text
stringlengths
7
318k
id
stringlengths
14
166
metadata
dict
__index_level_0__
int64
0
439
# coding=utf-8 # Copyright 2022 Facebook AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViT MSN (masked siamese network) model.""" import collections.abc import math from typing import Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_vit_msn import ViTMSNConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ViTMSNConfig" _CHECKPOINT_FOR_DOC = "facebook/vit-msn-small" VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/vit-msn-small", # See all ViTMSN models at https://huggingface.co/models?filter=vit_msn ] class ViTMSNEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = ViTMSNPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 if num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, 0] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] patch_window_height = height // self.config.patch_size patch_window_width = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 patch_window_height, patch_window_width = patch_window_height + 0.1, patch_window_width + 0.1 patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=( patch_window_height / math.sqrt(num_positions), patch_window_width / math.sqrt(num_positions), ), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if bool_masked_pos is not None: seq_length = embeddings.shape[1] mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTPatchEmbeddings with ViT->ViTMSN class ViTMSNPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." f" Expected {self.num_channels} but got {num_channels}." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->ViTMSN class ViTMSNSelfAttention(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTMSN class ViTMSNSelfOutput(nn.Module): """ The residual connection is defined in ViTMSNLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTMSN class ViTMSNAttention(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.attention = ViTMSNSelfAttention(config) self.output = ViTMSNSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->ViTMSN class ViTMSNIntermediate(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->ViTMSN class ViTMSNOutput(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->ViTMSN class ViTMSNLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViTMSNAttention(config) self.intermediate = ViTMSNIntermediate(config) self.output = ViTMSNOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTMSN, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViTMSN, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTMSN class ViTMSNEncoder(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTMSNLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ViTMSNPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTMSNConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True # todo: Resort to https://github.com/facebookresearch/msn/blob/main/src/deit.py#L200-#L211 # when creating pre-training scripts. def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) VIT_MSN_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTMSNConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_MSN_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*): Whether to interpolate the pre-trained position encodings. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViTMSN Model outputting raw hidden-states without any specific head on top.", VIT_MSN_START_DOCSTRING, ) class ViTMSNModel(ViTMSNPreTrainedModel): def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False): super().__init__(config) self.config = config self.embeddings = ViTMSNEmbeddings(config, use_mask_token=use_mask_token) self.encoder = ViTMSNEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> ViTMSNPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMSNModel >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small") >>> model = ViTMSNModel.from_pretrained("facebook/vit-msn-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Caution: We don't have the weights for the classification head yet. This class # is here for the users that are interested to fine-tune the base model (ViTMSNModel). @add_start_docstrings( """ ViTMSN Model with an image classification head on top e.g. for ImageNet. """, VIT_MSN_START_DOCSTRING, ) class ViTMSNForImageClassification(ViTMSNPreTrainedModel): def __init__(self, config: ViTMSNConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.vit = ViTMSNModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMSNForImageClassification >>> import torch >>> from PIL import Image >>> import requests >>> torch.manual_seed(2) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small") >>> model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) Kerry blue terrier ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/vit_msn/modeling_vit_msn.py/0
{ "file_path": "transformers/src/transformers/models/vit_msn/modeling_vit_msn.py", "repo_id": "transformers", "token_count": 12349 }
371
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Flax ViViT checkpoints from the original repository to PyTorch. URL: https://github.com/google-research/scenic/tree/main/scenic/projects/vivit """ import argparse import json import os.path from collections import OrderedDict import numpy as np import requests import torch from flax.training.checkpoints import restore_checkpoint from huggingface_hub import hf_hub_download from transformers import VivitConfig, VivitForVideoClassification, VivitImageProcessor from transformers.image_utils import PILImageResampling def download_checkpoint(path): url = "https://storage.googleapis.com/scenic-bucket/vivit/kinetics_400/vivit_base_16x2_unfactorized/checkpoint" with open(path, "wb") as f: with requests.get(url, stream=True) as req: for chunk in req.iter_content(chunk_size=2048): f.write(chunk) def get_vivit_config() -> VivitConfig: config = VivitConfig() config.num_labels = 400 repo_id = "huggingface/label-files" filename = "kinetics400-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # We will verify our results on a video of eating spaghetti # Frame indices used: [ 47, 51, 55, 59, 63, 67, 71, 75, 80, 84, 88, 92, 96, 100, 104, 108, 113, 117, # 121, 125, 129, 133, 137, 141, 146, 150, 154, 158, 162, 166, 170, 174] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_32_frames.npy", repo_type="dataset" ) video = np.load(file) return list(video) def transform_attention(current: np.ndarray): if np.ndim(current) == 2: return transform_attention_bias(current) elif np.ndim(current) == 3: return transform_attention_kernel(current) else: raise Exception(f"Invalid number of dimesions: {np.ndim(current)}") def transform_attention_bias(current: np.ndarray): return current.flatten() def transform_attention_kernel(current: np.ndarray): return np.reshape(current, (current.shape[0], current.shape[1] * current.shape[2])).T def transform_attention_output_weight(current: np.ndarray): return np.reshape(current, (current.shape[0] * current.shape[1], current.shape[2])).T def transform_state_encoder_block(state_dict, i): state = state_dict["optimizer"]["target"]["Transformer"][f"encoderblock_{i}"] prefix = f"encoder.layer.{i}." new_state = { prefix + "intermediate.dense.bias": state["MlpBlock_0"]["Dense_0"]["bias"], prefix + "intermediate.dense.weight": np.transpose(state["MlpBlock_0"]["Dense_0"]["kernel"]), prefix + "output.dense.bias": state["MlpBlock_0"]["Dense_1"]["bias"], prefix + "output.dense.weight": np.transpose(state["MlpBlock_0"]["Dense_1"]["kernel"]), prefix + "layernorm_before.bias": state["LayerNorm_0"]["bias"], prefix + "layernorm_before.weight": state["LayerNorm_0"]["scale"], prefix + "layernorm_after.bias": state["LayerNorm_1"]["bias"], prefix + "layernorm_after.weight": state["LayerNorm_1"]["scale"], prefix + "attention.attention.query.bias": transform_attention( state["MultiHeadDotProductAttention_0"]["query"]["bias"] ), prefix + "attention.attention.query.weight": transform_attention( state["MultiHeadDotProductAttention_0"]["query"]["kernel"] ), prefix + "attention.attention.key.bias": transform_attention( state["MultiHeadDotProductAttention_0"]["key"]["bias"] ), prefix + "attention.attention.key.weight": transform_attention( state["MultiHeadDotProductAttention_0"]["key"]["kernel"] ), prefix + "attention.attention.value.bias": transform_attention( state["MultiHeadDotProductAttention_0"]["value"]["bias"] ), prefix + "attention.attention.value.weight": transform_attention( state["MultiHeadDotProductAttention_0"]["value"]["kernel"] ), prefix + "attention.output.dense.bias": state["MultiHeadDotProductAttention_0"]["out"]["bias"], prefix + "attention.output.dense.weight": transform_attention_output_weight( state["MultiHeadDotProductAttention_0"]["out"]["kernel"] ), } return new_state def get_n_layers(state_dict): return sum([1 if "encoderblock_" in k else 0 for k in state_dict["optimizer"]["target"]["Transformer"].keys()]) def transform_state(state_dict, classification_head=False): transformer_layers = get_n_layers(state_dict) new_state = OrderedDict() new_state["layernorm.bias"] = state_dict["optimizer"]["target"]["Transformer"]["encoder_norm"]["bias"] new_state["layernorm.weight"] = state_dict["optimizer"]["target"]["Transformer"]["encoder_norm"]["scale"] new_state["embeddings.patch_embeddings.projection.weight"] = np.transpose( state_dict["optimizer"]["target"]["embedding"]["kernel"], (4, 3, 0, 1, 2) ) new_state["embeddings.patch_embeddings.projection.bias"] = state_dict["optimizer"]["target"]["embedding"]["bias"] new_state["embeddings.cls_token"] = state_dict["optimizer"]["target"]["cls"] new_state["embeddings.position_embeddings"] = state_dict["optimizer"]["target"]["Transformer"]["posembed_input"][ "pos_embedding" ] for i in range(transformer_layers): new_state.update(transform_state_encoder_block(state_dict, i)) if classification_head: new_state = {"vivit." + k: v for k, v in new_state.items()} new_state["classifier.weight"] = np.transpose(state_dict["optimizer"]["target"]["output_projection"]["kernel"]) new_state["classifier.bias"] = np.transpose(state_dict["optimizer"]["target"]["output_projection"]["bias"]) return {k: torch.tensor(v) for k, v in new_state.items()} # checks that image processor settings are the same as in the original implementation # original: https://github.com/google-research/scenic/blob/main/scenic/projects/vivit/data/video_tfrecord_dataset.py # dataset specific config: # https://github.com/google-research/scenic/blob/main/scenic/projects/vivit/configs/kinetics400/vivit_base_k400.py def get_processor() -> VivitImageProcessor: extractor = VivitImageProcessor() assert extractor.do_resize is True assert extractor.size == {"shortest_edge": 256} assert extractor.do_center_crop is True assert extractor.crop_size == {"width": 224, "height": 224} assert extractor.resample == PILImageResampling.BILINEAR # here: https://github.com/deepmind/dmvr/blob/master/dmvr/modalities.py # one can seen that add_image has default values for normalization_mean and normalization_std set to 0 and 1 # which effectively means no normalization (and ViViT does not overwrite those when calling this func) assert extractor.do_normalize is False assert extractor.do_rescale is True assert extractor.rescale_factor == 1 / 255 # zero-centering = True in original implementation assert extractor.do_zero_centering is True return extractor def convert(output_path: str): flax_model_path = "checkpoint" if not os.path.exists(flax_model_path): download_checkpoint(flax_model_path) state_dict = restore_checkpoint(flax_model_path, None) new_state = transform_state(state_dict, classification_head=True) config = get_vivit_config() assert config.image_size == 224 assert config.num_frames == 32 model = VivitForVideoClassification(config) model.load_state_dict(new_state) model.eval() extractor = get_processor() video = prepare_video() inputs = extractor(video, return_tensors="pt") outputs = model(**inputs) expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([-1.0543, 2.0764, -0.2104, 0.4439, -0.9658]) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :5], expected_slice, atol=1e-4), outputs.logits[0, :5] model.save_pretrained(output_path) extractor.save_pretrained(output_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--output_model_name", "-o", type=str, help="Output path for the converted HuggingFace model") args = parser.parse_args() convert(args.output_model_name)
transformers/src/transformers/models/vivit/convert_vivit_flax_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/vivit/convert_vivit_flax_to_pytorch.py", "repo_id": "transformers", "token_count": 3449 }
372
# coding=utf-8 # Copyright 2024 The Seamless Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Wav2Vec2-BERT model.""" import math import warnings from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...integrations.deepspeed import is_deepspeed_zero3_enabled from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_peft_available, logging, ) from .configuration_wav2vec2_bert import Wav2Vec2BertConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Wav2Vec2BertConfig" # Base docstring _BASE_CHECKPOINT_FOR_DOC = "facebook/w2v-bert-2.0" _PRETRAINED_CHECKPOINT_FOR_DOC = "hf-audio/wav2vec2-bert-CV16-en" _EXPECTED_OUTPUT_SHAPE = [1, 146, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mr quilter is the apostle of the middle classes and we are glad to welcome his gospel'" _CTC_EXPECTED_LOSS = 17.04 WAV2VEC2_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/w2v-bert-2.0", # See all Wav2Vec2-BERT models at https://huggingface.co/models?filter=wav2vec2-bert ] # Copied from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2._compute_new_attention_mask def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor): """ Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that stops at the corresponding element in `seq_lens`. Args: hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`): The sequences to mask, where `*` is any number of sequence-specific dimensions including none. seq_lens (`torch.Tensor` of shape `(batch)`: Each element represents the length of the sequence at the same index in `hidden_states` Returns: `torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)` """ batch_size, mask_seq_len = hidden_states.shape[:2] indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1) bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len) mask = hidden_states.new_ones((batch_size, mask_seq_len)) mask = mask.masked_fill(bool_mask, 0) return mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices def _sample_negative_indices( features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None ): """ Sample `num_negatives` vectors from feature vectors. """ batch_size, sequence_length = features_shape # generate indices of the positive vectors themselves, repeat them `num_negatives` times sequence_length_range = np.arange(sequence_length) # get `num_negatives` random vector indices from the same utterance sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32) mask_time_indices = ( mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool) ) for batch_idx in range(batch_size): high = mask_time_indices[batch_idx].sum() - 1 mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]] feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives)) sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives)) # avoid sampling the same positive vector, but keep the distribution uniform sampled_indices[sampled_indices >= feature_indices] += 1 # remap to actual indices sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices] # correct for batch size sampled_negative_indices[batch_idx] += batch_idx * sequence_length return sampled_negative_indices # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert class Wav2Vec2BertRotaryPositionalEmbedding(nn.Module): """Rotary positional embedding Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf """ def __init__(self, config): super().__init__() dim = config.hidden_size // config.num_attention_heads base = config.rotary_embedding_base inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) # Ignore copy self.register_buffer("inv_freq", inv_freq, persistent=False) self.cached_sequence_length = None self.cached_rotary_positional_embedding = None def forward(self, hidden_states): sequence_length = hidden_states.shape[1] if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None: return self.cached_rotary_positional_embedding self.cached_sequence_length = sequence_length # Embeddings are computed in the dtype of the inv_freq constant time_stamps = torch.arange(sequence_length).type_as(self.inv_freq) freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq) embeddings = torch.cat((freqs, freqs), dim=-1) cos_embeddings = embeddings.cos()[:, None, None, :] sin_embeddings = embeddings.sin()[:, None, None, :] # Computed embeddings are cast to the dtype of the hidden state inputs self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states) return self.cached_rotary_positional_embedding # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert class Wav2Vec2BertRelPositionalEmbedding(nn.Module): """Relative positional encoding module.""" def __init__(self, config): super().__init__() self.max_len = config.max_source_positions self.d_model = config.hidden_size self.pe = None self.extend_pe(torch.tensor(0.0).expand(1, self.max_len)) def extend_pe(self, x): # Reset the positional encodings if self.pe is not None: # self.pe contains both positive and negative parts # the length of self.pe is 2 * input_len - 1 if self.pe.size(1) >= x.size(1) * 2 - 1: if self.pe.dtype != x.dtype or self.pe.device != x.device: self.pe = self.pe.to(dtype=x.dtype, device=x.device) return # Suppose `i` is the position of query vector and `j` is the # position of key vector. We use positive relative positions when keys # are to the left (i>j) and negative relative positions otherwise (i<j). pe_positive = torch.zeros(x.size(1), self.d_model) pe_negative = torch.zeros(x.size(1), self.d_model) position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1) div_term = torch.exp( torch.arange(0, self.d_model, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.d_model) ) pe_positive[:, 0::2] = torch.sin(position * div_term) pe_positive[:, 1::2] = torch.cos(position * div_term) pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) # Reverse the order of positive indices and concat both positive and # negative indices. This is used to support the shifting trick # as in https://arxiv.org/abs/1901.02860 pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) pe_negative = pe_negative[1:].unsqueeze(0) pe = torch.cat([pe_positive, pe_negative], dim=1) self.pe = pe.to(device=x.device, dtype=x.dtype) def forward(self, hidden_states: torch.Tensor): self.extend_pe(hidden_states) start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1 end_idx = self.pe.size(1) // 2 + hidden_states.size(1) relative_position_embeddings = self.pe[:, start_idx:end_idx] return relative_position_embeddings class Wav2Vec2BertFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps) self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states class Wav2Vec2BertFeedForward(nn.Module): def __init__(self, config, act_fn=None, hidden_size=None): super().__init__() act_fn = act_fn if act_fn is not None else config.hidden_act hidden_size = hidden_size if hidden_size is not None else config.hidden_size self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(hidden_size, config.intermediate_size) self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn self.output_dense = nn.Linear(config.intermediate_size, hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward.forward def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states class Wav2Vec2BertConvolutionModule(nn.Module): """Convolution block used in the conformer block""" def __init__(self, config): super().__init__() if (config.conv_depthwise_kernel_size - 1) % 2 == 1: raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding") self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pointwise_conv1 = nn.Conv1d( config.hidden_size, 2 * config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.glu = nn.GLU(dim=1) self.depthwise_conv = nn.Conv1d( config.hidden_size, config.hidden_size, config.conv_depthwise_kernel_size, stride=1, padding=0, groups=config.hidden_size, bias=False, ) self.depthwise_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.activation = ACT2FN[config.hidden_act] self.pointwise_conv2 = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=1, stride=1, padding=0, bias=False, ) self.dropout = nn.Dropout(config.conformer_conv_dropout) def forward(self, hidden_states, attention_mask=None): hidden_states = self.layer_norm(hidden_states) # Ensure that we do not leak padded positions in depthwise convolution if attention mask is passed. # Put 0 where necessary if attention_mask is not None: hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # exchange the temporal dimension and the feature dimension hidden_states = hidden_states.transpose(1, 2) # GLU mechanism # => (batch, 2*channel, dim) hidden_states = self.pointwise_conv1(hidden_states) # => (batch, channel, dim) hidden_states = self.glu(hidden_states) # Pad the sequence entirely on the left because of causal convolution. hidden_states = torch.nn.functional.pad(hidden_states, (self.depthwise_conv.kernel_size[0] - 1, 0)) # 1D Depthwise Conv hidden_states = self.depthwise_conv(hidden_states) hidden_states = self.depthwise_layer_norm(hidden_states.transpose(1, 2)).transpose(1, 2) hidden_states = self.activation(hidden_states) hidden_states = self.pointwise_conv2(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Wav2Vec2BertSelfAttention(nn.Module): """Construct an Wav2Vec2BertSelfAttention object. Can be enhanced with rotary or relative position embeddings. """ def __init__(self, config, is_adapter_attention=False): super().__init__() hidden_size = config.hidden_size if not is_adapter_attention else config.output_hidden_size self.head_size = hidden_size // config.num_attention_heads self.num_heads = config.num_attention_heads self.position_embeddings_type = config.position_embeddings_type if not is_adapter_attention else None self.linear_q = nn.Linear(hidden_size, hidden_size) self.linear_k = nn.Linear(hidden_size, hidden_size) self.linear_v = nn.Linear(hidden_size, hidden_size) self.linear_out = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(p=config.attention_dropout) if self.position_embeddings_type == "relative": # linear transformation for positional encoding self.linear_pos = nn.Linear(hidden_size, hidden_size, bias=False) # these two learnable bias are used in matrix c and matrix d # as described in https://arxiv.org/abs/1901.02860 Section 3.3 self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size)) if self.position_embeddings_type == "relative_key": self.left_max_position_embeddings = config.left_max_position_embeddings self.right_max_position_embeddings = config.right_max_position_embeddings num_positions = self.left_max_position_embeddings + self.right_max_position_embeddings + 1 self.distance_embedding = nn.Embedding(num_positions, self.head_size) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # self-attention mechanism batch_size, sequence_length, hidden_size = hidden_states.size() # make sure query/key states can be != value states query_key_states = hidden_states value_states = hidden_states if self.position_embeddings_type == "rotary": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'" ) query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings) # project query_key_states and value_states query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size) value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size) # => (batch, head, time1, d_k) query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) if self.position_embeddings_type == "relative": if relative_position_embeddings is None: raise ValueError( "`relative_position_embeddings` has to be defined when `self.position_embeddings_type ==" " 'relative'" ) # apply relative_position_embeddings to qk scores # as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860 scores = self._apply_relative_embeddings( query=query, key=key, relative_position_embeddings=relative_position_embeddings ) else: scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size) if self.position_embeddings_type == "relative_key": query_length, key_length = query.shape[2], key.shape[2] position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_r - position_ids_l distance = torch.clamp(distance, -self.left_max_position_embeddings, self.right_max_position_embeddings) positional_embedding = self.distance_embedding(distance + self.left_max_position_embeddings) positional_embedding = positional_embedding.to(dtype=query.dtype) # fp16 compatibility relative_position_attn_weights = torch.einsum("bhld,lrd->bhlr", query, positional_embedding) scores = scores + (relative_position_attn_weights / math.sqrt(self.head_size)) # apply attention_mask if necessary if attention_mask is not None: scores = scores + attention_mask # => (batch, head, time1, time2) probs = torch.softmax(scores, dim=-1) probs = self.dropout(probs) # => (batch, head, time1, d_k) hidden_states = torch.matmul(probs, value) # => (batch, time1, hidden_size) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size) hidden_states = self.linear_out(hidden_states) return hidden_states, probs # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings): batch_size, sequence_length, hidden_size = hidden_states.size() hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size) cos = relative_position_embeddings[0, :sequence_length, ...] sin = relative_position_embeddings[1, :sequence_length, ...] # rotate hidden_states with rotary embeddings hidden_states = hidden_states.transpose(0, 1) rotated_states_begin = hidden_states[..., : self.head_size // 2] rotated_states_end = hidden_states[..., self.head_size // 2 :] rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1) hidden_states = (hidden_states * cos) + (rotated_states * sin) hidden_states = hidden_states.transpose(0, 1) hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size) return hidden_states # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings def _apply_relative_embeddings(self, query, key, relative_position_embeddings): # 1. project positional embeddings # => (batch, head, 2*time1-1, d_k) proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings) proj_relative_position_embeddings = proj_relative_position_embeddings.view( relative_position_embeddings.size(0), -1, self.num_heads, self.head_size ) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2) proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3) # 2. Add bias to query # => (batch, head, time1, d_k) query = query.transpose(1, 2) q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2) q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2) # 3. attention score: first compute matrix a and matrix c # as described in https://arxiv.org/abs/1901.02860 Section 3.3 # => (batch, head, time1, time2) scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1)) # 4. then compute matrix b and matrix d # => (batch, head, time1, 2*time1-1) scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings) # 5. shift matrix b and matrix d zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype) scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1) scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2]) scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape) scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd) scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1] # 6. sum matrices # => (batch, head, time1, time2) scores = (scores_ac + scores_bd) / math.sqrt(self.head_size) return scores class Wav2Vec2BertEncoderLayer(nn.Module): """Conformer block based on https://arxiv.org/abs/2005.08100.""" def __init__(self, config): super().__init__() embed_dim = config.hidden_size dropout = config.attention_dropout # Feed-forward 1 self.ffn1_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.ffn1 = Wav2Vec2BertFeedForward(config) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.self_attn_dropout = nn.Dropout(dropout) self.self_attn = Wav2Vec2BertSelfAttention(config) # Conformer Convolution self.conv_module = Wav2Vec2BertConvolutionModule(config) # Feed-forward 2 self.ffn2_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.ffn2 = Wav2Vec2BertFeedForward(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, relative_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, conv_attention_mask: Optional[torch.Tensor] = None, ): hidden_states = hidden_states # 1. Feed-Forward 1 layer residual = hidden_states hidden_states = self.ffn1_layer_norm(hidden_states) hidden_states = self.ffn1(hidden_states) hidden_states = hidden_states * 0.5 + residual residual = hidden_states # 2. Self-Attention layer hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weigts = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual # 3. Convolutional Layer residual = hidden_states hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask) hidden_states = residual + hidden_states # 4. Feed-Forward 2 Layer residual = hidden_states hidden_states = self.ffn2_layer_norm(hidden_states) hidden_states = self.ffn2(hidden_states) hidden_states = hidden_states * 0.5 + residual hidden_states = self.final_layer_norm(hidden_states) return hidden_states, attn_weigts class Wav2Vec2BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config if config.position_embeddings_type == "relative": self.embed_positions = Wav2Vec2BertRelPositionalEmbedding(config) elif config.position_embeddings_type == "rotary": self.embed_positions = Wav2Vec2BertRotaryPositionalEmbedding(config) else: self.embed_positions = None self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Wav2Vec2BertEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None conv_attention_mask = attention_mask if attention_mask is not None: # make sure padded tokens output 0 hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0) # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) hidden_states = self.dropout(hidden_states) if self.embed_positions is not None: relative_position_embeddings = self.embed_positions(hidden_states) else: relative_position_embeddings = None deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer.__call__, hidden_states, attention_mask, relative_position_embeddings, output_attentions, conv_attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, relative_position_embeddings=relative_position_embeddings, output_attentions=output_attentions, conv_attention_mask=conv_attention_mask, ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Wav2Vec2BertAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size, eps=config.layer_norm_eps) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Wav2Vec2BertAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop self.kernel_size = config.adapter_kernel_size self.stride = config.adapter_stride def _compute_sub_sample_lengths_from_attention_mask(self, seq_lens): if seq_lens is None: return seq_lens pad = self.kernel_size // 2 seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1 return seq_lens.floor() def forward(self, hidden_states, attention_mask=None): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) sub_sampled_lengths = None if attention_mask is not None: sub_sampled_lengths = (attention_mask.size(1) - (1 - attention_mask.int()).sum(1)).to(hidden_states.device) for layer in self.layers: layerdrop_prob = torch.rand([]) sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(sub_sampled_lengths) if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer( hidden_states, attention_mask=attention_mask, sub_sampled_lengths=sub_sampled_lengths ) return hidden_states class Wav2Vec2BertAdapterLayer(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.output_hidden_size dropout = config.conformer_conv_dropout self.kernel_size = config.adapter_kernel_size self.stride = config.adapter_stride # 1. residual convolution self.residual_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.residual_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.activation = nn.GLU(dim=1) # Self-Attention self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.self_attn_conv = nn.Conv1d( embed_dim, 2 * embed_dim, self.kernel_size, stride=self.stride, padding=self.stride // 2, ) self.self_attn = Wav2Vec2BertSelfAttention(config, is_adapter_attention=True) self.self_attn_dropout = nn.Dropout(dropout) # Feed-forward self.ffn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.ffn = Wav2Vec2BertFeedForward(config, act_fn=config.adapter_act, hidden_size=embed_dim) def forward( self, hidden_states, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, sub_sampled_lengths: Optional[torch.Tensor] = None, ): residual = self.residual_layer_norm(hidden_states) # Apply pooling to the residual to match the sequence length of the # multi-head attention output. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) residual = residual.transpose(1, 2) residual = self.residual_conv(residual) residual = self.activation(residual) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) residual = residual.transpose(1, 2) hidden_states = self.self_attn_layer_norm(hidden_states) # Apply pooling before feeding to the multihead-attention layer. # (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.self_attn_conv(hidden_states) hidden_states = self.activation(hidden_states) # (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim) hidden_states = hidden_states.transpose(1, 2) if attention_mask is not None: attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths) attention_mask = _prepare_4d_attention_mask( attention_mask, hidden_states.dtype, ) # The rest of the computation is identical to a vanilla Transformer # encoder layer. hidden_states, attn_weigths = self.self_attn( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_dropout(hidden_states) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.ffn_layer_norm(hidden_states) hidden_states = self.ffn(hidden_states) + residual return hidden_states # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerPreTrainedModel with Wav2Vec2Conformer->Wav2Vec2Bert,wav2vec2_conformer->wav2vec2_bert, input_values->input_features class Wav2Vec2BertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Wav2Vec2BertConfig base_model_prefix = "wav2vec2_bert" main_input_name = "input_features" supports_gradient_checkpointing = True # Ignore copy def _init_weights(self, module): """Initialize the weights""" if isinstance(module, Wav2Vec2BertSelfAttention): if hasattr(module, "pos_bias_u"): nn.init.xavier_uniform_(module.pos_bias_u) if hasattr(module, "pos_bias_v"): nn.init.xavier_uniform_(module.pos_bias_v) elif isinstance(module, Wav2Vec2BertFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) # Ignore copy def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride, padding): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length + 2 * padding - kernel_size, stride, rounding_mode="floor") + 1 if add_adapter: padding = self.config.adapter_kernel_size // 2 for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length( input_lengths, self.config.adapter_kernel_size, self.config.adapter_stride, padding ) return input_lengths def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask WAV2VEC2_BERT_START_DOCSTRING = r""" Wav2Vec2Bert was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Wav2Vec2BertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WAV2VEC2_BERT_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2BertProcessor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Wav2Vec2Bert Model transformer outputting raw hidden-states without any specific head on top.", WAV2VEC2_BERT_START_DOCSTRING, ) class Wav2Vec2BertModel(Wav2Vec2BertPreTrainedModel): def __init__(self, config: Wav2Vec2BertConfig): super().__init__(config) self.config = config self.feature_projection = Wav2Vec2BertFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) self.encoder = Wav2Vec2BertEncoder(config) self.adapter = Wav2Vec2BertAdapter(config) if config.add_adapter else None self.intermediate_ffn = None if config.use_intermediate_ffn_before_adapter: self.intermediate_ffn = Wav2Vec2BertFeedForward(config, act_fn="relu") # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states, extract_features = self.feature_projection(input_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.intermediate_ffn: expanded_hidden_states = self.intermediate_ffn(hidden_states) hidden_states = hidden_states + 0.5 * expanded_hidden_states if self.adapter is not None: hidden_states = self.adapter(hidden_states, attention_mask=attention_mask) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """Wav2Vec2Bert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", WAV2VEC2_BERT_START_DOCSTRING, ) class Wav2Vec2BertForCTC(Wav2Vec2BertPreTrainedModel): # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.wav2vec2_bert = Wav2Vec2BertModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Wav2Vec2BertForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.wav2vec2_bert( input_features, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones(input_features.shape[:2], device=input_features.device, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum([-1])).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Wav2Vec2Bert Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WAV2VEC2_BERT_START_DOCSTRING, ) class Wav2Vec2BertForSequenceClassification(Wav2Vec2BertPreTrainedModel): # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)" ) self.wav2vec2_bert = Wav2Vec2BertModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_bert.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_BASE_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert,WAV_2_VEC_2->WAV2VEC2_BERT, input_values->input_features def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_bert( input_features, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Wav2Vec2Bert Model with a frame classification head on top for tasks like Speaker Diarization. """, WAV2VEC2_BERT_START_DOCSTRING, ) class Wav2Vec2BertForAudioFrameClassification(Wav2Vec2BertPreTrainedModel): # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)" ) self.wav2vec2_bert = Wav2Vec2BertModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_base_model with wav2vec2_conformer->wav2vec2_bert def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_bert.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_BASE_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_bert( input_features, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if is_peft_available(): from peft.tuners.lora import LoraLayer if isinstance(self.kernel, LoraLayer): warnings.warn( "Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. " "You should exclude TDNNLayer from LoRA's target modules.", ) # for backward compatibility, we keep nn.Linear but call F.conv1d for speed up hidden_states = hidden_states.transpose(1, 2) weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2) hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Wav2Vec2Bert Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, WAV2VEC2_BERT_START_DOCSTRING, ) class Wav2Vec2BertForXVector(Wav2Vec2BertPreTrainedModel): # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert def __init__(self, config): super().__init__(config) self.wav2vec2_bert = Wav2Vec2BertModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_base_model with wav2vec2_conformer->wav2vec2_bert def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.wav2vec2_bert.parameters(): param.requires_grad = False # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector._get_tdnn_output_lengths def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_BASE_CHECKPOINT_FOR_DOC, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features def forward( self, input_features: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.wav2vec2_bert( input_features, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py/0
{ "file_path": "transformers/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py", "repo_id": "transformers", "token_count": 32032 }
373
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Whisper model configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType logger = logging.get_logger(__name__) WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off NON_SPEECH_TOKENS = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] NON_SPEECH_TOKENS_MULTI = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] # fmt: on class WhisperConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Whisper [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51865): Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the `decoder_input_ids` passed when calling [`WhisperModel`] num_mel_bins (`int`, *optional*, defaults to 80): Number of mel features used per input features. Should correspond to the value used in the `WhisperProcessor` class. encoder_layers (`int`, *optional*, defaults to 4): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 4): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the Transformer decoder. encoder_ffn_dim (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. decoder_ffn_dim (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_start_token_id (`int`, *optional*, defaults to 50257): Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids` are provided to the `generate` function. It is used to guide the model`s generation process depending on the task. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. activation_function (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. d_model (`int`, *optional*, defaults to 384): Dimensionality of the layers. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_embedding (`bool`, *optional*, defaults to False): Scale embeddings by diving by sqrt(d_model). max_source_positions (`int`, *optional*, defaults to 1500): The maximum sequence length of log-mel filter-bank features that this model might ever be used with. max_target_positions (`int`, *optional*, defaults to 448): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). pad_token_id (`int`, *optional*, defaults to 50256): Padding token id. bos_token_id (`int`, *optional*, defaults to 50256): Begin of stream token id. eos_token_id (`int`, *optional*, defaults to 50256): End of stream token id. suppress_tokens (`List[int]`, *optional*): A list containing the non-speech tokens that will be used by the logit processor in the `generate` function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the `multilingual` model. begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`): A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as the token for `" "` (`blank_token_id`) and the `eos_token_id` use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`WhisperForAudioClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an instance of [`WhisperForAudioClassification`]. apply_spec_augment (`bool`, *optional*, defaults to `False`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`. median_filter_width (`int`, *optional*, defaults to 7): Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps. Should be an odd number. Example: ```python >>> from transformers import WhisperConfig, WhisperModel >>> # Initializing a Whisper tiny style configuration >>> configuration = WhisperConfig() >>> # Initializing a model (with random weights) from the tiny style configuration >>> model = WhisperModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "whisper" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=51865, num_mel_bins=80, encoder_layers=4, encoder_attention_heads=6, decoder_layers=4, decoder_attention_heads=6, decoder_ffn_dim=1536, encoder_ffn_dim=1536, encoder_layerdrop=0.0, decoder_layerdrop=0.0, decoder_start_token_id=50257, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=384, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, scale_embedding=False, max_source_positions=1500, max_target_positions=448, pad_token_id=50256, bos_token_id=50256, eos_token_id=50256, suppress_tokens=None, begin_suppress_tokens=[220, 50256], use_weighted_layer_sum=False, classifier_proj_size=256, apply_spec_augment=False, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, median_filter_width=7, **kwargs, ): self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.d_model = d_model self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size self.use_weighted_layer_sum = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks self.median_filter_width = median_filter_width super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, suppress_tokens=suppress_tokens, begin_suppress_tokens=begin_suppress_tokens, **kwargs, ) class WhisperOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220, ) -> Mapping[str, Any]: dummy_inputs = OrderedDict() encoder_inputs = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=batch_size, framework=framework, sampling_rate=sampling_rate, time_duration=time_duration, frequency=frequency, ) encoder_sequence_length = encoder_inputs["input_features"].shape[2] seq_length = encoder_sequence_length // 2 if self.use_past else seq_length decoder_inputs = super().generate_dummy_inputs( preprocessor.tokenizer, batch_size, seq_length, is_pair, framework ) dummy_inputs["input_features"] = encoder_inputs.pop("input_features") dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids") if "past_key_values" in decoder_inputs: dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values") return dummy_inputs @property def atol_for_validation(self) -> float: return 1e-3
transformers/src/transformers/models/whisper/configuration_whisper.py/0
{ "file_path": "transformers/src/transformers/models/whisper/configuration_whisper.py", "repo_id": "transformers", "token_count": 6886 }
374
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xglm"] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xglm_fast"] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_xglm"] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_xglm"] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_xglm"] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/xglm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/xglm/__init__.py", "repo_id": "transformers", "token_count": 1587 }
375
