALENT_REGISTER_REMOVAL : string; -- declaration
Attribute KEEP of sig_posted_to_axi : signal is "TRUE"; -- definition
Attribute KEEP of sig_posted_to_axi_2 : signal is "TRUE"; -- definition
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi : signal is "no";
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi_2 : signal is "no";
begin --(architecture implementation)
-- AXI I/O Port assignments
addr2axi_aid <= STD_LOGIC_VECTOR(TO_UNSIGNED(C_ADDR_ID, C_ADDR_ID_WIDTH));
addr2axi_aaddr <= sig_axi_addr ;
addr2axi_alen <= sig_axi_alen ;
addr2axi_asize <= sig_axi_asize ;
addr2axi_aburst <= sig_axi_aburst;
addr2axi_acache <= sig_axi_acache;
addr2axi_auser <= sig_axi_auser;
addr2axi_aprot <= APROT_VALUE ;
addr2axi_avalid <= sig_axi_avalid;
sig_axi_aready <= axi2addr_aready;
-- Command Calculator Handshake output
sig_fifo_wr_cmd_valid <= mstr2addr_cmd_valid ;
addr2mstr_cmd_ready <= sig_fifo_wr_cmd_ready;
-- Data Channel Controller synchro pulse output
addr2data_addr_posted <= sig_addr_posted;
-- Status Module Interface outputs
addr2stat_calc_error <= sig_calc_error ;
addr2stat_cmd_fifo_empty <= sig_addr_reg_empty and
sig_cmd_fifo_empty;
-- Flag Indicating the Address Controller has completed a Stop
addr2rst_stop_cmplt <= (data2addr_stop_req and -- normal shutdown case
sig_addr_reg_empty) or
(data2addr_stop_req and -- shutdown after error trap
sig_calc_error);
-- Assign the address posting control and status
sig_allow_addr_req <= allow_addr_req ;
addr_req_posted <= sig_posted_to_axi_2 ;
-- Internal logic ------------------------------
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where the cmd qualifier depth is
-- greater than 1.
--
------------------------------------------------------------
GEN_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH > 1) generate
begin
-- Format the input FIFO data word
sig_aq_fifo_data_in <= mstr2addr_cache &
mstr2addr_user &
mstr2addr_calc_error &
mstr2addr_cmd_cmplt &
mstr2addr_burst &
mstr2addr_size &
mstr2addr_len &
mstr2addr_addr &
mstr2addr_tag ;
-- Rip fields from FIFO output data word
sig_fifo_next_cache <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 7)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 4)
);
sig_fifo_next_user <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 3)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)
);
sig_fifo_calc_error <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)-1);
sig_fifo_next_cmd_cmplt <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH)-1);
sig_fifo_next_burst <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH) ;
sig_fifo_next_size <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH) ;
sig_fifo_next_len <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH) ;
sig_fifo_next_addr <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH)-1
downto
C_TAG_WIDTH) ;
sig_fifo_next_tag <= sig_aq_fifo_data_out(C_TAG_WIDTH-1 downto 0);
------------------------------------------------------------
-- Instance: I_ADDR_QUAL_FIFO
--
-- Description:
-- Instance for the Address/Qualifier FIFO
--
------------------------------------------------------------
I_ADDR_QUAL_FIFO : entity axi_datamover_v5_1.axi_datamover_fifo
generic map (
C_DWIDTH => ADDR_QUAL_WIDTH ,
C_DEPTH => C_ADDR_FIFO_DEPTH ,
C_IS_ASYNC => USE_SYNC_FIFO ,
C_PRIM_TYPE => FIFO_PRIM_TYPE ,
C_FAMILY => C_FAMILY
)
port map (
-- Write Clock and reset
fifo_wr_reset => mmap_reset ,
fifo_wr_clk => primary_aclk ,
-- Write Side
fifo_wr_tvalid => sig_fifo_wr_cmd_valid ,
fifo_wr_tready => sig_fifo_wr_cmd_ready ,
fifo_wr_tdata => sig_aq_fifo_data_in ,
fifo_wr_full => open ,
-- Read Clock and reset
fifo_async_rd_reset => mmap_reset ,
fifo_async_rd_clk => primary_aclk ,
-- Read Side
fifo_rd_tvalid => sig_fifo_rd_cmd_valid ,
fifo_rd_tready => sig_fifo_rd_cmd_ready ,
fifo_rd_tdata => sig_aq_fifo_data_out ,
fifo_rd_empty => sig_cmd_fifo_empty
);
end generate GEN_ADDR_FIFO;
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_NO_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where no additional FIFOing is needed
-- on the input command address/qualifiers.
--
------------------------------------------------------------
GEN_NO_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH = 1) generate
begin
-- Bypass FIFO
sig_fifo_next_tag <= mstr2addr_tag ;
sig_fifo_next_addr <= mstr2addr_addr ;
sig_fifo_next_len <= mstr2addr_len ;
sig_fifo_next_size <= mstr2addr_size ;
sig_fifo_next_burst <= mstr2addr_burst ;
sig_fifo_next_cache <= mstr2addr_cache ;
sig_fifo_next_user <= mstr2addr_user ;
sig_fifo_next_cmd_cmplt <= mstr2addr_cmd_cmplt ;
sig_fifo_calc_error <= mstr2addr_calc_error ;
sig_cmd_fifo_empty <= sig_addr_reg_empty ;
sig_fifo_wr_cmd_ready <= sig_fifo_rd_cmd_ready ;
sig_fifo_rd_cmd_valid <= sig_fifo_wr_cmd_valid ;
end generate GEN_NO_ADDR_FIFO;
-- Output Register Logic -------------------------------------------
sig_axi_addr <= sig_next_addr_reg ;
sig_axi_alen <= sig_next_len_reg ;
sig_axi_asize <= sig_next_size_reg ;
sig_axi_aburst <= sig_next_burst_reg ;
sig_axi_acache <= sig_next_cache_reg ;
sig_axi_auser <= sig_next_user_reg ;
sig_axi_avalid <= sig_addr_valid_reg ;
sig_calc_error <= sig_calc_error_reg ;
sig_fifo_rd_cmd_ready <= sig_addr_reg_empty and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_addr_posted <= sig_posted_to_axi ;
-- Internal signals
sig_push_addr_reg <= sig_addr_reg_empty and
sig_fifo_rd_cmd_valid and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_pop_addr_reg <= not(sig_calc_error_reg) and
sig_axi_aready and
sig_addr_reg_full;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_ADDR_FIFO_REG
--
-- Process Description:
-- This process implements a register for the Address
-- Control FIFO that operates like a 1 deep Sync FIFO.
--
-------------------------------------------------------------
IMP_ADDR_FIFO_REG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1' or
sig_pop_addr_reg = '1') then
sig_next_tag_reg <= (others => '0') ;
sig_next_addr_reg <= (others => '0') ;
sig_next_len_reg <= (others => '0') ;
sig_next_size_reg <= (others => '0') ;
sig_next_burst_reg <= (others => '0') ;
sig_next_cache_reg <= (others => '0') ;
sig_next_user_reg <= (others => '0') ;
sig_next_cmd_cmplt_reg <= '0' ;
sig_addr_valid_reg <= '0' ;
sig_calc_error_reg <= '0' ;
sig_addr_reg_empty <= '1' ;
sig_addr_reg_full <= '0' ;
elsif (sig_push_addr_reg = '1') then
sig_next_tag_reg <= sig_fifo_next_tag ;
sig_next_addr_reg <= sig_fifo_next_addr ;
sig_next_len_reg <= sig_fifo_next_len ;
sig_next_size_reg <= sig_fifo_next_size ;
sig_next_burst_reg <= sig_fifo_next_burst ;
sig_next_cache_reg <= sig_fifo_next_cache ;
sig_next_user_reg <= sig_fifo_next_user ;
sig_next_cmd_cmplt_reg <= sig_fifo_next_cmd_cmplt ;
sig_addr_valid_reg <= not(sig_fifo_calc_error);
sig_calc_error_reg <= sig_fifo_calc_error ;
sig_addr_reg_empty <= '0' ;
sig_addr_reg_full <= '1' ;
else
null; -- don't change state
end if;
end if;
end process IMP_ADDR_FIFO_REG;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_POSTED_FLAG
--
-- Process Description:
-- This implements a FLOP that creates a 1 clock wide pulse
-- indicating a new address/qualifier set has been posted to
-- the AXI Addres Channel outputs. This is used to synchronize
-- the Data Channel Controller.
--
-------------------------------------------------------------
IMP_POSTED_FLAG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1') then
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
elsif (sig_push_addr_reg = '1') then
sig_posted_to_axi <= '1';
sig_posted_to_axi_2 <= '1';
else
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
end if;
end if;
end process IMP_POSTED_FLAG;
-- PROC_CMD_DETECT : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_addr_valid_del <= first_addr_valid;
-- end if;
-- end process PROC_CMD_DETECT;
--
-- PROC_ADDR_DET : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= (others => '0');
-- last_addr_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (mstr2addr_cmd_valid = '1' and first_addr_valid = '0') then
-- first_addr_valid <= '1';
-- first_addr_int <= mstr2addr_addr;
-- last_addr_int <= last_addr_int;
-- elsif (mstr2addr_cmd_cmplt = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= first_addr_int;
-- last_addr_int <= mstr2addr_addr;
-- end if;
-- end if;
-- end process PROC_ADDR_DET;
--
-- latch <= first_addr_valid and (not first_addr_valid_del);
-- latch_n <= (not first_addr_valid) and first_addr_valid_del;
--
-- PROC_CACHE1 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- mstr2addr_cache_info_int <= (others => '0');
-- latch_n_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (latch_n = '1') then
-- mstr2addr_cache_info_int <= mstr2addr_cache_info;
-- end if;
-- latch_n_del <= latch_n;
-- end if;
-- end process PROC_CACHE1;
--
--
-- PROC_CACHE : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int1 <= (others => '0');
-- first_one <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_one <= '0';
---- if (latch = '1' and first_one = '0') then -- first one
-- if (sig_addr_valid_reg = '0' and first_addr_valid = '0') then
-- addr2axi_cache_int1 <= mstr2addr_cache_info;
---- first_one <= '1';
---- elsif (latch_n_del = '1') then
---- addr2axi_cache_int <= mstr2addr_cache_info_int;
-- elsif ((first_addr_int = sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- elsif ((last_addr_int >= sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- end if;
-- end if;
-- end process PROC_CACHE;
--
--
-- PROC_CACHE2 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- addr2axi_cache_int <= addr2axi_cache_int1;
-- end if;
-- end process PROC_CACHE2;
--
--addr2axi_cache <= addr2axi_cache_int (3 downto 0);
--addr2axi_user <= addr2axi_cache_int (7 downto 4);
--
end implementation;
|
----------------------------------------------------------------------------
-- axi_datamover_addr_cntl.vhd
----------------------------------------------------------------------------
--
-- *************************************************************************
--
-- (c) Copyright 2010-2011 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- *************************************************************************
--
-------------------------------------------------------------------------------
-- Filename: axi_datamover_addr_cntl.vhd
--
-- Description:
-- This file implements the axi_datamover Master Address Controller.
--
--
--
--
-- VHDL-Standard: VHDL'93
-------------------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library axi_datamover_v5_1;
Use axi_datamover_v5_1.axi_datamover_fifo;
-------------------------------------------------------------------------------
entity axi_datamover_addr_cntl is
generic (
C_ADDR_FIFO_DEPTH : Integer range 1 to 32 := 4;
-- sets the depth of the Command Queue FIFO
C_ADDR_WIDTH : Integer range 32 to 64 := 32;
-- Sets the address bus width
C_ADDR_ID : Integer range 0 to 255 := 0;
-- Sets the value to be on the AxID output
C_ADDR_ID_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the AxID output
C_TAG_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the Command Tag field width
C_FAMILY : String := "virtex7"
-- Specifies the target FPGA family
);
port (
-- Clock input ---------------------------------------------
primary_aclk : in std_logic; --
-- Primary synchronization clock for the Master side --
-- interface and internal logic. It is also used --
-- for the User interface synchronization when --
-- C_STSCMD_IS_ASYNC = 0. --
--
-- Reset input --
mmap_reset : in std_logic; --
-- Reset used for the internal master logic --
------------------------------------------------------------
-- AXI Address Channel I/O --------------------------------------------
addr2axi_aid : out std_logic_vector(C_ADDR_ID_WIDTH-1 downto 0); --
-- AXI Address Channel ID output --
--
addr2axi_aaddr : out std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- AXI Address Channel Address output --
--
addr2axi_alen : out std_logic_vector(7 downto 0); --
-- AXI Address Channel LEN output --
-- Sized to support 256 data beat bursts --
--
addr2axi_asize : out std_logic_vector(2 downto 0); --
-- AXI Address Channel SIZE output --
--
addr2axi_aburst : out std_logic_vector(1 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_acache : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_auser : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_aprot : out std_logic_vector(2 downto 0); --
-- AXI Address Channel PROT output --
--
addr2axi_avalid : out std_logic; --
-- AXI Address Channel VALID output --
--
axi2addr_aready : in std_logic; --
-- AXI Address Channel READY input --
------------------------------------------------------------------------
-- Currently unsupported AXI Address Channel output signals -------
-- addr2axi_alock : out std_logic_vector(2 downto 0); --
-- addr2axi_acache : out std_logic_vector(4 downto 0); --
-- addr2axi_aqos : out std_logic_vector(3 downto 0); --
-- addr2axi_aregion : out std_logic_vector(3 downto 0); --
-------------------------------------------------------------------
-- Command Calculation Interface -----------------------------------------
mstr2addr_tag : In std_logic_vector(C_TAG_WIDTH-1 downto 0); --
-- The next command tag --
--
mstr2addr_addr : In std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- The next command address to put on the AXI MMap ADDR --
--
mstr2addr_len : In std_logic_vector(7 downto 0); --
-- The next command length to put on the AXI MMap LEN --
-- Sized to support 256 data beat bursts --
--
mstr2addr_size : In std_logic_vector(2 downto 0); --
-- The next command size to put on the AXI MMap SIZE --
--
mstr2addr_burst : In std_logic_vector(1 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cache : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_user : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cmd_cmplt : In std_logic; --
-- The indication to the Address Channel that the current --
-- sub-command output is the last one compiled from the --
-- parent command pulled from the Command FIFO --
--
mstr2addr_calc_error : In std_logic; --
-- Indication if the next command in the calculation pipe --
-- has a calculation error --
--
mstr2addr_cmd_valid : in std_logic; --
-- The next command valid indication to the Address Channel --
-- Controller for the AXI MMap --
--
addr2mstr_cmd_ready : out std_logic; --
-- Indication to the Command Calculator that the --
-- command is being accepted --
--------------------------------------------------------------------------
-- Halted Indication to Reset Module ------------------------------
addr2rst_stop_cmplt : out std_logic; --
-- Output flag indicating the address controller has stopped --
-- posting commands to the Address Channel due to a stop --
-- request vai the data2addr_stop_req input port --
------------------------------------------------------------------
-- Address Generation Control ---------------------------------------
allow_addr_req : in std_logic; --
-- Input used to enable/stall the posting of address requests. --
-- 0 = stall address request generation. --
-- 1 = Enable Address request geneartion --
--
addr_req_posted : out std_logic; --
-- Indication from the Address Channel Controller to external --
-- User logic that an address has been posted to the --
-- AXI Address Channel. --
---------------------------------------------------------------------
-- Data Channel Interface ---------------------------------------------
addr2data_addr_posted : Out std_logic; --
-- Indication from the Address Channel Controller to the --
-- Data Controller that an address has been posted to the --
-- AXI Address Channel. --
--
data2addr_data_rdy : In std_logic; --
-- Indication that the Data Channel is ready to send the first --
-- databeat of the next command on the write data channel. --
-- This is used for the "wait for data" feature which keeps the --
-- address controller from issuing a transfer requset until the --
-- corresponding data is ready. This is expected to be held in --
-- the asserted state until the addr2data_addr_posted signal is --
-- asserted. --
--
data2addr_stop_req : In std_logic; --
-- Indication that the Data Channel has encountered an error --
-- or a soft shutdown request and needs the Address Controller --
-- to stop posting commands to the AXI Address channel --
-----------------------------------------------------------------------
-- Status Module Interface ---------------------------------------
addr2stat_calc_error : out std_logic; --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is loaded with a Calc error --
--
addr2stat_cmd_fifo_empty : out std_logic --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is empty --
------------------------------------------------------------------
);
end entity axi_datamover_addr_cntl;
architecture implementation of axi_datamover_addr_cntl is
attribute DowngradeIPIdentifiedWarnings: string;
attribute DowngradeIPIdentifiedWarnings of implementation : architecture is "yes";
-- Constant Declarations --------------------------------------------
Constant APROT_VALUE : std_logic_vector(2 downto 0) := (others => '0');
--'0' & -- bit 2, Normal Access
--'0' & -- bit 1, Nonsecure Access
--'0'; -- bit 0, Data Access
Constant LEN_WIDTH : integer := 8;
Constant SIZE_WIDTH : integer := 3;
Constant BURST_WIDTH : integer := 2;
Constant CMD_CMPLT_WIDTH : integer := 1;
Constant CALC_ERROR_WIDTH : integer := 1;
Constant ADDR_QUAL_WIDTH : integer := C_TAG_WIDTH + -- Cmd Tag field width
C_ADDR_WIDTH + -- Cmd Address field width
LEN_WIDTH + -- Cmd Len field width
SIZE_WIDTH + -- Cmd Size field width
BURST_WIDTH + -- Cmd Burst field width
CMD_CMPLT_WIDTH + -- Cmd Cmplt filed width
CALC_ERROR_WIDTH + -- Cmd Calc Error flag
8; -- Cmd Cache, user fields
Constant USE_SYNC_FIFO : integer := 0;
Constant REG_FIFO_PRIM : integer := 0;
Constant BRAM_FIFO_PRIM : integer := 1;
Constant SRL_FIFO_PRIM : integer := 2;
Constant FIFO_PRIM_TYPE : integer := SRL_FIFO_PRIM;
-- Signal Declarations --------------------------------------------
signal sig_axi_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_axi_alen : std_logic_vector(7 downto 0) := (others => '0');
signal sig_axi_asize : std_logic_vector(2 downto 0) := (others => '0');
signal sig_axi_aburst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_axi_acache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_auser : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_avalid : std_logic := '0';
signal sig_axi_aready : std_logic := '0';
signal sig_addr_posted : std_logic := '0';
signal sig_calc_error : std_logic := '0';
signal sig_cmd_fifo_empty : std_logic := '0';
Signal sig_aq_fifo_data_in : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
Signal sig_aq_fifo_data_out : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_tag : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_len : std_logic_vector(7 downto 0) := (others => '0');
signal sig_fifo_next_size : std_logic_vector(2 downto 0) := (others => '0');
signal sig_fifo_next_burst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_fifo_next_user : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cmd_cmplt : std_logic := '0';
signal sig_fifo_calc_error : std_logic := '0';
signal sig_fifo_wr_cmd_valid : std_logic := '0';
signal sig_fifo_wr_cmd_ready : std_logic := '0';
signal sig_fifo_rd_cmd_valid : std_logic := '0';
signal sig_fifo_rd_cmd_ready : std_logic := '0';
signal sig_next_tag_reg : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_next_addr_reg : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_next_len_reg : std_logic_vector(7 downto 0) := (others => '0');
signal sig_next_size_reg : std_logic_vector(2 downto 0) := (others => '0');
signal sig_next_burst_reg : std_logic_vector(1 downto 0) := (others => '0');
signal sig_next_cache_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_user_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_cmd_cmplt_reg : std_logic := '0';
signal sig_addr_valid_reg : std_logic := '0';
signal sig_calc_error_reg : std_logic := '0';
signal sig_pop_addr_reg : std_logic := '0';
signal sig_push_addr_reg : std_logic := '0';
signal sig_addr_reg_empty : std_logic := '0';
signal sig_addr_reg_full : std_logic := '0';
signal sig_posted_to_axi : std_logic := '0';
-- obsoleted signal sig_set_wfd_flop : std_logic := '0';
-- obsoleted signal sig_clr_wfd_flop : std_logic := '0';
-- obsoleted signal sig_wait_for_data : std_logic := '0';
-- obsoleted signal sig_data2addr_data_rdy_reg : std_logic := '0';
signal sig_allow_addr_req : std_logic := '0';
signal sig_posted_to_axi_2 : std_logic := '0';
signal new_cmd_in : std_logic;
signal first_addr_valid : std_logic;
signal first_addr_valid_del : std_logic;
signal first_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal last_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal addr2axi_cache_int : std_logic_vector (7 downto 0);
signal addr2axi_cache_int1 : std_logic_vector (7 downto 0);
signal last_one : std_logic;
signal latch : std_logic;
signal first_one : std_logic;
signal latch_n : std_logic;
signal latch_n_del : std_logic;
signal mstr2addr_cache_info_int : std_logic_vector (7 downto 0);
-- Register duplication attribute assignments to control fanout
-- on handshake output signals
Attribute KEEP : string; -- declaration
Attribute EQUIVALENT_REGISTER_REMOVAL : string; -- declaration
Attribute KEEP of sig_posted_to_axi : signal is "TRUE"; -- definition
Attribute KEEP of sig_posted_to_axi_2 : signal is "TRUE"; -- definition
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi : signal is "no";
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi_2 : signal is "no";
begin --(architecture implementation)
-- AXI I/O Port assignments
addr2axi_aid <= STD_LOGIC_VECTOR(TO_UNSIGNED(C_ADDR_ID, C_ADDR_ID_WIDTH));
addr2axi_aaddr <= sig_axi_addr ;
addr2axi_alen <= sig_axi_alen ;
addr2axi_asize <= sig_axi_asize ;
addr2axi_aburst <= sig_axi_aburst;
addr2axi_acache <= sig_axi_acache;
addr2axi_auser <= sig_axi_auser;
addr2axi_aprot <= APROT_VALUE ;
addr2axi_avalid <= sig_axi_avalid;
sig_axi_aready <= axi2addr_aready;
-- Command Calculator Handshake output
sig_fifo_wr_cmd_valid <= mstr2addr_cmd_valid ;
addr2mstr_cmd_ready <= sig_fifo_wr_cmd_ready;
-- Data Channel Controller synchro pulse output
addr2data_addr_posted <= sig_addr_posted;
-- Status Module Interface outputs
addr2stat_calc_error <= sig_calc_error ;
addr2stat_cmd_fifo_empty <= sig_addr_reg_empty and
sig_cmd_fifo_empty;
-- Flag Indicating the Address Controller has completed a Stop
addr2rst_stop_cmplt <= (data2addr_stop_req and -- normal shutdown case
sig_addr_reg_empty) or
(data2addr_stop_req and -- shutdown after error trap
sig_calc_error);
-- Assign the address posting control and status
sig_allow_addr_req <= allow_addr_req ;
addr_req_posted <= sig_posted_to_axi_2 ;
-- Internal logic ------------------------------
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where the cmd qualifier depth is
-- greater than 1.
--
------------------------------------------------------------
GEN_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH > 1) generate
begin
-- Format the input FIFO data word
sig_aq_fifo_data_in <= mstr2addr_cache &
mstr2addr_user &
mstr2addr_calc_error &
mstr2addr_cmd_cmplt &
mstr2addr_burst &
mstr2addr_size &
mstr2addr_len &
mstr2addr_addr &
mstr2addr_tag ;
-- Rip fields from FIFO output data word
sig_fifo_next_cache <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 7)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 4)
);
sig_fifo_next_user <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 3)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)
);
sig_fifo_calc_error <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)-1);
sig_fifo_next_cmd_cmplt <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH)-1);
sig_fifo_next_burst <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH) ;
sig_fifo_next_size <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH) ;
sig_fifo_next_len <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH) ;
sig_fifo_next_addr <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH)-1
downto
C_TAG_WIDTH) ;
sig_fifo_next_tag <= sig_aq_fifo_data_out(C_TAG_WIDTH-1 downto 0);
------------------------------------------------------------
-- Instance: I_ADDR_QUAL_FIFO
--
-- Description:
-- Instance for the Address/Qualifier FIFO
--
------------------------------------------------------------
I_ADDR_QUAL_FIFO : entity axi_datamover_v5_1.axi_datamover_fifo
generic map (
C_DWIDTH => ADDR_QUAL_WIDTH ,
C_DEPTH => C_ADDR_FIFO_DEPTH ,
C_IS_ASYNC => USE_SYNC_FIFO ,
C_PRIM_TYPE => FIFO_PRIM_TYPE ,
C_FAMILY => C_FAMILY
)
port map (
-- Write Clock and reset
fifo_wr_reset => mmap_reset ,
fifo_wr_clk => primary_aclk ,
-- Write Side
fifo_wr_tvalid => sig_fifo_wr_cmd_valid ,
fifo_wr_tready => sig_fifo_wr_cmd_ready ,
fifo_wr_tdata => sig_aq_fifo_data_in ,
fifo_wr_full => open ,
-- Read Clock and reset
fifo_async_rd_reset => mmap_reset ,
fifo_async_rd_clk => primary_aclk ,
-- Read Side
fifo_rd_tvalid => sig_fifo_rd_cmd_valid ,
fifo_rd_tready => sig_fifo_rd_cmd_ready ,
fifo_rd_tdata => sig_aq_fifo_data_out ,
fifo_rd_empty => sig_cmd_fifo_empty
);
end generate GEN_ADDR_FIFO;
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_NO_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where no additional FIFOing is needed
-- on the input command address/qualifiers.
--
------------------------------------------------------------
GEN_NO_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH = 1) generate
begin
-- Bypass FIFO
sig_fifo_next_tag <= mstr2addr_tag ;
sig_fifo_next_addr <= mstr2addr_addr ;
sig_fifo_next_len <= mstr2addr_len ;
sig_fifo_next_size <= mstr2addr_size ;
sig_fifo_next_burst <= mstr2addr_burst ;
sig_fifo_next_cache <= mstr2addr_cache ;
sig_fifo_next_user <= mstr2addr_user ;
sig_fifo_next_cmd_cmplt <= mstr2addr_cmd_cmplt ;
sig_fifo_calc_error <= mstr2addr_calc_error ;
sig_cmd_fifo_empty <= sig_addr_reg_empty ;
sig_fifo_wr_cmd_ready <= sig_fifo_rd_cmd_ready ;
sig_fifo_rd_cmd_valid <= sig_fifo_wr_cmd_valid ;
end generate GEN_NO_ADDR_FIFO;
-- Output Register Logic -------------------------------------------
sig_axi_addr <= sig_next_addr_reg ;
sig_axi_alen <= sig_next_len_reg ;
sig_axi_asize <= sig_next_size_reg ;
sig_axi_aburst <= sig_next_burst_reg ;
sig_axi_acache <= sig_next_cache_reg ;
sig_axi_auser <= sig_next_user_reg ;
sig_axi_avalid <= sig_addr_valid_reg ;
sig_calc_error <= sig_calc_error_reg ;
sig_fifo_rd_cmd_ready <= sig_addr_reg_empty and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_addr_posted <= sig_posted_to_axi ;
-- Internal signals
sig_push_addr_reg <= sig_addr_reg_empty and
sig_fifo_rd_cmd_valid and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_pop_addr_reg <= not(sig_calc_error_reg) and
sig_axi_aready and
sig_addr_reg_full;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_ADDR_FIFO_REG
--
-- Process Description:
-- This process implements a register for the Address
-- Control FIFO that operates like a 1 deep Sync FIFO.
--
-------------------------------------------------------------
IMP_ADDR_FIFO_REG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1' or
sig_pop_addr_reg = '1') then
sig_next_tag_reg <= (others => '0') ;
sig_next_addr_reg <= (others => '0') ;
sig_next_len_reg <= (others => '0') ;
sig_next_size_reg <= (others => '0') ;
sig_next_burst_reg <= (others => '0') ;
sig_next_cache_reg <= (others => '0') ;
sig_next_user_reg <= (others => '0') ;
sig_next_cmd_cmplt_reg <= '0' ;
sig_addr_valid_reg <= '0' ;
sig_calc_error_reg <= '0' ;
sig_addr_reg_empty <= '1' ;
sig_addr_reg_full <= '0' ;
elsif (sig_push_addr_reg = '1') then
sig_next_tag_reg <= sig_fifo_next_tag ;
sig_next_addr_reg <= sig_fifo_next_addr ;
sig_next_len_reg <= sig_fifo_next_len ;
sig_next_size_reg <= sig_fifo_next_size ;
sig_next_burst_reg <= sig_fifo_next_burst ;
sig_next_cache_reg <= sig_fifo_next_cache ;
sig_next_user_reg <= sig_fifo_next_user ;
sig_next_cmd_cmplt_reg <= sig_fifo_next_cmd_cmplt ;
sig_addr_valid_reg <= not(sig_fifo_calc_error);
sig_calc_error_reg <= sig_fifo_calc_error ;
sig_addr_reg_empty <= '0' ;
sig_addr_reg_full <= '1' ;
else
null; -- don't change state
end if;
end if;
end process IMP_ADDR_FIFO_REG;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_POSTED_FLAG
--
-- Process Description:
-- This implements a FLOP that creates a 1 clock wide pulse
-- indicating a new address/qualifier set has been posted to
-- the AXI Addres Channel outputs. This is used to synchronize
-- the Data Channel Controller.
--
-------------------------------------------------------------
IMP_POSTED_FLAG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1') then
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
elsif (sig_push_addr_reg = '1') then
sig_posted_to_axi <= '1';
sig_posted_to_axi_2 <= '1';
else
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
end if;
end if;
end process IMP_POSTED_FLAG;
-- PROC_CMD_DETECT : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_addr_valid_del <= first_addr_valid;
-- end if;
-- end process PROC_CMD_DETECT;
--
-- PROC_ADDR_DET : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= (others => '0');
-- last_addr_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (mstr2addr_cmd_valid = '1' and first_addr_valid = '0') then
-- first_addr_valid <= '1';
-- first_addr_int <= mstr2addr_addr;
-- last_addr_int <= last_addr_int;
-- elsif (mstr2addr_cmd_cmplt = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= first_addr_int;
-- last_addr_int <= mstr2addr_addr;
-- end if;
-- end if;
-- end process PROC_ADDR_DET;
--
-- latch <= first_addr_valid and (not first_addr_valid_del);
-- latch_n <= (not first_addr_valid) and first_addr_valid_del;
--
-- PROC_CACHE1 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- mstr2addr_cache_info_int <= (others => '0');
-- latch_n_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (latch_n = '1') then
-- mstr2addr_cache_info_int <= mstr2addr_cache_info;
-- end if;
-- latch_n_del <= latch_n;
-- end if;
-- end process PROC_CACHE1;
--
--
-- PROC_CACHE : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int1 <= (others => '0');
-- first_one <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_one <= '0';
---- if (latch = '1' and first_one = '0') then -- first one
-- if (sig_addr_valid_reg = '0' and first_addr_valid = '0') then
-- addr2axi_cache_int1 <= mstr2addr_cache_info;
---- first_one <= '1';
---- elsif (latch_n_del = '1') then
---- addr2axi_cache_int <= mstr2addr_cache_info_int;
-- elsif ((first_addr_int = sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- elsif ((last_addr_int >= sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- end if;
-- end if;
-- end process PROC_CACHE;
--
--
-- PROC_CACHE2 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- addr2axi_cache_int <= addr2axi_cache_int1;
-- end if;
-- end process PROC_CACHE2;
--
--addr2axi_cache <= addr2axi_cache_int (3 downto 0);
--addr2axi_user <= addr2axi_cache_int (7 downto 4);
--
end implementation;
|
----------------------------------------------------------------------------
-- axi_datamover_addr_cntl.vhd
----------------------------------------------------------------------------
--
-- *************************************************************************
--
-- (c) Copyright 2010-2011 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- *************************************************************************
--
-------------------------------------------------------------------------------
-- Filename: axi_datamover_addr_cntl.vhd
--
-- Description:
-- This file implements the axi_datamover Master Address Controller.
--
--
--
--
-- VHDL-Standard: VHDL'93
-------------------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library axi_datamover_v5_1;
Use axi_datamover_v5_1.axi_datamover_fifo;
-------------------------------------------------------------------------------
entity axi_datamover_addr_cntl is
generic (
C_ADDR_FIFO_DEPTH : Integer range 1 to 32 := 4;
-- sets the depth of the Command Queue FIFO
C_ADDR_WIDTH : Integer range 32 to 64 := 32;
-- Sets the address bus width
C_ADDR_ID : Integer range 0 to 255 := 0;
-- Sets the value to be on the AxID output
C_ADDR_ID_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the AxID output
C_TAG_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the Command Tag field width
C_FAMILY : String := "virtex7"
-- Specifies the target FPGA family
);
port (
-- Clock input ---------------------------------------------
primary_aclk : in std_logic; --
-- Primary synchronization clock for the Master side --
-- interface and internal logic. It is also used --
-- for the User interface synchronization when --
-- C_STSCMD_IS_ASYNC = 0. --
--
-- Reset input --
mmap_reset : in std_logic; --
-- Reset used for the internal master logic --
------------------------------------------------------------
-- AXI Address Channel I/O --------------------------------------------
addr2axi_aid : out std_logic_vector(C_ADDR_ID_WIDTH-1 downto 0); --
-- AXI Address Channel ID output --
--
addr2axi_aaddr : out std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- AXI Address Channel Address output --
--
addr2axi_alen : out std_logic_vector(7 downto 0); --
-- AXI Address Channel LEN output --
-- Sized to support 256 data beat bursts --
--
addr2axi_asize : out std_logic_vector(2 downto 0); --
-- AXI Address Channel SIZE output --
--
addr2axi_aburst : out std_logic_vector(1 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_acache : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_auser : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_aprot : out std_logic_vector(2 downto 0); --
-- AXI Address Channel PROT output --
--
addr2axi_avalid : out std_logic; --
-- AXI Address Channel VALID output --
--
axi2addr_aready : in std_logic; --
-- AXI Address Channel READY input --
------------------------------------------------------------------------
-- Currently unsupported AXI Address Channel output signals -------
-- addr2axi_alock : out std_logic_vector(2 downto 0); --
-- addr2axi_acache : out std_logic_vector(4 downto 0); --
-- addr2axi_aqos : out std_logic_vector(3 downto 0); --
-- addr2axi_aregion : out std_logic_vector(3 downto 0); --
-------------------------------------------------------------------
-- Command Calculation Interface -----------------------------------------
mstr2addr_tag : In std_logic_vector(C_TAG_WIDTH-1 downto 0); --
-- The next command tag --
--
mstr2addr_addr : In std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- The next command address to put on the AXI MMap ADDR --
--
mstr2addr_len : In std_logic_vector(7 downto 0); --
-- The next command length to put on the AXI MMap LEN --
-- Sized to support 256 data beat bursts --
--
mstr2addr_size : In std_logic_vector(2 downto 0); --
-- The next command size to put on the AXI MMap SIZE --
--
mstr2addr_burst : In std_logic_vector(1 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cache : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_user : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cmd_cmplt : In std_logic; --
-- The indication to the Address Channel that the current --
-- sub-command output is the last one compiled from the --
-- parent command pulled from the Command FIFO --
--
mstr2addr_calc_error : In std_logic; --
-- Indication if the next command in the calculation pipe --
-- has a calculation error --
--
mstr2addr_cmd_valid : in std_logic; --
-- The next command valid indication to the Address Channel --
-- Controller for the AXI MMap --
--
addr2mstr_cmd_ready : out std_logic; --
-- Indication to the Command Calculator that the --
-- command is being accepted --
--------------------------------------------------------------------------
-- Halted Indication to Reset Module ------------------------------
addr2rst_stop_cmplt : out std_logic; --
-- Output flag indicating the address controller has stopped --
-- posting commands to the Address Channel due to a stop --
-- request vai the data2addr_stop_req input port --
------------------------------------------------------------------
-- Address Generation Control ---------------------------------------
allow_addr_req : in std_logic; --
-- Input used to enable/stall the posting of address requests. --
-- 0 = stall address request generation. --
-- 1 = Enable Address request geneartion --
--
addr_req_posted : out std_logic; --
-- Indication from the Address Channel Controller to external --
-- User logic that an address has been posted to the --
-- AXI Address Channel. --
---------------------------------------------------------------------
-- Data Channel Interface ---------------------------------------------
addr2data_addr_posted : Out std_logic; --
-- Indication from the Address Channel Controller to the --
-- Data Controller that an address has been posted to the --
-- AXI Address Channel. --
--
data2addr_data_rdy : In std_logic; --
-- Indication that the Data Channel is ready to send the first --
-- databeat of the next command on the write data channel. --
-- This is used for the "wait for data" feature which keeps the --
-- address controller from issuing a transfer requset until the --
-- corresponding data is ready. This is expected to be held in --
-- the asserted state until the addr2data_addr_posted signal is --
-- asserted. --
--
data2addr_stop_req : In std_logic; --
-- Indication that the Data Channel has encountered an error --
-- or a soft shutdown request and needs the Address Controller --
-- to stop posting commands to the AXI Address channel --
-----------------------------------------------------------------------
-- Status Module Interface ---------------------------------------
addr2stat_calc_error : out std_logic; --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is loaded with a Calc error --
--
addr2stat_cmd_fifo_empty : out std_logic --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is empty --
------------------------------------------------------------------
);
end entity axi_datamover_addr_cntl;
architecture implementation of axi_datamover_addr_cntl is
attribute DowngradeIPIdentifiedWarnings: string;
attribute DowngradeIPIdentifiedWarnings of implementation : architecture is "yes";
-- Constant Declarations --------------------------------------------
Constant APROT_VALUE : std_logic_vector(2 downto 0) := (others => '0');
--'0' & -- bit 2, Normal Access
--'0' & -- bit 1, Nonsecure Access
--'0'; -- bit 0, Data Access
Constant LEN_WIDTH : integer := 8;
Constant SIZE_WIDTH : integer := 3;
Constant BURST_WIDTH : integer := 2;
Constant CMD_CMPLT_WIDTH : integer := 1;
Constant CALC_ERROR_WIDTH : integer := 1;
Constant ADDR_QUAL_WIDTH : integer := C_TAG_WIDTH + -- Cmd Tag field width
C_ADDR_WIDTH + -- Cmd Address field width
LEN_WIDTH + -- Cmd Len field width
SIZE_WIDTH + -- Cmd Size field width
BURST_WIDTH + -- Cmd Burst field width
CMD_CMPLT_WIDTH + -- Cmd Cmplt filed width
CALC_ERROR_WIDTH + -- Cmd Calc Error flag
8; -- Cmd Cache, user fields
Constant USE_SYNC_FIFO : integer := 0;
Constant REG_FIFO_PRIM : integer := 0;
Constant BRAM_FIFO_PRIM : integer := 1;
Constant SRL_FIFO_PRIM : integer := 2;
Constant FIFO_PRIM_TYPE : integer := SRL_FIFO_PRIM;
-- Signal Declarations --------------------------------------------
signal sig_axi_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_axi_alen : std_logic_vector(7 downto 0) := (others => '0');
signal sig_axi_asize : std_logic_vector(2 downto 0) := (others => '0');
signal sig_axi_aburst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_axi_acache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_auser : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_avalid : std_logic := '0';
signal sig_axi_aready : std_logic := '0';
signal sig_addr_posted : std_logic := '0';
signal sig_calc_error : std_logic := '0';
signal sig_cmd_fifo_empty : std_logic := '0';
Signal sig_aq_fifo_data_in : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
Signal sig_aq_fifo_data_out : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_tag : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_len : std_logic_vector(7 downto 0) := (others => '0');
signal sig_fifo_next_size : std_logic_vector(2 downto 0) := (others => '0');
signal sig_fifo_next_burst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_fifo_next_user : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cmd_cmplt : std_logic := '0';
signal sig_fifo_calc_error : std_logic := '0';
signal sig_fifo_wr_cmd_valid : std_logic := '0';
signal sig_fifo_wr_cmd_ready : std_logic := '0';
signal sig_fifo_rd_cmd_valid : std_logic := '0';
signal sig_fifo_rd_cmd_ready : std_logic := '0';
signal sig_next_tag_reg : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_next_addr_reg : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_next_len_reg : std_logic_vector(7 downto 0) := (others => '0');
signal sig_next_size_reg : std_logic_vector(2 downto 0) := (others => '0');
signal sig_next_burst_reg : std_logic_vector(1 downto 0) := (others => '0');
signal sig_next_cache_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_user_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_cmd_cmplt_reg : std_logic := '0';
signal sig_addr_valid_reg : std_logic := '0';
signal sig_calc_error_reg : std_logic := '0';
signal sig_pop_addr_reg : std_logic := '0';
signal sig_push_addr_reg : std_logic := '0';
signal sig_addr_reg_empty : std_logic := '0';
signal sig_addr_reg_full : std_logic := '0';
signal sig_posted_to_axi : std_logic := '0';
-- obsoleted signal sig_set_wfd_flop : std_logic := '0';
-- obsoleted signal sig_clr_wfd_flop : std_logic := '0';
-- obsoleted signal sig_wait_for_data : std_logic := '0';
-- obsoleted signal sig_data2addr_data_rdy_reg : std_logic := '0';
signal sig_allow_addr_req : std_logic := '0';
signal sig_posted_to_axi_2 : std_logic := '0';
signal new_cmd_in : std_logic;
signal first_addr_valid : std_logic;
signal first_addr_valid_del : std_logic;
signal first_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal last_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal addr2axi_cache_int : std_logic_vector (7 downto 0);
signal addr2axi_cache_int1 : std_logic_vector (7 downto 0);
signal last_one : std_logic;
signal latch : std_logic;
signal first_one : std_logic;
signal latch_n : std_logic;
signal latch_n_del : std_logic;
signal mstr2addr_cache_info_int : std_logic_vector (7 downto 0);
-- Register duplication attribute assignments to control fanout
-- on handshake output signals
Attribute KEEP : string; -- declaration
Attribute EQUIVALENT_REGISTER_REMOVAL : string; -- declaration
Attribute KEEP of sig_posted_to_axi : signal is "TRUE"; -- definition
Attribute KEEP of sig_posted_to_axi_2 : signal is "TRUE"; -- definition
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi : signal is "no";
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi_2 : signal is "no";
begin --(architecture implementation)
-- AXI I/O Port assignments
addr2axi_aid <= STD_LOGIC_VECTOR(TO_UNSIGNED(C_ADDR_ID, C_ADDR_ID_WIDTH));
addr2axi_aaddr <= sig_axi_addr ;
addr2axi_alen <= sig_axi_alen ;
addr2axi_asize <= sig_axi_asize ;
addr2axi_aburst <= sig_axi_aburst;
addr2axi_acache <= sig_axi_acache;
addr2axi_auser <= sig_axi_auser;
addr2axi_aprot <= APROT_VALUE ;
addr2axi_avalid <= sig_axi_avalid;
sig_axi_aready <= axi2addr_aready;
-- Command Calculator Handshake output
sig_fifo_wr_cmd_valid <= mstr2addr_cmd_valid ;
addr2mstr_cmd_ready <= sig_fifo_wr_cmd_ready;
-- Data Channel Controller synchro pulse output
addr2data_addr_posted <= sig_addr_posted;
-- Status Module Interface outputs
addr2stat_calc_error <= sig_calc_error ;
addr2stat_cmd_fifo_empty <= sig_addr_reg_empty and
sig_cmd_fifo_empty;
-- Flag Indicating the Address Controller has completed a Stop
addr2rst_stop_cmplt <= (data2addr_stop_req and -- normal shutdown case
sig_addr_reg_empty) or
(data2addr_stop_req and -- shutdown after error trap
sig_calc_error);
-- Assign the address posting control and status
sig_allow_addr_req <= allow_addr_req ;
addr_req_posted <= sig_posted_to_axi_2 ;
-- Internal logic ------------------------------
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where the cmd qualifier depth is
-- greater than 1.
--
------------------------------------------------------------
GEN_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH > 1) generate
begin
-- Format the input FIFO data word
sig_aq_fifo_data_in <= mstr2addr_cache &
mstr2addr_user &
mstr2addr_calc_error &
mstr2addr_cmd_cmplt &
mstr2addr_burst &
mstr2addr_size &
mstr2addr_len &
mstr2addr_addr &
mstr2addr_tag ;
-- Rip fields from FIFO output data word
sig_fifo_next_cache <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 7)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 4)
);
sig_fifo_next_user <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 3)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)
);
sig_fifo_calc_error <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)-1);
sig_fifo_next_cmd_cmplt <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH)-1);
sig_fifo_next_burst <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH) ;
sig_fifo_next_size <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH) ;
sig_fifo_next_len <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH) ;
sig_fifo_next_addr <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH)-1
downto
C_TAG_WIDTH) ;
sig_fifo_next_tag <= sig_aq_fifo_data_out(C_TAG_WIDTH-1 downto 0);
------------------------------------------------------------
-- Instance: I_ADDR_QUAL_FIFO
--
-- Description:
-- Instance for the Address/Qualifier FIFO
--
------------------------------------------------------------
I_ADDR_QUAL_FIFO : entity axi_datamover_v5_1.axi_datamover_fifo
generic map (
C_DWIDTH => ADDR_QUAL_WIDTH ,
C_DEPTH => C_ADDR_FIFO_DEPTH ,
C_IS_ASYNC => USE_SYNC_FIFO ,
C_PRIM_TYPE => FIFO_PRIM_TYPE ,
C_FAMILY => C_FAMILY
)
port map (
-- Write Clock and reset
fifo_wr_reset => mmap_reset ,
fifo_wr_clk => primary_aclk ,
-- Write Side
fifo_wr_tvalid => sig_fifo_wr_cmd_valid ,
fifo_wr_tready => sig_fifo_wr_cmd_ready ,
fifo_wr_tdata => sig_aq_fifo_data_in ,
fifo_wr_full => open ,
-- Read Clock and reset
fifo_async_rd_reset => mmap_reset ,
fifo_async_rd_clk => primary_aclk ,
-- Read Side
fifo_rd_tvalid => sig_fifo_rd_cmd_valid ,
fifo_rd_tready => sig_fifo_rd_cmd_ready ,
fifo_rd_tdata => sig_aq_fifo_data_out ,
fifo_rd_empty => sig_cmd_fifo_empty
);
end generate GEN_ADDR_FIFO;
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_NO_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where no additional FIFOing is needed
-- on the input command address/qualifiers.
--
------------------------------------------------------------
GEN_NO_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH = 1) generate
begin
-- Bypass FIFO
sig_fifo_next_tag <= mstr2addr_tag ;
sig_fifo_next_addr <= mstr2addr_addr ;
sig_fifo_next_len <= mstr2addr_len ;
sig_fifo_next_size <= mstr2addr_size ;
sig_fifo_next_burst <= mstr2addr_burst ;
sig_fifo_next_cache <= mstr2addr_cache ;
sig_fifo_next_user <= mstr2addr_user ;
sig_fifo_next_cmd_cmplt <= mstr2addr_cmd_cmplt ;
sig_fifo_calc_error <= mstr2addr_calc_error ;
sig_cmd_fifo_empty <= sig_addr_reg_empty ;
sig_fifo_wr_cmd_ready <= sig_fifo_rd_cmd_ready ;
sig_fifo_rd_cmd_valid <= sig_fifo_wr_cmd_valid ;
end generate GEN_NO_ADDR_FIFO;
-- Output Register Logic -------------------------------------------
sig_axi_addr <= sig_next_addr_reg ;
sig_axi_alen <= sig_next_len_reg ;
sig_axi_asize <= sig_next_size_reg ;
sig_axi_aburst <= sig_next_burst_reg ;
sig_axi_acache <= sig_next_cache_reg ;
sig_axi_auser <= sig_next_user_reg ;
sig_axi_avalid <= sig_addr_valid_reg ;
sig_calc_error <= sig_calc_error_reg ;
sig_fifo_rd_cmd_ready <= sig_addr_reg_empty and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_addr_posted <= sig_posted_to_axi ;
-- Internal signals
sig_push_addr_reg <= sig_addr_reg_empty and
sig_fifo_rd_cmd_valid and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_pop_addr_reg <= not(sig_calc_error_reg) and
sig_axi_aready and
sig_addr_reg_full;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_ADDR_FIFO_REG
--
-- Process Description:
-- This process implements a register for the Address
-- Control FIFO that operates like a 1 deep Sync FIFO.
--
-------------------------------------------------------------
IMP_ADDR_FIFO_REG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1' or
sig_pop_addr_reg = '1') then
sig_next_tag_reg <= (others => '0') ;
sig_next_addr_reg <= (others => '0') ;
sig_next_len_reg <= (others => '0') ;
sig_next_size_reg <= (others => '0') ;
sig_next_burst_reg <= (others => '0') ;
sig_next_cache_reg <= (others => '0') ;
sig_next_user_reg <= (others => '0') ;
sig_next_cmd_cmplt_reg <= '0' ;
sig_addr_valid_reg <= '0' ;
sig_calc_error_reg <= '0' ;
sig_addr_reg_empty <= '1' ;
sig_addr_reg_full <= '0' ;
elsif (sig_push_addr_reg = '1') then
sig_next_tag_reg <= sig_fifo_next_tag ;
sig_next_addr_reg <= sig_fifo_next_addr ;
sig_next_len_reg <= sig_fifo_next_len ;
sig_next_size_reg <= sig_fifo_next_size ;
sig_next_burst_reg <= sig_fifo_next_burst ;
sig_next_cache_reg <= sig_fifo_next_cache ;
sig_next_user_reg <= sig_fifo_next_user ;
sig_next_cmd_cmplt_reg <= sig_fifo_next_cmd_cmplt ;
sig_addr_valid_reg <= not(sig_fifo_calc_error);
sig_calc_error_reg <= sig_fifo_calc_error ;
sig_addr_reg_empty <= '0' ;
sig_addr_reg_full <= '1' ;
else
null; -- don't change state
end if;
end if;
end process IMP_ADDR_FIFO_REG;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_POSTED_FLAG
--
-- Process Description:
-- This implements a FLOP that creates a 1 clock wide pulse
-- indicating a new address/qualifier set has been posted to
-- the AXI Addres Channel outputs. This is used to synchronize
-- the Data Channel Controller.
--
-------------------------------------------------------------
IMP_POSTED_FLAG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1') then
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
elsif (sig_push_addr_reg = '1') then
sig_posted_to_axi <= '1';
sig_posted_to_axi_2 <= '1';
else
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
end if;
end if;
end process IMP_POSTED_FLAG;
-- PROC_CMD_DETECT : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_addr_valid_del <= first_addr_valid;
-- end if;
-- end process PROC_CMD_DETECT;
--
-- PROC_ADDR_DET : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= (others => '0');
-- last_addr_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (mstr2addr_cmd_valid = '1' and first_addr_valid = '0') then
-- first_addr_valid <= '1';
-- first_addr_int <= mstr2addr_addr;
-- last_addr_int <= last_addr_int;
-- elsif (mstr2addr_cmd_cmplt = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= first_addr_int;
-- last_addr_int <= mstr2addr_addr;
-- end if;
-- end if;
-- end process PROC_ADDR_DET;
--
-- latch <= first_addr_valid and (not first_addr_valid_del);
-- latch_n <= (not first_addr_valid) and first_addr_valid_del;
--
-- PROC_CACHE1 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- mstr2addr_cache_info_int <= (others => '0');
-- latch_n_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (latch_n = '1') then
-- mstr2addr_cache_info_int <= mstr2addr_cache_info;
-- end if;
-- latch_n_del <= latch_n;
-- end if;
-- end process PROC_CACHE1;
--
--
-- PROC_CACHE : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int1 <= (others => '0');
-- first_one <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_one <= '0';
---- if (latch = '1' and first_one = '0') then -- first one
-- if (sig_addr_valid_reg = '0' and first_addr_valid = '0') then
-- addr2axi_cache_int1 <= mstr2addr_cache_info;
---- first_one <= '1';
---- elsif (latch_n_del = '1') then
---- addr2axi_cache_int <= mstr2addr_cache_info_int;
-- elsif ((first_addr_int = sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- elsif ((last_addr_int >= sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- end if;
-- end if;
-- end process PROC_CACHE;
--
--
-- PROC_CACHE2 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- addr2axi_cache_int <= addr2axi_cache_int1;
-- end if;
-- end process PROC_CACHE2;
--
--addr2axi_cache <= addr2axi_cache_int (3 downto 0);
--addr2axi_user <= addr2axi_cache_int (7 downto 4);
--
end implementation;
|
----------------------------------------------------------------------------
-- axi_datamover_addr_cntl.vhd
----------------------------------------------------------------------------
--
-- *************************************************************************
--
-- (c) Copyright 2010-2011 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- *************************************************************************
--
-------------------------------------------------------------------------------
-- Filename: axi_datamover_addr_cntl.vhd
--
-- Description:
-- This file implements the axi_datamover Master Address Controller.
--
--
--
--
-- VHDL-Standard: VHDL'93
-------------------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library axi_datamover_v5_1;
Use axi_datamover_v5_1.axi_datamover_fifo;
-------------------------------------------------------------------------------
entity axi_datamover_addr_cntl is
generic (
C_ADDR_FIFO_DEPTH : Integer range 1 to 32 := 4;
-- sets the depth of the Command Queue FIFO
C_ADDR_WIDTH : Integer range 32 to 64 := 32;
-- Sets the address bus width
C_ADDR_ID : Integer range 0 to 255 := 0;
-- Sets the value to be on the AxID output
C_ADDR_ID_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the AxID output
C_TAG_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the Command Tag field width
C_FAMILY : String := "virtex7"
-- Specifies the target FPGA family
);
port (
-- Clock input ---------------------------------------------
primary_aclk : in std_logic; --
-- Primary synchronization clock for the Master side --
-- interface and internal logic. It is also used --
-- for the User interface synchronization when --
-- C_STSCMD_IS_ASYNC = 0. --
--
-- Reset input --
mmap_reset : in std_logic; --
-- Reset used for the internal master logic --
------------------------------------------------------------
-- AXI Address Channel I/O --------------------------------------------
addr2axi_aid : out std_logic_vector(C_ADDR_ID_WIDTH-1 downto 0); --
-- AXI Address Channel ID output --
--
addr2axi_aaddr : out std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- AXI Address Channel Address output --
--
addr2axi_alen : out std_logic_vector(7 downto 0); --
-- AXI Address Channel LEN output --
-- Sized to support 256 data beat bursts --
--
addr2axi_asize : out std_logic_vector(2 downto 0); --
-- AXI Address Channel SIZE output --
--
addr2axi_aburst : out std_logic_vector(1 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_acache : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_auser : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_aprot : out std_logic_vector(2 downto 0); --
-- AXI Address Channel PROT output --
--
addr2axi_avalid : out std_logic; --
-- AXI Address Channel VALID output --
--
axi2addr_aready : in std_logic; --
-- AXI Address Channel READY input --
------------------------------------------------------------------------
-- Currently unsupported AXI Address Channel output signals -------
-- addr2axi_alock : out std_logic_vector(2 downto 0); --
-- addr2axi_acache : out std_logic_vector(4 downto 0); --
-- addr2axi_aqos : out std_logic_vector(3 downto 0); --
-- addr2axi_aregion : out std_logic_vector(3 downto 0); --
-------------------------------------------------------------------
-- Command Calculation Interface -----------------------------------------
mstr2addr_tag : In std_logic_vector(C_TAG_WIDTH-1 downto 0); --
-- The next command tag --
--
mstr2addr_addr : In std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- The next command address to put on the AXI MMap ADDR --
--
mstr2addr_len : In std_logic_vector(7 downto 0); --
-- The next command length to put on the AXI MMap LEN --
-- Sized to support 256 data beat bursts --
--
mstr2addr_size : In std_logic_vector(2 downto 0); --
-- The next command size to put on the AXI MMap SIZE --
--
mstr2addr_burst : In std_logic_vector(1 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cache : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_user : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cmd_cmplt : In std_logic; --
-- The indication to the Address Channel that the current --
-- sub-command output is the last one compiled from the --
-- parent command pulled from the Command FIFO --
--
mstr2addr_calc_error : In std_logic; --
-- Indication if the next command in the calculation pipe --
-- has a calculation error --
--
mstr2addr_cmd_valid : in std_logic; --
-- The next command valid indication to the Address Channel --
-- Controller for the AXI MMap --
--
addr2mstr_cmd_ready : out std_logic; --
-- Indication to the Command Calculator that the --
-- command is being accepted --
--------------------------------------------------------------------------
-- Halted Indication to Reset Module ------------------------------
addr2rst_stop_cmplt : out std_logic; --
-- Output flag indicating the address controller has stopped --
-- posting commands to the Address Channel due to a stop --
-- request vai the data2addr_stop_req input port --
------------------------------------------------------------------
-- Address Generation Control ---------------------------------------
allow_addr_req : in std_logic; --
-- Input used to enable/stall the posting of address requests. --
-- 0 = stall address request generation. --
-- 1 = Enable Address request geneartion --
--
addr_req_posted : out std_logic; --
-- Indication from the Address Channel Controller to external --
-- User logic that an address has been posted to the --
-- AXI Address Channel. --
---------------------------------------------------------------------
-- Data Channel Interface ---------------------------------------------
addr2data_addr_posted : Out std_logic; --
-- Indication from the Address Channel Controller to the --
-- Data Controller that an address has been posted to the --
-- AXI Address Channel. --
--
data2addr_data_rdy : In std_logic; --
-- Indication that the Data Channel is ready to send the first --
-- databeat of the next command on the write data channel. --
-- This is used for the "wait for data" feature which keeps the --
-- address controller from issuing a transfer requset until the --
-- corresponding data is ready. This is expected to be held in --
-- the asserted state until the addr2data_addr_posted signal is --
-- asserted. --
--
data2addr_stop_req : In std_logic; --
-- Indication that the Data Channel has encountered an error --
-- or a soft shutdown request and needs the Address Controller --
-- to stop posting commands to the AXI Address channel --
-----------------------------------------------------------------------
-- Status Module Interface ---------------------------------------
addr2stat_calc_error : out std_logic; --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is loaded with a Calc error --
--
addr2stat_cmd_fifo_empty : out std_logic --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is empty --
------------------------------------------------------------------
);
end entity axi_datamover_addr_cntl;
architecture implementation of axi_datamover_addr_cntl is
attribute DowngradeIPIdentifiedWarnings: string;
attribute DowngradeIPIdentifiedWarnings of implementation : architecture is "yes";
-- Constant Declarations --------------------------------------------
Constant APROT_VALUE : std_logic_vector(2 downto 0) := (others => '0');
--'0' & -- bit 2, Normal Access
--'0' & -- bit 1, Nonsecure Access
--'0'; -- bit 0, Data Access
Constant LEN_WIDTH : integer := 8;
Constant SIZE_WIDTH : integer := 3;
Constant BURST_WIDTH : integer := 2;
Constant CMD_CMPLT_WIDTH : integer := 1;
Constant CALC_ERROR_WIDTH : integer := 1;
Constant ADDR_QUAL_WIDTH : integer := C_TAG_WIDTH + -- Cmd Tag field width
C_ADDR_WIDTH + -- Cmd Address field width
LEN_WIDTH + -- Cmd Len field width
SIZE_WIDTH + -- Cmd Size field width
BURST_WIDTH + -- Cmd Burst field width
CMD_CMPLT_WIDTH + -- Cmd Cmplt filed width
CALC_ERROR_WIDTH + -- Cmd Calc Error flag
8; -- Cmd Cache, user fields
Constant USE_SYNC_FIFO : integer := 0;
Constant REG_FIFO_PRIM : integer := 0;
Constant BRAM_FIFO_PRIM : integer := 1;
Constant SRL_FIFO_PRIM : integer := 2;
Constant FIFO_PRIM_TYPE : integer := SRL_FIFO_PRIM;
-- Signal Declarations --------------------------------------------
signal sig_axi_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_axi_alen : std_logic_vector(7 downto 0) := (others => '0');
signal sig_axi_asize : std_logic_vector(2 downto 0) := (others => '0');
signal sig_axi_aburst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_axi_acache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_auser : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_avalid : std_logic := '0';
signal sig_axi_aready : std_logic := '0';
signal sig_addr_posted : std_logic := '0';
signal sig_calc_error : std_logic := '0';
signal sig_cmd_fifo_empty : std_logic := '0';
Signal sig_aq_fifo_data_in : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
Signal sig_aq_fifo_data_out : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_tag : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_len : std_logic_vector(7 downto 0) := (others => '0');
signal sig_fifo_next_size : std_logic_vector(2 downto 0) := (others => '0');
signal sig_fifo_next_burst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_fifo_next_user : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cmd_cmplt : std_logic := '0';
signal sig_fifo_calc_error : std_logic := '0';
signal sig_fifo_wr_cmd_valid : std_logic := '0';
signal sig_fifo_wr_cmd_ready : std_logic := '0';
signal sig_fifo_rd_cmd_valid : std_logic := '0';
signal sig_fifo_rd_cmd_ready : std_logic := '0';
signal sig_next_tag_reg : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_next_addr_reg : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_next_len_reg : std_logic_vector(7 downto 0) := (others => '0');
signal sig_next_size_reg : std_logic_vector(2 downto 0) := (others => '0');
signal sig_next_burst_reg : std_logic_vector(1 downto 0) := (others => '0');
signal sig_next_cache_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_user_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_cmd_cmplt_reg : std_logic := '0';
signal sig_addr_valid_reg : std_logic := '0';
signal sig_calc_error_reg : std_logic := '0';
signal sig_pop_addr_reg : std_logic := '0';
signal sig_push_addr_reg : std_logic := '0';
signal sig_addr_reg_empty : std_logic := '0';
signal sig_addr_reg_full : std_logic := '0';
signal sig_posted_to_axi : std_logic := '0';
-- obsoleted signal sig_set_wfd_flop : std_logic := '0';
-- obsoleted signal sig_clr_wfd_flop : std_logic := '0';
-- obsoleted signal sig_wait_for_data : std_logic := '0';
-- obsoleted signal sig_data2addr_data_rdy_reg : std_logic := '0';
signal sig_allow_addr_req : std_logic := '0';
signal sig_posted_to_axi_2 : std_logic := '0';
signal new_cmd_in : std_logic;
signal first_addr_valid : std_logic;
signal first_addr_valid_del : std_logic;
signal first_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal last_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal addr2axi_cache_int : std_logic_vector (7 downto 0);
signal addr2axi_cache_int1 : std_logic_vector (7 downto 0);
signal last_one : std_logic;
signal latch : std_logic;
signal first_one : std_logic;
signal latch_n : std_logic;
signal latch_n_del : std_logic;
signal mstr2addr_cache_info_int : std_logic_vector (7 downto 0);
-- Register duplication attribute assignments to control fanout
-- on handshake output signals
Attribute KEEP : string; -- declaration
Attribute EQUIVALENT_REGISTER_REMOVAL : string; -- declaration
Attribute KEEP of sig_posted_to_axi : signal is "TRUE"; -- definition
Attribute KEEP of sig_posted_to_axi_2 : signal is "TRUE"; -- definition
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi : signal is "no";
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi_2 : signal is "no";
begin --(architecture implementation)
-- AXI I/O Port assignments
addr2axi_aid <= STD_LOGIC_VECTOR(TO_UNSIGNED(C_ADDR_ID, C_ADDR_ID_WIDTH));
addr2axi_aaddr <= sig_axi_addr ;
addr2axi_alen <= sig_axi_alen ;
addr2axi_asize <= sig_axi_asize ;
addr2axi_aburst <= sig_axi_aburst;
addr2axi_acache <= sig_axi_acache;
addr2axi_auser <= sig_axi_auser;
addr2axi_aprot <= APROT_VALUE ;
addr2axi_avalid <= sig_axi_avalid;
sig_axi_aready <= axi2addr_aready;
-- Command Calculator Handshake output
sig_fifo_wr_cmd_valid <= mstr2addr_cmd_valid ;
addr2mstr_cmd_ready <= sig_fifo_wr_cmd_ready;
-- Data Channel Controller synchro pulse output
addr2data_addr_posted <= sig_addr_posted;
-- Status Module Interface outputs
addr2stat_calc_error <= sig_calc_error ;
addr2stat_cmd_fifo_empty <= sig_addr_reg_empty and
sig_cmd_fifo_empty;
-- Flag Indicating the Address Controller has completed a Stop
addr2rst_stop_cmplt <= (data2addr_stop_req and -- normal shutdown case
sig_addr_reg_empty) or
(data2addr_stop_req and -- shutdown after error trap
sig_calc_error);
-- Assign the address posting control and status
sig_allow_addr_req <= allow_addr_req ;
addr_req_posted <= sig_posted_to_axi_2 ;
-- Internal logic ------------------------------
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where the cmd qualifier depth is
-- greater than 1.
--
------------------------------------------------------------
GEN_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH > 1) generate
begin
-- Format the input FIFO data word
sig_aq_fifo_data_in <= mstr2addr_cache &
mstr2addr_user &
mstr2addr_calc_error &
mstr2addr_cmd_cmplt &
mstr2addr_burst &
mstr2addr_size &
mstr2addr_len &
mstr2addr_addr &
mstr2addr_tag ;
-- Rip fields from FIFO output data word
sig_fifo_next_cache <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 7)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 4)
);
sig_fifo_next_user <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 3)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)
);
sig_fifo_calc_error <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)-1);
sig_fifo_next_cmd_cmplt <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH)-1);
sig_fifo_next_burst <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH) ;
sig_fifo_next_size <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH) ;
sig_fifo_next_len <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH) ;
sig_fifo_next_addr <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH)-1
downto
C_TAG_WIDTH) ;
sig_fifo_next_tag <= sig_aq_fifo_data_out(C_TAG_WIDTH-1 downto 0);
------------------------------------------------------------
-- Instance: I_ADDR_QUAL_FIFO
--
-- Description:
-- Instance for the Address/Qualifier FIFO
--
------------------------------------------------------------
I_ADDR_QUAL_FIFO : entity axi_datamover_v5_1.axi_datamover_fifo
generic map (
C_DWIDTH => ADDR_QUAL_WIDTH ,
C_DEPTH => C_ADDR_FIFO_DEPTH ,
C_IS_ASYNC => USE_SYNC_FIFO ,
C_PRIM_TYPE => FIFO_PRIM_TYPE ,
C_FAMILY => C_FAMILY
)
port map (
-- Write Clock and reset
fifo_wr_reset => mmap_reset ,
fifo_wr_clk => primary_aclk ,
-- Write Side
fifo_wr_tvalid => sig_fifo_wr_cmd_valid ,
fifo_wr_tready => sig_fifo_wr_cmd_ready ,
fifo_wr_tdata => sig_aq_fifo_data_in ,
fifo_wr_full => open ,
-- Read Clock and reset
fifo_async_rd_reset => mmap_reset ,
fifo_async_rd_clk => primary_aclk ,
-- Read Side
fifo_rd_tvalid => sig_fifo_rd_cmd_valid ,
fifo_rd_tready => sig_fifo_rd_cmd_ready ,
fifo_rd_tdata => sig_aq_fifo_data_out ,
fifo_rd_empty => sig_cmd_fifo_empty
);
end generate GEN_ADDR_FIFO;
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_NO_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where no additional FIFOing is needed
-- on the input command address/qualifiers.
--
------------------------------------------------------------
GEN_NO_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH = 1) generate
begin
-- Bypass FIFO
sig_fifo_next_tag <= mstr2addr_tag ;
sig_fifo_next_addr <= mstr2addr_addr ;
sig_fifo_next_len <= mstr2addr_len ;
sig_fifo_next_size <= mstr2addr_size ;
sig_fifo_next_burst <= mstr2addr_burst ;
sig_fifo_next_cache <= mstr2addr_cache ;
sig_fifo_next_user <= mstr2addr_user ;
sig_fifo_next_cmd_cmplt <= mstr2addr_cmd_cmplt ;
sig_fifo_calc_error <= mstr2addr_calc_error ;
sig_cmd_fifo_empty <= sig_addr_reg_empty ;
sig_fifo_wr_cmd_ready <= sig_fifo_rd_cmd_ready ;
sig_fifo_rd_cmd_valid <= sig_fifo_wr_cmd_valid ;
end generate GEN_NO_ADDR_FIFO;
-- Output Register Logic -------------------------------------------
sig_axi_addr <= sig_next_addr_reg ;
sig_axi_alen <= sig_next_len_reg ;
sig_axi_asize <= sig_next_size_reg ;
sig_axi_aburst <= sig_next_burst_reg ;
sig_axi_acache <= sig_next_cache_reg ;
sig_axi_auser <= sig_next_user_reg ;
sig_axi_avalid <= sig_addr_valid_reg ;
sig_calc_error <= sig_calc_error_reg ;
sig_fifo_rd_cmd_ready <= sig_addr_reg_empty and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_addr_posted <= sig_posted_to_axi ;
-- Internal signals
sig_push_addr_reg <= sig_addr_reg_empty and
sig_fifo_rd_cmd_valid and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_pop_addr_reg <= not(sig_calc_error_reg) and
sig_axi_aready and
sig_addr_reg_full;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_ADDR_FIFO_REG
--
-- Process Description:
-- This process implements a register for the Address
-- Control FIFO that operates like a 1 deep Sync FIFO.
--
-------------------------------------------------------------
IMP_ADDR_FIFO_REG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1' or
sig_pop_addr_reg = '1') then
sig_next_tag_reg <= (others => '0') ;
sig_next_addr_reg <= (others => '0') ;
sig_next_len_reg <= (others => '0') ;
sig_next_size_reg <= (others => '0') ;
sig_next_burst_reg <= (others => '0') ;
sig_next_cache_reg <= (others => '0') ;
sig_next_user_reg <= (others => '0') ;
sig_next_cmd_cmplt_reg <= '0' ;
sig_addr_valid_reg <= '0' ;
sig_calc_error_reg <= '0' ;
sig_addr_reg_empty <= '1' ;
sig_addr_reg_full <= '0' ;
elsif (sig_push_addr_reg = '1') then
sig_next_tag_reg <= sig_fifo_next_tag ;
sig_next_addr_reg <= sig_fifo_next_addr ;
sig_next_len_reg <= sig_fifo_next_len ;
sig_next_size_reg <= sig_fifo_next_size ;
sig_next_burst_reg <= sig_fifo_next_burst ;
sig_next_cache_reg <= sig_fifo_next_cache ;
sig_next_user_reg <= sig_fifo_next_user ;
sig_next_cmd_cmplt_reg <= sig_fifo_next_cmd_cmplt ;
sig_addr_valid_reg <= not(sig_fifo_calc_error);
sig_calc_error_reg <= sig_fifo_calc_error ;
sig_addr_reg_empty <= '0' ;
sig_addr_reg_full <= '1' ;
else
null; -- don't change state
end if;
end if;
end process IMP_ADDR_FIFO_REG;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_POSTED_FLAG
--
-- Process Description:
-- This implements a FLOP that creates a 1 clock wide pulse
-- indicating a new address/qualifier set has been posted to
-- the AXI Addres Channel outputs. This is used to synchronize
-- the Data Channel Controller.