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch XLM-ProphetNet model.""" import copy import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import LayerNorm from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlm_prophetnet import XLMProphetNetConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "XLMProphetNetConfig" XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/xprophetnet-large-wiki100-cased", # See all XLMProphetNet models at https://huggingface.co/models?filter=xprophetnet ] # Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_START_DOCSTRING with ProphetNetConfig->XLMProphetNetConfig XLM_PROPHETNET_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ # Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_INPUTS_DOCSTRING with ProphetNet->XLMProphetNet XLM_PROPHETNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) XLMProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_STANDALONE_INPUTS_DOCSTRING with ProphetNet->XLMProphetNet XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.prophetnet.modeling_prophetnet.softmax def softmax(hidden_state, dim, onnx_trace=False): if onnx_trace: return nn.functional.softmax(hidden_state.float(), dim=dim) else: return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32) # Copied from transformers.models.prophetnet.modeling_prophetnet.ngram_attention_bias def ngram_attention_bias(sequence_length, ngram, device, dtype): """ This function computes the bias for the predict stream """ left_block = ( torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min ) right_block = left_block.detach().clone() # create bias for stream_idx in range(ngram): right_block[stream_idx].fill_diagonal_(0, wrap=False) left_block[stream_idx].triu_(-stream_idx + 1) left_block[:, :, 0] = 0 return torch.cat([left_block, right_block], dim=2) # Copied from transformers.models.prophetnet.modeling_prophetnet.compute_relative_buckets def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): """ This function computes individual parts of the relative position buckets. For more detail, see paper. """ inv_relative_positions = -relative_positions rel_positions_bucket = 0 if is_bidirectional: num_buckets = num_buckets // 2 rel_positions_bucket = ( rel_positions_bucket + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets ) inv_relative_positions = torch.abs(inv_relative_positions) else: inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) max_exact = num_buckets // 2 is_small = torch.lt(inv_relative_positions, max_exact) val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( max_distance / max_exact ) * (num_buckets - max_exact) val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) return rel_positions_bucket # Copied from transformers.models.prophetnet.modeling_prophetnet.compute_all_stream_relative_buckets def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): """ This function computes both main and predict relative position buckets. For more detail, see paper. """ # main stream main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) # predicting stream predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) # get both position buckets main_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False ) predict_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False ) return main_relative_position_buckets, predict_relative_position_buckets @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqLMOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetSeq2SeqLMOutput(ModelOutput): """ Base class for sequence-to-sequence language models outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqModelOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetSeq2SeqModelOutput(ModelOutput): """ Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential decoding. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderModelOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetDecoderModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderLMOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetDecoderLMOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetPreTrainedModel with ProphetNet->XLMProphetNet class XLMProphetNetPreTrainedModel(PreTrainedModel): config_class = XLMProphetNetConfig base_model_prefix = "prophetnet" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In XLMProphetNet it is usually set to the" " pad_token_id. See XLMProphetNet docs for more information" ) # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" return shifted_input_ids # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetPositionalEmbeddings with ProphetNet->XLMProphetNet class XLMProphetNetPositionalEmbeddings(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, config: XLMProphetNetConfig) -> None: self.max_length = config.max_position_embeddings super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): assert (position_ids is None) or ( self.padding_idx is None ), "If position_ids is pre-computed then padding_idx should not be set." if position_ids is None: if past_key_values is not None: # position_ids is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX prev_num_input_ids = past_key_values[0][0].shape[2] num_input_ids = inputs_shape[1] + prev_num_input_ids position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( int(self.padding_idx + num_input_ids) ) else: if attention_mask is None: attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) # retrieve position_ids from input_ids / attention_mask position_ids = ( torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask ).long() + self.padding_idx # make sure position_ids are not bigger then max_length position_ids = position_ids.clamp(0, self.max_length - 1) return super().forward(position_ids), position_ids def _forward(self, position_ids): return super().forward(position_ids) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetAttention with ProphetNet->XLMProphetNet class XLMProphetNetAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: XLMProphetNetConfig, num_attn_heads: int, ): super().__init__() hidden_size = config.hidden_size self.attention_dropout = config.attention_dropout self.dropout = config.dropout self.num_attn_heads = num_attn_heads self.head_dim = hidden_size // num_attn_heads assert self.head_dim * num_attn_heads == hidden_size, ( "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" " `config.num_decoder_attention_heads`" ) self.key_proj = nn.Linear(hidden_size, hidden_size) self.value_proj = nn.Linear(hidden_size, hidden_size) self.query_proj = nn.Linear(hidden_size, hidden_size) self.out_proj = nn.Linear(hidden_size, hidden_size) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states, key_value_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, layer_head_mask: Optional[Tensor] = None, past_key_value: Optional[Tuple[Tensor]] = None, output_attentions: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: batch_size, tgt_len, hidden_size = hidden_states.size() # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None assert list(hidden_states.size()) == [ batch_size, tgt_len, hidden_size, ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" # previous time steps are cached - no need to recompute key and value if they are static query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) else: # self_attention key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) if is_cross_attention: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) # project states into the correct shape proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(2) attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) if attn_weights.size() != expected_shape: raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") # This is part of a workaround to get around fork/join parallelism not supporting Optional types. if attention_mask is not None and attention_mask.dim() == 0: attention_mask = None expected_shape = (batch_size, self.num_attn_heads, 1, src_len) if attention_mask is not None and attention_mask.size() != expected_shape: raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") if attention_mask is not None: # don't attend to padding symbols attn_weights = attn_weights + attention_mask if output_attentions: attn_weights_reshaped = attn_weights else: attn_weights_reshaped = None attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( batch_size, self.num_attn_heads, tgt_len, src_len ) # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped attn_probs = nn.functional.dropout( attn_weights, p=self.attention_dropout, training=self.training, ) attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) if attn_output.size() != expected_shape: raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) attn_output = self.out_proj(attn_output) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetFeedForward with ProphetNet->XLMProphetNet class XLMProphetNetFeedForward(nn.Module): """ This is the residual two feed-forward layer block based on the original Transformer implementation. """ def __init__(self, config: XLMProphetNetConfig, ffn_dim: int): super().__init__() self.activation_fn = ACT2FN[config.activation_function] self.intermediate = nn.Linear(config.hidden_size, ffn_dim) self.output = nn.Linear(ffn_dim, config.hidden_size) self.activation_dropout = config.activation_dropout self.dropout = config.dropout def forward(self, hidden_states): hidden_states = self.intermediate(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.output(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetNgramSelfAttention with ProphetNet->XLMProphetNet class XLMProphetNetNgramSelfAttention(nn.Module): def __init__(self, config: XLMProphetNetConfig): super().__init__() self.hidden_size = config.hidden_size self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.num_attn_heads = config.num_decoder_attention_heads self.dropout = config.dropout self.attention_dropout = config.attention_dropout self.head_dim = config.hidden_size // self.num_attn_heads self.ngram = config.ngram assert ( self.head_dim * self.num_attn_heads == config.hidden_size ), "config.hidden_size must be divisible by num_attn_heads" # key, value, query projection self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) # out projection self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) # rel position embeddings self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) # for onnx runtime self.onnx_trace = False def _shape(self, tensor, seq_len, batch_size): return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, hidden_states, past_key_value: Optional[Tuple[Tensor]] = None, attention_mask=None, layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, ): batch_size, ngram_sequence_length, hidden_size = hidden_states.size() assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" f" {hidden_states.shape}" ) # project query_states = self.query_proj(hidden_states) key_states = self.key_proj(hidden_states) value_states = self.value_proj(hidden_states) # normalize query_states = query_states / (self.head_dim**0.5) # reshape query_states = self._shape(query_states, ngram_sequence_length, batch_size) key_states = self._shape(key_states, -1, batch_size) value_states = self._shape(value_states, -1, batch_size) proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = query_states.view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) # chunk into main stream and predict stream hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) query_states_list = query_states.chunk(1 + self.ngram, dim=2) key_states_list = key_states.chunk(1 + self.ngram, dim=2) value_states_list = value_states.chunk(1 + self.ngram, dim=2) main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) if past_key_value is not None: prev_main_key_states = past_key_value[0] main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) prev_main_value_states = past_key_value[1] main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) # Update cache past_key_value = (main_key_states, main_value_states) # get seq_length of main stream only sequence_length = ngram_sequence_length // (1 + self.ngram) # MAIN-STREAM # main attn weights # [batch_size, number_heads, sequence_length, head_dimesion] # x [batch_size, number_heads, head_dimesion, sequence_length] # -> [batch_size, number_heads, sequence_length, sequence_length] main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) # retrieve relative position embeddings for each layer -> see paper for more details main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets ) main_attn_weights = main_attn_weights + main_relative_pos_embeddings if attention_mask is not None: main_attn_weights = main_attn_weights + attention_mask main_attn_probs = softmax( main_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(main_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( batch_size, self.num_attn_heads, -1, sequence_length ) main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) # project to attn_output # [batch_size, number_heads, sequence_length, sequence_length] # x [batch_size, number_heads, sequence_length, head_dimesion] # -> [batch_size, number_heads, sequence_length, head_dimesion] main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) # reshape so that num_heads dim is merged into last `head_dim` axis main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) main_attn_output = self.out_proj(main_attn_output) # PREDICT-STREAM # [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_query_states = torch.stack(predict_query_states_list, 1).view( batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim ) # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) # [batch_size, sequence_length, ngram, hidden_size] predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] predict_value_states = torch.cat( [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 ) # [batch_size, ngram, number_heads, sequence_length, head_dimesion] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) # retrieve relative position embeddings for each layer -> see paper for more details # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets ) # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings if extended_predict_attention_mask is not None: # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) predict_attn_weights = predict_attn_weights + extended_predict_attention_mask predict_attn_probs = softmax( predict_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(predict_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs predict_attn_probs = nn.functional.dropout( predict_attn_probs, p=self.attention_dropout, training=self.training ) # project to attention output # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_attn_output = torch.einsum( "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) ) # reshape so that num_heads dim is merged into last `head_dim` axis # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] predict_attn_output = predict_attn_output.transpose(2, 3) predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) predict_attn_output = self.out_proj(predict_attn_output) # concat to single attn output # [batch_size, (1+ngram)*sequence_length, hidden_size] attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) # reshape into better form for `config.output_attentions` main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, main_attn_probs, predict_attn_probs, past_key_value def get_main_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, main_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, hidden_size] # input attn_weights [batch_size, num_heads, sequence_length, sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) if main_relative_position_buckets is None: batch_size, sequence_length = hidden_states.shape[:2] relative_positions = ( torch.arange(1, attn_weights.shape[-1] + 1) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) # [batch_size, sequence_length, sequence_length+1] relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) main_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, sequence_length, num_buckets * num_heads] rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) rel_pos_embeddings = rel_pos_embeddings.view( rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) # [batch_size, num_heads, sequence_length, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) # [batch_size * num_heads * sequence_length, sequence_length] main_relative_position_buckets = main_relative_position_buckets.view( -1, main_relative_position_buckets.shape[-1] ) main_relative_position_buckets = main_relative_position_buckets.long() # [batch_size * num_heads * sequence_length, sequence_length] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) return main_relative_pos_embeddings def get_predict_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, ngram, hidden_size] # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None batch_size, sequence_length = hidden_states.shape[0:2] if predict_relative_position_buckets is None: key_sequence_length = attn_weights.shape[-1] assert ( position_ids[0][0] == key_sequence_length - 1 ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" relative_positions = ( torch.arange(0, key_sequence_length) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) predict_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, ngram, sequence_length, hidden_size] hidden_states = hidden_states.transpose(1, 2) rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) # [batch_size, ngram, sequence_length, num_buckets, num_heads] rel_pos_embeddings = rel_pos_embeddings.view( hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) # [batch_size * ngram * sequence_length * num_heads, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) # [ngram, batch_size, num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) predict_relative_position_buckets = predict_relative_position_buckets.repeat( self.ngram, 1, self.num_attn_heads, 1 ) # [ngram * batch_size * num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.view( -1, predict_relative_position_buckets.size(-1) ).long() predict_relative_pos_embeddings = torch.gather( rel_pos_embeddings, dim=1, index=predict_relative_position_buckets ) # [batch_size, gram, num_heads, sequence_length, -1] predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 ) return predict_relative_pos_embeddings # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetEncoderLayer with ProphetNet->XLMProphetNet, Prophetnet->XLMProphetnet class XLMProphetNetEncoderLayer(nn.Module): """ Encoder block for XLMProphetnet """ def __init__(self, config: XLMProphetNetConfig): super().__init__() # 1st residual block self.self_attn = XLMProphetNetAttention(config, config.num_encoder_attention_heads) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block self.feed_forward = XLMProphetNetFeedForward(config, config.encoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask, layer_head_mask, output_attentions: bool = False, ): # 1st residual block attention_output, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) # 2nd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderLayer with Prophetnet->XLMProphetnet, ProphetNet->XLMProphetNet class XLMProphetNetDecoderLayer(nn.Module): """ Decoder block for XLMProphetnet """ def __init__(self, config: XLMProphetNetConfig): super().__init__() # 1st residual block self.self_attn = XLMProphetNetNgramSelfAttention(config) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block if config.add_cross_attention: self.cross_attn = XLMProphetNetAttention(config, config.num_decoder_attention_heads) self.cross_attn_layer_norm = LayerNorm(config.hidden_size) # 3rd residual block self.feed_forward = XLMProphetNetFeedForward(config, config.decoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attn_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, past_key_value=None, use_cache: bool = True, output_attentions: bool = False, ): # 1st residual block # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, ) hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attn_weights = None if encoder_hidden_states is not None: # 2nd residual block attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attn_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # 3rd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs @add_start_docstrings( "The standalone encoder part of the XLMProphetNetModel.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetEncoder with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetEncoder(XLMProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: XLMProphetNetConfig, word_embeddings: nn.Embedding = None): super().__init__(config) self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = XLMProphetNetPositionalEmbeddings(config) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.layers = nn.ModuleList([XLMProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetEncoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either input_ids or inputs_embeds has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass input_ids or inputs_embeds.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # prepare attention mask if attention_mask is not None: extended_attention_mask = ( 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) else: extended_attention_mask = None position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) hidden_states = inputs_embeds + position_embeddings hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) encoder_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, extended_attention_mask, (head_mask[idx] if head_mask is not None else None), output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=extended_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions ) @add_start_docstrings( "The standalone decoder part of the XLMProphetNetModel.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoder with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET, class XLMProphetNetDecoder(XLMProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: XLMProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): super().__init__(config) self.ngram = config.ngram self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.dropout = config.dropout self.max_target_positions = config.max_position_embeddings self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = XLMProphetNetPositionalEmbeddings(config) self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) self.layers = nn.ModuleList([XLMProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetDecoderModelOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetDecoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetDecoder.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone", add_cross_attention=False) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) batch_size, sequence_length = inputs_embeds.shape[:2] main_stream_pos_embed, position_ids = self.position_embeddings( (batch_size, sequence_length), device=inputs_embeds.device, past_key_values=past_key_values, ) if past_key_values is not None: main_relative_position_buckets, predict_relative_position_buckets = None, None else: ( main_relative_position_buckets, predict_relative_position_buckets, ) = self.compute_buffered_relative_buckets(position_ids) predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) # add position embeddings hidden_states = inputs_embeds + main_stream_pos_embed ngram_embeddings = self.ngram_embeddings.weight # prepare attention mask if past_key_values is not None: assert ( hidden_states.size(1) == 1 ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) for ngram in range(self.ngram) ] extended_attention_mask = None extended_predict_attention_mask = None else: ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) ] extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) # prepare encoder attention mask if encoder_attention_mask is not None: extended_encoder_attention_mask = ( 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) else: extended_encoder_attention_mask = None hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) if self.embeddings_layer_norm: hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # init attentions, hidden_states and cache with empty tuples all_main_stream_hidden_states = () if output_hidden_states else None all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None all_main_stream_attns = () if output_attentions else None all_ngram_stream_attns = () if output_attentions else None all_cross_attns = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False present_key_values = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: # grad cannot be kept because tensor is sliced all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, extended_attention_mask, encoder_hidden_states, extended_encoder_attention_mask, (head_mask[idx] if head_mask is not None else None), (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), extended_predict_attention_mask, main_relative_position_buckets, predict_relative_position_buckets, position_ids, None, use_cache, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=extended_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attn_mask=extended_encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if use_cache: present_key_values += (layer_outputs[4 if output_attentions else 1],) if output_attentions: all_main_stream_attns += (layer_outputs[1],) all_ngram_stream_attns += (layer_outputs[2],) if self.config.add_cross_attention: all_cross_attns += (layer_outputs[3],) if output_hidden_states: all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) # split last_hidden_state for return last_hidden_state = hidden_states[:, :sequence_length] last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None if not return_dict: return tuple( v for v in [ last_hidden_state, last_hidden_state_ngram, present_key_values, all_main_stream_hidden_states, all_ngram_stream_hidden_states, all_main_stream_attns, all_ngram_stream_attns, all_cross_attns, ] if v is not None ) return XLMProphetNetDecoderModelOutput( last_hidden_state=last_hidden_state, last_hidden_state_ngram=last_hidden_state_ngram, past_key_values=present_key_values, hidden_states=all_main_stream_hidden_states, hidden_states_ngram=all_ngram_stream_hidden_states, attentions=all_main_stream_attns, ngram_attentions=all_ngram_stream_attns, cross_attentions=all_cross_attns, ) def compute_buffered_relative_buckets(self, position_ids): batch_size, sequence_length = position_ids.shape position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( self.num_buckets, self.relative_max_distance, position_ids ) # buffer relative buckets main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) predict_relative_buckets = torch.cat( [ predict_relative_buckets[:, :sequence_length, :sequence_length], predict_relative_buckets[ :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length ], ], 2, ).repeat(batch_size, 1, 1) return main_relative_buckets, predict_relative_buckets def prepare_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask causal_mask = torch.full( (seq_length, seq_length), torch.finfo(hidden_states.dtype).min, dtype=hidden_states.dtype, device=hidden_states.device, ) causal_mask = torch.triu(causal_mask, 1) extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_causal_mask + extended_attention_mask else: extended_attention_mask = extended_causal_mask return extended_attention_mask.to(hidden_states.dtype) def prepare_predict_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask predict_causal_mask = ngram_attention_bias( self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype ) predict_causal_mask = torch.cat( [ predict_causal_mask[:, :seq_length, :seq_length], predict_causal_mask[ :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length ], ], dim=-1, ) extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.expand( (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) ) # predicted stream attention_mask should always be 0 extended_attention_mask = torch.cat( [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 ) extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask else: extended_predict_attention_mask = extended_predict_causal_mask return extended_predict_attention_mask.to(hidden_states.dtype) @add_start_docstrings( "The bare XLMProphetNet Model outputting raw hidden-states without any specific head on top.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetModel with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetModel(XLMProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] def __init__(self, config: XLMProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) encoder_config = copy.deepcopy(config) encoder_config.is_encoder_decoder = False encoder_config.use_cache = False self.encoder = XLMProphetNetEncoder(encoder_config, self.word_embeddings) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False self.decoder = XLMProphetNetDecoder(decoder_config, self.word_embeddings) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value self.encoder.word_embeddings = self.word_embeddings self.decoder.word_embeddings = self.word_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.word_embeddings, self.word_embeddings) self._tie_or_clone_weights(self.decoder.word_embeddings, self.word_embeddings) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(XLM_PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetSeq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetModel >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetModel.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return XLMProphetNetSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, decoder_attentions=decoder_outputs.attentions, decoder_ngram_attentions=decoder_outputs.ngram_attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The XLMProphetNet Model with a language modeling head. Can be used for sequence generation tasks.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetForConditionalGeneration with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetForConditionalGeneration(XLMProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] def __init__(self, config: XLMProphetNetConfig): super().__init__(config) self.prophetnet = XLMProphetNetModel(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.prophetnet.word_embeddings, self.lm_head) def get_input_embeddings(self): return self.prophetnet.word_embeddings @add_start_docstrings_to_model_forward(XLM_PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetSeq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetForConditionalGeneration.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> logits_next_token = outputs.logits # logits to predict next token as usual >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) outputs = self.prophetnet( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = ( decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] ) predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None # To use .view in loss computation, make sure that logits is contiguous. if not logits.is_contiguous(): logits = logits.contiguous() loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return XLMProphetNetSeq2SeqLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, decoder_attentions=outputs.decoder_attentions, decoder_ngram_attentions=outputs.decoder_ngram_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." if past_key_values: decoder_input_ids = decoder_input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past def get_encoder(self): return self.prophetnet.encoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings( "The standalone decoder part of the XLMProphetNetModel with a lm head on top. The model can be used for causal" " language modeling.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetForCausalLM with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetForCausalLM(XLMProphetNetPreTrainedModel): _tied_weights_keys = [ "prophetnet.word_embeddings.weight", "prophetnet.decoder.word_embeddings.weight", "lm_head.weight", ] def __init__(self, config: XLMProphetNetConfig): # set config for CLM config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.prophetnet = XLMProphetNetDecoderWrapper(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prophetnet.decoder.word_embeddings def set_input_embeddings(self, value): self.prophetnet.decoder.word_embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.prophetnet.decoder.word_embeddings, self.lm_head) def set_decoder(self, decoder): self.prophetnet.decoder = decoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetDecoderLMOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetForCausalLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetForCausalLM.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # Model can also be used with EncoderDecoder framework >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer >>> import torch >>> tokenizer_enc = BertTokenizer.from_pretrained("bert-large-uncased") >>> tokenizer_dec = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( ... "bert-large-uncased", "patrickvonplaten/xprophetnet-large-uncased-standalone" ... ) >>> ARTICLE = ( ... "the us state department said wednesday it had received no " ... "formal word from bolivia that it was expelling the us ambassador there " ... "but said the charges made against him are `` baseless ." ... ) >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids >>> labels = tokenizer_dec( ... "us rejects charges against its ambassador in bolivia", return_tensors="pt" ... ).input_ids >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) outputs = self.prophetnet.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return XLMProphetNetDecoderLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, hidden_states_ngram=outputs.hidden_states_ngram, attentions=outputs.attentions, ngram_attentions=outputs.ngram_attentions, cross_attentions=outputs.cross_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, use_cache=None, **kwargs, ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "head_mask": head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderWrapper with ProphetNet->XLMProphetNet, prophetnet->XLMProphetNet class XLMProphetNetDecoderWrapper(XLMProphetNetPreTrainedModel): """ This is a wrapper class, so that [`XLMProphetNetForCausalLM`] can correctly be loaded from pretrained XLMProphetNet classes. """ def __init__(self, config: XLMProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.decoder = XLMProphetNetDecoder(config, word_embeddings=self.word_embeddings) # Initialize weights and apply final processing self.post_init() def _tie_weights(self): self._tie_or_clone_weights(self.word_embeddings, self.decoder.get_input_embeddings()) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
transformers/src/transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py/0
{ "file_path": "transformers/src/transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py", "repo_id": "transformers", "token_count": 49827 }
376
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 XLNet model. """ from __future__ import annotations import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlnet import XLNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "xlnet-base-cased" _CONFIG_FOR_DOC = "XLNetConfig" TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "xlnet-base-cased", "xlnet-large-cased", # See all XLNet models at https://huggingface.co/models?filter=xlnet ] class TFXLNetRelativeAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.d_model % config.n_head != 0: raise ValueError( f"The hidden size ({config.d_model}) is not a multiple of the number of attention " f"heads ({config.n_head}" ) self.n_head = config.n_head self.d_head = config.d_head self.d_model = config.d_model self.scale = 1 / (config.d_head**0.5) self.initializer_range = config.initializer_range self.output_attentions = config.output_attentions self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.config = config def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.q = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="q" ) self.k = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="k" ) self.v = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="v" ) self.o = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="o" ) self.r = self.add_weight( shape=(self.d_model, self.n_head, self.d_head), initializer=initializer, trainable=True, name="r" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_s_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_s_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.seg_embed = self.add_weight( shape=(2, self.n_head, self.d_head), initializer=initializer, trainable=True, name="seg_embed" ) if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) def prune_heads(self, heads): raise NotImplementedError def rel_shift(self, x, klen=-1): """perform relative shift to form the relative attention score.""" x_size = shape_list(x) x = tf.reshape(x, (x_size[1], x_size[0], x_size[2], x_size[3])) x = x[1:, ...] x = tf.reshape(x, (x_size[0], x_size[1] - 1, x_size[2], x_size[3])) x = x[:, 0:klen, :, :] # x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long)) return x def rel_attn_core( self, q_head, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask, head_mask, output_attentions, training=False ): """Core relative positional attention operations.""" # content based attention score ac = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_w_bias, k_head_h) # position based attention score bd = tf.einsum("ibnd,jbnd->ijbn", q_head + self.r_r_bias, k_head_r) bd = self.rel_shift(bd, klen=shape_list(ac)[1]) # segment based attention score if seg_mat is None: ef = 0 else: ef = tf.einsum("ibnd,snd->ibns", q_head + self.r_s_bias, self.seg_embed) ef = tf.einsum("ijbs,ibns->ijbn", seg_mat, ef) # merge attention scores and perform masking attn_score = (ac + bd + ef) * self.scale if attn_mask is not None: # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask if attn_mask.dtype == tf.float16 or attn_mask.dtype == tf.bfloat16: attn_score = attn_score - 65500 * attn_mask else: attn_score = attn_score - 1e30 * attn_mask # attention probability attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropout(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # attention output attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, v_head_h) if output_attentions: return attn_vec, attn_prob return attn_vec def post_attention(self, h, attn_vec, residual=True, training=False): """Post-attention processing.""" # post-attention projection (back to `d_model`) attn_out = tf.einsum("ibnd,hnd->ibh", attn_vec, self.o) attn_out = self.dropout(attn_out, training=training) if residual: attn_out = attn_out + h output = self.layer_norm(attn_out) return output def call( self, h, g, attn_mask_h, attn_mask_g, r, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ): if g is not None: # Two-stream attention with relative positional encoding. # content based attention score if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content-based key head k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) # content-based value head v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # position-based key head k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # h-stream # content-stream query head q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) # core attention ops attn_vec_h = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_h, attn_prob_h = attn_vec_h # post processing output_h = self.post_attention(h, attn_vec_h, training=training) # g-stream # query-stream query head q_head_g = tf.einsum("ibh,hnd->ibnd", g, self.q) # core attention ops if target_mapping is not None: q_head_g = tf.einsum("mbnd,mlb->lbnd", q_head_g, target_mapping) attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g attn_vec_g = tf.einsum("lbnd,mlb->mbnd", attn_vec_g, target_mapping) else: attn_vec_g = self.rel_attn_core( q_head_g, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_g, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec_g, attn_prob_g = attn_vec_g # post processing output_g = self.post_attention(g, attn_vec_g, training=training) if output_attentions: attn_prob = attn_prob_h, attn_prob_g else: # Multi-head attention with relative positional encoding if mems is not None and len(shape_list(mems)) > 1: cat = tf.concat([mems, h], axis=0) else: cat = h # content heads q_head_h = tf.einsum("ibh,hnd->ibnd", h, self.q) k_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.k) v_head_h = tf.einsum("ibh,hnd->ibnd", cat, self.v) # positional heads k_head_r = tf.einsum("ibh,hnd->ibnd", r, self.r) # core attention ops attn_vec = self.rel_attn_core( q_head_h, k_head_h, v_head_h, k_head_r, seg_mat, attn_mask_h, head_mask, output_attentions, training=training, ) if output_attentions: attn_vec, attn_prob = attn_vec # post processing output_h = self.post_attention(h, attn_vec, training=training) output_g = None outputs = (output_h, output_g) if output_attentions: outputs = outputs + (attn_prob,) return outputs class TFXLNetFeedForward(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.layer_1 = keras.layers.Dense( config.d_inner, kernel_initializer=get_initializer(config.initializer_range), name="layer_1" ) self.layer_2 = keras.layers.Dense( config.d_model, kernel_initializer=get_initializer(config.initializer_range), name="layer_2" ) self.dropout = keras.layers.Dropout(config.dropout) if isinstance(config.ff_activation, str): self.activation_function = get_tf_activation(config.ff_activation) else: self.activation_function = config.ff_activation self.config = config def call(self, inp, training=False): output = inp output = self.layer_1(output) output = self.activation_function(output) output = self.dropout(output, training=training) output = self.layer_2(output) output = self.dropout(output, training=training) output = self.layer_norm(output + inp) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) if getattr(self, "layer_1", None) is not None: with tf.name_scope(self.layer_1.name): self.layer_1.build([None, None, self.config.d_model]) if getattr(self, "layer_2", None) is not None: with tf.name_scope(self.layer_2.name): self.layer_2.build([None, None, self.config.d_inner]) class TFXLNetLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.rel_attn = TFXLNetRelativeAttention(config, name="rel_attn") self.ff = TFXLNetFeedForward(config, name="ff") self.dropout = keras.layers.Dropout(config.dropout) def call( self, output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ): outputs = self.rel_attn( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems, target_mapping, head_mask, output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_g is not None: output_g = self.ff(output_g, training=training) output_h = self.ff(output_h, training=training) outputs = (output_h, output_g) + outputs[2:] # Add again attentions if there are there return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rel_attn", None) is not None: with tf.name_scope(self.rel_attn.name): self.rel_attn.build(None) if getattr(self, "ff", None) is not None: with tf.name_scope(self.ff.name): self.ff.build(None) class TFXLNetLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @keras_serializable class TFXLNetMainLayer(keras.layers.Layer): config_class = XLNetConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.return_dict self.mem_len = config.mem_len self.reuse_len = config.reuse_len self.d_model = config.d_model self.same_length = config.same_length self.attn_type = config.attn_type self.bi_data = config.bi_data self.clamp_len = config.clamp_len self.n_layer = config.n_layer self.use_bfloat16 = config.use_bfloat16 self.initializer_range = config.initializer_range self.word_embedding = TFSharedEmbeddings( config.vocab_size, config.d_model, initializer_range=config.initializer_range, name="word_embedding" ) self.layer = [TFXLNetLayer(config, name=f"layer_._{i}") for i in range(config.n_layer)] self.dropout = keras.layers.Dropout(config.dropout) self.use_mems_eval = config.use_mems_eval self.use_mems_train = config.use_mems_train def get_input_embeddings(self): return self.word_embedding def set_input_embeddings(self, value): self.word_embedding.weight = value self.word_embedding.vocab_size = shape_list(value)[0] def build(self, input_shape=None): initializer = get_initializer(self.initializer_range) self.mask_emb = self.add_weight( shape=(1, 1, self.d_model), initializer=initializer, trainable=True, name="mask_emb" ) if self.built: return self.built = True if getattr(self, "word_embedding", None) is not None: with tf.name_scope(self.word_embedding.name): self.word_embedding.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) def _prune_heads(self, heads_to_prune): raise NotImplementedError def create_mask(self, qlen, mlen): """ Creates causal attention mask. Float mask where 1.0 indicates masked, 0.0 indicates not-masked. Args: qlen: TODO Lysandre didn't fill mlen: TODO Lysandre didn't fill ``` same_length=False: same_length=True: <mlen > < qlen > <mlen > < qlen > ^ [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 1 1 1 1] [0 0 0 0 0 0 1 1 1] [1 0 0 0 0 0 1 1 1] qlen [0 0 0 0 0 0 0 1 1] [1 1 0 0 0 0 0 1 1] [0 0 0 0 0 0 0 0 1] [1 1 1 0 0 0 0 0 1] v [0 0 0 0 0 0 0 0 0] [1 1 1 1 0 0 0 0 0] ``` """ attn_mask = tf.ones([qlen, qlen]) mask_u = tf.linalg.band_part(attn_mask, 0, -1) mask_dia = tf.linalg.band_part(attn_mask, 0, 0) attn_mask_pad = tf.zeros([qlen, mlen]) ret = tf.concat([attn_mask_pad, mask_u - mask_dia], 1) if self.same_length: mask_l = tf.linalg.band_part(attn_mask, -1, 0) ret = tf.concat([ret[:, :qlen] + mask_l - mask_dia, ret[:, qlen:]], 1) return ret def cache_mem(self, curr_out, prev_mem): # cache hidden states into memory. if self.reuse_len is not None and self.reuse_len > 0: curr_out = curr_out[: self.reuse_len] if self.mem_len is None or self.mem_len == 0: # If `use_mems` is active but no `mem_len` is defined, the model behaves like GPT-2 at inference time # and returns all of the past and current hidden states. cutoff = 0 else: # If `use_mems` is active and `mem_len` is defined, the model returns the last `mem_len` hidden # states. This is the preferred setting for training and long-form generation. cutoff = -self.mem_len if prev_mem is None: # if `use_mems` is active and `mem_len` is defined, the model new_mem = curr_out[cutoff:] else: new_mem = tf.concat([prev_mem, curr_out], 0)[cutoff:] return tf.stop_gradient(new_mem) @staticmethod def positional_embedding(pos_seq, inv_freq, bsz=None): sinusoid_inp = tf.einsum("i,d->id", pos_seq, inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], axis=-1) pos_emb = pos_emb[:, None, :] if bsz is not None: pos_emb = tf.tile(pos_emb, [1, bsz, 1]) return pos_emb def relative_positional_encoding(self, qlen, klen, bsz=None): """create relative positional encoding.""" freq_seq = tf.range(0, self.d_model, 2.0) inv_freq = 1 / (10000 ** (freq_seq / self.d_model)) if self.attn_type == "bi": # beg, end = klen - 1, -qlen beg, end = klen, -qlen elif self.attn_type == "uni": # beg, end = klen - 1, -1 beg, end = klen, -1 else: raise ValueError(f"Unknown `attn_type` {self.attn_type}.") if self.bi_data: fwd_pos_seq = tf.range(beg, end, -1.0) bwd_pos_seq = tf.range(-beg, -end, 1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) bwd_pos_seq = tf.clip_by_value(bwd_pos_seq, -self.clamp_len, self.clamp_len) if bsz is not None: if bsz % 2 != 0: raise ValueError(f"With bi_data, the batch size {bsz} should be divisible by 2") fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz // 2) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz // 2) else: fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq) bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq) pos_emb = tf.concat([fwd_pos_emb, bwd_pos_emb], axis=1) else: fwd_pos_seq = tf.range(beg, end, -1.0) if self.clamp_len > 0: fwd_pos_seq = tf.clip_by_value(fwd_pos_seq, -self.clamp_len, self.clamp_len) pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz) return pos_emb @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): if training and use_mems is None: use_mems = self.use_mems_train else: use_mems = self.use_mems_eval # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end # but we want a unified interface in the library with the batch size on the first dimension # so we move here the first dimension (batch) to the end if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids)[:2] elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") token_type_ids = tf.transpose(token_type_ids, perm=(1, 0)) if token_type_ids is not None else None input_mask = tf.transpose(input_mask, perm=(1, 0)) if input_mask is not None else None attention_mask = tf.transpose(attention_mask, perm=(1, 0)) if attention_mask is not None else None perm_mask = tf.transpose(perm_mask, perm=(1, 2, 0)) if perm_mask is not None else None target_mapping = tf.transpose(target_mapping, perm=(1, 2, 0)) if target_mapping is not None else None mlen = shape_list(mems[0])[0] if mems is not None and mems[0] is not None else 0 klen = mlen + qlen # Attention mask # causal attention mask if self.attn_type == "uni": attn_mask = self.create_mask(qlen, mlen) attn_mask = attn_mask[:, :, None, None] elif self.attn_type == "bi": attn_mask = None else: raise ValueError(f"Unsupported attention type: {self.attn_type}") # data mask: input mask & perm mask assert input_mask is None or attention_mask is None, ( "You can only use one of input_mask (uses 1 for padding) " "or attention_mask (uses 0 for padding, added for compatibility with BERT). Please choose one." ) if input_mask is None and attention_mask is not None: one_cst = tf.constant(1.0) input_mask = 1.0 - tf.cast(attention_mask, dtype=one_cst.dtype) if input_mask is not None and perm_mask is not None: data_mask = input_mask[None] + perm_mask elif input_mask is not None and perm_mask is None: data_mask = input_mask[None] elif input_mask is None and perm_mask is not None: data_mask = perm_mask else: data_mask = None if data_mask is not None: # all mems can be attended to if mlen > 0: mems_mask = tf.zeros([shape_list(data_mask)[0], mlen, bsz]) data_mask = tf.concat([mems_mask, data_mask], axis=1) if attn_mask is None: attn_mask = data_mask[:, :, :, None] else: attn_mask += data_mask[:, :, :, None] if attn_mask is not None: attn_mask = tf.cast(attn_mask > 0, dtype=attn_mask.dtype) if attn_mask is not None: non_tgt_mask = -tf.eye(qlen) if mlen > 0: non_tgt_mask = tf.concat([tf.zeros([qlen, mlen]), non_tgt_mask], axis=-1) non_tgt_mask = tf.cast((attn_mask + non_tgt_mask[:, :, None, None]) > 0, dtype=non_tgt_mask.dtype) else: non_tgt_mask = None # Word embeddings and prepare h & g hidden states if inputs_embeds is not None: word_emb_k = inputs_embeds else: check_embeddings_within_bounds(input_ids, self.word_embedding.vocab_size) word_emb_k = self.word_embedding(input_ids) output_h = self.dropout(word_emb_k, training=training) if target_mapping is not None: word_emb_q = tf.tile(self.mask_emb, [shape_list(target_mapping)[0], bsz, 1]) # else: # We removed the inp_q input which was same as target mapping # inp_q_ext = inp_q[:, :, None] # word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k output_g = self.dropout(word_emb_q, training=training) else: output_g = None # Segment embedding if token_type_ids is not None: # Convert `token_type_ids` to one-hot `seg_mat` if mlen > 0: mem_pad = tf.zeros([mlen, bsz], dtype=token_type_ids.dtype) cat_ids = tf.concat([mem_pad, token_type_ids], 0) else: cat_ids = token_type_ids # `1` indicates not in the same segment [qlen x klen x bsz] seg_mat = tf.cast( tf.logical_not(tf.equal(token_type_ids[:, None], cat_ids[None, :])), dtype=token_type_ids.dtype, ) seg_mat = tf.one_hot(seg_mat, 2) else: seg_mat = None # Positional encoding pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz) pos_emb = self.dropout(pos_emb, training=training) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer new_mems = () if mems is None: mems = [None] * len(self.layer) attentions = [] if output_attentions else None hidden_states = [] if output_hidden_states else None for i, layer_module in enumerate(self.layer): # cache new mems if use_mems: new_mems = new_mems + (self.cache_mem(output_h, mems[i]),) if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) outputs = layer_module( output_h, output_g, non_tgt_mask, attn_mask, pos_emb, seg_mat, mems[i], target_mapping, head_mask[i], output_attentions, training=training, ) output_h, output_g = outputs[:2] if output_attentions: attentions.append(outputs[2]) # Add last hidden state if output_hidden_states: hidden_states.append((output_h, output_g) if output_g is not None else output_h) output = self.dropout(output_g if output_g is not None else output_h, training=training) # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method) output = tf.transpose(output, perm=(1, 0, 2)) if not use_mems: new_mems = None if output_hidden_states: if output_g is not None: hidden_states = tuple(tf.transpose(h, perm=(1, 0, 2)) for hs in hidden_states for h in hs) else: hidden_states = tuple(tf.transpose(hs, perm=(1, 0, 2)) for hs in hidden_states) if output_attentions: if target_mapping is not None: # when target_mapping is provided, there are 2-tuple of attentions attentions = tuple( tuple(tf.transpose(attn_stream, perm=(2, 3, 0, 1)) for attn_stream in t) for t in attentions ) else: attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [output, new_mems, hidden_states, attentions] if v is not None) return TFXLNetModelOutput( last_hidden_state=output, mems=new_mems, hidden_states=hidden_states, attentions=attentions ) class TFXLNetPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XLNetConfig base_model_prefix = "transformer" @dataclass class TFXLNetModelOutput(ModelOutput): """ Output type of [`TFXLNetModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetLMHeadModelOutput(ModelOutput): """ Output type of [`TFXLNetLMHeadModel`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`tf.Tensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForSequenceClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForSequenceClassification`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `label` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForTokenClassificationOutput(ModelOutput): """ Output type of [`TFXLNetForTokenClassificationOutput`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided) : Classification loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.num_labels)`): Classification scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForMultipleChoiceOutput(ModelOutput): """ Output type of [`TFXLNetForMultipleChoice`]. Args: loss (`tf.Tensor` of shape *(1,)*, *optional*, returned when `labels` is provided): Classification loss. logits (`tf.Tensor` of shape `(batch_size, num_choices)`): *num_choices* is the second dimension of the input tensors. (see *input_ids* above). Classification scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFXLNetForQuestionAnsweringSimpleOutput(ModelOutput): """ Output type of [`TFXLNetForQuestionAnsweringSimple`]. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. start_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-start scores (before SoftMax). end_logits (`tf.Tensor` of shape `(batch_size, sequence_length,)`): Span-end scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states. Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None start_logits: tf.Tensor = None end_logits: tf.Tensor = None mems: List[tf.Tensor] | None = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None XLNET_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`XLNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ XLNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (see `mems` output below) . Can be used to speed up sequential decoding. The token ids which have their past given to this model should not be passed as `input_ids` as they have already been computed. `use_mems` has to be set to `True` to make use of `mems`. perm_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length, sequence_length)`, *optional*): Mask to indicate the attention pattern for each input token with values selected in `[0, 1]`: - if `perm_mask[k, i, j] = 0`, i attend to j in batch k; - if `perm_mask[k, i, j] = 1`, i does not attend to j in batch k. If not set, each token attends to all the others (full bidirectional attention). Only used during pretraining (to define factorization order) or for sequential decoding (generation). target_mapping (`torch.FloatTensor` of shape `(batch_size, num_predict, sequence_length)`, *optional*): Mask to indicate the output tokens to use. If `target_mapping[k, i, j] = 1`, the i-th predict in batch k is on the j-th token. Only used during pretraining for partial prediction or for sequential decoding (generation). token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) input_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Negative of `attention_mask`, i.e. with 0 for real tokens and 1 for padding which is kept for compatibility with the original code base. Mask values selected in `[0, 1]`: - 1 for tokens that are **masked**, - 0 for tokens that are **not masked**. You can only uses one of `input_mask` and `attention_mask`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare XLNet Model transformer outputting raw hidden-states without any specific head on top.", XLNET_START_DOCSTRING, ) class TFXLNetModel(TFXLNetPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFXLNetModelOutput, Tuple[tf.Tensor]]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) @add_start_docstrings( """ XLNet Model with a language modeling head on top (linear layer with weights tied to the input embeddings). """, XLNET_START_DOCSTRING, ) class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.lm_loss = TFXLNetLMHead(config, self.transformer.word_embedding, name="lm_loss") # generate fails to convert to a graph with XLNet self.supports_xla_generation = False def get_lm_head(self): return self.lm_loss def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_loss.name def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_mems=None, **kwargs): # Add dummy token at the end (no attention on this one) effective_batch_size = inputs.shape[0] dummy_token = tf.zeros((effective_batch_size, 1), dtype=inputs.dtype) # At every pass, the attention values for the new token and the two last generated tokens # are computed, the rest is reloaded from the `past` cache. A purely auto-regressive model would have # offset = 1; offset = 2 seems to have slightly better computation. offset = 2 if past_key_values: input_ids = tf.concat([inputs[:, -offset:], dummy_token], axis=1) else: input_ids = tf.concat([inputs, dummy_token], axis=1) # Build permutation mask so that previous tokens don't see last token sequence_length = input_ids.shape[1] perm_mask = tf.zeros((effective_batch_size, sequence_length, sequence_length - 1)) perm_mask_seq_end = tf.ones((effective_batch_size, sequence_length, 1)) perm_mask = tf.concat([perm_mask, perm_mask_seq_end], axis=-1) # We'll only predict the last token target_mapping = tf.zeros((effective_batch_size, 1, sequence_length - 1)) target_mapping_seq_end = tf.ones((effective_batch_size, 1, 1)) target_mapping = tf.concat([target_mapping, target_mapping_seq_end], axis=-1) inputs = { "input_ids": input_ids, "perm_mask": perm_mask, "target_mapping": target_mapping, "use_mems": use_mems, } # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = tuple(layer_past[:-offset, :, :] for layer_past in past_key_values) return inputs @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFXLNetLMHeadModelOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetLMHeadModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. Return: Examples: ```python >>> import tensorflow as tf >>> import numpy as np >>> from transformers import AutoTokenizer, TFXLNetLMHeadModel >>> tokenizer = AutoTokenizer.from_pretrained("xlnet-large-cased") >>> model = TFXLNetLMHeadModel.from_pretrained("xlnet-large-cased") >>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[ ... None, : ... ] # We will predict the masked token >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1])) >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> target_mapping = np.zeros( ... (1, 1, input_ids.shape[1]) ... ) # Shape [1, 1, seq_length] => let's predict one token >>> target_mapping[ ... 0, 0, -1 ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) >>> outputs = model( ... input_ids, ... perm_mask=tf.constant(perm_mask, dtype=tf.float32), ... target_mapping=tf.constant(target_mapping, dtype=tf.float32), ... ) >>> next_token_logits = outputs[ ... 0 ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ```""" transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_state = transformer_outputs[0] logits = self.lm_loss(hidden_state, training=training) loss = None if labels is not None: loss = self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetLMHeadModelOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "lm_loss", None) is not None: with tf.name_scope(self.lm_loss.name): self.lm_loss.build(None) @add_start_docstrings( """ XLNet Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForSequenceClassification(TFXLNetPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForSequenceClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForSequenceClassificationOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] output = self.sequence_summary(output) logits = self.logits_proj(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForSequenceClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNET Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForMultipleChoice(TFXLNetPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.logits_proj = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForMultipleChoiceOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForMultipleChoiceOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_input_mask = tf.reshape(input_mask, (-1, seq_length)) if input_mask is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, mems, perm_mask, target_mapping, flat_token_type_ids, flat_input_mask, head_mask, flat_inputs_embeds, use_mems, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForMultipleChoiceOutput( loss=loss, logits=reshaped_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "logits_proj", None) is not None: with tf.name_scope(self.logits_proj.name): self.logits_proj.build([None, None, self.config.d_model]) @add_start_docstrings( """ XLNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, XLNET_START_DOCSTRING, ) class TFXLNetForTokenClassification(TFXLNetPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFXLNetMainLayer(config, name="transformer") self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForTokenClassificationOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForTokenClassificationOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.classifier(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForTokenClassificationOutput( loss=loss, logits=logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ XLNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, XLNET_START_DOCSTRING, ) class TFXLNetForQuestionAnsweringSimple(TFXLNetPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFXLNetMainLayer(config, name="transformer") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(XLNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFXLNetForQuestionAnsweringSimpleOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, mems: np.ndarray | tf.Tensor | None = None, perm_mask: np.ndarray | tf.Tensor | None = None, target_mapping: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, input_mask: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, use_mems: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFXLNetForQuestionAnsweringSimpleOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, mems=mems, perm_mask=perm_mask, target_mapping=target_mapping, token_type_ids=token_type_ids, input_mask=input_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_mems=use_mems, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFXLNetForQuestionAnsweringSimpleOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "transformer", None) is not None: with tf.name_scope(self.transformer.name): self.transformer.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/xlnet/modeling_tf_xlnet.py/0
{ "file_path": "transformers/src/transformers/models/xlnet/modeling_tf_xlnet.py", "repo_id": "transformers", "token_count": 34891 }
377
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert YOSO checkpoints from the original repository. URL: https://github.com/mlpen/YOSO""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def rename_key(orig_key): if "model" in orig_key: orig_key = orig_key.replace("model.", "") if "norm1" in orig_key: orig_key = orig_key.replace("norm1", "attention.output.LayerNorm") if "norm2" in orig_key: orig_key = orig_key.replace("norm2", "output.LayerNorm") if "norm" in orig_key: orig_key = orig_key.replace("norm", "LayerNorm") if "transformer" in orig_key: layer_num = orig_key.split(".")[0].split("_")[-1] orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}") if "mha.attn" in orig_key: orig_key = orig_key.replace("mha.attn", "attention.self") if "mha" in orig_key: orig_key = orig_key.replace("mha", "attention") if "W_q" in orig_key: orig_key = orig_key.replace("W_q", "self.query") if "W_k" in orig_key: orig_key = orig_key.replace("W_k", "self.key") if "W_v" in orig_key: orig_key = orig_key.replace("W_v", "self.value") if "ff1" in orig_key: orig_key = orig_key.replace("ff1", "intermediate.dense") if "ff2" in orig_key: orig_key = orig_key.replace("ff2", "output.dense") if "ff" in orig_key: orig_key = orig_key.replace("ff", "output.dense") if "mlm_class" in orig_key: orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder") if "mlm" in orig_key: orig_key = orig_key.replace("mlm", "cls.predictions.transform") if "cls" not in orig_key: orig_key = "yoso." + orig_key return orig_key def convert_checkpoint_helper(max_position_embeddings, orig_state_dict): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if ("pooler" in key) or ("sen_class" in key): continue else: orig_state_dict[rename_key(key)] = val orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"] orig_state_dict["yoso.embeddings.position_ids"] = torch.arange(max_position_embeddings).expand((1, -1)) + 2 return orig_state_dict def convert_yoso_checkpoint(checkpoint_path, yoso_config_file, pytorch_dump_path): orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"] config = YosoConfig.from_json_file(yoso_config_file) model = YosoForMaskedLM(config) new_state_dict = convert_checkpoint_helper(config.max_position_embeddings, orig_state_dict) print(model.load_state_dict(new_state_dict)) model.eval() model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
transformers/src/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/yoso/convert_yoso_pytorch_to_pytorch.py", "repo_id": "transformers", "token_count": 1660 }
378
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import Pipeline, build_pipeline_init_args if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES logger = logging.get_logger(__name__) @add_end_docstrings(build_pipeline_init_args(has_image_processor=True)) class DepthEstimationPipeline(Pipeline): """ Depth estimation pipeline using any `AutoModelForDepthEstimation`. This pipeline predicts the depth of an image. Example: ```python >>> from transformers import pipeline >>> depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-large") >>> output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg") >>> # This is a tensor with the values being the depth expressed in meters for each pixel >>> output["predicted_depth"].shape torch.Size([1, 384, 384]) ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) This depth estimation pipeline can currently be loaded from [`pipeline`] using the following task identifier: `"depth-estimation"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=depth-estimation). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) requires_backends(self, "vision") self.check_model_type(MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES) def __call__(self, images: Union[str, List[str], "Image.Image", List["Image.Image"]], **kwargs): """ Predict the depth(s) of the image(s) passed as inputs. Args: images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): The pipeline handles three types of images: - A string containing a http link pointing to an image - A string containing a local path to an image - An image loaded in PIL directly The pipeline accepts either a single image or a batch of images, which must then be passed as a string. Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL images. timeout (`float`, *optional*, defaults to None): The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and the call may block forever. Return: A dictionary or a list of dictionaries containing result. If the input is a single image, will return a dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to the images. The dictionaries contain the following keys: - **predicted_depth** (`torch.Tensor`) -- The predicted depth by the model as a `torch.Tensor`. - **depth** (`PIL.Image`) -- The predicted depth by the model as a `PIL.Image`. """ return super().__call__(images, **kwargs) def _sanitize_parameters(self, timeout=None, **kwargs): preprocess_params = {} if timeout is not None: preprocess_params["timeout"] = timeout return preprocess_params, {}, {} def preprocess(self, image, timeout=None): image = load_image(image, timeout) self.image_size = image.size model_inputs = self.image_processor(images=image, return_tensors=self.framework) return model_inputs def _forward(self, model_inputs): model_outputs = self.model(**model_inputs) return model_outputs def postprocess(self, model_outputs): predicted_depth = model_outputs.predicted_depth prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=self.image_size[::-1], mode="bicubic", align_corners=False ) output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) output_dict = {} output_dict["predicted_depth"] = predicted_depth output_dict["depth"] = depth return output_dict
transformers/src/transformers/pipelines/depth_estimation.py/0
{ "file_path": "transformers/src/transformers/pipelines/depth_estimation.py", "repo_id": "transformers", "token_count": 1686 }
379
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.from typing import List, Union from typing import List, Union from ..utils import is_torch_available from .base import Pipeline if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING from ..models.speecht5.modeling_speecht5 import SpeechT5HifiGan DEFAULT_VOCODER_ID = "microsoft/speecht5_hifigan" class TextToAudioPipeline(Pipeline): """ Text-to-audio generation pipeline using any `AutoModelForTextToWaveform` or `AutoModelForTextToSpectrogram`. This pipeline generates an audio file from an input text and optional other conditional inputs. Example: ```python >>> from transformers import pipeline >>> pipe = pipeline(model="suno/bark-small") >>> output = pipe("Hey it's HuggingFace on the phone!") >>> audio = output["audio"] >>> sampling_rate = output["sampling_rate"] ``` Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) <Tip> You can specify parameters passed to the model by using [`TextToAudioPipeline.__call__.forward_params`] or [`TextToAudioPipeline.__call__.generate_kwargs`]. Example: ```python >>> from transformers import pipeline >>> music_generator = pipeline(task="text-to-audio", model="facebook/musicgen-small", framework="pt") >>> # diversify the music generation by adding randomness with a high temperature and set a maximum music length >>> generate_kwargs = { ... "do_sample": True, ... "temperature": 0.7, ... "max_new_tokens": 35, ... } >>> outputs = music_generator("Techno music with high melodic riffs", generate_kwargs=generate_kwargs) ``` </Tip> This pipeline can currently be loaded from [`pipeline`] using the following task identifiers: `"text-to-speech"` or `"text-to-audio"`. See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=text-to-speech). """ def __init__(self, *args, vocoder=None, sampling_rate=None, **kwargs): super().__init__(*args, **kwargs) if self.framework == "tf": raise ValueError("The TextToAudioPipeline is only available in PyTorch.") self.vocoder = None if self.model.__class__ in MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING.values(): self.vocoder = ( SpeechT5HifiGan.from_pretrained(DEFAULT_VOCODER_ID).to(self.model.device) if vocoder is None else vocoder ) self.sampling_rate = sampling_rate if self.vocoder is not None: self.sampling_rate = self.vocoder.config.sampling_rate if self.sampling_rate is None: # get sampling_rate from config and generation config config = self.model.config gen_config = self.model.__dict__.get("generation_config", None) if gen_config is not None: config.update(gen_config.to_dict()) for sampling_rate_name in ["sample_rate", "sampling_rate"]: sampling_rate = getattr(config, sampling_rate_name, None) if sampling_rate is not None: self.sampling_rate = sampling_rate def preprocess(self, text, **kwargs): if isinstance(text, str): text = [text] if self.model.config.model_type == "bark": # bark Tokenizer is called with BarkProcessor which uses those kwargs new_kwargs = { "max_length": self.model.generation_config.semantic_config.get("max_input_semantic_length", 256), "add_special_tokens": False, "return_attention_mask": True, "return_token_type_ids": False, "padding": "max_length", } # priority is given to kwargs new_kwargs.update(kwargs) kwargs = new_kwargs output = self.tokenizer(text, **kwargs, return_tensors="pt") return output def _forward(self, model_inputs, **kwargs): # we expect some kwargs to be additional tensors which need to be on the right device kwargs = self._ensure_tensor_on_device(kwargs, device=self.device) forward_params = kwargs["forward_params"] generate_kwargs = kwargs["generate_kwargs"] if self.model.can_generate(): # we expect some kwargs to be additional tensors which need to be on the right device generate_kwargs = self._ensure_tensor_on_device(generate_kwargs, device=self.device) # generate_kwargs get priority over forward_params forward_params.update(generate_kwargs) output = self.model.generate(**model_inputs, **forward_params) else: if len(generate_kwargs): raise ValueError( f"""You're using the `TextToAudioPipeline` with a forward-only model, but `generate_kwargs` is non empty. For forward-only TTA models, please use `forward_params` instead of of `generate_kwargs`. For reference, here are the `generate_kwargs` used here: {generate_kwargs.keys()}""" ) output = self.model(**model_inputs, **forward_params)[0] if self.vocoder is not None: # in that case, the output is a spectrogram that needs to be converted into a waveform output = self.vocoder(output) return output def __call__(self, text_inputs: Union[str, List[str]], **forward_params): """ Generates speech/audio from the inputs. See the [`TextToAudioPipeline`] documentation for more information. Args: text_inputs (`str` or `List[str]`): The text(s) to generate. forward_params (`dict`, *optional*): Parameters passed to the model generation/forward method. `forward_params` are always passed to the underlying model. generate_kwargs (`dict`, *optional*): The dictionary of ad-hoc parametrization of `generate_config` to be used for the generation call. For a complete overview of generate, check the [following guide](https://huggingface.co/docs/transformers/en/main_classes/text_generation). `generate_kwargs` are only passed to the underlying model if the latter is a generative model. Return: A `dict` or a list of `dict`: The dictionaries have two keys: - **audio** (`np.ndarray` of shape `(nb_channels, audio_length)`) -- The generated audio waveform. - **sampling_rate** (`int`) -- The sampling rate of the generated audio waveform. """ return super().__call__(text_inputs, **forward_params) def _sanitize_parameters( self, preprocess_params=None, forward_params=None, generate_kwargs=None, ): params = { "forward_params": forward_params if forward_params else {}, "generate_kwargs": generate_kwargs if generate_kwargs else {}, } if preprocess_params is None: preprocess_params = {} postprocess_params = {} return preprocess_params, params, postprocess_params def postprocess(self, waveform): output_dict = {} output_dict["audio"] = waveform.cpu().float().numpy() output_dict["sampling_rate"] = self.sampling_rate return output_dict
transformers/src/transformers/pipelines/text_to_audio.py/0
{ "file_path": "transformers/src/transformers/pipelines/text_to_audio.py", "repo_id": "transformers", "token_count": 3322 }
380
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from typing import TYPE_CHECKING, Optional from packaging import version from .base import HfQuantizer if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from ..utils import is_auto_gptq_available, is_optimum_available, is_torch_available, logging from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin if is_torch_available(): import torch logger = logging.get_logger(__name__) class GptqHfQuantizer(HfQuantizer): """ Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through `auto_gptq` package. Quantization is done under the hood for users if they load a non-prequantized model. """ requires_calibration = False required_packages = ["optimum", "auto_gptq"] optimum_quantizer = None def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): super().__init__(quantization_config, **kwargs) from optimum.gptq import GPTQQuantizer self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum()) def validate_environment(self, *args, **kwargs): gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2") if not gptq_supports_cpu and not torch.cuda.is_available(): raise RuntimeError("GPU is required to quantize or run quantize model.") elif not (is_optimum_available() and is_auto_gptq_available()): raise ImportError( "Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)" ) elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"): raise ImportError( "You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`" ) def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if torch_dtype is None: torch_dtype = torch.float16 elif torch_dtype != torch.float16: logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.") return torch_dtype def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): if model.__class__.main_input_name != "input_ids": raise RuntimeError("We can only quantize pure text model.") if self.pre_quantized: model = self.optimum_quantizer.convert_model(model) def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): if self.pre_quantized: model = self.optimum_quantizer.post_init_model(model) else: if self.quantization_config.tokenizer is None: self.quantization_config.tokenizer = model.name_or_path self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer) model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict()) @property def is_trainable(self, model: Optional["PreTrainedModel"] = None): return True @property def is_serializable(self): return True
transformers/src/transformers/quantizers/quantizer_gptq.py/0
{ "file_path": "transformers/src/transformers/quantizers/quantizer_gptq.py", "repo_id": "transformers", "token_count": 1447 }
381
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class DocumentQuestionAnsweringTool(PipelineTool): default_checkpoint = "naver-clova-ix/donut-base-finetuned-docvqa" description = ( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) name = "document_qa" pre_processor_class = AutoProcessor model_class = VisionEncoderDecoderModel inputs = ["image", "text"] outputs = ["text"] def __init__(self, *args, **kwargs): if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.") super().__init__(*args, **kwargs) def encode(self, document: "Image", question: str): task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" prompt = task_prompt.replace("{user_input}", question) decoder_input_ids = self.pre_processor.tokenizer( prompt, add_special_tokens=False, return_tensors="pt" ).input_ids pixel_values = self.pre_processor(document, return_tensors="pt").pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def forward(self, inputs): return self.model.generate( inputs["pixel_values"].to(self.device), decoder_input_ids=inputs["decoder_input_ids"].to(self.device), max_length=self.model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=self.pre_processor.tokenizer.pad_token_id, eos_token_id=self.pre_processor.tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ).sequences def decode(self, outputs): sequence = self.pre_processor.batch_decode(outputs)[0] sequence = sequence.replace(self.pre_processor.tokenizer.eos_token, "") sequence = sequence.replace(self.pre_processor.tokenizer.pad_token, "") sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token sequence = self.pre_processor.token2json(sequence) return sequence["answer"]
transformers/src/transformers/tools/document_question_answering.py/0
{ "file_path": "transformers/src/transformers/tools/document_question_answering.py", "repo_id": "transformers", "token_count": 1230 }
382
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy from pathlib import Path from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import Dataset from .generation.configuration_utils import GenerationConfig from .integrations.deepspeed import is_deepspeed_zero3_enabled from .trainer import Trainer from .utils import logging if TYPE_CHECKING: from .data.data_collator import DataCollator from .modeling_utils import PreTrainedModel from .tokenization_utils_base import PreTrainedTokenizerBase from .trainer_callback import TrainerCallback from .trainer_utils import EvalPrediction, PredictionOutput from .training_args import TrainingArguments logger = logging.get_logger(__name__) class Seq2SeqTrainer(Trainer): def __init__( self, model: Union["PreTrainedModel", nn.Module] = None, args: "TrainingArguments" = None, data_collator: Optional["DataCollator"] = None, train_dataset: Optional[Dataset] = None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset]]] = None, tokenizer: Optional["PreTrainedTokenizerBase"] = None, model_init: Optional[Callable[[], "PreTrainedModel"]] = None, compute_metrics: Optional[Callable[["EvalPrediction"], Dict]] = None, callbacks: Optional[List["TrainerCallback"]] = None, optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, ): super().__init__( model=model, args=args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, model_init=model_init, compute_metrics=compute_metrics, callbacks=callbacks, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) # Override self.model.generation_config if a GenerationConfig is specified in args. # Priority: args.generation_config > model.generation_config > default GenerationConfig. if self.args.generation_config is not None: gen_config = self.load_generation_config(self.args.generation_config) self.model.generation_config = gen_config @staticmethod def load_generation_config(gen_config_arg: Union[str, GenerationConfig]) -> GenerationConfig: """ Loads a `~generation.GenerationConfig` from the `Seq2SeqTrainingArguments.generation_config` arguments. Args: gen_config_arg (`str` or [`~generation.GenerationConfig`]): `Seq2SeqTrainingArguments.generation_config` argument. Returns: A `~generation.GenerationConfig`. """ # GenerationConfig provided, nothing to do if isinstance(gen_config_arg, GenerationConfig): return deepcopy(gen_config_arg) # str or Path pretrained_model_name = Path(gen_config_arg) if isinstance(gen_config_arg, str) else gen_config_arg config_file_name = None # Figuring if it is path pointing to a file, pointing to a directory or else a model id or URL # This step is required in order to determine config_file_name if pretrained_model_name.is_file(): config_file_name = pretrained_model_name.name pretrained_model_name = pretrained_model_name.parent # dir path elif pretrained_model_name.is_dir(): pass # model id or URL else: pretrained_model_name = gen_config_arg gen_config = GenerationConfig.from_pretrained(pretrained_model_name, config_file_name) return gen_config def evaluate( self, eval_dataset: Optional[Dataset] = None, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "eval", **gen_kwargs, ) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init `compute_metrics` argument). You can also subclass and override this method to inject custom behavior. Args: eval_dataset (`Dataset`, *optional*): Pass a dataset if you wish to override `self.eval_dataset`. If it is an [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. It must implement the `__len__` method. ignore_keys (`List[str]`, *optional*): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (`str`, *optional*, defaults to `"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is `"eval"` (default) max_length (`int`, *optional*): The maximum target length to use when predicting with the generate method. num_beams (`int`, *optional*): Number of beams for beam search that will be used when predicting with the generate method. 1 means no beam search. gen_kwargs: Additional `generate` specific kwargs. Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. The dictionary also contains the epoch number which comes from the training state. """ gen_kwargs = gen_kwargs.copy() # Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the # training args if ( gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None and self.args.generation_max_length is not None ): gen_kwargs["max_length"] = self.args.generation_max_length if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None: gen_kwargs["num_beams"] = self.args.generation_num_beams # We don't want to drop samples in general self.gather_function = self.accelerator.gather self._gen_kwargs = gen_kwargs return super().evaluate(eval_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) def predict( self, test_dataset: Dataset, ignore_keys: Optional[List[str]] = None, metric_key_prefix: str = "test", **gen_kwargs, ) -> "PredictionOutput": """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in `evaluate()`. Args: test_dataset (`Dataset`): Dataset to run the predictions on. If it is a [`~datasets.Dataset`], columns not accepted by the `model.forward()` method are automatically removed. Has to implement the method `__len__` ignore_keys (`List[str]`, *optional*): A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions. metric_key_prefix (`str`, *optional*, defaults to `"eval"`): An optional prefix to be used as the metrics key prefix. For example the metrics "bleu" will be named "eval_bleu" if the prefix is `"eval"` (default) max_length (`int`, *optional*): The maximum target length to use when predicting with the generate method. num_beams (`int`, *optional*): Number of beams for beam search that will be used when predicting with the generate method. 1 means no beam search. gen_kwargs: Additional `generate` specific kwargs. <Tip> If your predictions or labels have different sequence lengths (for instance because you're doing dynamic padding in a token classification task) the predictions will be padded (on the right) to allow for concatenation into one array. The padding index is -100. </Tip> Returns: *NamedTuple* A namedtuple with the following keys: - predictions (`np.ndarray`): The predictions on `test_dataset`. - label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some). - metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained labels). """ gen_kwargs = gen_kwargs.copy() # Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the # training args if ( gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None and self.args.generation_max_length is not None ): gen_kwargs["max_length"] = self.args.generation_max_length if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None: gen_kwargs["num_beams"] = self.args.generation_num_beams self.gather_function = self.accelerator.gather self._gen_kwargs = gen_kwargs return super().predict(test_dataset, ignore_keys=ignore_keys, metric_key_prefix=metric_key_prefix) def prediction_step( self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, **gen_kwargs, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """ Perform an evaluation step on `model` using `inputs`. Subclass and override to inject custom behavior. Args: model (`nn.Module`): The model to evaluate. inputs (`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument `labels`. Check your model's documentation for all accepted arguments. prediction_loss_only (`bool`): Whether or not to return the loss only. gen_kwargs: Additional `generate` specific kwargs. Return: Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and labels (each being optional). """ if not self.args.predict_with_generate or prediction_loss_only: return super().prediction_step( model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys ) has_labels = "labels" in inputs inputs = self._prepare_inputs(inputs) # Priority (handled in generate): # non-`None` gen_kwargs > model.generation_config > default GenerationConfig() if len(gen_kwargs) == 0 and hasattr(self, "_gen_kwargs"): gen_kwargs = self._gen_kwargs.copy() if "num_beams" in gen_kwargs and gen_kwargs["num_beams"] is None: gen_kwargs.pop("num_beams") if "max_length" in gen_kwargs and gen_kwargs["max_length"] is None: gen_kwargs.pop("max_length") default_synced_gpus = True if is_deepspeed_zero3_enabled() else False gen_kwargs["synced_gpus"] = ( gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus ) generation_inputs = inputs.copy() # If the `decoder_input_ids` was created from `labels`, evict the former, so that the model can freely generate # (otherwise, it would continue generating from the padded `decoder_input_ids`) if ( "labels" in generation_inputs and "decoder_input_ids" in generation_inputs and generation_inputs["labels"].shape == generation_inputs["decoder_input_ids"].shape ): generation_inputs = { k: v for k, v in inputs.items() if k not in ("decoder_input_ids", "decoder_attention_mask") } generated_tokens = self.model.generate(**generation_inputs, **gen_kwargs) # Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop # TODO: remove this hack when the legacy code that initializes generation_config from a model config is # removed in https://github.com/huggingface/transformers/blob/98d88b23f54e5a23e741833f1e973fdf600cc2c5/src/transformers/generation/utils.py#L1183 if self.model.generation_config._from_model_config: self.model.generation_config._from_model_config = False # Retrieves GenerationConfig from model.generation_config gen_config = self.model.generation_config # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_config.max_length: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_length) elif gen_config.max_new_tokens is not None and generated_tokens.shape[-1] < gen_config.max_new_tokens + 1: generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_config.max_new_tokens + 1) with torch.no_grad(): if has_labels: with self.compute_loss_context_manager(): outputs = model(**inputs) if self.label_smoother is not None: loss = self.label_smoother(outputs, inputs["labels"]).mean().detach() else: loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach() else: loss = None if self.args.prediction_loss_only: return loss, None, None if has_labels: labels = inputs["labels"] if labels.shape[-1] < gen_config.max_length: labels = self._pad_tensors_to_max_len(labels, gen_config.max_length) elif gen_config.max_new_tokens is not None and labels.shape[-1] < gen_config.max_new_tokens + 1: labels = self._pad_tensors_to_max_len(labels, gen_config.max_new_tokens + 1) else: labels = None return loss, generated_tokens, labels def _pad_tensors_to_max_len(self, tensor, max_length): if self.tokenizer is not None and hasattr(self.tokenizer, "pad_token_id"): # If PAD token is not defined at least EOS token has to be defined pad_token_id = ( self.tokenizer.pad_token_id if self.tokenizer.pad_token_id is not None else self.tokenizer.eos_token_id ) else: if self.model.config.pad_token_id is not None: pad_token_id = self.model.config.pad_token_id else: raise ValueError("Pad_token_id must be set in the configuration of the model, in order to pad tensors") padded_tensor = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) padded_tensor[:, : tensor.shape[-1]] = tensor return padded_tensor
transformers/src/transformers/trainer_seq2seq.py/0
{ "file_path": "transformers/src/transformers/trainer_seq2seq.py", "repo_id": "transformers", "token_count": 6769 }
383
# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends SLOW_TO_FAST_CONVERTERS = None def convert_slow_tokenizer(*args, **kwargs): requires_backends(convert_slow_tokenizer, ["sentencepiece", "tokenizers"])
transformers/src/transformers/utils/dummy_sentencepiece_and_tokenizers_objects.py/0
{ "file_path": "transformers/src/transformers/utils/dummy_sentencepiece_and_tokenizers_objects.py", "repo_id": "transformers", "token_count": 94 }
384
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, List, Optional, Union from packaging import version from ..utils import is_auto_awq_available, is_torch_available, logging if is_torch_available(): import torch logger = logging.get_logger(__name__) class QuantizationMethod(str, Enum): BITS_AND_BYTES = "bitsandbytes" GPTQ = "gptq" AWQ = "awq" class AWQLinearVersion(str, Enum): GEMM = "gemm" GEMV = "gemv" @staticmethod def from_str(version: str): version = version.lower() if version == "gemm": return AWQLinearVersion.GEMM elif version == "gemv": return AWQLinearVersion.GEMV else: raise ValueError(f"Unknown AWQLinearVersion {version}") class AwqBackendPackingMethod(str, Enum): AUTOAWQ = "autoawq" LLMAWQ = "llm-awq" @dataclass class QuantizationConfigMixin: """ Mixin class for quantization config """ quant_method: QuantizationMethod @classmethod def from_dict(cls, config_dict, return_unused_kwargs=False, **kwargs): """ Instantiates a [`QuantizationConfigMixin`] from a Python dictionary of parameters. Args: config_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the configuration object. return_unused_kwargs (`bool`,*optional*, defaults to `False`): Whether or not to return a list of unused keyword arguments. Used for `from_pretrained` method in `PreTrainedModel`. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the configuration object. Returns: [`QuantizationConfigMixin`]: The configuration object instantiated from those parameters. """ config = cls(**config_dict) to_remove = [] for key, value in kwargs.items(): if hasattr(config, key): setattr(config, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) if return_unused_kwargs: return config, kwargs else: return config def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this configuration instance's parameters will be saved. use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `QuantizationConfig()` is serialized to JSON file. """ with open(json_file_path, "w", encoding="utf-8") as writer: config_dict = self.to_dict() json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n" writer.write(json_string) def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ return copy.deepcopy(self.__dict__) def __iter__(self): """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin""" for attr, value in copy.deepcopy(self.__dict__).items(): yield attr, value def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}" def to_json_string(self, use_diff: bool = True) -> str: """ Serializes this instance to a JSON string. Args: use_diff (`bool`, *optional*, defaults to `True`): If set to `True`, only the difference between the config instance and the default `PretrainedConfig()` is serialized to JSON string. Returns: `str`: String containing all the attributes that make up this configuration instance in JSON format. """ if use_diff is True: config_dict = self.to_diff_dict() else: config_dict = self.to_dict() return json.dumps(config_dict, indent=2, sort_keys=True) + "\n" # Copied from transformers.generation.configuration_utils.GenerationConfig.update def update(self, **kwargs): """ Updates attributes of this class instance with attributes from `kwargs` if they match existing atributtes, returning all the unused kwargs. Args: kwargs (`Dict[str, Any]`): Dictionary of attributes to tentatively update this class. Returns: `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance. """ to_remove = [] for key, value in kwargs.items(): if hasattr(self, key): setattr(self, key, value) to_remove.append(key) # remove all the attributes that were updated, without modifying the input dict unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove} return unused_kwargs @dataclass class BitsAndBytesConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `bitsandbytes`. This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, then more arguments will be added to this class. Args: load_in_8bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 8-bit quantization with LLM.int8(). load_in_4bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from `bitsandbytes`. llm_int8_threshold (`float`, *optional*, defaults to 6.0): This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning). llm_int8_skip_modules (`List[str]`, *optional*): An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as Jukebox that has several heads in different places and not necessarily at the last position. For example for `CausalLM` models, the last `lm_head` is kept in its original `dtype`. llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): This flag is used for advanced use cases and users that are aware of this feature. If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 operations will not be run on CPU. llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not have to be converted back and forth for the backward pass. bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): This sets the computational type which might be different than the input time. For example, inputs might be fp32, but computation can be set to bf16 for speedups. bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by `fp4` or `nf4`. bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): This flag is used for nested quantization where the quantization constants from the first quantization are quantized again. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object. """ def __init__( self, load_in_8bit=False, load_in_4bit=False, llm_int8_threshold=6.0, llm_int8_skip_modules=None, llm_int8_enable_fp32_cpu_offload=False, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=None, bnb_4bit_quant_type="fp4", bnb_4bit_use_double_quant=False, **kwargs, ): self.quant_method = QuantizationMethod.BITS_AND_BYTES if load_in_4bit and load_in_8bit: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_8bit = load_in_8bit self._load_in_4bit = load_in_4bit self.llm_int8_threshold = llm_int8_threshold self.llm_int8_skip_modules = llm_int8_skip_modules self.llm_int8_enable_fp32_cpu_offload = llm_int8_enable_fp32_cpu_offload self.llm_int8_has_fp16_weight = llm_int8_has_fp16_weight self.bnb_4bit_quant_type = bnb_4bit_quant_type self.bnb_4bit_use_double_quant = bnb_4bit_use_double_quant if bnb_4bit_compute_dtype is None: self.bnb_4bit_compute_dtype = torch.float32 elif isinstance(bnb_4bit_compute_dtype, str): self.bnb_4bit_compute_dtype = getattr(torch, bnb_4bit_compute_dtype) elif isinstance(bnb_4bit_compute_dtype, torch.dtype): self.bnb_4bit_compute_dtype = bnb_4bit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype") self.post_init() @property def load_in_4bit(self): return self._load_in_4bit @load_in_4bit.setter def load_in_4bit(self, value: bool): if self.load_in_8bit and value: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_4bit = value @property def load_in_8bit(self): return self._load_in_8bit @load_in_8bit.setter def load_in_8bit(self, value: bool): if self.load_in_4bit and value: raise ValueError("load_in_4bit and load_in_8bit are both True, but only one can be used at the same time") self._load_in_8bit = value def post_init(self): r""" Safety checker that arguments are correct - also replaces some NoneType arguments with their default values. """ if not isinstance(self.llm_int8_threshold, float): raise ValueError("llm_int8_threshold must be a float") if self.llm_int8_skip_modules is not None and not isinstance(self.llm_int8_skip_modules, list): raise ValueError("llm_int8_skip_modules must be a list of strings") if not isinstance(self.llm_int8_enable_fp32_cpu_offload, bool): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean") if not isinstance(self.llm_int8_has_fp16_weight, bool): raise ValueError("llm_int8_has_fp16_weight must be a boolean") if self.bnb_4bit_compute_dtype is not None and not isinstance(self.bnb_4bit_compute_dtype, torch.dtype): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype") if not isinstance(self.bnb_4bit_quant_type, str): raise ValueError("bnb_4bit_quant_type must be a string") if not isinstance(self.bnb_4bit_use_double_quant, bool): raise ValueError("bnb_4bit_use_double_quant must be a boolean") if self.load_in_4bit and not version.parse(importlib.metadata.version("bitsandbytes")) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def is_quantizable(self): r""" Returns `True` if the model is quantizable, `False` otherwise. """ return self.load_in_8bit or self.load_in_4bit def quantization_method(self): r""" This method returns the quantization method used for the model. If the model is not quantizable, it returns `None`. """ if self.load_in_8bit: return "llm_int8" elif self.load_in_4bit and self.bnb_4bit_quant_type == "fp4": return "fp4" elif self.load_in_4bit and self.bnb_4bit_quant_type == "nf4": return "nf4" else: return None def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ output = copy.deepcopy(self.__dict__) output["bnb_4bit_compute_dtype"] = str(output["bnb_4bit_compute_dtype"]).split(".")[1] output["load_in_4bit"] = self.load_in_4bit output["load_in_8bit"] = self.load_in_8bit return output def __repr__(self): config_dict = self.to_dict() return f"{self.__class__.__name__} {json.dumps(config_dict, indent=2, sort_keys=True)}\n" def to_diff_dict(self) -> Dict[str, Any]: """ Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance, """ config_dict = self.to_dict() # get the default config dict default_config_dict = BitsAndBytesConfig().to_dict() serializable_config_dict = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: serializable_config_dict[key] = value return serializable_config_dict class ExllamaVersion(int, Enum): ONE = 1 TWO = 2 @dataclass class GPTQConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `optimum` api for gptq quantization relying on auto_gptq backend. Args: bits (`int`): The number of bits to quantize to, supported numbers are (2, 3, 4, 8). tokenizer (`str` or `PreTrainedTokenizerBase`, *optional*): The tokenizer used to process the dataset. You can pass either: - A custom tokenizer object. - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. dataset (`Union[List[str]]`, *optional*): The dataset used for quantization. You can provide your own dataset in a list of string or just use the original datasets used in GPTQ paper ['wikitext2','c4','c4-new','ptb','ptb-new'] group_size (`int`, *optional*, defaults to 128): The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. damp_percent (`float`, *optional*, defaults to 0.1): The percent of the average Hessian diagonal to use for dampening. Recommended value is 0.1. desc_act (`bool`, *optional*, defaults to `False`): Whether to quantize columns in order of decreasing activation size. Setting it to False can significantly speed up inference but the perplexity may become slightly worse. Also known as act-order. sym (`bool`, *optional*, defaults to `True`): Whether to use symetric quantization. true_sequential (`bool`, *optional*, defaults to `True`): Whether to perform sequential quantization even within a single Transformer block. Instead of quantizing the entire block at once, we perform layer-wise quantization. As a result, each layer undergoes quantization using inputs that have passed through the previously quantized layers. use_cuda_fp16 (`bool`, *optional*, defaults to `False`): Whether or not to use optimized cuda kernel for fp16 model. Need to have model in fp16. model_seqlen (`int`, *optional*): The maximum sequence length that the model can take. block_name_to_quantize (`str`, *optional*): The transformers block name to quantize. If None, we will infer the block name using common patterns (e.g. model.layers) module_name_preceding_first_block (`List[str]`, *optional*): The layers that are preceding the first Transformer block. batch_size (`int`, *optional*, defaults to 1): The batch size used when processing the dataset pad_token_id (`int`, *optional*): The pad token id. Needed to prepare the dataset when `batch_size` > 1. use_exllama (`bool`, *optional*): Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4. max_input_length (`int`, *optional*): The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input length. It is specific to the exllama backend with act-order. exllama_config (`Dict[str, Any]`, *optional*): The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults to `{"version": 1}` if unset. cache_block_outputs (`bool`, *optional*, defaults to `True`): Whether to cache block outputs to reuse as inputs for the succeeding block. modules_in_block_to_quantize (`List[List[str]]`, *optional*): List of list of module names to quantize in the specified block. This argument is useful to exclude certain linear modules from being quantized. The block to quantize can be specified by setting `block_name_to_quantize`. We will quantize each list sequentially. If not set, we will quantize all linear layers. Example: `modules_in_block_to_quantize =[["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.o_proj"]]`. In this example, we will first quantize the q,k,v layers simultaneously since they are independent. Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get better results since it reflects the real input `self_attn.o_proj` will get when the model is quantized. """ def __init__( self, bits: int, tokenizer: Any = None, dataset: Optional[Union[List[str], str]] = None, group_size: int = 128, damp_percent: float = 0.1, desc_act: bool = False, sym: bool = True, true_sequential: bool = True, use_cuda_fp16: bool = False, model_seqlen: Optional[int] = None, block_name_to_quantize: Optional[str] = None, module_name_preceding_first_block: Optional[List[str]] = None, batch_size: int = 1, pad_token_id: Optional[int] = None, use_exllama: Optional[bool] = None, max_input_length: Optional[int] = None, exllama_config: Optional[Dict[str, Any]] = None, cache_block_outputs: bool = True, modules_in_block_to_quantize: Optional[List[List[str]]] = None, **kwargs, ): self.quant_method = QuantizationMethod.GPTQ self.bits = bits self.tokenizer = tokenizer self.dataset = dataset self.group_size = group_size self.damp_percent = damp_percent self.desc_act = desc_act self.sym = sym self.true_sequential = true_sequential self.use_cuda_fp16 = use_cuda_fp16 self.model_seqlen = model_seqlen self.block_name_to_quantize = block_name_to_quantize self.module_name_preceding_first_block = module_name_preceding_first_block self.batch_size = batch_size self.pad_token_id = pad_token_id self.use_exllama = use_exllama self.max_input_length = max_input_length self.exllama_config = exllama_config self.disable_exllama = kwargs.pop("disable_exllama", None) self.cache_block_outputs = cache_block_outputs self.modules_in_block_to_quantize = modules_in_block_to_quantize self.post_init() def get_loading_attributes(self): attibutes_dict = copy.deepcopy(self.__dict__) loading_attibutes = ["disable_exllama", "use_exllama", "exllama_config", "use_cuda_fp16", "max_input_length"] loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} return loading_attibutes_dict def post_init(self): r""" Safety checker that arguments are correct """ if self.bits not in [2, 3, 4, 8]: raise ValueError(f"Only support quantization to [2,3,4,8] bits but found {self.bits}") if self.group_size != -1 and self.group_size <= 0: raise ValueError("group_size must be greater than 0 or equal to -1") if not (0 < self.damp_percent < 1): raise ValueError("damp_percent must between 0 and 1.") if self.dataset is not None: if isinstance(self.dataset, str): if self.dataset not in ["wikitext2", "c4", "c4-new", "ptb", "ptb-new"]: raise ValueError( f"""You have entered a string value for dataset. You can only choose between ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}""" ) elif not isinstance(self.dataset, list): raise ValueError( f"""dataset needs to be either a list of string or a value in ['wikitext2','c4','c4-new','ptb','ptb-new'], but we found {self.dataset}""" ) if self.disable_exllama is None and self.use_exllama is None: # New default behaviour self.use_exllama = True elif self.disable_exllama is not None and self.use_exllama is None: # Follow pattern of old config logger.warning( "Using `disable_exllama` is deprecated and will be removed in version 4.37. Use `use_exllama` instead and specify the version with `exllama_config`." "The value of `use_exllama` will be overwritten by `disable_exllama` passed in `GPTQConfig` or stored in your config file." ) self.use_exllama = not self.disable_exllama self.disable_exllama = None elif self.disable_exllama is not None and self.use_exllama is not None: # Only happens if user explicitly passes in both arguments raise ValueError("Cannot specify both `disable_exllama` and `use_exllama`. Please use just `use_exllama`") if self.exllama_config is None: self.exllama_config = {"version": ExllamaVersion.ONE} else: if "version" not in self.exllama_config: raise ValueError("`exllama_config` needs to have a `version` key.") elif self.exllama_config["version"] not in [ExllamaVersion.ONE, ExllamaVersion.TWO]: exllama_version = self.exllama_config["version"] raise ValueError( f"Only supported versions are in [ExllamaVersion.ONE, ExllamaVersion.TWO] - not recognized version {exllama_version}" ) if self.bits == 4 and self.use_exllama: if self.exllama_config["version"] == ExllamaVersion.ONE: logger.info( "You have activated exllama backend. Note that you can get better inference " "speed using exllamav2 kernel by setting `exllama_config`." ) elif self.exllama_config["version"] == ExllamaVersion.TWO: optimum_version = version.parse(importlib.metadata.version("optimum")) autogptq_version = version.parse(importlib.metadata.version("auto_gptq")) if optimum_version <= version.parse("1.13.2") or autogptq_version <= version.parse("0.4.2"): raise ValueError( f"You need optimum > 1.13.2 and auto-gptq > 0.4.2 . Make sure to have that version installed - detected version : optimum {optimum_version} and autogptq {autogptq_version}" ) if self.modules_in_block_to_quantize is not None: optimum_version = version.parse(importlib.metadata.version("optimum")) if optimum_version < version.parse("1.15.0"): raise ValueError( "You current version of `optimum` does not support `modules_in_block_to_quantize` quantization argument, please upgrade `optimum` package to a version superior than 1.15.0 ." ) def to_dict(self): config_dict = super().to_dict() config_dict.pop("disable_exllama", None) return config_dict def to_dict_optimum(self): """ Get compatible dict for optimum gptq config """ quant_dict = self.to_dict() # make it compatible with optimum config quant_dict["disable_exllama"] = not self.use_exllama return quant_dict @classmethod def from_dict_optimum(cls, config_dict): """ Get compatible class with optimum gptq config dict """ if "disable_exllama" in config_dict: config_dict["use_exllama"] = not config_dict["disable_exllama"] # switch to None to not trigger the warning config_dict["disable_exllama"] = None config = cls(**config_dict) return config @dataclass class AwqConfig(QuantizationConfigMixin): """ This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `auto-awq` library awq quantization relying on auto_awq backend. Args: bits (`int`, *optional*, defaults to 4): The number of bits to quantize to. group_size (`int`, *optional*, defaults to 128): The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization. zero_point (`bool`, *optional*, defaults to `True`): Whether to use zero point quantization. version (`AWQLinearVersion`, *optional*, defaults to `AWQLinearVersion.GEMM`): The version of the quantization algorithm to use. GEMM is better for big batch_size (e.g. >= 8) otherwise, GEMV is better (e.g. < 8 ) backend (`AwqBackendPackingMethod`, *optional*, defaults to `AwqBackendPackingMethod.AUTOAWQ`): The quantization backend. Some models might be quantized using `llm-awq` backend. This is useful for users that quantize their own models using `llm-awq` library. do_fuse (`bool`, *optional*, defaults to `False`): Whether to fuse attention and mlp layers together for faster inference fuse_max_seq_len (`int`, *optional*): The Maximum sequence length to generate when using fusing. modules_to_fuse (`dict`, *optional*, default to `None`): Overwrite the natively supported fusing scheme with the one specified by the users. modules_to_not_convert (`list`, *optional*, default to `None`): The list of modules to not quantize, useful for quantizing models that explicitly require to have some modules left in their original precision (e.g. Whisper encoder, Llava encoder, Mixtral gate layers). Note you cannot quantize directly with transformers, please refer to `AutoAWQ` documentation for quantizing HF models. """ def __init__( self, bits: int = 4, group_size: int = 128, zero_point: bool = True, version: AWQLinearVersion = AWQLinearVersion.GEMM, backend: AwqBackendPackingMethod = AwqBackendPackingMethod.AUTOAWQ, do_fuse: Optional[bool] = None, fuse_max_seq_len: Optional[int] = None, modules_to_fuse: Optional[dict] = None, modules_to_not_convert: Optional[List] = None, **kwargs, ): self.quant_method = QuantizationMethod.AWQ self.bits = bits self.group_size = group_size self.zero_point = zero_point self.version = version self.backend = backend self.fuse_max_seq_len = fuse_max_seq_len self.modules_to_not_convert = modules_to_not_convert self.modules_to_fuse = modules_to_fuse if do_fuse is None: self.do_fuse = modules_to_fuse is not None and len(modules_to_fuse) > 0 else: self.do_fuse = do_fuse self.fuse_max_seq_len = fuse_max_seq_len self.post_init() def post_init(self): r""" Safety checker that arguments are correct """ if not torch.cuda.is_available(): raise ValueError("AWQ is only available on GPU") if self.backend not in [AwqBackendPackingMethod.AUTOAWQ, AwqBackendPackingMethod.LLMAWQ]: raise ValueError( f"Only supported quantization backends in {AwqBackendPackingMethod.AUTOAWQ} and {AwqBackendPackingMethod.LLMAWQ} - not recognized backend {self.backend}" ) self.version = AWQLinearVersion.from_str(self.version) if self.version not in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV]: raise ValueError( f"Only supported versions are in [AWQLinearVersion.GEMM, AWQLinearVersion.GEMV] - not recognized version {self.version}" ) if self.backend == AwqBackendPackingMethod.LLMAWQ: compute_capability = torch.cuda.get_device_capability() major, minor = compute_capability if major < 8: raise ValueError("LLM-AWQ backend is only supported on GPUs with compute capability >= 8.0") if self.do_fuse and self.fuse_max_seq_len is None: raise ValueError( "You cannot enable fused modules without specifying a `fuse_max_seq_len`, make sure to pass a valid `fuse_max_seq_len` for your usecase" ) if self.do_fuse: awq_version_supports_fusing = False MIN_AWQ_VERSION = "0.1.7" if is_auto_awq_available(): awq_version_supports_fusing = version.parse(importlib.metadata.version("autoawq")) >= version.parse( MIN_AWQ_VERSION ) if not awq_version_supports_fusing: raise ValueError( f"You current version of `autoawq` does not support module fusing, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." ) if self.modules_to_not_convert is not None: awq_version_supports_non_conversion = False MIN_AWQ_VERSION = "0.1.8" if is_auto_awq_available(): awq_version_supports_non_conversion = version.parse( importlib.metadata.version("autoawq") ) >= version.parse(MIN_AWQ_VERSION) if not awq_version_supports_non_conversion: raise ValueError( f"You current version of `autoawq` does not support module quantization skipping, please upgrade `autoawq` package to at least {MIN_AWQ_VERSION}." ) if self.do_fuse and self.modules_to_fuse is not None: required_keys = [ "hidden_size", "num_attention_heads", "num_key_value_heads", "mlp", "attention", "layernorm", "use_alibi", ] if not all(key in self.modules_to_fuse for key in required_keys): raise ValueError( f"Required fields are missing in the fusing mapping, required fields are {required_keys}" ) def get_loading_attributes(self): attibutes_dict = copy.deepcopy(self.__dict__) loading_attibutes = ["do_fuse", "modules_to_fuse", "fuse_max_seq_len"] loading_attibutes_dict = {i: j for i, j in attibutes_dict.items() if i in loading_attibutes} return loading_attibutes_dict
transformers/src/transformers/utils/quantization_config.py/0
{ "file_path": "transformers/src/transformers/utils/quantization_config.py", "repo_id": "transformers", "token_count": 14501 }
385
# coding=utf-8 # Copyright 2022 {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 {{cookiecutter.modelname}} model. """ {% if cookiecutter.is_encoder_decoder_model == "False" %} import math from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...utils import ( DUMMY_INPUTS, MULTIPLE_CHOICE_DUMMY_INPUTS, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, ) from ...modeling_tf_outputs import ( TFBaseModelOutputWithPastAndCrossAttentions, TFCausalLMOutputWithCrossAttentions, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import logging from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}" _CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config" TF_{{cookiecutter.uppercase_modelname}}_PRETRAINED_MODEL_ARCHIVE_LIST = [ "{{cookiecutter.checkpoint_identifier}}", # See all {{cookiecutter.modelname}} models at https://huggingface.co/models?filter={{cookiecutter.lowercase_modelname}} ] # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Embeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.type_vocab_size = config.type_vocab_size self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.type_vocab_size, self.hidden_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) super().build(input_shape) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}SelfAttention(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.is_decoder = config.is_decoder def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) key_layer = tf.concat([past_key_value[0], key_layer], axis=2) value_layer = tf.concat([past_key_value[1], value_layer], axis=2) else: key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TF{{cookiecutter.camelcase_modelname}}Model call() function) attention_scores = tf.add(attention_scores, attention_mask) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}SelfOutput(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Attention(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.self_attention = TF{{cookiecutter.camelcase_modelname}}SelfAttention(config, name="self") self.dense_output = TF{{cookiecutter.camelcase_modelname}}SelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor, encoder_attention_mask: tf.Tensor, past_key_value: Tuple[tf.Tensor], output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) # add attentions (possibly with past_key_value) if we output them outputs = (attention_output,) + self_outputs[1:] return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Intermediate(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Output(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Layer(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.attention = TF{{cookiecutter.camelcase_modelname}}Attention(config, name="attention") self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = TF{{cookiecutter.camelcase_modelname}}Attention(config, name="crossattention") self.intermediate = TF{{cookiecutter.camelcase_modelname}}Intermediate(config, name="intermediate") self.bert_output = TF{{cookiecutter.camelcase_modelname}}Output(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_value: Tuple[tf.Tensor] | None, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=self_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers " "by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( input_tensor=attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, training=training, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + outputs # add attentions if we output them # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs # Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}Encoder(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.config = config self.layer = [TF{{cookiecutter.camelcase_modelname}}Layer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, head_mask: tf.Tensor, encoder_hidden_states: tf.Tensor | None, encoder_attention_mask: tf.Tensor | None, past_key_values: Tuple[Tuple[tf.Tensor]] | None, use_cache: Optional[bool], output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) past_key_value = past_key_values[i] if past_key_values is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_value=past_key_value, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if self.config.add_cross_attention and encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}PredictionHeadTransform(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(inputs=hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}LMPredictionHead(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.vocab_size = config.vocab_size self.hidden_size = config.hidden_size self.transform = TF{{cookiecutter.camelcase_modelname}}PredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape: tf.TensorShape): self.bias = self.add_weight(shape=(self.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states # Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->{{cookiecutter.camelcase_modelname}} class TF{{cookiecutter.camelcase_modelname}}MLMHead(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TF{{cookiecutter.camelcase_modelname}}LMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores @keras_serializable class TF{{cookiecutter.camelcase_modelname}}MainLayer(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.is_decoder = config.is_decoder self.embeddings = TF{{cookiecutter.camelcase_modelname}}Embeddings(config, name="embeddings") self.encoder = TF{{cookiecutter.camelcase_modelname}}Encoder(config, name="encoder") # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.get_input_embeddings def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer.set_input_embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] # Copied from transformers.models.bert.modeling_tf_bert.TFBertMainLayer._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: if not self.config.is_decoder: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape if past_key_values is None: past_key_values_length = 0 past_key_values = [None] * len(self.encoder.layer) else: past_key_values_length = shape_list(past_key_values[0][0])[-2] if attention_mask is None: attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, training=training, ) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask_shape = shape_list(attention_mask) mask_seq_length = seq_length + past_key_values_length # Copied from `modeling_tf_t5.py` # Provided a padding mask of dimensions [batch_size, mask_seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] if self.is_decoder: seq_ids = tf.range(mask_seq_length) causal_mask = tf.less_equal( tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)), seq_ids[None, :, None], ) causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype) extended_attention_mask = causal_mask * attention_mask[:, None, :] attention_mask_shape = shape_list(extended_attention_mask) extended_attention_mask = tf.reshape( extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2]) ) if past_key_values[0] is not None: # attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length] extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :] else: extended_attention_mask = tf.reshape( attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]) ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) one_cst = tf.constant(1.0, dtype=embedding_output.dtype) ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) # Copied from `modeling_tf_t5.py` with -1e9 -> -10000 if self.is_decoder and encoder_attention_mask is not None: # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length] # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] encoder_attention_mask = tf.cast( encoder_attention_mask, dtype=extended_attention_mask.dtype ) num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask)) if num_dims_encoder_attention_mask == 3: encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :] if num_dims_encoder_attention_mask == 2: encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask, # tf.transpose(encoder_extended_attention_mask, perm=(-1, -2))) encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0 else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return ( sequence_output, ) + encoder_outputs[1:] return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=sequence_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel): """An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = {{cookiecutter.camelcase_modelname}}Config base_model_prefix = "{{cookiecutter.lowercase_modelname}}" {{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with (subclassing)[https://keras.io/guides/making_new_layers_and_models_via_subclassing/] then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`~{{cookiecutter.camelcase_modelname}}Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ {{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare {{cookiecutter.modelname}} Model transformer outputing raw hidden-states without any specific head on top.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings("""{{cookiecutter.modelname}} Model with a `language modeling` head on top. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING) class TF{{cookiecutter.camelcase_modelname}}ForMaskedLM(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TF{{cookiecutter.camelcase_modelname}}ForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.mlm = TF{{cookiecutter.camelcase_modelname}}MLMHead(config, input_embeddings=self.{{cookiecutter.lowercase_modelname}}.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = ( None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) ) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a `language modeling` head on top for CLM fine-tuning. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING ) class TF{{cookiecutter.camelcase_modelname}}ForCausalLM(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFCausalLanguageModelingLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if not config.is_decoder: logger.warning("If you want to use `TF{{cookiecutter.camelcase_modelname}}ForCausalLM` as a standalone, add `is_decoder=True.`") self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.mlm = TF{{cookiecutter.camelcase_modelname}}MLMHead(config, input_embeddings=self.{{cookiecutter.lowercase_modelname}}.embeddings, name="mlm___cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions def prepare_inputs_for_generation(self, inputs, past_key_values=None, attention_mask=None, **model_kwargs): # cut decoder_input_ids if past is used if past_key_values: inputs = tf.expand_dims(inputs[:, -1], -1) return { "input_ids": inputs, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": model_kwargs["use_cache"], } @unpack_inputs @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutputWithCrossAttentions, Tuple[tf.Tensor]]: r""" encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is not None: # shift labels to the left and cut last logit token shifted_logits = logits[:, :-1] labels = labels[:, 1:] loss = self.hf_compute_loss(labels=labels, logits=shifted_logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class TF{{cookiecutter.camelcase_modelname}}ClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.out_proj = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) if isinstance(config.hidden_act, str): self.classifier_act_fn = get_tf_activation(config.hidden_act) else: self.classifier_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.dense(inputs=hidden_states) hidden_states = self.classifier_act_fn(hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = self.out_proj(hidden_states) return hidden_states @add_start_docstrings( """{{cookiecutter.modelname}} Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.classifier = TF{{cookiecutter.camelcase_modelname}}ClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.classifier(hidden_states=outputs[0], training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.sequence_summary = TFSequenceSummary( config, config.initializer_range, name="sequence_summary" ) self.classifier = keras.layers.Dense( units=1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = ( tf.reshape(tensor=input_ids, shape=(-1, seq_length)) if input_ids is not None else None ) flat_attention_mask = ( tf.reshape(tensor=attention_mask, shape=(-1, seq_length)) if attention_mask is not None else None ) flat_token_type_ids = ( tf.reshape(tensor=token_type_ids, shape=(-1, seq_length)) if token_type_ids is not None else None ) flat_position_ids = ( tf.reshape(tensor=position_ids, shape=(-1, seq_length)) if position_ids is not None else None ) flat_inputs_embeds = ( tf.reshape( tensor=inputs_embeds, shape=(-1, seq_length, shape_list(inputs_embeds)[3]) ) if inputs_embeds is not None else None ) outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, position_ids=flat_position_ids, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.sequence_summary(inputs=outputs[0], training=training) logits = self.classifier(inputs=logits) reshaped_logits = tf.reshape(tensor=logits, shape=(-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForTokenClassification(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(inputs=sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """{{cookiecutter.modelname}} Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.{{cookiecutter.lowercase_modelname}} = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="{{cookiecutter.lowercase_modelname}}") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.{{cookiecutter.lowercase_modelname}}( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) {% else %} import random from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( DUMMY_INPUTS, TFPreTrainedModel, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ContextManagers, logging from .configuration_{{cookiecutter.lowercase_modelname}} import {{cookiecutter.camelcase_modelname}}Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "{{cookiecutter.checkpoint_identifier}}" _CONFIG_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Config" _TOKENIZER_FOR_DOC = "{{cookiecutter.camelcase_modelname}}Tokenizer" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype)) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding(keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): super().__init__(num_embeddings, embedding_dim, **kwargs) def call(self, input_shape: tf.TensorShape, past_key_values_length: int = 0): """Input is expected to be of size [bsz x seqlen].""" seq_len = input_shape[1] position_ids = tf.range(seq_len, delta=1, name="range") position_ids += past_key_values_length return super().call(tf.cast(position_ids, dtype=tf.int32)) class TF{{cookiecutter.camelcase_modelname}}Attention(keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.scaling = self.head_dim ** -0.5 self.is_decoder = is_decoder self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {shape_list(attn_weights)}", ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}", ) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=f"Head mask for a single layer should be of size {(self.num_heads)}, but is {shape_list(layer_head_mask)}", ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {shape_list(attn_output)}", ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value class TF{{cookiecutter.camelcase_modelname}}EncoderLayer(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TF{{cookiecutter.camelcase_modelname}}Attention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call(self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training=False): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(encoder_attention_heads,)* """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights class TF{{cookiecutter.camelcase_modelname}}DecoderLayer(keras.layers.Layer): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TF{{cookiecutter.camelcase_modelname}}Attention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TF{{cookiecutter.camelcase_modelname}}Attention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* attention_mask (`tf.Tensor`): attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape *(batch, seq_len, embed_dim)* encoder_attention_mask (`tf.Tensor`): encoder attention mask of size *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size *(decoder_attention_heads,)* cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. *(decoder_attention_heads,)* past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TF{{cookiecutter.camelcase_modelname}}PreTrainedModel(TFPreTrainedModel): config_class = {{cookiecutter.camelcase_modelname}}Config base_model_prefix = "model" {{cookiecutter.uppercase_modelname}}_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with (subclassing)[https://keras.io/guides/making_new_layers_and_models_via_subclassing/] then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`~{{cookiecutter.camelcase_modelname}}Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ {{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) {{cookiecutter.camelcase_modelname}} uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TF{{cookiecutter.camelcase_modelname}}Encoder(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TF{{cookiecutter.camelcase_modelname}}EncoderLayer`]. Args: config: {{cookiecutter.camelcase_modelname}}Config """ def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TF{{cookiecutter.camelcase_modelname}}EncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=f"The head_mask should be specified for {len(self.layers)} layers, but it is for {shape_list(head_mask)[0]}.", ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TF{{cookiecutter.camelcase_modelname}}Decoder(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TF{{cookiecutter.camelcase_modelname}}DecoderLayer`] Args: config: {{cookiecutter.camelcase_modelname}}Config embed_tokens: output embedding """ def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TF{{cookiecutter.camelcase_modelname}}LearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TF{{cookiecutter.camelcase_modelname}}DecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.dropout = keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`~{{cookiecutter.camelcase_modelname}}Tokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = ( shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 ) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds attention_mask, combined_attention_mask = self.compute_combined_attns_mask( input_ids, attention_mask, input_shape, past_key_values_length ) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) hidden_states = self.layernorm_embedding(hidden_states + positions) hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for {shape_list(attn_mask)[0]}.", ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) @tf.function def compute_combined_attns_mask(self, input_ids, attention_mask, input_shape, past_key_values_length): # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is None and input_ids is not None and input_shape[-1] > 1: attention_mask = tf.cast( tf.math.not_equal(input_ids, self.config.pad_token_id), input_ids.dtype ) attention_mask = tf.concat( [ tf.ones((input_shape[0], past_key_values_length), dtype=attention_mask.dtype), attention_mask, ], axis=-1, ) else: attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length)) return attention_mask, combined_attention_mask @keras_serializable class TF{{cookiecutter.camelcase_modelname}}MainLayer(keras.layers.Layer): config_class = {{cookiecutter.camelcase_modelname}}Config def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, **kwargs): super().__init__(**kwargs) self.config = config self.shared = keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared" ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TF{{cookiecutter.camelcase_modelname}}Encoder(config, self.shared, name="encoder") self.decoder = TF{{cookiecutter.camelcase_modelname}}Decoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): if decoder_input_ids is None and decoder_inputs_embeds is None: use_cache = False if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): # The shared/tied weights expect to be in the model base namespace # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than # the current one. with tf.name_scope(self.shared.load_weight_prefix + '/' + self.shared.name + '/'): self.shared.build(None) @add_start_docstrings( "The bare {{cookiecutter.uppercase_modelname}} Model outputting raw hidden-states without any specific head on top.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}Model(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel): def __init__(self, config: {{cookiecutter.camelcase_modelname}}Config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer class BiasLayer(keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The {{cookiecutter.uppercase_modelname}} Model with a language modeling head. Can be used for summarization.", {{cookiecutter.uppercase_modelname}}_START_DOCSTRING, ) class TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration(TF{{cookiecutter.camelcase_modelname}}PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TF{{cookiecutter.camelcase_modelname}}MainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) @unpack_inputs @add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, labels=None, training=False, ): """ Returns: Examples: ```python >>> from transformers import {{cookiecutter.camelcase_modelname}}Tokenizer, TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration >>> import tensorflow as tf >>> mname = '{{cookiecutter.checkpoint_identifier}}' >>> tokenizer = {{cookiecutter.camelcase_modelname}}Tokenizer.from_pretrained(mname) >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration.from_pretrained(mname) >>> batch = tokenizer([TXT], return_tensors='tf') >>> logits = model(inputs=batch.input_ids).logits >>> probs = tf.nn.softmax(logits[0]) >>> # probs[5] is associated with the mask token ```""" if labels is not None: use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } def hf_compute_loss(self, labels, logits): """CrossEntropyLoss that ignores pad tokens""" loss_fn = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.NONE, ) melted_labels = tf.reshape(labels, (-1,)) active_loss = tf.not_equal(melted_labels, self.config.pad_token_id) reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) labels = tf.boolean_mask(melted_labels, active_loss) return loss_fn(labels, reduced_logits) {% endif -%}
transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py/0
{ "file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/modeling_tf_{{cookiecutter.lowercase_modelname}}.py", "repo_id": "transformers", "token_count": 57175 }
386
{ "modelname": "PTNewENCDEC", "uppercase_modelname": "PT_NEW_ENC_DEC", "lowercase_modelname": "pt_new_enc_dec_template", "camelcase_modelname": "PtNewEncDec", "authors": "The HuggingFace Team", "checkpoint_identifier": "pt-new-enc-dec-base", "tokenizer_type": "Based on BART", "generate_tensorflow_pytorch_and_flax": "PyTorch", "is_encoder_decoder_model": "True" }
transformers/templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json/0
{ "file_path": "transformers/templates/adding_a_new_model/tests/pt-seq-2-seq-bart-tokenizer.json", "repo_id": "transformers", "token_count": 158 }
387
{ "add_copied_from": true, "old_model_type": "distilbert", "new_model_patterns": { "model_name": "BERT New", "checkpoint": "huggingface/bert-new-base", "model_type": "bert-new", "model_lower_cased": "bert_new", "model_camel_cased": "BertNew", "model_upper_cased": "BERT_NEW", "config_class": "BertNewConfig", "tokenizer_class": "DistilBertTokenizer" }, "frameworks": [ "pt", "tf", "flax" ] }
transformers/tests/fixtures/add_distilbert_like_config.json/0
{ "file_path": "transformers/tests/fixtures/add_distilbert_like_config.json", "repo_id": "transformers", "token_count": 266 }
388
""" Framework agnostic tests for generate()-related methods. """ import numpy as np from transformers import AutoTokenizer from transformers.testing_utils import slow, torch_device class GenerationIntegrationTestsMixin: # To be populated by the child classes framework_dependent_parameters = { "AutoModelForCausalLM": None, "AutoModelForSpeechSeq2Seq": None, "AutoModelForSeq2SeqLM": None, "AutoModelForVision2Seq": None, "LogitsProcessorList": None, "MinLengthLogitsProcessor": None, "create_tensor_fn": None, "floats_tensor": None, "return_tensors": None, "set_seed": None, } def test_validate_generation_inputs(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-t5") encoder_input_str = "Hello world" input_ids = tokenizer(encoder_input_str, return_tensors=return_tensors).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(ValueError, "do_samples"): model.generate(input_ids, do_samples=True) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(ValueError, "foo"): fake_model_kwargs = {"foo": "bar"} model.generate(input_ids, **fake_model_kwargs) # however, valid model_kwargs are accepted valid_model_kwargs = {"attention_mask": create_tensor_fn(np.zeros_like(input_ids))} model.generate(input_ids, **valid_model_kwargs) def test_custom_logits_processor(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] logits_processor_list_cls = self.framework_dependent_parameters["LogitsProcessorList"] min_length_logits_processor_cls = self.framework_dependent_parameters["MinLengthLogitsProcessor"] return_tensors = self.framework_dependent_parameters["return_tensors"] bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", min_length=1) input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids logits_processor = logits_processor_list_cls() logits_processor.append(min_length_logits_processor_cls(min_length=10, eos_token_id=0)) # it should not be allowed to both define `min_length` via config and `logits_processor` list with self.assertRaises(ValueError): bart_model.generate(input_ids, logits_processor=logits_processor) bart_model.config.min_length = None bart_model.generate(input_ids, logits_processor=logits_processor) def test_max_new_tokens_encoder_decoder(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart") input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: bart_model = bart_model.to(torch_device) input_ids = input_ids.to(torch_device) self.assertEqual(list(input_ids.shape), [1, 29]) max_new_tokens = 3 bart_model.config.max_length = 20 bart_model.config.eos_token_id = None # Encoder decoder call outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens) # 1 BOS + 3 new tokens self.assertEqual(list(outputs.shape), [1, 4]) # Decoder only call outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens) # 1 BOS + 29 (input length) + 3 new tokens self.assertEqual(list(outputs.shape), [1, 33]) # Encoder decoder call > 20 outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20) # 1 BOS + 20 + 3 new tokens self.assertEqual(list(outputs.shape), [1, 24]) def test_max_new_tokens_decoder_only(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """Justin Timberlake.""" gpt2_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") gpt2_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") input_ids = gpt2_tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: gpt2_model = gpt2_model.to(torch_device) input_ids = input_ids.to(torch_device) self.assertEqual(list(input_ids.shape), [1, 9]) max_new_tokens = 3 gpt2_model.config.max_length = 20 # call < 20 outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens) # 9 input_ids + 3 new tokens self.assertEqual(list(outputs.shape), [1, 12]) # call > 20 outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20) # 1 BOS token + 23 new tokens self.assertEqual(list(outputs.shape), [1, 24]) def test_encoder_decoder_generate_with_inputs_embeds(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) model.config.eos_token_id = None input_ids = tokenizer(article, return_tensors=return_tensors).input_ids inputs_embeds = model.get_input_embeddings()(input_ids) output_sequences = model.generate(inputs_embeds=inputs_embeds) # make sure model generated correctly until `max_length` self.assertEqual(output_sequences.shape, (1, 5)) def test_transition_scores_greedy_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = ["Justin Timberlake", "Michael Phelps"] tokenizer = AutoTokenizer.from_pretrained("distilgpt2", padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = model_cls.from_pretrained("distilgpt2") input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_new_tokens=5, pad_token_id=tokenizer.eos_token_id, eos_token_id=None, return_dict_in_generate=True, output_scores=True, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores) if is_pt: transition_scores = transition_scores.cpu().numpy() expected_scores = np.array( [ [-57.8844, -60.45698, -70.16364, -65.50791, -66.35648], [-54.417572, -60.216614, -62.661243, -58.621933, -58.298683], ] ) self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) def test_transition_scores_greedy_search_normalized(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = ["Justin Timberlake", "Michael Phelps"] tokenizer = AutoTokenizer.from_pretrained("distilgpt2", padding_side="left") tokenizer.pad_token = tokenizer.eos_token model = model_cls.from_pretrained("distilgpt2") input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids=input_ids, max_new_tokens=5, pad_token_id=tokenizer.eos_token_id, eos_token_id=None, return_dict_in_generate=True, output_scores=True, ) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) if is_pt: transition_scores = transition_scores.cpu().numpy() expected_scores = np.array( [ [-2.538938, -2.2694316, -2.1580915, -1.572299, -2.6719835], [-1.8826028, -2.2461371, -1.7556462, -2.9644494, -1.7996008], ] ) self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) def test_transition_scores_beam_search_encoder_decoder(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=10, num_beams=4, num_return_sequences=2, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_search_encoder_decoder_with_eos(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=10, num_beams=4, num_return_sequences=2, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_search_decoder_only(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake", "Michael Phelps", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") tokenizer.pad_token = tokenizer.eos_token model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-gpt2", max_length=10, num_beams=4, num_return_sequences=2, pad_token_id=tokenizer.eos_token_id, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) def test_transition_scores_beam_sample_encoder_decoder(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = [ "Justin Timberlake and Jessica Biel, welcome to parenthood.", "Michael Phelps is arguably the most decorated Olympian of all time.", ] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", do_sample=True, max_length=10, num_beams=4, num_return_sequences=2, eos_token_id=None, return_dict_in_generate=True, output_scores=True, length_penalty=0.0, ) input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate(input_ids=input_ids) transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) @slow def test_transition_scores_early_stopping(self): # This is an aggressive test that makes sure that `beam_search's` # transition scores are computed correctly for varying `num_return_sequences`, `num_beams` and `batch_size > 1` # 2 x input_ids for "question: How are you? \n context: I had a long day, " model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] is_pt = not model_cls.__name__.startswith("TF") input_ids = create_tensor_fn(2 * [[822, 10, 571, 33, 25, 58, 2625, 10, 27, 141, 3, 9, 307, 239, 6, 1]]) model = model_cls.from_pretrained("t5-small") if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) outputs = model.generate( input_ids, max_length=10, return_dict_in_generate=True, output_scores=True, forced_eos_token_id=model.config.eos_token_id, num_beams=4, do_sample=False, num_return_sequences=3, length_penalty=0.0, ) transition_scores = model.compute_transition_scores( sequences=outputs.sequences, scores=outputs.scores, beam_indices=outputs.beam_indices ) if is_pt: transition_scores = transition_scores.cpu().numpy() outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores)) def test_encoder_decoder_generate_attention_mask(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"] tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") # need extreme generation values here to force this test # to fail when `attention_mask` is not correctly treated in generate model = model_cls.from_pretrained( "hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5 ) model.config.eos_token_id = None input_ids = tokenizer(articles[0], return_tensors=return_tensors).input_ids input_ids_batched = tokenizer(articles, padding=True, return_tensors=return_tensors).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) input_ids_batched = input_ids_batched.to(torch_device) output_sequences_batched = model.generate( input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True ) output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True) batched_out = output_sequences_batched.sequences_scores out = output_sequences.sequences_scores if is_pt: batched_out = batched_out.cpu().numpy() out = out.cpu().numpy() diff = np.abs(np.sum(batched_out[:5]) - np.sum(out)) self.assertTrue(diff < 1e-4) def test_generate_input_ids_as_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """I need input_ids to generate""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15) input_ids = tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) output_sequences_kwargs = model.generate(input_ids=input_ids) output_sequences = model.generate(input_ids) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (1, 15)) def test_generate_input_ids_as_encoder_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) model.config.eos_token_id = None input_ids = tokenizer(article, return_tensors=return_tensors).input_ids if is_pt: model = model.to(torch_device) input_ids = input_ids.to(torch_device) output_sequences_kwargs = model.generate(input_ids=input_ids) output_sequences = model.generate(input_ids) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (1, 5)) def test_generate_inputs_and_encoder_kwargs(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] article = """I need input_ids to generate""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10) input_ids = tokenizer(article, return_tensors=return_tensors).input_ids with self.assertRaises(ValueError): model.generate(input_ids, input_ids=input_ids) def test_generate_too_many_encoder_kwargs(self): model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] article = """I need input_ids to generate""" tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=10) input_ids = tokenizer(article, return_tensors=return_tensors).input_ids with self.assertRaises(ValueError): model.generate(input_ids=input_ids, inputs_embeds=input_ids) def test_generate_input_features_as_encoder_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] is_pt = not model_cls.__name__.startswith("TF") input_features = floats_tensor((3, 80, 60)) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") if is_pt: input_features.to(torch_device) model = model.to(torch_device) output_sequences_kwargs = model.generate(input_features=input_features, max_length=5) output_sequences = model.generate(input_features, max_length=5) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (3, 5)) def test_generate_pixel_values_as_encoder_kwarg(self): model_cls = self.framework_dependent_parameters["AutoModelForVision2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] is_pt = not model_cls.__name__.startswith("TF") pixel_values = floats_tensor((2, 3, 30, 30)) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2") model.generation_config.eos_token_id = None if is_pt: pixel_values = pixel_values.to(torch_device) model = model.to(torch_device) output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5) output_sequences = model.generate(pixel_values, max_length=5) if is_pt: output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() output_sequences = output_sequences.cpu().numpy() self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) self.assertEqual(output_sequences.shape, (2, 5)) def test_generate_encoder_outputs_attention_mask(self): model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] is_pt = not model_cls.__name__.startswith("TF") input_features = floats_tensor((3, 80, 60)) attention_mask = create_tensor_fn(np.ones(input_features.shape)) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") if is_pt: input_features = input_features.to(torch_device) attention_mask = attention_mask.to(torch_device) model = model.to(torch_device) encoder = model.get_encoder() encoder_outputs = encoder(input_features) output_sequences_no_mask = model.generate(encoder_outputs=encoder_outputs) output_sequences_with_mask = model.generate(encoder_outputs=encoder_outputs, attention_mask=attention_mask) if is_pt: output_sequences_no_mask = output_sequences_no_mask.cpu().numpy() output_sequences_with_mask = output_sequences_with_mask.cpu().numpy() self.assertTrue(np.array_equal(output_sequences_no_mask, output_sequences_with_mask)) def test_eos_token_id_int_and_list_greedy_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") generation_kwargs = { "do_sample": False, "num_beams": 1, } expectation = 13 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors=return_tensors) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") if is_pt: model = model.to(torch_device) tokens = tokens.to(torch_device) eos_token_id = 873 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) eos_token_id = [873, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_eos_token_id_int_and_list_contrastive_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") generation_kwargs = { "do_sample": False, "num_beams": 1, "penalty_alpha": 0.6, "top_k": 4, } expectation = 17 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors=return_tensors) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") if is_pt: model = model.to(torch_device) tokens = tokens.to(torch_device) eos_token_id = 225 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) eos_token_id = [225, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) self.assertTrue(expectation == len(generated_tokens[0])) def test_eos_token_id_int_and_list_beam_search(self): model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] return_tensors = self.framework_dependent_parameters["return_tensors"] is_pt = not model_cls.__name__.startswith("TF") generation_kwargs = { "do_sample": False, "num_beams": 3, } expectation = 13 tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") text = """Hello, my dog is cute and""" tokens = tokenizer(text, return_tensors=return_tensors) model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") if is_pt: model = model.to(torch_device) tokens = tokens.to(torch_device) eos_token_id = 873 generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) unpadded_correct_condition = expectation == len(generated_tokens[0]) padded_correct_condition = expectation < len(generated_tokens[0]) and all( token == model.config.pad_token_id for token in generated_tokens[0][expectation:] ) self.assertTrue(unpadded_correct_condition or padded_correct_condition) eos_token_id = [873, 198] generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) unpadded_correct_condition = expectation == len(generated_tokens[0]) padded_correct_condition = expectation < len(generated_tokens[0]) and all( token == model.config.pad_token_id for token in generated_tokens[0][expectation:] ) self.assertTrue(unpadded_correct_condition or padded_correct_condition) def test_generate_vision2text_conditioning(self): model_cls = self.framework_dependent_parameters["AutoModelForVision2Seq"] floats_tensor = self.framework_dependent_parameters["floats_tensor"] create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] is_pt = not model_cls.__name__.startswith("TF") pixel_values = floats_tensor((2, 3, 30, 30)) conditioning_input = create_tensor_fn([[10], [10]]) # this should be the 2nd output token, after the BOS token model = model_cls.from_pretrained("hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2") if is_pt: pixel_values = pixel_values.to(torch_device) model = model.to(torch_device) conditioning_input = conditioning_input.to(torch_device) # we can condition on decoder_input_ids (expected decoder input) and input_ids (which we pipe internally as # decoder_input_ids, if the encoder is not a model with text input) output_sequences_decoder_input_ids = model.generate( pixel_values, max_length=5, decoder_input_ids=conditioning_input ) output_sequences_input_ids = model.generate(pixel_values, max_length=5, input_ids=conditioning_input) if is_pt: output_sequences_decoder_input_ids = output_sequences_decoder_input_ids.cpu().numpy() output_sequences_input_ids = output_sequences_input_ids.cpu().numpy() conditioning_input = conditioning_input.cpu().numpy() self.assertTrue(np.array_equal(output_sequences_decoder_input_ids, output_sequences_input_ids)) self.assertTrue(np.array_equal(output_sequences_decoder_input_ids[:, 1:2], conditioning_input))
transformers/tests/generation/test_framework_agnostic.py/0
{ "file_path": "transformers/tests/generation/test_framework_agnostic.py", "repo_id": "transformers", "token_count": 14154 }
389
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Autoformer model. """ import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin TOLERANCE = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class AutoformerModelTester: def __init__( self, parent, d_model=16, batch_size=13, prediction_length=7, context_length=14, label_length=10, cardinality=19, embedding_dimension=5, num_time_features=4, is_training=True, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, lags_sequence=[1, 2, 3, 4, 5], moving_average=25, autocorrelation_factor=5, ): self.d_model = d_model self.parent = parent self.batch_size = batch_size self.prediction_length = prediction_length self.context_length = context_length self.cardinality = cardinality self.num_time_features = num_time_features self.lags_sequence = lags_sequence self.embedding_dimension = embedding_dimension self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_seq_length = context_length self.decoder_seq_length = prediction_length + label_length self.label_length = label_length self.moving_average = moving_average self.autocorrelation_factor = autocorrelation_factor def get_config(self): return AutoformerConfig( d_model=self.d_model, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, prediction_length=self.prediction_length, context_length=self.context_length, label_length=self.label_length, lags_sequence=self.lags_sequence, num_time_features=self.num_time_features, num_static_categorical_features=1, cardinality=[self.cardinality], embedding_dimension=[self.embedding_dimension], moving_average=self.moving_average, ) def prepare_autoformer_inputs_dict(self, config): _past_length = config.context_length + max(config.lags_sequence) static_categorical_features = ids_tensor([self.batch_size, 1], config.cardinality[0]) past_time_features = floats_tensor([self.batch_size, _past_length, config.num_time_features]) past_values = floats_tensor([self.batch_size, _past_length]) past_observed_mask = floats_tensor([self.batch_size, _past_length]) > 0.5 # decoder inputs future_time_features = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features]) future_values = floats_tensor([self.batch_size, config.prediction_length]) inputs_dict = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def prepare_config_and_inputs(self): config = self.get_config() inputs_dict = self.prepare_autoformer_inputs_dict(config) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = AutoformerModel(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = AutoformerEncoder.from_pretrained(tmpdirname).to(torch_device) transformer_inputs, feature, _, _, _ = model.create_network_inputs(**inputs_dict) seasonal_input, trend_input = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...]) enc_input = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]), dim=-1, ) encoder_last_hidden_state_2 = encoder(inputs_embeds=enc_input)[0] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) mean = ( torch.mean(transformer_inputs[:, : config.context_length, ...], dim=1) .unsqueeze(1) .repeat(1, config.prediction_length, 1) ) zeros = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]], device=enc_input.device, ) dec_input = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) trend_init = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean), dim=1), feature[:, config.context_length - config.label_length :, ...], ), dim=-1, ) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = AutoformerDecoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( trend=trend_init, inputs_embeds=dec_input, encoder_hidden_states=encoder_last_hidden_state, )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class AutoformerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () all_generative_model_classes = (AutoformerForPrediction,) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": AutoformerModel} if is_torch_available() else {} test_pruning = False test_head_masking = False test_missing_keys = False test_torchscript = False test_inputs_embeds = False test_model_common_attributes = False def setUp(self): self.model_tester = AutoformerModelTester(self) self.config_tester = ConfigTester(self, config_class=AutoformerConfig, has_text_modality=False) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) @unittest.skip(reason="Model has no tokens embeddings") def test_resize_tokens_embeddings(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass # # Input is 'static_categorical_features' not 'input_ids' def test_model_main_input_name(self): model_signature = inspect.signature(getattr(AutoformerModel, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(AutoformerModel.main_input_name, observed_main_input_name) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask") expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) d_model = getattr(self.model_tester, "d_model", None) num_attention_heads = getattr(self.model_tester, "num_attention_heads", None) dim = d_model // num_attention_heads for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) out_len = len(outputs) correct_outlen = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, dim], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 2, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, dim], ) @is_flaky() def test_retain_grad_hidden_states_attentions(self): super().test_retain_grad_hidden_states_attentions() def prepare_batch(filename="train-batch.pt"): file = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch", filename=filename, repo_type="dataset") batch = torch.load(file, map_location=torch_device) return batch @require_torch @slow class AutoformerModelIntegrationTests(unittest.TestCase): def test_inference_no_head(self): model = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly").to(torch_device) batch = prepare_batch() with torch.no_grad(): output = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], future_values=batch["future_values"], future_time_features=batch["future_time_features"], )[0] expected_shape = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]], device=torch_device ) self.assertTrue(torch.allclose(output[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(torch_device) batch = prepare_batch("val-batch.pt") with torch.no_grad(): output = model( past_values=batch["past_values"], past_time_features=batch["past_time_features"], past_observed_mask=batch["past_observed_mask"], static_categorical_features=batch["static_categorical_features"], ).encoder_last_hidden_state expected_shape = torch.Size((64, model.config.context_length, model.config.d_model)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]], device=torch_device ) self.assertTrue(torch.allclose(output[0, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly").to(torch_device) batch = prepare_batch("val-batch.pt") with torch.no_grad(): outputs = model.generate( static_categorical_features=batch["static_categorical_features"], past_time_features=batch["past_time_features"], past_values=batch["past_values"], future_time_features=batch["future_time_features"], past_observed_mask=batch["past_observed_mask"], ) expected_shape = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length)) self.assertEqual(outputs.sequences.shape, expected_shape) expected_slice = torch.tensor([3130.6763, 4056.5293, 7053.0786], device=torch_device) mean_prediction = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -3:], expected_slice, rtol=1e-1))
transformers/tests/models/autoformer/test_modeling_autoformer.py/0
{ "file_path": "transformers/tests/models/autoformer/test_modeling_autoformer.py", "repo_id": "transformers", "token_count": 8817 }
390
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class FlaxBeitModelTester(unittest.TestCase): def __init__( self, parent, vocab_size=100, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, ): self.parent = parent self.vocab_size = vocab_size self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = num_patches + 1 def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = BeitConfig( vocab_size=self.vocab_size, image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, ) return config, pixel_values, labels def create_and_check_model(self, config, pixel_values, labels): model = FlaxBeitModel(config=config) result = model(pixel_values) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm(self, config, pixel_values, labels): model = FlaxBeitForMaskedImageModeling(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length - 1, self.vocab_size)) def create_and_check_for_image_classification(self, config, pixel_values, labels): config.num_labels = self.type_sequence_label_size model = FlaxBeitForImageClassification(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images config.num_channels = 1 model = FlaxBeitForImageClassification(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, pixel_values, labels, ) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxBeitModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def setUp(self) -> None: self.model_tester = FlaxBeitModelTester(self) self.config_tester = ConfigTester(self, config_class=BeitConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() # We need to override this test because Beit's forward signature is different than text models. def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) # We need to override this test because Beit expects pixel_values instead of input_ids def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("microsoft/beit-base-patch16-224") outputs = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(outputs) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_vision @require_flax class FlaxBeitModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224") if is_vision_available() else None @slow def test_inference_masked_image_modeling_head(self): model = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k") image_processor = self.default_image_processor image = prepare_img() pixel_values = image_processor(images=image, return_tensors="np").pixel_values # prepare bool_masked_pos bool_masked_pos = np.ones((1, 196), dtype=bool) # forward pass outputs = model(pixel_values=pixel_values, bool_masked_pos=bool_masked_pos) logits = outputs.logits # verify the logits expected_shape = (1, 196, 8192) self.assertEqual(logits.shape, expected_shape) expected_slice = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3], expected_slice, atol=1e-2)) @slow def test_inference_image_classification_head_imagenet_1k(self): model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="np") # forward pass outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = (1, 1000) self.assertEqual(logits.shape, expected_shape) expected_slice = np.array([-1.2385, -1.0987, -1.0108]) self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_class_idx = 281 self.assertEqual(logits.argmax(-1).item(), expected_class_idx) @slow def test_inference_image_classification_head_imagenet_22k(self): model = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="np") # forward pass outputs = model(**inputs) logits = outputs.logits # verify the logits expected_shape = (1, 21841) self.assertEqual(logits.shape, expected_shape) expected_slice = np.array([1.6881, -0.2787, 0.5901]) self.assertTrue(np.allclose(logits[0, :3], expected_slice, atol=1e-4)) expected_class_idx = 2396 self.assertEqual(logits.argmax(-1).item(), expected_class_idx)
transformers/tests/models/beit/test_modeling_flax_beit.py/0
{ "file_path": "transformers/tests/models/beit/test_modeling_flax_beit.py", "repo_id": "transformers", "token_count": 4819 }
391
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class FlaxBigBirdModelTester(unittest.TestCase): def __init__( self, parent, batch_size=2, seq_length=56, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=2, intermediate_size=7, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, attention_type="block_sparse", use_bias=True, rescale_embeddings=False, block_size=2, num_random_blocks=3, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices self.rescale_embeddings = rescale_embeddings self.attention_type = attention_type self.use_bias = use_bias self.block_size = block_size self.num_random_blocks = num_random_blocks def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = BigBirdConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, attention_type=self.attention_type, block_size=self.block_size, num_random_blocks=self.num_random_blocks, use_bias=self.use_bias, rescale_embeddings=self.rescale_embeddings, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class FlaxBigBirdModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) test_attn_probs = False test_mismatched_shapes = False def setUp(self): self.model_tester = FlaxBigBirdModelTester(self) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_from_pretrained_save_pretrained(self): super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_from_pretrained_with_no_automatic_init(self): super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_no_automatic_init(self): super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_hidden_states_output(self): super().test_hidden_states_output() @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("google/bigbird-roberta-base") self.assertIsNotNone(model) def test_attention_outputs(self): if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(input_ids, attention_mask=None, **kwargs): return model(input_ids=input_ids, attention_mask=attention_mask, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) # overwrite from common in order to skip the check on `attentions` def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith("outputs.attentions"): return else: super().check_pt_flax_outputs(fx_outputs, pt_outputs, model_class, tol, name, attributes)
transformers/tests/models/big_bird/test_modeling_flax_big_bird.py/0
{ "file_path": "transformers/tests/models/big_bird/test_modeling_flax_big_bird.py", "repo_id": "transformers", "token_count": 3793 }
392
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def prepare_blenderbot_inputs_dict( config, input_ids, decoder_input_ids=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = np.where(input_ids != config.pad_token_id, 1, 0) if decoder_attention_mask is None: decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0) if head_mask is None: head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class FlaxBlenderbotSmallModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=50, eos_token_id=2, pad_token_id=1, bos_token_id=0, initializer_range=0.02, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id self.initializer_range = initializer_range def prepare_config_and_inputs(self): input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size) input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1) decoder_input_ids = shift_tokens_right(input_ids, 1, 2) config = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=False, ) inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def check_use_cache_forward(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4") decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, decoder_attention_mask=decoder_attention_mask, past_key_values=outputs_cache.past_key_values, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(inputs_dict["input_ids"]) decoder_input_ids, decoder_attention_mask = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) decoder_attention_mask_cache = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask_cache, past_key_values=past_key_values, decoder_position_ids=decoder_position_ids, ) decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4") outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=decoder_attention_mask_cache, decoder_position_ids=decoder_position_ids, ) outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") @require_flax class BlenderbotHeadTests(unittest.TestCase): vocab_size = 99 def _get_config_and_data(self): input_ids = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.int64, ) batch_size = input_ids.shape[0] config = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size # @timeout_decorator.timeout(1) # not working with the decorator so far def test_lm_forward(self): config, input_ids, batch_size = self._get_config_and_data() lm_model = FlaxBlenderbotSmallForConditionalGeneration(config) outputs = lm_model(input_ids=input_ids) expected_shape = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_lm_uneven_forward(self): config = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) lm_model = FlaxBlenderbotSmallForConditionalGeneration(config) context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64) summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64) outputs = lm_model(input_ids=context, decoder_input_ids=summary) expected_shape = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape, expected_shape) def test_shift_tokens_right(self): input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64) shifted = shift_tokens_right(input_ids, 1, 2) n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum() n_pad_after = np.equal(shifted, 1).astype(np.float32).sum() self.assertEqual(shifted.shape, input_ids.shape) self.assertEqual(n_pad_after, n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0], 2).all()) @require_flax class FlaxBlenderbotSmallModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin): is_encoder_decoder = True all_model_classes = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) all_generative_model_classes = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): return pipeline_test_casse_name in ("TextGenerationPipelineTests", "ConversationalPipelineTests") def setUp(self): self.model_tester = FlaxBlenderbotSmallModelTester(self) def test_use_cache_forward(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(model_class, config, inputs_dict) def test_use_cache_forward_with_attn_mask(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict) def test_encode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def encode_jitted(input_ids, attention_mask=None, **kwargs): return model.encode(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = encode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_decode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): model = model_class(config) encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) prepared_inputs_dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs): return model.decode( decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, ) with self.subTest("JIT Enabled"): jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = decode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("facebook/blenderbot_small-90M") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids input_ids = np.ones((1, 1)) * model.config.eos_token_id outputs = model(input_ids) self.assertIsNotNone(outputs)
transformers/tests/models/blenderbot_small/test_modeling_flax_blenderbot_small.py/0
{ "file_path": "transformers/tests/models/blenderbot_small/test_modeling_flax_blenderbot_small.py", "repo_id": "transformers", "token_count": 7922 }
393
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_jinja, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class BloomTokenizationTest(TokenizerTesterMixin, unittest.TestCase): slow_tokenizer_class = None rust_tokenizer_class = BloomTokenizerFast tokenizer_class = BloomTokenizerFast test_rust_tokenizer = True test_slow_tokenizer = False from_pretrained_vocab_key = "tokenizer_file" special_tokens_map = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def setUp(self): super().setUp() tokenizer = BloomTokenizerFast.from_pretrained("bigscience/tokenizer") tokenizer.save_pretrained(self.tmpdirname) def get_rust_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) @unittest.skip("This needs a slow tokenizer. Bloom does not have one!") def test_encode_decode_with_spaces(self): return def test_encodings_from_sample_data(self): """ Assert that the created tokens are the same than the hard-coded ones """ tokenizer = self.get_rust_tokenizer() INPUT_SENTENCES = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] TARGET_TOKENS = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] computed_tokens = tokenizer.batch_encode_plus(INPUT_SENTENCES)["input_ids"] self.assertListEqual(TARGET_TOKENS, computed_tokens) decoded_tokens = tokenizer.batch_decode(computed_tokens) self.assertListEqual(decoded_tokens, INPUT_SENTENCES) def test_padding(self, max_length=6): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input s = "This is a simple input" s2 = ["This is a simple input 1", "This is a simple input 2"] p = ("This is a simple input", "This is a pair") p2 = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(s, max_length=max_length) tokenizer_r.encode_plus(s, max_length=max_length) tokenizer_r.batch_encode_plus(s2, max_length=max_length) tokenizer_r.encode(p, max_length=max_length) tokenizer_r.batch_encode_plus(p2, max_length=max_length) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding") tokenizer_r.pad_token = None # Hotfixing padding = None self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length") # Simple input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, s2, max_length=max_length, padding="max_length", ) # Pair input self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length") # Pair input self.assertRaises( ValueError, tokenizer_r.batch_encode_plus, p2, max_length=max_length, padding="max_length", ) def test_encodings_from_xnli_dataset(self): """ Tests the tokenizer downloaded from here: - https://huggingface.co/bigscience/tokenizer/ """ tokenizer = self.get_rust_tokenizer() ds = load_dataset("xnli", "all_languages", split="test", streaming=True) sample_data = next(iter(ds))["premise"] # pick up one data input_text = list(sample_data.values()) output_tokens = list(map(tokenizer.encode, input_text)) predicted_text = [tokenizer.decode(x, clean_up_tokenization_spaces=False) for x in output_tokens] self.assertListEqual(predicted_text, input_text) def test_pretrained_model_lists(self): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1) @require_jinja def test_tokenization_for_chat(self): tokenizer = self.get_rust_tokenizer() test_chats = [ [{"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}], [ {"role": "system", "content": "You are a helpful chatbot."}, {"role": "user", "content": "Hello!"}, {"role": "assistant", "content": "Nice to meet you."}, ], [{"role": "assistant", "content": "Nice to meet you."}, {"role": "user", "content": "Hello!"}], ] tokenized_chats = [tokenizer.apply_chat_template(test_chat) for test_chat in test_chats] expected_tokens = [ [5448, 1306, 267, 66799, 44799, 37143, 17, 2, 59414, 4, 2], [5448, 1306, 267, 66799, 44799, 37143, 17, 2, 59414, 4, 2, 229126, 427, 11890, 1152, 17, 2], [229126, 427, 11890, 1152, 17, 2, 59414, 4, 2], ] for tokenized_chat, expected_tokens in zip(tokenized_chats, expected_tokens): self.assertListEqual(tokenized_chat, expected_tokens) def test_add_prefix_space_fast(self): tokenizer_w_prefix = self.get_rust_tokenizer(add_prefix_space=True) tokenizer_wo_prefix = self.get_rust_tokenizer(add_prefix_space=False) tokens_w_prefix = tokenizer_w_prefix.tokenize("Hey") tokens_wo_prefix = tokenizer_wo_prefix.tokenize("Hey") self.assertNotEqual(tokens_w_prefix, tokens_wo_prefix)
transformers/tests/models/bloom/test_tokenization_bloom.py/0
{ "file_path": "transformers/tests/models/bloom/test_tokenization_bloom.py", "repo_id": "transformers", "token_count": 3390 }
394
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import ChineseCLIPImageProcessor if is_torch_available(): pass class ChineseCLIPImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, do_normalize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], do_convert_rgb=True, ): size = size if size is not None else {"height": 224, "width": 224} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_convert_rgb = do_convert_rgb def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def expected_output_image_shape(self, images): return 3, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class ChineseCLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ChineseCLIPImageProcessingTester(self, do_center_crop=True) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) @unittest.skip("ChineseCLIPImageProcessor doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy def test_call_numpy_4_channels(self): pass @require_torch @require_vision class ChineseCLIPImageProcessingTestFourChannels(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = ChineseCLIPImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = ChineseCLIPImageProcessingTester(self, num_channels=4, do_center_crop=True) self.expected_encoded_image_num_channels = 3 @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_convert_rgb")) @unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_numpy(self): return super().test_call_numpy() @unittest.skip("ChineseCLIPImageProcessor does not support 4 channels yet") # FIXME Amy def test_call_pytorch(self): return super().test_call_torch() @unittest.skip("ChineseCLIPImageProcessor doesn't treat 4 channel PIL and numpy consistently yet") # FIXME Amy def test_call_numpy_4_channels(self): pass
transformers/tests/models/chinese_clip/test_image_processing_chinese_clip.py/0
{ "file_path": "transformers/tests/models/chinese_clip/test_image_processing_chinese_clip.py", "repo_id": "transformers", "token_count": 2634 }
395
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class CLIPSegProcessorTest(unittest.TestCase): def setUp(self): self.tmpdirname = tempfile.mkdtemp() vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: skip vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) image_processor_map = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME) with open(self.image_processor_file, "w", encoding="utf-8") as fp: json.dump(image_processor_map, fp) def get_tokenizer(self, **kwargs): return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_rust_tokenizer(self, **kwargs): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs) def get_image_processor(self, **kwargs): return ViTImageProcessor.from_pretrained(self.tmpdirname, **kwargs) def tearDown(self): shutil.rmtree(self.tmpdirname) def prepare_image_inputs(self): """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, or a list of PyTorch tensors if one specifies torchify=True.""" image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)] image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs] return image_inputs def test_save_load_pretrained_default(self): tokenizer_slow = self.get_tokenizer() tokenizer_fast = self.get_rust_tokenizer() image_processor = self.get_image_processor() processor_slow = CLIPSegProcessor(tokenizer=tokenizer_slow, image_processor=image_processor) processor_slow.save_pretrained(self.tmpdirname) processor_slow = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=False) processor_fast = CLIPSegProcessor(tokenizer=tokenizer_fast, image_processor=image_processor) processor_fast.save_pretrained(self.tmpdirname) processor_fast = CLIPSegProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer) self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor, ViTImageProcessor) self.assertIsInstance(processor_fast.image_processor, ViTImageProcessor) def test_save_load_pretrained_additional_features(self): processor = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)") image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0) processor = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor, ViTImageProcessor) def test_image_processor(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() input_feat_extract = image_processor(image_input, return_tensors="np") input_processor = processor(images=image_input, return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2) def test_tokenizer(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" encoded_processor = processor(text=input_str) encoded_tok = tokenizer(input_str) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key]) def test_processor_text(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) input_str = "lower newer" image_input = self.prepare_image_inputs() inputs = processor(text=input_str, images=image_input) self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_processor_visual_prompt(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) image_input = self.prepare_image_inputs() visual_prompt_input = self.prepare_image_inputs() inputs = processor(images=image_input, visual_prompt=visual_prompt_input) self.assertListEqual(list(inputs.keys()), ["pixel_values", "conditional_pixel_values"]) # test if it raises when no input is passed with pytest.raises(ValueError): processor() def test_tokenizer_decode(self): image_processor = self.get_image_processor() tokenizer = self.get_tokenizer() processor = CLIPSegProcessor(tokenizer=tokenizer, image_processor=image_processor) predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] decoded_processor = processor.batch_decode(predicted_ids) decoded_tok = tokenizer.batch_decode(predicted_ids) self.assertListEqual(decoded_tok, decoded_processor)
transformers/tests/models/clipseg/test_processor_clipseg.py/0
{ "file_path": "transformers/tests/models/clipseg/test_processor_clipseg.py", "repo_id": "transformers", "token_count": 3413 }
396
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) from transformers.modeling_tf_utils import keras class TFConvBertModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 384 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.embedding_size = 128 self.head_ratio = 2 self.conv_kernel_size = 9 self.num_groups = 1 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=True, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertForMaskedLM(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFConvBertForSequenceClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = TFConvBertForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = TFConvBertForTokenClassification(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = TFConvBertForQuestionAnswering(config=config) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFConvBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) pipeline_model_mapping = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) test_pruning = False test_head_masking = False test_onnx = False def setUp(self): self.model_tester = TFConvBertModelTester(self) self.config_tester = ConfigTester(self, config_class=ConvBertConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_saved_model_creation_extended(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True if hasattr(config, "use_cache"): config.use_cache = True encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) for model_class in self.all_model_classes: class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) num_out = len(model(class_inputs_dict)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=True) saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") model = keras.models.load_model(saved_model_dir) outputs = model(class_inputs_dict) if self.is_encoder_decoder: output_hidden_states = outputs["encoder_hidden_states"] output_attentions = outputs["encoder_attentions"] else: output_hidden_states = outputs["hidden_states"] output_attentions = outputs["attentions"] self.assertEqual(len(outputs), num_out) expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(output_hidden_states), expected_num_layers) self.assertListEqual( list(output_hidden_states[0].shape[-2:]), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(output_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def test_model_from_pretrained(self): model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") self.assertIsNotNone(model) def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) def check_decoder_attentions_output(outputs): out_len = len(outputs) self.assertEqual(out_len % 2, 0) decoder_attentions = outputs.decoder_attentions self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(outputs): attentions = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True config.output_hidden_states = False model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) out_len = len(outputs) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) if self.is_encoder_decoder: model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_decoder_attentions_output(outputs) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(config.output_hidden_states, False) check_encoder_attentions_output(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True config.output_hidden_states = True model = model_class(config) outputs = model(self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) self.assertEqual(model.config.output_hidden_states, True) check_encoder_attentions_output(outputs) @require_tf class TFConvBertModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = TFConvBertModel.from_pretrained("YituTech/conv-bert-base") input_ids = tf.constant([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] expected_shape = [1, 6, 768] self.assertEqual(output.shape, expected_shape) expected_slice = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
transformers/tests/models/convbert/test_modeling_tf_convbert.py/0
{ "file_path": "transformers/tests/models/convbert/test_modeling_tf_convbert.py", "repo_id": "transformers", "token_count": 8020 }
397
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class CTRLTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = CTRLTokenizer test_rust_tokenizer = False test_seq2seq = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: fp.write(json.dumps(vocab_tokens) + "\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "adapt react readapt apt" output_text = "adapt react readapt apt" return input_text, output_text def test_full_tokenizer(self): tokenizer = CTRLTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "adapt react readapt apt" bpe_tokens = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() tokens = tokenizer.tokenize(text) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
transformers/tests/models/ctrl/test_tokenization_ctrl.py/0
{ "file_path": "transformers/tests/models/ctrl/test_tokenization_ctrl.py", "repo_id": "transformers", "token_count": 1074 }
398
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import pathlib import unittest from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import AnnotationFormatTestMixin, ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class DetrImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], do_pad=True, ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p size = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_pad = do_pad def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to DetrImageProcessor, assuming do_resize is set to True with a scalar size. """ if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] if w < h: expected_height = int(self.size["shortest_edge"] * h / w) expected_width = self.size["shortest_edge"] elif w > h: expected_height = self.size["shortest_edge"] expected_width = int(self.size["shortest_edge"] * w / h) else: expected_height = self.size["shortest_edge"] expected_width = self.size["shortest_edge"] else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class DetrImageProcessingTest(AnnotationFormatTestMixin, ImageProcessingTestMixin, unittest.TestCase): image_processing_class = DetrImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = DetrImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_pad")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333}) self.assertEqual(image_processor.do_pad, True) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=False ) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.do_pad, False) def test_should_raise_if_annotation_format_invalid(self): image_processor_dict = self.image_processor_tester.prepare_image_processor_dict() with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: detection_target = json.loads(f.read()) annotations = {"image_id": 39769, "annotations": detection_target} params = { "images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "annotations": annotations, "return_tensors": "pt", } image_processor_params = {**image_processor_dict, **{"format": "_INVALID_FORMAT_"}} image_processor = self.image_processing_class(**image_processor_params) with self.assertRaises(ValueError) as e: image_processor(**params) self.assertTrue(str(e.exception).startswith("_INVALID_FORMAT_ is not a valid AnnotationFormat")) def test_valid_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) params = {"image_id": 39769, "annotations": target} # encode them image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") # legal encodings (single image) _ = image_processing(images=image, annotations=params, return_tensors="pt") _ = image_processing(images=image, annotations=[params], return_tensors="pt") # legal encodings (batch of one image) _ = image_processing(images=[image], annotations=params, return_tensors="pt") _ = image_processing(images=[image], annotations=[params], return_tensors="pt") # legal encoding (batch of more than one image) n = 5 _ = image_processing(images=[image] * n, annotations=[params] * n, return_tensors="pt") # example of an illegal encoding (missing the 'image_id' key) with self.assertRaises(ValueError) as e: image_processing(images=image, annotations={"annotations": target}, return_tensors="pt") self.assertTrue(str(e.exception).startswith("Invalid COCO detection annotations")) # example of an illegal encoding (unequal lengths of images and annotations) with self.assertRaises(ValueError) as e: image_processing(images=[image] * n, annotations=[params] * (n - 1), return_tensors="pt") self.assertTrue(str(e.exception) == "The number of images (5) and annotations (4) do not match.") @slow def test_call_pytorch_with_coco_detection_annotations(self): # prepare image and target image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"image_id": 39769, "annotations": target} # encode them image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") encoding = image_processing(images=image, annotations=target, return_tensors="pt") # verify pixel values expected_shape = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) # verify area expected_area = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) # verify boxes expected_boxes_shape = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) expected_boxes_slice = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) # verify image_id expected_image_id = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) # verify is_crowd expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) # verify class_labels expected_class_labels = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) # verify orig_size expected_orig_size = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) # verify size expected_size = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size)) @slow def test_call_pytorch_with_coco_panoptic_annotations(self): # prepare image, target and masks_path image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r") as f: target = json.loads(f.read()) target = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} masks_path = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic") # encode them image_processing = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic") encoding = image_processing(images=image, annotations=target, masks_path=masks_path, return_tensors="pt") # verify pixel values expected_shape = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["pixel_values"].shape, expected_shape) expected_slice = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], expected_slice, atol=1e-4)) # verify area expected_area = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], expected_area)) # verify boxes expected_boxes_shape = torch.Size([6, 4]) self.assertEqual(encoding["labels"][0]["boxes"].shape, expected_boxes_shape) expected_boxes_slice = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], expected_boxes_slice, atol=1e-3)) # verify image_id expected_image_id = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], expected_image_id)) # verify is_crowd expected_is_crowd = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], expected_is_crowd)) # verify class_labels expected_class_labels = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], expected_class_labels)) # verify masks expected_masks_sum = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), expected_masks_sum) # verify orig_size expected_orig_size = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], expected_orig_size)) # verify size expected_size = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], expected_size))
transformers/tests/models/detr/test_image_processing_detr.py/0
{ "file_path": "transformers/tests/models/detr/test_image_processing_detr.py", "repo_id": "transformers", "token_count": 5865 }
399
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch EfficientNet model. """ import unittest from transformers import EfficientNetConfig from transformers.testing_utils import is_pipeline_test, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EfficientNetForImageClassification, EfficientNetModel from transformers.models.efficientnet.modeling_efficientnet import EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class EfficientNetModelTester: def __init__( self, parent, batch_size=13, image_size=32, num_channels=3, kernel_sizes=[3, 3, 5], in_channels=[32, 16, 24], out_channels=[16, 24, 20], strides=[1, 1, 2], num_block_repeats=[1, 1, 2], expand_ratios=[1, 6, 6], is_training=True, use_labels=True, intermediate_size=37, hidden_act="gelu", num_labels=10, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.kernel_sizes = kernel_sizes self.in_channels = in_channels self.out_channels = out_channels self.strides = strides self.num_block_repeats = num_block_repeats self.expand_ratios = expand_ratios self.is_training = is_training self.hidden_act = hidden_act self.num_labels = num_labels self.use_labels = use_labels def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.num_labels) config = self.get_config() return config, pixel_values, labels def get_config(self): return EfficientNetConfig( num_channels=self.num_channels, kernel_sizes=self.kernel_sizes, in_channels=self.in_channels, out_channels=self.out_channels, strides=self.strides, num_block_repeats=self.num_block_repeats, expand_ratios=self.expand_ratios, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def create_and_check_model(self, config, pixel_values, labels): model = EfficientNetModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected last hidden states: B, C, H // 4, W // 4 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, config.hidden_dim, self.image_size // 4, self.image_size // 4), ) def create_and_check_for_image_classification(self, config, pixel_values, labels): model = EfficientNetForImageClassification(config) model.to(torch_device) model.eval() result = model(pixel_values, labels=labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values, labels = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class EfficientNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as EfficientNet does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (EfficientNetModel, EfficientNetForImageClassification) if is_torch_available() else () pipeline_model_mapping = ( {"feature-extraction": EfficientNetModel, "image-classification": EfficientNetForImageClassification} if is_torch_available() else {} ) fx_compatible = False test_pruning = False test_resize_embeddings = False test_head_masking = False has_attentions = False def setUp(self): self.model_tester = EfficientNetModelTester(self) self.config_tester = ConfigTester( self, config_class=EfficientNetConfig, has_text_modality=False, hidden_size=37 ) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return @unittest.skip(reason="EfficientNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="EfficientNet does not support input and output embeddings") def test_model_common_attributes(self): pass @unittest.skip(reason="EfficientNet does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states num_blocks = sum(config.num_block_repeats) * 4 self.assertEqual(len(hidden_states), num_blocks) # EfficientNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = EfficientNetModel.from_pretrained(model_name) self.assertIsNotNone(model) @is_pipeline_test @require_vision @slow def test_pipeline_image_classification(self): super().test_pipeline_image_classification() # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class EfficientNetModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("google/efficientnet-b7") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = EfficientNetForImageClassification.from_pretrained("google/efficientnet-b7").to(torch_device) image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="pt").to(torch_device) # forward pass with torch.no_grad(): outputs = model(**inputs) # verify the logits expected_shape = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = torch.tensor([-0.2962, 0.4487, 0.4499]).to(torch_device) self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/efficientnet/test_modeling_efficientnet.py/0
{ "file_path": "transformers/tests/models/efficientnet/test_modeling_efficientnet.py", "repo_id": "transformers", "token_count": 3910 }
400