--
-------------------------------------------------------------
IMP_POSTED_FLAG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1') then
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
elsif (sig_push_addr_reg = '1') then
sig_posted_to_axi <= '1';
sig_posted_to_axi_2 <= '1';
else
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
end if;
end if;
end process IMP_POSTED_FLAG;
-- PROC_CMD_DETECT : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_addr_valid_del <= first_addr_valid;
-- end if;
-- end process PROC_CMD_DETECT;
--
-- PROC_ADDR_DET : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= (others => '0');
-- last_addr_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (mstr2addr_cmd_valid = '1' and first_addr_valid = '0') then
-- first_addr_valid <= '1';
-- first_addr_int <= mstr2addr_addr;
-- last_addr_int <= last_addr_int;
-- elsif (mstr2addr_cmd_cmplt = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= first_addr_int;
-- last_addr_int <= mstr2addr_addr;
-- end if;
-- end if;
-- end process PROC_ADDR_DET;
--
-- latch <= first_addr_valid and (not first_addr_valid_del);
-- latch_n <= (not first_addr_valid) and first_addr_valid_del;
--
-- PROC_CACHE1 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- mstr2addr_cache_info_int <= (others => '0');
-- latch_n_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (latch_n = '1') then
-- mstr2addr_cache_info_int <= mstr2addr_cache_info;
-- end if;
-- latch_n_del <= latch_n;
-- end if;
-- end process PROC_CACHE1;
--
--
-- PROC_CACHE : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int1 <= (others => '0');
-- first_one <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_one <= '0';
---- if (latch = '1' and first_one = '0') then -- first one
-- if (sig_addr_valid_reg = '0' and first_addr_valid = '0') then
-- addr2axi_cache_int1 <= mstr2addr_cache_info;
---- first_one <= '1';
---- elsif (latch_n_del = '1') then
---- addr2axi_cache_int <= mstr2addr_cache_info_int;
-- elsif ((first_addr_int = sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- elsif ((last_addr_int >= sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- end if;
-- end if;
-- end process PROC_CACHE;
--
--
-- PROC_CACHE2 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- addr2axi_cache_int <= addr2axi_cache_int1;
-- end if;
-- end process PROC_CACHE2;
--
--addr2axi_cache <= addr2axi_cache_int (3 downto 0);
--addr2axi_user <= addr2axi_cache_int (7 downto 4);
--
end implementation;
|
----------------------------------------------------------------------------
-- axi_datamover_addr_cntl.vhd
----------------------------------------------------------------------------
--
-- *************************************************************************
--
-- (c) Copyright 2010-2011 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- *************************************************************************
--
-------------------------------------------------------------------------------
-- Filename: axi_datamover_addr_cntl.vhd
--
-- Description:
-- This file implements the axi_datamover Master Address Controller.
--
--
--
--
-- VHDL-Standard: VHDL'93
-------------------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
library axi_datamover_v5_1;
Use axi_datamover_v5_1.axi_datamover_fifo;
-------------------------------------------------------------------------------
entity axi_datamover_addr_cntl is
generic (
C_ADDR_FIFO_DEPTH : Integer range 1 to 32 := 4;
-- sets the depth of the Command Queue FIFO
C_ADDR_WIDTH : Integer range 32 to 64 := 32;
-- Sets the address bus width
C_ADDR_ID : Integer range 0 to 255 := 0;
-- Sets the value to be on the AxID output
C_ADDR_ID_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the AxID output
C_TAG_WIDTH : Integer range 1 to 8 := 4;
-- Sets the width of the Command Tag field width
C_FAMILY : String := "virtex7"
-- Specifies the target FPGA family
);
port (
-- Clock input ---------------------------------------------
primary_aclk : in std_logic; --
-- Primary synchronization clock for the Master side --
-- interface and internal logic. It is also used --
-- for the User interface synchronization when --
-- C_STSCMD_IS_ASYNC = 0. --
--
-- Reset input --
mmap_reset : in std_logic; --
-- Reset used for the internal master logic --
------------------------------------------------------------
-- AXI Address Channel I/O --------------------------------------------
addr2axi_aid : out std_logic_vector(C_ADDR_ID_WIDTH-1 downto 0); --
-- AXI Address Channel ID output --
--
addr2axi_aaddr : out std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- AXI Address Channel Address output --
--
addr2axi_alen : out std_logic_vector(7 downto 0); --
-- AXI Address Channel LEN output --
-- Sized to support 256 data beat bursts --
--
addr2axi_asize : out std_logic_vector(2 downto 0); --
-- AXI Address Channel SIZE output --
--
addr2axi_aburst : out std_logic_vector(1 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_acache : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_auser : out std_logic_vector(3 downto 0); --
-- AXI Address Channel BURST output --
--
addr2axi_aprot : out std_logic_vector(2 downto 0); --
-- AXI Address Channel PROT output --
--
addr2axi_avalid : out std_logic; --
-- AXI Address Channel VALID output --
--
axi2addr_aready : in std_logic; --
-- AXI Address Channel READY input --
------------------------------------------------------------------------
-- Currently unsupported AXI Address Channel output signals -------
-- addr2axi_alock : out std_logic_vector(2 downto 0); --
-- addr2axi_acache : out std_logic_vector(4 downto 0); --
-- addr2axi_aqos : out std_logic_vector(3 downto 0); --
-- addr2axi_aregion : out std_logic_vector(3 downto 0); --
-------------------------------------------------------------------
-- Command Calculation Interface -----------------------------------------
mstr2addr_tag : In std_logic_vector(C_TAG_WIDTH-1 downto 0); --
-- The next command tag --
--
mstr2addr_addr : In std_logic_vector(C_ADDR_WIDTH-1 downto 0); --
-- The next command address to put on the AXI MMap ADDR --
--
mstr2addr_len : In std_logic_vector(7 downto 0); --
-- The next command length to put on the AXI MMap LEN --
-- Sized to support 256 data beat bursts --
--
mstr2addr_size : In std_logic_vector(2 downto 0); --
-- The next command size to put on the AXI MMap SIZE --
--
mstr2addr_burst : In std_logic_vector(1 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cache : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_user : In std_logic_vector(3 downto 0); --
-- The next command burst type to put on the AXI MMap BURST --
--
mstr2addr_cmd_cmplt : In std_logic; --
-- The indication to the Address Channel that the current --
-- sub-command output is the last one compiled from the --
-- parent command pulled from the Command FIFO --
--
mstr2addr_calc_error : In std_logic; --
-- Indication if the next command in the calculation pipe --
-- has a calculation error --
--
mstr2addr_cmd_valid : in std_logic; --
-- The next command valid indication to the Address Channel --
-- Controller for the AXI MMap --
--
addr2mstr_cmd_ready : out std_logic; --
-- Indication to the Command Calculator that the --
-- command is being accepted --
--------------------------------------------------------------------------
-- Halted Indication to Reset Module ------------------------------
addr2rst_stop_cmplt : out std_logic; --
-- Output flag indicating the address controller has stopped --
-- posting commands to the Address Channel due to a stop --
-- request vai the data2addr_stop_req input port --
------------------------------------------------------------------
-- Address Generation Control ---------------------------------------
allow_addr_req : in std_logic; --
-- Input used to enable/stall the posting of address requests. --
-- 0 = stall address request generation. --
-- 1 = Enable Address request geneartion --
--
addr_req_posted : out std_logic; --
-- Indication from the Address Channel Controller to external --
-- User logic that an address has been posted to the --
-- AXI Address Channel. --
---------------------------------------------------------------------
-- Data Channel Interface ---------------------------------------------
addr2data_addr_posted : Out std_logic; --
-- Indication from the Address Channel Controller to the --
-- Data Controller that an address has been posted to the --
-- AXI Address Channel. --
--
data2addr_data_rdy : In std_logic; --
-- Indication that the Data Channel is ready to send the first --
-- databeat of the next command on the write data channel. --
-- This is used for the "wait for data" feature which keeps the --
-- address controller from issuing a transfer requset until the --
-- corresponding data is ready. This is expected to be held in --
-- the asserted state until the addr2data_addr_posted signal is --
-- asserted. --
--
data2addr_stop_req : In std_logic; --
-- Indication that the Data Channel has encountered an error --
-- or a soft shutdown request and needs the Address Controller --
-- to stop posting commands to the AXI Address channel --
-----------------------------------------------------------------------
-- Status Module Interface ---------------------------------------
addr2stat_calc_error : out std_logic; --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is loaded with a Calc error --
--
addr2stat_cmd_fifo_empty : out std_logic --
-- Indication to the Status Module that the Addr Cntl FIFO --
-- is empty --
------------------------------------------------------------------
);
end entity axi_datamover_addr_cntl;
architecture implementation of axi_datamover_addr_cntl is
attribute DowngradeIPIdentifiedWarnings: string;
attribute DowngradeIPIdentifiedWarnings of implementation : architecture is "yes";
-- Constant Declarations --------------------------------------------
Constant APROT_VALUE : std_logic_vector(2 downto 0) := (others => '0');
--'0' & -- bit 2, Normal Access
--'0' & -- bit 1, Nonsecure Access
--'0'; -- bit 0, Data Access
Constant LEN_WIDTH : integer := 8;
Constant SIZE_WIDTH : integer := 3;
Constant BURST_WIDTH : integer := 2;
Constant CMD_CMPLT_WIDTH : integer := 1;
Constant CALC_ERROR_WIDTH : integer := 1;
Constant ADDR_QUAL_WIDTH : integer := C_TAG_WIDTH + -- Cmd Tag field width
C_ADDR_WIDTH + -- Cmd Address field width
LEN_WIDTH + -- Cmd Len field width
SIZE_WIDTH + -- Cmd Size field width
BURST_WIDTH + -- Cmd Burst field width
CMD_CMPLT_WIDTH + -- Cmd Cmplt filed width
CALC_ERROR_WIDTH + -- Cmd Calc Error flag
8; -- Cmd Cache, user fields
Constant USE_SYNC_FIFO : integer := 0;
Constant REG_FIFO_PRIM : integer := 0;
Constant BRAM_FIFO_PRIM : integer := 1;
Constant SRL_FIFO_PRIM : integer := 2;
Constant FIFO_PRIM_TYPE : integer := SRL_FIFO_PRIM;
-- Signal Declarations --------------------------------------------
signal sig_axi_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_axi_alen : std_logic_vector(7 downto 0) := (others => '0');
signal sig_axi_asize : std_logic_vector(2 downto 0) := (others => '0');
signal sig_axi_aburst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_axi_acache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_auser : std_logic_vector(3 downto 0) := (others => '0');
signal sig_axi_avalid : std_logic := '0';
signal sig_axi_aready : std_logic := '0';
signal sig_addr_posted : std_logic := '0';
signal sig_calc_error : std_logic := '0';
signal sig_cmd_fifo_empty : std_logic := '0';
Signal sig_aq_fifo_data_in : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
Signal sig_aq_fifo_data_out : std_logic_vector(ADDR_QUAL_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_tag : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_addr : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_fifo_next_len : std_logic_vector(7 downto 0) := (others => '0');
signal sig_fifo_next_size : std_logic_vector(2 downto 0) := (others => '0');
signal sig_fifo_next_burst : std_logic_vector(1 downto 0) := (others => '0');
signal sig_fifo_next_user : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cache : std_logic_vector(3 downto 0) := (others => '0');
signal sig_fifo_next_cmd_cmplt : std_logic := '0';
signal sig_fifo_calc_error : std_logic := '0';
signal sig_fifo_wr_cmd_valid : std_logic := '0';
signal sig_fifo_wr_cmd_ready : std_logic := '0';
signal sig_fifo_rd_cmd_valid : std_logic := '0';
signal sig_fifo_rd_cmd_ready : std_logic := '0';
signal sig_next_tag_reg : std_logic_vector(C_TAG_WIDTH-1 downto 0) := (others => '0');
signal sig_next_addr_reg : std_logic_vector(C_ADDR_WIDTH-1 downto 0) := (others => '0');
signal sig_next_len_reg : std_logic_vector(7 downto 0) := (others => '0');
signal sig_next_size_reg : std_logic_vector(2 downto 0) := (others => '0');
signal sig_next_burst_reg : std_logic_vector(1 downto 0) := (others => '0');
signal sig_next_cache_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_user_reg : std_logic_vector(3 downto 0) := (others => '0');
signal sig_next_cmd_cmplt_reg : std_logic := '0';
signal sig_addr_valid_reg : std_logic := '0';
signal sig_calc_error_reg : std_logic := '0';
signal sig_pop_addr_reg : std_logic := '0';
signal sig_push_addr_reg : std_logic := '0';
signal sig_addr_reg_empty : std_logic := '0';
signal sig_addr_reg_full : std_logic := '0';
signal sig_posted_to_axi : std_logic := '0';
-- obsoleted signal sig_set_wfd_flop : std_logic := '0';
-- obsoleted signal sig_clr_wfd_flop : std_logic := '0';
-- obsoleted signal sig_wait_for_data : std_logic := '0';
-- obsoleted signal sig_data2addr_data_rdy_reg : std_logic := '0';
signal sig_allow_addr_req : std_logic := '0';
signal sig_posted_to_axi_2 : std_logic := '0';
signal new_cmd_in : std_logic;
signal first_addr_valid : std_logic;
signal first_addr_valid_del : std_logic;
signal first_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal last_addr_int : std_logic_vector (C_ADDR_WIDTH-1 downto 0);
signal addr2axi_cache_int : std_logic_vector (7 downto 0);
signal addr2axi_cache_int1 : std_logic_vector (7 downto 0);
signal last_one : std_logic;
signal latch : std_logic;
signal first_one : std_logic;
signal latch_n : std_logic;
signal latch_n_del : std_logic;
signal mstr2addr_cache_info_int : std_logic_vector (7 downto 0);
-- Register duplication attribute assignments to control fanout
-- on handshake output signals
Attribute KEEP : string; -- declaration
Attribute EQUIVALENT_REGISTER_REMOVAL : string; -- declaration
Attribute KEEP of sig_posted_to_axi : signal is "TRUE"; -- definition
Attribute KEEP of sig_posted_to_axi_2 : signal is "TRUE"; -- definition
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi : signal is "no";
Attribute EQUIVALENT_REGISTER_REMOVAL of sig_posted_to_axi_2 : signal is "no";
begin --(architecture implementation)
-- AXI I/O Port assignments
addr2axi_aid <= STD_LOGIC_VECTOR(TO_UNSIGNED(C_ADDR_ID, C_ADDR_ID_WIDTH));
addr2axi_aaddr <= sig_axi_addr ;
addr2axi_alen <= sig_axi_alen ;
addr2axi_asize <= sig_axi_asize ;
addr2axi_aburst <= sig_axi_aburst;
addr2axi_acache <= sig_axi_acache;
addr2axi_auser <= sig_axi_auser;
addr2axi_aprot <= APROT_VALUE ;
addr2axi_avalid <= sig_axi_avalid;
sig_axi_aready <= axi2addr_aready;
-- Command Calculator Handshake output
sig_fifo_wr_cmd_valid <= mstr2addr_cmd_valid ;
addr2mstr_cmd_ready <= sig_fifo_wr_cmd_ready;
-- Data Channel Controller synchro pulse output
addr2data_addr_posted <= sig_addr_posted;
-- Status Module Interface outputs
addr2stat_calc_error <= sig_calc_error ;
addr2stat_cmd_fifo_empty <= sig_addr_reg_empty and
sig_cmd_fifo_empty;
-- Flag Indicating the Address Controller has completed a Stop
addr2rst_stop_cmplt <= (data2addr_stop_req and -- normal shutdown case
sig_addr_reg_empty) or
(data2addr_stop_req and -- shutdown after error trap
sig_calc_error);
-- Assign the address posting control and status
sig_allow_addr_req <= allow_addr_req ;
addr_req_posted <= sig_posted_to_axi_2 ;
-- Internal logic ------------------------------
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where the cmd qualifier depth is
-- greater than 1.
--
------------------------------------------------------------
GEN_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH > 1) generate
begin
-- Format the input FIFO data word
sig_aq_fifo_data_in <= mstr2addr_cache &
mstr2addr_user &
mstr2addr_calc_error &
mstr2addr_cmd_cmplt &
mstr2addr_burst &
mstr2addr_size &
mstr2addr_len &
mstr2addr_addr &
mstr2addr_tag ;
-- Rip fields from FIFO output data word
sig_fifo_next_cache <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 7)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 4)
);
sig_fifo_next_user <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH + 3)
downto
(C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)
);
sig_fifo_calc_error <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH +
CALC_ERROR_WIDTH)-1);
sig_fifo_next_cmd_cmplt <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH +
CMD_CMPLT_WIDTH)-1);
sig_fifo_next_burst <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH +
BURST_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH) ;
sig_fifo_next_size <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH +
SIZE_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH) ;
sig_fifo_next_len <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH +
LEN_WIDTH)-1
downto
C_ADDR_WIDTH +
C_TAG_WIDTH) ;
sig_fifo_next_addr <= sig_aq_fifo_data_out((C_ADDR_WIDTH +
C_TAG_WIDTH)-1
downto
C_TAG_WIDTH) ;
sig_fifo_next_tag <= sig_aq_fifo_data_out(C_TAG_WIDTH-1 downto 0);
------------------------------------------------------------
-- Instance: I_ADDR_QUAL_FIFO
--
-- Description:
-- Instance for the Address/Qualifier FIFO
--
------------------------------------------------------------
I_ADDR_QUAL_FIFO : entity axi_datamover_v5_1.axi_datamover_fifo
generic map (
C_DWIDTH => ADDR_QUAL_WIDTH ,
C_DEPTH => C_ADDR_FIFO_DEPTH ,
C_IS_ASYNC => USE_SYNC_FIFO ,
C_PRIM_TYPE => FIFO_PRIM_TYPE ,
C_FAMILY => C_FAMILY
)
port map (
-- Write Clock and reset
fifo_wr_reset => mmap_reset ,
fifo_wr_clk => primary_aclk ,
-- Write Side
fifo_wr_tvalid => sig_fifo_wr_cmd_valid ,
fifo_wr_tready => sig_fifo_wr_cmd_ready ,
fifo_wr_tdata => sig_aq_fifo_data_in ,
fifo_wr_full => open ,
-- Read Clock and reset
fifo_async_rd_reset => mmap_reset ,
fifo_async_rd_clk => primary_aclk ,
-- Read Side
fifo_rd_tvalid => sig_fifo_rd_cmd_valid ,
fifo_rd_tready => sig_fifo_rd_cmd_ready ,
fifo_rd_tdata => sig_aq_fifo_data_out ,
fifo_rd_empty => sig_cmd_fifo_empty
);
end generate GEN_ADDR_FIFO;
------------------------------------------------------------
-- If Generate
--
-- Label: GEN_NO_ADDR_FIFO
--
-- If Generate Description:
-- Implements the case where no additional FIFOing is needed
-- on the input command address/qualifiers.
--
------------------------------------------------------------
GEN_NO_ADDR_FIFO : if (C_ADDR_FIFO_DEPTH = 1) generate
begin
-- Bypass FIFO
sig_fifo_next_tag <= mstr2addr_tag ;
sig_fifo_next_addr <= mstr2addr_addr ;
sig_fifo_next_len <= mstr2addr_len ;
sig_fifo_next_size <= mstr2addr_size ;
sig_fifo_next_burst <= mstr2addr_burst ;
sig_fifo_next_cache <= mstr2addr_cache ;
sig_fifo_next_user <= mstr2addr_user ;
sig_fifo_next_cmd_cmplt <= mstr2addr_cmd_cmplt ;
sig_fifo_calc_error <= mstr2addr_calc_error ;
sig_cmd_fifo_empty <= sig_addr_reg_empty ;
sig_fifo_wr_cmd_ready <= sig_fifo_rd_cmd_ready ;
sig_fifo_rd_cmd_valid <= sig_fifo_wr_cmd_valid ;
end generate GEN_NO_ADDR_FIFO;
-- Output Register Logic -------------------------------------------
sig_axi_addr <= sig_next_addr_reg ;
sig_axi_alen <= sig_next_len_reg ;
sig_axi_asize <= sig_next_size_reg ;
sig_axi_aburst <= sig_next_burst_reg ;
sig_axi_acache <= sig_next_cache_reg ;
sig_axi_auser <= sig_next_user_reg ;
sig_axi_avalid <= sig_addr_valid_reg ;
sig_calc_error <= sig_calc_error_reg ;
sig_fifo_rd_cmd_ready <= sig_addr_reg_empty and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_addr_posted <= sig_posted_to_axi ;
-- Internal signals
sig_push_addr_reg <= sig_addr_reg_empty and
sig_fifo_rd_cmd_valid and
sig_allow_addr_req and
-- obsoleted not(sig_wait_for_data) and
not(data2addr_stop_req);
sig_pop_addr_reg <= not(sig_calc_error_reg) and
sig_axi_aready and
sig_addr_reg_full;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_ADDR_FIFO_REG
--
-- Process Description:
-- This process implements a register for the Address
-- Control FIFO that operates like a 1 deep Sync FIFO.
--
-------------------------------------------------------------
IMP_ADDR_FIFO_REG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1' or
sig_pop_addr_reg = '1') then
sig_next_tag_reg <= (others => '0') ;
sig_next_addr_reg <= (others => '0') ;
sig_next_len_reg <= (others => '0') ;
sig_next_size_reg <= (others => '0') ;
sig_next_burst_reg <= (others => '0') ;
sig_next_cache_reg <= (others => '0') ;
sig_next_user_reg <= (others => '0') ;
sig_next_cmd_cmplt_reg <= '0' ;
sig_addr_valid_reg <= '0' ;
sig_calc_error_reg <= '0' ;
sig_addr_reg_empty <= '1' ;
sig_addr_reg_full <= '0' ;
elsif (sig_push_addr_reg = '1') then
sig_next_tag_reg <= sig_fifo_next_tag ;
sig_next_addr_reg <= sig_fifo_next_addr ;
sig_next_len_reg <= sig_fifo_next_len ;
sig_next_size_reg <= sig_fifo_next_size ;
sig_next_burst_reg <= sig_fifo_next_burst ;
sig_next_cache_reg <= sig_fifo_next_cache ;
sig_next_user_reg <= sig_fifo_next_user ;
sig_next_cmd_cmplt_reg <= sig_fifo_next_cmd_cmplt ;
sig_addr_valid_reg <= not(sig_fifo_calc_error);
sig_calc_error_reg <= sig_fifo_calc_error ;
sig_addr_reg_empty <= '0' ;
sig_addr_reg_full <= '1' ;
else
null; -- don't change state
end if;
end if;
end process IMP_ADDR_FIFO_REG;
-------------------------------------------------------------
-- Synchronous Process with Sync Reset
--
-- Label: IMP_POSTED_FLAG
--
-- Process Description:
-- This implements a FLOP that creates a 1 clock wide pulse
-- indicating a new address/qualifier set has been posted to
-- the AXI Addres Channel outputs. This is used to synchronize
-- the Data Channel Controller.
--
-------------------------------------------------------------
IMP_POSTED_FLAG : process (primary_aclk)
begin
if (primary_aclk'event and primary_aclk = '1') then
if (mmap_reset = '1') then
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
elsif (sig_push_addr_reg = '1') then
sig_posted_to_axi <= '1';
sig_posted_to_axi_2 <= '1';
else
sig_posted_to_axi <= '0';
sig_posted_to_axi_2 <= '0';
end if;
end if;
end process IMP_POSTED_FLAG;
-- PROC_CMD_DETECT : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_addr_valid_del <= first_addr_valid;
-- end if;
-- end process PROC_CMD_DETECT;
--
-- PROC_ADDR_DET : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= (others => '0');
-- last_addr_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (mstr2addr_cmd_valid = '1' and first_addr_valid = '0') then
-- first_addr_valid <= '1';
-- first_addr_int <= mstr2addr_addr;
-- last_addr_int <= last_addr_int;
-- elsif (mstr2addr_cmd_cmplt = '1') then
-- first_addr_valid <= '0';
-- first_addr_int <= first_addr_int;
-- last_addr_int <= mstr2addr_addr;
-- end if;
-- end if;
-- end process PROC_ADDR_DET;
--
-- latch <= first_addr_valid and (not first_addr_valid_del);
-- latch_n <= (not first_addr_valid) and first_addr_valid_del;
--
-- PROC_CACHE1 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- mstr2addr_cache_info_int <= (others => '0');
-- latch_n_del <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- if (latch_n = '1') then
-- mstr2addr_cache_info_int <= mstr2addr_cache_info;
-- end if;
-- latch_n_del <= latch_n;
-- end if;
-- end process PROC_CACHE1;
--
--
-- PROC_CACHE : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int1 <= (others => '0');
-- first_one <= '0';
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- first_one <= '0';
---- if (latch = '1' and first_one = '0') then -- first one
-- if (sig_addr_valid_reg = '0' and first_addr_valid = '0') then
-- addr2axi_cache_int1 <= mstr2addr_cache_info;
---- first_one <= '1';
---- elsif (latch_n_del = '1') then
---- addr2axi_cache_int <= mstr2addr_cache_info_int;
-- elsif ((first_addr_int = sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- elsif ((last_addr_int >= sig_next_addr_reg) and (sig_addr_valid_reg = '1')) then
-- addr2axi_cache_int1 <= addr2axi_cache_int1; --mstr2addr_cache_info (7 downto 4);
-- end if;
-- end if;
-- end process PROC_CACHE;
--
--
-- PROC_CACHE2 : process (primary_aclk)
-- begin
-- if (mmap_reset = '1') then
-- addr2axi_cache_int <= (others => '0');
-- elsif (primary_aclk'event and primary_aclk = '1') then
-- addr2axi_cache_int <= addr2axi_cache_int1;
-- end if;
-- end process PROC_CACHE2;
--
--addr2axi_cache <= addr2axi_cache_int (3 downto 0);
--addr2axi_user <= addr2axi_cache_int (7 downto 4);
--
end implementation;
|
----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 12:31:01 11/18/2013
-- Design Name:
-- Module Name: Digit - Behavioral
-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--use IEEE.NUMERIC_STD.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity Digit is
port(
rainbow : in std_logic;
number : in std_logic_vector(3 downto 0);
x : in std_logic_vector(2 downto 0);
y : in std_logic_vector(2 downto 0);
R : out std_logic_vector(3 downto 0);
G : out std_logic_vector(3 downto 0);
B : out std_logic_vector(3 downto 0));
end Digit;
architecture dataflow of Digit is
constant zero: std_logic_vector(0 to 63):=
"0011110011100111110000111100001111000011110000111110011100111100";
constant one: std_logic_vector(0 to 63):=
"0000110000111100000111000000110000001100000011000001111011111111";
constant two: std_logic_vector(0 to 63):=
"0011111011100111110000110000001100000011000001110001111011111111";
constant three: std_logic_vector(0 to 63):=
"0011110011100111000011110111110000011110000011111110011100111100";
constant four: std_logic_vector(0 to 63):=
"1100001111000011110000111100001101111111000000110000001100000111";
constant five: std_logic_vector(0 to 63):=
"1111111111000000110000001111110000001111000000110000111111111100";
constant six: std_logic_vector(0 to 63):=
"0001111101110000110000001101110011100111110000111110011100111100";
constant seven: std_logic_vector(0 to 63):=
"1111111100000111000001100000110000011000001100000110000011100000";
constant eight: std_logic_vector(0 to 63):=
"0011110011100111111001110111111011100111110000111110011100111100";
constant nine: std_logic_vector(0 to 63):=
"0011110011100111110000110111111000001100000110000011000001110000";
signal pixel: std_logic :='0';
begin
process(x, y, number)
begin
case number is
when x"0" =>
if(zero(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"1" =>
if(one(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"2" =>
if(two(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"3" =>
if(three(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"4" =>
if(four(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"5" =>
if(five(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"6" =>
if(six(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"7" =>
if(seven(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"8" =>
if(eight(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when x"9" =>
if(nine(to_integer(unsigned(y & "000") +
unsigned("000" & x))) = '1') then
pixel<='1';
else
pixel<='0';
end if;
when others =>
pixel<='0';
end case;
end process;
process (pixel, rainbow)
begin
if(pixel='1') then
if(rainbow='1') then
case y is
when "000" =>
R <= "1110";
G <= "0000";
B <= "0000";
when "001" =>
R <= "1110";
G <= "0110";
B <= "0000";
when "010" =>
R <= "1110";
G <= "1110";
B <= "0000";
when "011" =>
R <= "0000";
G <= "1110";
B <= "0000";
when "100" =>
R <= "0000";
G <= "0000";
B <= "1100";
when "101" =>
R <= "1000";
G <= "0000";
B <= "1100";
when others =>
R <= "1110";
G <= "0000";
B <= "0000";
end case;
else
R <="1000";
G <="1000";
B <="1000";
end if;
else
R <=x"0";
G <=x"0";
B <=x"0";
end if;
end process;
end dataflow;
|
library IEEE;
use IEEE.std_logic_1164.all;
library LIB1;
use LIB1.pkg1_lib1.all;
library LIB2;
use LIB2.pkg1_lib2.all;
entity core is
generic (
WITH_GENERIC: boolean:=TRUE
);
port (
data_i : in std_logic;
data_o : out std_logic
);
end entity core;
architecture RTL of core is
signal data : std_logic;
begin
com2_pkg1_lib1_inst: com2_pkg1_lib1
port map (
data_i => data_i,
data_o => data
);
com1_pkg1_lib2_inst: com1_pkg1_lib2
generic map (WITH_GENERIC => FALSE)
port map (
data_i => data,
data_o => data_o
);
end architecture RTL;
|
-- -------------------------------------------------------------
--
-- Generated Architecture Declaration for rtl of ent_aa
--
-- Generated
-- by: wig
-- on: Fri Jul 15 16:37:11 2005
-- cmd: h:/work/eclipse/mix/mix_0.pl -strip -nodelta ../../sigport.xls
--
-- !!! Do not edit this file! Autogenerated by MIX !!!
-- $Author: wig $
-- $Id: ent_aa-rtl-a.vhd,v 1.3 2005/07/15 16:20:07 wig Exp $
-- $Date: 2005/07/15 16:20:07 $
-- $Log: ent_aa-rtl-a.vhd,v $
-- Revision 1.3 2005/07/15 16:20:07 wig
-- Update all testcases; still problems though
--
--
-- Based on Mix Architecture Template built into RCSfile: MixWriter.pm,v
-- Id: MixWriter.pm,v 1.55 2005/07/13 15:38:34 wig Exp
--
-- Generator: mix_0.pl Revision: 1.36 , [email protected]
-- (C) 2003 Micronas GmbH
--
-- --------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
-- No project specific VHDL libraries/arch
--
--
-- Start of Generated Architecture rtl of ent_aa
--
architecture rtl of ent_aa is
-- Generated Constant Declarations
--
-- Components
--
-- Generated Components
--
-- Nets
--
--
-- Generated Signal List
--
--
-- End of Generated Signal List
--
begin
--
-- Generated Concurrent Statements
--
-- Generated Signal Assignments
--
-- Generated Instances
--
-- Generated Instances and Port Mappings
end rtl;
--
--!End of Architecture/s
-- --------------------------------------------------------------
|
--------------------------------------------------------------------------------------------------
-- Reconstruction Testbench
--------------------------------------------------------------------------------------------------
-- Matthew Dallmeyer - [email protected]
--------------------------------------------------------------------------------------------------
-- ENTITY
--------------------------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.tb_clockgen_pkg.all;
use work.tb_read_csv_pkg.all;
use work.tb_write_csv_pkg.all;
use work.dsp_pkg.all;
use work.reconstruction_pkg.all;
--This module is a test-bench for simulating the fir filter
entity tb_reconstruction is
end tb_reconstruction;
--------------------------------------------------------------------------------------------------
-- ARCHITECTURE
--------------------------------------------------------------------------------------------------
architecture sim of tb_reconstruction is
constant INPUT_FILE1 : string
:= "X:\Education\Masters Thesis\matlab\fir_filters\chirp_decomp_low.csv";
constant INPUT_FILE2 : string
:= "X:\Education\Masters Thesis\matlab\fir_filters\chirp_decomp_high.csv";
constant OUTPUT_FILE : string
:= "X:\Education\Masters Thesis\matlab\fir_filters\chirp_reconstructed.csv";
signal rst : std_logic := '0';
signal clk_10ns : std_logic := '0';
signal clk_20ns : std_logic := '0';
signal sig_in1 : sig := (others => '0');
signal sig_in2 : sig := (others => '0');
signal sig_out : sig := (others => '0');
begin
--Instantiate clock generator
clk1 : tb_clockgen
generic map(PERIOD => 10ns,
DUTY_CYCLE => 0.50)
port map( clk => clk_10ns);
clk2 : tb_clockgen
generic map(PERIOD => 20ns,
DUTY_CYCLE => 0.50)
port map( clk => clk_20ns);
--Instantiate file reader
reader1 : tb_read_csv
generic map(FILENAME => INPUT_FILE1)
port map( clk => clk_20ns,
sig(data) => sig_in1);
--Instantiate file reader
reader2 : tb_read_csv
generic map(FILENAME => INPUT_FILE2)
port map( clk => clk_20ns,
sig(data) => sig_in2);
--Instantiate unit under test
uut : entity work.reconstruction(behave)
generic map(low_pass => NYQUIST_LOW_BANK,
high_pass => NYQUIST_HIGH_BANK)
port map( clk_low => clk_20ns,
clk_high => clk_10ns,
rst => rst,
x_low => sig_in1,
x_high => sig_in2,
y => sig_out);
--Instantiate a file writer
writer : tb_write_csv
generic map(FILENAME => OUTPUT_FILE)
port map( clk => clk_10ns,
data => std_logic_vector(sig_out));
--Main Process
--TODO: Add a check for end of file, once reached terminate simulation.
main: process
begin
rst <= '1';
wait for 36ns;
rst <= '0';
wait;
end process;
end sim;
|
-------------------------------------------------------------------
-- System Generator version 10.1.00 VHDL source file.
--
-- Copyright(C) 2007 by Xilinx, Inc. All rights reserved. This
-- text/file contains proprietary, confidential information of Xilinx,
-- Inc., is distributed under license from Xilinx, Inc., and may be used,
-- copied and/or disclosed only pursuant to the terms of a valid license
-- agreement with Xilinx, Inc. Xilinx hereby grants you a license to use
-- this text/file solely for design, simulation, implementation and
-- creation of design files limited to Xilinx devices or technologies.
-- Use with non-Xilinx devices or technologies is expressly prohibited
-- and immediately terminates your license unless covered by a separate
-- agreement.
--
-- Xilinx is providing this design, code, or information "as is" solely
-- for use in developing programs and solutions for Xilinx devices. By
-- providing this design, code, or information as one possible
-- implementation of this feature, application or standard, Xilinx is
-- making no representation that this implementation is free from any
-- claims of infringement. You are responsible for obtaining any rights
-- you may require for your implementation. Xilinx expressly disclaims
-- any warranty whatsoever with respect to the adequacy of the
-- implementation, including but not limited to warranties of
-- merchantability or fitness for a particular purpose.
--
-- Xilinx products are not intended for use in life support appliances,
-- devices, or systems. Use in such applications is expressly prohibited.
--
-- Any modifications that are made to the source code are done at the user's
-- sole risk and will be unsupported.
--
-- This copyright and support notice must be retained as part of this
-- text at all times. (c) Copyright 1995-2007 Xilinx, Inc. All rights
-- reserved.
-------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
entity plbaddrpref is
generic (
C_BASEADDR : std_logic_vector(31 downto 0) := X"80000000";
C_HIGHADDR : std_logic_vector(31 downto 0) := X"8000FFFF";
C_SPLB_DWIDTH : integer range 32 to 128 := 32;
C_SPLB_NATIVE_DWIDTH : integer range 32 to 32 := 32
);
port (
addrpref : out std_logic_vector(15-1 downto 0);
sl_rddbus : out std_logic_vector(0 to C_SPLB_DWIDTH-1);
plb_wrdbus : in std_logic_vector(0 to C_SPLB_DWIDTH-1);
sgsl_rddbus : in std_logic_vector(0 to C_SPLB_NATIVE_DWIDTH-1);
sgplb_wrdbus : out std_logic_vector(0 to C_SPLB_NATIVE_DWIDTH-1)
);
end plbaddrpref;
architecture behavior of plbaddrpref is
signal sl_rddbus_i : std_logic_vector(0 to C_SPLB_DWIDTH-1);
begin
addrpref <= C_BASEADDR(32-1 downto 17);
-------------------------------------------------------------------------------
-- Mux/Steer data/be's correctly for connect 32-bit slave to 128-bit plb
-------------------------------------------------------------------------------
GEN_128_TO_32_SLAVE : if C_SPLB_NATIVE_DWIDTH = 32 and C_SPLB_DWIDTH = 128 generate
begin
-----------------------------------------------------------------------
-- Map lower rd data to each quarter of the plb slave read bus
-----------------------------------------------------------------------
sl_rddbus_i(0 to 31) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(32 to 63) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(64 to 95) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(96 to 127) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
end generate GEN_128_TO_32_SLAVE;
-------------------------------------------------------------------------------
-- Mux/Steer data/be's correctly for connect 32-bit slave to 64-bit plb
-------------------------------------------------------------------------------
GEN_64_TO_32_SLAVE : if C_SPLB_NATIVE_DWIDTH = 32 and C_SPLB_DWIDTH = 64 generate
begin
---------------------------------------------------------------------------
-- Map lower rd data to upper and lower halves of plb slave read bus
---------------------------------------------------------------------------
sl_rddbus_i(0 to 31) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(32 to 63) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
end generate GEN_64_TO_32_SLAVE;
-------------------------------------------------------------------------------
-- IPIF DWidth = PLB DWidth
-- If IPIF Slave Data width is equal to the PLB Bus Data Width
-- Then BE and Read Data Bus map directly to eachother.
-------------------------------------------------------------------------------
GEN_FOR_EQUAL_SLAVE : if C_SPLB_NATIVE_DWIDTH = C_SPLB_DWIDTH generate
sl_rddbus_i <= sgsl_rddbus;
end generate GEN_FOR_EQUAL_SLAVE;
sl_rddbus <= sl_rddbus_i;
sgplb_wrdbus <= plb_wrdbus(0 to C_SPLB_NATIVE_DWIDTH-1);
end behavior;
library IEEE;
use IEEE.std_logic_1164.all;
use work.conv_pkg.all;
entity user_io_board_controller_plbw is
generic (
C_BASEADDR: std_logic_vector(31 downto 0) := X"80000000";
C_HIGHADDR: std_logic_vector(31 downto 0) := X"80000FFF";
C_SPLB_DWIDTH: integer range 32 to 128 := 32;
C_SPLB_NATIVE_DWIDTH: integer range 32 to 32 := 32;
C_SPLB_AWIDTH: integer := 0;
C_SPLB_P2P: integer := 0;
C_SPLB_MID_WIDTH: integer := 0;
C_SPLB_NUM_MASTERS: integer := 0;
C_SPLB_SUPPORT_BURSTS: integer := 0;
C_MEMMAP_BUTTONS_BIG: integer := 0;
C_MEMMAP_BUTTONS_BIG_N_BITS: integer := 0;
C_MEMMAP_BUTTONS_BIG_BIN_PT: integer := 0;
C_MEMMAP_BUTTONS_SMALL: integer := 0;
C_MEMMAP_BUTTONS_SMALL_N_BITS: integer := 0;
C_MEMMAP_BUTTONS_SMALL_BIN_PT: integer := 0;
C_MEMMAP_DIP_SWITCH: integer := 0;
C_MEMMAP_DIP_SWITCH_N_BITS: integer := 0;
C_MEMMAP_DIP_SWITCH_BIN_PT: integer := 0;
C_MEMMAP_TRACKBALL: integer := 0;
C_MEMMAP_TRACKBALL_N_BITS: integer := 0;
C_MEMMAP_TRACKBALL_BIN_PT: integer := 0;
C_MEMMAP_BUZZER_DUTYCYCLE: integer := 0;
C_MEMMAP_BUZZER_DUTYCYCLE_N_BITS: integer := 0;
C_MEMMAP_BUZZER_DUTYCYCLE_BIN_PT: integer := 0;
C_MEMMAP_BUZZER_ENABLE: integer := 0;
C_MEMMAP_BUZZER_ENABLE_N_BITS: integer := 0;
C_MEMMAP_BUZZER_ENABLE_BIN_PT: integer := 0;
C_MEMMAP_BUZZER_PERIOD: integer := 0;
C_MEMMAP_BUZZER_PERIOD_N_BITS: integer := 0;
C_MEMMAP_BUZZER_PERIOD_BIN_PT: integer := 0;
C_MEMMAP_LCD_BACKGROUNDCOLOR: integer := 0;
C_MEMMAP_LCD_BACKGROUNDCOLOR_N_BITS: integer := 0;
C_MEMMAP_LCD_BACKGROUNDCOLOR_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTEROFFSET: integer := 0;
C_MEMMAP_LCD_CHARACTEROFFSET_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTEROFFSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTERSSELECT: integer := 0;
C_MEMMAP_LCD_CHARACTERSSELECT_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTERSSELECT_BIN_PT: integer := 0;
C_MEMMAP_LCD_COLSET: integer := 0;
C_MEMMAP_LCD_COLSET_N_BITS: integer := 0;
C_MEMMAP_LCD_COLSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_CONFIGLOCATION: integer := 0;
C_MEMMAP_LCD_CONFIGLOCATION_N_BITS: integer := 0;
C_MEMMAP_LCD_CONFIGLOCATION_BIN_PT: integer := 0;
C_MEMMAP_LCD_DIVIDERSELECT: integer := 0;
C_MEMMAP_LCD_DIVIDERSELECT_N_BITS: integer := 0;
C_MEMMAP_LCD_DIVIDERSELECT_BIN_PT: integer := 0;
C_MEMMAP_LCD_FIRSTEND: integer := 0;
C_MEMMAP_LCD_FIRSTEND_N_BITS: integer := 0;
C_MEMMAP_LCD_FIRSTEND_BIN_PT: integer := 0;
C_MEMMAP_LCD_FIRSTSTART: integer := 0;
C_MEMMAP_LCD_FIRSTSTART_N_BITS: integer := 0;
C_MEMMAP_LCD_FIRSTSTART_BIN_PT: integer := 0;
C_MEMMAP_LCD_LINEOFFSET: integer := 0;
C_MEMMAP_LCD_LINEOFFSET_N_BITS: integer := 0;
C_MEMMAP_LCD_LINEOFFSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_RAMWRITE: integer := 0;
C_MEMMAP_LCD_RAMWRITE_N_BITS: integer := 0;
C_MEMMAP_LCD_RAMWRITE_BIN_PT: integer := 0;
C_MEMMAP_LCD_RESET: integer := 0;
C_MEMMAP_LCD_RESET_N_BITS: integer := 0;
C_MEMMAP_LCD_RESET_BIN_PT: integer := 0;
C_MEMMAP_LCD_RESETLCD: integer := 0;
C_MEMMAP_LCD_RESETLCD_N_BITS: integer := 0;
C_MEMMAP_LCD_RESETLCD_BIN_PT: integer := 0;
C_MEMMAP_LCD_ROWSET: integer := 0;
C_MEMMAP_LCD_ROWSET_N_BITS: integer := 0;
C_MEMMAP_LCD_ROWSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_SECONDEND: integer := 0;
C_MEMMAP_LCD_SECONDEND_N_BITS: integer := 0;
C_MEMMAP_LCD_SECONDEND_BIN_PT: integer := 0;
C_MEMMAP_LCD_SECONDSTART: integer := 0;
C_MEMMAP_LCD_SECONDSTART_N_BITS: integer := 0;
C_MEMMAP_LCD_SECONDSTART_BIN_PT: integer := 0;
C_MEMMAP_LCD_SEND: integer := 0;
C_MEMMAP_LCD_SEND_N_BITS: integer := 0;
C_MEMMAP_LCD_SEND_BIN_PT: integer := 0;
C_MEMMAP_LCD_TOTALCMDTRANSFER: integer := 0;
C_MEMMAP_LCD_TOTALCMDTRANSFER_N_BITS: integer := 0;
C_MEMMAP_LCD_TOTALCMDTRANSFER_BIN_PT: integer := 0;
C_MEMMAP_LEDS: integer := 0;
C_MEMMAP_LEDS_N_BITS: integer := 0;
C_MEMMAP_LEDS_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTERMAP: integer := 0;
C_MEMMAP_LCD_CHARACTERMAP_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTERMAP_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTERS: integer := 0;
C_MEMMAP_LCD_CHARACTERS_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTERS_BIN_PT: integer := 0;
C_MEMMAP_LCD_COMMANDS: integer := 0;
C_MEMMAP_LCD_COMMANDS_N_BITS: integer := 0;
C_MEMMAP_LCD_COMMANDS_BIN_PT: integer := 0
);
port (
buttons_big: in std_logic_vector(0 to 1);
buttons_small: in std_logic_vector(0 to 5);
ce: in std_logic;
dip_switch: in std_logic_vector(0 to 3);
plb_abus: in std_logic_vector(0 to 31);
plb_pavalid: in std_logic;
plb_rnw: in std_logic;
plb_wrdbus: in std_logic_vector(0 to C_SPLB_DWIDTH-1);
reset: in std_logic;
splb_clk: in std_logic;
splb_rst: in std_logic;
trackball_ox: in std_logic;
trackball_oxn: in std_logic;
trackball_oy: in std_logic;
trackball_oyn: in std_logic;
trackball_sel2: in std_logic;
buzzer: out std_logic;
cs: out std_logic;
leds: out std_logic_vector(0 to 7);
resetlcd: out std_logic;
scl: out std_logic;
sdi: out std_logic;
sl_addrack: out std_logic;
sl_rdcomp: out std_logic;
sl_rddack: out std_logic;
sl_rddbus: out std_logic_vector(0 to C_SPLB_DWIDTH-1);
sl_wait: out std_logic;
sl_wrcomp: out std_logic;
sl_wrdack: out std_logic;
trackball_sel1: out std_logic;
trackball_xscn: out std_logic;
trackball_yscn: out std_logic
);
end user_io_board_controller_plbw;
architecture structural of user_io_board_controller_plbw is
signal buttons_big_x0: std_logic_vector(1 downto 0);
signal buttons_small_x0: std_logic_vector(5 downto 0);
signal buzzer_x0: std_logic;
signal ce_x0: std_logic;
signal clk: std_logic;
signal cs_x0: std_logic;
signal dip_switch_x0: std_logic_vector(3 downto 0);
signal leds_x0: std_logic_vector(7 downto 0);
signal plb_abus_x0: std_logic_vector(31 downto 0);
signal plb_pavalid_x0: std_logic;
signal plb_rnw_x0: std_logic;
signal plbaddrpref_addrpref_net: std_logic_vector(14 downto 0);
signal plbaddrpref_plb_wrdbus_net: std_logic_vector(C_SPLB_DWIDTH-1 downto 0);
signal plbaddrpref_sgplb_wrdbus_net: std_logic_vector(31 downto 0);
signal plbaddrpref_sgsl_rddbus_net: std_logic_vector(31 downto 0);
signal plbaddrpref_sl_rddbus_net: std_logic_vector(C_SPLB_DWIDTH-1 downto 0);
signal reset_x0: std_logic;
signal resetlcd_x0: std_logic;
signal scl_x0: std_logic;
signal sdi_x0: std_logic;
signal sl_addrack_x0: std_logic;
signal sl_rdcomp_x0: std_logic;
signal sl_rddack_x0: std_logic;
signal sl_wait_x0: std_logic;
signal sl_wrcomp_x0: std_logic;
signal sl_wrdack_x0: std_logic;
signal splb_rst_x0: std_logic;
signal trackball_ox_x0: std_logic;
signal trackball_oxn_x0: std_logic;
signal trackball_oy_x0: std_logic;
signal trackball_oyn_x0: std_logic;
signal trackball_sel1_x0: std_logic;
signal trackball_sel2_x0: std_logic;
signal trackball_xscn_x0: std_logic;
signal trackball_yscn_x0: std_logic;
begin
buttons_big_x0 <= buttons_big;
buttons_small_x0 <= buttons_small;
ce_x0 <= ce;
dip_switch_x0 <= dip_switch;
plb_abus_x0 <= plb_abus;
plb_pavalid_x0 <= plb_pavalid;
plb_rnw_x0 <= plb_rnw;
plbaddrpref_plb_wrdbus_net <= plb_wrdbus;
reset_x0 <= reset;
clk <= splb_clk;
splb_rst_x0 <= splb_rst;
trackball_ox_x0 <= trackball_ox;
trackball_oxn_x0 <= trackball_oxn;
trackball_oy_x0 <= trackball_oy;
trackball_oyn_x0 <= trackball_oyn;
trackball_sel2_x0 <= trackball_sel2;
buzzer <= buzzer_x0;
cs <= cs_x0;
leds <= leds_x0;
resetlcd <= resetlcd_x0;
scl <= scl_x0;
sdi <= sdi_x0;
sl_addrack <= sl_addrack_x0;
sl_rdcomp <= sl_rdcomp_x0;
sl_rddack <= sl_rddack_x0;
sl_rddbus <= plbaddrpref_sl_rddbus_net;
sl_wait <= sl_wait_x0;
sl_wrcomp <= sl_wrcomp_x0;
sl_wrdack <= sl_wrdack_x0;
trackball_sel1 <= trackball_sel1_x0;
trackball_xscn <= trackball_xscn_x0;
trackball_yscn <= trackball_yscn_x0;
plbaddrpref_x0: entity work.plbaddrpref
generic map (
C_BASEADDR => C_BASEADDR,
C_HIGHADDR => C_HIGHADDR,
C_SPLB_DWIDTH => C_SPLB_DWIDTH,
C_SPLB_NATIVE_DWIDTH => C_SPLB_NATIVE_DWIDTH
)
port map (
plb_wrdbus => plbaddrpref_plb_wrdbus_net,
sgsl_rddbus => plbaddrpref_sgsl_rddbus_net,
addrpref => plbaddrpref_addrpref_net,
sgplb_wrdbus => plbaddrpref_sgplb_wrdbus_net,
sl_rddbus => plbaddrpref_sl_rddbus_net
);
sysgen_dut: entity work.user_io_board_controller_cw
port map (
buttons_big => buttons_big_x0,
buttons_small => buttons_small_x0,
ce => ce_x0,
clk => clk,
dip_switch => dip_switch_x0,
plb_abus => plb_abus_x0,
plb_pavalid => plb_pavalid_x0,
plb_rnw => plb_rnw_x0,
plb_wrdbus => plbaddrpref_sgplb_wrdbus_net,
reset => reset_x0,
sg_plb_addrpref => plbaddrpref_addrpref_net,
splb_rst => splb_rst_x0,
trackball_ox => trackball_ox_x0,
trackball_oxn => trackball_oxn_x0,
trackball_oy => trackball_oy_x0,
trackball_oyn => trackball_oyn_x0,
trackball_sel2 => trackball_sel2_x0,
buzzer => buzzer_x0,
cs => cs_x0,
leds => leds_x0,
resetlcd => resetlcd_x0,
scl => scl_x0,
sdi => sdi_x0,
sl_addrack => sl_addrack_x0,
sl_rdcomp => sl_rdcomp_x0,
sl_rddack => sl_rddack_x0,
sl_rddbus => plbaddrpref_sgsl_rddbus_net,
sl_wait => sl_wait_x0,
sl_wrcomp => sl_wrcomp_x0,
sl_wrdack => sl_wrdack_x0,
trackball_sel1 => trackball_sel1_x0,
trackball_xscn => trackball_xscn_x0,
trackball_yscn => trackball_yscn_x0
);
end structural;
|
-------------------------------------------------------------------
-- System Generator version 10.1.00 VHDL source file.
--
-- Copyright(C) 2007 by Xilinx, Inc. All rights reserved. This
-- text/file contains proprietary, confidential information of Xilinx,
-- Inc., is distributed under license from Xilinx, Inc., and may be used,
-- copied and/or disclosed only pursuant to the terms of a valid license
-- agreement with Xilinx, Inc. Xilinx hereby grants you a license to use
-- this text/file solely for design, simulation, implementation and
-- creation of design files limited to Xilinx devices or technologies.
-- Use with non-Xilinx devices or technologies is expressly prohibited
-- and immediately terminates your license unless covered by a separate
-- agreement.
--
-- Xilinx is providing this design, code, or information "as is" solely
-- for use in developing programs and solutions for Xilinx devices. By
-- providing this design, code, or information as one possible
-- implementation of this feature, application or standard, Xilinx is
-- making no representation that this implementation is free from any
-- claims of infringement. You are responsible for obtaining any rights
-- you may require for your implementation. Xilinx expressly disclaims
-- any warranty whatsoever with respect to the adequacy of the
-- implementation, including but not limited to warranties of
-- merchantability or fitness for a particular purpose.
--
-- Xilinx products are not intended for use in life support appliances,
-- devices, or systems. Use in such applications is expressly prohibited.
--
-- Any modifications that are made to the source code are done at the user's
-- sole risk and will be unsupported.
--
-- This copyright and support notice must be retained as part of this
-- text at all times. (c) Copyright 1995-2007 Xilinx, Inc. All rights
-- reserved.
-------------------------------------------------------------------
library IEEE;
use IEEE.std_logic_1164.all;
entity plbaddrpref is
generic (
C_BASEADDR : std_logic_vector(31 downto 0) := X"80000000";
C_HIGHADDR : std_logic_vector(31 downto 0) := X"8000FFFF";
C_SPLB_DWIDTH : integer range 32 to 128 := 32;
C_SPLB_NATIVE_DWIDTH : integer range 32 to 32 := 32
);
port (
addrpref : out std_logic_vector(15-1 downto 0);
sl_rddbus : out std_logic_vector(0 to C_SPLB_DWIDTH-1);
plb_wrdbus : in std_logic_vector(0 to C_SPLB_DWIDTH-1);
sgsl_rddbus : in std_logic_vector(0 to C_SPLB_NATIVE_DWIDTH-1);
sgplb_wrdbus : out std_logic_vector(0 to C_SPLB_NATIVE_DWIDTH-1)
);
end plbaddrpref;
architecture behavior of plbaddrpref is
signal sl_rddbus_i : std_logic_vector(0 to C_SPLB_DWIDTH-1);
begin
addrpref <= C_BASEADDR(32-1 downto 17);
-------------------------------------------------------------------------------
-- Mux/Steer data/be's correctly for connect 32-bit slave to 128-bit plb
-------------------------------------------------------------------------------
GEN_128_TO_32_SLAVE : if C_SPLB_NATIVE_DWIDTH = 32 and C_SPLB_DWIDTH = 128 generate
begin
-----------------------------------------------------------------------
-- Map lower rd data to each quarter of the plb slave read bus
-----------------------------------------------------------------------
sl_rddbus_i(0 to 31) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(32 to 63) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(64 to 95) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(96 to 127) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
end generate GEN_128_TO_32_SLAVE;
-------------------------------------------------------------------------------
-- Mux/Steer data/be's correctly for connect 32-bit slave to 64-bit plb
-------------------------------------------------------------------------------
GEN_64_TO_32_SLAVE : if C_SPLB_NATIVE_DWIDTH = 32 and C_SPLB_DWIDTH = 64 generate
begin
---------------------------------------------------------------------------
-- Map lower rd data to upper and lower halves of plb slave read bus
---------------------------------------------------------------------------
sl_rddbus_i(0 to 31) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
sl_rddbus_i(32 to 63) <= sgsl_rddbus(0 to C_SPLB_NATIVE_DWIDTH-1);
end generate GEN_64_TO_32_SLAVE;
-------------------------------------------------------------------------------
-- IPIF DWidth = PLB DWidth
-- If IPIF Slave Data width is equal to the PLB Bus Data Width
-- Then BE and Read Data Bus map directly to eachother.
-------------------------------------------------------------------------------
GEN_FOR_EQUAL_SLAVE : if C_SPLB_NATIVE_DWIDTH = C_SPLB_DWIDTH generate
sl_rddbus_i <= sgsl_rddbus;
end generate GEN_FOR_EQUAL_SLAVE;
sl_rddbus <= sl_rddbus_i;
sgplb_wrdbus <= plb_wrdbus(0 to C_SPLB_NATIVE_DWIDTH-1);
end behavior;
library IEEE;
use IEEE.std_logic_1164.all;
use work.conv_pkg.all;
entity user_io_board_controller_plbw is
generic (
C_BASEADDR: std_logic_vector(31 downto 0) := X"80000000";
C_HIGHADDR: std_logic_vector(31 downto 0) := X"80000FFF";
C_SPLB_DWIDTH: integer range 32 to 128 := 32;
C_SPLB_NATIVE_DWIDTH: integer range 32 to 32 := 32;
C_SPLB_AWIDTH: integer := 0;
C_SPLB_P2P: integer := 0;
C_SPLB_MID_WIDTH: integer := 0;
C_SPLB_NUM_MASTERS: integer := 0;
C_SPLB_SUPPORT_BURSTS: integer := 0;
C_MEMMAP_BUTTONS_BIG: integer := 0;
C_MEMMAP_BUTTONS_BIG_N_BITS: integer := 0;
C_MEMMAP_BUTTONS_BIG_BIN_PT: integer := 0;
C_MEMMAP_BUTTONS_SMALL: integer := 0;
C_MEMMAP_BUTTONS_SMALL_N_BITS: integer := 0;
C_MEMMAP_BUTTONS_SMALL_BIN_PT: integer := 0;
C_MEMMAP_DIP_SWITCH: integer := 0;
C_MEMMAP_DIP_SWITCH_N_BITS: integer := 0;
C_MEMMAP_DIP_SWITCH_BIN_PT: integer := 0;
C_MEMMAP_TRACKBALL: integer := 0;
C_MEMMAP_TRACKBALL_N_BITS: integer := 0;
C_MEMMAP_TRACKBALL_BIN_PT: integer := 0;
C_MEMMAP_BUZZER_DUTYCYCLE: integer := 0;
C_MEMMAP_BUZZER_DUTYCYCLE_N_BITS: integer := 0;
C_MEMMAP_BUZZER_DUTYCYCLE_BIN_PT: integer := 0;
C_MEMMAP_BUZZER_ENABLE: integer := 0;
C_MEMMAP_BUZZER_ENABLE_N_BITS: integer := 0;
C_MEMMAP_BUZZER_ENABLE_BIN_PT: integer := 0;
C_MEMMAP_BUZZER_PERIOD: integer := 0;
C_MEMMAP_BUZZER_PERIOD_N_BITS: integer := 0;
C_MEMMAP_BUZZER_PERIOD_BIN_PT: integer := 0;
C_MEMMAP_LCD_BACKGROUNDCOLOR: integer := 0;
C_MEMMAP_LCD_BACKGROUNDCOLOR_N_BITS: integer := 0;
C_MEMMAP_LCD_BACKGROUNDCOLOR_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTEROFFSET: integer := 0;
C_MEMMAP_LCD_CHARACTEROFFSET_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTEROFFSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTERSSELECT: integer := 0;
C_MEMMAP_LCD_CHARACTERSSELECT_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTERSSELECT_BIN_PT: integer := 0;
C_MEMMAP_LCD_COLSET: integer := 0;
C_MEMMAP_LCD_COLSET_N_BITS: integer := 0;
C_MEMMAP_LCD_COLSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_CONFIGLOCATION: integer := 0;
C_MEMMAP_LCD_CONFIGLOCATION_N_BITS: integer := 0;
C_MEMMAP_LCD_CONFIGLOCATION_BIN_PT: integer := 0;
C_MEMMAP_LCD_DIVIDERSELECT: integer := 0;
C_MEMMAP_LCD_DIVIDERSELECT_N_BITS: integer := 0;
C_MEMMAP_LCD_DIVIDERSELECT_BIN_PT: integer := 0;
C_MEMMAP_LCD_FIRSTEND: integer := 0;
C_MEMMAP_LCD_FIRSTEND_N_BITS: integer := 0;
C_MEMMAP_LCD_FIRSTEND_BIN_PT: integer := 0;
C_MEMMAP_LCD_FIRSTSTART: integer := 0;
C_MEMMAP_LCD_FIRSTSTART_N_BITS: integer := 0;
C_MEMMAP_LCD_FIRSTSTART_BIN_PT: integer := 0;
C_MEMMAP_LCD_LINEOFFSET: integer := 0;
C_MEMMAP_LCD_LINEOFFSET_N_BITS: integer := 0;
C_MEMMAP_LCD_LINEOFFSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_RAMWRITE: integer := 0;
C_MEMMAP_LCD_RAMWRITE_N_BITS: integer := 0;
C_MEMMAP_LCD_RAMWRITE_BIN_PT: integer := 0;
C_MEMMAP_LCD_RESET: integer := 0;
C_MEMMAP_LCD_RESET_N_BITS: integer := 0;
C_MEMMAP_LCD_RESET_BIN_PT: integer := 0;
C_MEMMAP_LCD_RESETLCD: integer := 0;
C_MEMMAP_LCD_RESETLCD_N_BITS: integer := 0;
C_MEMMAP_LCD_RESETLCD_BIN_PT: integer := 0;
C_MEMMAP_LCD_ROWSET: integer := 0;
C_MEMMAP_LCD_ROWSET_N_BITS: integer := 0;
C_MEMMAP_LCD_ROWSET_BIN_PT: integer := 0;
C_MEMMAP_LCD_SECONDEND: integer := 0;
C_MEMMAP_LCD_SECONDEND_N_BITS: integer := 0;
C_MEMMAP_LCD_SECONDEND_BIN_PT: integer := 0;
C_MEMMAP_LCD_SECONDSTART: integer := 0;
C_MEMMAP_LCD_SECONDSTART_N_BITS: integer := 0;
C_MEMMAP_LCD_SECONDSTART_BIN_PT: integer := 0;
C_MEMMAP_LCD_SEND: integer := 0;
C_MEMMAP_LCD_SEND_N_BITS: integer := 0;
C_MEMMAP_LCD_SEND_BIN_PT: integer := 0;
C_MEMMAP_LCD_TOTALCMDTRANSFER: integer := 0;
C_MEMMAP_LCD_TOTALCMDTRANSFER_N_BITS: integer := 0;
C_MEMMAP_LCD_TOTALCMDTRANSFER_BIN_PT: integer := 0;
C_MEMMAP_LEDS: integer := 0;
C_MEMMAP_LEDS_N_BITS: integer := 0;
C_MEMMAP_LEDS_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTERMAP: integer := 0;
C_MEMMAP_LCD_CHARACTERMAP_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTERMAP_BIN_PT: integer := 0;
C_MEMMAP_LCD_CHARACTERS: integer := 0;
C_MEMMAP_LCD_CHARACTERS_N_BITS: integer := 0;
C_MEMMAP_LCD_CHARACTERS_BIN_PT: integer := 0;
C_MEMMAP_LCD_COMMANDS: integer := 0;
C_MEMMAP_LCD_COMMANDS_N_BITS: integer := 0;
C_MEMMAP_LCD_COMMANDS_BIN_PT: integer := 0
);
port (
buttons_big: in std_logic_vector(0 to 1);
buttons_small: in std_logic_vector(0 to 5);
ce: in std_logic;
dip_switch: in std_logic_vector(0 to 3);
plb_abus: in std_logic_vector(0 to 31);
plb_pavalid: in std_logic;
plb_rnw: in std_logic;
plb_wrdbus: in std_logic_vector(0 to C_SPLB_DWIDTH-1);
reset: in std_logic;
splb_clk: in std_logic;
splb_rst: in std_logic;
trackball_ox: in std_logic;
trackball_oxn: in std_logic;
trackball_oy: in std_logic;
trackball_oyn: in std_logic;
trackball_sel2: in std_logic;
buzzer: out std_logic;
cs: out std_logic;
leds: out std_logic_vector(0 to 7);
resetlcd: out std_logic;
scl: out std_logic;
sdi: out std_logic;
sl_addrack: out std_logic;
sl_rdcomp: out std_logic;
sl_rddack: out std_logic;
sl_rddbus: out std_logic_vector(0 to C_SPLB_DWIDTH-1);
sl_wait: out std_logic;
sl_wrcomp: out std_logic;
sl_wrdack: out std_logic;
trackball_sel1: out std_logic;
trackball_xscn: out std_logic;
trackball_yscn: out std_logic
);
end user_io_board_controller_plbw;
architecture structural of user_io_board_controller_plbw is
signal buttons_big_x0: std_logic_vector(1 downto 0);
signal buttons_small_x0: std_logic_vector(5 downto 0);
signal buzzer_x0: std_logic;
signal ce_x0: std_logic;
signal clk: std_logic;
signal cs_x0: std_logic;
signal dip_switch_x0: std_logic_vector(3 downto 0);
signal leds_x0: std_logic_vector(7 downto 0);
signal plb_abus_x0: std_logic_vector(31 downto 0);
signal plb_pavalid_x0: std_logic;
signal plb_rnw_x0: std_logic;
signal plbaddrpref_addrpref_net: std_logic_vector(14 downto 0);
signal plbaddrpref_plb_wrdbus_net: std_logic_vector(C_SPLB_DWIDTH-1 downto 0);
signal plbaddrpref_sgplb_wrdbus_net: std_logic_vector(31 downto 0);
signal plbaddrpref_sgsl_rddbus_net: std_logic_vector(31 downto 0);
signal plbaddrpref_sl_rddbus_net: std_logic_vector(C_SPLB_DWIDTH-1 downto 0);
signal reset_x0: std_logic;
signal resetlcd_x0: std_logic;
signal scl_x0: std_logic;
signal sdi_x0: std_logic;
signal sl_addrack_x0: std_logic;
signal sl_rdcomp_x0: std_logic;
signal sl_rddack_x0: std_logic;
signal sl_wait_x0: std_logic;
signal sl_wrcomp_x0: std_logic;
signal sl_wrdack_x0: std_logic;
signal splb_rst_x0: std_logic;
signal trackball_ox_x0: std_logic;
signal trackball_oxn_x0: std_logic;
signal trackball_oy_x0: std_logic;
signal trackball_oyn_x0: std_logic;
signal trackball_sel1_x0: std_logic;
signal trackball_sel2_x0: std_logic;
signal trackball_xscn_x0: std_logic;
signal trackball_yscn_x0: std_logic;
begin
buttons_big_x0 <= buttons_big;
buttons_small_x0 <= buttons_small;
ce_x0 <= ce;
dip_switch_x0 <= dip_switch;
plb_abus_x0 <= plb_abus;
plb_pavalid_x0 <= plb_pavalid;
plb_rnw_x0 <= plb_rnw;
plbaddrpref_plb_wrdbus_net <= plb_wrdbus;
reset_x0 <= reset;
clk <= splb_clk;
splb_rst_x0 <= splb_rst;
trackball_ox_x0 <= trackball_ox;
trackball_oxn_x0 <= trackball_oxn;
trackball_oy_x0 <= trackball_oy;
trackball_oyn_x0 <= trackball_oyn;
trackball_sel2_x0 <= trackball_sel2;
buzzer <= buzzer_x0;
cs <= cs_x0;
leds <= leds_x0;
resetlcd <= resetlcd_x0;
scl <= scl_x0;
sdi <= sdi_x0;
sl_addrack <= sl_addrack_x0;
sl_rdcomp <= sl_rdcomp_x0;
sl_rddack <= sl_rddack_x0;
sl_rddbus <= plbaddrpref_sl_rddbus_net;
sl_wait <= sl_wait_x0;
sl_wrcomp <= sl_wrcomp_x0;
sl_wrdack <= sl_wrdack_x0;
trackball_sel1 <= trackball_sel1_x0;
trackball_xscn <= trackball_xscn_x0;
trackball_yscn <= trackball_yscn_x0;
plbaddrpref_x0: entity work.plbaddrpref
generic map (
C_BASEADDR => C_BASEADDR,
C_HIGHADDR => C_HIGHADDR,
C_SPLB_DWIDTH => C_SPLB_DWIDTH,
C_SPLB_NATIVE_DWIDTH => C_SPLB_NATIVE_DWIDTH
)
port map (
plb_wrdbus => plbaddrpref_plb_wrdbus_net,
sgsl_rddbus => plbaddrpref_sgsl_rddbus_net,
addrpref => plbaddrpref_addrpref_net,
sgplb_wrdbus => plbaddrpref_sgplb_wrdbus_net,
sl_rddbus => plbaddrpref_sl_rddbus_net
);
sysgen_dut: entity work.user_io_board_controller_cw
port map (
buttons_big => buttons_big_x0,
buttons_small => buttons_small_x0,
ce => ce_x0,
clk => clk,
dip_switch => dip_switch_x0,
plb_abus => plb_abus_x0,
plb_pavalid => plb_pavalid_x0,
plb_rnw => plb_rnw_x0,
plb_wrdbus => plbaddrpref_sgplb_wrdbus_net,
reset => reset_x0,
sg_plb_addrpref => plbaddrpref_addrpref_net,
splb_rst => splb_rst_x0,
trackball_ox => trackball_ox_x0,
trackball_oxn => trackball_oxn_x0,
trackball_oy => trackball_oy_x0,
trackball_oyn => trackball_oyn_x0,
trackball_sel2 => trackball_sel2_x0,
buzzer => buzzer_x0,
cs => cs_x0,
leds => leds_x0,
resetlcd => resetlcd_x0,
scl => scl_x0,
sdi => sdi_x0,
sl_addrack => sl_addrack_x0,
sl_rdcomp => sl_rdcomp_x0,
sl_rddack => sl_rddack_x0,
sl_rddbus => plbaddrpref_sgsl_rddbus_net,
sl_wait => sl_wait_x0,
sl_wrcomp => sl_wrcomp_x0,
sl_wrdack => sl_wrdack_x0,
trackball_sel1 => trackball_sel1_x0,
trackball_xscn => trackball_xscn_x0,
trackball_yscn => trackball_yscn_x0
);
end structural;
|
LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY DE2 IS
PORT (
-- Clock Input
CLOCK_27 : IN STD_LOGIC; -- On Board 27 MHz
CLOCK_50 : IN STD_LOGIC; -- On Board 50 MHz
EXT_CLOCK : IN STD_LOGIC; -- External Clock
-- Push Button
KEY : IN STD_LOGIC_VECTOR(3 DOWNTO 0); -- Pushbutton[3:0]
-- DPDT Switch
SW : IN STD_LOGIC_VECTOR(17 DOWNTO 0); -- Toggle Switch[17:0]
-- 7-SEG Dispaly
HEX0 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 0
HEX1 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 1
HEX2 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 2
HEX3 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 3
HEX4 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 4
HEX5 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 5
HEX6 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 6
HEX7 : OUT STD_LOGIC_VECTOR(6 DOWNTO 0); -- Seven Segment Digit 7
-- LED
LEDG : OUT STD_LOGIC_VECTOR(8 DOWNTO 0); -- LED Green[8:0]
LEDR : OUT STD_LOGIC_VECTOR(17 DOWNTO 0); -- LED Red[17:0]
-- UART
UART_TXD : OUT STD_LOGIC; -- UART Transmitter
UART_RXD : IN STD_LOGIC; -- UART Receiver
-- IRDA
-- IRDA_TXD : OUT STD_LOGIC; -- IRDA Transmitter
-- IRDA_RXD : IN STD_LOGIC; -- IRDA Receiver
-- SDRAM Interface
DRAM_DQ : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0); -- SDRAM Data bus 16 Bits
DRAM_ADDR : OUT STD_LOGIC_VECTOR(11 DOWNTO 0); -- SDRAM Address bus 12 Bits
DRAM_LDQM : OUT STD_LOGIC; -- SDRAM Low-byte Data Mask
DRAM_UDQM : OUT STD_LOGIC; -- SDRAM High-byte Data Mask
DRAM_WE_N : OUT STD_LOGIC; -- SDRAM Write Enable
DRAM_CAS_N : OUT STD_LOGIC; -- SDRAM Column Address Strobe
DRAM_RAS_N : OUT STD_LOGIC; -- SDRAM Row Address Strobe
DRAM_CS_N : OUT STD_LOGIC; -- SDRAM Chip Select
DRAM_BA_0 : OUT STD_LOGIC; -- SDRAM Bank Address 0
DRAM_BA_1 : OUT STD_LOGIC; -- SDRAM Bank Address 1
DRAM_CLK : OUT STD_LOGIC; -- SDRAM Clock
DRAM_CKE : OUT STD_LOGIC; -- SDRAM Clock Enable
-- Flash Interface
FL_DQ : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0); -- FLASH Data bus 8 Bits
FL_ADDR : OUT STD_LOGIC_VECTOR(21 DOWNTO 0); -- FLASH Address bus 20 Bits
FL_WE_N : OUT STD_LOGIC; -- FLASH Write Enable
FL_RST_N : OUT STD_LOGIC; -- FLASH Reset
FL_OE_N : OUT STD_LOGIC; -- FLASH Output Enable
FL_CE_N : OUT STD_LOGIC; -- FLASH Chip Enable
-- SRAM Interface
SRAM_DQ : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0); -- SRAM Data bus 16 Bits
SRAM_ADDR : OUT STD_LOGIC_VECTOR(17 DOWNTO 0); -- SRAM Address bus 18 Bits
SRAM_UB_N : OUT STD_LOGIC; -- SRAM High-byte Data Mask
SRAM_LB_N : OUT STD_LOGIC; -- SRAM Low-byte Data Mask
SRAM_WE_N : OUT STD_LOGIC; -- SRAM Write Enable
SRAM_CE_N : OUT STD_LOGIC; -- SRAM Chip Enable
SRAM_OE_N : OUT STD_LOGIC; -- SRAM Output Enable
-- ISP1362 Interface
OTG_DATA : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0); -- ISP1362 Data bus 16 Bits
OTG_ADDR : OUT STD_LOGIC_VECTOR(1 DOWNTO 0); -- ISP1362 Address 2 Bits
OTG_CS_N : OUT STD_LOGIC; -- ISP1362 Chip Select
OTG_RD_N : OUT STD_LOGIC; -- ISP1362 Read
OTG_WR_N : OUT STD_LOGIC; -- ISP1362 Write
OTG_RST_N : OUT STD_LOGIC; -- ISP1362 Reset
OTG_FSPEED : OUT STD_LOGIC; -- USB Full Speed, 0 = Enable, Z = Disable
OTG_LSPEED : OUT STD_LOGIC; -- USB Low Speed, 0 = Enable, Z = Disable
OTG_INT0 : IN STD_LOGIC; -- ISP1362 Interrupt 0
OTG_INT1 : IN STD_LOGIC; -- ISP1362 Interrupt 1
OTG_DREQ0 : IN STD_LOGIC; -- ISP1362 DMA Request 0
OTG_DREQ1 : IN STD_LOGIC; -- ISP1362 DMA Request 1
OTG_DACK0_N : OUT STD_LOGIC; -- ISP1362 DMA Acknowledge 0
OTG_DACK1_N : OUT STD_LOGIC; -- ISP1362 DMA Acknowledge 1
-- LCD Module 16X2
LCD_ON : OUT STD_LOGIC; -- LCD Power ON/OFF
LCD_BLON : OUT STD_LOGIC; -- LCD Back Light ON/OFF
LCD_RW : OUT STD_LOGIC; -- LCD Read/Write Select, 0 = Write, 1 = Read
LCD_EN : OUT STD_LOGIC; -- LCD Enable
LCD_RS : OUT STD_LOGIC; -- LCD Command/Data Select, 0 = Command, 1 = Data
LCD_DATA : INOUT STD_LOGIC_VECTOR(7 DOWNTO 0); -- LCD Data bus 8 bits
-- SD_Card Interface
SD_DAT : INOUT STD_LOGIC; -- SD Card Data
SD_DAT3 : INOUT STD_LOGIC; -- SD Card Data 3
SD_CMD : INOUT STD_LOGIC; -- SD Card Command Signal
SD_CLK : OUT STD_LOGIC; -- SD Card Clock
-- USB JTAG link
TDI : IN STD_LOGIC; -- CPLD -> FPGA (Data in)
TCK : IN STD_LOGIC; -- CPLD -> FPGA (Clock)
TCS : IN STD_LOGIC; -- CPLD -> FPGA (CS)
TDO : OUT STD_LOGIC; -- FPGA -> CPLD (Data out)
-- I2C
I2C_SDAT : INOUT STD_LOGIC; -- I2C Data
I2C_SCLK : OUT STD_LOGIC; -- I2C Clock
-- PS2
PS2_DAT : IN STD_LOGIC; -- PS2 Data
PS2_CLK : IN STD_LOGIC; -- PS2 Clock
-- VGA
VGA_CLK : OUT STD_LOGIC; -- VGA Clock
VGA_HS : OUT STD_LOGIC; -- VGA H_SYNC
VGA_VS : OUT STD_LOGIC; -- VGA V_SYNC
VGA_BLANK : OUT STD_LOGIC; -- VGA BLANK
VGA_SYNC : OUT STD_LOGIC; -- VGA SYNC
VGA_R : OUT STD_LOGIC_VECTOR(9 DOWNTO 0); -- VGA Red[9:0]
VGA_G : OUT STD_LOGIC_VECTOR(9 DOWNTO 0); -- VGA Green[9:0]
VGA_B : OUT STD_LOGIC_VECTOR(9 DOWNTO 0); -- VGA Blue[9:0]
-- Ethernet Interface
ENET_DATA : INOUT STD_LOGIC_VECTOR(15 DOWNTO 0);-- DM9000A DATA bus 16Bits
ENET_CMD : OUT STD_LOGIC; -- DM9000A Command/Data Select, 0 = Command, 1 = Data
ENET_CS_N : OUT STD_LOGIC; -- DM9000A Chip Select
ENET_WR_N : OUT STD_LOGIC; -- DM9000A Write
ENET_RD_N : OUT STD_LOGIC; -- DM9000A Read
ENET_RST_N : OUT STD_LOGIC; -- DM9000A Reset
ENET_INT : IN STD_LOGIC; -- DM9000A Interrupt
ENET_CLK : OUT STD_LOGIC; -- DM9000A Clock 25 MHz
-- Audio CODEC
AUD_ADCLRCK : INOUT STD_LOGIC; -- Audio CODEC ADC LR Clock
AUD_ADCDAT : IN STD_LOGIC; -- Audio CODEC ADC Data
AUD_DACLRCK : INOUT STD_LOGIC; -- Audio CODEC DAC LR Clock
AUD_DACDAT : OUT STD_LOGIC; -- Audio CODEC DAC Data
AUD_BCLK : INOUT STD_LOGIC; -- Audio CODEC Bit-Stream Clock
AUD_XCK : OUT STD_LOGIC; -- Audio CODEC Chip Clock
-- TV Decoder
TD_DATA : IN STD_LOGIC_VECTOR(7 DOWNTO 0); -- TV Decoder Data bus 8 bits
TD_HS : IN STD_LOGIC; -- TV Decoder H_SYNC
TD_VS : IN STD_LOGIC; -- TV Decoder V_SYNC
TD_RESET : OUT STD_LOGIC; -- TV Decoder Reset
-- GPIO
GPIO_0 : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0);-- GPIO Connection 0
GPIO_1 : INOUT STD_LOGIC_VECTOR(35 DOWNTO 0) -- GPIO Connection 1
);
END DE2;
ARCHITECTURE structural OF DE2 IS
component top_level is
generic (constant divisor : integer := 83333);
Port (
iClk : in std_logic;
iReset : in std_logic;
F_B : in std_logic;
E_D : in std_logic;
HEX0 : out std_logic_vector(6 downto 0);
HEX1 : out std_logic_vector(6 downto 0);
HEX2 : out std_logic_vector(6 downto 0);
HEX3 : out std_logic_vector(6 downto 0);
HEX4 : out std_logic_vector(6 downto 0);
HEX5 : out std_logic_vector(6 downto 0);
HEX6 : out std_logic_vector(6 downto 0);
HEX7 : out std_logic_vector(6 downto 0);
Tx : out std_logic;
MOSI : out std_logic;
CSN : out std_logic;
SCK : out std_logic;
sda : inout std_logic;
scl : inout std_logic
);
end component;
begin
Inst_top_level: top_level
generic map (divisor => 83333)
port map (
iClk => CLOCK_50,
iReset => not KEY(0),
F_B => not KEY(1),
E_D => not KEY(2),
HEX0 => HEX0,
HEX1 => HEX1,
HEX2 => HEX2,
HEX3 => HEX3,
HEX4 => HEX4,
HEX5 => HEX5,
HEX6 => HEX6,
HEX7 => HEX7,
Tx => GPIO_0(0),
MOSI => GPIO_0(1),
CSN => GPIO_0(2),
SCK => GPIO_0(3),
sda => GPIO_1(0),
scl => GPIO_1(1)
);
END structural;
|
--------------------------------------------------------------------------------
-- Title : 10/100/1G Ethernet FIFO
-- Version : 1.2
-- Project : Tri-Mode Ethernet MAC
--------------------------------------------------------------------------------
-- File : temac_10_100_1000_ten_100_1g_eth_fifo.vhd
-- Author : Xilinx Inc.
-- -----------------------------------------------------------------------------
-- (c) Copyright 2004-2008 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
-- -----------------------------------------------------------------------------
-- Description: This is the top level wrapper for the 10/100/1G Ethernet FIFO.
-- The top level wrapper consists of individual FIFOs on the
-- transmitter path and on the receiver path.
--
-- Each path consists of an 8 bit local link to 8 bit client
-- interface FIFO.
--------------------------------------------------------------------------------
library unisim;
use unisim.vcomponents.all;
library ieee;
use ieee.std_logic_1164.all;
--------------------------------------------------------------------------------
-- The entity declaration for the FIFO
--------------------------------------------------------------------------------
entity temac_10_100_1000_ten_100_1g_eth_fifo is
generic (
FULL_DUPLEX_ONLY : boolean := true); -- If fifo is to be used only in full
-- duplex set to true for optimised implementation
port (
tx_fifo_aclk : in std_logic;
tx_fifo_resetn : in std_logic;
tx_axis_fifo_tdata : in std_logic_vector(7 downto 0);
tx_axis_fifo_tvalid : in std_logic;
tx_axis_fifo_tlast : in std_logic;
tx_axis_fifo_tready : out std_logic;
tx_mac_aclk : in std_logic;
tx_mac_resetn : in std_logic;
tx_axis_mac_tdata : out std_logic_vector(7 downto 0);
tx_axis_mac_tvalid : out std_logic;
tx_axis_mac_tlast : out std_logic;
tx_axis_mac_tready : in std_logic;
tx_axis_mac_tuser : out std_logic;
tx_fifo_overflow : out std_logic;
tx_fifo_status : out std_logic_vector(3 downto 0);
tx_collision : in std_logic;
tx_retransmit : in std_logic;
rx_fifo_aclk : in std_logic;
rx_fifo_resetn : in std_logic;
rx_axis_fifo_tdata : out std_logic_vector(7 downto 0);
rx_axis_fifo_tvalid : out std_logic;
rx_axis_fifo_tlast : out std_logic;
rx_axis_fifo_tready : in std_logic;
rx_mac_aclk : in std_logic;
rx_mac_resetn : in std_logic;
rx_axis_mac_tdata : in std_logic_vector(7 downto 0);
rx_axis_mac_tvalid : in std_logic;
rx_axis_mac_tlast : in std_logic;
rx_axis_mac_tready : out std_logic;
rx_axis_mac_tuser : in std_logic;
rx_fifo_status : out std_logic_vector(3 downto 0);
rx_fifo_overflow : out std_logic
);
end temac_10_100_1000_ten_100_1g_eth_fifo;
architecture RTL of temac_10_100_1000_ten_100_1g_eth_fifo is
component temac_10_100_1000_rx_client_fifo
port (
-- User-side (read-side) AxiStream interface
rx_fifo_aclk : in std_logic;
rx_fifo_resetn : in std_logic;
rx_axis_fifo_tdata : out std_logic_vector(7 downto 0);
rx_axis_fifo_tvalid : out std_logic;
rx_axis_fifo_tlast : out std_logic;
rx_axis_fifo_tready : in std_logic;
-- MAC-side (write-side) AxiStream interface
rx_mac_aclk : in std_logic;
rx_mac_resetn : in std_logic;
rx_axis_mac_tdata : in std_logic_vector(7 downto 0);
rx_axis_mac_tvalid : in std_logic;
rx_axis_mac_tlast : in std_logic;
rx_axis_mac_tready : out std_logic;
rx_axis_mac_tuser : in std_logic;
-- FIFO status and overflow indication,
-- synchronous to write-side (rx_mac_aclk) interface
fifo_status : out std_logic_vector(3 downto 0);
fifo_overflow : out std_logic
);
end component;
component temac_10_100_1000_tx_client_fifo
generic (
FULL_DUPLEX_ONLY : boolean := false);
port (
-- User-side (write-side) AxiStream interface
tx_fifo_aclk : in std_logic;
tx_fifo_resetn : in std_logic;
tx_axis_fifo_tdata : in std_logic_vector(7 downto 0);
tx_axis_fifo_tvalid : in std_logic;
tx_axis_fifo_tlast : in std_logic;
tx_axis_fifo_tready : out std_logic;
-- MAC-side (read-side) AxiStream interface
tx_mac_aclk : in std_logic;
tx_mac_resetn : in std_logic;
tx_axis_mac_tdata : out std_logic_vector(7 downto 0);
tx_axis_mac_tvalid : out std_logic;
tx_axis_mac_tlast : out std_logic;
tx_axis_mac_tready : in std_logic;
tx_axis_mac_tuser : out std_logic;
-- FIFO status and overflow indication,
-- synchronous to write-side (tx_user_aclk) interface
fifo_overflow : out std_logic;
fifo_status : out std_logic_vector(3 downto 0);
-- FIFO collision and retransmission requests from MAC
tx_collision : in std_logic;
tx_retransmit : in std_logic
);
end component;
begin
------------------------------------------------------------------------------
-- Instantiate the Transmitter FIFO
------------------------------------------------------------------------------
tx_fifo_i : temac_10_100_1000_tx_client_fifo
generic map(
FULL_DUPLEX_ONLY => FULL_DUPLEX_ONLY
)
port map(
tx_fifo_aclk => tx_fifo_aclk,
tx_fifo_resetn => tx_fifo_resetn,
tx_axis_fifo_tdata => tx_axis_fifo_tdata,
tx_axis_fifo_tvalid => tx_axis_fifo_tvalid,
tx_axis_fifo_tlast => tx_axis_fifo_tlast,
tx_axis_fifo_tready => tx_axis_fifo_tready,
tx_mac_aclk => tx_mac_aclk,
tx_mac_resetn => tx_mac_resetn,
tx_axis_mac_tdata => tx_axis_mac_tdata,
tx_axis_mac_tvalid => tx_axis_mac_tvalid,
tx_axis_mac_tlast => tx_axis_mac_tlast,
tx_axis_mac_tready => tx_axis_mac_tready,
tx_axis_mac_tuser => tx_axis_mac_tuser,
fifo_overflow => tx_fifo_overflow,
fifo_status => tx_fifo_status,
tx_collision => tx_collision,
tx_retransmit => tx_retransmit
);
------------------------------------------------------------------------------
-- Instantiate the Receiver FIFO
------------------------------------------------------------------------------
rx_fifo_i : temac_10_100_1000_rx_client_fifo
port map(
rx_fifo_aclk => rx_fifo_aclk,
rx_fifo_resetn => rx_fifo_resetn,
rx_axis_fifo_tdata => rx_axis_fifo_tdata,
rx_axis_fifo_tvalid => rx_axis_fifo_tvalid,
rx_axis_fifo_tlast => rx_axis_fifo_tlast,
rx_axis_fifo_tready => rx_axis_fifo_tready,
rx_mac_aclk => rx_mac_aclk,
rx_mac_resetn => rx_mac_resetn,
rx_axis_mac_tdata => rx_axis_mac_tdata,
rx_axis_mac_tvalid => rx_axis_mac_tvalid,
rx_axis_mac_tlast => rx_axis_mac_tlast,
rx_axis_mac_tready => rx_axis_mac_tready,
rx_axis_mac_tuser => rx_axis_mac_tuser,
fifo_status => rx_fifo_status,
fifo_overflow => rx_fifo_overflow
);
end RTL;
|
--------------------------------------------------------------------------------
-- Title : 10/100/1G Ethernet FIFO
-- Version : 1.2
-- Project : Tri-Mode Ethernet MAC
--------------------------------------------------------------------------------
-- File : temac_10_100_1000_ten_100_1g_eth_fifo.vhd
-- Author : Xilinx Inc.
-- -----------------------------------------------------------------------------
-- (c) Copyright 2004-2008 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
-- -----------------------------------------------------------------------------
-- Description: This is the top level wrapper for the 10/100/1G Ethernet FIFO.
-- The top level wrapper consists of individual FIFOs on the
-- transmitter path and on the receiver path.
--
-- Each path consists of an 8 bit local link to 8 bit client
-- interface FIFO.
--------------------------------------------------------------------------------
library unisim;
use unisim.vcomponents.all;
library ieee;
use ieee.std_logic_1164.all;
--------------------------------------------------------------------------------
-- The entity declaration for the FIFO
--------------------------------------------------------------------------------
entity temac_10_100_1000_ten_100_1g_eth_fifo is
generic (
FULL_DUPLEX_ONLY : boolean := true); -- If fifo is to be used only in full
-- duplex set to true for optimised implementation
port (
tx_fifo_aclk : in std_logic;
tx_fifo_resetn : in std_logic;
tx_axis_fifo_tdata : in std_logic_vector(7 downto 0);
tx_axis_fifo_tvalid : in std_logic;
tx_axis_fifo_tlast : in std_logic;
tx_axis_fifo_tready : out std_logic;
tx_mac_aclk : in std_logic;
tx_mac_resetn : in std_logic;
tx_axis_mac_tdata : out std_logic_vector(7 downto 0);
tx_axis_mac_tvalid : out std_logic;
tx_axis_mac_tlast : out std_logic;
tx_axis_mac_tready : in std_logic;
tx_axis_mac_tuser : out std_logic;
tx_fifo_overflow : out std_logic;
tx_fifo_status : out std_logic_vector(3 downto 0);
tx_collision : in std_logic;
tx_retransmit : in std_logic;
rx_fifo_aclk : in std_logic;
rx_fifo_resetn : in std_logic;
rx_axis_fifo_tdata : out std_logic_vector(7 downto 0);
rx_axis_fifo_tvalid : out std_logic;
rx_axis_fifo_tlast : out std_logic;
rx_axis_fifo_tready : in std_logic;
rx_mac_aclk : in std_logic;
rx_mac_resetn : in std_logic;
rx_axis_mac_tdata : in std_logic_vector(7 downto 0);
rx_axis_mac_tvalid : in std_logic;
rx_axis_mac_tlast : in std_logic;
rx_axis_mac_tready : out std_logic;
rx_axis_mac_tuser : in std_logic;
rx_fifo_status : out std_logic_vector(3 downto 0);
rx_fifo_overflow : out std_logic
);
end temac_10_100_1000_ten_100_1g_eth_fifo;
architecture RTL of temac_10_100_1000_ten_100_1g_eth_fifo is
component temac_10_100_1000_rx_client_fifo
port (
-- User-side (read-side) AxiStream interface
rx_fifo_aclk : in std_logic;
rx_fifo_resetn : in std_logic;
rx_axis_fifo_tdata : out std_logic_vector(7 downto 0);
rx_axis_fifo_tvalid : out std_logic;
rx_axis_fifo_tlast : out std_logic;
rx_axis_fifo_tready : in std_logic;
-- MAC-side (write-side) AxiStream interface
rx_mac_aclk : in std_logic;
rx_mac_resetn : in std_logic;
rx_axis_mac_tdata : in std_logic_vector(7 downto 0);
rx_axis_mac_tvalid : in std_logic;
rx_axis_mac_tlast : in std_logic;
rx_axis_mac_tready : out std_logic;
rx_axis_mac_tuser : in std_logic;
-- FIFO status and overflow indication,
-- synchronous to write-side (rx_mac_aclk) interface
fifo_status : out std_logic_vector(3 downto 0);
fifo_overflow : out std_logic
);
end component;
component temac_10_100_1000_tx_client_fifo
generic (
FULL_DUPLEX_ONLY : boolean := false);
port (
-- User-side (write-side) AxiStream interface
tx_fifo_aclk : in std_logic;
tx_fifo_resetn : in std_logic;
tx_axis_fifo_tdata : in std_logic_vector(7 downto 0);
tx_axis_fifo_tvalid : in std_logic;
tx_axis_fifo_tlast : in std_logic;
tx_axis_fifo_tready : out std_logic;
-- MAC-side (read-side) AxiStream interface
tx_mac_aclk : in std_logic;
tx_mac_resetn : in std_logic;
tx_axis_mac_tdata : out std_logic_vector(7 downto 0);
tx_axis_mac_tvalid : out std_logic;
tx_axis_mac_tlast : out std_logic;
tx_axis_mac_tready : in std_logic;
tx_axis_mac_tuser : out std_logic;
-- FIFO status and overflow indication,
-- synchronous to write-side (tx_user_aclk) interface
fifo_overflow : out std_logic;
fifo_status : out std_logic_vector(3 downto 0);
-- FIFO collision and retransmission requests from MAC
tx_collision : in std_logic;
tx_retransmit : in std_logic
);
end component;
begin
------------------------------------------------------------------------------
-- Instantiate the Transmitter FIFO
------------------------------------------------------------------------------
tx_fifo_i : temac_10_100_1000_tx_client_fifo
generic map(
FULL_DUPLEX_ONLY => FULL_DUPLEX_ONLY
)
port map(
tx_fifo_aclk => tx_fifo_aclk,
tx_fifo_resetn => tx_fifo_resetn,
tx_axis_fifo_tdata => tx_axis_fifo_tdata,
tx_axis_fifo_tvalid => tx_axis_fifo_tvalid,
tx_axis_fifo_tlast => tx_axis_fifo_tlast,
tx_axis_fifo_tready => tx_axis_fifo_tready,
tx_mac_aclk => tx_mac_aclk,
tx_mac_resetn => tx_mac_resetn,
tx_axis_mac_tdata => tx_axis_mac_tdata,
tx_axis_mac_tvalid => tx_axis_mac_tvalid,
tx_axis_mac_tlast => tx_axis_mac_tlast,
tx_axis_mac_tready => tx_axis_mac_tready,
tx_axis_mac_tuser => tx_axis_mac_tuser,
fifo_overflow => tx_fifo_overflow,
fifo_status => tx_fifo_status,
tx_collision => tx_collision,
tx_retransmit => tx_retransmit
);
------------------------------------------------------------------------------
-- Instantiate the Receiver FIFO
------------------------------------------------------------------------------
rx_fifo_i : temac_10_100_1000_rx_client_fifo
port map(
rx_fifo_aclk => rx_fifo_aclk,
rx_fifo_resetn => rx_fifo_resetn,
rx_axis_fifo_tdata => rx_axis_fifo_tdata,
rx_axis_fifo_tvalid => rx_axis_fifo_tvalid,
rx_axis_fifo_tlast => rx_axis_fifo_tlast,
rx_axis_fifo_tready => rx_axis_fifo_tready,
rx_mac_aclk => rx_mac_aclk,
rx_mac_resetn => rx_mac_resetn,
rx_axis_mac_tdata => rx_axis_mac_tdata,
rx_axis_mac_tvalid => rx_axis_mac_tvalid,
rx_axis_mac_tlast => rx_axis_mac_tlast,
rx_axis_mac_tready => rx_axis_mac_tready,
rx_axis_mac_tuser => rx_axis_mac_tuser,
fifo_status => rx_fifo_status,
fifo_overflow => rx_fifo_overflow
);
end RTL;
|
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;
library reconos_v3_01_a;
use reconos_v3_01_a.reconos_pkg.all;
entity hwt_sort_demo is
port (
-- OSIF FIFO ports
OSIF_FIFO_Sw2Hw_Data : in std_logic_vector(31 downto 0);
OSIF_FIFO_Sw2Hw_Fill : in std_logic_vector(15 downto 0);
OSIF_FIFO_Sw2Hw_Empty : in std_logic;
OSIF_FIFO_Sw2Hw_RE : out std_logic;
OSIF_FIFO_Hw2Sw_Data : out std_logic_vector(31 downto 0);
OSIF_FIFO_Hw2Sw_Rem : in std_logic_vector(15 downto 0);
OSIF_FIFO_Hw2Sw_Full : in std_logic;
OSIF_FIFO_Hw2Sw_WE : out std_logic;
-- MEMIF FIFO ports
MEMIF_FIFO_Hwt2Mem_Data : out std_logic_vector(31 downto 0);
MEMIF_FIFO_Hwt2Mem_Rem : in std_logic_vector(15 downto 0);
MEMIF_FIFO_Hwt2Mem_Full : in std_logic;
MEMIF_FIFO_Hwt2Mem_WE : out std_logic;
MEMIF_FIFO_Mem2Hwt_Data : in std_logic_vector(31 downto 0);
MEMIF_FIFO_Mem2Hwt_Fill : in std_logic_vector(15 downto 0);
MEMIF_FIFO_Mem2Hwt_Empty : in std_logic;
MEMIF_FIFO_Mem2Hwt_RE : out std_logic;
HWT_Clk : in std_logic;
HWT_Rst : in std_logic
);
attribute SIGIS : string;
attribute SIGIS of HWT_Clk : signal is "Clk";
attribute SIGIS of HWT_Rst : signal is "Rst";
end entity hwt_sort_demo;
architecture implementation of hwt_sort_demo is
-- just for simpler use
signal clk : std_logic;
signal rst : std_logic;
type STATE_TYPE is (
STATE_GET_ADDR,STATE_READ,STATE_SORTING,
STATE_WRITE,STATE_ACK,STATE_THREAD_EXIT);
component bubble_sorter is
generic (
G_LEN : integer := 512; -- number of words to sort
G_AWIDTH : integer := 9; -- in bits
G_DWIDTH : integer := 32 -- in bits
);
port (
clk : in std_logic;
reset : in std_logic;
-- local ram interface
o_RAMAddr : out std_logic_vector(0 to G_AWIDTH-1);
o_RAMData : out std_logic_vector(0 to G_DWIDTH-1);
i_RAMData : in std_logic_vector(0 to G_DWIDTH-1);
o_RAMWE : out std_logic;
start : in std_logic;
done : out std_logic
);
end component;
-- The sorting application reads 'C_LOCAL_RAM_SIZE' 32-bit words into the local RAM,
-- from a given address (send in a message box), sorts them and writes them back into main memory.
-- IMPORTANT: define size of local RAM here!!!!
constant C_LOCAL_RAM_SIZE : integer := 2048;
constant C_LOCAL_RAM_ADDRESS_WIDTH : integer := clog2(C_LOCAL_RAM_SIZE);
constant C_LOCAL_RAM_SIZE_IN_BYTES : integer := 4*C_LOCAL_RAM_SIZE;
type LOCAL_MEMORY_T is array (0 to C_LOCAL_RAM_SIZE-1) of std_logic_vector(31 downto 0);
constant MBOX_RECV : std_logic_vector(31 downto 0) := x"00000000";
constant MBOX_SEND : std_logic_vector(31 downto 0) := x"00000001";
signal addr : std_logic_vector(31 downto 0);
signal len : std_logic_vector(23 downto 0);
signal state : STATE_TYPE;
signal i_osif : i_osif_t;
signal o_osif : o_osif_t;
signal i_memif : i_memif_t;
signal o_memif : o_memif_t;
signal i_ram : i_ram_t;
signal o_ram : o_ram_t;
signal o_RAMAddr_sorter : std_logic_vector(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1);
signal o_RAMData_sorter : std_logic_vector(0 to 31);
signal o_RAMWE_sorter : std_logic;
signal i_RAMData_sorter : std_logic_vector(0 to 31);
signal o_RAMAddr_reconos : std_logic_vector(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1);
signal o_RAMAddr_reconos_2 : std_logic_vector(0 to 31);
signal o_RAMData_reconos : std_logic_vector(0 to 31);
signal o_RAMWE_reconos : std_logic;
signal i_RAMData_reconos : std_logic_vector(0 to 31);
constant o_RAMAddr_max : std_logic_vector(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1) := (others=>'1');
shared variable local_ram : LOCAL_MEMORY_T;
signal ignore : std_logic_vector(31 downto 0);
signal sort_start : std_logic := '0';
signal sort_done : std_logic := '0';
begin
clk <= HWT_Clk;
rst <= HWT_Rst;
-- local dual-port RAM
local_ram_ctrl_1 : process (clk) is
begin
if (rising_edge(clk)) then
if (o_RAMWE_reconos = '1') then
local_ram(conv_integer(unsigned(o_RAMAddr_reconos))) := o_RAMData_reconos;
else
i_RAMData_reconos <= local_ram(conv_integer(unsigned(o_RAMAddr_reconos)));
end if;
end if;
end process;
local_ram_ctrl_2 : process (clk) is
begin
if (rising_edge(clk)) then
if (o_RAMWE_sorter = '1') then
local_ram(conv_integer(unsigned(o_RAMAddr_sorter))) := o_RAMData_sorter;
else
i_RAMData_sorter <= local_ram(conv_integer(unsigned(o_RAMAddr_sorter)));
end if;
end if;
end process;
-- instantiate bubble_sorter module
sorter_i : bubble_sorter
generic map (
G_LEN => C_LOCAL_RAM_SIZE,
G_AWIDTH => C_LOCAL_RAM_ADDRESS_WIDTH,
G_DWIDTH => 32
)
port map (
clk => clk,
reset => rst,
o_RAMAddr => o_RAMAddr_sorter,
o_RAMData => o_RAMData_sorter,
i_RAMData => i_RAMData_sorter,
o_RAMWE => o_RAMWE_sorter,
start => sort_start,
done => sort_done
);
-- ReconOS initilization
osif_setup (
i_osif,
o_osif,
OSIF_FIFO_Sw2Hw_Data,
OSIF_FIFO_Sw2Hw_Fill,
OSIF_FIFO_Sw2Hw_Empty,
OSIF_FIFO_Hw2Sw_Rem,
OSIF_FIFO_Hw2Sw_Full,
OSIF_FIFO_Sw2Hw_RE,
OSIF_FIFO_Hw2Sw_Data,
OSIF_FIFO_Hw2Sw_WE
);
memif_setup (
i_memif,
o_memif,
MEMIF_FIFO_Mem2Hwt_Data,
MEMIF_FIFO_Mem2Hwt_Fill,
MEMIF_FIFO_Mem2Hwt_Empty,
MEMIF_FIFO_Hwt2Mem_Rem,
MEMIF_FIFO_Hwt2Mem_Full,
MEMIF_FIFO_Mem2Hwt_RE,
MEMIF_FIFO_Hwt2Mem_Data,
MEMIF_FIFO_Hwt2Mem_WE
);
ram_setup (
i_ram,
o_ram,
o_RAMAddr_reconos_2,
o_RAMWE_reconos,
o_RAMData_reconos,
i_RAMData_reconos
);
o_RAMAddr_reconos(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1) <= o_RAMAddr_reconos_2((32-C_LOCAL_RAM_ADDRESS_WIDTH) to 31);
-- os and memory synchronisation state machine
reconos_fsm: process (clk,rst,o_osif,o_memif,o_ram) is
variable done : boolean;
begin
if rst = '1' then
osif_reset(o_osif);
memif_reset(o_memif);
ram_reset(o_ram);
state <= STATE_GET_ADDR;
done := False;
addr <= (others => '0');
len <= (others => '0');
sort_start <= '0';
elsif rising_edge(clk) then
case state is
-- get address via mbox: the data will be copied from this address to the local ram in the next states
when STATE_GET_ADDR =>
osif_mbox_get(i_osif, o_osif, MBOX_RECV, addr, done);
if done then
if (addr = X"FFFFFFFF") then
state <= STATE_THREAD_EXIT;
else
len <= conv_std_logic_vector(C_LOCAL_RAM_SIZE_IN_BYTES,24);
addr <= addr(31 downto 2) & "00";
state <= STATE_READ;
end if;
end if;
-- copy data from main memory to local memory
when STATE_READ =>
memif_read(i_ram,o_ram,i_memif,o_memif,addr,X"00000000",len,done);
if done then
sort_start <= '1';
state <= STATE_SORTING;
end if;
-- sort the words in local RAM
when STATE_SORTING =>
sort_start <= '0';
--o_ram.addr <= (others => '0');
if sort_done = '1' then
len <= conv_std_logic_vector(C_LOCAL_RAM_SIZE_IN_BYTES,24);
--state <= STATE_WRITE_REQ;
state <= STATE_WRITE;
end if;
-- copy data from local memory to main memory
when STATE_WRITE =>
memif_write(i_ram,o_ram,i_memif,o_memif,X"00000000",addr,len,done);
if done then
state <= STATE_ACK;
end if;
-- send mbox that signals that the sorting is finished
when STATE_ACK =>
osif_set_yield(i_osif, o_osif);
osif_mbox_put(i_osif, o_osif, MBOX_SEND, addr, ignore, done);
if done then state <= STATE_GET_ADDR; end if;
-- thread exit
when STATE_THREAD_EXIT =>
osif_thread_exit(i_osif,o_osif);
end case;
end if;
end process;
end architecture;
|
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
library proc_common_v3_00_a;
use proc_common_v3_00_a.proc_common_pkg.all;
library reconos_v3_01_a;
use reconos_v3_01_a.reconos_pkg.all;
entity hwt_sort_demo is
port (
-- OSIF FIFO ports
OSIF_FIFO_Sw2Hw_Data : in std_logic_vector(31 downto 0);
OSIF_FIFO_Sw2Hw_Fill : in std_logic_vector(15 downto 0);
OSIF_FIFO_Sw2Hw_Empty : in std_logic;
OSIF_FIFO_Sw2Hw_RE : out std_logic;
OSIF_FIFO_Hw2Sw_Data : out std_logic_vector(31 downto 0);
OSIF_FIFO_Hw2Sw_Rem : in std_logic_vector(15 downto 0);
OSIF_FIFO_Hw2Sw_Full : in std_logic;
OSIF_FIFO_Hw2Sw_WE : out std_logic;
-- MEMIF FIFO ports
MEMIF_FIFO_Hwt2Mem_Data : out std_logic_vector(31 downto 0);
MEMIF_FIFO_Hwt2Mem_Rem : in std_logic_vector(15 downto 0);
MEMIF_FIFO_Hwt2Mem_Full : in std_logic;
MEMIF_FIFO_Hwt2Mem_WE : out std_logic;
MEMIF_FIFO_Mem2Hwt_Data : in std_logic_vector(31 downto 0);
MEMIF_FIFO_Mem2Hwt_Fill : in std_logic_vector(15 downto 0);
MEMIF_FIFO_Mem2Hwt_Empty : in std_logic;
MEMIF_FIFO_Mem2Hwt_RE : out std_logic;
HWT_Clk : in std_logic;
HWT_Rst : in std_logic
);
attribute SIGIS : string;
attribute SIGIS of HWT_Clk : signal is "Clk";
attribute SIGIS of HWT_Rst : signal is "Rst";
end entity hwt_sort_demo;
architecture implementation of hwt_sort_demo is
-- just for simpler use
signal clk : std_logic;
signal rst : std_logic;
type STATE_TYPE is (
STATE_GET_ADDR,STATE_READ,STATE_SORTING,
STATE_WRITE,STATE_ACK,STATE_THREAD_EXIT);
component bubble_sorter is
generic (
G_LEN : integer := 512; -- number of words to sort
G_AWIDTH : integer := 9; -- in bits
G_DWIDTH : integer := 32 -- in bits
);
port (
clk : in std_logic;
reset : in std_logic;
-- local ram interface
o_RAMAddr : out std_logic_vector(0 to G_AWIDTH-1);
o_RAMData : out std_logic_vector(0 to G_DWIDTH-1);
i_RAMData : in std_logic_vector(0 to G_DWIDTH-1);
o_RAMWE : out std_logic;
start : in std_logic;
done : out std_logic
);
end component;
-- The sorting application reads 'C_LOCAL_RAM_SIZE' 32-bit words into the local RAM,
-- from a given address (send in a message box), sorts them and writes them back into main memory.
-- IMPORTANT: define size of local RAM here!!!!
constant C_LOCAL_RAM_SIZE : integer := 2048;
constant C_LOCAL_RAM_ADDRESS_WIDTH : integer := clog2(C_LOCAL_RAM_SIZE);
constant C_LOCAL_RAM_SIZE_IN_BYTES : integer := 4*C_LOCAL_RAM_SIZE;
type LOCAL_MEMORY_T is array (0 to C_LOCAL_RAM_SIZE-1) of std_logic_vector(31 downto 0);
constant MBOX_RECV : std_logic_vector(31 downto 0) := x"00000000";
constant MBOX_SEND : std_logic_vector(31 downto 0) := x"00000001";
signal addr : std_logic_vector(31 downto 0);
signal len : std_logic_vector(23 downto 0);
signal state : STATE_TYPE;
signal i_osif : i_osif_t;
signal o_osif : o_osif_t;
signal i_memif : i_memif_t;
signal o_memif : o_memif_t;
signal i_ram : i_ram_t;
signal o_ram : o_ram_t;
signal o_RAMAddr_sorter : std_logic_vector(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1);
signal o_RAMData_sorter : std_logic_vector(0 to 31);
signal o_RAMWE_sorter : std_logic;
signal i_RAMData_sorter : std_logic_vector(0 to 31);
signal o_RAMAddr_reconos : std_logic_vector(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1);
signal o_RAMAddr_reconos_2 : std_logic_vector(0 to 31);
signal o_RAMData_reconos : std_logic_vector(0 to 31);
signal o_RAMWE_reconos : std_logic;
signal i_RAMData_reconos : std_logic_vector(0 to 31);
constant o_RAMAddr_max : std_logic_vector(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1) := (others=>'1');
shared variable local_ram : LOCAL_MEMORY_T;
signal ignore : std_logic_vector(31 downto 0);
signal sort_start : std_logic := '0';
signal sort_done : std_logic := '0';
begin
clk <= HWT_Clk;
rst <= HWT_Rst;
-- local dual-port RAM
local_ram_ctrl_1 : process (clk) is
begin
if (rising_edge(clk)) then
if (o_RAMWE_reconos = '1') then
local_ram(conv_integer(unsigned(o_RAMAddr_reconos))) := o_RAMData_reconos;
else
i_RAMData_reconos <= local_ram(conv_integer(unsigned(o_RAMAddr_reconos)));
end if;
end if;
end process;
local_ram_ctrl_2 : process (clk) is
begin
if (rising_edge(clk)) then
if (o_RAMWE_sorter = '1') then
local_ram(conv_integer(unsigned(o_RAMAddr_sorter))) := o_RAMData_sorter;
else
i_RAMData_sorter <= local_ram(conv_integer(unsigned(o_RAMAddr_sorter)));
end if;
end if;
end process;
-- instantiate bubble_sorter module
sorter_i : bubble_sorter
generic map (
G_LEN => C_LOCAL_RAM_SIZE,
G_AWIDTH => C_LOCAL_RAM_ADDRESS_WIDTH,
G_DWIDTH => 32
)
port map (
clk => clk,
reset => rst,
o_RAMAddr => o_RAMAddr_sorter,
o_RAMData => o_RAMData_sorter,
i_RAMData => i_RAMData_sorter,
o_RAMWE => o_RAMWE_sorter,
start => sort_start,
done => sort_done
);
-- ReconOS initilization
osif_setup (
i_osif,
o_osif,
OSIF_FIFO_Sw2Hw_Data,
OSIF_FIFO_Sw2Hw_Fill,
OSIF_FIFO_Sw2Hw_Empty,
OSIF_FIFO_Hw2Sw_Rem,
OSIF_FIFO_Hw2Sw_Full,
OSIF_FIFO_Sw2Hw_RE,
OSIF_FIFO_Hw2Sw_Data,
OSIF_FIFO_Hw2Sw_WE
);
memif_setup (
i_memif,
o_memif,
MEMIF_FIFO_Mem2Hwt_Data,
MEMIF_FIFO_Mem2Hwt_Fill,
MEMIF_FIFO_Mem2Hwt_Empty,
MEMIF_FIFO_Hwt2Mem_Rem,
MEMIF_FIFO_Hwt2Mem_Full,
MEMIF_FIFO_Mem2Hwt_RE,
MEMIF_FIFO_Hwt2Mem_Data,
MEMIF_FIFO_Hwt2Mem_WE
);
ram_setup (
i_ram,
o_ram,
o_RAMAddr_reconos_2,
o_RAMWE_reconos,
o_RAMData_reconos,
i_RAMData_reconos
);
o_RAMAddr_reconos(0 to C_LOCAL_RAM_ADDRESS_WIDTH-1) <= o_RAMAddr_reconos_2((32-C_LOCAL_RAM_ADDRESS_WIDTH) to 31);
-- os and memory synchronisation state machine
reconos_fsm: process (clk,rst,o_osif,o_memif,o_ram) is
variable done : boolean;
begin
if rst = '1' then
osif_reset(o_osif);
memif_reset(o_memif);
ram_reset(o_ram);
state <= STATE_GET_ADDR;
done := False;
addr <= (others => '0');
len <= (others => '0');
sort_start <= '0';
elsif rising_edge(clk) then
case state is
-- get address via mbox: the data will be copied from this address to the local ram in the next states
when STATE_GET_ADDR =>
osif_mbox_get(i_osif, o_osif, MBOX_RECV, addr, done);
if done then
if (addr = X"FFFFFFFF") then
state <= STATE_THREAD_EXIT;
else
len <= conv_std_logic_vector(C_LOCAL_RAM_SIZE_IN_BYTES,24);
addr <= addr(31 downto 2) & "00";
state <= STATE_READ;
end if;
end if;
-- copy data from main memory to local memory
when STATE_READ =>
memif_read(i_ram,o_ram,i_memif,o_memif,addr,X"00000000",len,done);
if done then
sort_start <= '1';
state <= STATE_SORTING;
end if;
-- sort the words in local RAM
when STATE_SORTING =>
sort_start <= '0';
--o_ram.addr <= (others => '0');
if sort_done = '1' then
len <= conv_std_logic_vector(C_LOCAL_RAM_SIZE_IN_BYTES,24);
--state <= STATE_WRITE_REQ;
state <= STATE_WRITE;
end if;
-- copy data from local memory to main memory
when STATE_WRITE =>
memif_write(i_ram,o_ram,i_memif,o_memif,X"00000000",addr,len,done);
if done then
state <= STATE_ACK;
end if;
-- send mbox that signals that the sorting is finished
when STATE_ACK =>
osif_set_yield(i_osif, o_osif);
osif_mbox_put(i_osif, o_osif, MBOX_SEND, addr, ignore, done);
if done then state <= STATE_GET_ADDR; end if;
-- thread exit
when STATE_THREAD_EXIT =>
osif_thread_exit(i_osif,o_osif);
end case;
end if;
end process;
end architecture;
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity add_508 is
port (
result : out std_logic_vector(31 downto 0);
in_a : in std_logic_vector(31 downto 0);
in_b : in std_logic_vector(31 downto 0)
);
end add_508;
architecture augh of add_508 is
signal carry_inA : std_logic_vector(33 downto 0);
signal carry_inB : std_logic_vector(33 downto 0);
signal carry_res : std_logic_vector(33 downto 0);
begin
-- To handle the CI input, the operation is '1' + CI
-- If CI is not present, the operation is '1' + '0'
carry_inA <= '0' & in_a & '1';
carry_inB <= '0' & in_b & '0';
-- Compute the result
carry_res <= std_logic_vector(unsigned(carry_inA) + unsigned(carry_inB));
-- Set the outputs
result <= carry_res(32 downto 1);
end architecture;
|
library ieee;
use ieee.std_logic_1164.all;
library ieee;
use ieee.numeric_std.all;
entity add_508 is
port (
result : out std_logic_vector(31 downto 0);
in_a : in std_logic_vector(31 downto 0);
in_b : in std_logic_vector(31 downto 0)
);
end add_508;
architecture augh of add_508 is
signal carry_inA : std_logic_vector(33 downto 0);
signal carry_inB : std_logic_vector(33 downto 0);
signal carry_res : std_logic_vector(33 downto 0);
begin
-- To handle the CI input, the operation is '1' + CI
-- If CI is not present, the operation is '1' + '0'
carry_inA <= '0' & in_a & '1';
carry_inB <= '0' & in_b & '0';
-- Compute the result
carry_res <= std_logic_vector(unsigned(carry_inA) + unsigned(carry_inB));
-- Set the outputs
result <= carry_res(32 downto 1);
end architecture;
|
--------------------------------------------------------------------------------
-- This file is owned and controlled by Xilinx and must be used solely --
-- for design, simulation, implementation and creation of design files --
-- limited to Xilinx devices or technologies. Use with non-Xilinx --
-- devices or technologies is expressly prohibited and immediately --
-- terminates your license. --
-- --
-- XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" SOLELY --
-- FOR USE IN DEVELOPING PROGRAMS AND SOLUTIONS FOR XILINX DEVICES. BY --
-- PROVIDING THIS DESIGN, CODE, OR INFORMATION AS ONE POSSIBLE --
-- IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD, XILINX IS --
-- MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE FROM ANY --
-- CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING ANY --
-- RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. XILINX EXPRESSLY --
-- DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE --
-- IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR --
-- REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF --
-- INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --
-- PARTICULAR PURPOSE. --
-- --
-- Xilinx products are not intended for use in life support appliances, --
-- devices, or systems. Use in such applications are expressly --
-- prohibited. --
-- --
-- (c) Copyright 1995-2012 Xilinx, Inc. --
-- All rights reserved. --
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------
-- You must compile the wrapper file FIFO18_s6.vhd when simulating
-- the core, FIFO18_s6. When compiling the wrapper file, be sure to
-- reference the XilinxCoreLib VHDL simulation library. For detailed
-- instructions, please refer to the "CORE Generator Help".
-- The synthesis directives "translate_off/translate_on" specified
-- below are supported by Xilinx, Mentor Graphics and Synplicity
-- synthesis tools. Ensure they are correct for your synthesis tool(s).
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- synthesis translate_off
LIBRARY XilinxCoreLib;
-- synthesis translate_on
ENTITY FIFO18_s6 IS
PORT (
rst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC
);
END FIFO18_s6;
ARCHITECTURE FIFO18_s6_a OF FIFO18_s6 IS
-- synthesis translate_off
COMPONENT wrapped_FIFO18_s6
PORT (
rst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC
);
END COMPONENT;
-- Configuration specification
FOR ALL : wrapped_FIFO18_s6 USE ENTITY XilinxCoreLib.fifo_generator_v8_2(behavioral)
GENERIC MAP (
c_add_ngc_constraint => 0,
c_application_type_axis => 0,
c_application_type_rach => 0,
c_application_type_rdch => 0,
c_application_type_wach => 0,
c_application_type_wdch => 0,
c_application_type_wrch => 0,
c_axi_addr_width => 32,
c_axi_aruser_width => 1,
c_axi_awuser_width => 1,
c_axi_buser_width => 1,
c_axi_data_width => 64,
c_axi_id_width => 4,
c_axi_ruser_width => 1,
c_axi_type => 0,
c_axi_wuser_width => 1,
c_axis_tdata_width => 64,
c_axis_tdest_width => 4,
c_axis_tid_width => 8,
c_axis_tkeep_width => 4,
c_axis_tstrb_width => 4,
c_axis_tuser_width => 4,
c_axis_type => 0,
c_common_clock => 0,
c_count_type => 0,
c_data_count_width => 10,
c_default_value => "BlankString",
c_din_width => 16,
c_din_width_axis => 1,
c_din_width_rach => 32,
c_din_width_rdch => 64,
c_din_width_wach => 32,
c_din_width_wdch => 64,
c_din_width_wrch => 2,
c_dout_rst_val => "0",
c_dout_width => 16,
c_enable_rlocs => 0,
c_enable_rst_sync => 1,
c_error_injection_type => 0,
c_error_injection_type_axis => 0,
c_error_injection_type_rach => 0,
c_error_injection_type_rdch => 0,
c_error_injection_type_wach => 0,
c_error_injection_type_wdch => 0,
c_error_injection_type_wrch => 0,
c_family => "spartan6",
c_full_flags_rst_val => 0,
c_has_almost_empty => 0,
c_has_almost_full => 0,
c_has_axi_aruser => 0,
c_has_axi_awuser => 0,
c_has_axi_buser => 0,
c_has_axi_rd_channel => 0,
c_has_axi_ruser => 0,
c_has_axi_wr_channel => 0,
c_has_axi_wuser => 0,
c_has_axis_tdata => 0,
c_has_axis_tdest => 0,
c_has_axis_tid => 0,
c_has_axis_tkeep => 0,
c_has_axis_tlast => 0,
c_has_axis_tready => 1,
c_has_axis_tstrb => 0,
c_has_axis_tuser => 0,
c_has_backup => 0,
c_has_data_count => 0,
c_has_data_counts_axis => 0,
c_has_data_counts_rach => 0,
c_has_data_counts_rdch => 0,
c_has_data_counts_wach => 0,
c_has_data_counts_wdch => 0,
c_has_data_counts_wrch => 0,
c_has_int_clk => 0,
c_has_master_ce => 0,
c_has_meminit_file => 0,
c_has_overflow => 0,
c_has_prog_flags_axis => 0,
c_has_prog_flags_rach => 0,
c_has_prog_flags_rdch => 0,
c_has_prog_flags_wach => 0,
c_has_prog_flags_wdch => 0,
c_has_prog_flags_wrch => 0,
c_has_rd_data_count => 0,
c_has_rd_rst => 0,
c_has_rst => 1,
c_has_slave_ce => 0,
c_has_srst => 0,
c_has_underflow => 0,
c_has_valid => 0,
c_has_wr_ack => 0,
c_has_wr_data_count => 0,
c_has_wr_rst => 0,
c_implementation_type => 2,
c_implementation_type_axis => 1,
c_implementation_type_rach => 1,
c_implementation_type_rdch => 1,
c_implementation_type_wach => 1,
c_implementation_type_wdch => 1,
c_implementation_type_wrch => 1,
c_init_wr_pntr_val => 0,
c_interface_type => 0,
c_memory_type => 1,
c_mif_file_name => "BlankString",
c_msgon_val => 1,
c_optimization_mode => 0,
c_overflow_low => 0,
c_preload_latency => 1,
c_preload_regs => 0,
c_prim_fifo_type => "1kx18",
c_prog_empty_thresh_assert_val => 2,
c_prog_empty_thresh_assert_val_axis => 1022,
c_prog_empty_thresh_assert_val_rach => 1022,
c_prog_empty_thresh_assert_val_rdch => 1022,
c_prog_empty_thresh_assert_val_wach => 1022,
c_prog_empty_thresh_assert_val_wdch => 1022,
c_prog_empty_thresh_assert_val_wrch => 1022,
c_prog_empty_thresh_negate_val => 3,
c_prog_empty_type => 0,
c_prog_empty_type_axis => 5,
c_prog_empty_type_rach => 5,
c_prog_empty_type_rdch => 5,
c_prog_empty_type_wach => 5,
c_prog_empty_type_wdch => 5,
c_prog_empty_type_wrch => 5,
c_prog_full_thresh_assert_val => 1021,
c_prog_full_thresh_assert_val_axis => 1023,
c_prog_full_thresh_assert_val_rach => 1023,
c_prog_full_thresh_assert_val_rdch => 1023,
c_prog_full_thresh_assert_val_wach => 1023,
c_prog_full_thresh_assert_val_wdch => 1023,
c_prog_full_thresh_assert_val_wrch => 1023,
c_prog_full_thresh_negate_val => 1020,
c_prog_full_type => 0,
c_prog_full_type_axis => 5,
c_prog_full_type_rach => 5,
c_prog_full_type_rdch => 5,
c_prog_full_type_wach => 5,
c_prog_full_type_wdch => 5,
c_prog_full_type_wrch => 5,
c_rach_type => 0,
c_rd_data_count_width => 10,
c_rd_depth => 1024,
c_rd_freq => 1,
c_rd_pntr_width => 10,
c_rdch_type => 0,
c_reg_slice_mode_axis => 0,
c_reg_slice_mode_rach => 0,
c_reg_slice_mode_rdch => 0,
c_reg_slice_mode_wach => 0,
c_reg_slice_mode_wdch => 0,
c_reg_slice_mode_wrch => 0,
c_underflow_low => 0,
c_use_common_overflow => 0,
c_use_common_underflow => 0,
c_use_default_settings => 0,
c_use_dout_rst => 1,
c_use_ecc => 0,
c_use_ecc_axis => 0,
c_use_ecc_rach => 0,
c_use_ecc_rdch => 0,
c_use_ecc_wach => 0,
c_use_ecc_wdch => 0,
c_use_ecc_wrch => 0,
c_use_embedded_reg => 0,
c_use_fifo16_flags => 0,
c_use_fwft_data_count => 0,
c_valid_low => 0,
c_wach_type => 0,
c_wdch_type => 0,
c_wr_ack_low => 0,
c_wr_data_count_width => 10,
c_wr_depth => 1024,
c_wr_depth_axis => 1024,
c_wr_depth_rach => 16,
c_wr_depth_rdch => 1024,
c_wr_depth_wach => 16,
c_wr_depth_wdch => 1024,
c_wr_depth_wrch => 16,
c_wr_freq => 1,
c_wr_pntr_width => 10,
c_wr_pntr_width_axis => 10,
c_wr_pntr_width_rach => 4,
c_wr_pntr_width_rdch => 10,
c_wr_pntr_width_wach => 4,
c_wr_pntr_width_wdch => 10,
c_wr_pntr_width_wrch => 4,
c_wr_response_latency => 1,
c_wrch_type => 0
);
-- synthesis translate_on
BEGIN
-- synthesis translate_off
U0 : wrapped_FIFO18_s6
PORT MAP (
rst => rst,
wr_clk => wr_clk,
rd_clk => rd_clk,
din => din,
wr_en => wr_en,
rd_en => rd_en,
dout => dout,
full => full,
empty => empty
);
-- synthesis translate_on
END FIFO18_s6_a;
|
--=============================================================================
-- Project: ZCPSM
-- Copyright: GPLv2
-- Author: Zhao Ming
-- Revision: V1.0
-- Last revised:
-- Workfile: zcpsm.vhd
-- Archive:
-------------------------------------------------------------------------------
-- Description:
--
--
-------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use ieee.std_logic_unsigned.all;
entity zcpsm is
Port (
address : out std_logic_vector(11 downto 0);
instruction : in std_logic_vector(17 downto 0);
port_id : out std_logic_vector(7 downto 0);
write_strobe : out std_logic;
out_port : out std_logic_vector(7 downto 0);
read_strobe : out std_logic;
in_port : in std_logic_vector(7 downto 0);
interrupt : in std_logic;
reset : in std_logic;
clk : in std_logic);
end zcpsm;
architecture fast of zcpsm is
----------------------------------------------------------------
-- To inprove preformace, decode instruction two step
-- Heap address is connect direct to instruction
-- components:
-- Heap: controling s00~s1F's read two(asychronous), write one
-- every time(synchronous)
-- Stack: program stack, push and pop the addresses of instructions
-- Clk_Gen: output proper clk signal to control other blocks
----------------------------------------------------------------
component zHeap
port (
reset : in std_logic;
addra: in std_logic_vector(4 downto 0);
dia: in std_logic_vector(7 downto 0);
wea: in std_logic;
clk: in std_logic;
clk_en: in std_logic;
addrb: in std_logic_vector(4 downto 0);
doa: out std_logic_vector(7 downto 0);
dob: out std_logic_vector(7 downto 0)
);
end component;
component pcstack
generic(
depth:integer:=16;
awidth:integer:=4;
width:integer:=8
);
port (
reset : in std_logic;
clk: in std_logic;
en: in std_logic;
pop_push: in std_logic;
din: in std_logic_vector(width-1 downto 0);
dout: out std_logic_vector(width-1 downto 0)
);
end component;
component addsub
generic (
width : integer
);
port (
A: IN std_logic_VECTOR(width-1 downto 0);
B: IN std_logic_VECTOR(width-1 downto 0);
C_IN: IN std_logic;
C_EN: IN std_logic;
C_OUT: OUT std_logic;
sub: IN std_logic;
S: OUT std_logic_VECTOR(width-1 downto 0)
);
END component;
component logical
generic (
width : integer
);
port (
A: IN std_logic_VECTOR(width-1 downto 0);
B: IN std_logic_VECTOR(width-1 downto 0);
OP: IN std_logic_vector( 1 downto 0);
S: OUT std_logic_VECTOR(width-1 downto 0)
);
END component;
component shiftL
generic (
width : integer
);
port (
A: IN std_logic_VECTOR(width-1 downto 0);
Ci: In std_logic;
OP: IN std_logic_vector( 2 downto 0);
S: OUT std_logic_VECTOR(width-1 downto 0);
Co: out std_logic
);
END component;
component shiftR
generic (
width : integer
);
port (
A: IN std_logic_VECTOR(width-1 downto 0);
Ci: In std_logic;
OP: IN std_logic_vector( 2 downto 0);
S: OUT std_logic_VECTOR(width-1 downto 0);
Co: out std_logic
);
END component;
--clock signals
--heap signals
signal heap_dia: std_logic_vector(7 downto 0);
signal heap_wea: std_logic;
signal heap_addra: std_logic_vector(4 downto 0);
signal heap_addrb: std_logic_vector(4 downto 0);
signal heap_dob: std_logic_vector(7 downto 0);
signal heap_doa: std_logic_vector(7 downto 0);
--ALU signals
signal alu_A: std_logic_vector(7 downto 0);
signal alu_B: std_logic_vector(7 downto 0);
signal alu_op: std_logic_vector(2 downto 0);
signal shift_op: std_logic_vector(3 downto 0);
signal alu_out: std_logic_vector(7 downto 0);
signal alu_cflag_out: std_logic;
signal shift_sel : std_logic;
--addsub signals
signal sum_out:std_logic_vector(7 downto 0);
signal sum_cflag_out:std_logic;
--shift l signals
signal shiftl_out:std_logic_vector(7 downto 0);
signal shiftl_cflag_out:std_logic;
--shift r signals
signal shiftr_out:std_logic_vector(7 downto 0);
signal shiftr_cflag_out:std_logic;
--logic signals
signal logical_out:std_logic_vector(7 downto 0);
--ZC_Reg signals
signal cflag: std_logic;
signal zflag: std_logic;
--PC signals
signal pc: std_logic_vector(11 downto 0);
signal nextPc: std_logic_vector(11 downto 0);
signal jumpEn,jumpFlag,jumpSet : std_logic;
--Stack signals
signal stack_en: std_logic;
signal stack_po_pu: std_logic;
signal stack_din: std_logic_vector(11 downto 0);
signal stack_dout: std_logic_vector(11 downto 0);
--Port_ctrl signals
signal io_read_strobe_int: std_logic;
signal io_write_strobe_int: std_logic;
signal ins : std_logic_vector( 17 downto 0 );
begin
AHeap: zHeap
port map(
reset => reset,
addra => heap_addra,
dia => heap_dia,
wea => heap_wea,
clk => clk,
clk_en => '0', -- why '0' means enable
addrb => heap_addrb,
doa => heap_doa,
dob => heap_dob
);
port_id <= ins( 7 downto 0 ) when ins(12)='0' else heap_dob;
ALU_OP <= ins( 14 downto 12 ) when ins(15)='0' else ins( 2 downto 0 );
SHIFT_OP <= ins( 3 downto 0 );
ALU_A <= heap_doa;
ALU_B <= ins( 7 downto 0 ) when ins(15)='0' else heap_dob;
ALUProc:process( ALU_OP, SHIFT_OP,SHIFT_SEL,logical_out,sum_out,sum_cflag_out,shiftl_out,shiftl_cflag_out,shiftr_out,shiftr_cflag_out )
variable alu_res: std_logic_vector( 8 downto 0 );
begin
if SHIFT_SEL='0' then
if ALU_OP(2)='0' then
alu_out<=logical_out;
alu_cflag_out<='0';
else
alu_out<=sum_out;
alu_cflag_out<=sum_cflag_out;
end if;
else
if shift_op(3)='0' then
alu_out<=shiftl_out;
alu_cflag_out<=shiftl_cflag_out;
else
alu_out<=shiftr_out;
alu_cflag_out<=shiftr_cflag_out;
end if;
end if;
end process;
-- Heap address and data define
heap_addra <= ins(17) & ins( 11 downto 8 );
heap_addrb <= ins(16) & ins( 7 downto 4 );
heap_dia <= in_port when io_read_strobe_int='1' else
alu_out;
-- Lock heap wea
heap_wea<='0' when ins(15 downto 13 )="100" or ins(15 downto 13 )="111" else '1';
-- Lock Shift sel