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. and Baidu team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch ErnieM model. """ import unittest from transformers import ErnieMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( ErnieMForInformationExtraction, ErnieMForMultipleChoice, ErnieMForQuestionAnswering, ErnieMForSequenceClassification, ErnieMForTokenClassification, ErnieMModel, ) from transformers.models.ernie_m.modeling_ernie_m import ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST class ErnieMModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def prepare_config_and_inputs_for_uiem(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_ids, input_mask def get_config(self): return ErnieMConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def create_and_check_model(self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels): model = ErnieMModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, return_dict=True) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_question_answering( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieMForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_information_extraction( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = ErnieMForInformationExtraction(config=config) model.to(torch_device) model.eval() sequence_labels = torch.ones_like(input_ids, dtype=torch.float32) result = model( input_ids, attention_mask=input_mask, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = ErnieMForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = ErnieMForTokenClassification(config=config) model.to(torch_device) model.eval() input_ids.to(torch_device) input_mask.to(torch_device) token_labels.to(torch_device) result = model(input_ids, attention_mask=input_mask, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = ErnieMForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class ErnieMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( ErnieMModel, ErnieMForMultipleChoice, ErnieMForQuestionAnswering, ErnieMForSequenceClassification, ErnieMForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = () pipeline_model_mapping = ( { "feature-extraction": ErnieMModel, "question-answering": ErnieMForQuestionAnswering, "text-classification": ErnieMForSequenceClassification, "token-classification": ErnieMForTokenClassification, "zero-shot": ErnieMForSequenceClassification, } if is_torch_available() else {} ) test_torchscript = False # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "QAPipelineTests": return True return False def setUp(self): self.model_tester = ErnieMModelTester(self) self.config_tester = ConfigTester(self, config_class=ErnieMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_information_extraction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_information_extraction(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ERNIE_M_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = ErnieMModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch class ErnieMModelIntegrationTest(unittest.TestCase): @slow def test_inference_model(self): model = ErnieMModel.from_pretrained("susnato/ernie-m-base_pytorch") model.eval() input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] # TODO Replace vocab size hidden_size = 768 expected_shape = torch.Size((1, 6, hidden_size)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0012, 0.1245, -0.0214], [-0.0742, 0.0244, -0.0771], [-0.0333, 0.1164, -0.1554]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-3))
transformers/tests/models/ernie_m/test_modeling_ernie_m.py/0
{ "file_path": "transformers/tests/models/ernie_m/test_modeling_ernie_m.py", "repo_id": "transformers", "token_count": 5555 }
401
# coding=utf-8 # Copyright 2022 Meta Platforms authors and HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): import PIL from transformers import FlavaImageProcessor from transformers.image_utils import PILImageResampling from transformers.models.flava.image_processing_flava import ( FLAVA_CODEBOOK_MEAN, FLAVA_CODEBOOK_STD, FLAVA_IMAGE_MEAN, FLAVA_IMAGE_STD, ) else: FLAVA_IMAGE_MEAN = FLAVA_IMAGE_STD = FLAVA_CODEBOOK_MEAN = FLAVA_CODEBOOK_STD = None class FlavaImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, resample=None, do_rescale=True, rescale_factor=1 / 255, do_normalize=True, image_mean=FLAVA_IMAGE_MEAN, image_std=FLAVA_IMAGE_STD, input_size_patches=14, total_mask_patches=75, mask_group_max_patches=None, mask_group_min_patches=16, mask_group_min_aspect_ratio=0.3, mask_group_max_aspect_ratio=None, codebook_do_resize=True, codebook_size=None, codebook_resample=None, codebook_do_center_crop=True, codebook_crop_size=None, codebook_do_map_pixels=True, codebook_do_normalize=True, codebook_image_mean=FLAVA_CODEBOOK_MEAN, codebook_image_std=FLAVA_CODEBOOK_STD, ): size = size if size is not None else {"height": 224, "width": 224} crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112} codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.do_resize = do_resize self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.min_resolution = min_resolution self.max_resolution = max_resolution self.size = size self.resample = resample if resample is not None else PILImageResampling.BICUBIC self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.do_center_crop = do_center_crop self.crop_size = crop_size self.input_size_patches = input_size_patches self.total_mask_patches = total_mask_patches self.mask_group_max_patches = mask_group_max_patches self.mask_group_min_patches = mask_group_min_patches self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio self.codebook_do_resize = codebook_do_resize self.codebook_size = codebook_size self.codebook_resample = codebook_resample if codebook_resample is not None else PILImageResampling.LANCZOS self.codebook_do_center_crop = codebook_do_center_crop self.codebook_crop_size = codebook_crop_size self.codebook_do_map_pixels = codebook_do_map_pixels self.codebook_do_normalize = codebook_do_normalize self.codebook_image_mean = codebook_image_mean self.codebook_image_std = codebook_image_std def prepare_image_processor_dict(self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "resample": self.resample, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "input_size_patches": self.input_size_patches, "total_mask_patches": self.total_mask_patches, "mask_group_max_patches": self.mask_group_max_patches, "mask_group_min_patches": self.mask_group_min_patches, "mask_group_min_aspect_ratio": self.mask_group_min_aspect_ratio, "mask_group_max_aspect_ratio": self.mask_group_min_aspect_ratio, "codebook_do_resize": self.codebook_do_resize, "codebook_size": self.codebook_size, "codebook_resample": self.codebook_resample, "codebook_do_center_crop": self.codebook_do_center_crop, "codebook_crop_size": self.codebook_crop_size, "codebook_do_map_pixels": self.codebook_do_map_pixels, "codebook_do_normalize": self.codebook_do_normalize, "codebook_image_mean": self.codebook_image_mean, "codebook_image_std": self.codebook_image_std, } def get_expected_image_size(self): return (self.size["height"], self.size["width"]) def get_expected_mask_size(self): return ( (self.input_size_patches, self.input_size_patches) if not isinstance(self.input_size_patches, tuple) else self.input_size_patches ) def get_expected_codebook_image_size(self): return (self.codebook_size["height"], self.codebook_size["width"]) def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class FlavaImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = FlavaImageProcessor if is_vision_available() else None maxDiff = None def setUp(self): self.image_processor_tester = FlavaImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "resample")) self.assertTrue(hasattr(image_processing, "crop_size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "do_rescale")) self.assertTrue(hasattr(image_processing, "rescale_factor")) self.assertTrue(hasattr(image_processing, "masking_generator")) self.assertTrue(hasattr(image_processing, "codebook_do_resize")) self.assertTrue(hasattr(image_processing, "codebook_size")) self.assertTrue(hasattr(image_processing, "codebook_resample")) self.assertTrue(hasattr(image_processing, "codebook_do_center_crop")) self.assertTrue(hasattr(image_processing, "codebook_crop_size")) self.assertTrue(hasattr(image_processing, "codebook_do_map_pixels")) self.assertTrue(hasattr(image_processing, "codebook_do_normalize")) self.assertTrue(hasattr(image_processing, "codebook_image_mean")) self.assertTrue(hasattr(image_processing, "codebook_image_std")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"height": 224, "width": 224}) self.assertEqual(image_processor.crop_size, {"height": 224, "width": 224}) self.assertEqual(image_processor.codebook_size, {"height": 112, "width": 112}) self.assertEqual(image_processor.codebook_crop_size, {"height": 112, "width": 112}) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, crop_size=84, codebook_size=33, codebook_crop_size=66 ) self.assertEqual(image_processor.size, {"height": 42, "width": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84}) self.assertEqual(image_processor.codebook_size, {"height": 33, "width": 33}) self.assertEqual(image_processor.codebook_crop_size, {"height": 66, "width": 66}) def test_call_pil(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() # Test no bool masked pos self.assertFalse("bool_masked_pos" in encoded_images) self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def _test_call_framework(self, instance_class, prepare_kwargs): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random tensors image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, **prepare_kwargs) for image in image_inputs: self.assertIsInstance(image, instance_class) # Test not batched input encoded_images = image_processing(image_inputs[0], return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) # Test batched encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) # Test masking encoded_images = image_processing(image_inputs, return_image_mask=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_image_size() self.assertEqual( encoded_images.pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) expected_height, expected_width = self.image_processor_tester.get_expected_mask_size() self.assertEqual( encoded_images.bool_masked_pos.shape, ( self.image_processor_tester.batch_size, expected_height, expected_width, ), ) def test_call_numpy(self): self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True}) def test_call_numpy_4_channels(self): self.image_processing_class.num_channels = 4 self._test_call_framework(np.ndarray, prepare_kwargs={"numpify": True}) self.image_processing_class.num_channels = 3 def test_call_pytorch(self): self._test_call_framework(torch.Tensor, prepare_kwargs={"torchify": True}) def test_masking(self): # Initialize image_processing random.seed(1234) image_processing = self.image_processing_class(**self.image_processor_dict) image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True) # Test not batched input encoded_images = image_processing(image_inputs[0], return_image_mask=True, return_tensors="pt") self.assertEqual(encoded_images.bool_masked_pos.sum().item(), 75) def test_codebook_pixels(self): # Initialize image_processing image_processing = self.image_processing_class(**self.image_processor_dict) # create random PIL images image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) for image in image_inputs: self.assertIsInstance(image, PIL.Image.Image) # Test not batched input encoded_images = image_processing(image_inputs[0], return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched encoded_images = image_processing(image_inputs, return_codebook_pixels=True, return_tensors="pt") expected_height, expected_width = self.image_processor_tester.get_expected_codebook_image_size() self.assertEqual( encoded_images.codebook_pixel_values.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), )
transformers/tests/models/flava/test_image_processing_flava.py/0
{ "file_path": "transformers/tests/models/flava/test_image_processing_flava.py", "repo_id": "transformers", "token_count": 7088 }
402
import unittest import numpy as np from transformers import is_torch_available, is_vision_available from transformers.testing_utils import ( require_torch, require_torchvision, require_vision, ) if is_torch_available() and is_vision_available(): import torch from transformers import FuyuImageProcessor if is_vision_available(): from PIL import Image @require_torch @require_vision @require_torchvision class TestFuyuImageProcessor(unittest.TestCase): def setUp(self): self.size = {"height": 160, "width": 320} self.processor = FuyuImageProcessor(size=self.size, padding_value=1.0) self.batch_size = 3 self.channels = 3 self.height = 300 self.width = 300 self.image_input = torch.rand(self.batch_size, self.channels, self.height, self.width) self.image_patch_dim_h = 30 self.image_patch_dim_w = 30 self.sample_image = np.zeros((450, 210, 3), dtype=np.uint8) self.sample_image_pil = Image.fromarray(self.sample_image) def test_patches(self): expected_num_patches = self.processor.get_num_patches(image_height=self.height, image_width=self.width) patches_final = self.processor.patchify_image(image=self.image_input) assert ( patches_final.shape[1] == expected_num_patches ), f"Expected {expected_num_patches} patches, got {patches_final.shape[1]}." def test_scale_to_target_aspect_ratio(self): # (h:450, w:210) fitting (160, 320) -> (160, 210*160/450) scaled_image = self.processor.resize(self.sample_image, size=self.size) self.assertEqual(scaled_image.shape[0], 160) self.assertEqual(scaled_image.shape[1], 74) def test_apply_transformation_numpy(self): transformed_image = self.processor.preprocess(self.sample_image).images[0][0] self.assertEqual(transformed_image.shape[1], 160) self.assertEqual(transformed_image.shape[2], 320) def test_apply_transformation_pil(self): transformed_image = self.processor.preprocess(self.sample_image_pil).images[0][0] self.assertEqual(transformed_image.shape[1], 160) self.assertEqual(transformed_image.shape[2], 320)
transformers/tests/models/fuyu/test_image_processing_fuyu.py/0
{ "file_path": "transformers/tests/models/fuyu/test_image_processing_fuyu.py", "repo_id": "transformers", "token_count": 906 }
403
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import unittest from parameterized import parameterized from transformers import GPTBigCodeConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPT2TokenizerFast, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, ) from transformers.models.gpt_bigcode.modeling_gpt_bigcode import GPTBigCodeAttention from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_12 else: is_torch_greater_or_equal_than_1_12 = False class GPTBigCodeModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=True, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, multi_query=True, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 2 self.pad_token_id = vocab_size - 3 self.multi_query = multi_query def get_large_model_config(self): return GPTBigCodeConfig.from_pretrained("bigcode/gpt_bigcode-santacoder") def prepare_config_and_inputs( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config( gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def get_config( self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False ): return GPTBigCodeConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_inner=self.intermediate_size, activation_function=self.hidden_act, resid_pdrop=self.hidden_dropout_prob, attn_pdrop=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, gradient_checkpointing=gradient_checkpointing, scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx, reorder_and_upcast_attn=reorder_and_upcast_attn, attention_softmax_in_fp32=False, scale_attention_softmax_in_fp32=False, multi_query=self.multi_query, ) def get_pipeline_config(self): config = self.get_config() config.vocab_size = 300 return config def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, input_mask, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_gpt_bigcode_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTBigCodeModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layer) def create_and_check_gpt_bigcode_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTBigCodeModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True) outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids) outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"] output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_gpt_bigcode_model_attention_mask_past( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = GPTBigCodeModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_gpt_bigcode_model_past_large_inputs( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): model = GPTBigCodeModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True) output, past = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask )["last_hidden_state"] output_from_past = model( next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past )["last_hidden_state"] self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1]) # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = GPTBigCodeForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False ): model = GPTBigCodeForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_gpt_bigcode_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = GPTBigCodeForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_gpt_bigcode_for_token_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args ): config.num_labels = self.num_labels model = GPTBigCodeForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_gpt_bigcode_weight_initialization(self, config, *args): model = GPTBigCodeModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class GPTBigCodeModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): # TODO: Update the tests to use valid pretrained models. all_model_classes = ( ( GPTBigCodeModel, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, ) if is_torch_available() else () ) all_generative_model_classes = (GPTBigCodeForCausalLM,) if is_torch_available() else () pipeline_model_mapping = ( { "feature-extraction": GPTBigCodeModel, "text-classification": GPTBigCodeForSequenceClassification, "text-generation": GPTBigCodeForCausalLM, "token-classification": GPTBigCodeForTokenClassification, "zero-shot": GPTBigCodeForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = False test_missing_keys = False test_pruning = False test_torchscript = False multi_query = True # special case for DoubleHeads model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) return inputs_dict def setUp(self): self.model_tester = GPTBigCodeModelTester(self, multi_query=self.multi_query) self.config_tester = ConfigTester(self, config_class=GPTBigCodeConfig, n_embd=37) def tearDown(self): import gc gc.collect() def test_config(self): self.config_tester.run_common_tests() @unittest.skip("MQA models does not support retain_grad") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip("Contrastive search not supported due to non-standard caching mechanism") def test_contrastive_generate(self): pass @unittest.skip("Contrastive search not supported due to non-standard caching mechanism") def test_contrastive_generate_dict_outputs_use_cache(self): pass @unittest.skip("CPU offload seems to be broken for some reason - tiny models keep hitting corner cases") def test_cpu_offload(self): pass @unittest.skip("Disk offload seems to be broken for some reason - tiny models keep hitting corner cases") def test_disk_offload(self): pass @unittest.skip("BigCodeGPT has a non-standard KV cache format.") def test_past_key_values_format(self): pass def test_gpt_bigcode_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_bigcode_model(*config_and_inputs) def test_gpt_bigcode_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_bigcode_model_past(*config_and_inputs) def test_gpt_bigcode_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_bigcode_model_attention_mask_past(*config_and_inputs) def test_gpt_bigcode_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_bigcode_model_past_large_inputs(*config_and_inputs) def test_gpt_bigcode_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_gpt_bigcode_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_bigcode_for_sequence_classification(*config_and_inputs) def test_gpt_bigcode_token_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_bigcode_for_token_classification(*config_and_inputs) def test_gpt_bigcode_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def test_gpt_bigcode_scale_attn_by_inverse_layer_idx(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(scale_attn_by_inverse_layer_idx=True) self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs) def test_gpt_bigcode_reorder_and_upcast_attn(self): config_and_inputs = self.model_tester.prepare_config_and_inputs(reorder_and_upcast_attn=True) self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs) def test_gpt_bigcode_weight_initialization(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_gpt_bigcode_weight_initialization(*config_and_inputs) @require_torch class GPTBigCodeMHAModelTest(GPTBigCodeModelTest): # `parameterized_class` breaks with mixins, so we use inheritance instead multi_query = False @unittest.skipIf( not is_torch_greater_or_equal_than_1_12, reason="`GPTBigCode` checkpoints use `PytorchGELUTanh` which requires `torch>=1.12.0`.", ) @slow @require_torch class GPTBigCodeModelLanguageGenerationTest(unittest.TestCase): def test_generate_simple(self): model = GPTBigCodeForCausalLM.from_pretrained("bigcode/gpt_bigcode-santacoder").to(torch_device) tokenizer = GPT2TokenizerFast.from_pretrained("bigcode/gpt_bigcode-santacoder") input_ids = tokenizer("def print_hello_world():", return_tensors="pt").input_ids.to(torch_device) output_sequence = model.generate(input_ids) output_sentence = tokenizer.decode(output_sequence[0], skip_special_tokens=True) expected_output = """def print_hello_world():\n print("Hello World!")\n\n\ndef print_hello_""" self.assertEqual(output_sentence, expected_output) def test_generate_batched(self): tokenizer = GPT2TokenizerFast.from_pretrained("bigcode/gpt_bigcode-santacoder") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" model = GPTBigCodeForCausalLM.from_pretrained("bigcode/gpt_bigcode-santacoder").to(torch_device) inputs = tokenizer(["def print_hello_world():", "def say_hello():"], return_tensors="pt", padding=True).to( torch_device ) outputs = model.generate(**inputs) outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) expected_output = [ 'def print_hello_world():\n print("Hello World!")\n\n\ndef print_hello_', 'def say_hello():\n print("Hello, World!")\n\n\nsay_hello()', ] self.assertListEqual(outputs, expected_output) @require_torch class GPTBigCodeMQATest(unittest.TestCase): def get_attention(self, multi_query): config = GPTBigCodeConfig.from_pretrained( "bigcode/gpt_bigcode-santacoder", multi_query=multi_query, attn_pdrop=0, resid_pdrop=0, ) return GPTBigCodeAttention(config) @parameterized.expand([(seed, is_train_mode) for seed in range(5) for is_train_mode in [True, False]]) def test_mqa_reduces_to_mha(self, seed, is_train_mode=True): torch.manual_seed(seed) # CREATE MQA AND MHA ATTENTIONS attention_mqa = self.get_attention(True) attention_mha = self.get_attention(False) # ENFORCE MATCHING WEIGHTS num_heads = attention_mqa.num_heads embed_dim = attention_mqa.embed_dim head_dim = attention_mqa.head_dim with torch.no_grad(): mqa_q_weight = attention_mqa.c_attn.weight[:embed_dim, :].view(num_heads, 1, head_dim, embed_dim) mqa_kv_weight = attention_mqa.c_attn.weight[embed_dim:, :].view(1, 2, head_dim, embed_dim) mha_c_weight = torch.cat( [mqa_q_weight, mqa_kv_weight.expand(num_heads, 2, head_dim, embed_dim)], dim=1 ).view(3 * num_heads * head_dim, embed_dim) mqa_q_bias = attention_mqa.c_attn.bias[:embed_dim].view(num_heads, 1, head_dim) mqa_kv_bias = attention_mqa.c_attn.bias[embed_dim:].view(1, 2, head_dim) mha_c_bias = torch.cat([mqa_q_bias, mqa_kv_bias.expand(num_heads, 2, head_dim)], dim=1).view( 3 * num_heads * head_dim ) attention_mha.c_attn.weight.copy_(mha_c_weight) attention_mha.c_attn.bias.copy_(mha_c_bias) attention_mha.c_proj.weight.copy_(attention_mqa.c_proj.weight) attention_mha.c_proj.bias.copy_(attention_mqa.c_proj.bias) # PUT THE MODEL INTO THE CORRECT MODE attention_mha.train(is_train_mode) attention_mqa.train(is_train_mode) # RUN AN INPUT THROUGH THE MODELS num_tokens = 5 hidden_states = torch.randn(1, num_tokens, embed_dim) attention_mha_result = attention_mha(hidden_states)[0] attention_mqa_result = attention_mqa(hidden_states)[0] # CHECK THAT ALL OUTPUTS ARE THE SAME self.assertTrue(torch.allclose(attention_mha_result, attention_mqa_result, atol=1e-5))
transformers/tests/models/gpt_bigcode/test_modeling_gpt_bigcode.py/0
{ "file_path": "transformers/tests/models/gpt_bigcode/test_modeling_gpt_bigcode.py", "repo_id": "transformers", "token_count": 11767 }
404
# coding=utf-8 # Copyright 2023 Toshiyuki Sakamoto(tanreinama) and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import ( GPTSanJapaneseConfig, GPTSanJapaneseForConditionalGeneration, GPTSanJapaneseModel, GPTSanJapaneseTokenizer, is_torch_available, ) from transformers.generation import GenerationConfig from transformers.testing_utils import require_torch, slow, tooslow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin class GPTSanJapaneseTester: def __init__( self, parent, vocab_size=99, batch_size=13, num_contexts=7, # For common tests is_training=True, hidden_size=32, ext_size=42, num_hidden_layers=2, num_ext_layers=2, num_attention_heads=4, num_experts=2, d_ff=32, d_ext=80, d_spout=33, dropout_rate=0.0, layer_norm_epsilon=1e-6, expert_capacity=100, router_jitter_noise=0.0, ): self.vocab_size = vocab_size self.parent = parent self.batch_size = batch_size self.num_contexts = num_contexts # For common tests self.seq_length = self.num_contexts self.is_training = is_training self.hidden_size = hidden_size self.num_ext_layers = num_ext_layers self.ext_size = ext_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_experts = num_experts self.d_ff = d_ff self.d_ext = d_ext self.d_spout = d_spout self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.expert_capacity = expert_capacity self.router_jitter_noise = router_jitter_noise def get_large_model_config(self): return GPTSanJapaneseConfig.from_pretrained("Tanrei/GPTSAN-japanese") def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() return (config, input_ids) def prepare_config_and_inputs_for_common(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) config = self.get_config() return (config, {"input_ids": input_ids}) def get_config(self): return GPTSanJapaneseConfig( vocab_size=self.vocab_size, num_contexts=self.seq_length, d_model=self.hidden_size, d_ff=self.d_ff, d_ext=self.d_ext, d_spout=self.d_spout, num_switch_layers=self.num_hidden_layers - self.num_ext_layers, num_ext_layers=self.num_ext_layers, num_heads=self.num_attention_heads, num_experts=self.num_experts, expert_capacity=self.expert_capacity, dropout_rate=self.dropout_rate, layer_norm_epsilon=self.layer_norm_epsilon, router_jitter_noise=self.router_jitter_noise, ) def create_and_check_model( self, config, input_ids, ): model = GPTSanJapaneseForConditionalGeneration(config=config) model.to(torch_device) model.eval() result = model( input_ids=input_ids, ) self.parent.assertIsNotNone(result) @require_torch class GPTSanJapaneseTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (GPTSanJapaneseModel,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": GPTSanJapaneseForConditionalGeneration, "feature-extraction": GPTSanJapaneseForConditionalGeneration, "summarization": GPTSanJapaneseForConditionalGeneration, "text2text-generation": GPTSanJapaneseForConditionalGeneration, "translation": GPTSanJapaneseForConditionalGeneration, } if is_torch_available() else {} ) fx_compatible = False is_encoder_decoder = False test_pruning = False test_headmasking = False test_cpu_offload = False test_disk_offload = False test_save_load_fast_init_to_base = False test_training = False # The small GPTSAN_JAPANESE model needs higher percentages for CPU/MP tests model_split_percents = [0.8, 0.9] # TODO: Fix the failed tests when this model gets more usage def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "SummarizationPipelineTests": # TODO: fix `_reorder_cache` is not implemented for this model return True elif pipeline_test_casse_name == "Text2TextGenerationPipelineTests": # TODO: check this. return True return False def setUp(self): self.model_tester = GPTSanJapaneseTester(self) self.config_tester = ConfigTester(self, config_class=GPTSanJapaneseConfig, d_model=37) def test_config(self): GPTSanJapaneseConfig() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip( reason="skip for now as the computed `max_memory` by `model_split_percents` in the test method will be changed inside `from_pretrained`" ) def test_model_parallelism(self): super().test_model_parallelism() @require_torch class GPTSanJapaneseForConditionalGenerationTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = (GPTSanJapaneseForConditionalGeneration,) if is_torch_available() else () fx_compatible = False is_encoder_decoder = False test_pruning = False test_headmasking = False test_cpu_offload = False test_disk_offload = False # The small GPTSAN_JAPANESE model needs higher percentages for CPU/MP tests model_split_percents = [0.8, 0.9] def setUp(self): self.model_tester = GPTSanJapaneseTester(self) self.config_tester = ConfigTester(self, config_class=GPTSanJapaneseConfig, d_model=37) def test_config(self): GPTSanJapaneseConfig() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @unittest.skip( reason="skip for now as the computed `max_memory` by `model_split_percents` in the test method will be changed inside `from_pretrained`" ) def test_model_parallelism(self): super().test_model_parallelism() @slow def test_logits(self): model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese") tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") input_ids = tokenizer.encode("武田信玄は", return_tensors="pt") outputs = model(input_ids) output_logits = outputs.logits.detach().cpu().numpy() # Output of original model created with mesh-tensoflow # fmt: off target = [ [-12.037839889526367, -12.433061599731445, -14.333840370178223, -12.450345993041992, -11.1661376953125, -11.930137634277344, -10.659740447998047, -12.909574508666992, -13.241043090820312, -13.398579597473145, -11.107524871826172, -12.3685941696167, -22.97943115234375, -10.481067657470703, -12.484030723571777, -12.807360649108887, -14.769700050354004, -12.233579635620117, -13.428145408630371, -22.624177932739258], [-7.511149883270264, -8.281851768493652, -7.943127155303955, -7.55021333694458, -6.49869966506958, -7.586796283721924, -6.978085994720459, -7.839145183563232, -8.21964168548584, -8.695091247558594, -6.706910610198975, -6.6585798263549805, -19.565698623657227, -5.353842735290527, -8.350686073303223, -8.039388656616211, -10.856569290161133, -7.75154447555542, -8.819022178649902, -19.51532745361328], [-9.73066234588623, -10.223922729492188, -9.932981491088867, -11.857836723327637, -7.662626266479492, -11.13529109954834, -7.765097618103027, -11.472923278808594, -9.543149948120117, -11.905633926391602, -9.366164207458496, -11.5734281539917, -23.699003219604492, -9.429590225219727, -10.42839241027832, -10.585240364074707, -10.94771957397461, -11.095416069030762, -10.390240669250488, -23.769372940063477], [-9.728265762329102, -9.859712600708008, -10.09729290008545, -9.678522109985352, -6.879519939422607, -9.68487548828125, -4.2803425788879395, -10.018914222717285, -9.308445930480957, -10.63394546508789, -8.083646774291992, -9.06301498413086, -21.904266357421875, -8.90160846710205, -8.841876029968262, -11.856719970703125, -12.079398155212402, -11.233753204345703, -10.177338600158691, -21.87256622314453], [-9.669764518737793, -9.614198684692383, -9.814510345458984, -9.996501922607422, -11.375690460205078, -10.113405227661133, -10.546867370605469, -10.04369068145752, -10.907809257507324, -10.504216194152832, -11.129199028015137, -10.151124000549316, -21.96586799621582, -9.086349487304688, -11.730339050292969, -10.460667610168457, -10.298049926757812, -10.784148216247559, -10.840693473815918, -22.03152847290039], ] # fmt: on target = np.array(target).flatten() predict = output_logits[0, :, :20].flatten() def check(a, b, epsilon=5e-4): return abs(a - b) < epsilon * max(abs(a), abs(b)) self.assertTrue(np.all([check(target[i], predict[i]) for i in range(len(target))])) @slow def test_batch_generation(self): model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese") tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") model.to(torch_device) # set deterministically generation_config = GenerationConfig.from_pretrained("Tanrei/GPTSAN-japanese") generation_config.top_k = 1 # use different length sentences to test batching sentences = [ "甲斐なら武田と言うほど", "織田信長は、", ] tokenizer.padding_side = "left" inputs = tokenizer(sentences, return_tensors="pt", padding=True) input_ids = inputs["input_ids"].to(torch_device) self.assertNotEqual(inputs["attention_mask"][0].numpy().tolist(), inputs["attention_mask"][1].numpy().tolist()) outputs = model.generate( input_ids=input_ids, attention_mask=inputs["attention_mask"].to(torch_device), max_new_tokens=3, generation_config=generation_config, ) inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device) output_non_padded = model.generate( input_ids=inputs_non_padded, max_new_tokens=3, generation_config=generation_config ) inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device) output_padded = model.generate(input_ids=inputs_padded, max_new_tokens=3, generation_config=generation_config) self.assertNotEqual(inputs_non_padded.shape, inputs_padded.shape) batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True) non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True) padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True) expected_output_sentence = [ "甲斐なら武田と言うほど甲斐の武田", "織田信長は、このような", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [non_padded_sentence, padded_sentence]) @tooslow def test_sample(self): model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese") tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") # Output of original model created with mesh-tensoflow target = [ ("武田信玄は", 35675), ("武田信玄は、", 45), ("武田信玄は、この", 29), ("武田信玄は、このよう", 30642), ("武田信玄は、このような", 35680), ("武田信玄は、このような「", 8640), ("武田信玄は、このような「武田", 31617), ("武田信玄は、このような「武田家", 30646), ("武田信玄は、このような「武田家の", 31617), ("武田信玄は、このような「武田家の家", 31381), ] for input, output in target: input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model(input_ids) output_logits = outputs.logits.detach().cpu().numpy()[0] output_id = np.argmax(output_logits[-1]) self.assertEqual(output_id, output) @slow def test_spout_generation(self): model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese") tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") model.to(torch_device) # set deterministically generation_config = GenerationConfig.from_pretrained("Tanrei/GPTSAN-japanese") generation_config.top_k = 1 input_text = "武田信玄は、" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(torch_device) input_ids_batch = tokenizer([input_text, input_text], return_tensors="pt").input_ids.to(torch_device) # spout from uniform and one-hot spouts = [ [0.87882208, 0.38426396, 0.33220248, 0.43890406, 0.16562252, 0.04803985, 0.211572 , 0.23188473, 0.37153068, 0.7836377 , 0.02160172, 0.38761719, 0.75290772, 0.90198857, 0.34365777, 0.64168169, 0.44318471, 0.14575746, 0.92562881, 0.40812148, 0.29019122, 0.88861599, 0.65524846, 0.43563456, 0.38177187, 0.70832965, 0.81527892, 0.68832812, 0.38833192, 0.4561522 , 0.14828817, 0.47248213, 0.54357335, 0.82009566, 0.1338884 , 0.02755417, 0.19764677, 0.2422084 , 0.04757674, 0.65409606, 0.0824589 , 0.03304383, 0.94387689, 0.98764509, 0.82433901, 0.27646741, 0.64907493, 0.76009406, 0.30087915, 0.17904689, 0.41601714, 0.67046398, 0.10422822, 0.08447374, 0.07354344, 0.61423565, 0.70284866, 0.7532333 , 0.1972038 , 0.29575659, 0.90583886, 0.29265307, 0.50000175, 0.70407655, 0.889363 , 0.81904418, 0.66829128, 0.64468815, 0.56563723, 0.85601875, 0.94924672, 0.00166762, 0.25220643, 0.74540219, 0.67993247, 0.1549675 , 0.39385352, 0.92153607, 0.63745931, 0.27759043, 0.84702295, 0.65904271, 0.58676614, 0.8666936 , 0.39607438, 0.79954983, 0.42220697, 0.39650381, 0.7849864 , 0.56150201, 0.15678925, 0.14746032, 0.34542114, 0.47026783, 0.11956489, 0.25421435, 0.33788901, 0.68934842, 0.36424685, 0.71737898, 0.38983449, 0.94393779, 0.39575588, 0.36616553, 0.87104665, 0.64630203, 0.22516905, 0.88270804, 0.15031338, 0.75144345, 0.46459025, 0.85396454, 0.86355643, 0.65139851, 0.70266061, 0.30241389, 0.81056497, 0.88865969, 0.38773807, 0.70635849, 0.90718459, 0.43245789, 0.28000654, 0.45935562, 0.08773519, 0.9552151 , 0.93901511, 0.22489288], # uniform [1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], ] # fmt: skip output1 = model.generate( input_ids=input_ids, spout=spouts[0], max_new_tokens=20, generation_config=generation_config, ) output2 = model.generate( input_ids=input_ids, spout=spouts[1], max_new_tokens=20, generation_config=generation_config, ) output3 = model.generate( input_ids=input_ids_batch, spout=spouts, max_new_tokens=20, generation_config=generation_config, ) out1_sentence = tokenizer.decode(output1[0]) out2_sentence = tokenizer.decode(output2[0]) batch_out_sentence = tokenizer.batch_decode(output3) expected_output_sentence = [ "武田信玄は、武田氏の滅亡後、武田氏の居城であった甲斐武田氏の居城である", "武田信玄は、武田家の滅亡を防ぐため、武田家の家臣である武田信虎を討", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [out1_sentence, out2_sentence]) @slow def test_prefix_lm_generation(self): model = GPTSanJapaneseForConditionalGeneration.from_pretrained("Tanrei/GPTSAN-japanese") tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") model.to(torch_device) # set deterministically generation_config = GenerationConfig.from_pretrained("Tanrei/GPTSAN-japanese") generation_config.top_k = 1 prefix_text_1 = "武田信玄" prefix_text_2 = "織田信長" input_text_1 = "は、" input_text_2 = "が、" input_tok_1 = tokenizer(input_text_1, prefix_text=prefix_text_1, return_tensors="pt") input_tok_2 = tokenizer(input_text_2, prefix_text=prefix_text_2, return_tensors="pt") input_tok_3 = tokenizer([[prefix_text_1, input_text_1], [prefix_text_2, input_text_2]], return_tensors="pt") output1 = model.generate( input_ids=input_tok_1.input_ids.to(torch_device), token_type_ids=input_tok_1.token_type_ids.to(torch_device), max_new_tokens=20, generation_config=generation_config, ) output2 = model.generate( input_ids=input_tok_2.input_ids.to(torch_device), token_type_ids=input_tok_2.token_type_ids.to(torch_device), max_new_tokens=20, generation_config=generation_config, ) output3 = model.generate( input_ids=input_tok_3.input_ids.to(torch_device), token_type_ids=input_tok_3.token_type_ids.to(torch_device), attention_mask=input_tok_3.attention_mask.to(torch_device), max_new_tokens=20, generation_config=generation_config, ) out1_sentence = tokenizer.decode(output1[0]) out2_sentence = tokenizer.decode(output2[0]) batch_out_sentence = tokenizer.batch_decode(output3) expected_output_sentence = [ "武田信玄は、武田氏の祖である武田信虎を、その子・武田信友を擁して", "織田信長が、織田信長の妻・お市の方を妻として迎えたという逸話が残", ] self.assertListEqual(expected_output_sentence, batch_out_sentence) self.assertListEqual(batch_out_sentence, [out1_sentence, out2_sentence])
transformers/tests/models/gptsan_japanese/test_modeling_gptsan_japanese.py/0
{ "file_path": "transformers/tests/models/gptsan_japanese/test_modeling_gptsan_japanese.py", "repo_id": "transformers", "token_count": 10015 }
405
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Idefics model. """ import unittest from parameterized import parameterized from transformers import BitsAndBytesConfig, IdeficsConfig, is_torch_available, is_vision_available from transformers.testing_utils import ( TestCasePlus, require_bitsandbytes, require_torch, require_torch_sdpa, require_vision, slow, torch_device, ) from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import IdeficsForVisionText2Text, IdeficsModel, IdeficsProcessor from transformers.models.idefics.configuration_idefics import IdeficsPerceiverConfig, IdeficsVisionConfig from transformers.models.idefics.modeling_idefics import IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_0 else: is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image class IdeficsModelTester: def __init__( self, parent, batch_size=1, seq_length=7, image_size=30, patch_size=2, num_channels=3, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, alpha_initializer="ones", num_labels=3, scope=None, modality_type_vocab_size=2, vision_embed_dim=32, vision_patch_size=2, vision_image_size=30, vision_num_attention_heads=4, vision_num_hidden_layers=5, vision_intermediate_size=37, perceiver_qk_layer_norms_perceiver=False, perceiver_resampler_depth=2, perceiver_resampler_head_dim=8, perceiver_resampler_n_heads=2, perceiver_resampler_n_latents=16, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.alpha_initializer = alpha_initializer self.num_labels = num_labels self.scope = scope self.modality_type_vocab_size = modality_type_vocab_size self.vision_embed_dim = vision_embed_dim self.vision_patch_size = vision_patch_size self.vision_image_size = vision_image_size self.vision_num_attention_heads = vision_num_attention_heads self.vision_num_hidden_layers = vision_num_hidden_layers self.vision_intermediate_size = vision_intermediate_size self.vision_config = IdeficsVisionConfig( embed_dim=self.vision_embed_dim, patch_size=self.vision_patch_size, image_size=self.vision_image_size, num_attention_heads=self.vision_num_attention_heads, num_hidden_layers=self.vision_num_hidden_layers, intermediate_size=self.vision_intermediate_size, ) self.perceiver_qk_layer_norms_perceiver = perceiver_qk_layer_norms_perceiver self.perceiver_resampler_depth = perceiver_resampler_depth self.perceiver_resampler_head_dim = perceiver_resampler_head_dim self.perceiver_resampler_n_heads = perceiver_resampler_n_heads self.perceiver_resampler_n_latents = perceiver_resampler_n_latents self.perceiver_config = IdeficsPerceiverConfig( qk_layer_norms_perceiver=self.perceiver_qk_layer_norms_perceiver, resampler_depth=self.perceiver_resampler_depth, resampler_head_dim=self.perceiver_resampler_head_dim, resampler_n_heads=self.perceiver_resampler_n_heads, resampler_n_latents=self.perceiver_resampler_n_latents, ) # we set the expected sequence length (which is used in several tests) # this is equal to the seq length of the text tokens + number of image patches + 1 for the CLS token self.expected_seq_len = self.seq_length + (self.image_size // self.patch_size) ** 2 + 1 def prepare_config_and_inputs(self, num_images=1, interpolate_pos_encoding=False, image_expansion=0): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) pixel_values = floats_tensor( [ self.batch_size, num_images, self.num_channels, self.image_size + image_expansion, self.image_size + image_expansion, ] ) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, num_images]) config = self.get_config() return (config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding) def prepare_config_and_inputs_gate_tests(self): # Create a list of configs and inputs, to test 2 things: # 1. For the same image, the output should be different when image_attention_mask is filled with 0s vs filled with 1s. # 2. For 2 different images, the output should be the same when image_attention_mask is filled with 0s. interpolate_pos_encoding = False input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) pixel_values = floats_tensor( [ self.batch_size, 1, self.num_channels, self.image_size, self.image_size, ] ) pixel_values_list = [ pixel_values.clone(), pixel_values.clone(), pixel_values.clone().fill_(0.6), pixel_values.clone().fill_(0.3), ] attention_mask = None if self.use_input_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) image_attention_mask = random_attention_mask([self.batch_size, self.seq_length, 1]) image_attention_mask_list = [ image_attention_mask.clone().fill_(0), image_attention_mask.clone().fill_(1), image_attention_mask.clone().fill_(0), image_attention_mask.clone().fill_(0), ] config = self.get_config() inputs_list = [] for pixel_values, image_attention_mask in zip(pixel_values_list, image_attention_mask_list): inputs_list.append( { "input_ids": input_ids, "attention_mask": attention_mask, "pixel_values": pixel_values, "image_attention_mask": image_attention_mask, "interpolate_pos_encoding": interpolate_pos_encoding, } ) inputs_w_same_img = inputs_list[:2] inputs_w_0_img_attn = inputs_list[2:] return config, inputs_w_same_img, inputs_w_0_img_attn def get_config(self): return IdeficsConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, alpha_initializer=self.alpha_initializer, num_labels=self.num_labels, modality_type_vocab_size=self.modality_type_vocab_size, vision_config=self.vision_config, ) def create_and_check_model( self, config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding, ): model = IdeficsModel(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, pixel_values=pixel_values, image_attention_mask=image_attention_mask, interpolate_pos_encoding=interpolate_pos_encoding, ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, input_ids.shape[1], self.hidden_size) ) def create_and_check_model_gen( self, config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding, ): model = IdeficsForVisionText2Text(config) model.to(torch_device) model.eval() model.generate( input_ids, attention_mask=input_mask, pixel_values=pixel_values, image_attention_mask=image_attention_mask, interpolate_pos_encoding=interpolate_pos_encoding, max_length=self.seq_length + 2, ) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, pixel_values, image_attention_mask, interpolate_pos_encoding, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": input_mask, "pixel_values": pixel_values, "image_attention_mask": image_attention_mask, "interpolate_pos_encoding": interpolate_pos_encoding, } return config, inputs_dict def prepare_pixel_values(self): return floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) @require_torch_sdpa @slow @parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) def test_eager_matches_sdpa_inference(self, torch_dtype: str): self.skipTest("Idefics has a hard requirement on SDPA, skipping this test") @unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required") @require_torch class IdeficsModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = (IdeficsModel, IdeficsForVisionText2Text) if is_torch_available() else () pipeline_model_mapping = {"feature-extraction": IdeficsModel} if is_torch_available() else {} test_pruning = False test_headmasking = False test_torchscript = False def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) # XXX: IdeficsForVisionText2TextTest has no MODEL_FOR group yet, but it should be the same # as MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, so for now manually changing to do the right thing # as super won't do it if return_labels: inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) return inputs_dict def test_model_outputs_equivalence(self): try: orig = self.all_model_classes # IdeficsModel.forward doesn't have labels input arg - only IdeficsForVisionText2Text does self.all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else () super().test_model_outputs_equivalence() finally: self.all_model_classes = orig def setUp(self): self.model_tester = IdeficsModelTester(self) self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model_single_image(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=1, interpolate_pos_encoding=False, image_expansion=0 ) self.model_tester.create_and_check_model(*config_and_inputs) def test_model_multiple_images(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=2, interpolate_pos_encoding=False, image_expansion=0 ) self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_image_pos_embeddings_interpolation_single_image(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=1, interpolate_pos_encoding=True, image_expansion=2 ) self.model_tester.create_and_check_model(*config_and_inputs) config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=1, interpolate_pos_encoding=True, image_expansion=0 ) self.model_tester.create_and_check_model(*config_and_inputs) def test_model_with_image_pos_embeddings_interpolation_multiple_images(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=2, interpolate_pos_encoding=True, image_expansion=2 ) self.model_tester.create_and_check_model(*config_and_inputs) config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=2, interpolate_pos_encoding=True, image_expansion=0 ) self.model_tester.create_and_check_model(*config_and_inputs) def test_generate_with_image_pos_embeddings_interpolation_single_image(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=1, interpolate_pos_encoding=True, image_expansion=2 ) self.model_tester.create_and_check_model_gen(*config_and_inputs) def test_generate_with_image_pos_embeddings_interpolation_multiple_images(self): config_and_inputs = self.model_tester.prepare_config_and_inputs( num_images=2, interpolate_pos_encoding=True, image_expansion=2 ) self.model_tester.create_and_check_model_gen(*config_and_inputs) def test_cross_attention_gates(self): config, inputs_w_same_img, inputs_w_0_img_attn = self.model_tester.prepare_config_and_inputs_gate_tests() model = IdeficsModel(config=config).to(torch_device) model.eval() test_1_results = [] for inputs in inputs_w_same_img: with torch.no_grad(): last_hidden_states = model(**inputs).last_hidden_state last_hidden_states = model(**inputs).last_hidden_state test_1_results.append(last_hidden_states) self.assertNotEqual(test_1_results[0].sum().item(), test_1_results[1].sum().item()) test_2_results = [] for inputs in inputs_w_0_img_attn: with torch.no_grad(): last_hidden_states = model(**inputs).last_hidden_state test_2_results.append(last_hidden_states) self.assertEqual(test_2_results[0].sum().item(), test_2_results[1].sum().item()) def test_training(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: # IdeficsModel does not support training, users should use # IdeficsForVisionText2Text for this purpose if model_class == IdeficsModel: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True model = model_class(config) model.to(torch_device) model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() def test_training_gradient_checkpointing(self): if not self.model_tester.is_training: return for model_class in self.all_model_classes: # IdeficsModel does not support training, users should use # IdeficsForVisionText2Text for this purpose if model_class == IdeficsModel: return config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.use_cache = False config.return_dict = True model = model_class(config) model.to(torch_device) model.gradient_checkpointing_enable() model.train() inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) loss = model(**inputs).loss loss.backward() @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""") def test_retain_grad_hidden_states_attentions(self): return def test_attention_outputs(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.attentions # IDEFICS does not support outputting attention score becuase it uses SDPA under the hood self.assertTrue(attentions[0] is None) out_len = len(outputs) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) self.assertEqual(out_len + 1, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) # IDEFICS does not support outputting attention score becuase it uses SDPA under the hood self.assertTrue(self_attentions[0] is None) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(hidden_states), expected_num_layers) seq_length = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @slow def test_model_from_pretrained(self): for model_name in IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = IdeficsModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_torch_sdpa @slow @parameterized.expand([("float16",), ("bfloat16",), ("float32",)]) def test_eager_matches_sdpa_inference(self, torch_dtype: str): self.skipTest("Idefics has a hard requirement on SDPA, skipping this test") @unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required") @require_torch class IdeficsForVisionText2TextTest(IdeficsModelTest, unittest.TestCase): all_model_classes = (IdeficsForVisionText2Text,) if is_torch_available() else () def setUp(self): self.model_tester = IdeficsModelTester( self, modality_type_vocab_size=3, ) self.config_tester = ConfigTester(self, config_class=IdeficsConfig, hidden_size=37) @unittest.skip("We only test the model that takes in multiple images") def test_model(self): pass @unittest.skip("We only test the model that takes in multiple images") def test_for_token_classification(self): pass @unittest.skip(reason="""IDEFICS does not support retaining the gradients of the hidden states and attention""") def test_retain_grad_hidden_states_attentions(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @unittest.skipIf(not is_torch_greater_or_equal_than_2_0, reason="pytorch 2.0 or higher is required") @require_torch @require_vision class IdeficsModelIntegrationTest(TestCasePlus): @cached_property def default_processor(self): return ( IdeficsProcessor.from_pretrained("HuggingFaceM4/idefics-9b", revision="refs/pr/11") if is_vision_available() else None ) @require_bitsandbytes @slow def test_inference_natural_language_visual_reasoning(self): cat_image_path = self.tests_dir / "fixtures/tests_samples/COCO/000000039769.png" cats_image_obj = Image.open(cat_image_path) # 2 cats dogs_image_url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_nlvr2/raw/main/image1.jpeg" prompts = [ [ "User:", dogs_image_url, "Describe this image.\nAssistant: An image of two dogs.\n", "User:", cats_image_obj, "Describe this image.\nAssistant:", ], [ "User:", cats_image_obj, "Describe this image.\nAssistant: An image of two kittens.\n", "User:", dogs_image_url, "Describe this image.\nAssistant:", ], ] # the CI gpu is small so using quantization to fit quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype="float16", ) model = IdeficsForVisionText2Text.from_pretrained( "HuggingFaceM4/idefics-9b", quantization_config=quantization_config, device_map="auto" ) processor = self.default_processor inputs = processor(prompts, return_tensors="pt").to(torch_device) generated_ids = model.generate(**inputs, max_length=100) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) # keep for debugging for i, t in enumerate(generated_text): t = bytes(t, "utf-8").decode("unicode_escape") print(f"{i}:\n{t}\n") self.assertIn("image of two cats", generated_text[0]) self.assertIn("image of two dogs", generated_text[1])