SHIFT_SEL<='1' when ins(15 downto 12 )="1101" else '0';
-- Lock in out strobe
io_read_strobe_int<='1' when ins( 15 downto 13 )="101" else '0';
io_write_strobe_int<='1' when ins( 15 downto 13 )="111" else '0';
nextPc<=pc+1;
PcProc:process(reset,clk)
begin
if reset = '1' then
pc<=(others=>'0');
jumpSet<='0';
ins<="001100000000000000";
elsif rising_edge(clk) then
if ins( 15 downto 13 ) ="100" then
if (jumpFlag='1' and ins( 12 ) = '1') -- condition jump
or ( ins(12 downto 10) ="000" ) -- uncondition jump
or ( ins(12 downto 10) ="011" ) -- call
then
pc<=ins(17 downto 16) & ins(9 downto 0);
jumpSet<='0';
ins <= "001100000000000000";
elsif ins( 12 downto 10 ) = "010" then --Return
pc<=stack_dout;
jumpSet<='0';
ins <= "001100000000000000";
else
pc<=nextpc;
jumpSet<='1';
if jumpSet='0' then
ins <= "001100000000000000";
else
ins <= instruction;
end if;
end if;
else
pc<=nextpc;
jumpSet<='1';
if jumpSet='0' then
ins <= "001100000000000000";
else
ins <= instruction;
end if;
end if;
end if;
end process;
secondHalfProc:process(reset,clk)
begin
if reset = '1' then
CFLAG <= '0';
ZFLAG <= '0';
elsif rising_edge(clk) then
if heap_wea='1' then
if ALU_OP/="0000" then
CFLAG<=alu_cflag_out;
if alu_out="00000000" then
ZFLAG<='1';
else
ZFLAG<='0';
end if;
end if;
end if;
end if;
end process;
address<=pc;
write_strobe<=io_write_strobe_int;
out_port<=alu_A;
read_strobe<=io_read_strobe_int;
stack_din<=pc-1;
Astack: pcstack
generic map(
depth => 16,
awidth => 4,
width => 12
)
port map(
reset => reset,
clk => clk,
en => stack_en,
pop_push => stack_po_pu,
din => stack_din,
dout => stack_dout
);
jumpFlag <= (cflag xor ins(10)) when ins(11)='1' else (zflag xor ins(10));
stack_en <= '1' when ins( 15 downto 13 ) ="100" and (ins( 12 downto 11 ) = "01" ) else '0';
stack_po_pu <= '1' when ins( 10 ) = '1' else '0';
addsub_a:addsub
generic map (
width => 8
)
port map(
A=>alu_A,
B=>alu_B,
C_IN=>cflag,
C_EN=>ALU_OP(0),
C_OUT=>sum_cflag_out,
sub=>ALU_OP(1),
S=>sum_out
);
logical_a:logical
generic map (
width => 8
)
port map(
A=>alu_A,
B=>alu_B,
OP=>alu_op( 1 downto 0 ),
S=>logical_out
);
shiftl_a:shiftL
generic map (
width => 8
)
port map(
A=> alu_A,
Ci=>CFLAG,
OP=>shift_op( 2 downto 0 ),
S=> shiftl_out,
Co=>shiftl_cflag_out
);
shiftr_a:shiftR
generic map (
width => 8
)
port map(
A=> alu_A,
Ci=>CFLAG,
OP=>shift_op( 2 downto 0 ),
S=> shiftr_out,
Co=>shiftr_cflag_out
);
end fast;
|
entity FIFO is
port (
I_WR_EN : in std_logic;
I_DATA : out std_logic_vector(31 downto 0);
I_RD_EN : in std_logic;
O_DATA : out std_logic_vector(31 downto 0)
);
end entity FIFO;
entity FIFO is
port (
I_WR_EN : in std_logic;I_DATA : out std_logic_vector(31 downto 0);I_RD_EN : in std_logic;
O_DATA : out std_logic_vector(31 downto 0)
);
end entity FIFO;
|
-- -*- vhdl -*-
-------------------------------------------------------------------------------
-- Copyright (c) 2012, The CARPE Project, All rights reserved. --
-- See the AUTHORS file for individual contributors. --
-- --
-- Copyright and related rights are licensed under the Solderpad --
-- Hardware License, Version 0.51 (the "License"); you may not use this --
-- file except in compliance with the License. You may obtain a copy of --
-- the License at http://solderpad.org/licenses/SHL-0.51. --
-- --
-- Unless required by applicable law or agreed to in writing, software, --
-- hardware and materials distributed under this License is distributed --
-- on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, --
-- either express or implied. See the License for the specific language --
-- governing permissions and limitations under the License. --
-------------------------------------------------------------------------------
architecture rtl of cpu_or1knd_i5_mmu_data_pass is
begin
mmu : entity work.cpu_mmu_data_pass(rtl)
port map (
clk => clk,
rstn => rstn,
cpu_mmu_data_pass_ctrl_in => cpu_or1knd_i5_mmu_data_pass_ctrl_in,
cpu_mmu_data_pass_ctrl_out => cpu_or1knd_i5_mmu_data_pass_ctrl_out,
cpu_mmu_data_pass_dp_in => cpu_or1knd_i5_mmu_data_pass_dp_in,
cpu_mmu_data_pass_dp_out => cpu_or1knd_i5_mmu_data_pass_dp_out
);
end;
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
`protect begin_protected
`protect version = 1
`protect encrypt_agent = "XILINX"
`protect encrypt_agent_info = "Xilinx Encryption Tool 2013"
`protect key_keyowner = "Cadence Design Systems.", key_keyname= "cds_rsa_key", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 64)
`protect key_block
FAkw7gRmEwDx0cT0lLfFXgH94E+u7pXWs5ahSt/pzljIAtlVd5PhOu9ztNGUELVfoO4Gol+zPLUh
TN9yRctY4Q==
`protect key_keyowner = "Mentor Graphics Corporation", key_keyname= "MGC-VERIF-SIM-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
OsI56UKE4Z4O4++RpLw+Gr7y1Sd3eUkdDGmGZYBu0aWjoj+iDwzKGBcBG0rF5D+4LwCAgnpAGiys
xLyYTz/ObATK7L0zNe+Mx/H+/j5j5SXpNvpcXkGCWx3Mtg6EpqxneRyrD34svh6fn9QBg9AkFvdb
eTcam3dZU+Gacfm2Ivg=
`protect key_keyowner = "Xilinx", key_keyname= "xilinx_2013_09", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
qc1VB803xD7sVBXVT5KuCy+daGAjeSNtMgViDKH2bpJoW4aexvjdVOFa9Cn3ZQUudsfzbRtbOfND
3qwRkfwGKGa/rWJp/b4u168LG7R497q3mKgxz4wZrw5VVWth06zATVCPkvVwwcP1aVCYV0wxe3+F
BcZo/LoE5dzRftELWM1hbxUlZMlSl/apI9c5DLD1ZPtssPXqyfH8yGBCJ6IwpqThHkCcKlxPWOFY
XBErOYYrcO+fou4DBovYWIgQB0ZKOhCR4cvN3q6rg5XOYT99xP70Y8jdZqXKRq3PuDDZEya4uwav
9zgp9xA7sRjUN5/fcIvFMcfDutvNPIc7IvkzWQ==
`protect key_keyowner = "Synopsys", key_keyname= "SNPS-VCS-RSA-1", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 128)
`protect key_block
xeydwtnivo2IBZhciZFfy3r1qoKk43zuwlyfDAWr7E6QmSwqVQF5VHmc7oNu8/L6oqsi8CW2guof
n3LQZ6J8fPLN7CBNStOEImWoOU09vnECk8Bwe5gJEo2CSwnqojJJlM/jtH5jKtWnMb5YecjpsAkT
3bnS2U0oIgAvNLFItdk=
`protect key_keyowner = "Aldec", key_keyname= "ALDEC08_001", key_method = "rsa"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 256)
`protect key_block
QglgmN/aSMz0M17AlWb9oRKStkdBh5nVOwe4/WnjlbCHuTNXWcMIzqLlv5JcAmIdzL/13EAMS4W+
LbXaFXFMcWHAzC/5AZxX+CZbwE46qfB6uGUmUBTFEckk+Ba1aO38uKX6EDual9TqDkiz6OPrjmC5
MifvdDzh7mlaB+rYqb5sjxUWUfJCpXIOgO6lavL3535AS2e2hAYpmi1PB/ejGTuva2r1NRmDkiUk
Uq0oiyBI4sQwmU7gFF9pADJRyzpgRQuSICfI5NAGRTR3by64/5TeOArBdjuY9arezL4gMGXoOIu4
E5vrAQOLZikLF7X3/wpaihrUarYdJnuPPVXNaA==
`protect data_method = "AES128-CBC"
`protect encoding = (enctype = "BASE64", line_length = 76, bytes = 48992)
`protect data_block
ALca4ZbZQm56On3bvuh5B0WS2btoLMeZbel4MsS/dwMbEqvPrwO6pq97L5wc4EmhtS/RA/5CtXS0
C/KdIWC7BkAWl92/ez+4/cbcWd+7u9DrpphsTFmNVafiHzkS633Xmj5EI1L5MokAFlz/7qoPK8XF
uCmJORXnRP9WqVtN5DAKcMyDjAXYfIHl2oV5D/6ENsCrGMoa9Fxl5JWlLXlVbtFdZXiNEzAO2YOs
WmhWGlxmSQcyPv31c+Xy4gkwYEF08+L2utwShGYQ5JXcipkSg6PO+U8yC52LDJazFtR+N1T5Vky/
eubJxwU6PMG2TD8v3hb1hJRn2YaZAXV1m9EibBWmTng7Ymbl3W491k2gI3wApODYTEc8/k/Knvf9
Vbp7ct6B/gjJt8UycvRJrm8l+AQILxR2gLj1w0lLMi7i9dKmp+oCsjTiNCjoE9cu92epiyx69/JU
HI2dNM7AUpjhU6KPrOnawbSUyR0MV+IPPbkVGBsPqb88VLAmG1gwh7YPx+5QePYYVl3gZmMWiJ4V
56sXjlNKYqfkB7eldyPywnd7jOY+QqR8I4OODMa4uHxACyozIiCg/7DDRYXhyCYWrRpHyDrpm8Vh
DmJRxUuMXwwYVvWNSuvAsCnCrFBdXg3ReeXO2yJw44+XgVhiIO8jRUDRlnWHAE2m1nrW+CimWYJv
Tf1b+Y3nDflswoTr82hf6JYK51yDq47R1LxQMh/5T+wIcfD7OUFYJ3zRoJ9JIsXaEBJ9KHkj9jsz
yYyo404FUOEziELp68UywAY6lDyPx6sPfgyk04upxwLP51cnLwy2QcQxKZOPT6v6ZBPDSeRbptHu
/DZ5iBy6VShj+ylN8vcURYRbjMtnH56etbifolU7n0y1dTa4C5uMdFfwWnwyhOxyaCPmYXwnq04B
cY6b1Dl2htu794iGSBo41Yw12LZSYbr+miyQUeLrQK/sVL4pxuOOZ2EDRwZFjda+Jv3Zd/zUmatx
+xAsvG9GAv3F9yqhalThADdHufEq6C+Cw+T0af/e9LszcL/b7VofxbldRy0w5V+rhSBSkTnF3I1a
ARZki3RFkt3gFCUrgzcrcb6w+/F3XnwlsN4dgrysKTtzxbFuw+dz+HKcFt3uIoguwhusiNG34VL4
vAKHJmqHA0/Vx/+7dCEQMG87aWAa70MHd1OI9md6aOFUIqe19CrUmXyhk3M4XXf/kb9Q/MF35p1C
H4i6/XObXaAdPiaJMK24+b6LKeVbapy0cRRZeGMwPMvJCGC21Mde2JPBge9FUSfCpIkL/2JjDksD
LWpzTtoLnS5fpPTjKE13OAYPIoYaS8nYmtgIw7/Nxs4FsbacqgO/2iJdXuyNugIOxpomJ6boBAo9
sYqUyiDmdymApOS1auimjrWUhcDMsWUxv1/pmmF1LrT6BN4LnyLVoTT5kpwNxY+kelNGVXSBCx5v
19eT/6TQ/te2rfhTECMhuvDd9NCpzGAjZBHB7XkRC+rvVwba+y13f8wNQAPS+Y0ypM01Tellvt5p
P7lMKTqNZFELLUeF06fXmM2vMbumbbSTtnT/IBXCW7sbOxVqoUrSCtZ2CNNtWso/RnFvf1yVFo2g
UUpykimRpicia3Wo9IoGyw9Ud63WYOiHTBG0i7aYzcUl7oNfnxtVWGa/RhJ1TGplus1NfNwpGDBk
amGmbFQaVHiLUxV8XY+fbedmbgZ9U+GEM6xeN9nRaC+j75F3LSOXyDCHN55plhIFjk5jt4ImCb2Y
/viODwcGF6jjsbEIGvlNw+BTGHQoFic51RlvqnBttmq5zs4gQywjc+Yh2PIhe1Amj5cwuVr3rJIC
s4VzAby+8LpLKMyubMqESnnEnPcGCTbmkwtjy4PhztEErC33rQ2ZxdszJ1AL8+JnHP5h1/9RfvCt
EJPpkq+2/RxUFSBhwrNcqTqnkH7VjKlj0neoLQpc7iRPJ9zllQh2fE/Em8rTUFBDbzZ2IvhE7M+h
E+yxGUNsUejNAhg0EpwwE9Ua13hDCjYFCcOxKjZzoEymXKUeCNpp4lNjQHssaO9CWPGbJ7XFqBP5
OKlnsMzaPLJ4FWgZf8RMp//3Wp1gb+tv7o3+vp3Lfk2w2AZqZRH+RvuN7sRnXlbkpWO/LFzgvyB3
FHkNHn5LtLipcr12t0/1LrpfP5F4reg6FA7orVoUL8ylaGZAj0eu0mwYwy14GmPjXqtUakr13uVg
fzO6a0KsNNr/TenRKJfFT0l62GSc8wX4QyuFaNQh3MLqHSBmehCFz7GfPMw98PGflSoA/FKXURr/
mjBhstDqfupUPTbboft4s7dETMmuEgUe2udSh3qk1+S1LOtcVLi4g1l4jl+vgvyZOKoZYXX8oa9v
+Qdl5PTLe+eQZvd/yUZXgrH2vUOV36F55ju/ma5+yRvqNgPzyv8ze9et9mxouEIyIs3pxt5bpl24
cl5lD00j+L/agM5azbf7Ph/XeHenADsv/RAiSjGUwTBlIBswOJ8k7eh99wpOe9iyV8fMnkd41RU3
H/AZyQ8PgRy5uSJvf3IPIaHd6Mk1boJirPuNuoG0a9eD815C2SlpTCXuov0sHD5XHw2z+5aXXnYN
lbt8NPrGICTSCf8R69P2JAVughLP6YAxj4j5ubQbaVHIf9pkaoaWItdWnbHj4+Zz7euXYCbMGo5Q
vzsO6rkD5QzV5yCVbf9Ovmop1cM06L8T9B5S1jqmyN/5gOtYAeokl/yHjjY/WCUSvyznCNvAGzsY
QRtJk9sJJaV0dE1f/VNj/CLlkJ98GfEu69uDtNATpVg1/u0BxE8LjSjysgimjPccsX2bin+kgcQT
Eu+PAa5OY4GyukBvZwYZ9+6BW//eDd3/r4Tln5R0g4erFQz8X2ZammT5MwCyERksLQ9po4bmn2ml
NecRqHubA/Hf8SlVLydbhqVcmi3Sjmgu36EaAi5N7NwgUbcJYo1EF1idYsyoGKyPmy2Zs1+Zv9be
HNQOFM/NNnUOWgGTyXAsUBjt3gBeSOYkc4PAjilG9fJzxrh+mNEskJ+7ItgWvwVo2HHrJa9ZL6xm
W6hEpiqtEBGtm17V5jdDZ70jMIZ+KIKk9vkrgdS9GzvXIwIJCVufMJ6dVAuHG6VQqhDw02kvuqae
hYbz+JNuDZWmE4lQNBwjdFzq9wkOFvgPKW9yUW3jZZ3NOaFYwaEemD63sTU1FQRt8GjUO63ZmOLt
BmMYZ298N3+O38N0LjFnSyCkKp/RLNjMn5zsKp549hA5eUcHWL64dimN5cu/h4kO1zCef9OaTRL8
zm0PCUpwQZ5QBKVhBIUEAgK9GwtU46Gi9fc22c4HpTya2owqZih59E6iln4Vo4gaOzwfU+a/lTEq
jZ7JWWCllgp221tXjPvXOcmCB2D+d5Pl9/KvAGlX5Rcfowtv3ilvj1lS+Mtjm0Zou8hpSBCHc+UV
rn9OChxDPft7fowtE86eu+LyfPQXQK41sUi2RKwfTIuqu1jLjVvoBFYK8exmDmWPmHp4HbKFLnnA
MjxExZ2QpfLnrQH/1rU3eFTCS1QZLdUTD6hg/HBlWcK1DR5nNro5E7r6FJ1rQdZ2QWH+YM87xYvr
qyBmdzTPqDZZtVR2Mlip0F3Vli6+KAjGVimC1qvBDR9Ckw8WqBdIeIxEa9Krm31PbNwYn3uKDhFS
WlDhlfi1IeJyHO8wOBN9wcSvRmOr+IfcWOF30q7GG4KzgkrYoXBX8sC4TnEsFTya+kV2htE8lgOy
7ZGYj7OPC/xqMp3ZAkXVlPoYIevJhhFfP1VXBYEUGaSnmznC+PbO0KcIKe6CoO6sbnz/NYgfaTaQ
jqUFSUAD6gx7YTO2/P9+soX3PvBFVhFv1fvz6gdYdt1yLb5m6HMadktuOoY7yFaghzPaCtbkkZKh
qgSlAXRbuqo4uYMmMBscddJDuGiv959DRr/w6Ge/BP/ctup7GV/JgmxbNBef9qL0U3CnVUeTDaoS
rUGRZSaPOiNl/fkNgFintu28HJDksqUcNI5rTBDg5Ri4EdUZdbAo0VXCTKzAwxZMxnUAR0E3yhqF
vuf1YlM9TR8edADnEh8UnrGKTaYem0GxrvPjoxwyFsFO1QsFaiZXJxqnmNCIQghbhzPkD1bWhz24
7oJNYn5AnQ/6VPBoCyfxYAlvLS4hW3rRPZzhDjxmdHOXhIUdusqTSdDbhTXrKbJLTgMKcPGFRS8f
JgeUioFs+lu4MvI8q5f2c4OSfY2yaQJDNxbXfQ223ypEIf69xYt5bRvjUflpxByBZ5dU7/1ky8E4
Qo36qtA+XeXGEpEEEr/dbfou+C+aYjBSAAkTgwIdhBeBXKowyftuJofN9eMYpZta0PvkHq7NAhxD
Kym0mV7kXrabt/EjGgApoIQjbucyFXpp6vVyTJNzgDCclfhBWSLKfEvejjYUn/ICjcKBbGIQm7dX
hFHwGTcXriRSYqaRE35oyGVMDYZ3F8sMwqPTTbnUROSqF9dtQ3qisGx142QAiF96AIGmAHITzLg0
KwUEmCXxiuVH1d06ApuO1JFytULrEQfJUdEsf2t0Ixo7XxYjJ4en+qCGaAAw7hOWC0rQI53ijrcs
rwvUFF2x41X6bP9m6zXOdI5WmhDebisFzDKZzVv/kMIANlvPQsTd8Pc2VkMDH8qknaQyxZstV5wU
pE2tsuMbU+CIAoBnfc4gw0zDkh5OyBwHKTtFEACCdzrWxZZ/eqRbXEeUfr/bSr2wj/PRA1YnDJpI
Y+Qrwda8TMur6e66cJzWj/oBzJRdq7YP2+X5/sPa/tN9c/yw5B3xFPSqCAWxMSTaFMC9VRK79fTZ
lvTF+YotY+PcBv21N3wqCEb6iWkf/YJcuU1KZc9QGCV8mM+40z1Ni7QPdnyoSPUuP66vD4Tn0tcF
2wBMauhQnsB2bElI9n6utOiBv7DPpzXyZgl0s0YB9+ZSfjvFHDRecO/Pjk7iLCS/kqf1TJn2ni25
jnvDpJVnX7l4eR3OwlWItGrPFMQ7R/pneuD9oa4K3lSSZs+Au24LfZDZQwgw2ew+x4SVLUp9l/s0
OOCqQY/577d2C8zjWLW4l4JFmAqdqotm/48uRqVzJXcFHwtUt94e67pBlaej/Piagpsi6fq6soP/
3jdfmgvMRo58eGMpooQReVJwxq1x0Wtnlt8OOMM6psBbJXpiyra99lfFrQUOvQtgNyioADynmrcJ
lz+cTW0421V45wrWyrPQbBCSSZLvM2tWJ5HCJjRAAPsWJGPtkHFG3v2HEUvE+mdlCTWK91o7pVH0
6z46V8MvPEPyhm/PtoN4C02AKRjpwSGP0L62TkAIWSPKW+IONeUNnlCErsbtpIbV6CFwjestqIYm
xRE3ZNeIc8lehJcvEIFRdrUJ+p3D6gqWCxYh3RDsYqy1CiXuGcg1apazd3xTyApHPD3cUTKS8OD2
XkCeK6m6JJn8tR/sznVLaYtg45bTuNd90Y2J9t5Lh+ccpnUdidpjEsP9oeHYV7c3crUaNcRBWysU
o192cqX9RH7g3cFp5UddEkXRWWLE/AASWkQ7N/Uc6aUlS1hxmSvrkaJUX6zUOO4Nv9l0+9kjr8nq
TEgoT6RS7IumOSruMcZ78upSlKp+uvVG8Qus/XSJi84zp1MI9R1sV7mLDV/GQjfFkrx+IgQHgZOR
GyEVlXRVSBaInrDCRn95gFCpmrtjkk750Ele6S9XVbu1kMiMu/rQuGHdZhw2R7qSGiqF5wz3pQ/9
gwK/1TidkxvMwLg8bItbtTFUGhRx9RN1oUe6aBq4jgbR1oMUj5b9Ak+kcNvDSBvwDuPqAKQ9ovQR
/HOHL2AsBBUgPismQ2brZnHHX9qB7xPNUaHka1+gX1zNShFlwh/lyNGHEufA1v2wTtupRFWuJ3t0
BKCoCWwu3STOuVzbqNyxk9+40w6ZEI1WlFk60ydX8ge1y8LFfPRry7gQ8eZko0S5iTV1jiZC7zmU
uT/K2IcN1+U37zwBznU7Drhan0QKUdQIyB15p8248hiz3EKlTrNtQ4KsWlUq+dmkn5lfxJiVzu28
AccVG8HngY5tC2c5PMezOQnMh/4BdPu+6eNudZNN8b/ey5Nzomc9tk+O8xTgNaKpakHO4FhmcIeX
o2GdDy6OpytDGWlmh5g3Ieke+Z0n0aqvniAoCvxqRCxd8p1HVlRqgiPzEMMFNweiyPDVypaQH+iM
84idfzIRIQnQIo0QXXbNUYbb4eIhlVvw3Mh+XXSfbfIpV3LOTGRfw7ih3J06xqvm+Pi24sA+VUx+
Trk4mIHX501MmP9Cx0TSs5NTUDt25v8uhoeLdgpkXjKRTeSeIaUoiKwm+vkSu2+dMOK4GTgZaPMm
ZqQ0tix4PuN/C+C13ZtOFWMUNv0St5fuvG86SXVpv/GDsy5nvMHq1VwbYV3SERSJaLEOtKckT+gE
myC/rXKj/TNO0noe5h5UeU1Mq6R14cTWUgATsQNAYbn6EISJZ6jLez7jij1d29Q13kfLAy4c0VqT
XRt+MCNb57aHeA0baCaaLJiqJyFjwa73hLtiDeGqdA86KuTjrNdGbtGmqbwwF6yc8fLs1j9LJID8
BMRmS2JUwsk8Ky7tVPRo37X/+Yz8+H7ewce8MMsf2qLdvXwa3TdrRnYGDSxsD65sDZ9mRMfKHMn0
16nAcXupwKII2cG2CADNkbgjyJqwALQJtJYxL7V/ACHkMFYyS/xd9hm4oEO2KUH4sRGJueeAB6RM
2YeExxhc/NzT4GyEK61gXLeaOvsDFUZt8SbfICHC8rdMxkJeO/lwatE2K++hfppI17aR1fIVCVo7
hbe+1bZLmw3zmESyKbxaR8VZzCERvC1DHoSVodxdNbkMaN+FPf2USRrfo2zQUFFtW9DBaQvm4f5K
1igfLVyIfe/OwBBN1TIVy7eMyQu3z+KqkT9wgSkAbrn1vguKIEBMmHC1BQ/SGUIcr6SqhLrlMvV5
B2BsHCvw7ucDuYF+2cvGSWZBkwn1rS5FNv7/zRvoVfeWfu+2VPzmKor7oz1TynaIotyJigDnR7nH
EQXXf2hVuIcr85h5WcsAkwYtIrwAogXD/1pGEK547VwPXp4vDXOBflF8myuo9V3ktOKfnCwU3rBl
B1ewAc3LM2OibpicdYk41gt7mSotKIHoY2KEjfYOWHDTru8Trer1gdqCcJ9MZjQHaODpegmKdlbm
wng1bMpbBiVGNlvV4ycHl3VGOGrjb8ohBLaoQfMn/0dg3LgAelRDYw+ihZfn4ARo5enQvyLeOT5C
5h9vCIhFW3xYYH5A2SUg07Ci5bmw1xHkPpdr0ex4abF5fsaseJplhnanLkCsEOiG0VIbRULPYWww
2rGYBJU9xveE2+J9YwUQpFpDWBlNKUrPBopNNuG29cQZJIgfhj0loZQedzbXBhlOqQhfCBbf8pga
s/RiGnW2RRuuJPlwI+D0TaxMnd+PMrBji/Qnh70M06tmkSFwDdYb6TL9NlAZnPdSR04+t6oHzdLR
8dxraLYBYNCuQ6phe3iRzYUs27XWKKN20avtkl3oyyFXPg2+Cihahr18Lth4MdxQVhnpLT79W/cl
Al5yVfb9UlvmF615kh8kOScVZHhdHtGNYQ6mQt47+lC9SiTLcW4NFMrlFbgd9yXqbB2OOlZkcTgJ
CCgneH91Qy54HIP8ebdULNXSpDuds0bJ/jjZ7/Z1U/nM8ty7yBY+A4BBzq1uKUfOoqhL4wZZNUP+
QUnuM8I7CQfpaVrTbKKc1RVr8EPS4SJVgD8zLwbCVYVd78IgaqpRDD57pjYNjmDLyU1sl1uh6dup
oTytFVJe6QBt2hRIAI/YMs9vbbSa3Y82WxFklhAB5xrmjrUhpbRXdWBKXhM4SYLdm8wFlDpYo/DN
U8G7M7+JZhZxGo704qDgTltPlrSQSpujqp6c990PrPpwvtZHIUTQQk22H+Xot3n2h/KiQ7fYo7XO
hdzFL4ujisXwGQQyEozKcjyVfFYoscCpjMYc1TPtAHrtbVnIbQgeodQP4cEmwMxAFVPsRaN4f7gU
+PnQSUPof+T91/82yG0B8IYHkUHhm7K/U5G9ZHkuDE0OBXchBBFRJaXesSZW2iWct1fJAu2UycS/
nRV6L4VwL13TszRfcoTWGxIUPc/g3c7G7lR/2dQRIiItHSrh7oSJhXUEDeyjSCTYhMyz328BQrSk
zXgYo25TWUgXM/fWJhKcUvPf3qhfsKKlJ9hlLJ7m5ntZ+0FyAzESD/cNvKGtbEp0jZ7asb5z71wk
ngmn5uqZ4btWVhYAZlxJhfbmphoMqj/0NF07vpvBOtUZonAZGXaNEgqXoCFjtFW9b8FSqVYG0+RZ
pyE61gSgxBHIcr/EAhX1FiUiqGQpIi3iO/WbduYQpvXT8T5vpQWPF1uLI/69Rb9zqIQIyJ1vk6Yc
Fkww+xfnbMfl/LxUx5hoac603SIJmI1v6cQLrDjZoyklvG4TfcHvaesbXiyQguFG/6BCjl3zdI57
OT7tmofymNjdV1uF1wJ+iimcaJx7QVlGUyJ0dHYk4F1w6twxYoVfd7vocR530WW0E4ytbdUHVil8
E4WSZbE59ruyPW9mRAe46p4XQvnjE9Y0u1tLiOJdxhec8cnMpjPCnA2RQ0obah1IJ3cPXdF1S7Ud
jwKOEBYfaFuFwrLjWt9K1p5hm3CKk04ge+o5LcXDnU5yyshuwu5YbKWtx8O2Hl2wdj1YnSLAFvoH
Bjwl1U30P5xaodxC6H7TUaJbrtZYRhr0IWioP+ZMWVIW/kaEhabTvL6vlQfhrcd+yTFFC5xUr1YF
g2boWR19o2Jq7TeMVBPuSC5siQFIL4KrSzDRSE4tqou2d1OQOnE+NcjclYYgpIlLvInBH9xZlscb
6KZlHa85fodCnaJBTOgLRO+hPU9P5+X6+p0s1m+1bFNluMKQmWN8el3PDSil8xggsKG7f0fJBuzn
Yf9KXYpUB9ukDWnSaYu4hGntFdUTagmY8nWI4AiAh7ervKe0Ch1njIM/En++5pLdaDOHPoZFfamr
DML9uNqj3c+voVP6Q5LSj7u30cVeIdR+vhnwNRFy2atgakfs3KJAAAVPNmUARjg4EIqFnulA16K/
O0zgX1/E4nK6Ksg80y+kJmiyPhwaV45DyNxdik7o00JUtcfgHzHCsmHZYCs5IiXDCKzmKNSZQ5xI
6WkS09vew2MBa4kDwA6Fx2sxwI6/4mQJojFu5SrfqlVCDMK64e2cjBT3JPGXPtQMKBT41Lz1E0mu
0TUmTD/6syDnP3eqvfVtTb5OaO45vh6xJIgCaROuf+2jMQM6dUCeUddIiHaSy7dW4mdP7vQPgdqL
1b0PL2RWGUgbHrk2SFEhAqUGgMz0MI0nC3QaUnpAfa4Y3f3uJgIXSZgprsHgpo9TN+TClUdosbJl
XxoMxaSq4dPw/7vePgyKf/86l8UJpAWKm3bLBNNxItqYNXFMEFww6DuCDFxAJjm6FGHtij+dh5KG
iCRvQ/w1NI8xyjKsvh7nnWnVTBmNVKzqUx0KG7gBEEUG2vq9aYgbYvLU46910VIt1rpipfwcEv+t
8oNpUI+WcYAf7GhbE2EQFFQTvK6O4u2bmW+rCO0F2V9+m0uTaSD4NTbEPIDT+4RZ8hvQYxHrpI8s
HYbhfrS4MIuz4V501uUlPHxB3ZIoRkQZcufNowWCB8HslFm9fm/6O8P1e7kLGk7JmLD63g1Kjh6m
n0+v4msBzhdvoAN+I2ESGPexXMgWRKZHcG1+0ToXmVlbKyc8lQvsmSfpoWrLpi9HogxIfUcKSafs
yat2jus3E0u5EfuOlodTIEo8O6cJh8yET3i2WJZPxbFck3LI/nbsm/7L7Kl9kE+1jI35yC+o2CJ7
0wCuOsd1Ybv0SmFPlnRmDPmETWiRalO09KxDWswAwiK9XjlGDstLDMyecccPcvqVPkA3C1cxVa44
znrZa/ccBHwvbttSbvN1XXrQINl1C113m1TelIl1agBhOvPE8G0/qAS90+1XZ0pi2pMfbkgWBDRG
qgc6f8nK/+RqvPvWrNpCynm/q4cTpDd1u2Sv63oh6HgYEN/3ZNBt9nbI32mhdlLqH3ZfmExypaI5
EWe3jO5AIbMBwPcpM+Iiw816xjFNtQvdYZZw4X3YCmM97ClRXlR8tIcXswAHpHP74L9D14bLgV1l
gqVYBxFrv0f+/g5kKPisEq2KcRxl/AvzDzuF07hwpSPQYTziJtW4mXCsWtru/0Ctnh5ywV4Sp3PM
CPoRoElJ51d6r2jl9ZhGTTn2+vmrmfuEm9S8RW/B0TRrB6XuHSPOmu6LASuzc4Or2OoLapYte1+l
vynsS+wm8Ppnwt14kvoGddjKrFJFtEDOeUXNi5RBoouVG8g+gX5Jp5ipZfS0NS06tj+2Q9g51ZCC
w4oodXycXwxbkAq1ZNP9BaaxdcLlG4jajKeZcxIWkcO0dKJThN5nq6IrQjhuaMPLsmWgaL/dal3d
gVzGndTkT+HkA3P9dbipfGNjd6eIIxNFeahhpfukUO6KRBZv6jnDfycmV33PfjyrqZt951XZJZ2u
rlm/k4qxsGUMQatyI3KXipfzFGHrLc+LTTJeL3OIyJ2Tybtvcq0BPy1BjNxhCxu64OfVw3VtP7JR
Giujk9F3uR+IjWGNFdEPdVUxcDvlUCKtIRT6liKk/5RZPOcQUErikHKmZBj2GSO8st7NuhMjrB1T
ExiLlvO8hVFMfckeBApub0FKg3KmRs75Lo8Ob5djfZdWko6zAIZLMyFgQcHXnUpYikJseym42My6
ubtFWrtAXtRhGRhsRb8MwB6uvE6Mm5I/ZlGdM/PXbXjOAbnYc5CfBTEZ96+rZW8Om3d1EVRPm2Oo
4c5oPSX+v6w4qV7MBRnMZm+JYEUSTIIwoU+WUPKxp5R+Ne5rmJn4h1HYNlWTqajHLZmhA0xMfJSJ
3JYRMX6wMPK6k3M7IAqikwboxKPKFO8462zA/cjJ3I+ig+rBaX2/kkOwUzqWO89pmwN6wR+7CBZa
xrCjeoEFrPqP1ox1WV6gMnLIvQ06WAbGlp+KuODcvaPsLinUYjH9RuuBpJAZWI3oBUkvBHXu3YH4
JZSjAZ7rjHLwLlNSS7HR8tlLNb1QKRRDHbZMJdJnEPzUstt3ZYOeT3QXN5MQsRalslzjtYM0tHE7
xHU3xyvxHKTt/Ik1s7fGTZ31Pb5rEL1ZzMq0x7cDG0C0dsCR/xezMewUmdOd516ft2YQgdeE0jOc
Ldvc3lvS83TbwSD4/mYEX3Qqy5krYiCzYKvHmJTJXDlh0FDS5+SydczCgKo/SeLxDtAgvUM/RGbd
kof6CkFXU4swFM5z2s9UmqCLnXQ17Dvvy3xBngjvZlPsNROCFecCU7fGaYp70jW8ULfvz7Deeuku
qK8918CiUuS4zkkkNX5iBLJS5FwXGBMpn1tUdMZvh90E8evKoGg9osCP5MAnh4l0AbKgVeVN02RU
eHeTTdECnLJ340I2bzVlZ5AkB2KgsBoLHS1flsShG9akJqGnncN8D5uEkVJ2yR96bFEHWYPF3Y8L
zdKRh4iXoBVOOvMQ2D8ahHs5E3EvOMHBoQ9wWhJQTKEylc44z01Xfy+S+K1Vc2ht3t57J/SgG3vY
JxgzpmqwaCsdnWjE52LkMIQByIAFAErd1JeMqPnGhyRZ/P1XAL26ZPmFgqf2jMFgJFVIXv5H9bp4
K3Mc9QWUikt7aUqfxajTpfIFRKIs+wldaYyqgfL5B1pUWqOLR4SCEGb+H7Nh0RhpPPXN80qH3t6e
QdD9/91LN27JMe9uA3GIq7wQx73bcaFCcK5OloGErQ9T4PgYv6u+IEOlYSuwoI2bUPJQW0RUBGdx
9AjPQ/LQFuKjtMIWktPRJ6G4VA7EtWr7LvE8UkcCxbBl7u9T1MQnrLXO7njSP2mdW7y0quvrtrJj
kI0c6FdnVSTeKIhwElF6z8+9KM7WDGGoxqC0U2iibLfUCXJ2s68LPWsOnQ/5TRSaTEow7XMj91ie
vIfTnKtQqyuGoXOGsPnh7s75xjd5aT/vEY0tRl3FncwNCyzVJHNXv3vXavB6xhzKh/I3E03PQVma
VYDZ5jzzuZpwg0R/hy74SxfCEtGe/9qmJW9nQRSibl3BIfmgwajKk3Mg8fxUIBCknPlsz2zZw8vi
qxmDDEtVglJSsCYP5zSnEIsEz+09F8bSlKmGwWqsf3DEiNkWmSh/FCKRZ5bve6qYjjenSBi1leFi
3sAg1usuKjFmOqcDaWu+UumVP2bQHXxB/6tLVfBazcBFrp3SegLlO9hnZeMSCfgxc08mT+a7Gn4V
PYNR+U5Cpi7ycsWQAlbbFtJIwfaOdQJE6qSYmIFAPnSOjYzZB1YviW5ktRTDPAQUOInHXsjzg8Ul
z2thAUmvjuJH5DXUPpH+cbvSNnzC8064hjEUJsx4ZI+37dLg9JiNIti5H+JvBsO1S6QOszfUeuBp
ggB4lYlXM7mK3oj3M4rfsNrP50IiehhE1EptYJYVjL/WzizZGJMU88zClEwZHEZa8SGwnwdY+IAJ
mqfTFd49lyiCyTycjw2c6SgYJ68848/QAIk06vZYkgQwTQU///8nUgSsStapxqfjLqunckyezJW+
00t3J7ic0tONwP/ZTulrRi+vrL++mMjXUfifCc/PqcPNwOXhmh3qD9US/8xWh3YNFc6S9QS8jl07
GA6ubXZVP1b2ctGotbScCffYkPKWGK8hTE4OmN43Op4Tkjx7xrMlfBQeZw9B1LnR3ZyEY/krlFLI
JNI7hw0RoH9iiSGkiaBGOMsDKDb1KADwiyfCk06tur7RNzetpmI8CFWEj54oKTJn+5IxptsmDlEz
m1MnKPfF83rb6pRXG5OX9z3+E1KzFCgpJFOGtXyGbpgtAr1wZa7k3Kit9LO2KZfpzl+iBfL21sAf
iR8V9p4XGlBKinjMfFD8xVOZEfy9APDJo42wgXHucL/CNe5573g0UGrtCetsqMFupqOZuX6gDaPK
rU9+G/3wYiXKDTA9fy2sm4dM6am2ahzb2J+xvWhcRV3nqZGkw9TE8F7P0z6y9qe8JwVoA/ZEbx+4
n6/Mh31tdOOrSD9WUwyk63LUQK5XUwMqHyZOowjPieYpIaApKLr5BLOTbBM68tcvHW2UoI4vT1rR
tV2TsezKN+rxwoI70Q5wI3vjuC+qd1ji9r2A4hxxuFPxVX6NTq3Fj/GNHrtPNMyQnDMUoc8b6r9u
XibjG/+rlGf3lywEs5RvaK34WBDk/ZIubBGP2Ry5GGuvCFw2Q3PO+nyu04ZM/gJrUqfZAjAlFSlo
Im088+W4QHO85h1AxJkQhzJTgmur1c1cDmllPc7sgQRSw4y911+x4z5XLkHrShXIaE9OWmaucQ2r
bCdoEWSwT6wGq3a8rxjL3qRlRbOWG3+GthlOqQKyqwv6li5VFGOF58r23F9JBNgchg4nKTBDw8su
6OpLtfBObd0h74IrkQJUU7xiiZG6kFaAPfc9nAMpVuFxZ3tZd5gpPLM0IOCZNVz5kD4yWmXSFYxU
j3NR0Sgoade8nUAGxHgWoeg9innMySrqu6HFgTtPoGvP1DPhh1yFyxGOUhHzxYWRPX9gQMdnQkiA
JhOtFQrzTjVFP/7DvA9zQxCFgokKWhT8GOtKaSNCJeW2MKCrwCAwBuXPbr7r/sE4uedY3KFPrAHc
V8t9c50W+qsH/2Zf4ODr+1RqBEqJRg9qh2aXhRjne2ddFPoXrCRXGNylczn8jjRU5djQ5joB8lGE
Zx2SiZxhVXHeQ1LPuBiBAyuRO6WdoloDnh3cynBiwakn4RQvWCh41IPEM/RChg2EmaApHFqfIslY
hRvHI/qBZG46EV6V38tpi9oNOA9v29uy6em8IjM6pkBxZIUWuO/VrxOIuJR3pX6ZI9pSlYPPKIUm
WErXfZqhKAq7xl/+mBCqlMoL0KzrNlCEEMyxJ4JkgO7rzROth4U6sNLjTHSeYbm9qmUfDre3eIW4
LXppa4LHUi5njqKT2lVQV+FgXEJU4HjM71t3xIfpLVDsQBa2V+qHQp+bXSIjvAzqTg9fqtvVhJc9
44NjUOzKPsIGsen2mPk2uGCi1BUDhryENgFh7LNK+p7P6QG055AwEKobnAZ68EMuJBeh8AgGaWXh
tJM0JDmdimetJXIOeA4vvhmqAAgQ0CZ2l9gHehu0bCG2E57gL3KEfnyRVMTteha6e2jrfX5b7oGi
yydScJbnVpdF2MKuHWrr7gMlxrwu+5gipYxJRYMbDOtgHk1B3P3BKLL0XBX3kV26VMznKqfnwkie
rQ/yJaYMSA0stNKHyC9iwxrS0eaYVQjUeZaM1GYrPUgpf1PLHeg8+rGZTqhLgezbz8oPGANshlHz
PGB7E+IwlQXFnB4xwMMWBxqozXw9bTLen7xkhxVWiyUerID5NHomuEVzeGKpEVLPkgPn7d/em+D0
kbgYZGG3J8vkHz29mUH0u7wln1/koYvZmtcRPf8VYbk1YVR4rd+ldH99qNcfwdxuyzTxp9r6ggy8
V5C6IYDmBHkOsgkJ9o+inHbTKOHiHPBSCkINMRqI1+XolHVf6KvyPXHfM2vUF2ocbpJyFsxgibws
zZGwNU3bj5T0TsAC7MJJrtE8HPoG08K+fIqVSMuVy+WzBh/61iAjGMStNY+KGE0IQ+HSFn19ONur
Y5z4TyVH/t6yPtn0X5APf/pHD4HiCyxqGhTiBhmgJ3kCMMev2V1+hf+51n2YPTI70wwUgncuotk/
SKeEucRMkIJO2rtOm+X0AC5RgVkVC4MDutTLQDEpnaptBwdGDs7dUdGmT5MVmDzFNXPzyANS9soX
0tTvbgoOZlULO1yWUk5egTkmPhK7MNdUpXnJDhkcnyeCMEzsKQGqfhaYB2TfSTaPTDfRVPzD+vv4
m0oDumhl6gC/rf/2pDuEF8Zv7CiZDpMqBzhlOV6cmT5tkUzQ8PmBVXbu2sFvAkEtgQ+5nCvBBTu0
5En2FFQHICbO4Sr8dss9cwd8m2mR7Jtquq5RYUoQyA0ANo37QX7s4VRLoDnugSpNs2/OSBY9f5ah
pl/4wpn0aCSSHzpgr0zq622NCvUsVcNp5Z/wFWDzzlLL381wwYRiOTPHvEJt4P3/bUV4hcfaZA2Z
AfG8pUA2vP3dR2P2vXbB0EY2+0yBtCTn9zIGlzdjSjGpOnl9plnzfQoc7uReXVKrLBK/HY4kRNb4
YLlIpMEtceXaF5lxnwFyjfu5Jz7uW73tWQi3ZyJ6ZgCUwGsNsI12q+ZpWnSS/OsHQrXgL/SYrkNx
yslviOY+Pon9KYfTbL+Pj5Ru2tXZmIWwZ1YvR8u1fn6HRWfGZi36KIpBsnp08PtsQBGGzJcG4p2V
/wkuHeWpGcBn3kUYvPfl9G9qqSRi4yhL2JaVupCmWu3S7cvAX4lE+MtffWyekGDpyNv32Nk+gtyn
nOmb2skBjQgECEE1zle3SjrEFZLB8jH44Hv8QDThx6W2WayADdugQZhFe94vMrvH2y7AZ70JxUqD
GPBQw7rn/wq6PzYfzwk0bx7yaCxVh05WR2h1bbnh0Vy5vxImOKIxNQm03H4etBQy0oGNZlE9q+eG
JqywLBR4wgUY883DK8CADYo5n66yOu8r0ScI4Xv5AjKYspfUZ14hQCLy/5FsM8HmwVhESC4ThakQ
jqHi0DPWgVFSvdmIePTlO1yG17P6o1tRvUv7a7HNG+czC2YW89eURrujgZWUDMBgpVElfg1VX4AR
W2TwaHHIHKlQCmH0IV5+6/v5NHBWEQSJP0YpdPgELky6nL22MYfCTA4lF+mrk+o5uQZfcFr7Oe/4
TfYdsPhfMXonWbxrG4tvGoNK3kMQ61/6Gti3CCShOXhyxtTJuiziYpw0n33V7l/U9F/PbXPt40Qa
BC7vtquJ5zmXudON8TZag6ZQV21hOZhbBWwZbcF2EOCk/BmQy2UwAbPsddtZXvkViBdfenf8e1P9
Sn9bH3HX9Dz5E7y0RE6qJm6aWFhFXmgt4SWyEj77gshu+xoPHJgZZu4UZF2xSbP8XwpbjSZouCTa
Hsj4ksgPHV4MGNKQBZE8wkFBwhCiwSzUDCqP+WeWzyMlPxq2EZb5SArElXPthtnQ9xFkxfXuxKj0
5VnUmQ6k0FeaUlnfFTr7OIvamxIozkq06exneASElI/gppDQPBTjNUOCP0nu23VQzAnI/of+coA6
C3yjdhaCN9eNdJt9IQ5TlzLp8yrFGXAWh7/9mdhouAgtyW3flSZX13lNG2eBIgnEtv/yhFv9zm7F
uEOpECb2doAtoRfPfWA7SSTDavto+NkdzMqcQm7D99yq3lIxb4f7NMkWONBBZ7gdlckEb4c2YBRL
lU5WS1a1NZ5fF9zlHOPkyB6YpTE3lnRnbZnSiH8f3vN3gOUafLYM7FzhC0yQSBhRXAj8igC8b7X/
BrzuRWHiAILHS9RhQyjylaSPbDc2ZUMmW0faXGqN3FKYq9JNcmnviaKAQFHepD4svApQRWfl0vZM
mvn0n5j2NxdEmhAlAXrpcanNHz9TKNFpQy1reEhVT91P1XHmUhtqASaH8Mjh7bog1WhHw9E/T1mn
DGJ9lE33KVyCqAwz5xNkP7ZH8elB9mFjygojQ+flThV6CxhY7PWg1ahpsvas4dJCRmQvD5ioxdNT
64VXX7sC1MO2ZDwxGheI1RrRJfW8XjWD6RQq8OFTQtRvQB4f9xWYXNH3cHUhbIrb0dwgIvidsbdK
drjjN9StMRvnmNabDLLrwWJnXd0fRqyfeSgMw/BF1mUsyDYQHOQpdNMzoUNPrs7YqH6qHFNUQFwj
wO4c4nubfPxW8e08A2PbGj7OuKQzKoRuprvU8McxLVBxMxqC1En4zjwrxwEOTk3cgsozDGTV3P4m
2++QR6lqai06XzUtkS57dRlbasyeJtAcELOZNZujaoWSfc3bBaOX5/U/dCdXbG9nUwuXIEl3EA5C
i03y5DgA3VNWudsaHqtNqb2JOqUKCTJenBUpZkmyY8bPIAVluosnDXQNg0ROIkugZB+C8zk0eLRt
v8CQ1LNIGKkijdke4TcDs8qL5P7y0Q9zF+dS7p89qwGxmwdftui/SLxOzgImcukxSDUVRdPQzyXG
zegBIGnuTMT10Q1qI6wr57vm7ecmIEw/zO01h/UsPP1hsd1/A43UT6kaCkQkH7gxdAGrSvJBIr8Z
DKvtoEkZvk9xT0VsmYkxRNef9e7Ap2XjyX8GEzekCtjkR8Rf6iDBOMc/6EkO+zOr7D145gUxkM8L
EFHLVTTGcWLAqpocqjwGOc9cz8mqwlecStqOXEGprkxG0LzexqMEHdJGnmtxFceKv+YGnQ+Lfmat
+ibttw6ylFptvk+XWiFXwqce3JudMIxpKhzcrp6MgH3LPAQAA8NO765b4J+655umlK22Bu2yCSvW
QX88sErkUyjng3TjHfcRedywkWJYDoxRwhvxX0UNbILWW4Dpn41o3sCGOZ9d8bJV9zcwDNm7RITF
mMQlWguLnnob5Tv9foAK0gd6BVcBmSevkYVz3978JfwlQUHre15wsGmWpKOIDg1wMLo0+lMFdJlG
/0V8S9FhaZXjOa27Yi+0O4KgkHW1aKGuZOa5VpX3pJ5Qp5Wkby78zJo4+Dyt4bGUX9MBKMykbhNu
3xBKZFeqmFJGbn8tVBJJTNgaW1IMFbXpmSgWfKN0r+6EnoKFhOwqKwIjdu3KJ0PaaqqYtxhiWASn
pwSSi72y6DP+bXBnF09EAVB8+Q0cEhqK0ZEiDYhkDgpH5DO3236QCJEGg87zkZII9yGcvghorZDa
M8yOGiO3H+45ChV7xfPlwSD8AL+WLFZvPoEpVLVhttWyv5Qsepmvbj8l3HfiJHE+Fug0nEPIOfac
SpilA5YfLjPLBGanP3grHvBjukNiH4wtaEOu3GhNaIHbmn1Jz7+BEzlgk85c0hnuTEjtEHnXBxff
5nkN6u7A1PS8NwTCOlheNDbBwevD8wueByhEREa9vvzFyd9wb+Uz9COO2yppTGKVlXiZlOA/j/1R
cCYtf1+6zfVadpNlGKqRknUmqE+NOMvatOlH87n7eKlYKI4Iq7keLS3IJxoes8j7vn45lPJCBtW3
q6y8HikNr/Vvx0+0yZDQfdHFcDzARKP8DSPQY0JAfb+Ns1mhJRzRaGeQhhtwruEMdBKhgAmDfXrB
74OnQhMkU6ia9D3LkDaU5/0sBel1vls2MB3OGbLvdV3atP5/7TQHMUucNjqZqAF7XBj6Q6CzzYDo
aQDvoK12ex4q+idihECBFPCQIizdaB62x6i39Moql6jd88zAitYKzj0jOeH3zHGvp0YkC51AX4iA
Mdt0mBcB9IKgZyiPubH9j5mXXZASKVXzRbZ7QrHH8gTl0w1rI+GPSiIXkotPVxVwVMiez1bX0dv4
53Sy9ozfB0gqUbfGjYR6P7FkTA2Sac5lwSb8ZjM2laxt5ba2Bdyzhe3EszgRbtwF8v749tX5X662
HVS7+0N/5P4kDQYuOwbY/IAs5Nl/PZivTOL77V8ccmaqQAQ+ThSHiJDz/fvCnZJFP2WGT/swE12v
wsVpcLi+nOn7KvMLtDd5USrFRJtKeI4lmn6zI4kZROGEA+VqB4B/EqP34Xw3TCdwY7AG6CFL9qdM
W4dlzEvNfiShJcwMK51jC10D3RjFTf0vV/4tMVXEKebuftjEBD3V2DFInfY7G1QkzrAcEPSpf+kM
5HF9DGd9kgzGUJCatY6GV+iUNraCs+hd2pg6loFwRbiiY3ldgznFyU3WsHO6ndcxzLlhMXfAb81F
zjiPI/NALfw4ezhiO06cn8hLfTb5o6biGWB7Ny8NbAJrx19c9hGzz7kSjLZcxIJmEDQgRww0nMOV
6tXcArmJBi66BrTarZV6on+pBdmgFMwP3oE8gfqLGf9kCSIvwrG3poeYzAotC98htUGfNLJikHDy
Wv9J1KUeptkBU9neSRzc+Ajg62greD0kB1vaOH9l7aImwnQe3cTwyTNUbpSueD+G3sLCaO3RdKqr
OgEOvJYrOY1qwJHM9WnDavm8kRSujKcDsM5NEk3o4YbOY6akcGj8UyaH28topZOTCsv+udmLuq4D
bEc23semOPMziNKOMDMGtEq1fuQW0D8fv1l7e9MQfZt8In3hmnMvnHAqu9oLm+/qCjl+G01oJk2Z
YBbkGTRg2d+zWBcxK1crqbnRBSKcGWf3htOnTfzfiK0sacQW7SQPfjq216mUOmWPA78H596HqOA8
vsb+Le5y6EnDZV6XYLW1EECa9Sfsc5e1Y7yKpxRJwvPwqn6mTPezmjsya35bEu82fORHEhyYUSrV
FPDTegzW/DAq5Wynz4MTc0EkLShXeEw2JAlHm8nK9G7TTKmAEgA4s3Yz4D+Do1KwtuFtetAz+pKp
n6T8xNJQZ/4w09jptSBHiy//WVsxqo3loLhMe9RoiiyGuU2s30Ns2lPnZd1JCzoYnSVj+afQx/+Q
B3CdBpoH3pYwWPQ9ayEvv6PkpNMH/EYxIlMrMBOXDRKDXY1Ate3nIa73c1WbWuwBa/GBQEUJ4gpf
966lBb3kw1kJfJWD7sXrgafEHqiLybgJ13Cl95W2RSzpBS9LK6TwjG0SE8Fg+e3UFudb0Nsk3O6K
zz5MH581l6/0cmlnYmKpK2vVscOS7OnRiQ7TXwxFH3/zVqcQV2wcoQKTi8CdRC4bvQv5kECM8GTV
1GJGqNJVaGTUr9SKISZc6uOzcXyOFFHlHMiW/hI7+ShJUDIPy1kXKgFXynlpk/1YEuEp7tF/Sqb1
cvE+8UixgFTp+pMtCdh72VI5PcUl9R4iaZZfQh5xps8i6ctKv9ICrfoE+wuoHMafx/IRYUqdN1WD
Ih32NhaGzaSwZ3yk1LRGsvUHrXZdNATdPONTZSkWqkFX6rl1A6b6tSglyoh973c58WWmFiGF89bJ
xVIWN8m7GR/8t3c5Mw6CL9f3HwaDGWVlYVymYylcD5MgRF0VgqlOnjVUqvsNGjmCTpWQPF21pC2W
KoNcv2qhX0P7vXriu0A6F1IYLXZqvaS6ufLNG2Iro+sSJ/rHTojySDdOLxh4krTOPSxLXygpPqHf
C5iN3sHgNue+igpnM9YfnPRcco0O9rAp1L+mVeOwUdB7oPQgiVcJUKrBGTQ9gQG88SkrwM4reAvK
F55C+H4lBtF8r61ASE4zDw2cJyx01dLeR/7PMji1ctNgA9TXtVdTB0LgTTqa7MsAfqeuNLb9rpXf
LUTu4nAseJF7E5uIB2aGRnojV4pbQdRuNMk2cbnTp0xgjSiyQ6FJVniB79t0/JpR5Iwo0xwxd/SJ
IIuu1i37uSy29DQBWXzYR1nhGdN4a9SqRz3GePemCEXxwUUFE9PH39+BGw+7yRiLlzH9h/gRvldF
HFpAXOwmSwtmyV3BMb2f+KqhaQptVzevT58Hj9DclbEGlkjUu5WL7hhVOCEKT8TDFP1J2ZgAVqjX
KJn+YwQUCn7D6344wbC5+HtApJbUMxUkB0s5sqeQOPQTlDPWFFua7kA44mSn13upFqjP6Z65bY3H
e/KSkrjN9w2mWq9RAtMTCoLbiszmBfjDmb34ilVlHa4+bj1m6G7h0vj1Rc/AftWJ988vt1aJAms4
A7btD5EZIQTUIr4Bz4l54rhOVnNRQTrfmJSZxWrwDPygJgPj0il1KjJh53c4vBlLBgyYBvYn+q5w
MOBeJnML9FMkkSUbMFENypdd9uUoRx1J57Ck/YJNUEGclVRT0Z5D5hmtV0LD+DeckXD04IhS8IvM
GbKFxc6QKHRfW8ZumNgyGymE1Ulz7Vdnxo8W8kPZnXyw5dINXUdmA0/Agl3SpecUFBRgW6EIIxwU
bf4syIQ2jlwR7oC93Y6eAYcSbSSJE3fv7UAB8ELmQDtaqZhs8+HfIWFjkNjsnA+ZUX0AsNK7iimD
28V3V/mQV0UpUwJCoe/83yow1+zXsY+du4Mu0wCvP9h6LS2MC/RlfQadguVqlHremhh5ZK9TfQsd
S9x9MV0Z4mJTOPKIpWO25FssyFBwRgQKaLfREqxV1oej5vG7JRXOeXdZUn3yU3JUYaAm1QiLpBm3
kWh8G60/1D76wAotE1DKUM2C4jAAdX6a8936rfRPWyDDBcg0ojZmrcbLuYh/daDNy6gAvoRdl/DA
0x4FIuLJ9M3GN8uywQoLTl/mMWXXaufYhKYNMfg+sZjWu8Z8K/lqjosdYGf0EGNkHh5FVAbWI5L4
fAtyr9HVUUpnqzKIf0PshpeTFxNpKm9s+TARzmsjDbhLkGi5nkqOglsfIPIhOFuPlzxasB5JxZAA
z1Bg43T8NGoE97Xd2QkYB1ox5gKVN6rEkhH9CVn9dCnBaEQs82NQc5XVcnjG/dJm5MKrwiNNupu6
r7TpRDr33xqFf1EzFo9ga2dR8QQl6l5sBQUjzfVG8NBol8t9n95vhQih5Ge+v4YZMp3cU1u24J8/
dNfVyVYkg7J2kO/FEANfjrm3aW1jphLcKqiWaPdEHLzCazkqAHC8WNfsqGkIC5aA0cSdqPDH62cx
a4/1CRoD7eS3zDrt92V4jTv3mzqNQUUuRr2wWJ1KzJs1N0c8M61bFp5b9BDbnP5QjWhdKxTdMDJu
hITPLXmhNU5BGWseuSSHFk/P0WKvzubC0KOMCGp0eEtHimpaW5z3yjIAnfSELJ50MNkE1QDCDhUy
apstgu9T/xrclLMA3Z8xJxUxduQtkUJBSbb/p8MLFwm6ds26r8Z265bsddujIC9bxkQsEq4qVjac
DavFpDz0JRYquGzC4YZbq2tMDrqIGas/BH35Hefc3TZKuKpoK7c937bW1scaq4SeG44PdlmDgd1Z
KUfljucd0Tc81J8MevYSuuzcOeFqI3dJska14R8S//mrswgXOWcPFpmEVSl+ySeTUCrPrqUOoNxE
/FjuymlLq4lqYok2K8D3H96WkuH6hDjVLh4DxKk5InDXkY93tY/IhzdM9hz8K+Qv5ywIngLBdd4n
QuKYDGkwbh2FLFtJTjCSMDN6978/ATCoUNhIE7aSKGk1A7MO9VchH6B7JkCIXF+Pz/9nm990vTmS
KCj3HFFU9o4fLbn1njiCKTyuNFwHaYs51gX1IBRNtzG5mCqCH1mwty4KH6h37ZRH+l+oGI3m/tes
WGeRP0bdrth9UXCfxvdKN66HcmQMJZd29MMxd9xe8f+6zcUmS1yQv8AT4kQL1A3+lLwYN8o4ZWDg
c4gcdaFZcwlfSy/NVSqx+7bdrSmxwELWfpHDyEnouXnNi/8+7gDK4svWwChCbqKLmnow6doAl6VO
3wfb7DtzPyZy/GgeX25QPzweTS9dE8/76ththZyiFs8cXzS4ox/J5UIjl6lAjJxhLvUlVFGNF6P4
EdVKrMoc0A7hgpA5rulEsm+vEaV/UaYJ7ClS2EAkh+gzYFoWo6Le74cH6cTrF7eXpuqOe6kwTn43
UA3hmmUvvaAqMC0nK4h9FhPXkbWCpEnmBicB0mOi6KdrmVTQ7wLaAw1Rqo2nrVhYlk1SKemCH09N
DSW6x1hmJBuVd5nACj3LJj5bMp+C1/vUNiTFr6xnN241N87Wkd2ZyZXPATIo+hsdwOXgGI1+hg47
8ba3+Q9IdTMSDn2ucjJ/7NaLT3qlyfMdofxV3sMNqOZJ57bHebpV9t4AakQrsLS6vodr3oCXEJVv
jLl5V3U+WaRec46DdnigyfkgSWeMQ+cDgxNGBlmWn4jk4XNUIJRLQ0OB6x14c40P/U3PdlCCMvWB
QUvIJv9383PfruPwZxLHcwCfFBTTMLSEx3QdoHDqqiIniWQbCm+oRuQWNcOaUvYm8sNb/pZU+cMF
P62OUuX6kUM2AWwI4fYr6rzlsc5sjSmZXh9nbcqwZEF1wTGdqcHUgetKtWSncVbM97t0KREcAWOL
WFVNrZeuHK3dSmxgCalDKvh8XlZaOhOuHgBlWZvPDpn6LvDSyJnly/aelcDFd1Z6aGGzLH0RGOOy
9nTYbXcZQe4OYssB53LVOxZVCCt1mZ4eWKlcTqlH3W59f4omRn0lFZkAVvcG7WYSen6RipXC00dY
TKwW1awWMlLY9tvJCkbEH1/NZ9V8t5jXMFLbne+h4XJoBVQucX3LWvaLr2k2rxnpbr1qoHuUBEe7
zPaBi82TSRkBYCx5vYk4kwkns/8KArizuqg8DRGrmb5sT2KT2vm6VHpCdDgrcPLh3ryasnmn4OaO
w13KFOb5WlFHZj2zX2sXSFcUVLauGkLfs+2A+7iLGTcvpMF9bbG5FCqiqcik4XEpEakyQpMe1W6w
WttQqk94E0miW6hMiOgVzEN+fwDPcnu3CrI5fFDsXXuFdE20nvtfTD2mfAkjjB2mASDGPKVOP5zX
RAfEgR4BjjeNjR0jb9f2ojbh8p5Qh7aTxXjvg1OiNBAQfjcreGmw2Xt504bFBtYqhJ886GpduCiQ
IZB5zC4/++P+AmeVOHcrSqqAPMO8C/4Ms2zDGmGp9IoxHaZsrWwBxrE8P9odGsxNjt1YSy2fA7PV
2SituzdeVND/AGSCMNYHEapFkKMDyL/UYWAO5CuVEkp5o/xBY4898Nvo2XJzdQ6EpHyI+3pIOUXj
fmkIgyf9fnG1dMQStIAlR4gmJY+mprmbAReOSe1kTrXv3ARsCglUXa39NpY1JYfuISmtun4aAylo
RXyNXnCzTRfY/RmG2Ylqxmx9n7E+MXgS5uGrNS6J3UzZex6n6dMHR62OHS8QulZlBZKBNwDcXNoB
y0dAysWLLWJA7cmEu/S54jMHt/0mIQbfVDmSSApZxQ9ZhgxWF7Kvy/ha+VVCFOYTbUyeRqOH8TAy
BCefEIPby+6i+pyiR8jeguHu9R6HulNkYnO46NdqWeNHtzyDyUbzNDuyV4p9VrFKiuRXkX8Bq37c
rB7NA01T9bXLmhJv7NIp5UwLqK4irJ2wPQt5Y83qkGhxSqmLSBAuRpkAp1dJTgeu+G3tRmSt/Nui
mRLjPjdXK0vOmbNP6VCqiAScuTzWhL+BmhQK2Ekyti4t97P2YymsIUXV9m8q6hGXgBDjHP1NdMPz
EVv9YDId+wSTyCD3nhB+FnTzqNXwwHm4gVRwgXqjbBnvKXVK9reOLOUOAgO7vte2lZ96gDAqMTFS
8B/Et2gp3trR7VBXDYOhQcIfsYxnFzkn0EJYYnOW+R64X4RkAMDlhIsDcmIZiBZf6twi793R2Z+j
FHptocMzJcqK2Awxvcp/+nMiD1qj+hhHopIQeB38wkGjb8QrW3YKwiDNn000S5iYJZWleyJyZ7dR
M8hUwVEPf11vqny/la/IQtiWZ5phG4ySVaSGnBNx50yCbXogcFkT0kzitB3Q3WrtTN75vo16kJrJ
oskkbjG8ckPHSjL3AeIWl64CTtYXhKMBPonHY0mImXYo4kaHFPEE7WfZoRQzYZ6nVILMB42gbkH0
p3cyYTO0MFITO/f0j5kgfqRmtJIyPOlpymMAV6vMd85gUGLUKyQt3IGUtdnlznXnMsYrjegYCRl6
L4lptIaW/nLUPM8dFxL34wh/PoO0z1pEc31Y04i32E+DThxgPVJzqptZMFzzTHwNSXbM3GQL+z9h
Hx+5m9yVipro/LbIskFNzD9ocdG+DF9yX1O9Vb9Sf8OHAkWwaz4YUdLB+/8BiuZ1cKiMxlxT2wUQ
rIb5oo3BdipjjTrTk6PAgW4qoyNGsxvsUOl1r5F6Ot8XX1+liJgSzkc3NRZgmbidJtPZbFM2ubOz
7ZU6+kQYR/xZ18aZKjcT2+21n4q35BUz4gnfT4JUaz9fyeuZHxGns3I0jxtfesXAy0z++AZsmiCU
dSdW/EMw7fItBsPJwZHtEXWp/GyXqHEbC1ueu6G9W1HsANIBiZM9WJKzrw1UaO7BbEhQWGRyPJOq
zvmNu+pgTX+kGju2OjrsqPb/1eLeE4ASnCYMmP8RYlO1WtLtSoylmzXVjIZ6NHYSqpbGZxSu9wmj
N7s9skSFmNl5dT6ZbgZWKpjTQQLKQcMI/Py5Gta4eo4rorolnrNkB7oFnmhI0UnWvxa2cd3G5CGU
Qx+EZfVQ7cTOKFR4DyoHmBMWQ2BujaCyEX8JkRKOPDc6cBjReLVwQ7Lrd7z90QQ0qzvyHYtU2CZ7
X1rrTn7zalN+xXVbPcWBPUZzuRoJ1AFMNK/+BHEHjMnr0lV5vubKVl665QX4mv1cw+dQRTJTNjgO
lqnksGaWawZu7pzADFd8luk6shARCO4K7DAAnN5ro+NnAq4oXjoG3HO/NFl2wxiIUJdio+y948rS
wJ9aK/qImApG7ZCP/uwhxBbc+OIQRsU2m10nwYAg6MJa7rMrNq5q4MPfi7ghpXhLcgCyDYnQsmIg
j3tUIlgFanOlY4eHADM7aYbVUcg6lkjnk/E2QyIFUv3ZddpSL8m2pg4encWS1uT7zL6XMF33Qv3M
t1LPF+8yXPjRTR9sYW+RSxk/TjIh1on+athDGCU9eInTRBwFtzPFQtYW40Dfg7qzgfpOkimPj2wC
93zufRjBxVj1rpHp5ycjVHOm8RXK9nO7UjRagiwdQfV0I3P51Db+vyCANAYfc5YR7b/Di3kvBfaw
jv/PkyZOD5dlTlWrtOaD7wHZIAvTt2EFR8ExuyA7Qa0MtpY3JM/rgErwDhhj3lIDabbVRM7sAr1Y
+08y2oOQW62MBEdEXQpT8F36XOPXNnglkPadWDLR+scmM01jajIAoj+VaF8SS/KNsG9zJBxveIK7
fq/9iHTVg32a8e3Ryd1m/oIW1T6eHIhUAn2WG/A82cgRzkYsmyj1bZcXtlrLqu98Jx7sjrfbPsTz
1cwRyE4QJ8oh2C8gciAHGUaWmH6oVhbbz/YETVxf95OhXyf1q5CtgNkLAW7WbQmRCkMAEkacgPr2
a4a4s1h1J+DwWhi2pZmUvuH/qb84jrrvih8CMB9+O2odJZ77bTybosSSVZPKxy/rcDdh2aVcUXCZ
aoBLpcXqOOP6cRcJVznJ2okFrEr3zVutrW2Y9Ra9isTWjUHU2gOj1YTVS/Psj1yo2Oi+5udbAkEy
ebqNP45OZxqZZEOA7eN8B2us/7rMZiGHDDRZxEzLZOeP47nbjJ/jZmsNg4D1pxD8PBrrLNpHWZPQ
BDO0Lns8TKmN6/VjQF7KJrXzDxfAXIIasTA3Q+AMUaCZPj/zOAMbwv0NW2/9X3nDpWwQ7t/MY7Rr
rGTG8A7eLD2bBjhMNm9TVgb+RpGBt05yC96kSbp7/A47RkmaF0VHVphnVuViilV5Ye/8nFLKac8q
Vee11mgsfzBpyxwGEXNeR7e++kMmgQRcRT6V1jmkSQekpgXZ2PqkDnOCJGM/IoRkxH08KxJfbzu1
Slw3ULYLio5S19j9tnQnruM2D/Nf6iV0O/0EAcPgjrpeVICGrApbsxZNqlH7V2Xk9ZXjvw1UwBL/
XeJRU0CAvMIS5R5OY21Kr6QV6cjnYuyfXEFXmv1XYBKCeO+/m21qq5xbVW7/Cski/vFn+TETmI9B
uN5Ma/9FV9ME3Nki8+dUDwwvONg9kugkZBrFSPgpF+JIGArzHD/I4AKWYyOfjneJorc8HSgcqgb3
06tYrHboFgjOBO7q5luMkz1jDbXBnUOnZS08fhGWsoin7Fosenb4+E+GMNndLecDplF0E1CJWtsx
MLZXm1Xf8U9LuLc6Ule448FaYcxhfU4h5l/XVn6y3td8AltcX2Be3GZ1t4I4mVuu+93ulGMOfOeT
QdsN6xxiGHZGetjH4VI99j/x4MFNrdMCZUdq6Re72/IIHTcyBeLzKhIcAM6Ido7iI3eRQerOE1i4
1lyoHA9webDMnuNOmrKXTmEiXz+IqKTXXi409CIAJrwJK41DBxDoIXRp5HbAvkMko9o925UIM3Bo
QSUNHpkPOFGoRhvfWZCBQxMtPnKqZQvZjqS0p7QWJe/iVrIK3DqC4ylsXWr48uJQjU+Pdy3EeeDb
2lBiNL+QOcvl01Dw9a6MWDHuZxgFgaDJqVffonb0TELeG6B2fbEoOG/HxJqYerbxJh+gBVOqKV27
7Fqk7c/M5y7EX3jBw1tn2pJIA8IzLmk6eECeMUKJva8NrEpqvl4Ng+dLFecS5CR1PPKdrEHITLtq
gxFYf5GGzr2gjOK1nUy6t8aN2QQESoJbrU7kBhG5IIaPHpcdaS0tytBx6kJeaORU58Yw1KPB+xN0
GyDKC+6NMEywSiNbEo7WO0jUtV9/qrgSR+dtzg70caGsBqPctEF+DY5/nBJNgpR4oX9z8zIXnv28
JnP1Cl3V1UWG25VXnEjinzT4kGySky6taJthgTJZAhthJq0CcnuvEin06S2QGliuqn8sRa+DT27n
+xI20MRpTaZXba+xd27KftlggfeTOFY6iVVBNNzy+YPUZSfNzHLqylBMRn9yPsKExGD9ONiNFueh
gowio3Bgbe46yUshMDGQ9Wu7LNK1Ss/BQOcRfV5qcJ7ZaHRz4SUDF7FX0cT6QnNTPF763NOxn0/M
L67GRRMhc80g5vh5qWpA7ItP/iXCUc4e1LfNLhqkcdp9ke049yw4qO15sDJX9ZRJiJmKbEuZ1saa
xCHn8WjkcjSc/NxjOoMw2YRNBD42s8AOziYKIDsqSUsUZJ+7/ZJ35Pm2JUxnumKEpXDiteJuHKj9
OdkLDmI1Fyy4mRMvus7ijf40XiGcG7CyGMdm7QKurWv3KiQNTWpHYpkEhlqMcyXAUb8yhQzhs3+H
rL0GGGLgxzOP43mLaMsvjPyN+WY89K3i4UkfrtDB9XXyt/dcziQlg3lzqlOYbFWLApIWpfvow5gJ
3tTHVlXIBM/Y0IerpJfpErBhd5keN6YtTJ/O4PobCF10JgIzulXblomt5hN+2cOyK8GHL8V39OLZ
dzz9I5YV5pBk/5Nw4qYfe5L7/NaNIeWFZBxL2K6p87REwbFsZ2OhrT1DvEw+v9qslw+mUSs8sR1Y
eRF2aQRIPPkeku6IQUvzx2E1VjEhk24DCGxVjXN1XIDHTR5FiIOzD+Gbl9ZFstXAPluC7hkWgKOj
EGnC4VUfEfZ5yvU71eywS5tT3zKP+JzZphVbhuBOY7KSxtlqcUWfJ833b4JpibvDKwT83mvRl8Do
iCLehSD0LRENma8jVaCAWS0RIeqoDzj/CYeJs0oMg9X1zpc/nDeshTpx9RQV2ck2dlm525JXtNrR
lWAouEv5V11N6dQ4TPe8nKcZq9nwCS+m6asWc8FVdSr/PkqsVL/PtZPuOAyzTK/LXsOhdMb+XPPq
V6pl20/a7w+OD9SDhetVOGlS+ldTVWvC/PmEcF8nNlznIklhiPbp2jTXOPeNI1pF3s0pTsbirBHR
9s/lnBqHg2j0/TybiqOlAOJeR+KHVPJQ1Y64B2tn5rTN1uCbYLqTuNnhUdD50o/MTZWpN331AJ2y
Bs3bhBsbUWOw8pshhEN+4U8+qJkMviWTeQKa5VggjslIaztN6EkwQbAe8mx5asXNnCuohZMy0YCg
IJEXKSAw8dGMdBy7Uij/wXPsIpZmWDgEa0ny6Y3aPa6hA1HQQGDdMMDNYY9qXPqnW76iBRtg8gy2
cl9/aePoqq4pj3Qq9G2GPF0dSAvilVd2jcf97mXTAt8231u9ZVJNTR5WOmNLYYEaOd/L7NuQTpJC
KDIz9MrcdiszJDJIbXg6TW3dCoGDBTSM0o6ZBxxL8d8YNp4mXGQD/jCNC45aV5Q3NpWFMWsuPdBX
tSJC82NPaxU8Dr3fkEHGSAGCVO2T0BeKy6cv3xkJko1rJ2YKPtrMRsSqmYOOrS+/yLHhKKIxEuCC
lYCX5mUUl25IQpOU9dEC0ltpBwfvy2Yen6OoRmhOF+1Wv7CS1xX0j0lCEnBF+K2v9khR9kNo5oex
0sx6MVh7CxbPQ7X1VNw+FoE5BGv0LAi3aDMlDCDxmfyElPBGyMqv4VZxOBQRU/ZAsU6708FFcahj
Ko6cSbeVOT141Zfz06IzsWX0g9BGuywmPJQt0Id2h8N6i8JSdG+u7c7WRRAVO8uU1PXzkBiucleN
sbnDlcCaMpJtLpz1+0k4qm+YYJ9P3WmQETiMZy7hAwz/tV4XgWAgbBpaNVcLIZFnUcn1j70NppIB
8uC0mK2HvXPMtwjCpesAvzpE8ujntF8spDEZkAqWUc11xxqCNPhi7Q8yyYra+9SpMO+fyw0LY2Tl
kBNPoqx+ifidQww8PcSj7Eg+3MpDegx1tDQiYSRLuWtUHKV6v9fCWM0lhuhq3/i7MXi7L3Le+toA
HBIYNO/+wPMOH4guOHo+VillbRJ71y517zOBPEk2UMmHkntfksugmZkp9/rToJlElen7GDmmZSP4
zy4VVAPlre2skuzws+W7KZ1IKEMu2n/za4uj3dcg4Gq6nCAFtJDJRzxsnjlGqaTtjfBHX0E/+Jeb
NaSKVNTBTA2rGTvF14zkvRV+lSDQB2eYII3szI/iFCfFTSVeK18VtRQlHh7McBIdx9/MMChfYKby
aj6fFFyuvrjdUxAETmqG66zfTqZqvK76yn6h0HD4x8JfkAIKTMGW8WItB/gvaVw6BmCiFFr1iU4/
UNHHolha+3rKvi7KeebNE4z0SSVKKK5WnJPWgPegKgaDqUKc8EF+9/ltLL9b6rTncJbufAvkt3G8
zywMGWG2dVJYSwecSJ/+HQ8tC5R44kdvVVqwBSGNt6F+xYmuvt0xarQFoeAG7xlA3WqiiQEkxfDI
LbDElSnhopPQ3yiEEtxUxp1YFW7jrdQUmc1WVbJk9bjMlmd7ErwUA21s6FfILND+iJGAZ0/JAdup
+nq7jq/gxe+XNray7JT1WiT7ITj333zvPVZIgMLqpzAoChFDiPVayUAqP4ySD908RG8HPxVWg8Gr
IaoNxa8Xt6vueAyB6nWhmZvwV8iPkB4PY0IwSYzZl7Ug6G+Ga1hWDFCLdauu/ugsKx4gAyafAGbb
E27HlOgyDitNIwDCL4GWK/PmE0BeUsJl7DXv21D5QwTvntQesVPJ2r+QNlxZ/jnFemBZ8f1rFKjQ
SHmDDjyGICy1o7T48VbCpcQcXi5DflnYZwCmfaen6abLtHdLIj2swfi1/QxVrlx9GQ/x8F9m59jr
NDxdLXkWIPPbHOGD40tZMlPlI+V7TwdAVaxblZjN5FrvGY1DE+Sf7juKDd5RSOvZ4HSU08hGdXIF
sHQn810iOC7g1Yz10Ue5rZntVtrH/Qi8+0v+VT5kJKDH7glBpa63z8Bj5OMV6K8VuK34L6n/zJk2
2aGbZCLou02IvJ5iiOizuA3DxnwW9lIXkAPWNT9Oz8u1wDmV4bDjc2/QfVkwYSWxASvkL4OPLVbD
sDFQF04bOUf+sM+xzQ+oE4XDolch9mHlr3BRjkA7HSsf547LQj+Psgnc/XO1yo2mP8j28DJ/EB+2
hfONzJYQYkJALt5ocRmFVGNX5eMhLTW9NcgKIFWq1K+47DmPM9WWYUtGIJvpDrr/XORgOcK+vnG4
zG/D2m6eZgfn8cUrkXzK3nxqa9Hbp30xAGhhqPCXW5kFf0TL6vgYUBOwhCyvn4wo2aF8aQwRNXpJ
rQKT/F+djK5FdVEPOai0Ra+/bScImQUpdwbHl8fgzSCnVUKQqjg9OtvwRuqPdQHt176P5Roxfd+4
CM1Vk51VVZMrj0tkhxu/lsgh6+5e3RdS4NcB6itftay6HJSt7lymhFM1Zjda2zwN4NR8jJEf/F7z
okWliksvLNwp96Zq2n7ff0Ma57ZpIh7le1rEJbEpkw1bXzUA20KMHYwrJJfUS2o/4sCeSigfmp2f
E6CNLqsy2I0un1Fg3mAKEdRAtrcA+ij+X8obk0si7YL1/QGHIheQq4Z8Zy1qsl10EXHWut8LV/Hh
1gYsPLtyiPNCdEJvrKMSzBiH6RrUStnNjvrTYIV3AFymawkOZJDPfswfnoz3TenL426ReP/9z/Ps
wvuVpisjlEvyDIzHBXrFrMuZbayBh8ON6EGb/18TyEeZdhDCWUg3Wk/zyS9sjUFo0EKuRPW2ni38
PtXzU5qrZk3sFqgDUIHX+gaTkj6vvxAzVjMrvO4TjsDWcZWr7h193xYuOxts3/yenkk/VIjb9xM8
ShCxT10B7TqsiQbxmfElFhQODTlXkB273S0eTDkKC71COs4dvijwF7fpKkaSkSuD8R/4uT1sRFYb
FRhSVp5fwbZnRiHmn+M1XTEeVXW7DVlMTKmHg+HxE7tnzLLdeAGmp7/+i4Lb5902C0KI3V/z8l4e
YaQ6EQW9tOKiGw3L6rKK3PWdqjr8LTbMhLsZGxasEL1f7ikpgA948NiQICQVEe00GEBWZ3Cz116j
OzMuLpp4cvZIfjSAu6noiCi7KCdiw2zknT5WmeYRsVZnO5kebXbJxbQ4nzWdzwcvA1VDqEqubM8g
PLa0iw4D8oHPsLVIYCL6AvirxgtnAprkChjsIVFnQuXLVuqrQZANdB2wI9mJNDUzOqnMt3dS2maC
2a1z0Ax/kZ+E3wwjfRXq1hoSxQ5AzjDD5KycwBhpyzxXP6kxvOQKlaMHRc79+odOZ633tAwahEYR
xFd4VBJDQeMgJKNYjVCozt9pxf2IQPGNOtsBJK6oipQyr0vLIQN6Nl8n1wY/QX4syrXOPBd+RNBy
KFF1xuND6O6QPHNmGClR5q3H+wS51LfHl/K3xqFBl7A316rXHCPMYluhmDR3whPSChZYWJFi/Uw4
6gEHc3Ajw7m2gzeOzYGGyKnboTGucQyxPrz9KyI6oeO4KPmnqh352mugTbDpf1Owwy8LcM13fnxn
asPAWQ9B6v22I6OT7arE8oIvqBuZDvjH+IF/wbGHT+NaItQPnDYSllAK5SwvKGPBoITrJBLoGm7c
XypPZ74Lj5bxfpidPUftQBJKNHMzlXeZpJCBVrC2glUTFBd3IjvfBYyhsKxuJ/UgHG8c6fDi0Yhg
pNv1xFRSneF4Ewo8bYylu2Gt2+RvtIYl2f7PPt11yMNnYlv0sWqXjrr11p3sxo6FW+hCH6PYqHxU
jEEo6/bdaf/txlutlrfbbYAC0d1FN17yVgmYARSvTKGxMIhxujhM82jo+0Xtrn0sXDMglJfjaxJa
S9tfsRVgDgz9rPTmBoPkJxsVNIO4Dk3+MuWV5QF0+k4FqeG/Utkx609C+e/HLXfKTwPTdShQPl5a
F5eJRfO7bhn9r0KvqfcDQupPN1xDUiwyFiDSbbRHn7LpIBqFOqbeUx+VthXoUnP+B04+hUwho3Ib
Q9JNucFuirkYBQYRpbT+d3DU7oEnIm9JEuHzw0Yxl8GZPOxPsoz7suctGvBGMWBxFGHsJmCNzL2X
NfHVZUkMkCcfnnJN6UOTR1DjDJiAJQlU2PnnHLSR7OP5p/BPTMjK3xSKLXMKCtLR5aOVqOvIWD6C
/7/YY99YuaCytdPHF6QdM3lBHvu/jNn2C4whUDVr5rQxyGybVQWldwhi2+7/1MRM5GhoRvHHHcAp
t7CP5j+k0qAgTN6n2KVIlIHqi2V+YtA9T94RILh5zScr3sjcWbet3/p5Yeq+GpKwp+5Xyct18iEw
Rh3SQtbsi9v+AlkfBbAxM/EmFx80ab8k5ycv1Puz1PA2Ykr4hNrkqlJ+wGT4GI0iHyYm5VxGDwiG
cdbuY1X2l+BYc8HrTQxJVBlC1sFt2r6/5yUaqjOXd26dK/Xu9mGmMifjgSmYYPYpbSuBlJgTiVyr
1rBxU6KUKuKKjc/wPhP9EiYXuPFJdPQ9I1AQODKlnIdmhSpQ5Qc8zr5GyhIqgRA5JJYjOmjmoslU
lwTd+aopQDgar1Q5lWHnic8dn8ZX1q3yAxtdqztSxGyRrL2E5hNGiCjhZ7wBr6ji+qyKSwc8WRnD
6sYT5Io2DumOw6ckFCaAfpZFwLeM6Yy1F1H4SgsGQbTUTz4U74oIOfA4sw9UIvq9x+6xyyl3e/ea
A1yIGTW0NdxYAwfosDS7uMx+3gSgC0l8eHzrbNcyWKiapQmcA1DnoYXrYxBpJD47AezxRkHD7X5v
nGy1BlASxTRLAZRnJ5feEtPpyWRtPVeeI11kcMqRYWOQkJAon8eLvdRRNrcU9V2FcNNmvldX89BR
oYN49JrockUiIVWGsaXXcHE8nmVr/Lb/yI/lnAaiPoLyul4sLSafxz4Rb8Yizzd8uQ+mOgp6MOu7
2Q7Rv8nLnh8iA1evqHAB+vRpN49ZEGjNnuGA0YK/COAa5MBHnr8zE8escEf8FP/UI8+xueZrcQxH
0IxOaakzdPQpJIvVz1jAFjmYn1F/rnTA0vgN8vMsMTYlF85KeHy8lGoS+hmBPQVTLRw4OJ7Q+GwI
UEBlAM/rPWSjE8F5K9RugNFwoVyUKn0vbiOvnczUN1JnbiXfH24rSlt8glWi1oGH4k46XZQl1pYc
ZoLXVxIJNzx5zsGvy9mZPvtDnYHx0nVAFXv3Qq3F8mTB7yIjgImSqwsDJhmbBzPFsyt4DKVUxdL6
Mfyuu+6gspUP3Jyv9suJ1Fxvn28mkZl/l6J3nWDhchpL67QJ0LVLOElVkNHeDR1AAQZNZUna7hfu
ILw8vVhJPNFFwcyznex72ucl5rKGbqeTQLtAczD5INfWCkVfeZgC8mH9ZOsaj4FzFXqljaTnaFfv
qcFPunS0s/8/NdmqDYKYcs0OcpULl671wESVurLdxvHXIxEnBMvOv7AkTryUEHwF/iMMobvXXaUZ
IddgDqg5ufIgmFXDQgslsa+vJuzdPBTrDm8R8NR051oWl4aahHKBq3/8TuyQRfoIv8RfK8SSNijU
OxgFdDybcMCfTBaBhfAWiVBMwHm1t7JbecB65WCxNeyPlOoZEt00UApNY/tN/Kf4lo+CrOr5FNk7
jgR/WLjFuVAd6XFUzIpRbjyHST5boh4AFw0y/+d2RCldXduL4bEcfKco8jvQvlxwYYFfSfUnOdTY
JTBCpXGAiFSvBMuWVgwPSF4cqLJn3kX36zkjz1aGHSxxdl32CHxdN94XZMq8J8+11K67uQXgsQ5j
cvSmPuz2smLwX9EyitAmoQsprteQEqKZ2IylNK6SihCEmm5RQJs15ZgQ9ZcepyjDdMvX08S0Lgyx
Sv0gV8Cio/L5YYICFFfaQkS89b7Cnf7YhnTbU43y4GK2vgPBjx4MvvWPhkBjn0JsuqnOyg6oCaU8
hIAQv1JRGXT+SvEXM2KfaoLRRx+8gbr07pt22iZmZ52QKO0KM9lPtPcvVWJ4j+CMbK4z6xXBzlQ4
uh+JRlbJlW4Ixuviqfncvs//5JeHLV4NAavtqFzl3XM8MtqJc00tfmDLRFG37kxUUF+BsuBQogya
QxnaG3c3DeDMM7swmqgx/ijqTF0A8MXxlVDGGkI5GESiBPIer2GlKtCDjgnjVSqoUtYCqqazZv9p
i5UWViKcHjPOTll/pc5dV0myP6TimhXVaUAvxnNaYytNXOwaoZbnDGI+SWGzcPXCavDBSFeaYhj4
UbqleZcnhK9FjXwPk0FKcNrWUZh8Wtcv4CREmoQ2yrX32/XHXJQS1wRfeT++1mPETDXlR9QH6A9V
yjwS7RVscN5L1Kmy7yN0Y1cScikPL3Kxl1F2rjOlUf8AUePdeEJM2QX3+013Zm39zngcQZMK3ND5
MPSEWp56YIqF9L5OFTZ/iMXMPkuOwyzoaR1loL1jcnL4pE5adCp9bQRBOgG46gyQ7A358gKNAzZO
FG5dcf8fmpLeIbVaTqwz5AnAEbeHBSogihs22749hOGbaXVJCwXSWWVNCnjD+ZtveYkl2uCM4VvY
aeGTsg2rU7BsJ1we5h6p0GIinpBheSzfAoKrPUpue1BnuQph9JW15uIljqomnC6yNqlfnxYJfEwt
aphVD28K1GaxokmRA3skfCx/VgEJ3jKTsPGDm4AlDQNKFPhnUyEd1tFFrSp9O4WwLnzA/4fRAQOX
vvZs8Zzq3suMJ0cKyvo99k1WCiaWpzgceN5GkGM8HnqSgDlTlmI7NPNpzkEqXQwOzc7pW8L9VTTE
RiXGp3w1kGygEghW/9rCW/ZVYdDoes8UXC/3gQlUGgNG14m9igeLIP4K3GMKbM8mgVGxQMaQ4eFj
7dX92oTkJOJ8F3Vw0ZTYSkLp407imNyfyeet1wD1sx0Hpxw2X2j77//9flHGGYRjjtbCunrT5ME5
CDvXzCBwfofmSEhQoFczhxk6wU7MGEO3RAiuMMAeG6AHuC9gFjzniP52vUT1gCkxPBR/kYY0eNbL
qsK+IphUvpZAcG4Dsj1cyuk8lz00+dIaflpicjyFp/XupIqk5qkD81Wdk7723ywSKfW2uwaahE5o
77Q6xHUEgOLjm9qHTwLftCEpp7cKXDPWyUuvVxvxGEb9CpuuIXo5qRTeb5Fj0argmKpNY7sjj+YL
r745NTRjofpaLtqG9Jtnbmrg9LcADdyIHLFt3FzsTHkcpNAIm30F4j56H+DVlp/Ncl0blPXcWPtM
HXz3oGpVE+j2E9W03Fhnpp/nL840UBfRBpduZtBUvNJ01UWfyOr3F+MtPaMHJCw1xHQ4HbwpbJJr
vPGUwBgL+h+ATeiXcI/0LpDPGmnRxsQ+8k7VzXW9lvP/so1eDwx1sUK9sVVR1/YP3CZaE78IDlxM
5oiCvqTcNN6v5WEUVhlA/tslfPb42VOADeCSOTDxxlWXr7qLqpmXvtz9u5QYetBcuyOyNMAGWzAP
aJErQ9i8SLfDMXl38f6mLw6ydUaSMR44lPZrBHIH2N5s0OiZLgck8edVJvafWyhpKgT2Ksx3sw4t
whHYX5emC9g3fJ98XaTX3HZi2UV6QXcPhAfkPzXC6LktQ5y3boK9Esa0I6SUanj3pyvD6Ygnn8rG
jB/VTh7zbpPJUBLjCYlwWspSPoKJS22DsOtlFEwfL7hut1FlW8fZjaGIn4bu3dzaHGeRYWBpPGa3
AqawykSOHWn5x0y0sgYP+lqeCyuFgHyxJOqHUI2hunRwjay/wouZDZ7SSB1ibpWt1zBRqGa8Y8zI
t/wHS1lrF3cxkEpJCx+yG+k5UUcEnm33Meyg1HH+hMu/Onbdmy+pCjDUq+YxK6oDNaUEHj7F0yC/
XWsJFjzzhz4kXEjkOazqe1PCjF2IrqF4ZN83bCAVwjqcwRdvFQifU+gPBK4NpPl3RnjtdUAyVVK6
8SWN/szlH/05O9vOmD2+hR6ZRERZuwgd+oWG/EHov9sufD2nQ7ENohN5nF8SoXaQbm9CEOwHMiK4
1TanDFbocVwOnWNrbrlR6o+QhYGyYcG5sXcrI4qebFilQL7o6+XBzXxpab5inLS/1Q6SdXFheCTB
B1gUD647fAGVFfwlejWRTDSQCMXcprxvTCXYcT8xlwSUNPn7qTOhuXRivjGlAxmBqo5iUu+sEfFa
avOE5udSuWuS7kQKgx5A2aFPyjhVdGEeFmLBH61+OqdBRDrrtIJHbxLjRvLRP5uizXNWV6cv4SdN
YnmnKFTIakmKTTEY5W8BWL+jNjISdNQn7SIM1xMcgiJ4+zoJWOTtd8qCY8ZoQa8iI5OJM2Z8zIuQ
TWxGA1WCWnysYAZyNdgvylRrSJfqL2hTBtIr31Hj2KwCt+HT/nDE0fxD1AYh+0nxLbChhurPKEBI
M/n3fzwbg5+Ur+UQEv9NUyRCJcRl9d9cQSLy+yIOwTo7I0LGhnXFoB8qYGNHR35nqcKOjBqLLPTr
lKW8SjPtX3/OIX26+GSDYtRMmkHQiWuKnqam+HIGFfaObbhWrNsuFreTRp/AKlUlI3g2pF4jqF6r
EoQoF7owIm/bbbrJ9/V3ZawtlWfMzkRiQlsIKCJk1AL0kyQhWFu9xDYvL6zmSZPBNLolPHPsUsbG
Crba6pXWxVmq+e6LzHWzUWtAfOep1YTM3XHbHUYZLFpIEWohtFUjrf2eLQPbvu31k0FKYJlqMr24
f/F03dBhlUrSBtaJelWWXIZHn0jwPhrfsKEXBbUI3RI7xEEkC8YiHeAxFVSTCnyw7u9+yW5/R1Xu
7YnhNpRMyDe1HOVg8Dpb9tcowJMlvSa9slxQW4gmFZhhH4sEAt205R2xiejywgFucJGpilmAxRU8
7wycBfBwJf3Qnf2EkmsOSDx3rqX0RPcVPOvSjidOzd80cV3CoOoDDAdvKrNqDkXV3yLV9h1M4RO1
03EF4JYPCLtjiY5omB+MEfvzsBf4h2LWWGhpCKvqSygiq3U+un+dEnXXVqh/QzTb4D7RVpT9G5d/
yueVJT3GG5WKdI9RjgwUCagWEaiXdjjNM1+h5jAZ0mtVfh+FoRky9IQxLqxKNFazUXil2wwdSsBg
BEnmoZC7TGFKr90629KpSt5uJy6hNmsGQoYy7Ty09tfMQyH2CXlMJ2QcNCCRTvWcxEgBIARs1+3m
rx9NXefvpR9phCoNxzTevLa+SWE+eilt1cpHRyCiasbySnDOHpG6KU1VQZQhch/NZQ7VaXui31tf
6vLDf6IhCIhU72RSGYrMMFNbOYt+62Y+Pf5y8kt68G3wcwkFvFinQn5SC8rFuoBRemj7JV/cgWnx
kNGOCB4R5MPQp+xA57nQCgotmZJ8Z4Ewz4VL9PSFrJ9GW0C3YoV51e76kD9rfhwKl6vLHJD+RKTh
0xSere6PIQfJe6b+i7rBno4/OIzYfI2FCpXZC6kLHRXlOXlJBpzcTL0U2M3hMRQxzwdgFlCGWVCf
4l+Zk1iDnizvB5NrlV7nmvkoWyw5t04z81fcPtG0gb1dRRjU6bIXeEC+bMXSpRwWBThYnVpJ7UyN
i4vkY3ggsTDWT4DUULWSwzyp9/5UfiwmdkmiAZLbYMnpecW8q3q4DTOBoWxycK4xFZ1EAAMmK/Jp
lHS9VXO/kBr5ntP8OgZdIYi4sOzPtwV7FPOhVF8mg7qeNzTC8POEU/0WpAoua8Yfc7lEDYVR6PsR
XtI/E9KK4OAMbHtVVT7GhaPqrcntXFhRZFRdDsoAXjSMzD4JnXAEfgQUnnexNCrC/GHZCtttLcrC
bJzN8zyYgjtuQGiCiH6Ml3rc9WijQfQC+rUl30r29U7OEGYDTmeKqLF8p+0Lb5L3R6YQaH4+0iJF
aiSAnOBez58lcLg7p9OIiTg9V9HnCeEc2QwEFliPix+IBLRTMnNGDnixi9J/0Cpfo0Uh15eHWC5Z
8Uu24H1yp3VcrjT0Z84Lcbecejv6kzEdKplWdfUFLrPKZUX8QdaKoJC+dE5IwHqpx0cwk23Skj+L
Z4DNYEoMWRAJBLGp/lsEXADTMAGWtNc+fqHQi9XygV/rtqCa9+TsoEpq5aDfUU6cbKjhwCoOmgN9
vRjR3/wfaEcuzRUmC3//Ij7fYeE1Wg9A8uhlk40RJWrWAIyzk/01T4fDrLF3666YIx347Lmgc/OD
ssc4lciCrSg+VUyH2xwEoSmdmvj+Xpqa9q2rNxdb2pS9rfB02gRv69xGZeWstaBdd0sxL0uk9lv1
84NG82nO5kTuKBF67uZigCptWRfvy9l1zqh/yzkLhBIkSXtBl0oTU3jxX8Q8TmFmQCuHUs+3ua86
oZOtbeYJq1mcj+F/73TYZf17yiSjvRMrByGdajqD0wYtyp3Ikqn9UO3Zd/LwsH6XdBS6J8f4hj/d
JzEogZv3alRu3SPh6rKpMZahxiwDpxgrSFcQ0bD2Enmj950cXf3kNWKiyT69fSAxiAe1yScy88uK
M44OFH2DT9n7d3NxBTDcK3U92DG/WWcJv5Z+EqJvfJd3PNWxq+GJLnentyaxpWUxH58FtMTFmyCC
vJcqfl8J0mBvegF3qJDzgNBi9aeQEU7p48h3pH66mUizkIoz6X9v8uwygwU3d8YciaSmDhS1Qu2u
fkf4t7SYS/oG+IKfAJZsNB0IwmeqdxjcAs/2kHX+SW3AzquwonUX4mMKbR8QyPC+DjBuc+hoa99D
/D1t0QJsqYzjLbJv3gmkcb/puwZUNcPiNT4S4Xn9nPA1oZK/79lYG0LpOgC3I+yEGNL8RSxAabA2
D6uJKNJi89FTssTmZq3QQDproEeM2ROS+F/vHauRLQMGEgH/HzbJY7yHTEelziicjiwNwgw+LdOe
wlZLgY4Y3Nofy1zjaCX2XKGPVTmF+yyYQRWJ81MvaZL5Ro4uc6ubeDpjvPytOWI6mDLwX8lPMU1d
hXN6KkyOQ/HT4lZ7VNKiziX6geCiqAnTcF1I5foVblfVTfPnfjb/p+e/C8LTNvdu3uD38+1Uwh3Z
ve+1rp3+6bc6BL/JVCF+IU2G6tzMobqQmSYN1dbn44GSt1TMCpEKRraw+tMfD/rifMRAsHdHotEJ
88omZry/szNEHxNK9CfsU2iKPpd2PTshNC2EyZn9esFK4PqWw1Jr+GQ5lovlSiaMw640VT23YIRj
3BVptSML3+C58QZAQ7WLCFpBjj0y8iyOSsRt0//TDygYvSVu3iKxR9wPCxdFyGtTc6qvgTbGYJIP
p/fQEJQboa/cRKP13kQXauejC7F5IYKqkEXbYYmKXogeqMANyPhLJOzMc0RmDwh/XwXS3R6Pz62s
3EejYtxFnWylz8PB8vYCSdn+v7u6LCIKIsojfHyd2CbvhMMd+pVyZI5AG+3qYMwykywwx8pC2M3V
rewmwOnTfpqxAnjcCO/izfXtfJ/bx5t4r7309IVa/EO10N94D0yXjmGCNxDeL2ELiIISQC61qfv3
/R47icBEf2Djfpz5kYFA4aVe897O5zGjZmnlQiWxpKPTX0P+F1CatrUXsOOZ0eSu33J9C50xYk5g
IAI1y4yloAGyxaCXt4MgR7Oy3dsiYMjkIm3mo0Pzh11v8iiphtUv7R8dFQAMoHea0lR8Qh3Ft5bh
UafgIA9pH6nyWyNTJ/FaRfJ8l7X0cNoYlylaegikxK6IYWCWl0CVFxiXydLztVqlDUK8wKndagm8
/Uc1jbXSI6To5vqUnKE4ftAms/d4AVPn29IgyvAzvx03pliNQ5nSX9ZVxUj18/hBiQSl7fJ+9Y//
oHII0V+aFDJx3eEJnKpOuAS7kw9lNQLt0eGPUzyVq7Q1hAzH50tBTC1rlRtlKaukqJx8d0kUEAuH
jG/wuHzln+psnZZXaAOA17YiY+Pw3e0EZMwssvDaUeHGX7SFk1dNKiqLaTlnpiAp2IGtSLb4M9Sx
bJvLE/jx0F6rojL7OQMaA1LDiAjJLGfwMt78siBSqhGL1Hh9iIOuUul29XCzTbQBLOqYOh4MG/n0
Ma3qdDR2R+rpypl4A0qc/31jJYfmc8rIZdM7x5lMgIbpExXbo4LhZJLL45vL7T4PrxvT0Zzg3VOs
2YXiZNLLZtl+EIGp903XYkUe5pq6Yrp5dRnJ0+IPssqS7+wrrJyoKGILNS+dUm4ERWJWPpl1Q6TC
erJZWUl64R7GgAhwLhoRwacl6HxJO93S2yTkTkc4UPXDD2LUp5/hfmM8yadCp6bQAlq/fm4VI0Al
ifqatMrWXgIgEVbZI99nun3xm5LwFv5JCQ85RBd0TihZVkIxYjZBv//WGcve7pCvTawZTBmvviGA
lJlf43Eadz54Nvaj4/fw04iuzCyNwWmqkKYPCZYocbu6Pu87FHgzORKrfGCV3qyVp6gwe9h2yP+X
3rfgrXNFtRJA9H92ntrl0nf4S2HEAPPtT2uz2zJYSPOgF5dxTz9lkgZuqPmVHIm+GBGVblXtUwb4
89/JM74Hnw0RgwB0JfQk33UdaBKu0zpd2OagMj8VcDYAZruTBPcNE+uvUQAwyq1Qd/Uu6QQx1Vjl
0w8xYfi36EEKSgH+IS04uCw8WXFEXsgOzWP1RO2pb3XsWtUfAwUmVGr6y+/KiHndPW6Wa1c0IjgQ
prTp+Fc2dtamYjLoO22WnmDJ0EnizSD2mQJX1TMCl7a+V5BgFxiPO0ScaJdDd2tCxHYbCAUheSM4
7HI3Hwhs2yrPLNBk1aoCLY2cVdfoR4ifzm/tCrZiZ7PaM9rU8EGeX2f1l6nvt8gJ2cxottHGS6l9
XGZJS5Azq5ZP8b2YGNyPjLS0XWWfI9464ZyM77xB2eQ/q0Go7AevoCrrOdcLbvFik3BnA3miLKtf
Hf9FTBndxiv83jz1Olv+nMxpyTaWqkfJd9TPIsRLcb9e2Sz7F37JDTW3PWS/tf3kyXsnYfeG+PVi
CRfTAJ/x2O+u+O1GlpPLshWCiSeyJdMMeTrmdltfug9KtGVqxuzLFYad6rbYCrl2cEKPivKmw12S
QnCRELmkFU5uhmSQoW6PVdAQxeFa8YD+YeFkzGj0soPV0xAPX2qFJgwKgI5v78WWG88inBFO7Lrr
SJPY76j64wvNEdzHjV5wQGdT6u0x3h0E7LsoWx0ASMUifrVJ2tFWBN14o1NuwBUCxOzNBXvJuf3D
AcijjvM+knRtFaqtXpyZgLZzkuQFlHakmlNTWp5OyuyLL5IVHllTb72SNQpxtmBS1nFS0S+MdvI2
qkkX5TsP5ImZHM3pIIRgd5dFoGOKxOPmUJFwXSDUhwQ8ZZa5Wz1IEP5GziWLWse9bAbCmdpW9Evg
PHX7HtCHxc4YUb8FoV3pPj90TvKV/SrhvaMuNe1GzL0P+Ik8oEIPdCwyLON/Rb4NRoJb1XH8glbz
TmXzJ71DWFJJj/XJKLHt/OTX4go7Zq7HC0VZDoO2mu8nrJZ6kLD2NkMMQ3TUIn+SSztjggEJqElq
nvOUW5xu10hZaReep+6tRcQQq0Afiy/mVBLSN7eWz4C3TIiWtdtTnjr8FJYppMsIC+Wn+2tC7Qvq
pcgb9hIEoD3cQJqIsL1M46afZCotIf8cS18YoUG8NMfjIyQ89DMQParWmSvjzbRWY19Frh9GY4JY
kPdi8arRuLEoCLRZGDs8iCSNxU12V3cA8XjC9e2wAUQfnfHtQkl01HnuH3oMtPI4B46G/ZTXgAwZ
zvBlt8GkpbH8od83fiUVY6Wdnf/wOro2Zl9YH/ib2dCW3YgoyaIApYdcxvIGOJWctVlXQWDWQEe9
rYnYDWI98qiA1TmRWI+vMkqMUDGH53iCZ0Unx9iFl5VnFjOQQ4t0Hid66RdnEstLDZYZmU+S8Evj
9p4a3gVCzfgcsVjIXNmpECVG8W02f2Bz2blFLKpZapp/RoJnEg1LxmxTJsN3MXMxNnYCCo8qKIE+
/kC1UXLYxyMzcxCupkKsnCiD26b8pgX/ZGG435MVqmH58clNRKdT7pVA2Lnf1AUn7KUB4mYwvjen
NUiJ/EvWZPNX3X5FCVmjIrx1bDs1rdhrK3j6aFx07cFDH0F/CAORw38sVtzNCsWc1XTEgOQmEuOs
0ZsV3S7msJePLpSeSStz4MYKshd2VTA+EC4/w8+rR0XFeagRfwUmNX9ZkhwdyIyNPoCLVbcEiku8
uCBJBraqdKtPAb/LYX8OEKMk1ook8cqrAFv6wAOs2KWggON8ymvcoAoiCmFFok+G5byPTZYv6JGt
YTG2N9SC3n/Y0QsF8F5JuNyJ2PTP0kMOdvqE5IhWGNs6o4+I4vxiKvvK/qDKKruDlRc1ec+B0wnm
mb0jJ8uPiP4+4RwNZIJK9eUNjIfMgwn00ib6VfgoL8Kyx8yzfp2GDX0GEK0pAqZyE5yIawzaeNg7
NpVpSMWArQhM/n+iajslqn8BPaainhWXArZY7zAeUzKdd46gnjQbnEw141n6JnPCT2djqz449TyH
ajqxMaPyT6P+S67TctI5nQoPKcuPQNDgNlheQ0UEMBkYx3kilzMZ1BD4aoTkEd0RyFkAsIKKpOF2
Sfdeiy1pU0NIXe6nLJVN8HI6cqyDr6VUe0nlGO7mjFT4BXZyPv/H/yVqCNDqmgFQyMRv8lE8IFJE
ap58xA/ecKONMsen7NhB1Qt1wHj7YJppXnD6CLH3yM0kauQvaHrykNHirD0bnnnkmdWb8TIfdUuX
dsXwFX28J1IV1bQBbu5JQv3WT5EzAZYgkb79jHJFWXFPUxtg3iz4liowaxpFExb6EVxpI5Km5zZA
lFQJD0TMzubbHwUIfKWQKQA2mqEQrZOO4sOEg5sBGJc2udyCaur0E4eh896kl1NK1VBY6L74J82M
pt9smL6pTlOUvmjzmNK1FikGO25Ya5sAbWSUMJ3NiDh3+SZ/DwiELfe9GX5shmWYKq1DnLx4gazL
4SlmNIJPmayJGLuWlQTFNvw0Yc4hYaFUWcQ+3khS6UQKBHFvtnnYEGHLmIkLLZ4ZGMmaf3Zz8twk
FAX3N2np6Fjf+m+y+f5EAGLmtoVEzvc6YEPJU/QzvZvyWkwETIBz+oKve6ZNT6BbZtgW5cG23eSs
+C7zglfmUoYOhvgWIe31P0CbIy2zBap2RN5GzKpg+oCkI28L/KVR97zqunRlgJuVlgNmC0WGigU0
9DUV6Jernq444RDi9eBPzAlofR0vhCDuAT3mVFtRnBQtP5Vsj9DbOpoJTK+0Svzjsq9YPjo04E1N
5XrDU1CUZ3vZZoKj5/n316Nrum3A2f26I2YLabPW8LTpDY8VFZswZw21PGGhrQ9eespfjk7U4JXY
a4jaWm0ZcZM+bIMzS8aNLXjdi/WbNMleN4YZtY0vSS10fuvBVTJC01nwA0AQZmuErlNlCmnIIWYD
5IgsKG8mFSKsS5zv/Ib07rFU2+W8V7zpy5BPx+OiCWTPu1cyu99ER15eupeHTMvSmbCwrDPfh3o4
5D2LiypycKUbWPFacWjbeVOrsPFw440MCUjrwgHuSnFrpJcBSb2TBmLiHUnCbaok5g9/eT13JYyz
4nrmu01EMGFsQmS3joG2Eqdq7tYFljRfRfjWupkhlwDvvSSHV9vBJNBW9E6F/3iwMxnHLieviiS7
MIS0vQobPVFByPLaIa2Uk5I3iMa2SOxaCI3KWztG1fa2+dZtSfy1DXroFVc8ImzBuv6sHk5lOteN
Vjy+7aaCh3FRNS0kVvpwAjZWdzIErLjZv34o21djge4XKCxyo52gHYmtukmtQPGqhB8AKpIaoDXs
nnvxB5agnCHQ6aKe9H9Rp7KpFmojI2+Ovc89ukovYIpjiycG0bOT5RJ0SroMjlZuPQRrxuW2FwKb
P7/2+ZavNCHv1KetQfFz6zf1Z4meo3OMrmY3DgaoNi0YQzeOngch9ZjzkBSCfNzGfngINEXXcWyI
uOTiPaQRzqLpNCUas68ENwMlWopjI9tZR1IU08GriorjqJIBpqlZ1qB/3s7y7Ixl0P4IkelUHb6v
rEs+payDGZe8yxTtEjYn6pp05M4rFfJ8rWYAvJGQibtgBmsJQ1fcZhIZHSWo4cvVUEkGXcMlKnjo
PKQCAq539cLFyIywh+oeagmbAwVddGdeCNTXogRAkIz2/nKHMhR9UUpqxkLTevaMkd2WGMZL/Ffn
8roothMC7GQxa6MYIDQXhm24zmocrp4YpmKbigyn3obWCI3v8pKzKVmbgXTKNpS9IAdh2aKSad+Y
ZMzDH91mDTMRIHwb9OEkVh1+q34kFW88iwAAnnX99EWf8TsCKbUqRQuztcch6m/somsKm4ohY+jy
AB9/rYgiU6tL+cf7/PpHX3U6+e0XY55AwYFekQGxxKfAGM6DuuTGs8Zqx75sDUMetlfnVwOkAjzT
tCWPGR7tyZ7oSAGJ/7vxjBtVSLAdgwIbZAT8rekrxvoSP0J6vnUZscyP/9x2ggQSU2gKwteQYwDY
oedsHa2boFjEN0taImQk7QpZ0zciuWdqF6QPO63fxun9O+VZnIYvbxkE5s5pk2m2GnrfslYCl0WB
nP9Nm6kL9lOYqHt7DKSzADD+5nEa9iGQ2DXU88inqlHKLgUUNY3JckEvRZUYrNEwQ/PckUKX010Q
YmbOPkmL2T+gc0tfxLX1EevkVLiKIx7D8cRq2dDEdl/i8gCMyuNbKEtSz9riSP50vPtqon+3iGw9
CT8CxksMCpku5cWKpc2OX/+5HXPR7OJ5ntmOfxgnh6eFsS+/DvL27mLhXzbiZa//G3F0FhSf2BLo
Hbz+fhooIZIzfC/lcDJnPb9tJHdrOBQlsHj3BgFFzSn8uj6BnHezIySKlhgUY6TQhwslMstdI64t
EonwiUhi23VXj+I5gOWY8RaY53Kolzw2MK8ZivxFUsJwkDIEj80rEMrZAbnenjdz8iQWa2SqP+Y2
ZR97+bho0/CSYHJIOkf5dx1savuFbp7Vpo8lb5zSWy8WoVX40/34ebWTIDJ8zybMtRf63DWpksEN
aJkv0Uqu3UVtP88hynNW1Kl5Z3Smm+sIpEnWEdpGKVnBAKucWlLVNE54g56oHzQeUMpz30dKnbu4
CsA8rv0fg/wSRRfVUzas13wklPS54Bq5AFEZmvYu91hy652rogWUlNo9LEv0QhNaHQGJklYBXNbW
BIZF+Au7AehriFHu9fobFdgWR2xmF6zFD1pYSd0zQTCiJnJElxNuYSFQwjkPIQHC5NNmoh8Vgur6
o8agvv4qYMW0CXhryHFvWfi2JIMwAcyfsUB3/mhbXkntJvp7u6cdZfCK2Xaj0gMiqSLPZzAfTnw0
8mUhG3JKvmKBeSC0CyLeskFp5AzUpCcr+KdyTnIUY3v2EVBQaSQbLG0+8qJZKiwjW3NJ9LMF9vrz
mmupCGSWIZPiLsLlpOWPOTIHyG0keupP4vVpL4O0s1coxn78NqEVIinWx4G68chRe+1PQ5tGfq8Z
nN3zIFkL0UcpkcYGx9p1ODzDgMcRRCpm5+LjkfogIVs/ctnnzSBSvuH6lfNLHj7L7Zfw4a74eZJ+
A8xKUDTzHuoHyXlHZMx+pfVemdobELbrzBoQaoYJkLQ2Cvm99Rr2ek+DF8NlTFL89kSwcRi0T7Hw
+SHvCwmP3Nzv+HJAsAk3jwxKKhJZqCrudcsgOACx57xvWH2PyZ9YeXg6n7VZnolRwTTm5xiwLqt7
pNwwYQJlDHIiFZ8+xVGESMdaW/uALkvy9F9qPGBSzK37lgkweyyr9OC24xoXgSmBk9sB1RLbLO9I
nVlloc2xbApjv24Lj4dZCMw9GL8pyQNnSdYkSwqz4VhpT/V9HHj/EZOWtrBWVbFhCVehy2W4mauX
42qmxN1sZWDOmXns5s9bbTzmLrzT60GfJoRwbmfaVUD6y3s8TJN39wFgPjugdkTSTbMnMVp0VzPy
S4F4xMRApjX8ftpDgvqGLBunXkTdA6R/U0Lp8krYIqN/npWv7AONIhKzkhBAsLZ4T6FlS2YDwhnd
gJllV/aeywD13MguH4hy5OR49LKHGTXt5V30pcHBH48W7BGdBBXVOu5cjOn5xG95yNpqSIvkYu+H
DGkqwcG+Uzr0fkZ4ICp15WrY7ojJBqXPAi71aFCLDKh/4jemKrK+ItcPHViI4yEkCdGklJl/m5Ly
H8U77E5XYt/eFv7y+Lt/myrkI+x3h2vhrTTi0oYKfLiDGwFBuVp8D47mqVgGDjWRyr5hlI6IqTM3
aPrsLSp7pNzI8lITGR2Fg100a4nQ57+MZU+ehlRKwnmG6VZ/Xhnqd7RI0hrqXNgQAl4UnMNo/weN
i4zDaYmXZ8nuVQz0PUymjBTNawskX3QBctZ6TkuqiQw+ZTaZfasKBiMakTf/Y26PKgvOYvRDg/5F
SV8J66wevyIwAd39cI6A0eWUGn6ucVY7yhGf5pQ1mEBgBfh59ot3ZDASKrqoxCP6w0IfVk4wSSUv
hKjZs8yTr2SCH8LvLLQMom8mq+U5fK6aIPLsFwQ0jm9J9GYZ8G8snlks/yglLA83DwglnHLVcXrM
q9rjbLOsIeIgeYPcmJxOyPT14vOuln/quohW8X+AekFTyqfjVuF4TYslhbgTkjjESUMqL5l844jH
PxbF0eIhOI2PjpGidYX0x6H8oOE/hF8HDAxoZmxAhzkz1HB6jqZhSCylghbvssDaAPlKV9qksNpB
3XJhifuiK74OwyDWlwRMakOTt3RzeFRDDtO6yHAGDR7EbXNN+0QkbBnPxj/DbxR8epz5C8Vd+mGB
Sl/OYTbQT5GIwm8o0qq6rhT8+A2bBXI8ARgZrphi5tH/e7AOXO7Ar/3HuVqF9sGjWPkplF/xEQDu
k92gBIDuAeLZr1nFyesF6bVo+Xwm2F9RV/cqFSwTMTMTvQe+S5uF484rD05ajWBysGCeDfqh7pB3
XYoNNoWhxfpb5VpoCO6upoQjr000hb/fznSau/8Rp09DimQao73jRVCu/l61w1ddjQQJ6lUMAwlW
+qLmwWIbgqA1uJPecIbNmNA3JUWs5lq03ENKoavjElTsV1dFlJyite1APmN6dRNYuvf4SUSr7EwI
x1h/gwPJjhJoJepCjD+h1Pirzsg7vg7u9z8FZSui4AZk6t+kmty7w7Oh3lhc/N96GL6XF+2LbCYO
mW1FYWXxor/apWuAIUMrKHJhabtcLgYSBmDEEyl/hXXzbzs1mCVJ2iKG5dKsp6zfQUeaHnM6f2IJ
gRw4hFlbnv5r5d5ecrtD5UIJmF6FAjhwBLBellJmDizhnJBQ5gU2zueDZSriyVgPKKXGtK2MXMvM
nix+1Suk5lv+FibKD6ZuRjDzfehoecHKXgcKw5O3LW2PUOs8vQOYjgWuv0iOHiThVXYugkGo0fvE
xmVL1/zfdh3ntDDYs/RdpkgdygHbQ3Jt7C8Q1TGrvL00sLYSLB9ArNldJvlV4Dlgyv7e09PWZr1U
y9ic86uaJd/sL+slQ7ZIktSRvrZP8t/1qYRZCtq4Xj/xrw0BJIRFLQG5Yr9cTL/WQJWZCUe4cFZ8
pbgthlHof37fb8jI0vh8Qc+hrmQHdeD0p6lLWXqH7ZSYGF5ndwGul0LHlMci14WHMxY7FnJjIa7p
HaC8vwVq0umk68n6fJQ2k+9ZUbM2OFzAxEK2Zm1R/WGELmPBJxqRwe3DFulmvzMME6CPWDck2UlS
pY/AdHHtwHTohpFhGRQPQl83aTWAgkVd7O/xa4KA0b+ZCdkJdGpawAbWi1vCbTRT8LEoevt/NLJC
zT41B1JoJRWZTj53SNn+tMOf9g0MSavd9pA9AhF1eGAebxZbjiZwJYAAN0kA8Rrwol7f/T7KjY9h
h3ml7opL+6qYgUTTCaQcLDi27uaFOk13oWxFnkJ09bnYiWGJRP4ATc1W+SQSYAodLzgmyLG2Il2v
G7t55xG7mJB1Tnj/w3ErE+g4ud3ot78sf4seRY4oMOff9wX+2WGW2/JEfHFGmS4yr9FILBqzxAfg
2+mKsET5eWurXaYPBn4cRk7oRzAtQCgm6FgX/DBag7CYp/CkBdAhauZhBE6qGjW5JCF19q7hcsrF
njSIsqWdgp/JuCvx5k7ecqh1H+wWyDgRcUuUvoiRFYnztg9ruRoJAcOI9x0T/xlXwko6ljMKqKjI
j/I+S8JJzYbh8HylrU0G0FmXmRVY70RAfzFP+Qpb1A3yIRMKacC4UWxL5xIfTzO/D6swDWwYSkd/
ld25yIZs3q1u+hsw1zWUnyRCDiL0b3Lnd9L2VsiLHkTfntJOLleJeR7B8a7ArIKuPtvCfiNV1i3t
pNu6yplRUiBMBBylrNYlZg+GbDFXSo6ctJ1J8aiAJgoUk9uKqj9E5K9jC3T0pQ9KdbVqM2EWO/jz
vYiakEQGeAskQA5K3519QDHeX5wCuKWIhXbozcF24IB7CWVAFI0Hy8EFY2rdQz/NZE3ne0udaGVE
i2p8D/Eix+y3GcrB9WW2b+ikdKLNqNL0yDU6V9FKf8Y91mx2gomrL5QMyqqBg9oIEmMTgAwGbMSI
Shx3XLcCHH2irMhMnr/JCCeavBAECtHs7tlsvX+BzuzrmjyhKx2Z2nurCn7URp6xLufscpIEEzEy
I470HkZ+iJNpn093RDFMzcpUUvwGqvdtsx3EBJaMUtxrSxDLQzXJXJkKbRS4P90KjMW3gQapDJXA
VEkohs4C5vsaTanGWGwAPOGYlsiPKnhOeB7nYXAm3Z4WQaYu/9tBaVdSC9L4g0HOsdvJDi8cJ1i8
ffbG9XhtoIel3fqqIw/RH8jRfVr91+QiL2+xgDsB37x9C8mAcNE/pDqInmCAjPlZG3LtWOC3wRv3
M/VslWHPVMPuM1dFWEotZSviiueOFeGDl98sTn0SHVS31U7se3X0dbNF//ftW7ckNAQ85nsH2Ti9
tlJ99Es9bfrCa9Jy/mMzPjjjNxDiDoLE5xe0Qlm1xtXkYysKYXNCnthw48mnFp1UTXVYbp/38Qks
km9asKgy2qFA4QoD4bUDvT4pXZLmB7HTiACuh70uE9/5JdWvJGXNrrMvF19N4vn7O4LjObt41naU
m6dR+5T8yYbTwM56b0J8vuETFueMIDXpaRDUNDaDCH2cZ/1Hx+2f9N03Zs7xQ+A3NxaDIkQWQA0X
96mM2HIuZci3Md23xpSLoaDVbSYyT2PqrIS3pFBCxUNR/S1iMyktNVjDAsRd+0pJG9dRWbQcdSK2
w+i6VrFITDuxqOshvZieLyLxw/Vvzw2K06gyBdEUD58pjXhdyshVaH4GuOKzTkVsPqqUXk68pLqw
9zw8EPQiDhVa8j5qscPhsc2h7K9HCqutGyz8tZpsvMS3LNg+1F/4Rqfu0sIoitEUtNJjcWXp0Vt1
2gOAz5YtlfI1xWHb0UbGj4a3/bixBSOKKXM2sDOY/4WwU396SiqrqNlXqC4nnBIF04/KzUHP5xQO
EwNZwEnldyOF1M9qJlHemmsZiEfMOg/eaeoQu793XJg4C4gY9jQ1jTAF0mhy8U/H74BqfU4tWb/+
MV99Oxg6N0LyKpVm+OI5H2kQxZkBJ2zdvXeW7kwNMGiBwKPbz4pT9VUzwOWD2eG5+dMkfP4G73CH
reHFPZiImaLJ7ma+BKxj7419jQ1J2ofBs+z8WmvbwV4e64N09v9gIbIGDqWQ05JCHQcMwKYuQQY9
IAajworyPvmeaG1ze0IsONKXavNxB0ZTr12Ggcztfl4ZwHg/VzFeJKnipnqqilPh3RWAw2KZVi6K
Ped44q/J1EO8mf5+AM7cZwBSQ3x6HdlJs9QpdCRx0mVgLUxuV16AdqqEt+LKH3ITx6P++SiTDbU/
/M1uKtOaRR4ZuczX5iuQo98W8viU+VTvtA1O44BjXKaHKUxaq+aMetqPjcdfgYa6wsW9MI4siHtF
HbC4R/N6M+oBq97YStSCSVKVgq5g9a+U+7EZppJX6XBc1G2jSk3pkVPZ3QsqPbjBlkDGmnjj1tXh
AkLTl4T5Smn7SCFEzWeOFE3z7b/ScL93sTdAk9o7l86kRIsnG83OUHhlZKGMZep4Gf5+3Cxpmp+V
xg6YUBgf/KK+I4nJUK/OqiKhEM9FG4GAvOeDLCl8+7r1y0defUspJwadL9rf4RJp1700v+RQXB4i
S6OyB6Ld5jhV5gMPFkgaD9xci1kYd8nZotyxVD8ZIb1TCb9ApvvjBhuX9keqtJE+dSa7DPpfZbmH
ZZ56Tk65FKfTbFvnM0h+P6VS2jmPut1Gh7f+AoRKQClLoZc42YMuQgEXSAYKw9Ac7MwaQunkj7Af
x8OKYnzDH08CmZTkJaHqqe3ofLEHmwRAFVvoqxWbtB8lDTK40NQTU7T2M4EMCFfPe9NNcEK+LB0p
bijkl18NTp2xc9LgxYeJHnc1ibFDt9yn0TYPWxX0a2sGVEfXvTpi+ryBKm/kkr5VZrCbQQS93sCn
7lqCHMPfYxWjpZ7GTuzJsL8BHjzyoX4W17BGpTSeFtJ1+iihHBJmyQ5Swii5C2DXBqWnuelagBVd
Jpe8gomt/1J58Mh5iYtu/7taCYcczZd0eprCzTv8hN4oKrPfk2nIASt6gcvXFr3Krd0EAWjJqV0Z
CtpDO+FYsKyObn6VDG9Z9IbIIyP7uiq6kw4Nu0GYQD0WRhGg7uG+YOy6vc241K1P1dy4Qdn+rZoX
RR76qInszABrY1lQARFxqDWLoGIMUVRPQV+9GtU1tbiMh99/ZHXGlqouRRJ+YhYU0iD04CziwauE
LTmilNXj28XZ2sz72vmqI6816rTISFSIrBIUZuHYEw620cVfnoQd1aIat3zYP3iA89CX36RnZ361
Ic/n9AW9WvB/N8mdCoWu6uDRg53AxaZqjFAa9NYy4JCmoI44T0bSWhvJzvk9QKF3wLWgAgX8ls22
BC6u+iErwF14ky8Ed2s8vgXeQDhN1hpd6VbVChjz7igF8y9WoF1uxJ9XOg9CFTZWyTKKs/3paLk3
f26KUnuSThBjWpgiafN+ligcdGTzM1OgqU5PTRiJrF1hnAMoFY9pSXTx/2ASLRLC419z7SrN1PUk
/TGCP8lujQCX1cNHNPOWFfCkzuCddUVIlfPWUCMaP4HeGgCC93GM309avjmBfDD6dFLNu0UdDaVS
a1pz2c/i3VaM39/ajSSnqwy6QyZhMLfA+qzK9KUfZYiIReuMYTLaZjH+7xqW/nbZU737H+2rmg/6
IB7LWfiW2ggKllFx7wslCtsdu9NHT0r0u8pJRvWa1g8o+ucfRTz31bivHZtEryVihJw6rIYrNFoE
MHa+AaMK4rKc/IzIZClOS1fCkk3aj423w+LY0uB2+2hGEy83SPZw8KHwAAmOx0BE6USbkE7bl9k9
Vzgj2C/PANZR3XRuHo5nOQFhcRsv8+RTExx/WspOu9DWGl3j56+ccFp3ApY8qT6qvnbkqbuIece0
3+86hQLQEO4CQuWiMcRN5+FoaoLYuJreTbG4fa6qBvshe8aNzo0T4r6nKt1UI2nMWDv06sKa6jgr
qqL2RRsE4rJaFB3VS4szeOcPdJUTmjh3YS0yR03rRmiA8meWZrHPPq/w+zXZrcLARuhEKZm7lB8y
aJJxOGmT6X6DhIaDkmqBplADUb+paWSoh61dEpCwbuZWSJuV38nqv6tX4owhRwVOw/OEedNDh5Sc
yNgQm2HfPft5fCDXd1Sd5XAPRLOf31lAHUO5VWqDZ5FxKfbSRM3wOhWlrKY2/av3njW8+OqoQtLh
mv+jTUpt7PavFGkUrdQDOPTaYbEz39QhoMyn9Sxp+S8SriCmIq4bM+Ajb7Dbo7ZRzjwxRgP/IsRH
gVlEB84vtuuLl3rkoPWcu4ysogu+MJtGE6H/rEG1cUz+9OWZ9+0MqP0xhxg3k4H5HZQZ10H75Itf
3wpkIT/IhFZigTND26000ck0E6DvHxhn4DhoaZ9WyNpt59PeSS+xXSGUj+Qk/1IkzC6zViKPvCnL
2f4++Q/3bzYTaLRctP9sHTXAloO2sWoHrCIeSfh4O1u8yaJjLfTG4cZqQ/kcy8AO3saaJQedSaNY
j6Cui6TUXW2xp0DRHaYZB9N5FhNQT6REUaEVYwTVib2ODyMhWPLDKzQ4EQMmf7IYZQ9HqWgZo9uj
rbSOC2PRWQGjEproCG+FDlEJgsBRaWIq+ILS7RPhsOWqIJiWuOtgrh0qFvkp+Bg1uDP6bsJFaApp
vWAYv0LASeEHsPBOeoUjRFx/LZnqOPFiFYLYjUhctgIZbYZrzbu4kAOS8XnzOOiT1S6vJU5qzZy/
aGGPpGYHin6AXwtwW4jM2YNgXNs6hvpQUKs0C8wUacSBOyv58Z+Fl654ohCFxDc9I7eEuYpzZlpT
Qvt3pEDNZykt84R0xmHw8JFOlNo0RwTRcS+rDsstZubWfJDtKVwc0pZt3TA93/C2YuzuvXBH6GW4
o43puI6r1yn78/EWrjSwxnRlSWNesn+Q1jneTEy0V3cd4e+wWCDshehmagq0YDT7vIIuJQKr+MJi
Kjw1exH3dnk1JbOd2nEhGpdg519Ru6SwI2tXnNzL/nhTEoDpRTzjnvMbG3m2wSFFrv+F39RyHjnO
9TU2MRNqtjxHMyZp1LTOxUj44mLvPqcNjfqaXLjGEHiI3jtO9i4ue/ONnYWfEAj6e0rPaM7/JBY2
4tdPH9RdeoWRidCCcPnyylt/A7xD4klzXRO2FdHBeQtWZvxV076iF602UgeVvPKOvT8k9MRfMKaO
fFrefGgy5/c2aUe+R/cfuExxX8/oktks5o9eQ5RDBJkM4sMwGJkrsGdHcBW1/AegwlS8NM325aCL
iHWNrhM+5B8DdQL70yKoPMqgYIcm8St19fIEJgDc19QS7TIxpZuCCy1hbdYI0LRwUW3nihq/sHGr
H7g0u2CUpc0LdLR8y2J17AqvY2KP9shjFw5oZrchL+UrnPA8lLHULa2AyqKC83XMzQvZUjAZoInN
MkKvbu39hqIyx7R4s7xXFC7bw6ScEYM6JOnRf3566aKDuPvAaJXkFrqyPVLTDZaVddQf3Bl95arH
PIsPIEKelJ7U/4iXpGT4SwUI30H2kI30M9d9Wsg679OwrYazxhxqM50BbsN0/GzxW6LckNLSxz54
iMo1J5PaN7hRRa+Q07Lf9GSb6UosrjOMx48ZnvCeuFBtIrpVJs4N+jbz/++WdWKh0mY4RUnRUBvd
p8OX/DSseQuP921b2bMTtAyJyjeAXm91DT8jyjWR1JdnFnIJm5aRD1LAhlPrYBtykmR/etjFgJVo
DSQB4wt1PzC8cHie5E++fvrRddUHAIAjNiLMGo4gTFbgjw03HK6mXQ/txj3r/8fjh7cVNDt0PKrN
17dZ/VoU/0XciQyoJJkcFy9iGkEfpu25LoIxCZe8/567bx/xEF62AOGLsm1QFfJrIF7MWu6tG9oH
+3WGva+n18ig7FVaHjOrmVwZt0Hr+aR4k86fZk0BbRF1ka+pSzQ6lrc/9DnextqasTMENmxJvY4s
tDlQAbT0vnx2Mbn8ZR/oHrwa/e30M0G0R57SQe1Jivi1ZcMrI1OpZp1ZGDksxk7zI2xKGumQRgkY
v5uKqlpAXrXfuLmnI0Eoim7QhXJ5yzZPKU0zGpRbiz7VykA1s9tCgxm1bfw+HodD+ykO7HaPMaIS
1W0099ovfgV1SPrCOURz94J80TnODy2tc9VAqLleH2DUEhq7BmDzCoQnJUzVesrYm3d4A1olwQsq
CooVJBKsCnEWxh3IaReFj2lUxUWIDEyU+MnRS+SzLVwplEVgMlvrban06EPc0gnR+mAweitkgSrz
73RSehwOvSAJ7i9G0AUUKGxw4Qmuj/oqfJkZDEvrpmeq4VFRGBU9zGw79WwnpD+MWcjP9HfpIrls
a7cpCJuVDBazbGJJ9TIkNuxS36a4idSZ6+jcluFK6bGNvD+yJodIIxmabvgjQITMTZvwmSoJlyhY
jlnHok3bTx5TrdX2qikdoD//nAtQklx0fzPyBJUGtydEO/nVLqJ66QRKXsQuQ0nVBzDKaEowB+26
FgcFpBnzCVKNNC7teJlrN+YRkB7fXKb9LfdwA0EylfbWqkklvVt4CzE29wXN2wdKg7aSXZ+WcQEw
vye3K6W5SN6gS+x7kcGAFn52ga/aj/AJVwHbk42fRUHSYdZVpjRTYh6i29g3OFOn4G2Zbs5KKhlU
n0jYZK6a9NsKKVF9X+rBqFw7VYdADzwq6d48MbSSy1lg5WnJPM5DN5k/LiXeBrlXNXgj1D93Ll0r
6Zo2DK08VdVci/NTg/WJ/kRwV5YvQUxekdOLdI7zFMn+eM/aBf1+MY8EIsjKDu5P3S8rwKAF9j3y
Az9a5l6G3GleGKGz263dIlo+dgaQ/7MivFTNOXQefhPDS17hpS9J6YZAJAIyTpIqQhh0e3PRQdcm
W9DiYLW6m2u1Q/6QNyVga0MYXi81OXcfS5USjtXrsE0dfHJLhNWii9I1O1FMz6cpyfmQko4peQEY
FXRY93Q8ZIos/g86oE0pgN/nFRzuGeNp6YkkfKcOUseSUjHQ/K6fsMQuhFHD5gAfaKUyN1IBsE9U
5peMY0dqoXPfNaDYawE9M7S2GUF9IXO1OnI4Ob23oWUplpFLqM5zGwFlRlodpsPnrF+LGJMvCYfy
fZB6f4Q2+N5ohNM08e2CqpvdErX7s7/V7QdxEio2/aO2wmkVyRuaP4JBod7hobaNIrxOVEaWs7CL
ZrxS5V+1AYjkyC4nfhA3zqHDYR/JQNEpfyFlLzIU1Fl68coEUv3Z9mlFYgPYKsf4Cxnbyq1EtmKU
82WJHMn09C8uul6MYjT8KoDt6QIBGUpda5UaIEUpszEvDuMG+fhX+Z1oWUbCJ+PGC/2yw8MPlHBx
5BaV9vmA+zqjOmZkiMIt5eC8th5gsDMKExcsWgWfu+j9POOqvtJ2cX/tCkM7Gv0YHtp89CKV6CC4
SuGmFTerO2lhJ13MYAyy+yAqjuOBc8SIPN368K67byp+8SObAXRZqHl/T8kAK0o3Z3DxSaKP9dGx
tL1MWRhbl6ZqQKeso9ygzzALZmE++k+SZ3FlrQsnNonevMdUkCadJt7c3v70Tn1NZu7eVjC+yWNh
5sa7QJc4587p7DdJz4PRKA2+YmzbuoUfUXjM0xseRIBPiZ1/yixBFVuDuzBWKdv2SUGf3UZ/+69Q
whgwGwUuFxMdLxQ4EHdnnD3Ag1pGIJSYuBFdoH/9h/DY2qk9mCnPA3EpIHl5G2GJtbiu+VA1HQ5o
FbFqCSVBX6sXWESVBkypmhuyiPwQchZKqD5pbCgM23EZa9yDmYME3leS83DGlynf2OecbqQqq02A
A1SbgF8aq81PIBYAb5P1bUjczZiOGWI/F3Hz8OLp+UphCUbCl0BebGPZPhq6/OLp2WlzBs6JmZjf
g1gWPnqbSJhlKoCOUQYkSmcSYNAkEPY/Lk19WgF8+VEe4zopJHRpGC/Qd10s7aR/SXNe/+Miim2c
LztmaIFN89qZl3UlbMeFQEjMl8p1QBo1iYRWPCVtha39SAMwY6rpFFgiO2KhtVBgpYOp3zOVDPlV
sKFvHe6jtw2KhFOvYCSnYrqYi7vqlChi0BrY6uNCu4hxstdmRAKDPsORHi4pREoS5XYDUK79DwlP
I1Y2y50gp7Q+75fw+dtMVxoeda+oycvG2arMB4LnUyGx5TeW4fdhDwWI1485rgXVHKXuAP5L3Wuw
TdpuGztZjG9mjgNn6/peitOMEApPgnm0MWfLSGEXD3NVPA2pFcf2sg7HPg0PeWNkU9vj5rJ+xiLT
ne7pdBbSkG9/+Z+g5L2uAVcdXo46Q1Q904rQU4SZ/S9chz/JyobE4oBJTXlHKsY5LJW+eu9bb+jR
aeoP1tEHz0m65TVK9xJOSFLWu+jn4rvr32lsZFMAVRphRe2XSO6L0vIY92rdpTMRDD3R9iCCZ47+
oCw+94ETGsoG/X+jrm52n2mhocI9mk918YXjzgFoUYJ7Z4+3R4jly7ym7mx/TOcPnt8o7Kv08hj2
FaqXSx+QBqq8947kXVzC2ObqjtyLX7Ss4QYdtX17sYtILSQWBzFXo8Lf1GkuWqcaqhWOM4N3jiq9
Sc0RzxLztFUYrWmeIO3lHW92ACrdPDT1esHB1cTbB0gNQBpLycQSeSATm9uekt05SZ5c6+KlcvMo
gAyVTyu0tdOtSaw509EkkGN77+UsMGid98lUkTOz8NZRolAyHINjd3J333KoBBXw3N2uoOjQgb16
x9cP9gQ/HMPLTyvmcFn8uYVRZ1EjSwuS0lwdQYw0nOXdYk4xchfpH00PbVjlU9MV9ctTse0HW3To
KB5oZdvDmIa/Vu4UhjXQAn5Oz8GIflXd6kilg+brWT041n1bJyk5JCFTvxXiq4mVtxKNJrJV4VXT
PhZrN95ipP9v+AOv4xbjfpXX8XEEc2gcY3IAqpRprCEcY28wZ9Vu7SNAOV//nG2WtaPbT3kCHXNN
oqAKKIQPhT4yV8NMjTA72TzI6Z0IKip9YYsbkWj1DHNysX3AMP+HtKcIBjci0VKE9vwXFnq3fj3U
MJzV96FtOllrztUoqi5kQPkh7s8H/8MA266rfpOy8RPuuJUz8bvS0YsKhpwv5bC8hVlgrpkpKSEI
c5Qp9s9t4zMPx1+W3H1jPVaQyLYMBOzSmR+dFENMNwBXPXbgqtarRnRoeX2etve4hRgK9uh1FjhS
PgCLa63zaenBzSDaX19fjpsDPpSQv6R6n7E8+ywypqinbIN65rymqXV1jnfthUGX/dAALSJBkE9a
NzL98cmWX9LykXx24mUWlr2PbNVHS/JWLAvTDmydhUvBSdE5100Zw5RIFO/vMxysXKFDefjHr70H
eE/ZF5Ln2UB7d6wtN7/icHOG0Y6y6dsYDg6y8mV8XDoqFQjcWVQ8DMcR6kflpN4hCUxtLp9k0PQ5
L0ASeiLz1u2oZi4YTqDPzU6lrK8Jbfuf4JrmvgOsZCwodmHKFgnXL8qWgBJWc3hx8hJ429b/ZHaN
3Zg5/Qr2/g3p3jtdpXeV1P3wSRBiGHO4KVhT+YG4W29ChrqOm61I+tYa3tSXS93ha9jQxzMfzP9u
qXlMTs+i7pprRmfWLcjaq/v2FI7oGDAaMDMYJ4kdibuHDDZqgmByDYEOM7gjaBaPR2NaLqUOtUEc
42K8QcT9nsQFkMjMaUBwTAHc55Kn6d/AdihnDe+AWvnknI22EdNItd5qATgxGSgLl8nWaRdwhYvC
bxqK+XNh2dpnuxtykw/SJumVjkLu7t3t53jEv0MaCG3O37wJU7JoxdpoAtMPltSPVSU/7f1CcegE
loRTmDJwWaBPLz43ZxFq4vS8NHp54+aE0G9fI93DYGXCwBn9k/CS43FQM5ah1qxd2oL7sg/woGFS
yORN6etCfe2n6gXhwqHz0Ld6n7P4SMsOPQkdDBKayxicdNFE9H4TkYrl/VHVBcP8Sp9t8d5llJxV
dNOtnAtANAUZA+/p/2gnHpkidDWnxxoMMGV3M3Ad+qydCUHNgjC30UNeEyOpV4mUbWrWF+wEzF83
5NIEnLrK+2/MwxNd6/1pDWtRqsSTFDtcdeYK+KJSYUK5gU5nw9oYV5v75eCTkJ2W/f7/ezBR1A92
iuRL9qNVVUR5xrpAJYB1HwZ5GNFuDC9HnZ5s3wwNvv4o9kAfZPsPVLoTNdF2jNI/CfnTmiZkJpKd
HAhbd4nq7TVBTApgrJCgKNH9g7P6HNNtifPwk+a7qrLMsYXb66RoNtjGqys6EqfDzuI5WoshPNQ5
ihJ1S3avCSh3ikV2gpGlZfz6JihjbEK1i/p3ULlBWelN/a+NBWrwCgzTOqxrgWYLxrcTSZ2qu+23
Ht/44EEQTzbI3bkWgkE1yvSNkRxNXdzpcaisJzoTAQ4uYwGh2gexUzaFPloRN4rDRzu69+1hcF3E
JcO+FfGmAHgCheWgx+97Q53+hClXE9LZ7VnJ4d5fvYyP7NCL8+Afq7zpQ+cvGasH3iWLiy0MEFc5
TDHcLCqImWmsxtSRexHSMDNXhtqhKUnIpZSq1hhtzPCb10QT7NDdKnJvwZwT+Iox4YDlSS5q28W3
1Ty69vTztY/bT7OLv5X0N5kDiIEtyNgjNkcOK+VjMt1OSQpU/VVG8zNoDNrkCZnPaQy7WV/f9mN0
eje7b+uWQGlTYwGIsiUK76AhKegvWQtdzDi55Ahh0Bgle4h4tWQnCkG4RE/OZ63u84EvehrTL6vw
VTpeoUDMs6Xtpz5GdzutsdjFONGH64GZWfYumzgAdxKh8b0XZAgGnSVHNaceGmMIviUDKme6lUlt
eP4ddZl1H/qnzNHDl6PWXw4A1tWo51A6+pYVrXuvA2Enx6g5D4uL0zvyHjSZ8gJMcJSQ3aU1DQP5
2s2NzKQtcoSAAmkctV/3edXU+vC83bwpCPZJKhUwRk9nVJ4B4SVylPyC/FNH4tJDdDRI62WQJ/iw
DbuP2A3CrjEP0zVW20TLT42Y9+0rS1Qpl+WGkQbCMXKKQJsx9RYuZaEKnlir1OU44B/Qqc8IoCC+
nRNLc8kIrAhDBi/XXqo213TEtez1xgr+Xy10mB2aCZCaSmW5PcDXNTKc8CZ2xtO5fk6qoTdsP0/9
J+fak4G95n4tiEycxz0C99M9XSDk9qP2fvtIlsuXfxR4ODLXyMRSjuBYmIgQ2NIMPAeFkONTs3nw
Px/eO4jaygFiI23mqt1+sY96rcMB97NdUAFPbL++dX2A7TY9zGKqmMQCrWkTJrcN8qiRtbet+R1y
gE86/fIyQhhGRhl77jMqbaB7wYRc3XsBqvJre9D/6AEf4oC9BV5oSswV6k51w1rGTIfijozcVeo4
JeeIN2bdek5hTLOohHFS8v6n7Su1RBoD5PasHIcmTXSiYMsyxKJIvJaJBnz6dmkuP8MWDeGBd3+E
IgEY65q8rk0TRWelO6Xz77l/Dimtz98Q6DhhIkPrsCkfyMCY14SNOX9VPiAcUR9Y+RRXUYCf1Tul
2jSe/T4owZnDiWye8BdcVNUYMAx4IK7LsvZaOSCk+R8FmEbyB+YFmGHgQxDnEYgD2lc1cp9YPQqZ
rKPu2MjaZ9r+z4n39pu4ZTXBevf0OwZ5hB50s+Jcad/7irKQM/ET9ILdLGuZkWv6Ftq/aSJKrWpv
sM+YlfY1tRBZSJ7+3jyErbuB4KsVi7VXJO+nrXXG1rwbzoh96cSO3l72GDoiEdGZ5FkyQkyxZHgW
6sHgQ32jpR2sc3RabyGWZS4JbFubkJ8d3+gyx60h9qMwS1iGOPXbwkDHkgkPFPDjfwWuZAvmq8ox
QEaQms6P2nNZdUHbuao7pw8Bx4qRASANwnK5cYREQx0isFCecwGZFh0lVKKxGaJmMVUfU7BWEi/I
rlmROxi3lbDt6Y7HdXjDHDUWmIsQ6E9LWo/eUf/Q6DhZ+EmOHgAvPJMMsuVv3MRtNqd2va/jDA+o
gRvqSDYnRQGj6etNGCZLcuITHeKfdnC7fC/U86VI534mlcLktbSENUB+Mf+0R2sCeTP8EXfc2YJf
vP+pJpOdql4Q/QrsNtNUgNjewq//LdUv7dk9gS3nv7y9t+GVCk0Y3Q0SmvcFBhDDTyiHbYk4ZEAu
Z7ciDFJlgWGTeNeY43+uc8XLXMSQnZYsSK8pY/edZwbV8W+iFj0D5ShKkbZcEUr2IlBJhCiXYFlT
V7xuYBmL/iR1Ve6qlDcXJiprt0GyeJqnm2T/VC6AUk0f+7ydtqRiBXsz+6WFfJzMyd8hfboy+Kpb
TCCvVerzqnUiLIaowYiM7oozAAbOZFa3A4M32s5JHwfg9enY7yhd6eJgE8p9PYByasssRnHgm9xg
YkMuCd/uX/89iy4aWGvOWLOL8QcO63fGE7js0CrUr+nCTf1sfeV4Floap3XhGiTke65VkM1Svlwl
7npIjv4YmxL83wXJeETyRhKA5HB11ZETtTmq/bvab8ILgTLxAieEp8xG3wiXGFkP5nzmeoJ6oydv
Z+ri6uYy3L019/7QYy+ISkPpYSZObcFuuX5B8vZCpk1tHyaV4yjKN041erpDyZ9ygZsb/gzp71cm
DObgbe43nVbywiWXKJpKM6E7Qd3f7CyWSzfT9CMeXpW+Jak6QirlMtOG1xxgCEV3kGzQ+gc1HXru
czVg6IkVV654EuxRQEclnJph+u9/Lh/XlO4bT1KkspbajntZPugZs+hhnwmhDAtigG62tbUJs9S7
yiHmLJ5eM1ASgOH0ImKSPa1O12TMU4Vj7zem3vMfCBPAumMHddgJhZUSmb5Vam7GzyClRhmXonDB
aaAqS6PdCUMwo/rFlOVfQljl7i334zPCYz5cIhLOolnYfrl9BvdHEZPW5yGGgAzNgFlQOg792RMs
aU+5mQhGHiLU8FhzT1zFEJH40KEwABdKJr/8L0jbNwxiRKfD2xf88SKTeZOiNc4DOMAyuB+8yf0O
WNzhqrUMgP+ALcTVXvS8EAWF450l86aWvKaqwVbmTAL7rhmjsLm3IH46hUZ3/HP9diJpJB4yEYV3
3caPJBA0rpkbgZgb4+ioCu9L1c9+fEayoxH3rKQflOJHHUhThviR+6vE8fxjrLONXHCtwtdnPaNq
ym9c2Cz3A29oTJ1jSaDgwmnwSzjJgp/H48kXPm2xIgesmoP8ZjL/xJayNXxD4Hs4Ykx+nl8bVt+K
KdQrdkd3h0mHjx5K/SvkBylQeP7d9BKTj7UnXoMeOKMjTrzkrVQG2DXQBu/O0CjTVLi0WRRUcv6p
lxVh2diz8IJg8wtyLiGXawzbwmUjfp5Pcy/SAOHq+7Cdv+mRRa28cbXxM1p+Cncb9lIDYBI0ET8B
RWGSOIaArBt/DALGFoonDl/P/mHQKBJjftJ7AF73EsHv+/DDEBh9yG4mBD6w2dZe3GBSuKOtaCbH
l6sqFvRUgy2WjDK+etYqhgnvkVUAY3P2cm7BHMpltMSmpWOU5o40mI0yQ1yClq/KQBhr4D2GXlXX
ZKu76r+PFcVT2+S1Rq3PxtGMIkkvVKoxP7/akegJjBhrGCwxErUD983Q9pZQPe9/GtKtDQfVl1no
j2PF4KXBkqPHI7jFpQEtmfWwF/X2rUuOmyaMT5A/GfDA5kzPv8OQ0zUZYBy6WHka0GQLGx3gzNDD
hLBdKjRb/dfifIla4zdAWWwmTcltXaEY61a4gUlM8Y7qe0nLGfp49nP6KBCJarlPA6rFoy3Tosvf
bi36Gd0yo9dT0JewuWPJ1OdZchoarYNV967anGs3+xrYaqZxb+a6euVT4iBw7AKxRH+Bc3Guh6Fr
7bdbEoGVlzmoVgms1nktMmSbEw9ioHhqoIV13puwZY+rJ72PW2pHiz4gFy/6C8jI8oyOjtbDJjUt
IRornPeC8PtN9itu/ooYFD7I5PEmGg5cGGQizScZZ1x0qWcKA4UNwo/okYWCApHHjwnXEP+nGY8X
rNPa8jXJyc9xzd1Ha8N46+yalaTVR3a7TrggXhe1gUz8MYIN4lOjOUj1+qmS2kZ5uC3pRhKXV+L7
hkqVmlaDfihkUT+C4StXUP9jCqmdd16sPg896qHricRaS/QXBa39PpT6C26kZ1vGDYrJBob2peEm
G5S8l3+XUAMM9yk33/7Cq/BvgjR1OEAq4ve+SHehGTMJRQRvZqQ7+Pxg5eEg+6t4tJ+XpvsHSwk+
VBLUHk4q8XADEM9+hGB9htUw4itEnN1wrwYwdJLvkpucuAf9fDQVqJMMAvsZaTQqxsBf+ywEZ5X7
o5c1GJ+USK8Z7wIZAScM4NEzS16n/yahWrSkKNU0Z4Wbj2GndewxmZwfE5TUYlUvYgFhdDbkmr5g
LOZSlyD5eYLA6eKYsFmfxhx7FEgS7ZKRwxLf+AK4iGTiMXoeZM/272jKdTY+L7rqFqIIje5RB7xo
pSGdR3dpNsLujjzbJ6qG8x+xm7ah2vyFyotJrGYUmQ4DX2ov1Mt4fz4fuo03Hi2BnSpGfkfzeNz7
uAU71J+QjnRt32xsTzDsaI8GQY5SpkjCCzBjzyAcfKPCdnAILcX5pw5M2xvewiTj4AasSrHcBNdU
d6E7eziygfRiL+hjY5TkB49c22/LpuHZbegPtp1/Fz70nX6mS3uH5aGH3LRv5KTL2XuKHb9Tpasd
dlCU23wqXaZNZuCnv4yn5ybLlMnj/rx6MdlFMeOUyQ5dwMdRLcfKzBwlNuWBPFfqvibyESclySoK
mDtXZi01Nbk4aeezthTjNecCLwRGHSNfT9BDqM99YfurSCoWQt4TBf2OQ3qNNXaDsS/adKMbAR/A
mHDy6Ay/ucK8dw8suLgnLJSM6/ICEc8/ThcvQDAy5EKmhb5fdKdlqTY8OCGp6aum5XHsIXZwK47y
VBuKo5NPRnGS4s7aXgJonKZ3jXU48G4iUwAM7WcOqRTAaUorzgJV50uuzkmlbgO67jQHWUI65JP6
KFO6AGKw/w/5R0a29RrDy5jB5gLZMsIobzWQ8Trl/tZP07M8Pa0nP0/7+4eFe9Ilq5kOi5olF80S
E7s8Cmkd5J2rC/SQZ2x9XXPTm9ExikBLtMiUJam1a5BtsVJrvwPIHid6c7KwyENP94olLVNGaWD8
BaKm3el3FA0zm/1pOCvHE3Y7XPto/UlcrMRmO1aEUzqMTRaiD4dkKKqVEkL2GKiKwO3+DOAnPhse
xESpU+Apy+b0pgCmEnBK1tjBCsc9rz4YpdMWj0IP/U7Tky7HR8F8yEKvn89W1yr5AECSDVm7pshk
+a19r+D0sEjG6TpYtFcY2A6WTOeaQJy19WSPc0wukngLwHfWyts/jKgPEpmtdr+vXBdsagC+wTJa
u2b6MkykS6Cuej18xmx8Im52sBvyrXwjvu+8Ok3ajbPWgF00g/8zDgkQeRFKEs/88zcPgPYwFvKb
77PhM0NQ8+N2COZNaIjK+YNdUZ3x6V82ozqRuQNfKwUEY5XrLAvkSFODlLq+z1wYyGlCq++xAuVp
6lADEa58CFgD5Le8fh6tOzvVKaD3fHMNRTCK7s81K44n8nvVIfR8xjqqHeP5NALfz61CEvYOBIOC
wk9Od0xjfqgbP+WvIyw5BcbxiX1iVHm1k820R3XQPkmDddpqH+AvBIVWKDzKCsePINv556Y3J2as
Sy+E3O0EO2dEkGhyKojcV8kelmts8p/CZvngOiW/S/HGGgjsjs51Aexc8kWLZK/h3RyfYVEfp1vv
vu6EASpWKXWCyRG5/0CgzfxoEi1U3PA8k21dgNS9QQOfTqBMaYFRi7oMX91XbvZeRIZFjGEVxaAw
UqDg0r32LeZMrbdQGK8SpijMtnsDNdRg7mG4+Dzgm18DNlCgqDelhdOKRf5XwrNg4TFLQNytpmVt
Wm/h5P96wuHUTocq0Fju1MMpSP6m9hz6m09rTaOGorxLaisGHajSUmZIo1PKaTBcRCiyuZcvoi39
0FuTE+gAYmWPusw6RV6osr9B7etns9HB/3QORocep2PU6MIUXxG0DHkeR7PQZq56tU/wFTN+G7+n
6ZUJxm4wHVrRkZrCUR+5pTptI3KAjxSZYOPybHQ4tR/uIPCzyIYEEv36K2rs6Vn4Whg7oGs/anaA
gFMqxbdizRhbWq/VftS0laCs4B4PujLBrNXBsmCs9Fh4ZPZFBFhovoxV2GA9VoGn6xD+rBJXi3ps
TGt3Ye+21risnE7xyHde9bpkn2kmHAL4oHgErJb17ywxnmyHvSYkR56DHWlFCQmNxkv4ETp0HE4x
yQog8SWDwUX7Or5hXbJq+Itu5t2Wfj5XFPo/UxORuO8TQ1kGSNs5pClpwOPpf8QfOvr1VYZxU0kj
JuLlkwQeXQ8RPYG8E6HibO9BcEqy2UvfEJmRFNg2VKYoc8VUB2ak8/BFWbKYO35WkW3SqXMye/R2
jvf7oMIMnZRuiYNSInV72r/aNfrPhzq0587ufs7BBSw3psz/6/tC3qEYh48HXYQvwFv3NG23DTkW
kbVKYg0Bj/WfpV+RZ+U9KtJdptrZWurwiVVc3wkNfo85j7+wPD5+88L1cTf+B4eB7AZnJFCCSIpQ
5HFVK97AnjHsG8/v2Jcs4mkFEQG9N8momOogPVcR/54bo0lXmMhLdC5WSDKbjtRGGf+SRxAGgLj5
hwiRJd5FxHUozgv4Jlm3Zka+eHaivpRYKPj9A46uMoBOAL3UHwc4vugjy7fHC1r37bOhhfIKWw3z
cmXgc0Dm611lENrEftmVYohBElGUttlH0FLujduYtg5+mds734ahIMnQUgqikpTMFaZWmTcTC/lg
iUrDFGcxGKDhnT6Ex4ONiLVxvb2j8+Olrd1iFDlTAs3PrLXUvbCMR7PgsDFDQJgcV5TD/XiOyQyl
YGSaPAcbFkalT1G5qgNxnwJbDXp3w/V60vF105LMb1tF7yxwlq6dk6qLrj1oKxHFdWx4aElDKDgG
QC17cHnwLZ1kAhSMNY5eYmQux3vx8aRfSRGId8AN6nOAiizcSXgSsWr9iiTcns45jXHIk0z7FHb2
hKl302VApT11wbBhrYWRvYVuu6r7gywnwvKIWx84MlOK2tliIdStTf3ZAOeZdEHJO9FhYQhtoUQb
/GBMbhWbGQlbfV8Q+56F2705mf++is2bfPgvz/FHUNsvNZpy/3iilOYoZgaaUwL0WDvwNRQxCLET
pHJRQTfkHXUZH7YsZL9/O22p3kPLLUT6zEWg2J/oFFysAwHzkmc2XfJyi3uWqaHfY/04SW7PrLCG
VizAoDsketh8VWQDYSOWQC8PCnBreraTD0c6EQlIb2QKFQ/FQ6eDSh3qcPTG4Z1eSoMd9c7paGzM
O9lBilGw02Nx9x0NjMWWRjWjatFA5dSe9qk9eB5xJ529hmXSPOqAX0BbMedACg7Epr+GbcnzNYHy
BVd8/V95rXaPsK9jD5fjGyltXlaRiKRRCzZhq6IfACiaH3lCI7Gd/14yLcLVYljlLot+VqasXnc8
y4LukvpIK/GVgTzKtLqMBb+FsRVnn1eIY1c23l8V1MBEE4I1mSUs1nIGHYJc6I0TvUtLtOQMnakQ
LkXbuWEhnVb7xRMGtZ4kR+PvUmAxda+sCwbaefUY9RFfFKcTaETRtdLEmdK4NBPWNrNgaXtAwsJP
NLBdjBSnsPlXg/394WGbwE5W9WqXwmGGOymrFOP0CpOy3dmWeZWSzpoRw2RYBr1eJH0uauWu5vVc
LIvAjpeAGToyvyiP1WYrElb56iiy16UkYvspwjEezbd5l5u2xM5wOGBKGrt3A7//9m+kWk8lLkpz
T+vHMtZDm8A6WylJnDIWOrIzqwC+wrd6YVovHx8fbknUQdFAJ1789nMuPdxtZAdO7oxvbzVM8glE
kUFxyYO7/AK3elVCxy+G35nikL7G2f4jq5MS9o7lsI2q1vuxDOhdIN6iEv5BLAkc7GKKOIGblBL1
9eFG6/cmtTf1oLDJSBqV2yAM1BeB60UxtGUA75nMNgyNbGTB0iM9zJoArKVOQGRMvA69nhGAHSLw
5fzcWXG5A7iyJHTyHjWJuG5r0jbIvgRaFWJx+Q4=
`protect end_protected
|
------------------------------------------------------------------------------
-- This file is a part of the GRLIB VHDL IP LIBRARY
-- Copyright (C) 2003 - 2008, Gaisler Research
-- Copyright (C) 2008 - 2014, Aeroflex Gaisler
-- Copyright (C) 2015 - 2016, Cobham Gaisler
--
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
--
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-----------------------------------------------------------------------------
-- Pacakge: spi
-- File: spi.vhd
-- Author: Jiri Gaisler - Gaisler Research
-- Description: SPI interface package
------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
package spi is
type spi_in_type is record
miso : std_ulogic;
mosi : std_ulogic;
sck : std_ulogic;
spisel : std_ulogic;
astart : std_ulogic;
cstart : std_ulogic;
ignore : std_ulogic;
end record;
type spi_in_vector is array (natural range <>) of spi_in_type;
constant spi_in_none : spi_in_type := ('0', '0', '0', '0', '0', '0', '0');
type spi_out_type is record
miso : std_ulogic;
misooen : std_ulogic;
mosi : std_ulogic;
mosioen : std_ulogic;
sck : std_ulogic;
sckoen : std_ulogic;
ssn : std_logic_vector(7 downto 0); -- used by GE/OC SPI core
enable : std_ulogic;
astart : std_ulogic;
aready : std_ulogic;
end record;
type spi_out_vector is array (natural range <>) of spi_out_type;
constant spi_out_none : spi_out_type := ('0', '0', '0', '0', '0', '0',
(others => '0'), '0', '0', '0');
-- SPI master/slave controller
component spictrl
generic (
pindex : integer := 0;
paddr : integer := 0;
pmask : integer := 16#fff#;
pirq : integer := 0;
fdepth : integer range 1 to 7 := 1;
slvselen : integer range 0 to 1 := 0;
slvselsz : integer range 1 to 32 := 1;
oepol : integer range 0 to 1 := 0;
odmode : integer range 0 to 1 := 0;
automode : integer range 0 to 1 := 0;
acntbits : integer range 1 to 32 := 32;
aslvsel : integer range 0 to 1 := 0;
twen : integer range 0 to 1 := 1;
maxwlen : integer range 0 to 15 := 0;
netlist : integer := 0;
syncram : integer range 0 to 1 := 1;
memtech : integer := 0;
ft : integer range 0 to 2 := 0;
scantest : integer range 0 to 1 := 0;
syncrst : integer range 0 to 1 := 0;
automask0 : integer := 0;
automask1 : integer := 0;
automask2 : integer := 0;
automask3 : integer := 0;
ignore : integer range 0 to 1 := 0
);
port (
rstn : in std_ulogic;
clk : in std_ulogic;
apbi : in apb_slv_in_type;
apbo : out apb_slv_out_type;
spii : in spi_in_type;
spio : out spi_out_type;
slvsel : out std_logic_vector((slvselsz-1) downto 0)
);
end component;
-- SPI to AHB bridge
type spi2ahb_in_type is record
haddr : std_logic_vector(31 downto 0);
hmask : std_logic_vector(31 downto 0);
en : std_ulogic;
end record;
type spi2ahb_out_type is record
dma : std_ulogic;
wr : std_ulogic;
prot : std_ulogic;
end record;
component spi2ahb
generic (
-- AHB Configuration
hindex : integer := 0;
--
ahbaddrh : integer := 0;
ahbaddrl : integer := 0;
ahbmaskh : integer := 0;
ahbmaskl : integer := 0;
--
oepol : integer range 0 to 1 := 0;
--
filter : integer range 2 to 512 := 2;
--
cpol : integer range 0 to 1 := 0;
cpha : integer range 0 to 1 := 0);
port (
rstn : in std_ulogic;
clk : in std_ulogic;
-- AHB master interface
ahbi : in ahb_mst_in_type;
ahbo : out ahb_mst_out_type;
-- SPI signals
spii : in spi_in_type;
spio : out spi_out_type
);
end component;
component spi2ahb_apb
generic (
-- AHB Configuration
hindex : integer := 0;
--
ahbaddrh : integer := 0;
ahbaddrl : integer := 0;
ahbmaskh : integer := 0;
ahbmaskl : integer := 0;
resen : integer := 0;
-- APB configuration
pindex : integer := 0;
paddr : integer := 0;
pmask : integer := 16#fff#;
pirq : integer := 0;
--
oepol : integer range 0 to 1 := 0;
--
filter : integer range 2 to 512 := 2;
--
cpol : integer range 0 to 1 := 0;
cpha : integer range 0 to 1 := 0);
port (
rstn : in std_ulogic;
clk : in std_ulogic;
-- AHB master interface
ahbi : in ahb_mst_in_type;
ahbo : out ahb_mst_out_type;
--
apbi : in apb_slv_in_type;
apbo : out apb_slv_out_type;
-- SPI signals
spii : in spi_in_type;
spio : out spi_out_type
);
end component;
component spi2ahbx
generic (
hindex : integer := 0;
oepol : integer range 0 to 1 := 0;
filter : integer range 2 to 512 := 2;
cpol : integer range 0 to 1 := 0;
cpha : integer range 0 to 1 := 0);
port (
rstn : in std_ulogic;
clk : in std_ulogic;
-- AHB master interface
ahbi : in ahb_mst_in_type;
ahbo : out ahb_mst_out_type;
-- SPI signals
spii : in spi_in_type;
spio : out spi_out_type;
--
spi2ahbi : in spi2ahb_in_type;
spi2ahbo : out spi2ahb_out_type
);
end component;
type spimctrl_in_type is record
miso : std_ulogic;
mosi : std_ulogic;
cd : std_ulogic;
end record;
type spimctrl_out_type is record
mosi : std_ulogic;
mosioen : std_ulogic;
sck : std_ulogic;
csn : std_ulogic;
cdcsnoen : std_ulogic;
-- errorn : std_ulogic;
ready : std_ulogic;
initialized : std_ulogic;
end record;
constant spimctrl_out_none : spimctrl_out_type :=
('0', '1', '0', '1', '1', '0', '0');
component spimctrl
generic (
hindex : integer := 0;
hirq : integer := 0;
faddr : integer := 16#000#;
fmask : integer := 16#fff#;
ioaddr : integer := 16#000#;
iomask : integer := 16#fff#;
spliten : integer := 0;
oepol : integer := 0;
sdcard : integer range 0 to 1 := 0;
readcmd : integer range 0 to 255 := 16#0B#;
dummybyte : integer range 0 to 1 := 1;
dualoutput : integer range 0 to 1 := 0;
scaler : integer range 1 to 512 := 1;
altscaler : integer range 1 to 512 := 1;
pwrupcnt : integer := 0;
maxahbaccsz : integer range 0 to 256 := AHBDW;
offset : integer := 0
);
port (
rstn : in std_ulogic;
clk : in std_ulogic;
ahbsi : in ahb_slv_in_type;
ahbso : out ahb_slv_out_type;
spii : in spimctrl_in_type;
spio : out spimctrl_out_type
);
end component;
end;
|
library IEEE;
use IEEE.STD_LOGIC_1164.all;
entity EqCmpDemo is
port(SW : in std_logic_vector(7 downto 0);
LEDR : out std_logic_vector(0 downto 0));
end EqCmpDemo;
architecture Shell of EqCmpDemo is
begin
system_core : entity work.EqCmp4(Behavioral)
generic map(size => 4)
port map(input0 => SW(3 downto 0),
input1 => SW(7 downto 4),
cmpout =>LEDR(0));
end Shell; |
architecture test of test2 is
signal foo, foo2 : bar := baz;
begin end;
|
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.stdlib.all;
library techmap;
use techmap.gencomp.all;
library stratixiii;
use stratixiii.all;
library altera;
use altera.all;
entity admout is
port(
clk : in std_logic; -- clk0
dm_h : in std_logic;
dm_l : in std_logic;
dm_pad : out std_logic -- DQ pad
);
end;
architecture rtl of admout is
component stratixiii_ddio_out
generic(
power_up : string := "low";
async_mode : string := "none";
sync_mode : string := "none";
half_rate_mode : string := "false";
use_new_clocking_model : string := "false";
lpm_type : string := "stratixiii_ddio_out"
);
port (
datainlo : in std_logic := '0';
datainhi : in std_logic := '0';
clk : in std_logic := '0';
clkhi : in std_logic := '0';
clklo : in std_logic := '0';
muxsel : in std_logic := '0';
ena : in std_logic := '1';
areset : in std_logic := '0';
sreset : in std_logic := '0';
dataout : out std_logic--;
--dfflo : out std_logic;
--dffhi : out std_logic;
--devclrn : in std_logic := '1';
--devpor : in std_logic := '1'
);
end component;
component stratixiii_io_obuf
generic(
bus_hold : string := "false";
open_drain_output : string := "false";
shift_series_termination_control : string := "false";
lpm_type : string := "stratixiii_io_obuf"
);
port(
dynamicterminationcontrol : in std_logic := '0';
i : in std_logic := '0';
o : out std_logic;
obar : out std_logic;
oe : in std_logic := '1'--;
--parallelterminationcontrol : in std_logic_vector(13 downto 0) := (others => '0');
--seriesterminationcontrol : in std_logic_vector(13 downto 0) := (others => '0')
);
end component;
signal vcc : std_logic;
signal gnd : std_logic_vector(13 downto 0);
signal dm_reg : std_logic;
begin
vcc <= '1'; gnd <= (others => '0');
-- DM output register --------------------------------------------------------------
dm_reg0 : stratixiii_ddio_out
generic map(
power_up => "high",
async_mode => "none",
sync_mode => "none",
half_rate_mode => "false",
use_new_clocking_model => "true",
lpm_type => "stratixiii_ddio_out"
)
port map(
datainlo => dm_l,
datainhi => dm_h,
clk => clk,
clkhi => clk,
clklo => clk,
muxsel => clk,
ena => vcc,
areset => gnd(0),
sreset => gnd(0),
dataout => dm_reg--,
--dfflo => open,
--dffhi => open,
--devclrn => vcc,
--devpor => vcc
);
-- Out buffer (DM) ------------------------------------------------------------------
dm_buf0 : stratixiii_io_obuf
generic map(
open_drain_output => "false",
shift_series_termination_control => "false",
bus_hold => "false",
lpm_type => "stratixiii_io_obuf"
)
port map(
i => dm_reg,
--oe => vcc,
--dynamicterminationcontrol => gnd(0),
--seriesterminationcontrol => gnd,
--parallelterminationcontrol => gnd,
o => dm_pad,
obar => open
);
end;
|
--------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 16:11:49 04/15/2016
-- Design Name:
-- Module Name: /home/tj/Desktop/UMD_RISC-16G5/ProjectLab2/Shadow_Reg_No_VGA/Shadow_EX_NoVGA/EX_MEM_CTL_tb.vhd
-- Project Name: Shadow_EX_NoVGA
-- Target Device:
-- Tool versions:
-- Description:
--
-- VHDL Test Bench Created by ISE for module: EX_MEM_CTL
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
-- Notes:
-- This testbench has been automatically generated using types std_logic and
-- std_logic_vector for the ports of the unit under test. Xilinx recommends
-- that these types always be used for the top-level I/O of a design in order
-- to guarantee that the testbench will bind correctly to the post-implementation
-- simulation model.