transformers/tests/models/idefics/test_modeling_idefics.py/0
{ "file_path": "transformers/tests/models/idefics/test_modeling_idefics.py", "repo_id": "transformers", "token_count": 12287 }
406
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch Llava model. """ import gc import unittest import requests from transformers import ( AutoProcessor, LlavaConfig, LlavaForConditionalGeneration, is_torch_available, is_vision_available, ) from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor if is_torch_available(): import torch else: is_torch_greater_or_equal_than_2_0 = False if is_vision_available(): from PIL import Image class LlavaVisionText2TextModelTester: def __init__( self, parent, ignore_index=-100, image_token_index=0, projector_hidden_act="gelu", seq_length=7, vision_feature_select_strategy="default", vision_feature_layer=-1, text_config={ "model_type": "llama", "seq_length": 7, "is_training": True, "use_input_mask": True, "use_token_type_ids": False, "use_labels": True, "vocab_size": 99, "hidden_size": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "hidden_act": "gelu", "hidden_dropout_prob": 0.1, "attention_probs_dropout_prob": 0.1, "max_position_embeddings": 512, "type_vocab_size": 16, "type_sequence_label_size": 2, "initializer_range": 0.02, "num_labels": 3, "num_choices": 4, "pad_token_id": 0, }, is_training=True, vision_config={ "batch_size": 12, "image_size": 30, "patch_size": 2, "num_channels": 3, "is_training": True, "hidden_size": 32, "projection_dim": 32, "num_hidden_layers": 2, "num_attention_heads": 4, "intermediate_size": 37, "dropout": 0.1, "attention_dropout": 0.1, "initializer_range": 0.02, }, ): self.parent = parent self.ignore_index = ignore_index self.image_token_index = image_token_index self.projector_hidden_act = projector_hidden_act self.vision_feature_select_strategy = vision_feature_select_strategy self.vision_feature_layer = vision_feature_layer self.text_config = text_config self.vision_config = vision_config self.seq_length = seq_length self.num_hidden_layers = text_config["num_hidden_layers"] self.vocab_size = text_config["vocab_size"] self.hidden_size = text_config["hidden_size"] self.num_attention_heads = text_config["num_attention_heads"] self.is_training = is_training self.batch_size = 3 self.num_channels = 3 self.image_size = 336 self.encoder_seq_length = 231 def get_config(self): return LlavaConfig( text_config=self.text_config, vision_config=self.vision_config, ignore_index=self.ignore_index, image_token_index=self.image_token_index, projector_hidden_act=self.projector_hidden_act, vision_feature_select_strategy=self.vision_feature_select_strategy, vision_feature_layer=self.vision_feature_layer, ) def prepare_config_and_inputs(self): pixel_values = floats_tensor( [ self.batch_size, self.vision_config["num_channels"], self.vision_config["image_size"], self.vision_config["image_size"], ] ) config = self.get_config() return config, pixel_values def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs input_ids = ids_tensor([self.batch_size, self.seq_length], config.text_config.vocab_size - 1) + 1 attention_mask = input_ids.ne(1).to(torch_device) # we are giving 3 images let's make sure we pass in 3 image tokens input_ids[:, 1] = config.image_token_index inputs_dict = { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class LlavaForConditionalGenerationModelTest(ModelTesterMixin, unittest.TestCase): """ Model tester for `LlavaForConditionalGeneration`. """ all_model_classes = (LlavaForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = {"image-to-text": LlavaForConditionalGeneration} if is_torch_available() else {} fx_compatible = False test_pruning = False test_resize_embeddings = True test_head_masking = False def setUp(self): self.model_tester = LlavaVisionText2TextModelTester(self) self.config_tester = ConfigTester(self, config_class=LlavaConfig, has_text_modality=False) @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch class LlavaForConditionalGenerationIntegrationTest(unittest.TestCase): def setUp(self): self.processor = AutoProcessor.from_pretrained("llava-hf/bakLlava-v1-hf") def tearDown(self): gc.collect() torch.cuda.empty_cache() @slow @require_bitsandbytes def test_small_model_integration_test(self): # Let' s make sure we test the preprocessing to replace what is used model = LlavaForConditionalGeneration.from_pretrained("llava-hf/bakLlava-v1-hf", load_in_4bit=True) prompt = "<image>\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT:" image_file = "https://llava-vl.github.io/static/images/view.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = self.processor(prompt, raw_image, return_tensors="pt") EXPECTED_INPUT_IDS = torch.tensor([[1, 32000, 28705, 13, 11123, 28747, 1824, 460, 272, 1722,315, 1023, 347, 13831, 925, 684, 739, 315, 3251, 456,1633, 28804, 13, 4816, 8048, 12738, 28747]]) # fmt: skip self.assertTrue(torch.equal(inputs["input_ids"], EXPECTED_INPUT_IDS)) output = model.generate(**inputs, max_new_tokens=20) EXPECTED_DECODED_TEXT = "\nUSER: What are the things I should be cautious about when I visit this place?\nASSISTANT: When visiting this place, there are a few things one should be cautious about. Firstly," # fmt: skip self.assertEqual( self.processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_llama(self): # Let' s make sure we test the preprocessing to replace what is used model_id = "llava-hf/llava-1.5-7b-hf" model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", load_in_4bit=True) processor = AutoProcessor.from_pretrained(model_id) prompt = "USER: <image>\nWhat are the things I should be cautious about when I visit this place?\nASSISTANT:" image_file = "https://llava-vl.github.io/static/images/view.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(prompt, raw_image, return_tensors="pt").to(torch_device, torch.float16) output = model.generate(**inputs, max_new_tokens=900, do_sample=False) EXPECTED_DECODED_TEXT = "USER: \nWhat are the things I should be cautious about when I visit this place?\nASSISTANT: When visiting this place, which is a pier or dock extending over a body of water, there are a few things to be cautious about. First, be aware of the weather conditions, as sudden changes in weather can make the pier unsafe to walk on. Second, be mindful of the water depth and any potential hazards, such as submerged rocks or debris, that could cause accidents or injuries. Additionally, be cautious of the presence of wildlife, such as birds or fish, and avoid disturbing their natural habitats. Lastly, be aware of any local regulations or guidelines for the use of the pier, as some areas may be restricted or prohibited for certain activities." # fmt: skip self.assertEqual( processor.decode(output[0], skip_special_tokens=True), EXPECTED_DECODED_TEXT, ) @slow @require_bitsandbytes def test_small_model_integration_test_llama_batched(self): # Let' s make sure we test the preprocessing to replace what is used model_id = "llava-hf/llava-1.5-7b-hf" model = LlavaForConditionalGeneration.from_pretrained("llava-hf/llava-1.5-7b-hf", load_in_4bit=True) processor = AutoProcessor.from_pretrained(model_id) prompts = [ "USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:", "USER: <image>\nWhat is this?\nASSISTANT:", ] image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw) image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) inputs = processor(prompts, images=[image1, image2], return_tensors="pt", padding=True) output = model.generate(**inputs, max_new_tokens=20) EXPECTED_DECODED_TEXT = ['USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, which appears to be a dock or pier extending over a body of water', 'USER: \nWhat is this?\nASSISTANT: The image features two cats lying down on a pink couch. One cat is located on'] # fmt: skip self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT) @slow @require_bitsandbytes def test_small_model_integration_test_batch(self): # Let' s make sure we test the preprocessing to replace what is used model = LlavaForConditionalGeneration.from_pretrained("llava-hf/bakLlava-v1-hf", load_in_4bit=True) # The first batch is longer in terms of text, but only has 1 image. The second batch will be padded in text, but the first will be padded because images take more space!. prompts = [ "USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:", "USER: <image>\nWhat is this?\nASSISTANT:", ] image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw) image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) inputs = self.processor(prompts, images=[image1, image2], return_tensors="pt", padding=True) output = model.generate(**inputs, max_new_tokens=20) EXPECTED_DECODED_TEXT = ['USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this place, there are a few things to be cautious about and items to bring along', 'USER: \nWhat is this?\nASSISTANT: Cats'] # fmt: skip self.assertEqual(self.processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT) @slow @require_bitsandbytes def test_small_model_integration_test_llama_batched_regression(self): # Let' s make sure we test the preprocessing to replace what is used model_id = "llava-hf/llava-1.5-7b-hf" # Multi-image & multi-prompt (e.g. 3 images and 2 prompts now fails with SDPA, this tests if "eager" works as before) model = LlavaForConditionalGeneration.from_pretrained( "llava-hf/llava-1.5-7b-hf", load_in_4bit=True, attn_implementation="eager" ) processor = AutoProcessor.from_pretrained(model_id, pad_token="<pad>") prompts = [ "USER: <image>\nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT:", "USER: <image>\nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER: <image>\nAnd this?\nASSISTANT:", ] image1 = Image.open(requests.get("https://llava-vl.github.io/static/images/view.jpg", stream=True).raw) image2 = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw) inputs = processor(prompts, images=[image1, image2, image1], return_tensors="pt", padding=True) output = model.generate(**inputs, max_new_tokens=20) EXPECTED_DECODED_TEXT = ['USER: \nWhat are the things I should be cautious about when I visit this place? What should I bring with me?\nASSISTANT: When visiting this serene location, one should be cautious about the weather conditions and potential', 'USER: \nWhat is this?\nASSISTANT: Two cats lying on a bed!\nUSER: \nAnd this?\nASSISTANT: A cat sleeping on a bed.'] # fmt: skip self.assertEqual(processor.batch_decode(output, skip_special_tokens=True), EXPECTED_DECODED_TEXT) @slow @require_bitsandbytes def test_llava_index_error_bug(self): # This is a reproducer of https://github.com/huggingface/transformers/pull/28032 and makes sure it does not happen anymore # Please refer to that PR, or specifically https://github.com/huggingface/transformers/pull/28032#issuecomment-1860650043 for # more details model_id = "llava-hf/llava-1.5-7b-hf" model = LlavaForConditionalGeneration.from_pretrained(model_id, load_in_4bit=True) processor = AutoProcessor.from_pretrained(model_id) # Simulate a super long prompt user_prompt = "Describe the image:?\n" * 200 prompt = f"USER: <image>\n{user_prompt}ASSISTANT:" image_file = "http://images.cocodataset.org/val2017/000000039769.jpg" raw_image = Image.open(requests.get(image_file, stream=True).raw) inputs = processor(prompt, raw_image, return_tensors="pt").to(torch_device, torch.float16) # Make sure that `generate` works _ = model.generate(**inputs, max_new_tokens=20) @slow @require_torch_gpu def test_llava_merge_inputs_error_bug(self): # This is a reproducer of https://github.com/huggingface/transformers/pull/28333 and makes sure it does not happen anymore model_id = "llava-hf/llava-1.5-7b-hf" model = LlavaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True ).to(torch_device) # Simulate some user inputs pixel_values = torch.randn( (2, 3, 336, 336), dtype=torch.float, device=torch_device, ) input_ids = torch.tensor( [ [32001, 32001, 1, 15043, 7084, 32000, 29871, 13, 7900], [1, 15043, 7084, 29901, 29871, 32000, 29871, 13, 7900], ], dtype=torch.long, device=torch_device, ) attention_mask = torch.tensor( [[0, 0, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=torch.long, device=torch_device, ) # Make sure that the loss is properly computed loss = model( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, labels=input_ids, ).loss loss.backward()
transformers/tests/models/llava/test_modeling_llava.py/0
{ "file_path": "transformers/tests/models/llava/test_modeling_llava.py", "repo_id": "transformers", "token_count": 7138 }
407
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch M2M100 model. """ import copy import tempfile import unittest from transformers import M2M100Config, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, require_torch_fp16, slow, torch_device, ) from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import M2M100ForConditionalGeneration, M2M100Model, M2M100Tokenizer from transformers.models.m2m_100.modeling_m2m_100 import M2M100Decoder, M2M100Encoder def prepare_m2m_100_inputs_dict( config, input_ids, decoder_input_ids, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, ): if attention_mask is None: attention_mask = input_ids.ne(config.pad_token_id) if decoder_attention_mask is None: decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id) if head_mask is None: head_mask = torch.ones(config.encoder_layers, config.encoder_attention_heads, device=torch_device) if decoder_head_mask is None: decoder_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) if cross_attn_head_mask is None: cross_attn_head_mask = torch.ones(config.decoder_layers, config.decoder_attention_heads, device=torch_device) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class M2M100ModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_labels=False, vocab_size=99, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="relu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, encoder_layerdrop=0.0, decoder_layerdrop=0.0, max_position_embeddings=20, eos_token_id=2, pad_token_id=1, bos_token_id=0, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.max_position_embeddings = max_position_embeddings self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.bos_token_id = bos_token_id def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_ids[:, -1] = self.eos_token_id # Eos Token decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input input_ids = input_ids.clamp(self.pad_token_id + 1) decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1) config = self.get_config() inputs_dict = prepare_m2m_100_inputs_dict(config, input_ids, decoder_input_ids) return config, inputs_dict def get_config(self): return M2M100Config( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, encoder_layerdrop=self.encoder_layerdrop, decoder_layerdrop=self.decoder_layerdrop, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, ) def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict def create_and_check_decoder_model_past_large_inputs(self, config, inputs_dict): model = M2M100Model(config=config).get_decoder().to(torch_device).eval() input_ids = inputs_dict["input_ids"] attention_mask = inputs_dict["attention_mask"] head_mask = inputs_dict["head_mask"] # first forward pass outputs = model(input_ids, attention_mask=attention_mask, head_mask=head_mask, use_cache=True) output, past_key_values = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_attn_mask = ids_tensor((self.batch_size, 3), 2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([attention_mask, next_attn_mask], dim=-1) output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)["last_hidden_state"] output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[ "last_hidden_state" ] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-2)) def check_encoder_decoder_model_standalone(self, config, inputs_dict): model = M2M100Model(config=config).to(torch_device).eval() outputs = model(**inputs_dict) encoder_last_hidden_state = outputs.encoder_last_hidden_state last_hidden_state = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: encoder = model.get_encoder() encoder.save_pretrained(tmpdirname) encoder = M2M100Encoder.from_pretrained(tmpdirname).to(torch_device) encoder_last_hidden_state_2 = encoder(inputs_dict["input_ids"], attention_mask=inputs_dict["attention_mask"])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_2 - encoder_last_hidden_state).abs().max().item() < 1e-3) with tempfile.TemporaryDirectory() as tmpdirname: decoder = model.get_decoder() decoder.save_pretrained(tmpdirname) decoder = M2M100Decoder.from_pretrained(tmpdirname).to(torch_device) last_hidden_state_2 = decoder( input_ids=inputs_dict["decoder_input_ids"], attention_mask=inputs_dict["decoder_attention_mask"], encoder_hidden_states=encoder_last_hidden_state, encoder_attention_mask=inputs_dict["attention_mask"], )[0] self.parent.assertTrue((last_hidden_state_2 - last_hidden_state).abs().max().item() < 1e-3) @require_torch class M2M100ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( M2M100Model, M2M100ForConditionalGeneration, ) if is_torch_available() else () ) all_generative_model_classes = (M2M100ForConditionalGeneration,) if is_torch_available() else () pipeline_model_mapping = ( { "conversational": M2M100ForConditionalGeneration, "feature-extraction": M2M100Model, "summarization": M2M100ForConditionalGeneration, "text2text-generation": M2M100ForConditionalGeneration, "translation": M2M100ForConditionalGeneration, } if is_torch_available() else {} ) is_encoder_decoder = True fx_compatible = True test_pruning = False test_missing_keys = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def setUp(self): self.model_tester = M2M100ModelTester(self) self.config_tester = ConfigTester(self, config_class=M2M100Config) def test_config(self): self.config_tester.run_common_tests() def test_save_load_strict(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_encoder_decoder_model_standalone(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*config_and_inputs) def test_inputs_embeds(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (M2M100Model, M2M100ForConditionalGeneration): model = model_class(config) model.to(torch_device) model.eval() inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) if not self.is_encoder_decoder: input_ids = inputs["input_ids"] del inputs["input_ids"] else: encoder_input_ids = inputs["input_ids"] decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) del inputs["input_ids"] inputs.pop("decoder_input_ids", None) wte = model.get_input_embeddings() if not self.is_encoder_decoder: inputs["inputs_embeds"] = wte(input_ids) else: inputs["inputs_embeds"] = wte(encoder_input_ids) inputs["decoder_inputs_embeds"] = wte(decoder_input_ids) with torch.no_grad(): model(**inputs)[0] @require_torch_fp16 def test_generate_fp16(self): config, input_dict = self.model_tester.prepare_config_and_inputs() input_ids = input_dict["input_ids"] attention_mask = input_ids.ne(1).to(torch_device) model = M2M100ForConditionalGeneration(config).eval().to(torch_device) model.half() model.generate(input_ids, attention_mask=attention_mask) model.generate(num_beams=4, do_sample=True, early_stopping=False, num_return_sequences=3) def _long_tensor(tok_lst): return torch.tensor(tok_lst, dtype=torch.long, device=torch_device) TOLERANCE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class M2M100ModelIntegrationTests(unittest.TestCase): @cached_property def default_tokenizer(self): return M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") def test_inference_no_head(self): model = M2M100Model.from_pretrained("facebook/m2m100_418M").to(torch_device) input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, 1024)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_inference_head(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) # change to intended input input_ids = _long_tensor([[128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38, 2]]) decoder_input_ids = _long_tensor([[2, 128028, 98, 12, 30527, 2732, 159, 7755, 61904, 39144, 38]]) inputs_dict = prepare_m2m_100_inputs_dict(model.config, input_ids, decoder_input_ids) with torch.no_grad(): output = model(**inputs_dict)[0] expected_shape = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape, expected_shape) # change to expected output here expected_slice = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]], device=torch_device ) self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=TOLERANCE)) def test_seq_to_seq_generation(self): model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M").to(torch_device) tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="fr", tgt_lang="en") src_fr = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams dct = tokenizer(src_fr, padding=True, return_tensors="pt") hypotheses_batch = model.generate( input_ids=dct["input_ids"].to(torch_device), attention_mask=dct["attention_mask"].to(torch_device), num_beams=5, forced_bos_token_id=tokenizer.get_lang_id("en"), ) expected_en = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] generated = tokenizer.batch_decode( hypotheses_batch.tolist(), clean_up_tokenization_spaces=True, skip_special_tokens=True ) assert generated == expected_en
transformers/tests/models/m2m_100/test_modeling_m2m_100.py/0
{ "file_path": "transformers/tests/models/m2m_100/test_modeling_m2m_100.py", "repo_id": "transformers", "token_count": 7707 }
408
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import MaskFormerImageProcessor from transformers.models.maskformer.image_processing_maskformer import binary_mask_to_rle from transformers.models.maskformer.modeling_maskformer import MaskFormerForInstanceSegmentationOutput if is_vision_available(): from PIL import Image class MaskFormerImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, min_resolution=30, max_resolution=400, size=None, do_resize=True, do_normalize=True, image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5], num_labels=10, do_reduce_labels=True, ignore_index=255, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = {"shortest_edge": 32, "longest_edge": 1333} if size is None else size self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self.size_divisor = 0 # for the post_process_functions self.batch_size = 2 self.num_queries = 3 self.num_classes = 2 self.height = 3 self.width = 4 self.num_labels = num_labels self.do_reduce_labels = do_reduce_labels self.ignore_index = ignore_index def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "size_divisor": self.size_divisor, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, } def get_expected_values(self, image_inputs, batched=False): """ This function computes the expected height and width when providing images to MaskFormerImageProcessor, assuming do_resize is set to True with a scalar size. """ if not batched: image = image_inputs[0] if isinstance(image, Image.Image): w, h = image.size else: h, w = image.shape[1], image.shape[2] if w < h: expected_height = int(self.size["shortest_edge"] * h / w) expected_width = self.size["shortest_edge"] elif w > h: expected_height = self.size["shortest_edge"] expected_width = int(self.size["shortest_edge"] * w / h) else: expected_height = self.size["shortest_edge"] expected_width = self.size["shortest_edge"] else: expected_values = [] for image in image_inputs: expected_height, expected_width = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) expected_height = max(expected_values, key=lambda item: item[0])[0] expected_width = max(expected_values, key=lambda item: item[1])[1] return expected_height, expected_width def get_fake_maskformer_outputs(self): return MaskFormerForInstanceSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1)), masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width)), ) def expected_output_image_shape(self, images): height, width = self.get_expected_values(images, batched=True) return self.num_channels, height, width def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MaskFormerImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MaskFormerImageProcessor if (is_vision_available() and is_torch_available()) else None def setUp(self): self.image_processor_tester = MaskFormerImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "image_mean")) self.assertTrue(hasattr(image_processing, "image_std")) self.assertTrue(hasattr(image_processing, "do_normalize")) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "ignore_index")) self.assertTrue(hasattr(image_processing, "num_labels")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 32, "longest_edge": 1333}) self.assertEqual(image_processor.size_divisor, 0) image_processor = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, size_divisibility=8 ) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84}) self.assertEqual(image_processor.size_divisor, 8) def comm_get_image_processing_inputs( self, with_segmentation_maps=False, is_instance_map=False, segmentation_type="np" ): image_processing = self.image_processing_class(**self.image_processor_dict) # prepare image and target num_labels = self.image_processor_tester.num_labels annotations = None instance_id_to_semantic_id = None image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False) if with_segmentation_maps: high = num_labels if is_instance_map: labels_expanded = list(range(num_labels)) * 2 instance_id_to_semantic_id = dict(enumerate(labels_expanded)) annotations = [ np.random.randint(0, high * 2, (img.size[1], img.size[0])).astype(np.uint8) for img in image_inputs ] if segmentation_type == "pil": annotations = [Image.fromarray(annotation) for annotation in annotations] inputs = image_processing( image_inputs, annotations, return_tensors="pt", instance_id_to_semantic_id=instance_id_to_semantic_id, pad_and_return_pixel_mask=True, ) return inputs def test_with_size_divisor(self): size_divisors = [8, 16, 32] weird_input_sizes = [(407, 802), (582, 1094)] for size_divisor in size_divisors: image_processor_dict = {**self.image_processor_dict, **{"size_divisor": size_divisor}} image_processing = self.image_processing_class(**image_processor_dict) for weird_input_size in weird_input_sizes: inputs = image_processing([np.ones((3, *weird_input_size))], return_tensors="pt") pixel_values = inputs["pixel_values"] # check if divisible self.assertTrue((pixel_values.shape[-1] % size_divisor) == 0) self.assertTrue((pixel_values.shape[-2] % size_divisor) == 0) def test_call_with_segmentation_maps(self): def common(is_instance_map=False, segmentation_type=None): inputs = self.comm_get_image_processing_inputs( with_segmentation_maps=True, is_instance_map=is_instance_map, segmentation_type=segmentation_type ) mask_labels = inputs["mask_labels"] class_labels = inputs["class_labels"] pixel_values = inputs["pixel_values"] # check the batch_size for mask_label, class_label in zip(mask_labels, class_labels): self.assertEqual(mask_label.shape[0], class_label.shape[0]) # this ensure padding has happened self.assertEqual(mask_label.shape[1:], pixel_values.shape[2:]) common() common(is_instance_map=True) common(is_instance_map=False, segmentation_type="pil") common(is_instance_map=True, segmentation_type="pil") def test_integration_instance_segmentation(self): # load 2 images and corresponding annotations from the hub repo_id = "nielsr/image-segmentation-toy-data" image1 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_image_1.png", repo_type="dataset") ) image2 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_image_2.png", repo_type="dataset") ) annotation1 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_annotation_1.png", repo_type="dataset") ) annotation2 = Image.open( hf_hub_download(repo_id=repo_id, filename="instance_segmentation_annotation_2.png", repo_type="dataset") ) # get instance segmentations and instance-to-segmentation mappings def get_instance_segmentation_and_mapping(annotation): instance_seg = np.array(annotation)[:, :, 1] class_id_map = np.array(annotation)[:, :, 0] class_labels = np.unique(class_id_map) # create mapping between instance IDs and semantic category IDs inst2class = {} for label in class_labels: instance_ids = np.unique(instance_seg[class_id_map == label]) inst2class.update({i: label for i in instance_ids}) return instance_seg, inst2class instance_seg1, inst2class1 = get_instance_segmentation_and_mapping(annotation1) instance_seg2, inst2class2 = get_instance_segmentation_and_mapping(annotation2) # create a image processor image_processing = MaskFormerImageProcessor(reduce_labels=True, ignore_index=255, size=(512, 512)) # prepare the images and annotations inputs = image_processing( [image1, image2], [instance_seg1, instance_seg2], instance_id_to_semantic_id=[inst2class1, inst2class2], return_tensors="pt", ) # verify the pixel values and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 512)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 512)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) self.assertTrue(torch.allclose(inputs["class_labels"][0], torch.tensor([30, 55]))) self.assertTrue(torch.allclose(inputs["class_labels"][1], torch.tensor([4, 4, 23, 55]))) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (2, 512, 512)) self.assertEqual(inputs["mask_labels"][1].shape, (4, 512, 512)) self.assertEquals(inputs["mask_labels"][0].sum().item(), 41527.0) self.assertEquals(inputs["mask_labels"][1].sum().item(), 26259.0) def test_integration_semantic_segmentation(self): # load 2 images and corresponding semantic annotations from the hub repo_id = "nielsr/image-segmentation-toy-data" image1 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_image_1.png", repo_type="dataset") ) image2 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_image_2.png", repo_type="dataset") ) annotation1 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_annotation_1.png", repo_type="dataset") ) annotation2 = Image.open( hf_hub_download(repo_id=repo_id, filename="semantic_segmentation_annotation_2.png", repo_type="dataset") ) # create a image processor image_processing = MaskFormerImageProcessor(reduce_labels=True, ignore_index=255, size=(512, 512)) # prepare the images and annotations inputs = image_processing( [image1, image2], [annotation1, annotation2], return_tensors="pt", ) # verify the pixel values and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 512)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 512)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) self.assertTrue(torch.allclose(inputs["class_labels"][0], torch.tensor([2, 4, 60]))) self.assertTrue(torch.allclose(inputs["class_labels"][1], torch.tensor([0, 3, 7, 8, 15, 28, 30, 143]))) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (3, 512, 512)) self.assertEqual(inputs["mask_labels"][1].shape, (8, 512, 512)) self.assertEquals(inputs["mask_labels"][0].sum().item(), 170200.0) self.assertEquals(inputs["mask_labels"][1].sum().item(), 257036.0) def test_integration_panoptic_segmentation(self): # load 2 images and corresponding panoptic annotations from the hub dataset = load_dataset("nielsr/ade20k-panoptic-demo") image1 = dataset["train"][0]["image"] image2 = dataset["train"][1]["image"] segments_info1 = dataset["train"][0]["segments_info"] segments_info2 = dataset["train"][1]["segments_info"] annotation1 = dataset["train"][0]["label"] annotation2 = dataset["train"][1]["label"] def rgb_to_id(color): if isinstance(color, np.ndarray) and len(color.shape) == 3: if color.dtype == np.uint8: color = color.astype(np.int32) return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2] return int(color[0] + 256 * color[1] + 256 * 256 * color[2]) def create_panoptic_map(annotation, segments_info): annotation = np.array(annotation) # convert RGB to segment IDs per pixel # 0 is the "ignore" label, for which we don't need to make binary masks panoptic_map = rgb_to_id(annotation) # create mapping between segment IDs and semantic classes inst2class = {segment["id"]: segment["category_id"] for segment in segments_info} return panoptic_map, inst2class panoptic_map1, inst2class1 = create_panoptic_map(annotation1, segments_info1) panoptic_map2, inst2class2 = create_panoptic_map(annotation2, segments_info2) # create a image processor image_processing = MaskFormerImageProcessor(ignore_index=0, do_resize=False) # prepare the images and annotations pixel_values_list = [np.moveaxis(np.array(image1), -1, 0), np.moveaxis(np.array(image2), -1, 0)] inputs = image_processing.encode_inputs( pixel_values_list, [panoptic_map1, panoptic_map2], instance_id_to_semantic_id=[inst2class1, inst2class2], return_tensors="pt", ) # verify the pixel values and pixel mask self.assertEqual(inputs["pixel_values"].shape, (2, 3, 512, 711)) self.assertEqual(inputs["pixel_mask"].shape, (2, 512, 711)) # verify the class labels self.assertEqual(len(inputs["class_labels"]), 2) expected_class_labels = torch.tensor([4, 17, 32, 42, 42, 42, 42, 42, 42, 42, 32, 12, 12, 12, 12, 12, 42, 42, 12, 12, 12, 42, 12, 12, 12, 12, 12, 3, 12, 12, 12, 12, 42, 42, 42, 12, 42, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 5, 12, 12, 12, 12, 12, 12, 12, 0, 43, 43, 43, 96, 43, 104, 43, 31, 125, 31, 125, 138, 87, 125, 149, 138, 125, 87, 87]) # fmt: skip self.assertTrue(torch.allclose(inputs["class_labels"][0], torch.tensor(expected_class_labels))) expected_class_labels = torch.tensor([19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 67, 82, 19, 19, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 12, 12, 42, 12, 12, 12, 12, 3, 14, 12, 12, 12, 12, 12, 12, 12, 12, 14, 5, 12, 12, 0, 115, 43, 43, 115, 43, 43, 43, 8, 8, 8, 138, 138, 125, 143]) # fmt: skip self.assertTrue(torch.allclose(inputs["class_labels"][1], expected_class_labels)) # verify the mask labels self.assertEqual(len(inputs["mask_labels"]), 2) self.assertEqual(inputs["mask_labels"][0].shape, (79, 512, 711)) self.assertEqual(inputs["mask_labels"][1].shape, (61, 512, 711)) self.assertEquals(inputs["mask_labels"][0].sum().item(), 315193.0) self.assertEquals(inputs["mask_labels"][1].sum().item(), 350747.0) def test_binary_mask_to_rle(self): fake_binary_mask = np.zeros((20, 50)) fake_binary_mask[0, 20:] = 1 fake_binary_mask[1, :15] = 1 fake_binary_mask[5, :10] = 1 rle = binary_mask_to_rle(fake_binary_mask) self.assertEqual(len(rle), 4) self.assertEqual(rle[0], 21) self.assertEqual(rle[1], 45) def test_post_process_segmentation(self): fature_extractor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_maskformer_outputs() segmentation = fature_extractor.post_process_segmentation(outputs) self.assertEqual( segmentation.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_classes, self.image_processor_tester.height, self.image_processor_tester.width, ), ) target_size = (1, 4) segmentation = fature_extractor.post_process_segmentation(outputs, target_size=target_size) self.assertEqual( segmentation.shape, (self.image_processor_tester.batch_size, self.image_processor_tester.num_classes, *target_size), ) def test_post_process_semantic_segmentation(self): fature_extractor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_maskformer_outputs() segmentation = fature_extractor.post_process_semantic_segmentation(outputs) self.assertEqual(len(segmentation), self.image_processor_tester.batch_size) self.assertEqual( segmentation[0].shape, ( self.image_processor_tester.height, self.image_processor_tester.width, ), ) target_sizes = [(1, 4) for i in range(self.image_processor_tester.batch_size)] segmentation = fature_extractor.post_process_semantic_segmentation(outputs, target_sizes=target_sizes) self.assertEqual(segmentation[0].shape, target_sizes[0]) def test_post_process_instance_segmentation(self): image_processor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_maskformer_outputs() segmentation = image_processor.post_process_instance_segmentation(outputs, threshold=0) self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual( el["segmentation"].shape, (self.image_processor_tester.height, self.image_processor_tester.width) ) segmentation = image_processor.post_process_instance_segmentation( outputs, threshold=0, return_binary_maps=True ) self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual(len(el["segmentation"].shape), 3) self.assertEqual( el["segmentation"].shape[1:], (self.image_processor_tester.height, self.image_processor_tester.width) ) def test_post_process_panoptic_segmentation(self): image_processing = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_maskformer_outputs() segmentation = image_processing.post_process_panoptic_segmentation(outputs, threshold=0) self.assertTrue(len(segmentation) == self.image_processor_tester.batch_size) for el in segmentation: self.assertTrue("segmentation" in el) self.assertTrue("segments_info" in el) self.assertEqual(type(el["segments_info"]), list) self.assertEqual( el["segmentation"].shape, (self.image_processor_tester.height, self.image_processor_tester.width) ) def test_post_process_label_fusing(self): image_processor = self.image_processing_class(num_labels=self.image_processor_tester.num_classes) outputs = self.image_processor_tester.get_fake_maskformer_outputs() segmentation = image_processor.post_process_panoptic_segmentation( outputs, threshold=0, mask_threshold=0, overlap_mask_area_threshold=0 ) unfused_segments = [el["segments_info"] for el in segmentation] fused_segmentation = image_processor.post_process_panoptic_segmentation( outputs, threshold=0, mask_threshold=0, overlap_mask_area_threshold=0, label_ids_to_fuse={1} ) fused_segments = [el["segments_info"] for el in fused_segmentation] for el_unfused, el_fused in zip(unfused_segments, fused_segments): if len(el_unfused) == 0: self.assertEqual(len(el_unfused), len(el_fused)) continue # Get number of segments to be fused fuse_targets = [1 for el in el_unfused if el["label_id"] in {1}] num_to_fuse = 0 if len(fuse_targets) == 0 else sum(fuse_targets) - 1 # Expected number of segments after fusing expected_num_segments = max([el["id"] for el in el_unfused]) - num_to_fuse num_segments_fused = max([el["id"] for el in el_fused]) self.assertEqual(num_segments_fused, expected_num_segments)
transformers/tests/models/maskformer/test_image_processing_maskformer.py/0
{ "file_path": "transformers/tests/models/maskformer/test_image_processing_maskformer.py", "repo_id": "transformers", "token_count": 10724 }
409
# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_vision_available from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs if is_vision_available(): from transformers import MobileNetV1ImageProcessor class MobileNetV1ImageProcessingTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=None, do_center_crop=True, crop_size=None, ): size = size if size is not None else {"shortest_edge": 20} crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18} self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size def prepare_image_processor_dict(self): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } def expected_output_image_shape(self, images): return self.num_channels, self.crop_size["height"], self.crop_size["width"] def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False): return prepare_image_inputs( batch_size=self.batch_size, num_channels=self.num_channels, min_resolution=self.min_resolution, max_resolution=self.max_resolution, equal_resolution=equal_resolution, numpify=numpify, torchify=torchify, ) @require_torch @require_vision class MobileNetV1ImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase): image_processing_class = MobileNetV1ImageProcessor if is_vision_available() else None def setUp(self): self.image_processor_tester = MobileNetV1ImageProcessingTester(self) @property def image_processor_dict(self): return self.image_processor_tester.prepare_image_processor_dict() def test_image_processor_properties(self): image_processing = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(image_processing, "do_resize")) self.assertTrue(hasattr(image_processing, "size")) self.assertTrue(hasattr(image_processing, "do_center_crop")) self.assertTrue(hasattr(image_processing, "center_crop")) def test_image_processor_from_dict_with_kwargs(self): image_processor = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size, {"shortest_edge": 20}) self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18}) image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84) self.assertEqual(image_processor.size, {"shortest_edge": 42}) self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
transformers/tests/models/mobilenet_v1/test_image_processing_mobilenet_v1.py/0
{ "file_path": "transformers/tests/models/mobilenet_v1/test_image_processing_mobilenet_v1.py", "repo_id": "transformers", "token_count": 1544 }
410
# coding=utf-8 # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import math import unittest from transformers import MptConfig, is_torch_available from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPT_PRETRAINED_MODEL_ARCHIVE_LIST, AutoTokenizer, MptForCausalLM, MptForQuestionAnswering, MptForSequenceClassification, MptForTokenClassification, MptModel, ) @require_torch class MptModelTester: def __init__( self, parent, batch_size=14, seq_length=7, is_training=True, use_token_type_ids=False, use_input_mask=True, use_labels=True, use_mc_token_ids=True, vocab_size=99, hidden_size=48, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_token_type_ids = use_token_type_ids self.use_input_mask = use_input_mask self.use_labels = use_labels self.use_mc_token_ids = use_mc_token_ids self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_dropout_prob = attention_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = None self.bos_token_id = vocab_size - 1 self.eos_token_id = vocab_size - 1 self.pad_token_id = vocab_size - 1 def get_large_model_config(self): return MptConfig.from_pretrained("mosaicml/mpt-7b") def prepare_config_and_inputs(self, gradient_checkpointing=False): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) sequence_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config(gradient_checkpointing=gradient_checkpointing) return (config, input_ids, input_mask, sequence_labels) def get_config(self, gradient_checkpointing=False): return MptConfig( vocab_size=self.vocab_size, seq_length=self.seq_length, hidden_size=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, hidden_dropout=self.hidden_dropout_prob, attention_dropout=self.attention_dropout_prob, n_positions=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, use_cache=True, bos_token_id=self.bos_token_id, eos_token_id=self.eos_token_id, pad_token_id=self.pad_token_id, num_labels=self.num_labels, gradient_checkpointing=gradient_checkpointing, dtype="float32", ) def create_and_check_mpt_model(self, config, input_ids, input_mask, *args): model = MptModel(config=config) model.to(torch_device) model.eval() result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values), config.n_layers) def create_and_check_mpt_model_past(self, config, input_ids, input_mask, *args): model = MptModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model(input_ids, attention_mask=torch.ones_like(input_ids), use_cache=True) outputs_use_cache_conf = model(input_ids, attention_mask=torch.ones_like(input_ids)) outputs_no_past = model(input_ids, use_cache=False, attention_mask=torch.ones_like(input_ids)) self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf)) self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1) past = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # append to next input_ids and token_type_ids next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) output_from_no_past = model(next_input_ids)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_mpt_model_attention_mask_past(self, config, input_ids, input_mask, *args): model = MptModel(config=config) model.to(torch_device) model.eval() # create attention mask attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device) half_seq_length = self.seq_length // 2 attn_mask[:, half_seq_length:] = 0 # first forward pass output, past = model(input_ids, attention_mask=attn_mask).to_tuple() # create hypothetical next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size) # change a random masked slice from input_ids random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1 random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1) input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens # append to next input_ids and attn_mask next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) attn_mask = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)], dim=1, ) # get two different outputs output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"] output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach() output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_mpt_model_past_large_inputs(self, config, input_ids, input_mask, *args): model = MptModel(config=config) model.to(torch_device) model.eval() # first forward pass outputs = model( input_ids, attention_mask=input_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, output_hidden_states=True, ) hidden_states_from_no_past = output_from_no_past["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, ) hidden_states_from_past = output_from_past["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), hidden_states_from_past.shape[-1]).item() output_from_no_past_slice = hidden_states_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = hidden_states_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_lm_head_model(self, config, input_ids, input_mask, *args): model = MptForCausalLM(config) model.to(torch_device) model.eval() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_sequence_classification_model(self, config, input_ids, input_mask, *args): config.num_labels = self.num_labels model = MptForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_token_classification_model(self, config, input_ids, input_mask, *args): model = MptForTokenClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_question_answering_model(self, config, input_ids, input_mask, *args): model = MptForQuestionAnswering(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_forward_and_backwards( self, config, input_ids, input_mask, *args, gradient_checkpointing=False ): model = MptForCausalLM(config) model.to(torch_device) if gradient_checkpointing: model.gradient_checkpointing_enable() result = model(input_ids, labels=input_ids) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def create_and_check_mpt_weight_initialization(self, config, *args): model = MptModel(config) model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, input_mask, sequence_labels = config_and_inputs inputs_dict = {"input_ids": input_ids} return config, inputs_dict class MptConfigTester(ConfigTester): def __init__(self, parent, config_class=None, has_text_modality=True, common_properties=None, **kwargs): super().__init__(parent, config_class, has_text_modality, common_properties, **kwargs) def test_attn_config_as_dict(self): config = self.config_class(**self.inputs_dict, attn_config={"attn_impl": "flash", "softmax_scale": None}) self.parent.assertTrue(config.attn_config.attn_impl == "flash") self.parent.assertTrue(config.attn_config.softmax_scale is None) def run_common_tests(self): self.test_attn_config_as_dict() return super().run_common_tests() @require_torch class MptModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( MptModel, MptForCausalLM, MptForSequenceClassification, MptForTokenClassification, MptForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (MptForCausalLM,) if is_torch_available() else () fx_compatible = False test_missing_keys = False test_pruning = False test_torchscript = False test_head_masking = False pipeline_model_mapping = ( { "feature-extraction": MptModel, "question-answering": MptForQuestionAnswering, "text-classification": MptForSequenceClassification, "text-generation": MptForCausalLM, "token-classification": MptForTokenClassification, "zero-shot": MptForSequenceClassification, } if is_torch_available() else {} ) def setUp(self): self.model_tester = MptModelTester(self) self.config_tester = MptConfigTester(self, config_class=MptConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_mpt_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpt_model(*config_and_inputs) def test_mpt_model_alibi_tensor(self): # test creation of alibi tensor when num heads is not a power of two config_and_inputs = self.model_tester.prepare_config_and_inputs() config_and_inputs[0].n_heads = 6 self.model_tester.create_and_check_mpt_model(*config_and_inputs) def test_mpt_model_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpt_model_past(*config_and_inputs) def test_mpt_model_att_mask_past(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpt_model_attention_mask_past(*config_and_inputs) def test_mpt_model_past_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpt_model_past_large_inputs(*config_and_inputs) def test_mpt_lm_head_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*config_and_inputs) def test_mpt_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_sequence_classification_model(*config_and_inputs) def test_mpt_token_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_token_classification_model(*config_and_inputs) def test_mpt_gradient_checkpointing(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True) def test_mpt_weight_initialization(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpt_weight_initialization(*config_and_inputs) @unittest.skip("For backward compatibility the lm_head is not in the model's state dict on the Hub.") def test_model_weights_reload_no_missing_tied_weights(self): pass @slow def test_model_from_pretrained(self): for model_name in MPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = MptModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch_gpu @require_bitsandbytes class MptIntegrationTests(unittest.TestCase): def test_generation_8k(self): model_id = "mosaicml/mpt-7b-8k" tokenizer = AutoTokenizer.from_pretrained(model_id) # Load in 4bit to fit the daily CI runner GPU RAM model = MptForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True ) input_text = "Hello" expected_output = 'Hello, I\'m a new user of the forum. I have a question about the "Safety"' inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) self.assertEqual(decoded_output, expected_output) def test_generation(self): model_id = "mosaicml/mpt-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) # Load in 4bit to fit the daily CI runner GPU RAM model = MptForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True ) input_text = "Hello" expected_output = ( "Hello and welcome to the first day of the new release countdown for the month of May!\nToday" ) inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=20) decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) self.assertEqual(decoded_output, expected_output) def test_generation_batched(self): model_id = "mosaicml/mpt-7b" tokenizer = AutoTokenizer.from_pretrained(model_id) # Load in 4bit to fit the daily CI runner GPU RAM model = MptForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True ) input_texts = ["Hello my name is", "Today I am going at the gym and"] tokenizer.pad_token_id = tokenizer.eos_token_id tokenizer.padding_side = "left" inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(torch_device) expected_output = [ "Hello my name is Tiffany and I am a mother of two beautiful children. I have been a nanny for over", "Today I am going at the gym and then I am going to go to the grocery store and get some food. I am going to make", ] outputs = model.generate(**inputs, max_new_tokens=20) decoded_outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) for i, predicted_output in enumerate(decoded_outputs): self.assertEqual(predicted_output, expected_output[i]) def test_model_logits(self): model_id = "mosaicml/mpt-7b" # Load in 4bit to fit the daily CI runner GPU RAM model = MptForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map={"": 0}, load_in_4bit=True ) dummy_input = torch.LongTensor([[1, 2, 3, 4, 5]]).to(torch_device) outputs = model(dummy_input, output_hidden_states=True) expected_slice = torch.Tensor([-0.2539, -0.2178, -0.1953]).to(torch_device, torch.bfloat16) predicted_slice = outputs.hidden_states[-1][0, 0, :3] self.assertTrue(torch.allclose(expected_slice, predicted_slice, atol=1e-3, rtol=1e-3))
transformers/tests/models/mpt/test_modeling_mpt.py/0