--------------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY EX_MEM_CTL_tb IS
END EX_MEM_CTL_tb;
ARCHITECTURE behavior OF EX_MEM_CTL_tb IS
-- Component Declaration for the Unit Under Test (UUT)
COMPONENT EX_MEM_CTL
PORT(
CLK : IN std_logic;
EN : IN std_logic;
OP : IN std_logic_vector(3 downto 0);
RD_EN : OUT std_logic;
WR_EN : OUT std_logic
);
END COMPONENT;
--Inputs
signal CLK : std_logic := '0';
signal EN : std_logic := '0';
signal OP : std_logic_vector(3 downto 0) := (others => '0');
--Outputs
signal RD_EN : std_logic;
signal WR_EN : std_logic;
-- Clock period definitions
constant CLK_period : time := 1 ms;
BEGIN
-- Instantiate the Unit Under Test (UUT)
uut: EX_MEM_CTL PORT MAP (
CLK => CLK,
EN => EN,
OP => OP,
RD_EN => RD_EN,
WR_EN => WR_EN
);
-- Clock process definitions
CLK_process :process
begin
CLK <= '0';
wait for CLK_period/2;
CLK <= '1';
wait for CLK_period/2;
end process;
-- Stimulus process
stim_proc: process
begin
-- hold reset state for 100 ns.
wait for 100 ns;
wait for CLK_period*2;
EN <= '0';
wait for CLK_period*2;
EN <= '1';
wait for CLK_period*2;
OP <= "1011";
wait for CLK_period*2;
OP <= "1100";
wait for CLK_period*2;
OP <= "0000";
wait for CLK_period*2;
EN <= '0';
wait for CLK_period*2;
OP <= "1011";
wait for CLK_period*2;
OP <= "1100";
wait for CLK_period*2;
OP <= "0000";
-- insert stimulus here
wait;
end process;
END;
|
--
-- BananaCore - A processor written in VHDL
--
-- Created by Rogiel Sulzbach.
-- Copyright (c) 2014-2015 Rogiel Sulzbach. All rights reserved.
--
library ieee;
use ieee.numeric_std.all;
use ieee.std_logic_1164.all;
use ieee.std_logic_1164.std_logic;
library BananaCore;
use BananaCore.Core.all;
use BananaCore.Memory.all;
use BananaCore.RegisterPackage.all;
-- The AddInstructionExecutor entity
entity AddInstructionExecutor is
port(
-- the processor main clock
clock: in BananaCore.Core.Clock;
-- enables the instruction
enable: in std_logic;
-- the first register to operate on (argument 0)
arg0_address: in RegisterAddress;
-- the first register to operate on (argument 1)
arg1_address: in RegisterAddress;
-- a bus indicating if the instruction is ready or not
instruction_ready: out std_logic := '0';
------------------------------------------
-- MEMORY BUS
------------------------------------------
-- the address to read/write memory from/to
memory_address: out MemoryAddress := (others => '0');
-- the memory being read to
memory_data_read: in MemoryData;
-- the memory being written to
memory_data_write: out MemoryData := (others => '0');
-- the operation to perform on the memory
memory_operation: out MemoryOperation := MEMORY_OP_DISABLED;
-- a flag indicating if a memory operation should be performed
memory_enable: out std_logic;
-- a flag indicating if a memory operation has completed
memory_ready: in std_logic;
------------------------------------------
-- REGISTER BUS
------------------------------------------
-- the processor register address bus
register_address: out RegisterAddress := (others => '0');
-- the processor register data bus
register_data_read: in RegisterData;
-- the processor register data bus
register_data_write: out RegisterData := (others => '0');
-- the processor register operation signal
register_operation: out RegisterOperation := OP_REG_DISABLED;
-- the processor register enable signal
register_enable: out std_logic := '0';
-- a flag indicating if a register operation has completed
register_ready: in std_logic
);
end AddInstructionExecutor;
architecture AddInstructionExecutorImpl of AddInstructionExecutor is
type state_type is (
fetch_arg0,
store_arg0,
fetch_arg1,
store_arg1,
execute,
store_result,
complete
);
signal state: state_type := fetch_arg0;
signal arg0: RegisterData;
signal arg1: RegisterData;
signal result: RegisterData;
begin
process (clock) begin
if clock'event and clock = '1' then
if enable = '1' then
case state is
when fetch_arg0 =>
instruction_ready <= '0';
register_address <= arg0_address;
register_operation <= OP_REG_GET;
register_enable <= '1';
state <= store_arg0;
when store_arg0 =>
if register_ready = '1' then
arg0 <= register_data_read;
register_enable <= '0';
state <= fetch_arg1;
else
state <= store_arg0;
end if;
when fetch_arg1 =>
register_address <= arg1_address;
register_operation <= OP_REG_GET;
register_enable <= '1';
state <= store_arg1;
when store_arg1 =>
if register_ready = '1' then
arg1 <= register_data_read;
register_enable <= '0';
state <= execute;
else
state <= store_arg1;
end if;
when execute =>
-- TODO implement instruction here
result <= std_logic_vector(unsigned(arg0) + unsigned(arg1));
state <= store_result;
when store_result =>
register_address <= AccumulatorRegister;
register_operation <= OP_REG_SET;
register_data_write <= result;
register_enable <= '1';
instruction_ready <= '1';
state <= complete;
when complete =>
state <= complete;
end case;
else
instruction_ready <= '0';
state <= fetch_arg0;
end if;
end if;
end process;
end AddInstructionExecutorImpl;
|
-- Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
-- --------------------------------------------------------------------------------
-- Tool Version: Vivado v.2018.2 (win64) Build 2258646 Thu Jun 14 20:03:12 MDT 2018
-- Date : Mon Sep 16 04:58:12 2019
-- Host : varun-laptop running 64-bit Service Pack 1 (build 7601)
-- Command : write_vhdl -force -mode synth_stub -rename_top design_1_auto_pc_0 -prefix
-- design_1_auto_pc_0_ design_1_auto_pc_0_stub.vhdl
-- Design : design_1_auto_pc_0
-- Purpose : Stub declaration of top-level module interface
-- Device : xc7z010clg400-1
-- --------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity design_1_auto_pc_0 is
Port (
aclk : in STD_LOGIC;
aresetn : in STD_LOGIC;
s_axi_awid : in STD_LOGIC_VECTOR ( 11 downto 0 );
s_axi_awaddr : in STD_LOGIC_VECTOR ( 31 downto 0 );
s_axi_awlen : in STD_LOGIC_VECTOR ( 3 downto 0 );
s_axi_awsize : in STD_LOGIC_VECTOR ( 2 downto 0 );
s_axi_awburst : in STD_LOGIC_VECTOR ( 1 downto 0 );
s_axi_awlock : in STD_LOGIC_VECTOR ( 1 downto 0 );
s_axi_awcache : in STD_LOGIC_VECTOR ( 3 downto 0 );
s_axi_awprot : in STD_LOGIC_VECTOR ( 2 downto 0 );
s_axi_awqos : in STD_LOGIC_VECTOR ( 3 downto 0 );
s_axi_awvalid : in STD_LOGIC;
s_axi_awready : out STD_LOGIC;
s_axi_wid : in STD_LOGIC_VECTOR ( 11 downto 0 );
s_axi_wdata : in STD_LOGIC_VECTOR ( 31 downto 0 );
s_axi_wstrb : in STD_LOGIC_VECTOR ( 3 downto 0 );
s_axi_wlast : in STD_LOGIC;
s_axi_wvalid : in STD_LOGIC;
s_axi_wready : out STD_LOGIC;
s_axi_bid : out STD_LOGIC_VECTOR ( 11 downto 0 );
s_axi_bresp : out STD_LOGIC_VECTOR ( 1 downto 0 );
s_axi_bvalid : out STD_LOGIC;
s_axi_bready : in STD_LOGIC;
s_axi_arid : in STD_LOGIC_VECTOR ( 11 downto 0 );
s_axi_araddr : in STD_LOGIC_VECTOR ( 31 downto 0 );
s_axi_arlen : in STD_LOGIC_VECTOR ( 3 downto 0 );
s_axi_arsize : in STD_LOGIC_VECTOR ( 2 downto 0 );
s_axi_arburst : in STD_LOGIC_VECTOR ( 1 downto 0 );
s_axi_arlock : in STD_LOGIC_VECTOR ( 1 downto 0 );
s_axi_arcache : in STD_LOGIC_VECTOR ( 3 downto 0 );
s_axi_arprot : in STD_LOGIC_VECTOR ( 2 downto 0 );
s_axi_arqos : in STD_LOGIC_VECTOR ( 3 downto 0 );
s_axi_arvalid : in STD_LOGIC;
s_axi_arready : out STD_LOGIC;
s_axi_rid : out STD_LOGIC_VECTOR ( 11 downto 0 );
s_axi_rdata : out STD_LOGIC_VECTOR ( 31 downto 0 );
s_axi_rresp : out STD_LOGIC_VECTOR ( 1 downto 0 );
s_axi_rlast : out STD_LOGIC;
s_axi_rvalid : out STD_LOGIC;
s_axi_rready : in STD_LOGIC;
m_axi_awaddr : out STD_LOGIC_VECTOR ( 31 downto 0 );
m_axi_awprot : out STD_LOGIC_VECTOR ( 2 downto 0 );
m_axi_awvalid : out STD_LOGIC;
m_axi_awready : in STD_LOGIC;
m_axi_wdata : out STD_LOGIC_VECTOR ( 31 downto 0 );
m_axi_wstrb : out STD_LOGIC_VECTOR ( 3 downto 0 );
m_axi_wvalid : out STD_LOGIC;
m_axi_wready : in STD_LOGIC;
m_axi_bresp : in STD_LOGIC_VECTOR ( 1 downto 0 );
m_axi_bvalid : in STD_LOGIC;
m_axi_bready : out STD_LOGIC;
m_axi_araddr : out STD_LOGIC_VECTOR ( 31 downto 0 );
m_axi_arprot : out STD_LOGIC_VECTOR ( 2 downto 0 );
m_axi_arvalid : out STD_LOGIC;
m_axi_arready : in STD_LOGIC;
m_axi_rdata : in STD_LOGIC_VECTOR ( 31 downto 0 );
m_axi_rresp : in STD_LOGIC_VECTOR ( 1 downto 0 );
m_axi_rvalid : in STD_LOGIC;
m_axi_rready : out STD_LOGIC
);
end design_1_auto_pc_0;
architecture stub of design_1_auto_pc_0 is
attribute syn_black_box : boolean;
attribute black_box_pad_pin : string;
attribute syn_black_box of stub : architecture is true;
attribute black_box_pad_pin of stub : architecture is "aclk,aresetn,s_axi_awid[11:0],s_axi_awaddr[31:0],s_axi_awlen[3:0],s_axi_awsize[2:0],s_axi_awburst[1:0],s_axi_awlock[1:0],s_axi_awcache[3:0],s_axi_awprot[2:0],s_axi_awqos[3:0],s_axi_awvalid,s_axi_awready,s_axi_wid[11:0],s_axi_wdata[31:0],s_axi_wstrb[3:0],s_axi_wlast,s_axi_wvalid,s_axi_wready,s_axi_bid[11:0],s_axi_bresp[1:0],s_axi_bvalid,s_axi_bready,s_axi_arid[11:0],s_axi_araddr[31:0],s_axi_arlen[3:0],s_axi_arsize[2:0],s_axi_arburst[1:0],s_axi_arlock[1:0],s_axi_arcache[3:0],s_axi_arprot[2:0],s_axi_arqos[3:0],s_axi_arvalid,s_axi_arready,s_axi_rid[11:0],s_axi_rdata[31:0],s_axi_rresp[1:0],s_axi_rlast,s_axi_rvalid,s_axi_rready,m_axi_awaddr[31:0],m_axi_awprot[2:0],m_axi_awvalid,m_axi_awready,m_axi_wdata[31:0],m_axi_wstrb[3:0],m_axi_wvalid,m_axi_wready,m_axi_bresp[1:0],m_axi_bvalid,m_axi_bready,m_axi_araddr[31:0],m_axi_arprot[2:0],m_axi_arvalid,m_axi_arready,m_axi_rdata[31:0],m_axi_rresp[1:0],m_axi_rvalid,m_axi_rready";
attribute X_CORE_INFO : string;
attribute X_CORE_INFO of stub : architecture is "axi_protocol_converter_v2_1_17_axi_protocol_converter,Vivado 2018.2";
begin
end;
|
----------------------------------------------------------------------------------
-- Company: LARC - Escola Politecnica - University of Sao Paulo
-- Engineer: Pedro Maat C. Massolino
--
-- Create Date: 05/12/2012
-- Design Name: Pipeline_Polynomial_Calc
-- Module Name: Pipeline_Polynomial_Calc
-- Project Name: McEliece Goppa Decoder
-- Target Devices: Any
-- Tool versions: Xilinx ISE 13.3 WebPack
--
-- Description:
--
-- The 3rd step in Goppa Code Decoding.
--
-- This circuit is to be used inside polynomial_evaluator_n to evaluate polynomials.
-- This circuit is the essential for 1 pipeline, therefor all stages are composed in here.
-- For more than 1 pipeline, only in polynomial_evaluator_n with the shared components
-- for all pipelines.
--
-- For the computation this circuit applies the school book algorithm of powering x
-- and multiplying by the respective polynomial coefficient and adding into the accumulator.
-- This method is not appropriate for this computation, so in pipeline_polynomial_calc_v2
-- Horner scheme is applied to reduce circuits costs.
--
-- The circuits parameters
--
-- gf_2_m :
--
-- The size of the field used in this circuit. This parameter depends of the
-- Goppa code used.
--
-- size :
--
-- The number of stages the pipeline has. More stages means more values of value_polynomial
-- are tested at once.
--
-- Dependencies:
-- VHDL-93
--
-- stage_polynomial_calc Rev 1.0
-- register_nbits Rev 1.0
--
-- Revision:
-- Revision 1.0
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity pipeline_polynomial_calc is
Generic (
gf_2_m : integer range 1 to 20 := 11;
size : integer := 28
);
Port (
value_x : in STD_LOGIC_VECTOR((gf_2_m - 1) downto 0);
value_polynomial : in STD_LOGIC_VECTOR((((gf_2_m)*size) - 1) downto 0);
value_acc : in STD_LOGIC_VECTOR((gf_2_m - 1) downto 0);
value_x_pow : in STD_LOGIC_VECTOR((gf_2_m - 1) downto 0);
clk : in STD_LOGIC;
new_value_x_pow : out STD_LOGIC_VECTOR((gf_2_m - 1) downto 0);
new_value_acc : out STD_LOGIC_VECTOR((gf_2_m - 1) downto 0)
);
end pipeline_polynomial_calc;
architecture Behavioral of pipeline_polynomial_calc is
component stage_polynomial_calc
Generic(gf_2_m : integer range 1 to 20 := 11);
Port (
value_x : in STD_LOGIC_VECTOR ((gf_2_m - 1) downto 0);
value_x_pow : in STD_LOGIC_VECTOR ((gf_2_m - 1) downto 0);
value_polynomial_coefficient : in STD_LOGIC_VECTOR ((gf_2_m - 1) downto 0);
value_acc : in STD_LOGIC_VECTOR ((gf_2_m - 1) downto 0);
new_value_x_pow : out STD_LOGIC_VECTOR ((gf_2_m - 1) downto 0);
new_value_acc : out STD_LOGIC_VECTOR ((gf_2_m - 1) downto 0)
);
end component;
component register_nbits
Generic(size : integer);
Port(
d : in STD_LOGIC_VECTOR ((size - 1) downto 0);
clk : in STD_LOGIC;
ce : in STD_LOGIC;
q : out STD_LOGIC_VECTOR ((size - 1) downto 0)
);
end component;
type array_std_logic_vector is array(integer range <>) of std_logic_vector((gf_2_m - 1) downto 0);
signal acc_d : array_std_logic_vector((size) downto 0);
signal acc_q : array_std_logic_vector((size - 1) downto 0);
signal x_pow_d : array_std_logic_vector((size) downto 0);
signal x_pow_q : array_std_logic_vector((size - 1) downto 0);
signal x_q : array_std_logic_vector((size) downto 0);
begin
x_q(0) <= value_x;
x_pow_d(0) <= value_x_pow;
acc_d(0) <= value_acc;
pipeline : for I in 0 to (size - 1) generate
reg_x_I : register_nbits
Generic Map(size => gf_2_m)
Port Map(
d => x_q(I),
clk => clk,
ce => '1',
q => x_q(I+1)
);
reg_x_pow_I : register_nbits
Generic Map(size => gf_2_m)
Port Map(
d => x_pow_d(I),
clk => clk,
ce => '1',
q => x_pow_q(I)
);
reg_acc_I : register_nbits
Generic Map(size => gf_2_m)
Port Map(
d => acc_d(I),
clk => clk,
ce => '1',
q => acc_q(I)
);
stage_I : stage_polynomial_calc
Generic Map(gf_2_m => gf_2_m)
Port Map (
value_x => x_q(I+1),
value_x_pow => x_pow_q(I),
value_polynomial_coefficient => value_polynomial(((gf_2_m)*(I+1) - 1) downto ((gf_2_m)*(I))),
value_acc => acc_q(I),
new_value_x_pow => x_pow_d(I+1),
new_value_acc => acc_d(I+1)
);
end generate;
new_value_x_pow <= x_pow_d(size);
new_value_acc <= acc_d(size);
end Behavioral;
|
entity test is
begin
end entity;
architecture arch of test is
begin
process(all)
begin
report "compilation crashes here";
end process;
end architecture;
|
-- (c) Copyright 1995-2016 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- DO NOT MODIFY THIS FILE.
-- IP VLNV: xilinx.com:ip:fifo_generator:12.0
-- IP Revision: 3
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY fifo_generator_v12_0;
USE fifo_generator_v12_0.fifo_generator_v12_0;
ENTITY DRSCFIFO288x16WC IS
PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);
END DRSCFIFO288x16WC;
ARCHITECTURE DRSCFIFO288x16WC_arch OF DRSCFIFO288x16WC IS
ATTRIBUTE DowngradeIPIdentifiedWarnings : string;
ATTRIBUTE DowngradeIPIdentifiedWarnings OF DRSCFIFO288x16WC_arch: ARCHITECTURE IS "yes";
COMPONENT fifo_generator_v12_0 IS
GENERIC (
C_COMMON_CLOCK : INTEGER;
C_COUNT_TYPE : INTEGER;
C_DATA_COUNT_WIDTH : INTEGER;
C_DEFAULT_VALUE : STRING;
C_DIN_WIDTH : INTEGER;
C_DOUT_RST_VAL : STRING;
C_DOUT_WIDTH : INTEGER;
C_ENABLE_RLOCS : INTEGER;
C_FAMILY : STRING;
C_FULL_FLAGS_RST_VAL : INTEGER;
C_HAS_ALMOST_EMPTY : INTEGER;
C_HAS_ALMOST_FULL : INTEGER;
C_HAS_BACKUP : INTEGER;
C_HAS_DATA_COUNT : INTEGER;
C_HAS_INT_CLK : INTEGER;
C_HAS_MEMINIT_FILE : INTEGER;
C_HAS_OVERFLOW : INTEGER;
C_HAS_RD_DATA_COUNT : INTEGER;
C_HAS_RD_RST : INTEGER;
C_HAS_RST : INTEGER;
C_HAS_SRST : INTEGER;
C_HAS_UNDERFLOW : INTEGER;
C_HAS_VALID : INTEGER;
C_HAS_WR_ACK : INTEGER;
C_HAS_WR_DATA_COUNT : INTEGER;
C_HAS_WR_RST : INTEGER;
C_IMPLEMENTATION_TYPE : INTEGER;
C_INIT_WR_PNTR_VAL : INTEGER;
C_MEMORY_TYPE : INTEGER;
C_MIF_FILE_NAME : STRING;
C_OPTIMIZATION_MODE : INTEGER;
C_OVERFLOW_LOW : INTEGER;
C_PRELOAD_LATENCY : INTEGER;
C_PRELOAD_REGS : INTEGER;
C_PRIM_FIFO_TYPE : STRING;
C_PROG_EMPTY_THRESH_ASSERT_VAL : INTEGER;
C_PROG_EMPTY_THRESH_NEGATE_VAL : INTEGER;
C_PROG_EMPTY_TYPE : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL : INTEGER;
C_PROG_FULL_THRESH_NEGATE_VAL : INTEGER;
C_PROG_FULL_TYPE : INTEGER;
C_RD_DATA_COUNT_WIDTH : INTEGER;
C_RD_DEPTH : INTEGER;
C_RD_FREQ : INTEGER;
C_RD_PNTR_WIDTH : INTEGER;
C_UNDERFLOW_LOW : INTEGER;
C_USE_DOUT_RST : INTEGER;
C_USE_ECC : INTEGER;
C_USE_EMBEDDED_REG : INTEGER;
C_USE_PIPELINE_REG : INTEGER;
C_POWER_SAVING_MODE : INTEGER;
C_USE_FIFO16_FLAGS : INTEGER;
C_USE_FWFT_DATA_COUNT : INTEGER;
C_VALID_LOW : INTEGER;
C_WR_ACK_LOW : INTEGER;
C_WR_DATA_COUNT_WIDTH : INTEGER;
C_WR_DEPTH : INTEGER;
C_WR_FREQ : INTEGER;
C_WR_PNTR_WIDTH : INTEGER;
C_WR_RESPONSE_LATENCY : INTEGER;
C_MSGON_VAL : INTEGER;
C_ENABLE_RST_SYNC : INTEGER;
C_ERROR_INJECTION_TYPE : INTEGER;
C_SYNCHRONIZER_STAGE : INTEGER;
C_INTERFACE_TYPE : INTEGER;
C_AXI_TYPE : INTEGER;
C_HAS_AXI_WR_CHANNEL : INTEGER;
C_HAS_AXI_RD_CHANNEL : INTEGER;
C_HAS_SLAVE_CE : INTEGER;
C_HAS_MASTER_CE : INTEGER;
C_ADD_NGC_CONSTRAINT : INTEGER;
C_USE_COMMON_OVERFLOW : INTEGER;
C_USE_COMMON_UNDERFLOW : INTEGER;
C_USE_DEFAULT_SETTINGS : INTEGER;
C_AXI_ID_WIDTH : INTEGER;
C_AXI_ADDR_WIDTH : INTEGER;
C_AXI_DATA_WIDTH : INTEGER;
C_AXI_LEN_WIDTH : INTEGER;
C_AXI_LOCK_WIDTH : INTEGER;
C_HAS_AXI_ID : INTEGER;
C_HAS_AXI_AWUSER : INTEGER;
C_HAS_AXI_WUSER : INTEGER;
C_HAS_AXI_BUSER : INTEGER;
C_HAS_AXI_ARUSER : INTEGER;
C_HAS_AXI_RUSER : INTEGER;
C_AXI_ARUSER_WIDTH : INTEGER;
C_AXI_AWUSER_WIDTH : INTEGER;
C_AXI_WUSER_WIDTH : INTEGER;
C_AXI_BUSER_WIDTH : INTEGER;
C_AXI_RUSER_WIDTH : INTEGER;
C_HAS_AXIS_TDATA : INTEGER;
C_HAS_AXIS_TID : INTEGER;
C_HAS_AXIS_TDEST : INTEGER;
C_HAS_AXIS_TUSER : INTEGER;
C_HAS_AXIS_TREADY : INTEGER;
C_HAS_AXIS_TLAST : INTEGER;
C_HAS_AXIS_TSTRB : INTEGER;
C_HAS_AXIS_TKEEP : INTEGER;
C_AXIS_TDATA_WIDTH : INTEGER;
C_AXIS_TID_WIDTH : INTEGER;
C_AXIS_TDEST_WIDTH : INTEGER;
C_AXIS_TUSER_WIDTH : INTEGER;
C_AXIS_TSTRB_WIDTH : INTEGER;
C_AXIS_TKEEP_WIDTH : INTEGER;
C_WACH_TYPE : INTEGER;
C_WDCH_TYPE : INTEGER;
C_WRCH_TYPE : INTEGER;
C_RACH_TYPE : INTEGER;
C_RDCH_TYPE : INTEGER;
C_AXIS_TYPE : INTEGER;
C_IMPLEMENTATION_TYPE_WACH : INTEGER;
C_IMPLEMENTATION_TYPE_WDCH : INTEGER;
C_IMPLEMENTATION_TYPE_WRCH : INTEGER;
C_IMPLEMENTATION_TYPE_RACH : INTEGER;
C_IMPLEMENTATION_TYPE_RDCH : INTEGER;
C_IMPLEMENTATION_TYPE_AXIS : INTEGER;
C_APPLICATION_TYPE_WACH : INTEGER;
C_APPLICATION_TYPE_WDCH : INTEGER;
C_APPLICATION_TYPE_WRCH : INTEGER;
C_APPLICATION_TYPE_RACH : INTEGER;
C_APPLICATION_TYPE_RDCH : INTEGER;
C_APPLICATION_TYPE_AXIS : INTEGER;
C_PRIM_FIFO_TYPE_WACH : STRING;
C_PRIM_FIFO_TYPE_WDCH : STRING;
C_PRIM_FIFO_TYPE_WRCH : STRING;
C_PRIM_FIFO_TYPE_RACH : STRING;
C_PRIM_FIFO_TYPE_RDCH : STRING;
C_PRIM_FIFO_TYPE_AXIS : STRING;
C_USE_ECC_WACH : INTEGER;
C_USE_ECC_WDCH : INTEGER;
C_USE_ECC_WRCH : INTEGER;
C_USE_ECC_RACH : INTEGER;
C_USE_ECC_RDCH : INTEGER;
C_USE_ECC_AXIS : INTEGER;
C_ERROR_INJECTION_TYPE_WACH : INTEGER;
C_ERROR_INJECTION_TYPE_WDCH : INTEGER;
C_ERROR_INJECTION_TYPE_WRCH : INTEGER;
C_ERROR_INJECTION_TYPE_RACH : INTEGER;
C_ERROR_INJECTION_TYPE_RDCH : INTEGER;
C_ERROR_INJECTION_TYPE_AXIS : INTEGER;
C_DIN_WIDTH_WACH : INTEGER;
C_DIN_WIDTH_WDCH : INTEGER;
C_DIN_WIDTH_WRCH : INTEGER;
C_DIN_WIDTH_RACH : INTEGER;
C_DIN_WIDTH_RDCH : INTEGER;
C_DIN_WIDTH_AXIS : INTEGER;
C_WR_DEPTH_WACH : INTEGER;
C_WR_DEPTH_WDCH : INTEGER;
C_WR_DEPTH_WRCH : INTEGER;
C_WR_DEPTH_RACH : INTEGER;
C_WR_DEPTH_RDCH : INTEGER;
C_WR_DEPTH_AXIS : INTEGER;
C_WR_PNTR_WIDTH_WACH : INTEGER;
C_WR_PNTR_WIDTH_WDCH : INTEGER;
C_WR_PNTR_WIDTH_WRCH : INTEGER;
C_WR_PNTR_WIDTH_RACH : INTEGER;
C_WR_PNTR_WIDTH_RDCH : INTEGER;
C_WR_PNTR_WIDTH_AXIS : INTEGER;
C_HAS_DATA_COUNTS_WACH : INTEGER;
C_HAS_DATA_COUNTS_WDCH : INTEGER;
C_HAS_DATA_COUNTS_WRCH : INTEGER;
C_HAS_DATA_COUNTS_RACH : INTEGER;
C_HAS_DATA_COUNTS_RDCH : INTEGER;
C_HAS_DATA_COUNTS_AXIS : INTEGER;
C_HAS_PROG_FLAGS_WACH : INTEGER;
C_HAS_PROG_FLAGS_WDCH : INTEGER;
C_HAS_PROG_FLAGS_WRCH : INTEGER;
C_HAS_PROG_FLAGS_RACH : INTEGER;
C_HAS_PROG_FLAGS_RDCH : INTEGER;
C_HAS_PROG_FLAGS_AXIS : INTEGER;
C_PROG_FULL_TYPE_WACH : INTEGER;
C_PROG_FULL_TYPE_WDCH : INTEGER;
C_PROG_FULL_TYPE_WRCH : INTEGER;
C_PROG_FULL_TYPE_RACH : INTEGER;
C_PROG_FULL_TYPE_RDCH : INTEGER;
C_PROG_FULL_TYPE_AXIS : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_PROG_EMPTY_TYPE_WACH : INTEGER;
C_PROG_EMPTY_TYPE_WDCH : INTEGER;
C_PROG_EMPTY_TYPE_WRCH : INTEGER;
C_PROG_EMPTY_TYPE_RACH : INTEGER;
C_PROG_EMPTY_TYPE_RDCH : INTEGER;
C_PROG_EMPTY_TYPE_AXIS : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_REG_SLICE_MODE_WACH : INTEGER;
C_REG_SLICE_MODE_WDCH : INTEGER;
C_REG_SLICE_MODE_WRCH : INTEGER;
C_REG_SLICE_MODE_RACH : INTEGER;
C_REG_SLICE_MODE_RDCH : INTEGER;
C_REG_SLICE_MODE_AXIS : INTEGER
);
PORT (
backup : IN STD_LOGIC;
backup_marker : IN STD_LOGIC;
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
srst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
wr_rst : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
rd_rst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
int_clk : IN STD_LOGIC;
injectdbiterr : IN STD_LOGIC;
injectsbiterr : IN STD_LOGIC;
sleep : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
almost_full : OUT STD_LOGIC;
wr_ack : OUT STD_LOGIC;
overflow : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
almost_empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC;
underflow : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
rd_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
wr_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full : OUT STD_LOGIC;
prog_empty : OUT STD_LOGIC;
sbiterr : OUT STD_LOGIC;
dbiterr : OUT STD_LOGIC;
wr_rst_busy : OUT STD_LOGIC;
rd_rst_busy : OUT STD_LOGIC;
m_aclk : IN STD_LOGIC;
s_aclk : IN STD_LOGIC;
s_aresetn : IN STD_LOGIC;
m_aclk_en : IN STD_LOGIC;
s_aclk_en : IN STD_LOGIC;
s_axi_awid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awaddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_awlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_awsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_awlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awvalid : IN STD_LOGIC;
s_axi_awready : OUT STD_LOGIC;
s_axi_wid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_wstrb : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_wlast : IN STD_LOGIC;
s_axi_wuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wvalid : IN STD_LOGIC;
s_axi_wready : OUT STD_LOGIC;
s_axi_bid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_buser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bvalid : OUT STD_LOGIC;
s_axi_bready : IN STD_LOGIC;
m_axi_awid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awaddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_awlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_awsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_awlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awvalid : OUT STD_LOGIC;
m_axi_awready : IN STD_LOGIC;
m_axi_wid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_wstrb : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_wlast : OUT STD_LOGIC;
m_axi_wuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wvalid : OUT STD_LOGIC;
m_axi_wready : IN STD_LOGIC;
m_axi_bid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_buser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bvalid : IN STD_LOGIC;
m_axi_bready : OUT STD_LOGIC;
s_axi_arid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_araddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_arlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_arsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_arlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_aruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arvalid : IN STD_LOGIC;
s_axi_arready : OUT STD_LOGIC;
s_axi_rid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_rresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_rlast : OUT STD_LOGIC;
s_axi_ruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rvalid : OUT STD_LOGIC;
s_axi_rready : IN STD_LOGIC;
m_axi_arid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_araddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_arlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_arsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_arlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_aruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arvalid : OUT STD_LOGIC;
m_axi_arready : IN STD_LOGIC;
m_axi_rid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_rresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_rlast : IN STD_LOGIC;
m_axi_ruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rvalid : IN STD_LOGIC;
m_axi_rready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tstrb : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tkeep : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tdest : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tuser : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tstrb : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tkeep : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tdest : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tuser : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_injectsbiterr : IN STD_LOGIC;
axi_aw_injectdbiterr : IN STD_LOGIC;
axi_aw_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_sbiterr : OUT STD_LOGIC;
axi_aw_dbiterr : OUT STD_LOGIC;
axi_aw_overflow : OUT STD_LOGIC;
axi_aw_underflow : OUT STD_LOGIC;
axi_aw_prog_full : OUT STD_LOGIC;
axi_aw_prog_empty : OUT STD_LOGIC;
axi_w_injectsbiterr : IN STD_LOGIC;
axi_w_injectdbiterr : IN STD_LOGIC;
axi_w_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_sbiterr : OUT STD_LOGIC;
axi_w_dbiterr : OUT STD_LOGIC;
axi_w_overflow : OUT STD_LOGIC;
axi_w_underflow : OUT STD_LOGIC;
axi_w_prog_full : OUT STD_LOGIC;
axi_w_prog_empty : OUT STD_LOGIC;
axi_b_injectsbiterr : IN STD_LOGIC;
axi_b_injectdbiterr : IN STD_LOGIC;
axi_b_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_sbiterr : OUT STD_LOGIC;
axi_b_dbiterr : OUT STD_LOGIC;
axi_b_overflow : OUT STD_LOGIC;
axi_b_underflow : OUT STD_LOGIC;
axi_b_prog_full : OUT STD_LOGIC;
axi_b_prog_empty : OUT STD_LOGIC;
axi_ar_injectsbiterr : IN STD_LOGIC;
axi_ar_injectdbiterr : IN STD_LOGIC;
axi_ar_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_sbiterr : OUT STD_LOGIC;
axi_ar_dbiterr : OUT STD_LOGIC;
axi_ar_overflow : OUT STD_LOGIC;
axi_ar_underflow : OUT STD_LOGIC;
axi_ar_prog_full : OUT STD_LOGIC;
axi_ar_prog_empty : OUT STD_LOGIC;
axi_r_injectsbiterr : IN STD_LOGIC;
axi_r_injectdbiterr : IN STD_LOGIC;
axi_r_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_sbiterr : OUT STD_LOGIC;
axi_r_dbiterr : OUT STD_LOGIC;
axi_r_overflow : OUT STD_LOGIC;
axi_r_underflow : OUT STD_LOGIC;
axi_r_prog_full : OUT STD_LOGIC;
axi_r_prog_empty : OUT STD_LOGIC;
axis_injectsbiterr : IN STD_LOGIC;
axis_injectdbiterr : IN STD_LOGIC;
axis_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_sbiterr : OUT STD_LOGIC;
axis_dbiterr : OUT STD_LOGIC;
axis_overflow : OUT STD_LOGIC;
axis_underflow : OUT STD_LOGIC;
axis_prog_full : OUT STD_LOGIC;
axis_prog_empty : OUT STD_LOGIC
);
END COMPONENT fifo_generator_v12_0;
ATTRIBUTE X_INTERFACE_INFO : STRING;
ATTRIBUTE X_INTERFACE_INFO OF din: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_DATA";
ATTRIBUTE X_INTERFACE_INFO OF wr_en: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_EN";
ATTRIBUTE X_INTERFACE_INFO OF rd_en: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_EN";
ATTRIBUTE X_INTERFACE_INFO OF dout: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_DATA";
ATTRIBUTE X_INTERFACE_INFO OF full: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE FULL";
ATTRIBUTE X_INTERFACE_INFO OF empty: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ EMPTY";
BEGIN
U0 : fifo_generator_v12_0
GENERIC MAP (
C_COMMON_CLOCK => 1,
C_COUNT_TYPE => 0,
C_DATA_COUNT_WIDTH => 4,
C_DEFAULT_VALUE => "BlankString",
C_DIN_WIDTH => 288,
C_DOUT_RST_VAL => "0",
C_DOUT_WIDTH => 288,
C_ENABLE_RLOCS => 0,
C_FAMILY => "zynq",
C_FULL_FLAGS_RST_VAL => 0,
C_HAS_ALMOST_EMPTY => 0,
C_HAS_ALMOST_FULL => 0,
C_HAS_BACKUP => 0,
C_HAS_DATA_COUNT => 1,
C_HAS_INT_CLK => 0,
C_HAS_MEMINIT_FILE => 0,
C_HAS_OVERFLOW => 0,
C_HAS_RD_DATA_COUNT => 0,
C_HAS_RD_RST => 0,
C_HAS_RST => 0,
C_HAS_SRST => 1,
C_HAS_UNDERFLOW => 0,
C_HAS_VALID => 0,
C_HAS_WR_ACK => 0,
C_HAS_WR_DATA_COUNT => 0,
C_HAS_WR_RST => 0,
C_IMPLEMENTATION_TYPE => 0,
C_INIT_WR_PNTR_VAL => 0,
C_MEMORY_TYPE => 2,
C_MIF_FILE_NAME => "BlankString",
C_OPTIMIZATION_MODE => 0,
C_OVERFLOW_LOW => 0,
C_PRELOAD_LATENCY => 1,
C_PRELOAD_REGS => 0,
C_PRIM_FIFO_TYPE => "512x72",
C_PROG_EMPTY_THRESH_ASSERT_VAL => 2,
C_PROG_EMPTY_THRESH_NEGATE_VAL => 3,
C_PROG_EMPTY_TYPE => 0,
C_PROG_FULL_THRESH_ASSERT_VAL => 14,
C_PROG_FULL_THRESH_NEGATE_VAL => 13,
C_PROG_FULL_TYPE => 0,
C_RD_DATA_COUNT_WIDTH => 4,
C_RD_DEPTH => 16,
C_RD_FREQ => 1,
C_RD_PNTR_WIDTH => 4,
C_UNDERFLOW_LOW => 0,
C_USE_DOUT_RST => 1,
C_USE_ECC => 0,
C_USE_EMBEDDED_REG => 0,
C_USE_PIPELINE_REG => 0,
C_POWER_SAVING_MODE => 0,
C_USE_FIFO16_FLAGS => 0,
C_USE_FWFT_DATA_COUNT => 0,
C_VALID_LOW => 0,
C_WR_ACK_LOW => 0,
C_WR_DATA_COUNT_WIDTH => 4,
C_WR_DEPTH => 16,
C_WR_FREQ => 1,
C_WR_PNTR_WIDTH => 4,
C_WR_RESPONSE_LATENCY => 1,
C_MSGON_VAL => 1,
C_ENABLE_RST_SYNC => 1,
C_ERROR_INJECTION_TYPE => 0,
C_SYNCHRONIZER_STAGE => 2,
C_INTERFACE_TYPE => 0,
C_AXI_TYPE => 1,
C_HAS_AXI_WR_CHANNEL => 1,
C_HAS_AXI_RD_CHANNEL => 1,
C_HAS_SLAVE_CE => 0,
C_HAS_MASTER_CE => 0,
C_ADD_NGC_CONSTRAINT => 0,
C_USE_COMMON_OVERFLOW => 0,
C_USE_COMMON_UNDERFLOW => 0,
C_USE_DEFAULT_SETTINGS => 0,
C_AXI_ID_WIDTH => 1,
C_AXI_ADDR_WIDTH => 32,
C_AXI_DATA_WIDTH => 64,
C_AXI_LEN_WIDTH => 8,
C_AXI_LOCK_WIDTH => 1,
C_HAS_AXI_ID => 0,
C_HAS_AXI_AWUSER => 0,
C_HAS_AXI_WUSER => 0,
C_HAS_AXI_BUSER => 0,
C_HAS_AXI_ARUSER => 0,
C_HAS_AXI_RUSER => 0,
C_AXI_ARUSER_WIDTH => 1,
C_AXI_AWUSER_WIDTH => 1,
C_AXI_WUSER_WIDTH => 1,
C_AXI_BUSER_WIDTH => 1,
C_AXI_RUSER_WIDTH => 1,
C_HAS_AXIS_TDATA => 1,
C_HAS_AXIS_TID => 0,
C_HAS_AXIS_TDEST => 0,
C_HAS_AXIS_TUSER => 1,
C_HAS_AXIS_TREADY => 1,
C_HAS_AXIS_TLAST => 0,
C_HAS_AXIS_TSTRB => 0,
C_HAS_AXIS_TKEEP => 0,
C_AXIS_TDATA_WIDTH => 8,
C_AXIS_TID_WIDTH => 1,
C_AXIS_TDEST_WIDTH => 1,
C_AXIS_TUSER_WIDTH => 4,
C_AXIS_TSTRB_WIDTH => 1,
C_AXIS_TKEEP_WIDTH => 1,
C_WACH_TYPE => 0,
C_WDCH_TYPE => 0,
C_WRCH_TYPE => 0,
C_RACH_TYPE => 0,
C_RDCH_TYPE => 0,
C_AXIS_TYPE => 0,
C_IMPLEMENTATION_TYPE_WACH => 1,
C_IMPLEMENTATION_TYPE_WDCH => 1,
C_IMPLEMENTATION_TYPE_WRCH => 1,
C_IMPLEMENTATION_TYPE_RACH => 1,
C_IMPLEMENTATION_TYPE_RDCH => 1,
C_IMPLEMENTATION_TYPE_AXIS => 1,
C_APPLICATION_TYPE_WACH => 0,
C_APPLICATION_TYPE_WDCH => 0,
C_APPLICATION_TYPE_WRCH => 0,
C_APPLICATION_TYPE_RACH => 0,
C_APPLICATION_TYPE_RDCH => 0,
C_APPLICATION_TYPE_AXIS => 0,
C_PRIM_FIFO_TYPE_WACH => "512x36",
C_PRIM_FIFO_TYPE_WDCH => "1kx36",
C_PRIM_FIFO_TYPE_WRCH => "512x36",
C_PRIM_FIFO_TYPE_RACH => "512x36",
C_PRIM_FIFO_TYPE_RDCH => "1kx36",
C_PRIM_FIFO_TYPE_AXIS => "1kx18",
C_USE_ECC_WACH => 0,
C_USE_ECC_WDCH => 0,
C_USE_ECC_WRCH => 0,
C_USE_ECC_RACH => 0,
C_USE_ECC_RDCH => 0,
C_USE_ECC_AXIS => 0,
C_ERROR_INJECTION_TYPE_WACH => 0,
C_ERROR_INJECTION_TYPE_WDCH => 0,
C_ERROR_INJECTION_TYPE_WRCH => 0,
C_ERROR_INJECTION_TYPE_RACH => 0,
C_ERROR_INJECTION_TYPE_RDCH => 0,
C_ERROR_INJECTION_TYPE_AXIS => 0,
C_DIN_WIDTH_WACH => 32,
C_DIN_WIDTH_WDCH => 64,
C_DIN_WIDTH_WRCH => 2,
C_DIN_WIDTH_RACH => 32,
C_DIN_WIDTH_RDCH => 64,
C_DIN_WIDTH_AXIS => 1,
C_WR_DEPTH_WACH => 16,
C_WR_DEPTH_WDCH => 1024,
C_WR_DEPTH_WRCH => 16,
C_WR_DEPTH_RACH => 16,
C_WR_DEPTH_RDCH => 1024,
C_WR_DEPTH_AXIS => 1024,
C_WR_PNTR_WIDTH_WACH => 4,
C_WR_PNTR_WIDTH_WDCH => 10,
C_WR_PNTR_WIDTH_WRCH => 4,
C_WR_PNTR_WIDTH_RACH => 4,
C_WR_PNTR_WIDTH_RDCH => 10,
C_WR_PNTR_WIDTH_AXIS => 10,
C_HAS_DATA_COUNTS_WACH => 0,
C_HAS_DATA_COUNTS_WDCH => 0,
C_HAS_DATA_COUNTS_WRCH => 0,
C_HAS_DATA_COUNTS_RACH => 0,
C_HAS_DATA_COUNTS_RDCH => 0,
C_HAS_DATA_COUNTS_AXIS => 0,
C_HAS_PROG_FLAGS_WACH => 0,
C_HAS_PROG_FLAGS_WDCH => 0,
C_HAS_PROG_FLAGS_WRCH => 0,
C_HAS_PROG_FLAGS_RACH => 0,
C_HAS_PROG_FLAGS_RDCH => 0,
C_HAS_PROG_FLAGS_AXIS => 0,
C_PROG_FULL_TYPE_WACH => 0,
C_PROG_FULL_TYPE_WDCH => 0,
C_PROG_FULL_TYPE_WRCH => 0,
C_PROG_FULL_TYPE_RACH => 0,
C_PROG_FULL_TYPE_RDCH => 0,
C_PROG_FULL_TYPE_AXIS => 0,
C_PROG_FULL_THRESH_ASSERT_VAL_WACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS => 1023,
C_PROG_EMPTY_TYPE_WACH => 0,
C_PROG_EMPTY_TYPE_WDCH => 0,
C_PROG_EMPTY_TYPE_WRCH => 0,
C_PROG_EMPTY_TYPE_RACH => 0,
C_PROG_EMPTY_TYPE_RDCH => 0,
C_PROG_EMPTY_TYPE_AXIS => 0,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS => 1022,
C_REG_SLICE_MODE_WACH => 0,
C_REG_SLICE_MODE_WDCH => 0,
C_REG_SLICE_MODE_WRCH => 0,
C_REG_SLICE_MODE_RACH => 0,
C_REG_SLICE_MODE_RDCH => 0,
C_REG_SLICE_MODE_AXIS => 0
)
PORT MAP (
backup => '0',
backup_marker => '0',
clk => clk,
rst => '0',
srst => srst,
wr_clk => '0',
wr_rst => '0',
rd_clk => '0',
rd_rst => '0',
din => din,
wr_en => wr_en,
rd_en => rd_en,
prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
int_clk => '0',
injectdbiterr => '0',
injectsbiterr => '0',
sleep => '0',
dout => dout,
full => full,
empty => empty,
data_count => data_count,
m_aclk => '0',
s_aclk => '0',
s_aresetn => '0',
m_aclk_en => '0',
s_aclk_en => '0',
s_axi_awid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awaddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_awlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_awsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_awlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awvalid => '0',
s_axi_wid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
s_axi_wstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_wlast => '0',
s_axi_wuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wvalid => '0',
s_axi_bready => '0',
m_axi_awready => '0',
m_axi_wready => '0',
m_axi_bid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_buser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bvalid => '0',
s_axi_arid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_araddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_arlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_arsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_arlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_aruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arvalid => '0',
s_axi_rready => '0',
m_axi_arready => '0',
m_axi_rid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
m_axi_rresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_rlast => '0',
m_axi_ruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rvalid => '0',
s_axis_tvalid => '0',
s_axis_tdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axis_tstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tkeep => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tlast => '0',
s_axis_tid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tdest => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
m_axis_tready => '0',
axi_aw_injectsbiterr => '0',
axi_aw_injectdbiterr => '0',
axi_aw_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_aw_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_w_injectsbiterr => '0',
axi_w_injectdbiterr => '0',
axi_w_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_w_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_b_injectsbiterr => '0',
axi_b_injectdbiterr => '0',
axi_b_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_b_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_injectsbiterr => '0',
axi_ar_injectdbiterr => '0',
axi_ar_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_r_injectsbiterr => '0',
axi_r_injectdbiterr => '0',
axi_r_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_r_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_injectsbiterr => '0',
axis_injectdbiterr => '0',
axis_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10))
);
END DRSCFIFO288x16WC_arch;
|
-- (c) Copyright 1995-2016 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- DO NOT MODIFY THIS FILE.
-- IP VLNV: xilinx.com:ip:fifo_generator:12.0
-- IP Revision: 3
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY fifo_generator_v12_0;
USE fifo_generator_v12_0.fifo_generator_v12_0;
ENTITY DRSCFIFO288x16WC IS
PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);
END DRSCFIFO288x16WC;
ARCHITECTURE DRSCFIFO288x16WC_arch OF DRSCFIFO288x16WC IS
ATTRIBUTE DowngradeIPIdentifiedWarnings : string;
ATTRIBUTE DowngradeIPIdentifiedWarnings OF DRSCFIFO288x16WC_arch: ARCHITECTURE IS "yes";
COMPONENT fifo_generator_v12_0 IS
GENERIC (
C_COMMON_CLOCK : INTEGER;
C_COUNT_TYPE : INTEGER;
C_DATA_COUNT_WIDTH : INTEGER;
C_DEFAULT_VALUE : STRING;
C_DIN_WIDTH : INTEGER;
C_DOUT_RST_VAL : STRING;
C_DOUT_WIDTH : INTEGER;
C_ENABLE_RLOCS : INTEGER;
C_FAMILY : STRING;
C_FULL_FLAGS_RST_VAL : INTEGER;
C_HAS_ALMOST_EMPTY : INTEGER;
C_HAS_ALMOST_FULL : INTEGER;
C_HAS_BACKUP : INTEGER;
C_HAS_DATA_COUNT : INTEGER;
C_HAS_INT_CLK : INTEGER;
C_HAS_MEMINIT_FILE : INTEGER;
C_HAS_OVERFLOW : INTEGER;
C_HAS_RD_DATA_COUNT : INTEGER;
C_HAS_RD_RST : INTEGER;
C_HAS_RST : INTEGER;
C_HAS_SRST : INTEGER;
C_HAS_UNDERFLOW : INTEGER;
C_HAS_VALID : INTEGER;
C_HAS_WR_ACK : INTEGER;
C_HAS_WR_DATA_COUNT : INTEGER;
C_HAS_WR_RST : INTEGER;
C_IMPLEMENTATION_TYPE : INTEGER;
C_INIT_WR_PNTR_VAL : INTEGER;
C_MEMORY_TYPE : INTEGER;
C_MIF_FILE_NAME : STRING;
C_OPTIMIZATION_MODE : INTEGER;
C_OVERFLOW_LOW : INTEGER;
C_PRELOAD_LATENCY : INTEGER;
C_PRELOAD_REGS : INTEGER;
C_PRIM_FIFO_TYPE : STRING;
C_PROG_EMPTY_THRESH_ASSERT_VAL : INTEGER;
C_PROG_EMPTY_THRESH_NEGATE_VAL : INTEGER;
C_PROG_EMPTY_TYPE : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL : INTEGER;
C_PROG_FULL_THRESH_NEGATE_VAL : INTEGER;
C_PROG_FULL_TYPE : INTEGER;
C_RD_DATA_COUNT_WIDTH : INTEGER;
C_RD_DEPTH : INTEGER;
C_RD_FREQ : INTEGER;
C_RD_PNTR_WIDTH : INTEGER;
C_UNDERFLOW_LOW : INTEGER;
C_USE_DOUT_RST : INTEGER;
C_USE_ECC : INTEGER;
C_USE_EMBEDDED_REG : INTEGER;
C_USE_PIPELINE_REG : INTEGER;
C_POWER_SAVING_MODE : INTEGER;
C_USE_FIFO16_FLAGS : INTEGER;
C_USE_FWFT_DATA_COUNT : INTEGER;
C_VALID_LOW : INTEGER;
C_WR_ACK_LOW : INTEGER;
C_WR_DATA_COUNT_WIDTH : INTEGER;
C_WR_DEPTH : INTEGER;
C_WR_FREQ : INTEGER;
C_WR_PNTR_WIDTH : INTEGER;
C_WR_RESPONSE_LATENCY : INTEGER;
C_MSGON_VAL : INTEGER;
C_ENABLE_RST_SYNC : INTEGER;
C_ERROR_INJECTION_TYPE : INTEGER;
C_SYNCHRONIZER_STAGE : INTEGER;
C_INTERFACE_TYPE : INTEGER;
C_AXI_TYPE : INTEGER;
C_HAS_AXI_WR_CHANNEL : INTEGER;
C_HAS_AXI_RD_CHANNEL : INTEGER;
C_HAS_SLAVE_CE : INTEGER;
C_HAS_MASTER_CE : INTEGER;
C_ADD_NGC_CONSTRAINT : INTEGER;
C_USE_COMMON_OVERFLOW : INTEGER;
C_USE_COMMON_UNDERFLOW : INTEGER;
C_USE_DEFAULT_SETTINGS : INTEGER;
C_AXI_ID_WIDTH : INTEGER;
C_AXI_ADDR_WIDTH : INTEGER;
C_AXI_DATA_WIDTH : INTEGER;
C_AXI_LEN_WIDTH : INTEGER;
C_AXI_LOCK_WIDTH : INTEGER;
C_HAS_AXI_ID : INTEGER;
C_HAS_AXI_AWUSER : INTEGER;
C_HAS_AXI_WUSER : INTEGER;
C_HAS_AXI_BUSER : INTEGER;
C_HAS_AXI_ARUSER : INTEGER;
C_HAS_AXI_RUSER : INTEGER;
C_AXI_ARUSER_WIDTH : INTEGER;
C_AXI_AWUSER_WIDTH : INTEGER;
C_AXI_WUSER_WIDTH : INTEGER;
C_AXI_BUSER_WIDTH : INTEGER;
C_AXI_RUSER_WIDTH : INTEGER;
C_HAS_AXIS_TDATA : INTEGER;
C_HAS_AXIS_TID : INTEGER;
C_HAS_AXIS_TDEST : INTEGER;
C_HAS_AXIS_TUSER : INTEGER;
C_HAS_AXIS_TREADY : INTEGER;
C_HAS_AXIS_TLAST : INTEGER;
C_HAS_AXIS_TSTRB : INTEGER;
C_HAS_AXIS_TKEEP : INTEGER;
C_AXIS_TDATA_WIDTH : INTEGER;
C_AXIS_TID_WIDTH : INTEGER;
C_AXIS_TDEST_WIDTH : INTEGER;
C_AXIS_TUSER_WIDTH : INTEGER;
C_AXIS_TSTRB_WIDTH : INTEGER;
C_AXIS_TKEEP_WIDTH : INTEGER;
C_WACH_TYPE : INTEGER;
C_WDCH_TYPE : INTEGER;
C_WRCH_TYPE : INTEGER;
C_RACH_TYPE : INTEGER;
C_RDCH_TYPE : INTEGER;
C_AXIS_TYPE : INTEGER;
C_IMPLEMENTATION_TYPE_WACH : INTEGER;
C_IMPLEMENTATION_TYPE_WDCH : INTEGER;
C_IMPLEMENTATION_TYPE_WRCH : INTEGER;
C_IMPLEMENTATION_TYPE_RACH : INTEGER;
C_IMPLEMENTATION_TYPE_RDCH : INTEGER;
C_IMPLEMENTATION_TYPE_AXIS : INTEGER;
C_APPLICATION_TYPE_WACH : INTEGER;
C_APPLICATION_TYPE_WDCH : INTEGER;
C_APPLICATION_TYPE_WRCH : INTEGER;
C_APPLICATION_TYPE_RACH : INTEGER;
C_APPLICATION_TYPE_RDCH : INTEGER;
C_APPLICATION_TYPE_AXIS : INTEGER;
C_PRIM_FIFO_TYPE_WACH : STRING;
C_PRIM_FIFO_TYPE_WDCH : STRING;
C_PRIM_FIFO_TYPE_WRCH : STRING;
C_PRIM_FIFO_TYPE_RACH : STRING;
C_PRIM_FIFO_TYPE_RDCH : STRING;
C_PRIM_FIFO_TYPE_AXIS : STRING;
C_USE_ECC_WACH : INTEGER;
C_USE_ECC_WDCH : INTEGER;
C_USE_ECC_WRCH : INTEGER;
C_USE_ECC_RACH : INTEGER;
C_USE_ECC_RDCH : INTEGER;
C_USE_ECC_AXIS : INTEGER;
C_ERROR_INJECTION_TYPE_WACH : INTEGER;
C_ERROR_INJECTION_TYPE_WDCH : INTEGER;
C_ERROR_INJECTION_TYPE_WRCH : INTEGER;
C_ERROR_INJECTION_TYPE_RACH : INTEGER;
C_ERROR_INJECTION_TYPE_RDCH : INTEGER;
C_ERROR_INJECTION_TYPE_AXIS : INTEGER;
C_DIN_WIDTH_WACH : INTEGER;
C_DIN_WIDTH_WDCH : INTEGER;
C_DIN_WIDTH_WRCH : INTEGER;
C_DIN_WIDTH_RACH : INTEGER;
C_DIN_WIDTH_RDCH : INTEGER;
C_DIN_WIDTH_AXIS : INTEGER;
C_WR_DEPTH_WACH : INTEGER;
C_WR_DEPTH_WDCH : INTEGER;
C_WR_DEPTH_WRCH : INTEGER;
C_WR_DEPTH_RACH : INTEGER;
C_WR_DEPTH_RDCH : INTEGER;
C_WR_DEPTH_AXIS : INTEGER;
C_WR_PNTR_WIDTH_WACH : INTEGER;
C_WR_PNTR_WIDTH_WDCH : INTEGER;
C_WR_PNTR_WIDTH_WRCH : INTEGER;
C_WR_PNTR_WIDTH_RACH : INTEGER;
C_WR_PNTR_WIDTH_RDCH : INTEGER;
C_WR_PNTR_WIDTH_AXIS : INTEGER;
C_HAS_DATA_COUNTS_WACH : INTEGER;
C_HAS_DATA_COUNTS_WDCH : INTEGER;
C_HAS_DATA_COUNTS_WRCH : INTEGER;
C_HAS_DATA_COUNTS_RACH : INTEGER;
C_HAS_DATA_COUNTS_RDCH : INTEGER;
C_HAS_DATA_COUNTS_AXIS : INTEGER;
C_HAS_PROG_FLAGS_WACH : INTEGER;
C_HAS_PROG_FLAGS_WDCH : INTEGER;
C_HAS_PROG_FLAGS_WRCH : INTEGER;
C_HAS_PROG_FLAGS_RACH : INTEGER;
C_HAS_PROG_FLAGS_RDCH : INTEGER;
C_HAS_PROG_FLAGS_AXIS : INTEGER;
C_PROG_FULL_TYPE_WACH : INTEGER;
C_PROG_FULL_TYPE_WDCH : INTEGER;
C_PROG_FULL_TYPE_WRCH : INTEGER;
C_PROG_FULL_TYPE_RACH : INTEGER;
C_PROG_FULL_TYPE_RDCH : INTEGER;
C_PROG_FULL_TYPE_AXIS : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_PROG_EMPTY_TYPE_WACH : INTEGER;
C_PROG_EMPTY_TYPE_WDCH : INTEGER;
C_PROG_EMPTY_TYPE_WRCH : INTEGER;
C_PROG_EMPTY_TYPE_RACH : INTEGER;
C_PROG_EMPTY_TYPE_RDCH : INTEGER;
C_PROG_EMPTY_TYPE_AXIS : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_REG_SLICE_MODE_WACH : INTEGER;
C_REG_SLICE_MODE_WDCH : INTEGER;
C_REG_SLICE_MODE_WRCH : INTEGER;
C_REG_SLICE_MODE_RACH : INTEGER;
C_REG_SLICE_MODE_RDCH : INTEGER;
C_REG_SLICE_MODE_AXIS : INTEGER
);
PORT (
backup : IN STD_LOGIC;
backup_marker : IN STD_LOGIC;
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
srst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
wr_rst : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
rd_rst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
int_clk : IN STD_LOGIC;
injectdbiterr : IN STD_LOGIC;
injectsbiterr : IN STD_LOGIC;
sleep : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
almost_full : OUT STD_LOGIC;
wr_ack : OUT STD_LOGIC;
overflow : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
almost_empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC;
underflow : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
rd_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
wr_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full : OUT STD_LOGIC;
prog_empty : OUT STD_LOGIC;
sbiterr : OUT STD_LOGIC;
dbiterr : OUT STD_LOGIC;
wr_rst_busy : OUT STD_LOGIC;
rd_rst_busy : OUT STD_LOGIC;
m_aclk : IN STD_LOGIC;
s_aclk : IN STD_LOGIC;
s_aresetn : IN STD_LOGIC;
m_aclk_en : IN STD_LOGIC;
s_aclk_en : IN STD_LOGIC;
s_axi_awid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awaddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_awlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_awsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_awlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awvalid : IN STD_LOGIC;
s_axi_awready : OUT STD_LOGIC;
s_axi_wid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_wstrb : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_wlast : IN STD_LOGIC;
s_axi_wuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wvalid : IN STD_LOGIC;
s_axi_wready : OUT STD_LOGIC;
s_axi_bid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_buser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bvalid : OUT STD_LOGIC;
s_axi_bready : IN STD_LOGIC;
m_axi_awid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awaddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_awlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_awsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_awlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awvalid : OUT STD_LOGIC;
m_axi_awready : IN STD_LOGIC;
m_axi_wid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_wstrb : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_wlast : OUT STD_LOGIC;
m_axi_wuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wvalid : OUT STD_LOGIC;
m_axi_wready : IN STD_LOGIC;
m_axi_bid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_buser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bvalid : IN STD_LOGIC;
m_axi_bready : OUT STD_LOGIC;
s_axi_arid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_araddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_arlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_arsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_arlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_aruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arvalid : IN STD_LOGIC;
s_axi_arready : OUT STD_LOGIC;
s_axi_rid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_rresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_rlast : OUT STD_LOGIC;
s_axi_ruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rvalid : OUT STD_LOGIC;
s_axi_rready : IN STD_LOGIC;
m_axi_arid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_araddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_arlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_arsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_arlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_aruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arvalid : OUT STD_LOGIC;
m_axi_arready : IN STD_LOGIC;
m_axi_rid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_rresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_rlast : IN STD_LOGIC;
m_axi_ruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rvalid : IN STD_LOGIC;
m_axi_rready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tstrb : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tkeep : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tdest : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tuser : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tstrb : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tkeep : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tdest : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tuser : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_injectsbiterr : IN STD_LOGIC;
axi_aw_injectdbiterr : IN STD_LOGIC;
axi_aw_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_sbiterr : OUT STD_LOGIC;
axi_aw_dbiterr : OUT STD_LOGIC;
axi_aw_overflow : OUT STD_LOGIC;
axi_aw_underflow : OUT STD_LOGIC;
axi_aw_prog_full : OUT STD_LOGIC;
axi_aw_prog_empty : OUT STD_LOGIC;
axi_w_injectsbiterr : IN STD_LOGIC;
axi_w_injectdbiterr : IN STD_LOGIC;
axi_w_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_sbiterr : OUT STD_LOGIC;
axi_w_dbiterr : OUT STD_LOGIC;
axi_w_overflow : OUT STD_LOGIC;
axi_w_underflow : OUT STD_LOGIC;
axi_w_prog_full : OUT STD_LOGIC;
axi_w_prog_empty : OUT STD_LOGIC;
axi_b_injectsbiterr : IN STD_LOGIC;
axi_b_injectdbiterr : IN STD_LOGIC;
axi_b_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_sbiterr : OUT STD_LOGIC;
axi_b_dbiterr : OUT STD_LOGIC;
axi_b_overflow : OUT STD_LOGIC;
axi_b_underflow : OUT STD_LOGIC;
axi_b_prog_full : OUT STD_LOGIC;
axi_b_prog_empty : OUT STD_LOGIC;
axi_ar_injectsbiterr : IN STD_LOGIC;
axi_ar_injectdbiterr : IN STD_LOGIC;
axi_ar_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_sbiterr : OUT STD_LOGIC;
axi_ar_dbiterr : OUT STD_LOGIC;
axi_ar_overflow : OUT STD_LOGIC;
axi_ar_underflow : OUT STD_LOGIC;
axi_ar_prog_full : OUT STD_LOGIC;
axi_ar_prog_empty : OUT STD_LOGIC;
axi_r_injectsbiterr : IN STD_LOGIC;
axi_r_injectdbiterr : IN STD_LOGIC;
axi_r_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_sbiterr : OUT STD_LOGIC;
axi_r_dbiterr : OUT STD_LOGIC;
axi_r_overflow : OUT STD_LOGIC;
axi_r_underflow : OUT STD_LOGIC;
axi_r_prog_full : OUT STD_LOGIC;
axi_r_prog_empty : OUT STD_LOGIC;
axis_injectsbiterr : IN STD_LOGIC;
axis_injectdbiterr : IN STD_LOGIC;
axis_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_sbiterr : OUT STD_LOGIC;
axis_dbiterr : OUT STD_LOGIC;
axis_overflow : OUT STD_LOGIC;
axis_underflow : OUT STD_LOGIC;
axis_prog_full : OUT STD_LOGIC;
axis_prog_empty : OUT STD_LOGIC
);
END COMPONENT fifo_generator_v12_0;
ATTRIBUTE X_INTERFACE_INFO : STRING;
ATTRIBUTE X_INTERFACE_INFO OF din: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_DATA";
ATTRIBUTE X_INTERFACE_INFO OF wr_en: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_EN";
ATTRIBUTE X_INTERFACE_INFO OF rd_en: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_EN";
ATTRIBUTE X_INTERFACE_INFO OF dout: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_DATA";
ATTRIBUTE X_INTERFACE_INFO OF full: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE FULL";
ATTRIBUTE X_INTERFACE_INFO OF empty: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ EMPTY";
BEGIN
U0 : fifo_generator_v12_0
GENERIC MAP (
C_COMMON_CLOCK => 1,
C_COUNT_TYPE => 0,
C_DATA_COUNT_WIDTH => 4,
C_DEFAULT_VALUE => "BlankString",
C_DIN_WIDTH => 288,
C_DOUT_RST_VAL => "0",
C_DOUT_WIDTH => 288,
C_ENABLE_RLOCS => 0,
C_FAMILY => "zynq",
C_FULL_FLAGS_RST_VAL => 0,
C_HAS_ALMOST_EMPTY => 0,
C_HAS_ALMOST_FULL => 0,
C_HAS_BACKUP => 0,
C_HAS_DATA_COUNT => 1,
C_HAS_INT_CLK => 0,
C_HAS_MEMINIT_FILE => 0,
C_HAS_OVERFLOW => 0,
C_HAS_RD_DATA_COUNT => 0,
C_HAS_RD_RST => 0,
C_HAS_RST => 0,
C_HAS_SRST => 1,
C_HAS_UNDERFLOW => 0,
C_HAS_VALID => 0,
C_HAS_WR_ACK => 0,
C_HAS_WR_DATA_COUNT => 0,
C_HAS_WR_RST => 0,
C_IMPLEMENTATION_TYPE => 0,
C_INIT_WR_PNTR_VAL => 0,
C_MEMORY_TYPE => 2,
C_MIF_FILE_NAME => "BlankString",
C_OPTIMIZATION_MODE => 0,
C_OVERFLOW_LOW => 0,
C_PRELOAD_LATENCY => 1,
C_PRELOAD_REGS => 0,
C_PRIM_FIFO_TYPE => "512x72",
C_PROG_EMPTY_THRESH_ASSERT_VAL => 2,
C_PROG_EMPTY_THRESH_NEGATE_VAL => 3,
C_PROG_EMPTY_TYPE => 0,
C_PROG_FULL_THRESH_ASSERT_VAL => 14,
C_PROG_FULL_THRESH_NEGATE_VAL => 13,
C_PROG_FULL_TYPE => 0,
C_RD_DATA_COUNT_WIDTH => 4,
C_RD_DEPTH => 16,
C_RD_FREQ => 1,
C_RD_PNTR_WIDTH => 4,
C_UNDERFLOW_LOW => 0,
C_USE_DOUT_RST => 1,
C_USE_ECC => 0,
C_USE_EMBEDDED_REG => 0,
C_USE_PIPELINE_REG => 0,
C_POWER_SAVING_MODE => 0,
C_USE_FIFO16_FLAGS => 0,
C_USE_FWFT_DATA_COUNT => 0,
C_VALID_LOW => 0,
C_WR_ACK_LOW => 0,
C_WR_DATA_COUNT_WIDTH => 4,
C_WR_DEPTH => 16,
C_WR_FREQ => 1,
C_WR_PNTR_WIDTH => 4,
C_WR_RESPONSE_LATENCY => 1,
C_MSGON_VAL => 1,
C_ENABLE_RST_SYNC => 1,
C_ERROR_INJECTION_TYPE => 0,
C_SYNCHRONIZER_STAGE => 2,
C_INTERFACE_TYPE => 0,
C_AXI_TYPE => 1,
C_HAS_AXI_WR_CHANNEL => 1,
C_HAS_AXI_RD_CHANNEL => 1,
C_HAS_SLAVE_CE => 0,
C_HAS_MASTER_CE => 0,
C_ADD_NGC_CONSTRAINT => 0,
C_USE_COMMON_OVERFLOW => 0,
C_USE_COMMON_UNDERFLOW => 0,
C_USE_DEFAULT_SETTINGS => 0,
C_AXI_ID_WIDTH => 1,
C_AXI_ADDR_WIDTH => 32,
C_AXI_DATA_WIDTH => 64,
C_AXI_LEN_WIDTH => 8,
C_AXI_LOCK_WIDTH => 1,
C_HAS_AXI_ID => 0,
C_HAS_AXI_AWUSER => 0,
C_HAS_AXI_WUSER => 0,
C_HAS_AXI_BUSER => 0,
C_HAS_AXI_ARUSER => 0,
C_HAS_AXI_RUSER => 0,
C_AXI_ARUSER_WIDTH => 1,
C_AXI_AWUSER_WIDTH => 1,
C_AXI_WUSER_WIDTH => 1,
C_AXI_BUSER_WIDTH => 1,
C_AXI_RUSER_WIDTH => 1,
C_HAS_AXIS_TDATA => 1,
C_HAS_AXIS_TID => 0,
C_HAS_AXIS_TDEST => 0,
C_HAS_AXIS_TUSER => 1,
C_HAS_AXIS_TREADY => 1,
C_HAS_AXIS_TLAST => 0,
C_HAS_AXIS_TSTRB => 0,
C_HAS_AXIS_TKEEP => 0,
C_AXIS_TDATA_WIDTH => 8,
C_AXIS_TID_WIDTH => 1,
C_AXIS_TDEST_WIDTH => 1,
C_AXIS_TUSER_WIDTH => 4,
C_AXIS_TSTRB_WIDTH => 1,
C_AXIS_TKEEP_WIDTH => 1,
C_WACH_TYPE => 0,
C_WDCH_TYPE => 0,
C_WRCH_TYPE => 0,
C_RACH_TYPE => 0,
C_RDCH_TYPE => 0,
C_AXIS_TYPE => 0,
C_IMPLEMENTATION_TYPE_WACH => 1,
C_IMPLEMENTATION_TYPE_WDCH => 1,
C_IMPLEMENTATION_TYPE_WRCH => 1,
C_IMPLEMENTATION_TYPE_RACH => 1,
C_IMPLEMENTATION_TYPE_RDCH => 1,
C_IMPLEMENTATION_TYPE_AXIS => 1,
C_APPLICATION_TYPE_WACH => 0,
C_APPLICATION_TYPE_WDCH => 0,
C_APPLICATION_TYPE_WRCH => 0,
C_APPLICATION_TYPE_RACH => 0,
C_APPLICATION_TYPE_RDCH => 0,
C_APPLICATION_TYPE_AXIS => 0,
C_PRIM_FIFO_TYPE_WACH => "512x36",
C_PRIM_FIFO_TYPE_WDCH => "1kx36",
C_PRIM_FIFO_TYPE_WRCH => "512x36",
C_PRIM_FIFO_TYPE_RACH => "512x36",
C_PRIM_FIFO_TYPE_RDCH => "1kx36",
C_PRIM_FIFO_TYPE_AXIS => "1kx18",
C_USE_ECC_WACH => 0,
C_USE_ECC_WDCH => 0,
C_USE_ECC_WRCH => 0,
C_USE_ECC_RACH => 0,
C_USE_ECC_RDCH => 0,
C_USE_ECC_AXIS => 0,
C_ERROR_INJECTION_TYPE_WACH => 0,
C_ERROR_INJECTION_TYPE_WDCH => 0,
C_ERROR_INJECTION_TYPE_WRCH => 0,
C_ERROR_INJECTION_TYPE_RACH => 0,
C_ERROR_INJECTION_TYPE_RDCH => 0,
C_ERROR_INJECTION_TYPE_AXIS => 0,
C_DIN_WIDTH_WACH => 32,
C_DIN_WIDTH_WDCH => 64,
C_DIN_WIDTH_WRCH => 2,
C_DIN_WIDTH_RACH => 32,
C_DIN_WIDTH_RDCH => 64,
C_DIN_WIDTH_AXIS => 1,
C_WR_DEPTH_WACH => 16,
C_WR_DEPTH_WDCH => 1024,
C_WR_DEPTH_WRCH => 16,
C_WR_DEPTH_RACH => 16,
C_WR_DEPTH_RDCH => 1024,
C_WR_DEPTH_AXIS => 1024,
C_WR_PNTR_WIDTH_WACH => 4,
C_WR_PNTR_WIDTH_WDCH => 10,
C_WR_PNTR_WIDTH_WRCH => 4,
C_WR_PNTR_WIDTH_RACH => 4,
C_WR_PNTR_WIDTH_RDCH => 10,
C_WR_PNTR_WIDTH_AXIS => 10,
C_HAS_DATA_COUNTS_WACH => 0,
C_HAS_DATA_COUNTS_WDCH => 0,
C_HAS_DATA_COUNTS_WRCH => 0,
C_HAS_DATA_COUNTS_RACH => 0,
C_HAS_DATA_COUNTS_RDCH => 0,
C_HAS_DATA_COUNTS_AXIS => 0,
C_HAS_PROG_FLAGS_WACH => 0,
C_HAS_PROG_FLAGS_WDCH => 0,
C_HAS_PROG_FLAGS_WRCH => 0,
C_HAS_PROG_FLAGS_RACH => 0,
C_HAS_PROG_FLAGS_RDCH => 0,
C_HAS_PROG_FLAGS_AXIS => 0,
C_PROG_FULL_TYPE_WACH => 0,
C_PROG_FULL_TYPE_WDCH => 0,
C_PROG_FULL_TYPE_WRCH => 0,
C_PROG_FULL_TYPE_RACH => 0,
C_PROG_FULL_TYPE_RDCH => 0,
C_PROG_FULL_TYPE_AXIS => 0,
C_PROG_FULL_THRESH_ASSERT_VAL_WACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS => 1023,
C_PROG_EMPTY_TYPE_WACH => 0,
C_PROG_EMPTY_TYPE_WDCH => 0,
C_PROG_EMPTY_TYPE_WRCH => 0,
C_PROG_EMPTY_TYPE_RACH => 0,
C_PROG_EMPTY_TYPE_RDCH => 0,
C_PROG_EMPTY_TYPE_AXIS => 0,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS => 1022,
C_REG_SLICE_MODE_WACH => 0,
C_REG_SLICE_MODE_WDCH => 0,
C_REG_SLICE_MODE_WRCH => 0,
C_REG_SLICE_MODE_RACH => 0,
C_REG_SLICE_MODE_RDCH => 0,
C_REG_SLICE_MODE_AXIS => 0
)
PORT MAP (
backup => '0',
backup_marker => '0',
clk => clk,
rst => '0',
srst => srst,
wr_clk => '0',
wr_rst => '0',
rd_clk => '0',
rd_rst => '0',
din => din,
wr_en => wr_en,
rd_en => rd_en,
prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
int_clk => '0',
injectdbiterr => '0',
injectsbiterr => '0',
sleep => '0',
dout => dout,
full => full,
empty => empty,
data_count => data_count,
m_aclk => '0',
s_aclk => '0',
s_aresetn => '0',
m_aclk_en => '0',
s_aclk_en => '0',
s_axi_awid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awaddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_awlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_awsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_awlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awvalid => '0',
s_axi_wid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
s_axi_wstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_wlast => '0',
s_axi_wuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wvalid => '0',
s_axi_bready => '0',
m_axi_awready => '0',
m_axi_wready => '0',
m_axi_bid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_buser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bvalid => '0',
s_axi_arid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_araddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_arlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_arsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_arlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_aruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arvalid => '0',
s_axi_rready => '0',
m_axi_arready => '0',
m_axi_rid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
m_axi_rresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_rlast => '0',
m_axi_ruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rvalid => '0',
s_axis_tvalid => '0',
s_axis_tdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axis_tstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tkeep => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tlast => '0',
s_axis_tid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tdest => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
m_axis_tready => '0',
axi_aw_injectsbiterr => '0',
axi_aw_injectdbiterr => '0',
axi_aw_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_aw_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_w_injectsbiterr => '0',
axi_w_injectdbiterr => '0',
axi_w_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_w_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_b_injectsbiterr => '0',
axi_b_injectdbiterr => '0',
axi_b_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_b_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_injectsbiterr => '0',
axi_ar_injectdbiterr => '0',
axi_ar_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_r_injectsbiterr => '0',
axi_r_injectdbiterr => '0',
axi_r_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_r_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_injectsbiterr => '0',
axis_injectdbiterr => '0',
axis_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10))
);
END DRSCFIFO288x16WC_arch;
|
-- (c) Copyright 1995-2016 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- DO NOT MODIFY THIS FILE.
-- IP VLNV: xilinx.com:ip:fifo_generator:12.0
-- IP Revision: 3
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY fifo_generator_v12_0;
USE fifo_generator_v12_0.fifo_generator_v12_0;
ENTITY DRSCFIFO288x16WC IS
PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);
END DRSCFIFO288x16WC;
ARCHITECTURE DRSCFIFO288x16WC_arch OF DRSCFIFO288x16WC IS
ATTRIBUTE DowngradeIPIdentifiedWarnings : string;
ATTRIBUTE DowngradeIPIdentifiedWarnings OF DRSCFIFO288x16WC_arch: ARCHITECTURE IS "yes";
COMPONENT fifo_generator_v12_0 IS
GENERIC (
C_COMMON_CLOCK : INTEGER;
C_COUNT_TYPE : INTEGER;
C_DATA_COUNT_WIDTH : INTEGER;
C_DEFAULT_VALUE : STRING;
C_DIN_WIDTH : INTEGER;
C_DOUT_RST_VAL : STRING;
C_DOUT_WIDTH : INTEGER;
C_ENABLE_RLOCS : INTEGER;
C_FAMILY : STRING;
C_FULL_FLAGS_RST_VAL : INTEGER;
C_HAS_ALMOST_EMPTY : INTEGER;
C_HAS_ALMOST_FULL : INTEGER;
C_HAS_BACKUP : INTEGER;
C_HAS_DATA_COUNT : INTEGER;
C_HAS_INT_CLK : INTEGER;
C_HAS_MEMINIT_FILE : INTEGER;
C_HAS_OVERFLOW : INTEGER;
C_HAS_RD_DATA_COUNT : INTEGER;
C_HAS_RD_RST : INTEGER;
C_HAS_RST : INTEGER;
C_HAS_SRST : INTEGER;
C_HAS_UNDERFLOW : INTEGER;
C_HAS_VALID : INTEGER;
C_HAS_WR_ACK : INTEGER;
C_HAS_WR_DATA_COUNT : INTEGER;
C_HAS_WR_RST : INTEGER;
C_IMPLEMENTATION_TYPE : INTEGER;
C_INIT_WR_PNTR_VAL : INTEGER;
C_MEMORY_TYPE : INTEGER;
C_MIF_FILE_NAME : STRING;
C_OPTIMIZATION_MODE : INTEGER;
C_OVERFLOW_LOW : INTEGER;
C_PRELOAD_LATENCY : INTEGER;
C_PRELOAD_REGS : INTEGER;
C_PRIM_FIFO_TYPE : STRING;
C_PROG_EMPTY_THRESH_ASSERT_VAL : INTEGER;
C_PROG_EMPTY_THRESH_NEGATE_VAL : INTEGER;
C_PROG_EMPTY_TYPE : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL : INTEGER;
C_PROG_FULL_THRESH_NEGATE_VAL : INTEGER;
C_PROG_FULL_TYPE : INTEGER;
C_RD_DATA_COUNT_WIDTH : INTEGER;
C_RD_DEPTH : INTEGER;
C_RD_FREQ : INTEGER;
C_RD_PNTR_WIDTH : INTEGER;
C_UNDERFLOW_LOW : INTEGER;
C_USE_DOUT_RST : INTEGER;
C_USE_ECC : INTEGER;
C_USE_EMBEDDED_REG : INTEGER;
C_USE_PIPELINE_REG : INTEGER;
C_POWER_SAVING_MODE : INTEGER;
C_USE_FIFO16_FLAGS : INTEGER;
C_USE_FWFT_DATA_COUNT : INTEGER;
C_VALID_LOW : INTEGER;
C_WR_ACK_LOW : INTEGER;
C_WR_DATA_COUNT_WIDTH : INTEGER;
C_WR_DEPTH : INTEGER;
C_WR_FREQ : INTEGER;
C_WR_PNTR_WIDTH : INTEGER;
C_WR_RESPONSE_LATENCY : INTEGER;
C_MSGON_VAL : INTEGER;
C_ENABLE_RST_SYNC : INTEGER;
C_ERROR_INJECTION_TYPE : INTEGER;
C_SYNCHRONIZER_STAGE : INTEGER;
C_INTERFACE_TYPE : INTEGER;
C_AXI_TYPE : INTEGER;
C_HAS_AXI_WR_CHANNEL : INTEGER;
C_HAS_AXI_RD_CHANNEL : INTEGER;
C_HAS_SLAVE_CE : INTEGER;
C_HAS_MASTER_CE : INTEGER;
C_ADD_NGC_CONSTRAINT : INTEGER;
C_USE_COMMON_OVERFLOW : INTEGER;
C_USE_COMMON_UNDERFLOW : INTEGER;
C_USE_DEFAULT_SETTINGS : INTEGER;
C_AXI_ID_WIDTH : INTEGER;
C_AXI_ADDR_WIDTH : INTEGER;
C_AXI_DATA_WIDTH : INTEGER;
C_AXI_LEN_WIDTH : INTEGER;
C_AXI_LOCK_WIDTH : INTEGER;
C_HAS_AXI_ID : INTEGER;
C_HAS_AXI_AWUSER : INTEGER;
C_HAS_AXI_WUSER : INTEGER;
C_HAS_AXI_BUSER : INTEGER;
C_HAS_AXI_ARUSER : INTEGER;
C_HAS_AXI_RUSER : INTEGER;
C_AXI_ARUSER_WIDTH : INTEGER;
C_AXI_AWUSER_WIDTH : INTEGER;
C_AXI_WUSER_WIDTH : INTEGER;
C_AXI_BUSER_WIDTH : INTEGER;
C_AXI_RUSER_WIDTH : INTEGER;
C_HAS_AXIS_TDATA : INTEGER;
C_HAS_AXIS_TID : INTEGER;
C_HAS_AXIS_TDEST : INTEGER;
C_HAS_AXIS_TUSER : INTEGER;
C_HAS_AXIS_TREADY : INTEGER;
C_HAS_AXIS_TLAST : INTEGER;
C_HAS_AXIS_TSTRB : INTEGER;
C_HAS_AXIS_TKEEP : INTEGER;
C_AXIS_TDATA_WIDTH : INTEGER;
C_AXIS_TID_WIDTH : INTEGER;
C_AXIS_TDEST_WIDTH : INTEGER;
C_AXIS_TUSER_WIDTH : INTEGER;
C_AXIS_TSTRB_WIDTH : INTEGER;
C_AXIS_TKEEP_WIDTH : INTEGER;
C_WACH_TYPE : INTEGER;
C_WDCH_TYPE : INTEGER;
C_WRCH_TYPE : INTEGER;
C_RACH_TYPE : INTEGER;
C_RDCH_TYPE : INTEGER;
C_AXIS_TYPE : INTEGER;
C_IMPLEMENTATION_TYPE_WACH : INTEGER;
C_IMPLEMENTATION_TYPE_WDCH : INTEGER;
C_IMPLEMENTATION_TYPE_WRCH : INTEGER;
C_IMPLEMENTATION_TYPE_RACH : INTEGER;
C_IMPLEMENTATION_TYPE_RDCH : INTEGER;
C_IMPLEMENTATION_TYPE_AXIS : INTEGER;
C_APPLICATION_TYPE_WACH : INTEGER;
C_APPLICATION_TYPE_WDCH : INTEGER;
C_APPLICATION_TYPE_WRCH : INTEGER;
C_APPLICATION_TYPE_RACH : INTEGER;
C_APPLICATION_TYPE_RDCH : INTEGER;
C_APPLICATION_TYPE_AXIS : INTEGER;
C_PRIM_FIFO_TYPE_WACH : STRING;
C_PRIM_FIFO_TYPE_WDCH : STRING;
C_PRIM_FIFO_TYPE_WRCH : STRING;
C_PRIM_FIFO_TYPE_RACH : STRING;
C_PRIM_FIFO_TYPE_RDCH : STRING;
C_PRIM_FIFO_TYPE_AXIS : STRING;
C_USE_ECC_WACH : INTEGER;
C_USE_ECC_WDCH : INTEGER;
C_USE_ECC_WRCH : INTEGER;
C_USE_ECC_RACH : INTEGER;
C_USE_ECC_RDCH : INTEGER;
C_USE_ECC_AXIS : INTEGER;
C_ERROR_INJECTION_TYPE_WACH : INTEGER;
C_ERROR_INJECTION_TYPE_WDCH : INTEGER;
C_ERROR_INJECTION_TYPE_WRCH : INTEGER;
C_ERROR_INJECTION_TYPE_RACH : INTEGER;
C_ERROR_INJECTION_TYPE_RDCH : INTEGER;
C_ERROR_INJECTION_TYPE_AXIS : INTEGER;
C_DIN_WIDTH_WACH : INTEGER;
C_DIN_WIDTH_WDCH : INTEGER;
C_DIN_WIDTH_WRCH : INTEGER;
C_DIN_WIDTH_RACH : INTEGER;
C_DIN_WIDTH_RDCH : INTEGER;
C_DIN_WIDTH_AXIS : INTEGER;
C_WR_DEPTH_WACH : INTEGER;
C_WR_DEPTH_WDCH : INTEGER;
C_WR_DEPTH_WRCH : INTEGER;
C_WR_DEPTH_RACH : INTEGER;
C_WR_DEPTH_RDCH : INTEGER;
C_WR_DEPTH_AXIS : INTEGER;
C_WR_PNTR_WIDTH_WACH : INTEGER;
C_WR_PNTR_WIDTH_WDCH : INTEGER;
C_WR_PNTR_WIDTH_WRCH : INTEGER;
C_WR_PNTR_WIDTH_RACH : INTEGER;
C_WR_PNTR_WIDTH_RDCH : INTEGER;
C_WR_PNTR_WIDTH_AXIS : INTEGER;
C_HAS_DATA_COUNTS_WACH : INTEGER;
C_HAS_DATA_COUNTS_WDCH : INTEGER;
C_HAS_DATA_COUNTS_WRCH : INTEGER;
C_HAS_DATA_COUNTS_RACH : INTEGER;
C_HAS_DATA_COUNTS_RDCH : INTEGER;
C_HAS_DATA_COUNTS_AXIS : INTEGER;
C_HAS_PROG_FLAGS_WACH : INTEGER;
C_HAS_PROG_FLAGS_WDCH : INTEGER;
C_HAS_PROG_FLAGS_WRCH : INTEGER;
C_HAS_PROG_FLAGS_RACH : INTEGER;
C_HAS_PROG_FLAGS_RDCH : INTEGER;
C_HAS_PROG_FLAGS_AXIS : INTEGER;
C_PROG_FULL_TYPE_WACH : INTEGER;
C_PROG_FULL_TYPE_WDCH : INTEGER;
C_PROG_FULL_TYPE_WRCH : INTEGER;
C_PROG_FULL_TYPE_RACH : INTEGER;
C_PROG_FULL_TYPE_RDCH : INTEGER;
C_PROG_FULL_TYPE_AXIS : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_PROG_EMPTY_TYPE_WACH : INTEGER;
C_PROG_EMPTY_TYPE_WDCH : INTEGER;
C_PROG_EMPTY_TYPE_WRCH : INTEGER;
C_PROG_EMPTY_TYPE_RACH : INTEGER;
C_PROG_EMPTY_TYPE_RDCH : INTEGER;
C_PROG_EMPTY_TYPE_AXIS : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_REG_SLICE_MODE_WACH : INTEGER;
C_REG_SLICE_MODE_WDCH : INTEGER;
C_REG_SLICE_MODE_WRCH : INTEGER;
C_REG_SLICE_MODE_RACH : INTEGER;
C_REG_SLICE_MODE_RDCH : INTEGER;
C_REG_SLICE_MODE_AXIS : INTEGER
);
PORT (
backup : IN STD_LOGIC;
backup_marker : IN STD_LOGIC;
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
srst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
wr_rst : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
rd_rst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
int_clk : IN STD_LOGIC;
injectdbiterr : IN STD_LOGIC;
injectsbiterr : IN STD_LOGIC;
sleep : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
almost_full : OUT STD_LOGIC;
wr_ack : OUT STD_LOGIC;
overflow : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
almost_empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC;
underflow : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
rd_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
wr_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full : OUT STD_LOGIC;
prog_empty : OUT STD_LOGIC;
sbiterr : OUT STD_LOGIC;
dbiterr : OUT STD_LOGIC;
wr_rst_busy : OUT STD_LOGIC;
rd_rst_busy : OUT STD_LOGIC;
m_aclk : IN STD_LOGIC;
s_aclk : IN STD_LOGIC;
s_aresetn : IN STD_LOGIC;
m_aclk_en : IN STD_LOGIC;
s_aclk_en : IN STD_LOGIC;
s_axi_awid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awaddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_awlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_awsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_awlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awvalid : IN STD_LOGIC;
s_axi_awready : OUT STD_LOGIC;
s_axi_wid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_wstrb : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_wlast : IN STD_LOGIC;
s_axi_wuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wvalid : IN STD_LOGIC;
s_axi_wready : OUT STD_LOGIC;
s_axi_bid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_buser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bvalid : OUT STD_LOGIC;
s_axi_bready : IN STD_LOGIC;
m_axi_awid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awaddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_awlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_awsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_awlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awvalid : OUT STD_LOGIC;
m_axi_awready : IN STD_LOGIC;
m_axi_wid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_wstrb : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_wlast : OUT STD_LOGIC;
m_axi_wuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wvalid : OUT STD_LOGIC;
m_axi_wready : IN STD_LOGIC;
m_axi_bid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_buser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bvalid : IN STD_LOGIC;
m_axi_bready : OUT STD_LOGIC;
s_axi_arid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_araddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_arlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_arsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_arlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_aruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arvalid : IN STD_LOGIC;
s_axi_arready : OUT STD_LOGIC;
s_axi_rid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_rresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_rlast : OUT STD_LOGIC;
s_axi_ruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rvalid : OUT STD_LOGIC;
s_axi_rready : IN STD_LOGIC;
m_axi_arid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_araddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_arlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_arsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_arlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_aruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arvalid : OUT STD_LOGIC;
m_axi_arready : IN STD_LOGIC;
m_axi_rid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_rresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_rlast : IN STD_LOGIC;
m_axi_ruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rvalid : IN STD_LOGIC;
m_axi_rready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tstrb : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tkeep : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tdest : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tuser : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tstrb : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tkeep : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tdest : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tuser : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_injectsbiterr : IN STD_LOGIC;
axi_aw_injectdbiterr : IN STD_LOGIC;
axi_aw_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_sbiterr : OUT STD_LOGIC;
axi_aw_dbiterr : OUT STD_LOGIC;
axi_aw_overflow : OUT STD_LOGIC;
axi_aw_underflow : OUT STD_LOGIC;
axi_aw_prog_full : OUT STD_LOGIC;
axi_aw_prog_empty : OUT STD_LOGIC;
axi_w_injectsbiterr : IN STD_LOGIC;
axi_w_injectdbiterr : IN STD_LOGIC;
axi_w_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_sbiterr : OUT STD_LOGIC;
axi_w_dbiterr : OUT STD_LOGIC;
axi_w_overflow : OUT STD_LOGIC;
axi_w_underflow : OUT STD_LOGIC;
axi_w_prog_full : OUT STD_LOGIC;
axi_w_prog_empty : OUT STD_LOGIC;
axi_b_injectsbiterr : IN STD_LOGIC;
axi_b_injectdbiterr : IN STD_LOGIC;
axi_b_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_sbiterr : OUT STD_LOGIC;
axi_b_dbiterr : OUT STD_LOGIC;
axi_b_overflow : OUT STD_LOGIC;
axi_b_underflow : OUT STD_LOGIC;
axi_b_prog_full : OUT STD_LOGIC;
axi_b_prog_empty : OUT STD_LOGIC;
axi_ar_injectsbiterr : IN STD_LOGIC;
axi_ar_injectdbiterr : IN STD_LOGIC;
axi_ar_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_sbiterr : OUT STD_LOGIC;
axi_ar_dbiterr : OUT STD_LOGIC;
axi_ar_overflow : OUT STD_LOGIC;
axi_ar_underflow : OUT STD_LOGIC;
axi_ar_prog_full : OUT STD_LOGIC;
axi_ar_prog_empty : OUT STD_LOGIC;
axi_r_injectsbiterr : IN STD_LOGIC;
axi_r_injectdbiterr : IN STD_LOGIC;
axi_r_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_sbiterr : OUT STD_LOGIC;
axi_r_dbiterr : OUT STD_LOGIC;
axi_r_overflow : OUT STD_LOGIC;
axi_r_underflow : OUT STD_LOGIC;
axi_r_prog_full : OUT STD_LOGIC;
axi_r_prog_empty : OUT STD_LOGIC;
axis_injectsbiterr : IN STD_LOGIC;
axis_injectdbiterr : IN STD_LOGIC;
axis_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_sbiterr : OUT STD_LOGIC;
axis_dbiterr : OUT STD_LOGIC;
axis_overflow : OUT STD_LOGIC;
axis_underflow : OUT STD_LOGIC;
axis_prog_full : OUT STD_LOGIC;
axis_prog_empty : OUT STD_LOGIC
);
END COMPONENT fifo_generator_v12_0;
ATTRIBUTE X_INTERFACE_INFO : STRING;
ATTRIBUTE X_INTERFACE_INFO OF din: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_DATA";
ATTRIBUTE X_INTERFACE_INFO OF wr_en: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_EN";
ATTRIBUTE X_INTERFACE_INFO OF rd_en: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_EN";
ATTRIBUTE X_INTERFACE_INFO OF dout: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_DATA";
ATTRIBUTE X_INTERFACE_INFO OF full: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE FULL";
ATTRIBUTE X_INTERFACE_INFO OF empty: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ EMPTY";
BEGIN
U0 : fifo_generator_v12_0
GENERIC MAP (
C_COMMON_CLOCK => 1,
C_COUNT_TYPE => 0,
C_DATA_COUNT_WIDTH => 4,
C_DEFAULT_VALUE => "BlankString",
C_DIN_WIDTH => 288,
C_DOUT_RST_VAL => "0",
C_DOUT_WIDTH => 288,
C_ENABLE_RLOCS => 0,
C_FAMILY => "zynq",
C_FULL_FLAGS_RST_VAL => 0,
C_HAS_ALMOST_EMPTY => 0,
C_HAS_ALMOST_FULL => 0,
C_HAS_BACKUP => 0,
C_HAS_DATA_COUNT => 1,
C_HAS_INT_CLK => 0,
C_HAS_MEMINIT_FILE => 0,
C_HAS_OVERFLOW => 0,
C_HAS_RD_DATA_COUNT => 0,
C_HAS_RD_RST => 0,
C_HAS_RST => 0,
C_HAS_SRST => 1,
C_HAS_UNDERFLOW => 0,
C_HAS_VALID => 0,
C_HAS_WR_ACK => 0,
C_HAS_WR_DATA_COUNT => 0,
C_HAS_WR_RST => 0,
C_IMPLEMENTATION_TYPE => 0,
C_INIT_WR_PNTR_VAL => 0,
C_MEMORY_TYPE => 2,
C_MIF_FILE_NAME => "BlankString",
C_OPTIMIZATION_MODE => 0,
C_OVERFLOW_LOW => 0,
C_PRELOAD_LATENCY => 1,
C_PRELOAD_REGS => 0,
C_PRIM_FIFO_TYPE => "512x72",
C_PROG_EMPTY_THRESH_ASSERT_VAL => 2,
C_PROG_EMPTY_THRESH_NEGATE_VAL => 3,
C_PROG_EMPTY_TYPE => 0,
C_PROG_FULL_THRESH_ASSERT_VAL => 14,
C_PROG_FULL_THRESH_NEGATE_VAL => 13,
C_PROG_FULL_TYPE => 0,
C_RD_DATA_COUNT_WIDTH => 4,
C_RD_DEPTH => 16,
C_RD_FREQ => 1,
C_RD_PNTR_WIDTH => 4,
C_UNDERFLOW_LOW => 0,
C_USE_DOUT_RST => 1,
C_USE_ECC => 0,
C_USE_EMBEDDED_REG => 0,
C_USE_PIPELINE_REG => 0,
C_POWER_SAVING_MODE => 0,
C_USE_FIFO16_FLAGS => 0,
C_USE_FWFT_DATA_COUNT => 0,
C_VALID_LOW => 0,
C_WR_ACK_LOW => 0,
C_WR_DATA_COUNT_WIDTH => 4,
C_WR_DEPTH => 16,
C_WR_FREQ => 1,
C_WR_PNTR_WIDTH => 4,
C_WR_RESPONSE_LATENCY => 1,
C_MSGON_VAL => 1,
C_ENABLE_RST_SYNC => 1,
C_ERROR_INJECTION_TYPE => 0,
C_SYNCHRONIZER_STAGE => 2,
C_INTERFACE_TYPE => 0,
C_AXI_TYPE => 1,
C_HAS_AXI_WR_CHANNEL => 1,
C_HAS_AXI_RD_CHANNEL => 1,
C_HAS_SLAVE_CE => 0,
C_HAS_MASTER_CE => 0,
C_ADD_NGC_CONSTRAINT => 0,
C_USE_COMMON_OVERFLOW => 0,
C_USE_COMMON_UNDERFLOW => 0,
C_USE_DEFAULT_SETTINGS => 0,
C_AXI_ID_WIDTH => 1,
C_AXI_ADDR_WIDTH => 32,
C_AXI_DATA_WIDTH => 64,
C_AXI_LEN_WIDTH => 8,
C_AXI_LOCK_WIDTH => 1,
C_HAS_AXI_ID => 0,
C_HAS_AXI_AWUSER => 0,
C_HAS_AXI_WUSER => 0,
C_HAS_AXI_BUSER => 0,
C_HAS_AXI_ARUSER => 0,
C_HAS_AXI_RUSER => 0,
C_AXI_ARUSER_WIDTH => 1,
C_AXI_AWUSER_WIDTH => 1,
C_AXI_WUSER_WIDTH => 1,
C_AXI_BUSER_WIDTH => 1,
C_AXI_RUSER_WIDTH => 1,
C_HAS_AXIS_TDATA => 1,
C_HAS_AXIS_TID => 0,
C_HAS_AXIS_TDEST => 0,
C_HAS_AXIS_TUSER => 1,
C_HAS_AXIS_TREADY => 1,
C_HAS_AXIS_TLAST => 0,
C_HAS_AXIS_TSTRB => 0,
C_HAS_AXIS_TKEEP => 0,
C_AXIS_TDATA_WIDTH => 8,
C_AXIS_TID_WIDTH => 1,
C_AXIS_TDEST_WIDTH => 1,
C_AXIS_TUSER_WIDTH => 4,
C_AXIS_TSTRB_WIDTH => 1,
C_AXIS_TKEEP_WIDTH => 1,
C_WACH_TYPE => 0,
C_WDCH_TYPE => 0,
C_WRCH_TYPE => 0,
C_RACH_TYPE => 0,
C_RDCH_TYPE => 0,
C_AXIS_TYPE => 0,
C_IMPLEMENTATION_TYPE_WACH => 1,
C_IMPLEMENTATION_TYPE_WDCH => 1,
C_IMPLEMENTATION_TYPE_WRCH => 1,
C_IMPLEMENTATION_TYPE_RACH => 1,
C_IMPLEMENTATION_TYPE_RDCH => 1,
C_IMPLEMENTATION_TYPE_AXIS => 1,
C_APPLICATION_TYPE_WACH => 0,
C_APPLICATION_TYPE_WDCH => 0,
C_APPLICATION_TYPE_WRCH => 0,
C_APPLICATION_TYPE_RACH => 0,
C_APPLICATION_TYPE_RDCH => 0,
C_APPLICATION_TYPE_AXIS => 0,
C_PRIM_FIFO_TYPE_WACH => "512x36",
C_PRIM_FIFO_TYPE_WDCH => "1kx36",
C_PRIM_FIFO_TYPE_WRCH => "512x36",
C_PRIM_FIFO_TYPE_RACH => "512x36",
C_PRIM_FIFO_TYPE_RDCH => "1kx36",
C_PRIM_FIFO_TYPE_AXIS => "1kx18",
C_USE_ECC_WACH => 0,
C_USE_ECC_WDCH => 0,
C_USE_ECC_WRCH => 0,
C_USE_ECC_RACH => 0,
C_USE_ECC_RDCH => 0,
C_USE_ECC_AXIS => 0,
C_ERROR_INJECTION_TYPE_WACH => 0,
C_ERROR_INJECTION_TYPE_WDCH => 0,
C_ERROR_INJECTION_TYPE_WRCH => 0,
C_ERROR_INJECTION_TYPE_RACH => 0,
C_ERROR_INJECTION_TYPE_RDCH => 0,
C_ERROR_INJECTION_TYPE_AXIS => 0,
C_DIN_WIDTH_WACH => 32,
C_DIN_WIDTH_WDCH => 64,
C_DIN_WIDTH_WRCH => 2,
C_DIN_WIDTH_RACH => 32,
C_DIN_WIDTH_RDCH => 64,
C_DIN_WIDTH_AXIS => 1,
C_WR_DEPTH_WACH => 16,
C_WR_DEPTH_WDCH => 1024,
C_WR_DEPTH_WRCH => 16,
C_WR_DEPTH_RACH => 16,
C_WR_DEPTH_RDCH => 1024,
C_WR_DEPTH_AXIS => 1024,
C_WR_PNTR_WIDTH_WACH => 4,
C_WR_PNTR_WIDTH_WDCH => 10,
C_WR_PNTR_WIDTH_WRCH => 4,
C_WR_PNTR_WIDTH_RACH => 4,
C_WR_PNTR_WIDTH_RDCH => 10,
C_WR_PNTR_WIDTH_AXIS => 10,
C_HAS_DATA_COUNTS_WACH => 0,
C_HAS_DATA_COUNTS_WDCH => 0,
C_HAS_DATA_COUNTS_WRCH => 0,
C_HAS_DATA_COUNTS_RACH => 0,
C_HAS_DATA_COUNTS_RDCH => 0,
C_HAS_DATA_COUNTS_AXIS => 0,
C_HAS_PROG_FLAGS_WACH => 0,
C_HAS_PROG_FLAGS_WDCH => 0,
C_HAS_PROG_FLAGS_WRCH => 0,
C_HAS_PROG_FLAGS_RACH => 0,
C_HAS_PROG_FLAGS_RDCH => 0,
C_HAS_PROG_FLAGS_AXIS => 0,
C_PROG_FULL_TYPE_WACH => 0,
C_PROG_FULL_TYPE_WDCH => 0,
C_PROG_FULL_TYPE_WRCH => 0,
C_PROG_FULL_TYPE_RACH => 0,
C_PROG_FULL_TYPE_RDCH => 0,
C_PROG_FULL_TYPE_AXIS => 0,
C_PROG_FULL_THRESH_ASSERT_VAL_WACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS => 1023,
C_PROG_EMPTY_TYPE_WACH => 0,
C_PROG_EMPTY_TYPE_WDCH => 0,
C_PROG_EMPTY_TYPE_WRCH => 0,
C_PROG_EMPTY_TYPE_RACH => 0,
C_PROG_EMPTY_TYPE_RDCH => 0,
C_PROG_EMPTY_TYPE_AXIS => 0,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS => 1022,
C_REG_SLICE_MODE_WACH => 0,
C_REG_SLICE_MODE_WDCH => 0,
C_REG_SLICE_MODE_WRCH => 0,
C_REG_SLICE_MODE_RACH => 0,
C_REG_SLICE_MODE_RDCH => 0,
C_REG_SLICE_MODE_AXIS => 0
)
PORT MAP (
backup => '0',
backup_marker => '0',
clk => clk,
rst => '0',
srst => srst,
wr_clk => '0',
wr_rst => '0',
rd_clk => '0',
rd_rst => '0',
din => din,
wr_en => wr_en,
rd_en => rd_en,
prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
int_clk => '0',
injectdbiterr => '0',
injectsbiterr => '0',
sleep => '0',
dout => dout,
full => full,
empty => empty,
data_count => data_count,
m_aclk => '0',
s_aclk => '0',
s_aresetn => '0',
m_aclk_en => '0',
s_aclk_en => '0',
s_axi_awid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awaddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_awlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_awsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_awlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awvalid => '0',
s_axi_wid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
s_axi_wstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_wlast => '0',
s_axi_wuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wvalid => '0',
s_axi_bready => '0',
m_axi_awready => '0',
m_axi_wready => '0',
m_axi_bid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_buser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bvalid => '0',
s_axi_arid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_araddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_arlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_arsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_arlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_aruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arvalid => '0',
s_axi_rready => '0',
m_axi_arready => '0',
m_axi_rid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
m_axi_rresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_rlast => '0',
m_axi_ruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rvalid => '0',
s_axis_tvalid => '0',
s_axis_tdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axis_tstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tkeep => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tlast => '0',
s_axis_tid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tdest => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
m_axis_tready => '0',
axi_aw_injectsbiterr => '0',
axi_aw_injectdbiterr => '0',
axi_aw_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_aw_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_w_injectsbiterr => '0',
axi_w_injectdbiterr => '0',
axi_w_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_w_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_b_injectsbiterr => '0',
axi_b_injectdbiterr => '0',
axi_b_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_b_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_injectsbiterr => '0',
axi_ar_injectdbiterr => '0',
axi_ar_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_r_injectsbiterr => '0',
axi_r_injectdbiterr => '0',
axi_r_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_r_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_injectsbiterr => '0',
axis_injectdbiterr => '0',
axis_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10))
);
END DRSCFIFO288x16WC_arch;
|
-- (c) Copyright 1995-2016 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- DO NOT MODIFY THIS FILE.
-- IP VLNV: xilinx.com:ip:fifo_generator:12.0
-- IP Revision: 3
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY fifo_generator_v12_0;
USE fifo_generator_v12_0.fifo_generator_v12_0;
ENTITY DRSCFIFO288x16WC IS
PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);
END DRSCFIFO288x16WC;
ARCHITECTURE DRSCFIFO288x16WC_arch OF DRSCFIFO288x16WC IS
ATTRIBUTE DowngradeIPIdentifiedWarnings : string;
ATTRIBUTE DowngradeIPIdentifiedWarnings OF DRSCFIFO288x16WC_arch: ARCHITECTURE IS "yes";
COMPONENT fifo_generator_v12_0 IS
GENERIC (
C_COMMON_CLOCK : INTEGER;
C_COUNT_TYPE : INTEGER;
C_DATA_COUNT_WIDTH : INTEGER;
C_DEFAULT_VALUE : STRING;
C_DIN_WIDTH : INTEGER;
C_DOUT_RST_VAL : STRING;
C_DOUT_WIDTH : INTEGER;
C_ENABLE_RLOCS : INTEGER;
C_FAMILY : STRING;
C_FULL_FLAGS_RST_VAL : INTEGER;
C_HAS_ALMOST_EMPTY : INTEGER;
C_HAS_ALMOST_FULL : INTEGER;
C_HAS_BACKUP : INTEGER;
C_HAS_DATA_COUNT : INTEGER;
C_HAS_INT_CLK : INTEGER;
C_HAS_MEMINIT_FILE : INTEGER;
C_HAS_OVERFLOW : INTEGER;
C_HAS_RD_DATA_COUNT : INTEGER;
C_HAS_RD_RST : INTEGER;
C_HAS_RST : INTEGER;
C_HAS_SRST : INTEGER;
C_HAS_UNDERFLOW : INTEGER;
C_HAS_VALID : INTEGER;
C_HAS_WR_ACK : INTEGER;
C_HAS_WR_DATA_COUNT : INTEGER;
C_HAS_WR_RST : INTEGER;
C_IMPLEMENTATION_TYPE : INTEGER;
C_INIT_WR_PNTR_VAL : INTEGER;
C_MEMORY_TYPE : INTEGER;
C_MIF_FILE_NAME : STRING;
C_OPTIMIZATION_MODE : INTEGER;
C_OVERFLOW_LOW : INTEGER;
C_PRELOAD_LATENCY : INTEGER;
C_PRELOAD_REGS : INTEGER;
C_PRIM_FIFO_TYPE : STRING;
C_PROG_EMPTY_THRESH_ASSERT_VAL : INTEGER;
C_PROG_EMPTY_THRESH_NEGATE_VAL : INTEGER;
C_PROG_EMPTY_TYPE : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL : INTEGER;
C_PROG_FULL_THRESH_NEGATE_VAL : INTEGER;
C_PROG_FULL_TYPE : INTEGER;
C_RD_DATA_COUNT_WIDTH : INTEGER;
C_RD_DEPTH : INTEGER;
C_RD_FREQ : INTEGER;
C_RD_PNTR_WIDTH : INTEGER;
C_UNDERFLOW_LOW : INTEGER;
C_USE_DOUT_RST : INTEGER;
C_USE_ECC : INTEGER;
C_USE_EMBEDDED_REG : INTEGER;
C_USE_PIPELINE_REG : INTEGER;
C_POWER_SAVING_MODE : INTEGER;
C_USE_FIFO16_FLAGS : INTEGER;
C_USE_FWFT_DATA_COUNT : INTEGER;
C_VALID_LOW : INTEGER;
C_WR_ACK_LOW : INTEGER;
C_WR_DATA_COUNT_WIDTH : INTEGER;
C_WR_DEPTH : INTEGER;
C_WR_FREQ : INTEGER;
C_WR_PNTR_WIDTH : INTEGER;
C_WR_RESPONSE_LATENCY : INTEGER;
C_MSGON_VAL : INTEGER;
C_ENABLE_RST_SYNC : INTEGER;
C_ERROR_INJECTION_TYPE : INTEGER;
C_SYNCHRONIZER_STAGE : INTEGER;
C_INTERFACE_TYPE : INTEGER;
C_AXI_TYPE : INTEGER;
C_HAS_AXI_WR_CHANNEL : INTEGER;
C_HAS_AXI_RD_CHANNEL : INTEGER;
C_HAS_SLAVE_CE : INTEGER;
C_HAS_MASTER_CE : INTEGER;
C_ADD_NGC_CONSTRAINT : INTEGER;
C_USE_COMMON_OVERFLOW : INTEGER;
C_USE_COMMON_UNDERFLOW : INTEGER;
C_USE_DEFAULT_SETTINGS : INTEGER;
C_AXI_ID_WIDTH : INTEGER;
C_AXI_ADDR_WIDTH : INTEGER;
C_AXI_DATA_WIDTH : INTEGER;
C_AXI_LEN_WIDTH : INTEGER;
C_AXI_LOCK_WIDTH : INTEGER;
C_HAS_AXI_ID : INTEGER;
C_HAS_AXI_AWUSER : INTEGER;
C_HAS_AXI_WUSER : INTEGER;
C_HAS_AXI_BUSER : INTEGER;
C_HAS_AXI_ARUSER : INTEGER;
C_HAS_AXI_RUSER : INTEGER;
C_AXI_ARUSER_WIDTH : INTEGER;
C_AXI_AWUSER_WIDTH : INTEGER;
C_AXI_WUSER_WIDTH : INTEGER;
C_AXI_BUSER_WIDTH : INTEGER;
C_AXI_RUSER_WIDTH : INTEGER;
C_HAS_AXIS_TDATA : INTEGER;
C_HAS_AXIS_TID : INTEGER;
C_HAS_AXIS_TDEST : INTEGER;
C_HAS_AXIS_TUSER : INTEGER;
C_HAS_AXIS_TREADY : INTEGER;
C_HAS_AXIS_TLAST : INTEGER;
C_HAS_AXIS_TSTRB : INTEGER;
C_HAS_AXIS_TKEEP : INTEGER;
C_AXIS_TDATA_WIDTH : INTEGER;
C_AXIS_TID_WIDTH : INTEGER;
C_AXIS_TDEST_WIDTH : INTEGER;
C_AXIS_TUSER_WIDTH : INTEGER;
C_AXIS_TSTRB_WIDTH : INTEGER;
C_AXIS_TKEEP_WIDTH : INTEGER;
C_WACH_TYPE : INTEGER;
C_WDCH_TYPE : INTEGER;
C_WRCH_TYPE : INTEGER;
C_RACH_TYPE : INTEGER;
C_RDCH_TYPE : INTEGER;
C_AXIS_TYPE : INTEGER;
C_IMPLEMENTATION_TYPE_WACH : INTEGER;
C_IMPLEMENTATION_TYPE_WDCH : INTEGER;
C_IMPLEMENTATION_TYPE_WRCH : INTEGER;
C_IMPLEMENTATION_TYPE_RACH : INTEGER;
C_IMPLEMENTATION_TYPE_RDCH : INTEGER;
C_IMPLEMENTATION_TYPE_AXIS : INTEGER;
C_APPLICATION_TYPE_WACH : INTEGER;
C_APPLICATION_TYPE_WDCH : INTEGER;
C_APPLICATION_TYPE_WRCH : INTEGER;
C_APPLICATION_TYPE_RACH : INTEGER;
C_APPLICATION_TYPE_RDCH : INTEGER;
C_APPLICATION_TYPE_AXIS : INTEGER;
C_PRIM_FIFO_TYPE_WACH : STRING;
C_PRIM_FIFO_TYPE_WDCH : STRING;
C_PRIM_FIFO_TYPE_WRCH : STRING;
C_PRIM_FIFO_TYPE_RACH : STRING;
C_PRIM_FIFO_TYPE_RDCH : STRING;
C_PRIM_FIFO_TYPE_AXIS : STRING;
C_USE_ECC_WACH : INTEGER;
C_USE_ECC_WDCH : INTEGER;
C_USE_ECC_WRCH : INTEGER;
C_USE_ECC_RACH : INTEGER;
C_USE_ECC_RDCH : INTEGER;
C_USE_ECC_AXIS : INTEGER;
C_ERROR_INJECTION_TYPE_WACH : INTEGER;
C_ERROR_INJECTION_TYPE_WDCH : INTEGER;
C_ERROR_INJECTION_TYPE_WRCH : INTEGER;
C_ERROR_INJECTION_TYPE_RACH : INTEGER;
C_ERROR_INJECTION_TYPE_RDCH : INTEGER;
C_ERROR_INJECTION_TYPE_AXIS : INTEGER;
C_DIN_WIDTH_WACH : INTEGER;
C_DIN_WIDTH_WDCH : INTEGER;
C_DIN_WIDTH_WRCH : INTEGER;
C_DIN_WIDTH_RACH : INTEGER;
C_DIN_WIDTH_RDCH : INTEGER;
C_DIN_WIDTH_AXIS : INTEGER;
C_WR_DEPTH_WACH : INTEGER;
C_WR_DEPTH_WDCH : INTEGER;
C_WR_DEPTH_WRCH : INTEGER;
C_WR_DEPTH_RACH : INTEGER;
C_WR_DEPTH_RDCH : INTEGER;
C_WR_DEPTH_AXIS : INTEGER;
C_WR_PNTR_WIDTH_WACH : INTEGER;
C_WR_PNTR_WIDTH_WDCH : INTEGER;
C_WR_PNTR_WIDTH_WRCH : INTEGER;
C_WR_PNTR_WIDTH_RACH : INTEGER;
C_WR_PNTR_WIDTH_RDCH : INTEGER;
C_WR_PNTR_WIDTH_AXIS : INTEGER;
C_HAS_DATA_COUNTS_WACH : INTEGER;
C_HAS_DATA_COUNTS_WDCH : INTEGER;
C_HAS_DATA_COUNTS_WRCH : INTEGER;
C_HAS_DATA_COUNTS_RACH : INTEGER;
C_HAS_DATA_COUNTS_RDCH : INTEGER;
C_HAS_DATA_COUNTS_AXIS : INTEGER;
C_HAS_PROG_FLAGS_WACH : INTEGER;
C_HAS_PROG_FLAGS_WDCH : INTEGER;
C_HAS_PROG_FLAGS_WRCH : INTEGER;
C_HAS_PROG_FLAGS_RACH : INTEGER;
C_HAS_PROG_FLAGS_RDCH : INTEGER;
C_HAS_PROG_FLAGS_AXIS : INTEGER;
C_PROG_FULL_TYPE_WACH : INTEGER;
C_PROG_FULL_TYPE_WDCH : INTEGER;
C_PROG_FULL_TYPE_WRCH : INTEGER;
C_PROG_FULL_TYPE_RACH : INTEGER;
C_PROG_FULL_TYPE_RDCH : INTEGER;
C_PROG_FULL_TYPE_AXIS : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_PROG_EMPTY_TYPE_WACH : INTEGER;
C_PROG_EMPTY_TYPE_WDCH : INTEGER;
C_PROG_EMPTY_TYPE_WRCH : INTEGER;
C_PROG_EMPTY_TYPE_RACH : INTEGER;
C_PROG_EMPTY_TYPE_RDCH : INTEGER;
C_PROG_EMPTY_TYPE_AXIS : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_REG_SLICE_MODE_WACH : INTEGER;
C_REG_SLICE_MODE_WDCH : INTEGER;
C_REG_SLICE_MODE_WRCH : INTEGER;
C_REG_SLICE_MODE_RACH : INTEGER;
C_REG_SLICE_MODE_RDCH : INTEGER;
C_REG_SLICE_MODE_AXIS : INTEGER
);
PORT (
backup : IN STD_LOGIC;
backup_marker : IN STD_LOGIC;
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
srst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
wr_rst : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
rd_rst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
int_clk : IN STD_LOGIC;
injectdbiterr : IN STD_LOGIC;
injectsbiterr : IN STD_LOGIC;
sleep : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
almost_full : OUT STD_LOGIC;
wr_ack : OUT STD_LOGIC;
overflow : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
almost_empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC;
underflow : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
rd_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
wr_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full : OUT STD_LOGIC;
prog_empty : OUT STD_LOGIC;
sbiterr : OUT STD_LOGIC;
dbiterr : OUT STD_LOGIC;
wr_rst_busy : OUT STD_LOGIC;
rd_rst_busy : OUT STD_LOGIC;
m_aclk : IN STD_LOGIC;
s_aclk : IN STD_LOGIC;
s_aresetn : IN STD_LOGIC;
m_aclk_en : IN STD_LOGIC;
s_aclk_en : IN STD_LOGIC;
s_axi_awid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awaddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_awlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_awsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_awlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awvalid : IN STD_LOGIC;
s_axi_awready : OUT STD_LOGIC;
s_axi_wid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_wstrb : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_wlast : IN STD_LOGIC;
s_axi_wuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wvalid : IN STD_LOGIC;
s_axi_wready : OUT STD_LOGIC;
s_axi_bid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_buser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bvalid : OUT STD_LOGIC;
s_axi_bready : IN STD_LOGIC;
m_axi_awid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awaddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_awlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_awsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_awlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awvalid : OUT STD_LOGIC;
m_axi_awready : IN STD_LOGIC;
m_axi_wid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_wstrb : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_wlast : OUT STD_LOGIC;
m_axi_wuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wvalid : OUT STD_LOGIC;
m_axi_wready : IN STD_LOGIC;
m_axi_bid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_buser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bvalid : IN STD_LOGIC;
m_axi_bready : OUT STD_LOGIC;
s_axi_arid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_araddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_arlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_arsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_arlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_aruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arvalid : IN STD_LOGIC;
s_axi_arready : OUT STD_LOGIC;
s_axi_rid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_rresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_rlast : OUT STD_LOGIC;
s_axi_ruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rvalid : OUT STD_LOGIC;
s_axi_rready : IN STD_LOGIC;
m_axi_arid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_araddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_arlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_arsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_arlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_aruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arvalid : OUT STD_LOGIC;
m_axi_arready : IN STD_LOGIC;
m_axi_rid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_rresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_rlast : IN STD_LOGIC;
m_axi_ruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rvalid : IN STD_LOGIC;
m_axi_rready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tstrb : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tkeep : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tdest : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tuser : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tstrb : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tkeep : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tdest : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tuser : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_injectsbiterr : IN STD_LOGIC;
axi_aw_injectdbiterr : IN STD_LOGIC;
axi_aw_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_sbiterr : OUT STD_LOGIC;
axi_aw_dbiterr : OUT STD_LOGIC;
axi_aw_overflow : OUT STD_LOGIC;
axi_aw_underflow : OUT STD_LOGIC;
axi_aw_prog_full : OUT STD_LOGIC;
axi_aw_prog_empty : OUT STD_LOGIC;
axi_w_injectsbiterr : IN STD_LOGIC;
axi_w_injectdbiterr : IN STD_LOGIC;
axi_w_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_sbiterr : OUT STD_LOGIC;
axi_w_dbiterr : OUT STD_LOGIC;
axi_w_overflow : OUT STD_LOGIC;
axi_w_underflow : OUT STD_LOGIC;
axi_w_prog_full : OUT STD_LOGIC;
axi_w_prog_empty : OUT STD_LOGIC;
axi_b_injectsbiterr : IN STD_LOGIC;
axi_b_injectdbiterr : IN STD_LOGIC;
axi_b_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_sbiterr : OUT STD_LOGIC;
axi_b_dbiterr : OUT STD_LOGIC;
axi_b_overflow : OUT STD_LOGIC;
axi_b_underflow : OUT STD_LOGIC;
axi_b_prog_full : OUT STD_LOGIC;
axi_b_prog_empty : OUT STD_LOGIC;
axi_ar_injectsbiterr : IN STD_LOGIC;
axi_ar_injectdbiterr : IN STD_LOGIC;
axi_ar_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_sbiterr : OUT STD_LOGIC;
axi_ar_dbiterr : OUT STD_LOGIC;
axi_ar_overflow : OUT STD_LOGIC;
axi_ar_underflow : OUT STD_LOGIC;
axi_ar_prog_full : OUT STD_LOGIC;
axi_ar_prog_empty : OUT STD_LOGIC;
axi_r_injectsbiterr : IN STD_LOGIC;
axi_r_injectdbiterr : IN STD_LOGIC;
axi_r_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_sbiterr : OUT STD_LOGIC;
axi_r_dbiterr : OUT STD_LOGIC;
axi_r_overflow : OUT STD_LOGIC;
axi_r_underflow : OUT STD_LOGIC;
axi_r_prog_full : OUT STD_LOGIC;
axi_r_prog_empty : OUT STD_LOGIC;
axis_injectsbiterr : IN STD_LOGIC;
axis_injectdbiterr : IN STD_LOGIC;
axis_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_sbiterr : OUT STD_LOGIC;
axis_dbiterr : OUT STD_LOGIC;
axis_overflow : OUT STD_LOGIC;
axis_underflow : OUT STD_LOGIC;
axis_prog_full : OUT STD_LOGIC;
axis_prog_empty : OUT STD_LOGIC
);
END COMPONENT fifo_generator_v12_0;
ATTRIBUTE X_INTERFACE_INFO : STRING;
ATTRIBUTE X_INTERFACE_INFO OF din: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_DATA";
ATTRIBUTE X_INTERFACE_INFO OF wr_en: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_EN";
ATTRIBUTE X_INTERFACE_INFO OF rd_en: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_EN";
ATTRIBUTE X_INTERFACE_INFO OF dout: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_DATA";
ATTRIBUTE X_INTERFACE_INFO OF full: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE FULL";
ATTRIBUTE X_INTERFACE_INFO OF empty: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ EMPTY";
BEGIN
U0 : fifo_generator_v12_0
GENERIC MAP (
C_COMMON_CLOCK => 1,
C_COUNT_TYPE => 0,
C_DATA_COUNT_WIDTH => 4,
C_DEFAULT_VALUE => "BlankString",
C_DIN_WIDTH => 288,
C_DOUT_RST_VAL => "0",
C_DOUT_WIDTH => 288,
C_ENABLE_RLOCS => 0,
C_FAMILY => "zynq",
C_FULL_FLAGS_RST_VAL => 0,
C_HAS_ALMOST_EMPTY => 0,
C_HAS_ALMOST_FULL => 0,
C_HAS_BACKUP => 0,
C_HAS_DATA_COUNT => 1,
C_HAS_INT_CLK => 0,
C_HAS_MEMINIT_FILE => 0,
C_HAS_OVERFLOW => 0,
C_HAS_RD_DATA_COUNT => 0,
C_HAS_RD_RST => 0,
C_HAS_RST => 0,
C_HAS_SRST => 1,
C_HAS_UNDERFLOW => 0,
C_HAS_VALID => 0,
C_HAS_WR_ACK => 0,
C_HAS_WR_DATA_COUNT => 0,
C_HAS_WR_RST => 0,
C_IMPLEMENTATION_TYPE => 0,
C_INIT_WR_PNTR_VAL => 0,
C_MEMORY_TYPE => 2,
C_MIF_FILE_NAME => "BlankString",
C_OPTIMIZATION_MODE => 0,
C_OVERFLOW_LOW => 0,
C_PRELOAD_LATENCY => 1,
C_PRELOAD_REGS => 0,
C_PRIM_FIFO_TYPE => "512x72",
C_PROG_EMPTY_THRESH_ASSERT_VAL => 2,
C_PROG_EMPTY_THRESH_NEGATE_VAL => 3,
C_PROG_EMPTY_TYPE => 0,
C_PROG_FULL_THRESH_ASSERT_VAL => 14,
C_PROG_FULL_THRESH_NEGATE_VAL => 13,
C_PROG_FULL_TYPE => 0,
C_RD_DATA_COUNT_WIDTH => 4,
C_RD_DEPTH => 16,
C_RD_FREQ => 1,
C_RD_PNTR_WIDTH => 4,
C_UNDERFLOW_LOW => 0,
C_USE_DOUT_RST => 1,
C_USE_ECC => 0,
C_USE_EMBEDDED_REG => 0,
C_USE_PIPELINE_REG => 0,
C_POWER_SAVING_MODE => 0,
C_USE_FIFO16_FLAGS => 0,
C_USE_FWFT_DATA_COUNT => 0,
C_VALID_LOW => 0,
C_WR_ACK_LOW => 0,
C_WR_DATA_COUNT_WIDTH => 4,
C_WR_DEPTH => 16,
C_WR_FREQ => 1,
C_WR_PNTR_WIDTH => 4,
C_WR_RESPONSE_LATENCY => 1,
C_MSGON_VAL => 1,
C_ENABLE_RST_SYNC => 1,
C_ERROR_INJECTION_TYPE => 0,
C_SYNCHRONIZER_STAGE => 2,
C_INTERFACE_TYPE => 0,
C_AXI_TYPE => 1,
C_HAS_AXI_WR_CHANNEL => 1,
C_HAS_AXI_RD_CHANNEL => 1,
C_HAS_SLAVE_CE => 0,
C_HAS_MASTER_CE => 0,
C_ADD_NGC_CONSTRAINT => 0,
C_USE_COMMON_OVERFLOW => 0,
C_USE_COMMON_UNDERFLOW => 0,
C_USE_DEFAULT_SETTINGS => 0,
C_AXI_ID_WIDTH => 1,
C_AXI_ADDR_WIDTH => 32,
C_AXI_DATA_WIDTH => 64,
C_AXI_LEN_WIDTH => 8,
C_AXI_LOCK_WIDTH => 1,
C_HAS_AXI_ID => 0,
C_HAS_AXI_AWUSER => 0,
C_HAS_AXI_WUSER => 0,
C_HAS_AXI_BUSER => 0,
C_HAS_AXI_ARUSER => 0,
C_HAS_AXI_RUSER => 0,
C_AXI_ARUSER_WIDTH => 1,
C_AXI_AWUSER_WIDTH => 1,
C_AXI_WUSER_WIDTH => 1,
C_AXI_BUSER_WIDTH => 1,
C_AXI_RUSER_WIDTH => 1,
C_HAS_AXIS_TDATA => 1,
C_HAS_AXIS_TID => 0,
C_HAS_AXIS_TDEST => 0,
C_HAS_AXIS_TUSER => 1,
C_HAS_AXIS_TREADY => 1,
C_HAS_AXIS_TLAST => 0,
C_HAS_AXIS_TSTRB => 0,
C_HAS_AXIS_TKEEP => 0,
C_AXIS_TDATA_WIDTH => 8,
C_AXIS_TID_WIDTH => 1,
C_AXIS_TDEST_WIDTH => 1,
C_AXIS_TUSER_WIDTH => 4,
C_AXIS_TSTRB_WIDTH => 1,
C_AXIS_TKEEP_WIDTH => 1,
C_WACH_TYPE => 0,
C_WDCH_TYPE => 0,
C_WRCH_TYPE => 0,
C_RACH_TYPE => 0,
C_RDCH_TYPE => 0,
C_AXIS_TYPE => 0,
C_IMPLEMENTATION_TYPE_WACH => 1,
C_IMPLEMENTATION_TYPE_WDCH => 1,
C_IMPLEMENTATION_TYPE_WRCH => 1,
C_IMPLEMENTATION_TYPE_RACH => 1,
C_IMPLEMENTATION_TYPE_RDCH => 1,
C_IMPLEMENTATION_TYPE_AXIS => 1,
C_APPLICATION_TYPE_WACH => 0,
C_APPLICATION_TYPE_WDCH => 0,
C_APPLICATION_TYPE_WRCH => 0,
C_APPLICATION_TYPE_RACH => 0,
C_APPLICATION_TYPE_RDCH => 0,
C_APPLICATION_TYPE_AXIS => 0,
C_PRIM_FIFO_TYPE_WACH => "512x36",
C_PRIM_FIFO_TYPE_WDCH => "1kx36",
C_PRIM_FIFO_TYPE_WRCH => "512x36",
C_PRIM_FIFO_TYPE_RACH => "512x36",
C_PRIM_FIFO_TYPE_RDCH => "1kx36",
C_PRIM_FIFO_TYPE_AXIS => "1kx18",
C_USE_ECC_WACH => 0,
C_USE_ECC_WDCH => 0,
C_USE_ECC_WRCH => 0,
C_USE_ECC_RACH => 0,
C_USE_ECC_RDCH => 0,
C_USE_ECC_AXIS => 0,
C_ERROR_INJECTION_TYPE_WACH => 0,
C_ERROR_INJECTION_TYPE_WDCH => 0,
C_ERROR_INJECTION_TYPE_WRCH => 0,
C_ERROR_INJECTION_TYPE_RACH => 0,
C_ERROR_INJECTION_TYPE_RDCH => 0,
C_ERROR_INJECTION_TYPE_AXIS => 0,
C_DIN_WIDTH_WACH => 32,
C_DIN_WIDTH_WDCH => 64,
C_DIN_WIDTH_WRCH => 2,
C_DIN_WIDTH_RACH => 32,
C_DIN_WIDTH_RDCH => 64,
C_DIN_WIDTH_AXIS => 1,
C_WR_DEPTH_WACH => 16,
C_WR_DEPTH_WDCH => 1024,
C_WR_DEPTH_WRCH => 16,
C_WR_DEPTH_RACH => 16,
C_WR_DEPTH_RDCH => 1024,
C_WR_DEPTH_AXIS => 1024,
C_WR_PNTR_WIDTH_WACH => 4,
C_WR_PNTR_WIDTH_WDCH => 10,
C_WR_PNTR_WIDTH_WRCH => 4,
C_WR_PNTR_WIDTH_RACH => 4,
C_WR_PNTR_WIDTH_RDCH => 10,
C_WR_PNTR_WIDTH_AXIS => 10,
C_HAS_DATA_COUNTS_WACH => 0,
C_HAS_DATA_COUNTS_WDCH => 0,
C_HAS_DATA_COUNTS_WRCH => 0,
C_HAS_DATA_COUNTS_RACH => 0,
C_HAS_DATA_COUNTS_RDCH => 0,
C_HAS_DATA_COUNTS_AXIS => 0,
C_HAS_PROG_FLAGS_WACH => 0,
C_HAS_PROG_FLAGS_WDCH => 0,
C_HAS_PROG_FLAGS_WRCH => 0,
C_HAS_PROG_FLAGS_RACH => 0,
C_HAS_PROG_FLAGS_RDCH => 0,
C_HAS_PROG_FLAGS_AXIS => 0,
C_PROG_FULL_TYPE_WACH => 0,
C_PROG_FULL_TYPE_WDCH => 0,
C_PROG_FULL_TYPE_WRCH => 0,
C_PROG_FULL_TYPE_RACH => 0,
C_PROG_FULL_TYPE_RDCH => 0,
C_PROG_FULL_TYPE_AXIS => 0,
C_PROG_FULL_THRESH_ASSERT_VAL_WACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS => 1023,
C_PROG_EMPTY_TYPE_WACH => 0,
C_PROG_EMPTY_TYPE_WDCH => 0,
C_PROG_EMPTY_TYPE_WRCH => 0,
C_PROG_EMPTY_TYPE_RACH => 0,
C_PROG_EMPTY_TYPE_RDCH => 0,
C_PROG_EMPTY_TYPE_AXIS => 0,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS => 1022,
C_REG_SLICE_MODE_WACH => 0,
C_REG_SLICE_MODE_WDCH => 0,
C_REG_SLICE_MODE_WRCH => 0,
C_REG_SLICE_MODE_RACH => 0,
C_REG_SLICE_MODE_RDCH => 0,
C_REG_SLICE_MODE_AXIS => 0
)
PORT MAP (
backup => '0',
backup_marker => '0',
clk => clk,
rst => '0',
srst => srst,
wr_clk => '0',
wr_rst => '0',
rd_clk => '0',
rd_rst => '0',
din => din,
wr_en => wr_en,
rd_en => rd_en,
prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
int_clk => '0',
injectdbiterr => '0',
injectsbiterr => '0',
sleep => '0',
dout => dout,
full => full,
empty => empty,
data_count => data_count,
m_aclk => '0',
s_aclk => '0',
s_aresetn => '0',
m_aclk_en => '0',
s_aclk_en => '0',
s_axi_awid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awaddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_awlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_awsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_awlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awvalid => '0',
s_axi_wid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
s_axi_wstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_wlast => '0',
s_axi_wuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wvalid => '0',
s_axi_bready => '0',
m_axi_awready => '0',
m_axi_wready => '0',
m_axi_bid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_buser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bvalid => '0',
s_axi_arid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_araddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_arlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_arsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_arlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_aruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arvalid => '0',
s_axi_rready => '0',
m_axi_arready => '0',
m_axi_rid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
m_axi_rresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_rlast => '0',
m_axi_ruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rvalid => '0',
s_axis_tvalid => '0',
s_axis_tdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axis_tstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tkeep => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tlast => '0',
s_axis_tid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tdest => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
m_axis_tready => '0',
axi_aw_injectsbiterr => '0',
axi_aw_injectdbiterr => '0',
axi_aw_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_aw_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_w_injectsbiterr => '0',
axi_w_injectdbiterr => '0',
axi_w_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_w_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_b_injectsbiterr => '0',
axi_b_injectdbiterr => '0',
axi_b_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_b_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_injectsbiterr => '0',
axi_ar_injectdbiterr => '0',
axi_ar_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_r_injectsbiterr => '0',
axi_r_injectdbiterr => '0',
axi_r_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_r_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_injectsbiterr => '0',
axis_injectdbiterr => '0',
axis_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10))
);
END DRSCFIFO288x16WC_arch;
|
-- (c) Copyright 1995-2016 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- DO NOT MODIFY THIS FILE.
-- IP VLNV: xilinx.com:ip:fifo_generator:12.0
-- IP Revision: 3
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY fifo_generator_v12_0;
USE fifo_generator_v12_0.fifo_generator_v12_0;
ENTITY DRSCFIFO288x16WC IS
PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);
END DRSCFIFO288x16WC;
ARCHITECTURE DRSCFIFO288x16WC_arch OF DRSCFIFO288x16WC IS
ATTRIBUTE DowngradeIPIdentifiedWarnings : string;
ATTRIBUTE DowngradeIPIdentifiedWarnings OF DRSCFIFO288x16WC_arch: ARCHITECTURE IS "yes";
COMPONENT fifo_generator_v12_0 IS
GENERIC (
C_COMMON_CLOCK : INTEGER;
C_COUNT_TYPE : INTEGER;
C_DATA_COUNT_WIDTH : INTEGER;
C_DEFAULT_VALUE : STRING;
C_DIN_WIDTH : INTEGER;
C_DOUT_RST_VAL : STRING;
C_DOUT_WIDTH : INTEGER;
C_ENABLE_RLOCS : INTEGER;
C_FAMILY : STRING;
C_FULL_FLAGS_RST_VAL : INTEGER;
C_HAS_ALMOST_EMPTY : INTEGER;
C_HAS_ALMOST_FULL : INTEGER;
C_HAS_BACKUP : INTEGER;
C_HAS_DATA_COUNT : INTEGER;
C_HAS_INT_CLK : INTEGER;
C_HAS_MEMINIT_FILE : INTEGER;
C_HAS_OVERFLOW : INTEGER;
C_HAS_RD_DATA_COUNT : INTEGER;
C_HAS_RD_RST : INTEGER;
C_HAS_RST : INTEGER;
C_HAS_SRST : INTEGER;
C_HAS_UNDERFLOW : INTEGER;
C_HAS_VALID : INTEGER;
C_HAS_WR_ACK : INTEGER;
C_HAS_WR_DATA_COUNT : INTEGER;
C_HAS_WR_RST : INTEGER;
C_IMPLEMENTATION_TYPE : INTEGER;
C_INIT_WR_PNTR_VAL : INTEGER;
C_MEMORY_TYPE : INTEGER;
C_MIF_FILE_NAME : STRING;
C_OPTIMIZATION_MODE : INTEGER;
C_OVERFLOW_LOW : INTEGER;
C_PRELOAD_LATENCY : INTEGER;
C_PRELOAD_REGS : INTEGER;
C_PRIM_FIFO_TYPE : STRING;
C_PROG_EMPTY_THRESH_ASSERT_VAL : INTEGER;
C_PROG_EMPTY_THRESH_NEGATE_VAL : INTEGER;
C_PROG_EMPTY_TYPE : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL : INTEGER;
C_PROG_FULL_THRESH_NEGATE_VAL : INTEGER;
C_PROG_FULL_TYPE : INTEGER;
C_RD_DATA_COUNT_WIDTH : INTEGER;
C_RD_DEPTH : INTEGER;
C_RD_FREQ : INTEGER;
C_RD_PNTR_WIDTH : INTEGER;
C_UNDERFLOW_LOW : INTEGER;
C_USE_DOUT_RST : INTEGER;
C_USE_ECC : INTEGER;
C_USE_EMBEDDED_REG : INTEGER;
C_USE_PIPELINE_REG : INTEGER;
C_POWER_SAVING_MODE : INTEGER;
C_USE_FIFO16_FLAGS : INTEGER;
C_USE_FWFT_DATA_COUNT : INTEGER;
C_VALID_LOW : INTEGER;
C_WR_ACK_LOW : INTEGER;
C_WR_DATA_COUNT_WIDTH : INTEGER;
C_WR_DEPTH : INTEGER;
C_WR_FREQ : INTEGER;
C_WR_PNTR_WIDTH : INTEGER;
C_WR_RESPONSE_LATENCY : INTEGER;
C_MSGON_VAL : INTEGER;
C_ENABLE_RST_SYNC : INTEGER;
C_ERROR_INJECTION_TYPE : INTEGER;
C_SYNCHRONIZER_STAGE : INTEGER;
C_INTERFACE_TYPE : INTEGER;
C_AXI_TYPE : INTEGER;
C_HAS_AXI_WR_CHANNEL : INTEGER;
C_HAS_AXI_RD_CHANNEL : INTEGER;
C_HAS_SLAVE_CE : INTEGER;
C_HAS_MASTER_CE : INTEGER;
C_ADD_NGC_CONSTRAINT : INTEGER;
C_USE_COMMON_OVERFLOW : INTEGER;
C_USE_COMMON_UNDERFLOW : INTEGER;
C_USE_DEFAULT_SETTINGS : INTEGER;
C_AXI_ID_WIDTH : INTEGER;
C_AXI_ADDR_WIDTH : INTEGER;
C_AXI_DATA_WIDTH : INTEGER;
C_AXI_LEN_WIDTH : INTEGER;
C_AXI_LOCK_WIDTH : INTEGER;
C_HAS_AXI_ID : INTEGER;
C_HAS_AXI_AWUSER : INTEGER;
C_HAS_AXI_WUSER : INTEGER;
C_HAS_AXI_BUSER : INTEGER;
C_HAS_AXI_ARUSER : INTEGER;
C_HAS_AXI_RUSER : INTEGER;
C_AXI_ARUSER_WIDTH : INTEGER;
C_AXI_AWUSER_WIDTH : INTEGER;
C_AXI_WUSER_WIDTH : INTEGER;
C_AXI_BUSER_WIDTH : INTEGER;
C_AXI_RUSER_WIDTH : INTEGER;
C_HAS_AXIS_TDATA : INTEGER;
C_HAS_AXIS_TID : INTEGER;
C_HAS_AXIS_TDEST : INTEGER;
C_HAS_AXIS_TUSER : INTEGER;
C_HAS_AXIS_TREADY : INTEGER;
C_HAS_AXIS_TLAST : INTEGER;
C_HAS_AXIS_TSTRB : INTEGER;
C_HAS_AXIS_TKEEP : INTEGER;
C_AXIS_TDATA_WIDTH : INTEGER;
C_AXIS_TID_WIDTH : INTEGER;
C_AXIS_TDEST_WIDTH : INTEGER;
C_AXIS_TUSER_WIDTH : INTEGER;
C_AXIS_TSTRB_WIDTH : INTEGER;
C_AXIS_TKEEP_WIDTH : INTEGER;
C_WACH_TYPE : INTEGER;
C_WDCH_TYPE : INTEGER;
C_WRCH_TYPE : INTEGER;
C_RACH_TYPE : INTEGER;
C_RDCH_TYPE : INTEGER;
C_AXIS_TYPE : INTEGER;
C_IMPLEMENTATION_TYPE_WACH : INTEGER;
C_IMPLEMENTATION_TYPE_WDCH : INTEGER;
C_IMPLEMENTATION_TYPE_WRCH : INTEGER;
C_IMPLEMENTATION_TYPE_RACH : INTEGER;
C_IMPLEMENTATION_TYPE_RDCH : INTEGER;
C_IMPLEMENTATION_TYPE_AXIS : INTEGER;
C_APPLICATION_TYPE_WACH : INTEGER;
C_APPLICATION_TYPE_WDCH : INTEGER;
C_APPLICATION_TYPE_WRCH : INTEGER;
C_APPLICATION_TYPE_RACH : INTEGER;
C_APPLICATION_TYPE_RDCH : INTEGER;
C_APPLICATION_TYPE_AXIS : INTEGER;
C_PRIM_FIFO_TYPE_WACH : STRING;
C_PRIM_FIFO_TYPE_WDCH : STRING;
C_PRIM_FIFO_TYPE_WRCH : STRING;
C_PRIM_FIFO_TYPE_RACH : STRING;
C_PRIM_FIFO_TYPE_RDCH : STRING;
C_PRIM_FIFO_TYPE_AXIS : STRING;
C_USE_ECC_WACH : INTEGER;
C_USE_ECC_WDCH : INTEGER;
C_USE_ECC_WRCH : INTEGER;
C_USE_ECC_RACH : INTEGER;
C_USE_ECC_RDCH : INTEGER;
C_USE_ECC_AXIS : INTEGER;
C_ERROR_INJECTION_TYPE_WACH : INTEGER;
C_ERROR_INJECTION_TYPE_WDCH : INTEGER;
C_ERROR_INJECTION_TYPE_WRCH : INTEGER;
C_ERROR_INJECTION_TYPE_RACH : INTEGER;
C_ERROR_INJECTION_TYPE_RDCH : INTEGER;
C_ERROR_INJECTION_TYPE_AXIS : INTEGER;
C_DIN_WIDTH_WACH : INTEGER;
C_DIN_WIDTH_WDCH : INTEGER;
C_DIN_WIDTH_WRCH : INTEGER;
C_DIN_WIDTH_RACH : INTEGER;
C_DIN_WIDTH_RDCH : INTEGER;
C_DIN_WIDTH_AXIS : INTEGER;
C_WR_DEPTH_WACH : INTEGER;
C_WR_DEPTH_WDCH : INTEGER;
C_WR_DEPTH_WRCH : INTEGER;
C_WR_DEPTH_RACH : INTEGER;
C_WR_DEPTH_RDCH : INTEGER;
C_WR_DEPTH_AXIS : INTEGER;
C_WR_PNTR_WIDTH_WACH : INTEGER;
C_WR_PNTR_WIDTH_WDCH : INTEGER;
C_WR_PNTR_WIDTH_WRCH : INTEGER;
C_WR_PNTR_WIDTH_RACH : INTEGER;
C_WR_PNTR_WIDTH_RDCH : INTEGER;
C_WR_PNTR_WIDTH_AXIS : INTEGER;
C_HAS_DATA_COUNTS_WACH : INTEGER;
C_HAS_DATA_COUNTS_WDCH : INTEGER;
C_HAS_DATA_COUNTS_WRCH : INTEGER;
C_HAS_DATA_COUNTS_RACH : INTEGER;
C_HAS_DATA_COUNTS_RDCH : INTEGER;
C_HAS_DATA_COUNTS_AXIS : INTEGER;
C_HAS_PROG_FLAGS_WACH : INTEGER;
C_HAS_PROG_FLAGS_WDCH : INTEGER;
C_HAS_PROG_FLAGS_WRCH : INTEGER;
C_HAS_PROG_FLAGS_RACH : INTEGER;
C_HAS_PROG_FLAGS_RDCH : INTEGER;
C_HAS_PROG_FLAGS_AXIS : INTEGER;
C_PROG_FULL_TYPE_WACH : INTEGER;
C_PROG_FULL_TYPE_WDCH : INTEGER;
C_PROG_FULL_TYPE_WRCH : INTEGER;
C_PROG_FULL_TYPE_RACH : INTEGER;
C_PROG_FULL_TYPE_RDCH : INTEGER;
C_PROG_FULL_TYPE_AXIS : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_PROG_EMPTY_TYPE_WACH : INTEGER;
C_PROG_EMPTY_TYPE_WDCH : INTEGER;
C_PROG_EMPTY_TYPE_WRCH : INTEGER;
C_PROG_EMPTY_TYPE_RACH : INTEGER;
C_PROG_EMPTY_TYPE_RDCH : INTEGER;
C_PROG_EMPTY_TYPE_AXIS : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_REG_SLICE_MODE_WACH : INTEGER;
C_REG_SLICE_MODE_WDCH : INTEGER;
C_REG_SLICE_MODE_WRCH : INTEGER;
C_REG_SLICE_MODE_RACH : INTEGER;
C_REG_SLICE_MODE_RDCH : INTEGER;
C_REG_SLICE_MODE_AXIS : INTEGER
);
PORT (
backup : IN STD_LOGIC;
backup_marker : IN STD_LOGIC;
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
srst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
wr_rst : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
rd_rst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
int_clk : IN STD_LOGIC;
injectdbiterr : IN STD_LOGIC;
injectsbiterr : IN STD_LOGIC;
sleep : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
almost_full : OUT STD_LOGIC;
wr_ack : OUT STD_LOGIC;
overflow : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
almost_empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC;
underflow : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
rd_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
wr_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full : OUT STD_LOGIC;
prog_empty : OUT STD_LOGIC;
sbiterr : OUT STD_LOGIC;
dbiterr : OUT STD_LOGIC;
wr_rst_busy : OUT STD_LOGIC;
rd_rst_busy : OUT STD_LOGIC;
m_aclk : IN STD_LOGIC;
s_aclk : IN STD_LOGIC;
s_aresetn : IN STD_LOGIC;
m_aclk_en : IN STD_LOGIC;
s_aclk_en : IN STD_LOGIC;
s_axi_awid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awaddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_awlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_awsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_awlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awvalid : IN STD_LOGIC;
s_axi_awready : OUT STD_LOGIC;
s_axi_wid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_wstrb : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_wlast : IN STD_LOGIC;
s_axi_wuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wvalid : IN STD_LOGIC;
s_axi_wready : OUT STD_LOGIC;
s_axi_bid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_buser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bvalid : OUT STD_LOGIC;
s_axi_bready : IN STD_LOGIC;
m_axi_awid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awaddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_awlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_awsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_awlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awvalid : OUT STD_LOGIC;
m_axi_awready : IN STD_LOGIC;
m_axi_wid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_wstrb : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_wlast : OUT STD_LOGIC;
m_axi_wuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wvalid : OUT STD_LOGIC;
m_axi_wready : IN STD_LOGIC;
m_axi_bid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_buser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bvalid : IN STD_LOGIC;
m_axi_bready : OUT STD_LOGIC;
s_axi_arid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_araddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_arlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_arsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_arlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_aruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arvalid : IN STD_LOGIC;
s_axi_arready : OUT STD_LOGIC;
s_axi_rid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_rresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_rlast : OUT STD_LOGIC;
s_axi_ruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rvalid : OUT STD_LOGIC;
s_axi_rready : IN STD_LOGIC;
m_axi_arid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_araddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_arlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_arsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_arlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_aruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arvalid : OUT STD_LOGIC;
m_axi_arready : IN STD_LOGIC;
m_axi_rid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_rresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_rlast : IN STD_LOGIC;
m_axi_ruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rvalid : IN STD_LOGIC;
m_axi_rready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tstrb : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tkeep : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tdest : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tuser : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tstrb : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tkeep : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tdest : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tuser : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_injectsbiterr : IN STD_LOGIC;
axi_aw_injectdbiterr : IN STD_LOGIC;
axi_aw_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_sbiterr : OUT STD_LOGIC;
axi_aw_dbiterr : OUT STD_LOGIC;
axi_aw_overflow : OUT STD_LOGIC;
axi_aw_underflow : OUT STD_LOGIC;
axi_aw_prog_full : OUT STD_LOGIC;
axi_aw_prog_empty : OUT STD_LOGIC;
axi_w_injectsbiterr : IN STD_LOGIC;
axi_w_injectdbiterr : IN STD_LOGIC;
axi_w_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_sbiterr : OUT STD_LOGIC;
axi_w_dbiterr : OUT STD_LOGIC;
axi_w_overflow : OUT STD_LOGIC;
axi_w_underflow : OUT STD_LOGIC;
axi_w_prog_full : OUT STD_LOGIC;
axi_w_prog_empty : OUT STD_LOGIC;
axi_b_injectsbiterr : IN STD_LOGIC;
axi_b_injectdbiterr : IN STD_LOGIC;
axi_b_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_sbiterr : OUT STD_LOGIC;
axi_b_dbiterr : OUT STD_LOGIC;
axi_b_overflow : OUT STD_LOGIC;
axi_b_underflow : OUT STD_LOGIC;
axi_b_prog_full : OUT STD_LOGIC;
axi_b_prog_empty : OUT STD_LOGIC;
axi_ar_injectsbiterr : IN STD_LOGIC;
axi_ar_injectdbiterr : IN STD_LOGIC;
axi_ar_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_sbiterr : OUT STD_LOGIC;
axi_ar_dbiterr : OUT STD_LOGIC;
axi_ar_overflow : OUT STD_LOGIC;
axi_ar_underflow : OUT STD_LOGIC;
axi_ar_prog_full : OUT STD_LOGIC;
axi_ar_prog_empty : OUT STD_LOGIC;
axi_r_injectsbiterr : IN STD_LOGIC;
axi_r_injectdbiterr : IN STD_LOGIC;
axi_r_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_sbiterr : OUT STD_LOGIC;
axi_r_dbiterr : OUT STD_LOGIC;
axi_r_overflow : OUT STD_LOGIC;
axi_r_underflow : OUT STD_LOGIC;
axi_r_prog_full : OUT STD_LOGIC;
axi_r_prog_empty : OUT STD_LOGIC;
axis_injectsbiterr : IN STD_LOGIC;
axis_injectdbiterr : IN STD_LOGIC;
axis_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_sbiterr : OUT STD_LOGIC;
axis_dbiterr : OUT STD_LOGIC;
axis_overflow : OUT STD_LOGIC;
axis_underflow : OUT STD_LOGIC;
axis_prog_full : OUT STD_LOGIC;
axis_prog_empty : OUT STD_LOGIC
);
END COMPONENT fifo_generator_v12_0;
ATTRIBUTE X_INTERFACE_INFO : STRING;
ATTRIBUTE X_INTERFACE_INFO OF din: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_DATA";
ATTRIBUTE X_INTERFACE_INFO OF wr_en: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_EN";
ATTRIBUTE X_INTERFACE_INFO OF rd_en: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_EN";
ATTRIBUTE X_INTERFACE_INFO OF dout: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_DATA";
ATTRIBUTE X_INTERFACE_INFO OF full: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE FULL";
ATTRIBUTE X_INTERFACE_INFO OF empty: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ EMPTY";
BEGIN
U0 : fifo_generator_v12_0
GENERIC MAP (
C_COMMON_CLOCK => 1,
C_COUNT_TYPE => 0,
C_DATA_COUNT_WIDTH => 4,
C_DEFAULT_VALUE => "BlankString",
C_DIN_WIDTH => 288,
C_DOUT_RST_VAL => "0",
C_DOUT_WIDTH => 288,
C_ENABLE_RLOCS => 0,
C_FAMILY => "zynq",
C_FULL_FLAGS_RST_VAL => 0,
C_HAS_ALMOST_EMPTY => 0,
C_HAS_ALMOST_FULL => 0,
C_HAS_BACKUP => 0,
C_HAS_DATA_COUNT => 1,
C_HAS_INT_CLK => 0,
C_HAS_MEMINIT_FILE => 0,
C_HAS_OVERFLOW => 0,
C_HAS_RD_DATA_COUNT => 0,
C_HAS_RD_RST => 0,
C_HAS_RST => 0,
C_HAS_SRST => 1,
C_HAS_UNDERFLOW => 0,
C_HAS_VALID => 0,
C_HAS_WR_ACK => 0,
C_HAS_WR_DATA_COUNT => 0,
C_HAS_WR_RST => 0,
C_IMPLEMENTATION_TYPE => 0,
C_INIT_WR_PNTR_VAL => 0,
C_MEMORY_TYPE => 2,
C_MIF_FILE_NAME => "BlankString",
C_OPTIMIZATION_MODE => 0,
C_OVERFLOW_LOW => 0,
C_PRELOAD_LATENCY => 1,
C_PRELOAD_REGS => 0,
C_PRIM_FIFO_TYPE => "512x72",
C_PROG_EMPTY_THRESH_ASSERT_VAL => 2,
C_PROG_EMPTY_THRESH_NEGATE_VAL => 3,
C_PROG_EMPTY_TYPE => 0,
C_PROG_FULL_THRESH_ASSERT_VAL => 14,
C_PROG_FULL_THRESH_NEGATE_VAL => 13,
C_PROG_FULL_TYPE => 0,
C_RD_DATA_COUNT_WIDTH => 4,
C_RD_DEPTH => 16,
C_RD_FREQ => 1,
C_RD_PNTR_WIDTH => 4,
C_UNDERFLOW_LOW => 0,
C_USE_DOUT_RST => 1,
C_USE_ECC => 0,
C_USE_EMBEDDED_REG => 0,
C_USE_PIPELINE_REG => 0,
C_POWER_SAVING_MODE => 0,
C_USE_FIFO16_FLAGS => 0,
C_USE_FWFT_DATA_COUNT => 0,
C_VALID_LOW => 0,
C_WR_ACK_LOW => 0,
C_WR_DATA_COUNT_WIDTH => 4,
C_WR_DEPTH => 16,
C_WR_FREQ => 1,
C_WR_PNTR_WIDTH => 4,
C_WR_RESPONSE_LATENCY => 1,
C_MSGON_VAL => 1,
C_ENABLE_RST_SYNC => 1,
C_ERROR_INJECTION_TYPE => 0,
C_SYNCHRONIZER_STAGE => 2,
C_INTERFACE_TYPE => 0,
C_AXI_TYPE => 1,
C_HAS_AXI_WR_CHANNEL => 1,
C_HAS_AXI_RD_CHANNEL => 1,
C_HAS_SLAVE_CE => 0,
C_HAS_MASTER_CE => 0,
C_ADD_NGC_CONSTRAINT => 0,
C_USE_COMMON_OVERFLOW => 0,
C_USE_COMMON_UNDERFLOW => 0,
C_USE_DEFAULT_SETTINGS => 0,
C_AXI_ID_WIDTH => 1,
C_AXI_ADDR_WIDTH => 32,
C_AXI_DATA_WIDTH => 64,
C_AXI_LEN_WIDTH => 8,
C_AXI_LOCK_WIDTH => 1,
C_HAS_AXI_ID => 0,
C_HAS_AXI_AWUSER => 0,
C_HAS_AXI_WUSER => 0,
C_HAS_AXI_BUSER => 0,
C_HAS_AXI_ARUSER => 0,
C_HAS_AXI_RUSER => 0,
C_AXI_ARUSER_WIDTH => 1,
C_AXI_AWUSER_WIDTH => 1,
C_AXI_WUSER_WIDTH => 1,
C_AXI_BUSER_WIDTH => 1,
C_AXI_RUSER_WIDTH => 1,
C_HAS_AXIS_TDATA => 1,
C_HAS_AXIS_TID => 0,
C_HAS_AXIS_TDEST => 0,
C_HAS_AXIS_TUSER => 1,
C_HAS_AXIS_TREADY => 1,
C_HAS_AXIS_TLAST => 0,
C_HAS_AXIS_TSTRB => 0,
C_HAS_AXIS_TKEEP => 0,
C_AXIS_TDATA_WIDTH => 8,
C_AXIS_TID_WIDTH => 1,
C_AXIS_TDEST_WIDTH => 1,
C_AXIS_TUSER_WIDTH => 4,
C_AXIS_TSTRB_WIDTH => 1,
C_AXIS_TKEEP_WIDTH => 1,
C_WACH_TYPE => 0,
C_WDCH_TYPE => 0,
C_WRCH_TYPE => 0,
C_RACH_TYPE => 0,
C_RDCH_TYPE => 0,
C_AXIS_TYPE => 0,
C_IMPLEMENTATION_TYPE_WACH => 1,
C_IMPLEMENTATION_TYPE_WDCH => 1,
C_IMPLEMENTATION_TYPE_WRCH => 1,
C_IMPLEMENTATION_TYPE_RACH => 1,
C_IMPLEMENTATION_TYPE_RDCH => 1,
C_IMPLEMENTATION_TYPE_AXIS => 1,
C_APPLICATION_TYPE_WACH => 0,
C_APPLICATION_TYPE_WDCH => 0,
C_APPLICATION_TYPE_WRCH => 0,
C_APPLICATION_TYPE_RACH => 0,
C_APPLICATION_TYPE_RDCH => 0,
C_APPLICATION_TYPE_AXIS => 0,
C_PRIM_FIFO_TYPE_WACH => "512x36",
C_PRIM_FIFO_TYPE_WDCH => "1kx36",
C_PRIM_FIFO_TYPE_WRCH => "512x36",
C_PRIM_FIFO_TYPE_RACH => "512x36",
C_PRIM_FIFO_TYPE_RDCH => "1kx36",
C_PRIM_FIFO_TYPE_AXIS => "1kx18",
C_USE_ECC_WACH => 0,
C_USE_ECC_WDCH => 0,
C_USE_ECC_WRCH => 0,
C_USE_ECC_RACH => 0,
C_USE_ECC_RDCH => 0,
C_USE_ECC_AXIS => 0,
C_ERROR_INJECTION_TYPE_WACH => 0,
C_ERROR_INJECTION_TYPE_WDCH => 0,
C_ERROR_INJECTION_TYPE_WRCH => 0,
C_ERROR_INJECTION_TYPE_RACH => 0,
C_ERROR_INJECTION_TYPE_RDCH => 0,
C_ERROR_INJECTION_TYPE_AXIS => 0,
C_DIN_WIDTH_WACH => 32,
C_DIN_WIDTH_WDCH => 64,
C_DIN_WIDTH_WRCH => 2,
C_DIN_WIDTH_RACH => 32,
C_DIN_WIDTH_RDCH => 64,
C_DIN_WIDTH_AXIS => 1,
C_WR_DEPTH_WACH => 16,
C_WR_DEPTH_WDCH => 1024,
C_WR_DEPTH_WRCH => 16,
C_WR_DEPTH_RACH => 16,
C_WR_DEPTH_RDCH => 1024,
C_WR_DEPTH_AXIS => 1024,
C_WR_PNTR_WIDTH_WACH => 4,
C_WR_PNTR_WIDTH_WDCH => 10,
C_WR_PNTR_WIDTH_WRCH => 4,
C_WR_PNTR_WIDTH_RACH => 4,
C_WR_PNTR_WIDTH_RDCH => 10,
C_WR_PNTR_WIDTH_AXIS => 10,
C_HAS_DATA_COUNTS_WACH => 0,
C_HAS_DATA_COUNTS_WDCH => 0,
C_HAS_DATA_COUNTS_WRCH => 0,
C_HAS_DATA_COUNTS_RACH => 0,
C_HAS_DATA_COUNTS_RDCH => 0,
C_HAS_DATA_COUNTS_AXIS => 0,
C_HAS_PROG_FLAGS_WACH => 0,
C_HAS_PROG_FLAGS_WDCH => 0,
C_HAS_PROG_FLAGS_WRCH => 0,
C_HAS_PROG_FLAGS_RACH => 0,
C_HAS_PROG_FLAGS_RDCH => 0,
C_HAS_PROG_FLAGS_AXIS => 0,
C_PROG_FULL_TYPE_WACH => 0,
C_PROG_FULL_TYPE_WDCH => 0,
C_PROG_FULL_TYPE_WRCH => 0,
C_PROG_FULL_TYPE_RACH => 0,
C_PROG_FULL_TYPE_RDCH => 0,
C_PROG_FULL_TYPE_AXIS => 0,
C_PROG_FULL_THRESH_ASSERT_VAL_WACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS => 1023,
C_PROG_EMPTY_TYPE_WACH => 0,
C_PROG_EMPTY_TYPE_WDCH => 0,
C_PROG_EMPTY_TYPE_WRCH => 0,
C_PROG_EMPTY_TYPE_RACH => 0,
C_PROG_EMPTY_TYPE_RDCH => 0,
C_PROG_EMPTY_TYPE_AXIS => 0,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS => 1022,
C_REG_SLICE_MODE_WACH => 0,
C_REG_SLICE_MODE_WDCH => 0,
C_REG_SLICE_MODE_WRCH => 0,
C_REG_SLICE_MODE_RACH => 0,
C_REG_SLICE_MODE_RDCH => 0,
C_REG_SLICE_MODE_AXIS => 0
)
PORT MAP (
backup => '0',
backup_marker => '0',
clk => clk,
rst => '0',
srst => srst,
wr_clk => '0',
wr_rst => '0',
rd_clk => '0',
rd_rst => '0',
din => din,
wr_en => wr_en,
rd_en => rd_en,
prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
int_clk => '0',
injectdbiterr => '0',
injectsbiterr => '0',
sleep => '0',
dout => dout,
full => full,
empty => empty,
data_count => data_count,
m_aclk => '0',
s_aclk => '0',
s_aresetn => '0',
m_aclk_en => '0',
s_aclk_en => '0',
s_axi_awid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awaddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_awlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_awsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_awlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awvalid => '0',
s_axi_wid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
s_axi_wstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_wlast => '0',
s_axi_wuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wvalid => '0',
s_axi_bready => '0',
m_axi_awready => '0',
m_axi_wready => '0',
m_axi_bid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_buser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bvalid => '0',
s_axi_arid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_araddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_arlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_arsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_arlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_aruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arvalid => '0',
s_axi_rready => '0',
m_axi_arready => '0',
m_axi_rid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
m_axi_rresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_rlast => '0',
m_axi_ruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rvalid => '0',
s_axis_tvalid => '0',
s_axis_tdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axis_tstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tkeep => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tlast => '0',
s_axis_tid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tdest => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
m_axis_tready => '0',
axi_aw_injectsbiterr => '0',
axi_aw_injectdbiterr => '0',
axi_aw_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_aw_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_w_injectsbiterr => '0',
axi_w_injectdbiterr => '0',
axi_w_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_w_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_b_injectsbiterr => '0',
axi_b_injectdbiterr => '0',
axi_b_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_b_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_injectsbiterr => '0',
axi_ar_injectdbiterr => '0',
axi_ar_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_r_injectsbiterr => '0',
axi_r_injectdbiterr => '0',
axi_r_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_r_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_injectsbiterr => '0',
axis_injectdbiterr => '0',
axis_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10))
);
END DRSCFIFO288x16WC_arch;
|
-- (c) Copyright 1995-2016 Xilinx, Inc. All rights reserved.
--
-- This file contains confidential and proprietary information
-- of Xilinx, Inc. and is protected under U.S. and
-- international copyright and other intellectual property
-- laws.
--
-- DISCLAIMER
-- This disclaimer is not a license and does not grant any
-- rights to the materials distributed herewith. Except as
-- otherwise provided in a valid license issued to you by
-- Xilinx, and to the maximum extent permitted by applicable
-- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
-- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
-- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
-- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
-- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
-- (2) Xilinx shall not be liable (whether in contract or tort,
-- including negligence, or under any other theory of
-- liability) for any loss or damage of any kind or nature
-- related to, arising under or in connection with these
-- materials, including for any direct, or any indirect,
-- special, incidental, or consequential loss or damage
-- (including loss of data, profits, goodwill, or any type of
-- loss or damage suffered as a result of any action brought
-- by a third party) even if such damage or loss was
-- reasonably foreseeable or Xilinx had been advised of the
-- possibility of the same.
--
-- CRITICAL APPLICATIONS
-- Xilinx products are not designed or intended to be fail-
-- safe, or for use in any application requiring fail-safe
-- performance, such as life-support or safety devices or
-- systems, Class III medical devices, nuclear facilities,
-- applications related to the deployment of airbags, or any
-- other applications that could lead to death, personal
-- injury, or severe property or environmental damage
-- (individually and collectively, "Critical
-- Applications"). Customer assumes the sole risk and
-- liability of any use of Xilinx products in Critical
-- Applications, subject only to applicable laws and
-- regulations governing limitations on product liability.
--
-- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
-- PART OF THIS FILE AT ALL TIMES.
--
-- DO NOT MODIFY THIS FILE.
-- IP VLNV: xilinx.com:ip:fifo_generator:12.0
-- IP Revision: 3
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;
LIBRARY fifo_generator_v12_0;
USE fifo_generator_v12_0.fifo_generator_v12_0;
ENTITY DRSCFIFO288x16WC IS
PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);
END DRSCFIFO288x16WC;
ARCHITECTURE DRSCFIFO288x16WC_arch OF DRSCFIFO288x16WC IS
ATTRIBUTE DowngradeIPIdentifiedWarnings : string;
ATTRIBUTE DowngradeIPIdentifiedWarnings OF DRSCFIFO288x16WC_arch: ARCHITECTURE IS "yes";
COMPONENT fifo_generator_v12_0 IS
GENERIC (
C_COMMON_CLOCK : INTEGER;
C_COUNT_TYPE : INTEGER;
C_DATA_COUNT_WIDTH : INTEGER;
C_DEFAULT_VALUE : STRING;
C_DIN_WIDTH : INTEGER;
C_DOUT_RST_VAL : STRING;
C_DOUT_WIDTH : INTEGER;
C_ENABLE_RLOCS : INTEGER;
C_FAMILY : STRING;
C_FULL_FLAGS_RST_VAL : INTEGER;
C_HAS_ALMOST_EMPTY : INTEGER;
C_HAS_ALMOST_FULL : INTEGER;
C_HAS_BACKUP : INTEGER;
C_HAS_DATA_COUNT : INTEGER;
C_HAS_INT_CLK : INTEGER;
C_HAS_MEMINIT_FILE : INTEGER;
C_HAS_OVERFLOW : INTEGER;
C_HAS_RD_DATA_COUNT : INTEGER;
C_HAS_RD_RST : INTEGER;
C_HAS_RST : INTEGER;
C_HAS_SRST : INTEGER;
C_HAS_UNDERFLOW : INTEGER;
C_HAS_VALID : INTEGER;
C_HAS_WR_ACK : INTEGER;
C_HAS_WR_DATA_COUNT : INTEGER;
C_HAS_WR_RST : INTEGER;
C_IMPLEMENTATION_TYPE : INTEGER;
C_INIT_WR_PNTR_VAL : INTEGER;
C_MEMORY_TYPE : INTEGER;
C_MIF_FILE_NAME : STRING;
C_OPTIMIZATION_MODE : INTEGER;
C_OVERFLOW_LOW : INTEGER;
C_PRELOAD_LATENCY : INTEGER;
C_PRELOAD_REGS : INTEGER;
C_PRIM_FIFO_TYPE : STRING;
C_PROG_EMPTY_THRESH_ASSERT_VAL : INTEGER;
C_PROG_EMPTY_THRESH_NEGATE_VAL : INTEGER;
C_PROG_EMPTY_TYPE : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL : INTEGER;
C_PROG_FULL_THRESH_NEGATE_VAL : INTEGER;
C_PROG_FULL_TYPE : INTEGER;
C_RD_DATA_COUNT_WIDTH : INTEGER;
C_RD_DEPTH : INTEGER;
C_RD_FREQ : INTEGER;
C_RD_PNTR_WIDTH : INTEGER;
C_UNDERFLOW_LOW : INTEGER;
C_USE_DOUT_RST : INTEGER;
C_USE_ECC : INTEGER;
C_USE_EMBEDDED_REG : INTEGER;
C_USE_PIPELINE_REG : INTEGER;
C_POWER_SAVING_MODE : INTEGER;
C_USE_FIFO16_FLAGS : INTEGER;
C_USE_FWFT_DATA_COUNT : INTEGER;
C_VALID_LOW : INTEGER;
C_WR_ACK_LOW : INTEGER;
C_WR_DATA_COUNT_WIDTH : INTEGER;
C_WR_DEPTH : INTEGER;
C_WR_FREQ : INTEGER;
C_WR_PNTR_WIDTH : INTEGER;
C_WR_RESPONSE_LATENCY : INTEGER;
C_MSGON_VAL : INTEGER;
C_ENABLE_RST_SYNC : INTEGER;
C_ERROR_INJECTION_TYPE : INTEGER;
C_SYNCHRONIZER_STAGE : INTEGER;
C_INTERFACE_TYPE : INTEGER;
C_AXI_TYPE : INTEGER;
C_HAS_AXI_WR_CHANNEL : INTEGER;
C_HAS_AXI_RD_CHANNEL : INTEGER;
C_HAS_SLAVE_CE : INTEGER;
C_HAS_MASTER_CE : INTEGER;
C_ADD_NGC_CONSTRAINT : INTEGER;
C_USE_COMMON_OVERFLOW : INTEGER;
C_USE_COMMON_UNDERFLOW : INTEGER;
C_USE_DEFAULT_SETTINGS : INTEGER;
C_AXI_ID_WIDTH : INTEGER;
C_AXI_ADDR_WIDTH : INTEGER;
C_AXI_DATA_WIDTH : INTEGER;
C_AXI_LEN_WIDTH : INTEGER;
C_AXI_LOCK_WIDTH : INTEGER;
C_HAS_AXI_ID : INTEGER;
C_HAS_AXI_AWUSER : INTEGER;
C_HAS_AXI_WUSER : INTEGER;
C_HAS_AXI_BUSER : INTEGER;
C_HAS_AXI_ARUSER : INTEGER;
C_HAS_AXI_RUSER : INTEGER;
C_AXI_ARUSER_WIDTH : INTEGER;
C_AXI_AWUSER_WIDTH : INTEGER;
C_AXI_WUSER_WIDTH : INTEGER;
C_AXI_BUSER_WIDTH : INTEGER;
C_AXI_RUSER_WIDTH : INTEGER;
C_HAS_AXIS_TDATA : INTEGER;
C_HAS_AXIS_TID : INTEGER;
C_HAS_AXIS_TDEST : INTEGER;
C_HAS_AXIS_TUSER : INTEGER;
C_HAS_AXIS_TREADY : INTEGER;
C_HAS_AXIS_TLAST : INTEGER;
C_HAS_AXIS_TSTRB : INTEGER;
C_HAS_AXIS_TKEEP : INTEGER;
C_AXIS_TDATA_WIDTH : INTEGER;
C_AXIS_TID_WIDTH : INTEGER;
C_AXIS_TDEST_WIDTH : INTEGER;
C_AXIS_TUSER_WIDTH : INTEGER;
C_AXIS_TSTRB_WIDTH : INTEGER;
C_AXIS_TKEEP_WIDTH : INTEGER;
C_WACH_TYPE : INTEGER;
C_WDCH_TYPE : INTEGER;
C_WRCH_TYPE : INTEGER;
C_RACH_TYPE : INTEGER;
C_RDCH_TYPE : INTEGER;
C_AXIS_TYPE : INTEGER;
C_IMPLEMENTATION_TYPE_WACH : INTEGER;
C_IMPLEMENTATION_TYPE_WDCH : INTEGER;
C_IMPLEMENTATION_TYPE_WRCH : INTEGER;
C_IMPLEMENTATION_TYPE_RACH : INTEGER;
C_IMPLEMENTATION_TYPE_RDCH : INTEGER;
C_IMPLEMENTATION_TYPE_AXIS : INTEGER;
C_APPLICATION_TYPE_WACH : INTEGER;
C_APPLICATION_TYPE_WDCH : INTEGER;
C_APPLICATION_TYPE_WRCH : INTEGER;
C_APPLICATION_TYPE_RACH : INTEGER;
C_APPLICATION_TYPE_RDCH : INTEGER;
C_APPLICATION_TYPE_AXIS : INTEGER;
C_PRIM_FIFO_TYPE_WACH : STRING;
C_PRIM_FIFO_TYPE_WDCH : STRING;
C_PRIM_FIFO_TYPE_WRCH : STRING;
C_PRIM_FIFO_TYPE_RACH : STRING;
C_PRIM_FIFO_TYPE_RDCH : STRING;
C_PRIM_FIFO_TYPE_AXIS : STRING;
C_USE_ECC_WACH : INTEGER;
C_USE_ECC_WDCH : INTEGER;
C_USE_ECC_WRCH : INTEGER;
C_USE_ECC_RACH : INTEGER;
C_USE_ECC_RDCH : INTEGER;
C_USE_ECC_AXIS : INTEGER;
C_ERROR_INJECTION_TYPE_WACH : INTEGER;
C_ERROR_INJECTION_TYPE_WDCH : INTEGER;
C_ERROR_INJECTION_TYPE_WRCH : INTEGER;
C_ERROR_INJECTION_TYPE_RACH : INTEGER;
C_ERROR_INJECTION_TYPE_RDCH : INTEGER;
C_ERROR_INJECTION_TYPE_AXIS : INTEGER;
C_DIN_WIDTH_WACH : INTEGER;
C_DIN_WIDTH_WDCH : INTEGER;
C_DIN_WIDTH_WRCH : INTEGER;
C_DIN_WIDTH_RACH : INTEGER;
C_DIN_WIDTH_RDCH : INTEGER;
C_DIN_WIDTH_AXIS : INTEGER;
C_WR_DEPTH_WACH : INTEGER;
C_WR_DEPTH_WDCH : INTEGER;
C_WR_DEPTH_WRCH : INTEGER;
C_WR_DEPTH_RACH : INTEGER;
C_WR_DEPTH_RDCH : INTEGER;
C_WR_DEPTH_AXIS : INTEGER;
C_WR_PNTR_WIDTH_WACH : INTEGER;
C_WR_PNTR_WIDTH_WDCH : INTEGER;
C_WR_PNTR_WIDTH_WRCH : INTEGER;
C_WR_PNTR_WIDTH_RACH : INTEGER;
C_WR_PNTR_WIDTH_RDCH : INTEGER;
C_WR_PNTR_WIDTH_AXIS : INTEGER;
C_HAS_DATA_COUNTS_WACH : INTEGER;
C_HAS_DATA_COUNTS_WDCH : INTEGER;
C_HAS_DATA_COUNTS_WRCH : INTEGER;
C_HAS_DATA_COUNTS_RACH : INTEGER;
C_HAS_DATA_COUNTS_RDCH : INTEGER;
C_HAS_DATA_COUNTS_AXIS : INTEGER;
C_HAS_PROG_FLAGS_WACH : INTEGER;
C_HAS_PROG_FLAGS_WDCH : INTEGER;
C_HAS_PROG_FLAGS_WRCH : INTEGER;
C_HAS_PROG_FLAGS_RACH : INTEGER;
C_HAS_PROG_FLAGS_RDCH : INTEGER;
C_HAS_PROG_FLAGS_AXIS : INTEGER;
C_PROG_FULL_TYPE_WACH : INTEGER;
C_PROG_FULL_TYPE_WDCH : INTEGER;
C_PROG_FULL_TYPE_WRCH : INTEGER;
C_PROG_FULL_TYPE_RACH : INTEGER;
C_PROG_FULL_TYPE_RDCH : INTEGER;
C_PROG_FULL_TYPE_AXIS : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_PROG_EMPTY_TYPE_WACH : INTEGER;
C_PROG_EMPTY_TYPE_WDCH : INTEGER;
C_PROG_EMPTY_TYPE_WRCH : INTEGER;
C_PROG_EMPTY_TYPE_RACH : INTEGER;
C_PROG_EMPTY_TYPE_RDCH : INTEGER;
C_PROG_EMPTY_TYPE_AXIS : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH : INTEGER;
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS : INTEGER;
C_REG_SLICE_MODE_WACH : INTEGER;
C_REG_SLICE_MODE_WDCH : INTEGER;
C_REG_SLICE_MODE_WRCH : INTEGER;
C_REG_SLICE_MODE_RACH : INTEGER;
C_REG_SLICE_MODE_RDCH : INTEGER;
C_REG_SLICE_MODE_AXIS : INTEGER
);
PORT (
backup : IN STD_LOGIC;
backup_marker : IN STD_LOGIC;
clk : IN STD_LOGIC;
rst : IN STD_LOGIC;
srst : IN STD_LOGIC;
wr_clk : IN STD_LOGIC;
wr_rst : IN STD_LOGIC;
rd_clk : IN STD_LOGIC;
rd_rst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(287 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_empty_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_assert : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full_thresh_negate : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
int_clk : IN STD_LOGIC;
injectdbiterr : IN STD_LOGIC;
injectsbiterr : IN STD_LOGIC;
sleep : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(287 DOWNTO 0);
full : OUT STD_LOGIC;
almost_full : OUT STD_LOGIC;
wr_ack : OUT STD_LOGIC;
overflow : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
almost_empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC;
underflow : OUT STD_LOGIC;
data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
rd_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
wr_data_count : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
prog_full : OUT STD_LOGIC;
prog_empty : OUT STD_LOGIC;
sbiterr : OUT STD_LOGIC;
dbiterr : OUT STD_LOGIC;
wr_rst_busy : OUT STD_LOGIC;
rd_rst_busy : OUT STD_LOGIC;
m_aclk : IN STD_LOGIC;
s_aclk : IN STD_LOGIC;
s_aresetn : IN STD_LOGIC;
m_aclk_en : IN STD_LOGIC;
s_aclk_en : IN STD_LOGIC;
s_axi_awid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awaddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_awlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_awsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_awlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_awqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_awuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_awvalid : IN STD_LOGIC;
s_axi_awready : OUT STD_LOGIC;
s_axi_wid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_wstrb : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_wlast : IN STD_LOGIC;
s_axi_wuser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_wvalid : IN STD_LOGIC;
s_axi_wready : OUT STD_LOGIC;
s_axi_bid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_buser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_bvalid : OUT STD_LOGIC;
s_axi_bready : IN STD_LOGIC;
m_axi_awid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awaddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_awlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_awsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_awlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_awqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_awuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_awvalid : OUT STD_LOGIC;
m_axi_awready : IN STD_LOGIC;
m_axi_wid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_wstrb : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_wlast : OUT STD_LOGIC;
m_axi_wuser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_wvalid : OUT STD_LOGIC;
m_axi_wready : IN STD_LOGIC;
m_axi_bid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_buser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_bvalid : IN STD_LOGIC;
m_axi_bready : OUT STD_LOGIC;
s_axi_arid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_araddr : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
s_axi_arlen : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axi_arsize : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arburst : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_arlock : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arcache : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arprot : IN STD_LOGIC_VECTOR(2 DOWNTO 0);
s_axi_arqos : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_arregion : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
s_axi_aruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_arvalid : IN STD_LOGIC;
s_axi_arready : OUT STD_LOGIC;
s_axi_rid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rdata : OUT STD_LOGIC_VECTOR(63 DOWNTO 0);
s_axi_rresp : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
s_axi_rlast : OUT STD_LOGIC;
s_axi_ruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axi_rvalid : OUT STD_LOGIC;
s_axi_rready : IN STD_LOGIC;
m_axi_arid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_araddr : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axi_arlen : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axi_arsize : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arburst : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_arlock : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arcache : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arprot : OUT STD_LOGIC_VECTOR(2 DOWNTO 0);
m_axi_arqos : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_arregion : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axi_aruser : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_arvalid : OUT STD_LOGIC;
m_axi_arready : IN STD_LOGIC;
m_axi_rid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rdata : IN STD_LOGIC_VECTOR(63 DOWNTO 0);
m_axi_rresp : IN STD_LOGIC_VECTOR(1 DOWNTO 0);
m_axi_rlast : IN STD_LOGIC;
m_axi_ruser : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axi_rvalid : IN STD_LOGIC;
m_axi_rready : OUT STD_LOGIC;
s_axis_tvalid : IN STD_LOGIC;
s_axis_tready : OUT STD_LOGIC;
s_axis_tdata : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
s_axis_tstrb : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tkeep : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tlast : IN STD_LOGIC;
s_axis_tid : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tdest : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
s_axis_tuser : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
m_axis_tvalid : OUT STD_LOGIC;
m_axis_tready : IN STD_LOGIC;
m_axis_tdata : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
m_axis_tstrb : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tkeep : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tlast : OUT STD_LOGIC;
m_axis_tid : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tdest : OUT STD_LOGIC_VECTOR(0 DOWNTO 0);
m_axis_tuser : OUT STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_injectsbiterr : IN STD_LOGIC;
axi_aw_injectdbiterr : IN STD_LOGIC;
axi_aw_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_aw_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_aw_sbiterr : OUT STD_LOGIC;
axi_aw_dbiterr : OUT STD_LOGIC;
axi_aw_overflow : OUT STD_LOGIC;
axi_aw_underflow : OUT STD_LOGIC;
axi_aw_prog_full : OUT STD_LOGIC;
axi_aw_prog_empty : OUT STD_LOGIC;
axi_w_injectsbiterr : IN STD_LOGIC;
axi_w_injectdbiterr : IN STD_LOGIC;
axi_w_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_w_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_w_sbiterr : OUT STD_LOGIC;
axi_w_dbiterr : OUT STD_LOGIC;
axi_w_overflow : OUT STD_LOGIC;
axi_w_underflow : OUT STD_LOGIC;
axi_w_prog_full : OUT STD_LOGIC;
axi_w_prog_empty : OUT STD_LOGIC;
axi_b_injectsbiterr : IN STD_LOGIC;
axi_b_injectdbiterr : IN STD_LOGIC;
axi_b_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_b_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_b_sbiterr : OUT STD_LOGIC;
axi_b_dbiterr : OUT STD_LOGIC;
axi_b_overflow : OUT STD_LOGIC;
axi_b_underflow : OUT STD_LOGIC;
axi_b_prog_full : OUT STD_LOGIC;
axi_b_prog_empty : OUT STD_LOGIC;
axi_ar_injectsbiterr : IN STD_LOGIC;
axi_ar_injectdbiterr : IN STD_LOGIC;
axi_ar_prog_full_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_prog_empty_thresh : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
axi_ar_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_wr_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_rd_data_count : OUT STD_LOGIC_VECTOR(4 DOWNTO 0);
axi_ar_sbiterr : OUT STD_LOGIC;
axi_ar_dbiterr : OUT STD_LOGIC;
axi_ar_overflow : OUT STD_LOGIC;
axi_ar_underflow : OUT STD_LOGIC;
axi_ar_prog_full : OUT STD_LOGIC;
axi_ar_prog_empty : OUT STD_LOGIC;
axi_r_injectsbiterr : IN STD_LOGIC;
axi_r_injectdbiterr : IN STD_LOGIC;
axi_r_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axi_r_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axi_r_sbiterr : OUT STD_LOGIC;
axi_r_dbiterr : OUT STD_LOGIC;
axi_r_overflow : OUT STD_LOGIC;
axi_r_underflow : OUT STD_LOGIC;
axi_r_prog_full : OUT STD_LOGIC;
axi_r_prog_empty : OUT STD_LOGIC;
axis_injectsbiterr : IN STD_LOGIC;
axis_injectdbiterr : IN STD_LOGIC;
axis_prog_full_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_prog_empty_thresh : IN STD_LOGIC_VECTOR(9 DOWNTO 0);
axis_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_wr_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_rd_data_count : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);
axis_sbiterr : OUT STD_LOGIC;
axis_dbiterr : OUT STD_LOGIC;
axis_overflow : OUT STD_LOGIC;
axis_underflow : OUT STD_LOGIC;
axis_prog_full : OUT STD_LOGIC;
axis_prog_empty : OUT STD_LOGIC
);
END COMPONENT fifo_generator_v12_0;
ATTRIBUTE X_INTERFACE_INFO : STRING;
ATTRIBUTE X_INTERFACE_INFO OF din: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_DATA";
ATTRIBUTE X_INTERFACE_INFO OF wr_en: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE WR_EN";
ATTRIBUTE X_INTERFACE_INFO OF rd_en: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_EN";
ATTRIBUTE X_INTERFACE_INFO OF dout: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ RD_DATA";
ATTRIBUTE X_INTERFACE_INFO OF full: SIGNAL IS "xilinx.com:interface:fifo_write:1.0 FIFO_WRITE FULL";
ATTRIBUTE X_INTERFACE_INFO OF empty: SIGNAL IS "xilinx.com:interface:fifo_read:1.0 FIFO_READ EMPTY";
BEGIN
U0 : fifo_generator_v12_0
GENERIC MAP (
C_COMMON_CLOCK => 1,
C_COUNT_TYPE => 0,
C_DATA_COUNT_WIDTH => 4,
C_DEFAULT_VALUE => "BlankString",
C_DIN_WIDTH => 288,
C_DOUT_RST_VAL => "0",
C_DOUT_WIDTH => 288,
C_ENABLE_RLOCS => 0,
C_FAMILY => "zynq",
C_FULL_FLAGS_RST_VAL => 0,
C_HAS_ALMOST_EMPTY => 0,
C_HAS_ALMOST_FULL => 0,
C_HAS_BACKUP => 0,
C_HAS_DATA_COUNT => 1,
C_HAS_INT_CLK => 0,
C_HAS_MEMINIT_FILE => 0,
C_HAS_OVERFLOW => 0,
C_HAS_RD_DATA_COUNT => 0,
C_HAS_RD_RST => 0,
C_HAS_RST => 0,
C_HAS_SRST => 1,
C_HAS_UNDERFLOW => 0,
C_HAS_VALID => 0,
C_HAS_WR_ACK => 0,
C_HAS_WR_DATA_COUNT => 0,
C_HAS_WR_RST => 0,
C_IMPLEMENTATION_TYPE => 0,
C_INIT_WR_PNTR_VAL => 0,
C_MEMORY_TYPE => 2,
C_MIF_FILE_NAME => "BlankString",
C_OPTIMIZATION_MODE => 0,
C_OVERFLOW_LOW => 0,
C_PRELOAD_LATENCY => 1,
C_PRELOAD_REGS => 0,
C_PRIM_FIFO_TYPE => "512x72",
C_PROG_EMPTY_THRESH_ASSERT_VAL => 2,
C_PROG_EMPTY_THRESH_NEGATE_VAL => 3,
C_PROG_EMPTY_TYPE => 0,
C_PROG_FULL_THRESH_ASSERT_VAL => 14,
C_PROG_FULL_THRESH_NEGATE_VAL => 13,
C_PROG_FULL_TYPE => 0,
C_RD_DATA_COUNT_WIDTH => 4,
C_RD_DEPTH => 16,
C_RD_FREQ => 1,
C_RD_PNTR_WIDTH => 4,
C_UNDERFLOW_LOW => 0,
C_USE_DOUT_RST => 1,
C_USE_ECC => 0,
C_USE_EMBEDDED_REG => 0,
C_USE_PIPELINE_REG => 0,
C_POWER_SAVING_MODE => 0,
C_USE_FIFO16_FLAGS => 0,
C_USE_FWFT_DATA_COUNT => 0,
C_VALID_LOW => 0,
C_WR_ACK_LOW => 0,
C_WR_DATA_COUNT_WIDTH => 4,
C_WR_DEPTH => 16,
C_WR_FREQ => 1,
C_WR_PNTR_WIDTH => 4,
C_WR_RESPONSE_LATENCY => 1,
C_MSGON_VAL => 1,
C_ENABLE_RST_SYNC => 1,
C_ERROR_INJECTION_TYPE => 0,
C_SYNCHRONIZER_STAGE => 2,
C_INTERFACE_TYPE => 0,
C_AXI_TYPE => 1,
C_HAS_AXI_WR_CHANNEL => 1,
C_HAS_AXI_RD_CHANNEL => 1,
C_HAS_SLAVE_CE => 0,
C_HAS_MASTER_CE => 0,
C_ADD_NGC_CONSTRAINT => 0,
C_USE_COMMON_OVERFLOW => 0,
C_USE_COMMON_UNDERFLOW => 0,
C_USE_DEFAULT_SETTINGS => 0,
C_AXI_ID_WIDTH => 1,
C_AXI_ADDR_WIDTH => 32,
C_AXI_DATA_WIDTH => 64,
C_AXI_LEN_WIDTH => 8,
C_AXI_LOCK_WIDTH => 1,
C_HAS_AXI_ID => 0,
C_HAS_AXI_AWUSER => 0,
C_HAS_AXI_WUSER => 0,
C_HAS_AXI_BUSER => 0,
C_HAS_AXI_ARUSER => 0,
C_HAS_AXI_RUSER => 0,
C_AXI_ARUSER_WIDTH => 1,
C_AXI_AWUSER_WIDTH => 1,
C_AXI_WUSER_WIDTH => 1,
C_AXI_BUSER_WIDTH => 1,
C_AXI_RUSER_WIDTH => 1,
C_HAS_AXIS_TDATA => 1,
C_HAS_AXIS_TID => 0,
C_HAS_AXIS_TDEST => 0,
C_HAS_AXIS_TUSER => 1,
C_HAS_AXIS_TREADY => 1,
C_HAS_AXIS_TLAST => 0,
C_HAS_AXIS_TSTRB => 0,
C_HAS_AXIS_TKEEP => 0,
C_AXIS_TDATA_WIDTH => 8,
C_AXIS_TID_WIDTH => 1,
C_AXIS_TDEST_WIDTH => 1,
C_AXIS_TUSER_WIDTH => 4,
C_AXIS_TSTRB_WIDTH => 1,
C_AXIS_TKEEP_WIDTH => 1,
C_WACH_TYPE => 0,
C_WDCH_TYPE => 0,
C_WRCH_TYPE => 0,
C_RACH_TYPE => 0,
C_RDCH_TYPE => 0,
C_AXIS_TYPE => 0,
C_IMPLEMENTATION_TYPE_WACH => 1,
C_IMPLEMENTATION_TYPE_WDCH => 1,
C_IMPLEMENTATION_TYPE_WRCH => 1,
C_IMPLEMENTATION_TYPE_RACH => 1,
C_IMPLEMENTATION_TYPE_RDCH => 1,
C_IMPLEMENTATION_TYPE_AXIS => 1,
C_APPLICATION_TYPE_WACH => 0,
C_APPLICATION_TYPE_WDCH => 0,
C_APPLICATION_TYPE_WRCH => 0,
C_APPLICATION_TYPE_RACH => 0,
C_APPLICATION_TYPE_RDCH => 0,
C_APPLICATION_TYPE_AXIS => 0,
C_PRIM_FIFO_TYPE_WACH => "512x36",
C_PRIM_FIFO_TYPE_WDCH => "1kx36",
C_PRIM_FIFO_TYPE_WRCH => "512x36",
C_PRIM_FIFO_TYPE_RACH => "512x36",
C_PRIM_FIFO_TYPE_RDCH => "1kx36",
C_PRIM_FIFO_TYPE_AXIS => "1kx18",
C_USE_ECC_WACH => 0,
C_USE_ECC_WDCH => 0,
C_USE_ECC_WRCH => 0,
C_USE_ECC_RACH => 0,
C_USE_ECC_RDCH => 0,
C_USE_ECC_AXIS => 0,
C_ERROR_INJECTION_TYPE_WACH => 0,
C_ERROR_INJECTION_TYPE_WDCH => 0,
C_ERROR_INJECTION_TYPE_WRCH => 0,
C_ERROR_INJECTION_TYPE_RACH => 0,
C_ERROR_INJECTION_TYPE_RDCH => 0,
C_ERROR_INJECTION_TYPE_AXIS => 0,
C_DIN_WIDTH_WACH => 32,
C_DIN_WIDTH_WDCH => 64,
C_DIN_WIDTH_WRCH => 2,
C_DIN_WIDTH_RACH => 32,
C_DIN_WIDTH_RDCH => 64,
C_DIN_WIDTH_AXIS => 1,
C_WR_DEPTH_WACH => 16,
C_WR_DEPTH_WDCH => 1024,
C_WR_DEPTH_WRCH => 16,
C_WR_DEPTH_RACH => 16,
C_WR_DEPTH_RDCH => 1024,
C_WR_DEPTH_AXIS => 1024,
C_WR_PNTR_WIDTH_WACH => 4,
C_WR_PNTR_WIDTH_WDCH => 10,
C_WR_PNTR_WIDTH_WRCH => 4,
C_WR_PNTR_WIDTH_RACH => 4,
C_WR_PNTR_WIDTH_RDCH => 10,
C_WR_PNTR_WIDTH_AXIS => 10,
C_HAS_DATA_COUNTS_WACH => 0,
C_HAS_DATA_COUNTS_WDCH => 0,
C_HAS_DATA_COUNTS_WRCH => 0,
C_HAS_DATA_COUNTS_RACH => 0,
C_HAS_DATA_COUNTS_RDCH => 0,
C_HAS_DATA_COUNTS_AXIS => 0,
C_HAS_PROG_FLAGS_WACH => 0,
C_HAS_PROG_FLAGS_WDCH => 0,
C_HAS_PROG_FLAGS_WRCH => 0,
C_HAS_PROG_FLAGS_RACH => 0,
C_HAS_PROG_FLAGS_RDCH => 0,
C_HAS_PROG_FLAGS_AXIS => 0,
C_PROG_FULL_TYPE_WACH => 0,
C_PROG_FULL_TYPE_WDCH => 0,
C_PROG_FULL_TYPE_WRCH => 0,
C_PROG_FULL_TYPE_RACH => 0,
C_PROG_FULL_TYPE_RDCH => 0,
C_PROG_FULL_TYPE_AXIS => 0,
C_PROG_FULL_THRESH_ASSERT_VAL_WACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_WRCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RACH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_RDCH => 1023,
C_PROG_FULL_THRESH_ASSERT_VAL_AXIS => 1023,
C_PROG_EMPTY_TYPE_WACH => 0,
C_PROG_EMPTY_TYPE_WDCH => 0,
C_PROG_EMPTY_TYPE_WRCH => 0,
C_PROG_EMPTY_TYPE_RACH => 0,
C_PROG_EMPTY_TYPE_RDCH => 0,
C_PROG_EMPTY_TYPE_AXIS => 0,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_WRCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RACH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_RDCH => 1022,
C_PROG_EMPTY_THRESH_ASSERT_VAL_AXIS => 1022,
C_REG_SLICE_MODE_WACH => 0,
C_REG_SLICE_MODE_WDCH => 0,
C_REG_SLICE_MODE_WRCH => 0,
C_REG_SLICE_MODE_RACH => 0,
C_REG_SLICE_MODE_RDCH => 0,
C_REG_SLICE_MODE_AXIS => 0
)
PORT MAP (
backup => '0',
backup_marker => '0',
clk => clk,
rst => '0',
srst => srst,
wr_clk => '0',
wr_rst => '0',
rd_clk => '0',
rd_rst => '0',
din => din,
wr_en => wr_en,
rd_en => rd_en,
prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_empty_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_assert => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
prog_full_thresh_negate => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
int_clk => '0',
injectdbiterr => '0',
injectsbiterr => '0',
sleep => '0',
dout => dout,
full => full,
empty => empty,
data_count => data_count,
m_aclk => '0',
s_aclk => '0',
s_aresetn => '0',
m_aclk_en => '0',
s_aclk_en => '0',
s_axi_awid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awaddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_awlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_awsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_awlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_awqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_awuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_awvalid => '0',
s_axi_wid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
s_axi_wstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_wlast => '0',
s_axi_wuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_wvalid => '0',
s_axi_bready => '0',
m_axi_awready => '0',
m_axi_wready => '0',
m_axi_bid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_buser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_bvalid => '0',
s_axi_arid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_araddr => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 32)),
s_axi_arlen => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axi_arsize => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arburst => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
s_axi_arlock => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arcache => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arprot => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 3)),
s_axi_arqos => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_arregion => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
s_axi_aruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axi_arvalid => '0',
s_axi_rready => '0',
m_axi_arready => '0',
m_axi_rid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 64)),
m_axi_rresp => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 2)),
m_axi_rlast => '0',
m_axi_ruser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
m_axi_rvalid => '0',
s_axis_tvalid => '0',
s_axis_tdata => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 8)),
s_axis_tstrb => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tkeep => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tlast => '0',
s_axis_tid => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tdest => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 1)),
s_axis_tuser => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
m_axis_tready => '0',
axi_aw_injectsbiterr => '0',
axi_aw_injectdbiterr => '0',
axi_aw_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_aw_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_w_injectsbiterr => '0',
axi_w_injectdbiterr => '0',
axi_w_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_w_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_b_injectsbiterr => '0',
axi_b_injectdbiterr => '0',
axi_b_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_b_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_injectsbiterr => '0',
axi_ar_injectdbiterr => '0',
axi_ar_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_ar_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 4)),
axi_r_injectsbiterr => '0',
axi_r_injectdbiterr => '0',
axi_r_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axi_r_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_injectsbiterr => '0',
axis_injectdbiterr => '0',
axis_prog_full_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10)),
axis_prog_empty_thresh => STD_LOGIC_VECTOR(TO_UNSIGNED(0, 10))
);
END DRSCFIFO288x16WC_arch;
|
-- Copyright (C) 2001 Bill Billowitch.
-- Some of the work to develop this test suite was done with Air Force
-- support. The Air Force and Bill Billowitch assume no
-- responsibilities for this software.
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: tc2639.vhd,v 1.2 2001-10-26 16:30:20 paw Exp $
-- $Revision: 1.2 $
--
-- ---------------------------------------------------------------------
ENTITY c13s03b01x00p02n01i02639ent IS
END c13s03b01x00p02n01i02639ent;
ARCHITECTURE c13s03b01x00p02n01i02639arch OF c13s03b01x00p02n01i02639ent IS
BEGIN
TESTING: PROCESS
variable k|k : integer := 0;
BEGIN
assert FALSE
report "***FAILED TEST: c13s03b01x00p02n01i02639 - Identifier can not contain '|'."
severity ERROR;
wait;
END PROCESS TESTING;
END c13s03b01x00p02n01i02639arch;
|
-- Copyright (C) 2001 Bill Billowitch.
-- Some of the work to develop this test suite was done with Air Force
-- support. The Air Force and Bill Billowitch assume no
-- responsibilities for this software.
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: tc2639.vhd,v 1.2 2001-10-26 16:30:20 paw Exp $
-- $Revision: 1.2 $
--
-- ---------------------------------------------------------------------
ENTITY c13s03b01x00p02n01i02639ent IS
END c13s03b01x00p02n01i02639ent;
ARCHITECTURE c13s03b01x00p02n01i02639arch OF c13s03b01x00p02n01i02639ent IS
BEGIN
TESTING: PROCESS
variable k|k : integer := 0;
BEGIN
assert FALSE
report "***FAILED TEST: c13s03b01x00p02n01i02639 - Identifier can not contain '|'."
severity ERROR;
wait;
END PROCESS TESTING;
END c13s03b01x00p02n01i02639arch;
|
-- Copyright (C) 2001 Bill Billowitch.
-- Some of the work to develop this test suite was done with Air Force
-- support. The Air Force and Bill Billowitch assume no
-- responsibilities for this software.
-- This file is part of VESTs (Vhdl tESTs).
-- VESTs is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by the
-- Free Software Foundation; either version 2 of the License, or (at
-- your option) any later version.
-- VESTs is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
-- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-- for more details.
-- You should have received a copy of the GNU General Public License
-- along with VESTs; if not, write to the Free Software Foundation,
-- Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-- ---------------------------------------------------------------------
--
-- $Id: tc2639.vhd,v 1.2 2001-10-26 16:30:20 paw Exp $
-- $Revision: 1.2 $
--
-- ---------------------------------------------------------------------
ENTITY c13s03b01x00p02n01i02639ent IS
END c13s03b01x00p02n01i02639ent;
ARCHITECTURE c13s03b01x00p02n01i02639arch OF c13s03b01x00p02n01i02639ent IS
BEGIN
TESTING: PROCESS
variable k|k : integer := 0;
BEGIN
assert FALSE
report "***FAILED TEST: c13s03b01x00p02n01i02639 - Identifier can not contain '|'."
severity ERROR;
wait;
END PROCESS TESTING;
END c13s03b01x00p02n01i02639arch;
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.