{ "file_path": "transformers/tests/models/mpt/test_modeling_mpt.py", "repo_id": "transformers", "token_count": 9258 }
411
# coding=utf-8 # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class NezhaModelTester: def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=128, max_relative_position=32, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_labels=3, num_choices=4, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): """ Returns a tiny configuration by default. """ return NezhaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = NezhaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_next_sequence_prediction( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForNextSentencePrediction(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def create_and_check_for_pretraining( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForPreTraining(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels, next_sentence_label=sequence_labels, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = NezhaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_for_sequence_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = NezhaForSequenceClassification(config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = NezhaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = NezhaForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class NezhaModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) pipeline_model_mapping = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) fx_compatible = True # special case for ForPreTraining model def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) if return_labels: if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING): inputs_dict["labels"] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device ) inputs_dict["next_sentence_label"] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=torch_device ) return inputs_dict def setUp(self): self.model_tester = NezhaModelTester(self) self.config_tester = ConfigTester(self, config_class=NezhaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_next_sequence_prediction(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) def test_for_sequence_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = NezhaModel.from_pretrained(model_name) self.assertIsNotNone(model) @slow @require_torch_gpu def test_torchscript_device_change(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return config.torchscript = True model = model_class(config=config) inputs_dict = self._prepare_for_class(inputs_dict, model_class) traced_model = torch.jit.trace( model, (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu")) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(traced_model, os.path.join(tmp, "bert.pt")) loaded = torch.jit.load(os.path.join(tmp, "bert.pt"), map_location=torch_device) loaded(inputs_dict["input_ids"].to(torch_device), inputs_dict["attention_mask"].to(torch_device)) @require_torch class NezhaModelIntegrationTest(unittest.TestCase): @slow def test_inference_nezha_model(self): model = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 6, 768)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4)) @slow def test_inference_nezha_masked_lm(self): model = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base") input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]]) attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): output = model(input_ids, attention_mask=attention_mask)[0] expected_shape = torch.Size((1, 6, 21128)) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
transformers/tests/models/nezha/test_modeling_nezha.py/0
{ "file_path": "transformers/tests/models/nezha/test_modeling_nezha.py", "repo_id": "transformers", "token_count": 9040 }
412
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import OpenAIGPTConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.openai.modeling_tf_openai import ( TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification, TFOpenAIGPTLMHeadModel, TFOpenAIGPTModel, ) class TFOpenAIGPTModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_token_type_ids = True self.use_input_mask = True self.use_labels = True self.use_mc_token_ids = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None self.pad_token_id = self.vocab_size - 1 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) mc_token_ids = None if self.use_mc_token_ids: mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = OpenAIGPTConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, # intermediate_size=self.intermediate_size, # hidden_act=self.hidden_act, # hidden_dropout_prob=self.hidden_dropout_prob, # attention_probs_dropout_prob=self.attention_probs_dropout_prob, n_positions=self.max_position_embeddings, # type_vocab_size=self.type_vocab_size, # initializer_range=self.initializer_range, pad_token_id=self.pad_token_id, ) head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFOpenAIGPTModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args): model = TFOpenAIGPTLMHeadModel(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_openai_gpt_double_head( self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args ): model = TFOpenAIGPTDoubleHeadsModel(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "mc_token_ids": mc_token_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices)) def create_and_check_openai_gpt_for_sequence_classification( self, config, input_ids, input_mask, head_mask, token_type_ids, *args ): config.num_labels = self.num_labels sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) inputs = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, "labels": sequence_labels, } model = TFOpenAIGPTForSequenceClassification(config) result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class TFOpenAIGPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification) if is_tf_available() else () ) all_generative_model_classes = ( (TFOpenAIGPTLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly pipeline_model_mapping = ( { "feature-extraction": TFOpenAIGPTModel, "text-classification": TFOpenAIGPTForSequenceClassification, "text-generation": TFOpenAIGPTLMHeadModel, "zero-shot": TFOpenAIGPTForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def setUp(self): self.model_tester = TFOpenAIGPTModelTester(self) self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37) def test_config(self): self.config_tester.run_common_tests() def test_openai_gpt_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs) def test_openai_gpt_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs) def test_openai_gpt_double_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs) def test_openai_gpt_sequence_classification_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFOpenAIGPTModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFOPENAIGPTModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_openai_gpt(self): model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-gpt") input_ids = tf.convert_to_tensor([[481, 4735, 544]], dtype=tf.int32) # the president is expected_output_ids = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
transformers/tests/models/openai/test_modeling_tf_openai.py/0
{ "file_path": "transformers/tests/models/openai/test_modeling_tf_openai.py", "repo_id": "transformers", "token_count": 5052 }
413
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch PatchTST model. """ import inspect import random import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin TOLERANCE = 1e-4 if is_torch_available(): import torch from transformers import ( MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING, MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING, PatchTSTConfig, PatchTSTForClassification, PatchTSTForPrediction, PatchTSTForPretraining, PatchTSTForRegression, PatchTSTModel, ) @require_torch class PatchTSTModelTester: def __init__( self, parent, batch_size=13, prediction_length=7, context_length=14, patch_length=5, patch_stride=5, num_input_channels=1, num_time_features=1, is_training=True, hidden_size=16, num_hidden_layers=2, num_attention_heads=4, intermediate_size=4, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, distil=False, seed=42, num_targets=2, mask_type="random", random_mask_ratio=0, ): self.parent = parent self.batch_size = batch_size self.prediction_length = prediction_length self.context_length = context_length self.patch_length = patch_length self.patch_stride = patch_stride self.num_input_channels = num_input_channels self.num_time_features = num_time_features self.is_training = is_training self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.mask_type = mask_type self.random_mask_ratio = random_mask_ratio self.seed = seed self.num_targets = num_targets self.distil = distil self.num_patches = (max(self.context_length, self.patch_length) - self.patch_length) // self.patch_stride + 1 # define seq_length so that it can pass the test_attention_outputs self.seq_length = self.num_patches def get_config(self): return PatchTSTConfig( prediction_length=self.prediction_length, patch_length=self.patch_length, patch_stride=self.patch_stride, num_input_channels=self.num_input_channels, d_model=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, context_length=self.context_length, activation_function=self.hidden_act, seed=self.seed, num_targets=self.num_targets, mask_type=self.mask_type, random_mask_ratio=self.random_mask_ratio, ) def prepare_patchtst_inputs_dict(self, config): _past_length = config.context_length # bs, num_input_channels, num_patch, patch_len # [bs x seq_len x num_input_channels] past_values = floats_tensor([self.batch_size, _past_length, self.num_input_channels]) future_values = floats_tensor([self.batch_size, config.prediction_length, self.num_input_channels]) inputs_dict = { "past_values": past_values, "future_values": future_values, } return inputs_dict def prepare_config_and_inputs(self): config = self.get_config() inputs_dict = self.prepare_patchtst_inputs_dict(config) return config, inputs_dict def prepare_config_and_inputs_for_common(self): config, inputs_dict = self.prepare_config_and_inputs() return config, inputs_dict @require_torch class PatchTSTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( PatchTSTModel, PatchTSTForPrediction, PatchTSTForPretraining, PatchTSTForClassification, PatchTSTForRegression, ) if is_torch_available() else () ) pipeline_model_mapping = {"feature-extraction": PatchTSTModel} if is_torch_available() else {} is_encoder_decoder = False test_pruning = False test_head_masking = False test_missing_keys = True test_torchscript = False test_inputs_embeds = False test_model_common_attributes = False test_resize_embeddings = True test_resize_position_embeddings = False test_mismatched_shapes = True test_model_parallel = False has_attentions = True def setUp(self): self.model_tester = PatchTSTModelTester(self) self.config_tester = ConfigTester( self, config_class=PatchTSTConfig, has_text_modality=False, prediction_length=self.model_tester.prediction_length, ) def test_config(self): self.config_tester.run_common_tests() def _prepare_for_class(self, inputs_dict, model_class, return_labels=False): inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels) # if PatchTSTForPretraining if model_class == PatchTSTForPretraining: inputs_dict.pop("future_values") # else if classification model: elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING): rng = random.Random(self.model_tester.seed) labels = ids_tensor([self.model_tester.batch_size], self.model_tester.num_targets, rng=rng) inputs_dict["target_values"] = labels inputs_dict.pop("future_values") elif model_class in get_values(MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING): rng = random.Random(self.model_tester.seed) target_values = floats_tensor([self.model_tester.batch_size, self.model_tester.num_targets], rng=rng) inputs_dict["target_values"] = target_values inputs_dict.pop("future_values") return inputs_dict def test_save_load_strict(self): config, _ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: model = model_class(config) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) model2, info = model_class.from_pretrained(tmpdirname, output_loading_info=True) self.assertEqual(info["missing_keys"], []) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.hidden_states expected_num_layers = getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers ) self.assertEqual(len(hidden_states), expected_num_layers) num_patch = self.model_tester.num_patches self.assertListEqual( list(hidden_states[0].shape[-2:]), [num_patch, self.model_tester.hidden_size], ) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: inputs_dict["output_hidden_states"] = True check_hidden_states_output(inputs_dict, config, model_class) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] config.output_hidden_states = True check_hidden_states_output(inputs_dict, config, model_class) @unittest.skip(reason="we have no tokens embeddings") def test_resize_tokens_embeddings(self): pass def test_model_main_input_name(self): model_signature = inspect.signature(getattr(PatchTSTModel, "forward")) # The main input is the name of the argument after `self` observed_main_input_name = list(model_signature.parameters.keys())[1] self.assertEqual(PatchTSTModel.main_input_name, observed_main_input_name) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] if model_class == PatchTSTForPretraining: expected_arg_names = [ "past_values", "past_observed_mask", ] elif model_class in get_values(MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING) or model_class in get_values( MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING ): expected_arg_names = ["past_values", "target_values", "past_observed_mask"] else: expected_arg_names = [ "past_values", "past_observed_mask", "future_values", ] expected_arg_names.extend( [ "output_hidden_states", "output_attentions", "return_dict", ] ) self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) @is_flaky() def test_retain_grad_hidden_states_attentions(self): super().test_retain_grad_hidden_states_attentions() def prepare_batch(repo_id="hf-internal-testing/etth1-hourly-batch", file="train-batch.pt"): file = hf_hub_download(repo_id=repo_id, filename=file, repo_type="dataset") batch = torch.load(file, map_location=torch_device) return batch # Note: Pretrained model is not yet downloadable. @require_torch @slow class PatchTSTModelIntegrationTests(unittest.TestCase): # Publishing of pretrained weights are under internal review. Pretrained model is not yet downloadable. def test_pretrain_head(self): model = PatchTSTForPretraining.from_pretrained("namctin/patchtst_etth1_pretrain").to(torch_device) batch = prepare_batch() torch.manual_seed(0) with torch.no_grad(): output = model(past_values=batch["past_values"].to(torch_device)).prediction_output num_patch = ( max(model.config.context_length, model.config.patch_length) - model.config.patch_length ) // model.config.patch_stride + 1 expected_shape = torch.Size([64, model.config.num_input_channels, num_patch, model.config.patch_length]) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[[-0.0173]], [[-1.0379]], [[-0.1030]], [[0.3642]], [[0.1601]], [[-1.3136]], [[0.8780]]], device=torch_device, ) self.assertTrue(torch.allclose(output[0, :7, :1, :1], expected_slice, atol=TOLERANCE)) # Publishing of pretrained weights are under internal review. Pretrained model is not yet downloadable. def test_prediction_head(self): model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast").to(torch_device) batch = prepare_batch(file="test-batch.pt") torch.manual_seed(0) with torch.no_grad(): output = model( past_values=batch["past_values"].to(torch_device), future_values=batch["future_values"].to(torch_device), ).prediction_outputs expected_shape = torch.Size([64, model.config.prediction_length, model.config.num_input_channels]) self.assertEqual(output.shape, expected_shape) expected_slice = torch.tensor( [[0.5142, 0.6928, 0.6118, 0.5724, -0.3735, -0.1336, -0.7124]], device=torch_device, ) self.assertTrue(torch.allclose(output[0, :1, :7], expected_slice, atol=TOLERANCE)) def test_prediction_generation(self): model = PatchTSTForPrediction.from_pretrained("namctin/patchtst_etth1_forecast").to(torch_device) batch = prepare_batch(file="test-batch.pt") torch.manual_seed(0) with torch.no_grad(): outputs = model.generate(past_values=batch["past_values"].to(torch_device)) expected_shape = torch.Size((64, 1, model.config.prediction_length, model.config.num_input_channels)) self.assertEqual(outputs.sequences.shape, expected_shape) expected_slice = torch.tensor( [[0.4075, 0.3716, 0.4786, 0.2842, -0.3107, -0.0569, -0.7489]], device=torch_device, ) mean_prediction = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[0, -1:], expected_slice, atol=TOLERANCE)) def test_regression_generation(self): model = PatchTSTForRegression.from_pretrained("ibm/patchtst-etth1-regression-distribution").to(torch_device) batch = prepare_batch(repo_id="ibm/patchtst-etth1-test-data", file="regression_distribution_batch.pt") torch.manual_seed(0) model.eval() with torch.no_grad(): outputs = model.generate(past_values=batch["past_values"].to(torch_device)) expected_shape = torch.Size((64, model.config.num_parallel_samples, model.config.num_targets)) self.assertEqual(outputs.sequences.shape, expected_shape) expected_slice = torch.tensor( [[-0.08046409], [-0.06570087], [-0.28218266], [-0.20636195], [-0.11787311]], device=torch_device, ) mean_prediction = outputs.sequences.mean(dim=1) self.assertTrue(torch.allclose(mean_prediction[-5:], expected_slice, rtol=TOLERANCE))
transformers/tests/models/patchtst/test_modeling_patchtst.py/0
{ "file_path": "transformers/tests/models/patchtst/test_modeling_patchtst.py", "repo_id": "transformers", "token_count": 6808 }
414
# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class PhobertTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = PhobertTokenizer test_rust_tokenizer = False def setUp(self): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt vocab = ["T@@", "i", "I", "R@@", "r", "e@@"] vocab_tokens = dict(zip(vocab, range(len(vocab)))) merges = ["#version: 0.2", "l à</w>"] self.special_tokens_map = {"unk_token": "<unk>"} self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") with open(self.merges_file, "w", encoding="utf-8") as fp: fp.write("\n".join(merges)) def get_tokenizer(self, **kwargs): kwargs.update(self.special_tokens_map) return PhobertTokenizer.from_pretrained(self.tmpdirname, **kwargs) def get_input_output_texts(self, tokenizer): input_text = "Tôi là VinAI Research" output_text = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def test_full_tokenizer(self): tokenizer = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map) text = "Tôi là VinAI Research" bpe_tokens = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() tokens = tokenizer.tokenize(text) print(tokens) self.assertListEqual(tokens, bpe_tokens) input_tokens = tokens + [tokenizer.unk_token] input_bpe_tokens = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
transformers/tests/models/phobert/test_tokenization_phobert.py/0
{ "file_path": "transformers/tests/models/phobert/test_tokenization_phobert.py", "repo_id": "transformers", "token_count": 1168 }
415
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import unittest from transformers import ResNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.resnet.modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class FlaxResNetModelTester(unittest.TestCase): def __init__( self, parent, batch_size=3, image_size=32, num_channels=3, embeddings_size=10, hidden_sizes=[10, 20, 30, 40], depths=[1, 1, 2, 1], is_training=True, use_labels=True, hidden_act="relu", num_labels=3, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.num_channels = num_channels self.embeddings_size = embeddings_size self.hidden_sizes = hidden_sizes self.depths = depths self.is_training = is_training self.use_labels = use_labels self.hidden_act = hidden_act self.num_labels = num_labels self.scope = scope self.num_stages = len(hidden_sizes) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) config = self.get_config() return config, pixel_values def get_config(self): return ResNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, image_size=self.image_size, ) def create_and_check_model(self, config, pixel_values): model = FlaxResNetModel(config=config) result = model(pixel_values) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def create_and_check_for_image_classification(self, config, pixel_values): config.num_labels = self.num_labels model = FlaxResNetForImageClassification(config=config) result = model(pixel_values) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, pixel_values = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class FlaxResNetModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxResNetModel, FlaxResNetForImageClassification) if is_flax_available() else () is_encoder_decoder = False test_head_masking = False has_attentions = False def setUp(self) -> None: self.model_tester = FlaxResNetModelTester(self) self.config_tester = ConfigTester(self, config_class=ResNetConfig, has_text_modality=False) def test_config(self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def create_and_test_config_common_properties(self): return def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_image_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*config_and_inputs) @unittest.skip(reason="ResNet does not use inputs_embeds") def test_inputs_embeds(self): pass @unittest.skip(reason="ResNet does not support input and output embeddings") def test_model_common_attributes(self): pass def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_hidden_states_output(self): def check_hidden_states_output(inputs_dict, config, model_class): model = model_class(config) outputs = model(**self._prepare_for_class(inputs_dict, model_class)) hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states expected_num_stages = self.model_tester.num_stages self.assertEqual(len(hidden_states), expected_num_stages + 1) @unittest.skip(reason="ResNet does not use feedforward chunking") def test_feed_forward_chunking(self): pass def test_jit_compilation(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def model_jitted(pixel_values, **kwargs): return model(pixel_values=pixel_values, **kwargs) with self.subTest("JIT Enabled"): jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = model_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_flax class FlaxResNetModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return AutoImageProcessor.from_pretrained("microsoft/resnet-50") if is_vision_available() else None @slow def test_inference_image_classification_head(self): model = FlaxResNetForImageClassification.from_pretrained("microsoft/resnet-50") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="np") outputs = model(**inputs) # verify the logits expected_shape = (1, 1000) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = jnp.array([-11.1069, -9.7877, -8.3777]) self.assertTrue(jnp.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
transformers/tests/models/resnet/test_modeling_flax_resnet.py/0
{ "file_path": "transformers/tests/models/resnet/test_modeling_flax_resnet.py", "repo_id": "transformers", "token_count": 3543 }
416
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class FlaxRoFormerModelTester(unittest.TestCase): def __init__( self, parent, batch_size=13, seq_length=7, is_training=True, use_attention_mask=True, use_token_type_ids=True, use_labels=True, vocab_size=99, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=16, type_sequence_label_size=2, initializer_range=0.02, num_choices=4, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_token_type_ids = use_token_type_ids self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.num_choices = num_choices def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) config = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=False, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() config, input_ids, token_type_ids, attention_mask = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class FlaxRoFormerModelTest(FlaxModelTesterMixin, unittest.TestCase): test_head_masking = True all_model_classes = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def setUp(self): self.model_tester = FlaxRoFormerModelTester(self) @slow def test_model_from_pretrained(self): for model_class_name in self.all_model_classes: model = model_class_name.from_pretrained("junnyu/roformer_chinese_small", from_pt=True) outputs = model(np.ones((1, 1))) self.assertIsNotNone(outputs) @require_flax class FlaxRoFormerModelIntegrationTest(unittest.TestCase): @slow def test_inference_masked_lm(self): model = FlaxRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base") input_ids = jnp.array([[0, 1, 2, 3, 4, 5]]) output = model(input_ids)[0] vocab_size = 50000 expected_shape = (1, 6, vocab_size) self.assertEqual(output.shape, expected_shape) expected_slice = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
transformers/tests/models/roformer/test_modeling_flax_roformer.py/0
{ "file_path": "transformers/tests/models/roformer/test_modeling_flax_roformer.py", "repo_id": "transformers", "token_count": 2580 }
417
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch SeamlessM4Tv2 model. """ import copy import tempfile import unittest from transformers import SeamlessM4Tv2Config, is_speech_available, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from transformers.trainer_utils import set_seed from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) if is_torch_available(): import torch from transformers import ( SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2ForTextToSpeech, SeamlessM4Tv2ForTextToText, SeamlessM4Tv2Model, ) from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2 import ( SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_speech_available(): from transformers import SeamlessM4TProcessor class SeamlessM4Tv2ModelTester: def __init__( self, parent, input_modality="speech", batch_size=2, seq_length=4, is_training=True, use_input_mask=True, use_token_type_ids=True, use_labels=True, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, max_new_tokens=None, num_labels=3, num_choices=4, scope=None, vocab_size=20, t2u_vocab_size=20, hidden_size=6, num_hidden_layers=2, intermediate_size=6, max_position_embeddings=256, encoder_layers=2, decoder_layers=2, encoder_ffn_dim=6, decoder_ffn_dim=6, t2u_encoder_layers=2, t2u_decoder_layers=2, t2u_encoder_ffn_dim=6, t2u_decoder_ffn_dim=6, num_heads=2, vocoder_num_spkrs=5, vocoder_num_langs=5, upsample_initial_channel=32, unit_embed_dim=25, spkr_embed_dim=6, lang_embed_dim=6, num_conv_pos_embeddings=8, unit_hifi_gan_vocab_size=20, t2u_num_langs=0, t2u_offset_tgt_lang=0, vocoder_offset=0, t2u_variance_predictor_hidden_dim=4, char_vocab_size=4, left_max_position_embeddings=2, right_max_position_embeddings=1, speech_encoder_chunk_size=2, speech_encoder_left_chunk_num=1, ): self.parent = parent self.input_modality = input_modality self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.use_input_mask = use_input_mask self.use_token_type_ids = use_token_type_ids self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.num_labels = num_labels self.num_choices = num_choices self.scope = scope self.vocab_size = vocab_size self.t2u_vocab_size = t2u_vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.max_position_embeddings = max_position_embeddings self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.encoder_ffn_dim = encoder_ffn_dim self.decoder_ffn_dim = decoder_ffn_dim self.t2u_encoder_layers = t2u_encoder_layers self.t2u_decoder_layers = t2u_decoder_layers self.t2u_encoder_ffn_dim = t2u_encoder_ffn_dim self.t2u_decoder_ffn_dim = t2u_decoder_ffn_dim self.num_heads = num_heads self.num_attention_heads = num_heads self.vocoder_num_spkrs = vocoder_num_spkrs self.vocoder_num_langs = vocoder_num_langs self.upsample_initial_channel = upsample_initial_channel self.unit_embed_dim = unit_embed_dim self.spkr_embed_dim = spkr_embed_dim self.num_conv_pos_embeddings = num_conv_pos_embeddings self.lang_embed_dim = lang_embed_dim self.max_new_tokens = max_new_tokens self.unit_hifi_gan_vocab_size = unit_hifi_gan_vocab_size self.t2u_num_langs = t2u_num_langs self.t2u_offset_tgt_lang = t2u_offset_tgt_lang self.vocoder_offset = vocoder_offset self.t2u_variance_predictor_hidden_dim = t2u_variance_predictor_hidden_dim self.char_vocab_size = char_vocab_size self.left_max_position_embeddings = left_max_position_embeddings self.right_max_position_embeddings = right_max_position_embeddings self.speech_encoder_chunk_size = speech_encoder_chunk_size self.speech_encoder_left_chunk_num = speech_encoder_left_chunk_num def prepare_config_and_inputs(self): if self.input_modality == "text": inputs = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) else: inputs = ids_tensor([self.batch_size, self.seq_length, 160], self.vocab_size - 1).float() input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size - 1) lm_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) config = self.get_config() return config, inputs, decoder_input_ids, input_mask, lm_labels def get_config(self): return SeamlessM4Tv2Config( hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, vocab_size=self.vocab_size, t2u_vocab_size=self.t2u_vocab_size, hidden_size=self.hidden_size, speech_encoder_layers=self.num_heads, speech_encoder_intermediate_size=self.intermediate_size, max_position_embeddings=self.max_position_embeddings, encoder_layers=self.encoder_layers, decoder_layers=self.decoder_layers, encoder_ffn_dim=self.encoder_ffn_dim, decoder_ffn_dim=self.decoder_ffn_dim, t2u_encoder_layers=self.t2u_encoder_layers, t2u_decoder_layers=self.t2u_decoder_layers, t2u_encoder_ffn_dim=self.t2u_encoder_ffn_dim, t2u_decoder_ffn_dim=self.t2u_decoder_ffn_dim, num_attention_heads=self.num_heads, encoder_attention_heads=self.num_heads, decoder_attention_heads=self.num_heads, t2u_encoder_attention_heads=self.num_heads, t2u_decoder_attention_heads=self.num_heads, speech_encoder_attention_heads=self.num_heads, unit_hifigan_vocab_vise=self.t2u_vocab_size, vocoder_num_spkrs=self.vocoder_num_spkrs, vocoder_num_langs=self.vocoder_num_langs, upsample_initial_channel=self.upsample_initial_channel, unit_embed_dim=self.unit_embed_dim, spkr_embed_dim=self.spkr_embed_dim, num_conv_pos_embeddings=self.num_conv_pos_embeddings, lang_embed_dim=self.lang_embed_dim, max_new_tokens=self.max_new_tokens, unit_hifi_gan_vocab_size=self.unit_hifi_gan_vocab_size, t2u_num_langs=self.t2u_num_langs, t2u_offset_tgt_lang=self.t2u_offset_tgt_lang, vocoder_offset=self.vocoder_offset, t2u_variance_predictor_embed_dim=self.hidden_size, t2u_variance_predictor_hidden_dim=self.t2u_variance_predictor_hidden_dim, char_vocab_size=self.char_vocab_size, left_max_position_embeddings=self.left_max_position_embeddings, right_max_position_embeddings=self.right_max_position_embeddings, speech_encoder_chunk_size=self.speech_encoder_chunk_size, speech_encoder_left_chunk_num=self.speech_encoder_left_chunk_num, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model(self, config, input_ids, decoder_input_ids, input_mask, labels): model = SeamlessM4Tv2Model(config=config) model.to(torch_device) model.eval() if self.input_modality == "text": result = model(input_ids=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) else: result = model(input_features=input_ids, attention_mask=input_mask, decoder_input_ids=decoder_input_ids) result = model(input_features=input_ids, decoder_input_ids=decoder_input_ids) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) decoder_output = result.logits decoder_past = result.past_key_values encoder_output = result.encoder_last_hidden_state if self.input_modality == "text": seq_length = self.seq_length else: # if speech, expected length has been subsampled. seq_length = model._compute_sub_sample_lengths_from_attention_mask(input_mask).max().item() self.parent.assertEqual(encoder_output.size(), (self.batch_size, seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.size(), (self.batch_size, decoder_input_ids.shape[1], self.vocab_size)) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(decoder_past), config.decoder_layers) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0]), 4) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, decoder_input_ids, input_mask, lm_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True model = SeamlessM4Tv2Model(config=config) model.to(torch_device) model.eval() # make sure no pad token in decoder_input_ids decoder_input_ids = torch.clamp(decoder_input_ids, config.pad_token_id + 1) # first forward pass outputs = model( input_ids, decoder_input_ids=decoder_input_ids, decoder_attention_mask=input_mask, use_cache=True ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([decoder_input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( input_ids, decoder_input_ids=next_input_ids, decoder_attention_mask=next_attention_mask, output_hidden_states=True, ) output_from_no_past = output_from_no_past["decoder_hidden_states"][0] output_from_past = model( input_ids, decoder_input_ids=next_tokens, decoder_attention_mask=next_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["decoder_hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, input_mask, lm_labels, ) = config_and_inputs input_name = "input_ids" if self.input_modality == "text" else "input_features" inputs_dict = { input_name: input_ids, "attention_mask": input_mask, "decoder_input_ids": decoder_input_ids, "labels": lm_labels, } return config, inputs_dict @require_torch class SeamlessM4Tv2ModelWithSpeechInputTest(ModelTesterMixin, unittest.TestCase): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = False test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4Tv2ForSpeechToText,) if is_torch_available() else () input_name = "input_features" def setUp(self): self.model_tester = SeamlessM4Tv2ModelTester(self, input_modality="speech") self.config_tester = ConfigTester(self, config_class=SeamlessM4Tv2Config) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST: model = SeamlessM4Tv2Model.from_pretrained(model_name) self.assertIsNotNone(model) def _get_input_ids_and_config(self, batch_size=2): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() input_ids = inputs_dict[self.input_name] # cut to half length & take max batch_size 3 sequence_length = input_ids.shape[-1] // 2 input_ids = input_ids[:batch_size, :sequence_length] # generate max 3 tokens max_length = input_ids.shape[-1] + 3 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` if isinstance(config.eos_token_id, int): config.eos_token_id = [config.eos_token_id] config.pad_token_id = config.eos_token_id[0] attention_mask = torch.ones(input_ids.shape[:2], dtype=torch.long)[:batch_size, :sequence_length] return config, input_ids.float(), attention_mask, max_length @staticmethod def _get_encoder_outputs( model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 ): encoder = model.get_encoder() encoder_outputs = encoder( input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( num_interleave, dim=0 ) input_ids = ( torch.zeros(input_ids.shape[:2], dtype=torch.int64, layout=input_ids.layout, device=input_ids.device) + model._get_decoder_start_token_id() ) attention_mask = None return encoder_outputs, input_ids, attention_mask def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip(reason="SeamlessM4Tv2SpeechEncoder doesn't have an embedding layer") def test_inputs_embeds(self): pass @unittest.skip( reason="Expected missing keys serve when using SeamlessM4Tv2ForXXX.from_pretrained from a checkpoint saved by SeamlessM4Tv2Model.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip( reason="SeamlessM4Tv2Model is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4Tv2Model can takes input_ids or input_features") def test_forward_signature(self): pass @unittest.skip(reason="SeamlessM4Tv2 has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass def test_attention_outputs(self): # expected length is subsampled so need to change a bit this test if not self.has_attentions: self.skipTest(reason="Model does not output attentions") config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.return_dict = True seq_len = getattr(self.model_tester, "seq_length", None) decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len) encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len) decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length) encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) # no more chunk_length test for model_class in self.all_model_classes: inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = False config.return_dict = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] config.output_attentions = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) out_len = len(outputs) if self.is_encoder_decoder: correct_outlen = 5 # loss is at first position if "labels" in inputs_dict: correct_outlen += 1 # loss is added to beginning if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned self.assertEqual(out_len, correct_outlen) # decoder attentions decoder_attentions = outputs.decoder_attentions self.assertIsInstance(decoder_attentions, (list, tuple)) self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], ) # cross attentions cross_attentions = outputs.cross_attentions self.assertIsInstance(cross_attentions, (list, tuple)) self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers) sub_sampled_length = ( model._compute_sub_sample_lengths_from_attention_mask(inputs_dict["attention_mask"]).max().item() ) self.assertListEqual( list(cross_attentions[0].shape[-3:]), [ self.model_tester.num_attention_heads, decoder_seq_length, sub_sampled_length, ], ) # Check attention is always last and order is fine inputs_dict["output_attentions"] = True inputs_dict["output_hidden_states"] = True model = model_class(config) model.to(torch_device) model.eval() with torch.no_grad(): outputs = model(**self._prepare_for_class(inputs_dict, model_class)) if hasattr(self.model_tester, "num_hidden_states_types"): added_hidden_states = self.model_tester.num_hidden_states_types elif self.is_encoder_decoder: added_hidden_states = 2 else: added_hidden_states = 1 self.assertEqual(out_len + added_hidden_states, len(outputs)) self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]), [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], ) @require_torch class SeamlessM4Tv2ModelWithTextInputTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): is_encoder_decoder = True fx_compatible = False test_missing_keys = False test_pruning = False test_model_parallel = False test_resize_embeddings = True test_headmasking = False test_torchscript = False all_model_classes = ( ( SeamlessM4Tv2Model, SeamlessM4Tv2ForTextToSpeech, SeamlessM4Tv2ForTextToText, ) if is_torch_available() else () ) all_generative_model_classes = (SeamlessM4Tv2ForTextToText,) if is_torch_available() else () def setUp(self): self.model_tester = SeamlessM4Tv2ModelTester(self, input_modality="text") self.config_tester = ConfigTester(self, config_class=SeamlessM4Tv2Config) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in SEAMLESS_M4T_V2_PRETRAINED_MODEL_ARCHIVE_LIST: model = SeamlessM4Tv2Model.from_pretrained(model_name) self.assertIsNotNone(model) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "pos_bias_v", "pos_bias_u", "pointwise_conv1", "pointwise_conv2", "feature_projection.projection.weight", "feature_projection.projection.bias", "objective.weight", "adapter", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) @unittest.skip( reason="Expected missing keys serve when using SeamlessM4Tv2ForXXX.from_pretrained from a checkpoint saved by SeamlessM4Tv2Model.save_pretrained." ) def test_model_weights_reload_no_missing_tied_weights(self): pass @unittest.skip(reason="SeamlessM4Tv2Model can take input_ids or input_features") def test_forward_signature(self): pass def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) @unittest.skip( reason="SeamlessM4Tv2Model is base class but has actually a bigger architecture than seamlessM4T task-specific models." ) def test_save_load_fast_init_to_base(self): pass @unittest.skip(reason="SeamlessM4Tv2 has no base model") def test_save_load_fast_init_from_base(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant(self): pass @unittest.skip( reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124" ) def test_training_gradient_checkpointing_use_reentrant_false(self): pass @require_torch class SeamlessM4Tv2GenerationTest(unittest.TestCase): # test that non-standard generation works # test generation of: SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2ForTextToSpeech def setUp(self): self.speech_model_tester = SeamlessM4Tv2ModelTester(self, input_modality="speech") self.text_model_tester = SeamlessM4Tv2ModelTester(self, input_modality="text") self.tmpdirname = tempfile.mkdtemp() def update_generation(self, model): text_lang_code_to_id = { "fra": 4, "eng": 4, "rus": 4, } speech_lang_code_to_id = { "fra": 4, "eng": 4, } id_to_text = {str(i): "a" for i in range(model.config.vocab_size)} id_to_text["0"] = "ab" id_to_text["1"] = "_b" id_to_text["3"] = "," id_to_text["4"] = "_cd" char_to_id = {char: i for (i, char) in enumerate("abcd")} generation_config = copy.deepcopy(model.generation_config) generation_config.__setattr__("text_decoder_lang_to_code_id", text_lang_code_to_id) generation_config.__setattr__("t2u_lang_code_to_id", speech_lang_code_to_id) generation_config.__setattr__("vocoder_lang_code_to_id", speech_lang_code_to_id) generation_config.__setattr__("id_to_text", id_to_text) generation_config.__setattr__("char_to_id", char_to_id) generation_config.__setattr__("eos_token_id", 0) generation_config._from_model_config = False model.generation_config = generation_config def prepare_text_input(self, tgt_lang): config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_dict = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": tgt_lang, "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_dict = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } return config, input_dict def prepare_speech_and_text_input(self): config, inputs, decoder_input_ids, input_mask, lm_labels = self.speech_model_tester.prepare_config_and_inputs() input_speech = { "input_features": inputs, "attention_mask": input_mask, "tgt_lang": "fra", "num_beams": 2, "do_sample": True, } config, inputs, decoder_input_ids, input_mask, lm_labels = self.text_model_tester.prepare_config_and_inputs() input_text = { "input_ids": inputs, "attention_mask": input_mask, "tgt_lang": "eng", "num_beams": 2, "do_sample": True, } return config, input_speech, input_text def factory_generation_speech_test(self, model, inputs): set_seed(0) output = model.generate(**inputs) return output def test_generation_languages(self): config, input_text_rus = self.prepare_text_input(tgt_lang="rus") model = SeamlessM4Tv2Model(config=config) self.update_generation(model) model.to(torch_device) model.eval() # make sure that generating speech, with a language that is only supported for text translation, raises error with self.assertRaises(ValueError): model.generate(**input_text_rus) # make sure that generating text only works model.generate(**input_text_rus, generate_speech=False) # make sure it works for languages supported by both output modalities config, input_text_eng = self.prepare_text_input(tgt_lang="eng") model.generate(**input_text_eng) model.generate(**input_text_eng, generate_speech=False) def test_speech_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() model = SeamlessM4Tv2Model(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) state_dict = model.state_dict() text_model = SeamlessM4Tv2ForTextToSpeech.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() output_text = self.factory_generation_speech_test(model, input_text) speech_model = SeamlessM4Tv2ForSpeechToSpeech.from_pretrained(self.tmpdirname) self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") output_speech = self.factory_generation_speech_test(model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text[0].ravel().tolist()) self.assertListEqual(output_original_text[1].ravel().tolist(), output_text[1].ravel().tolist()) # test same speech output from input text # assertTrue because super long list makes this hang in case of failure self.assertTrue( output_original_speech[0].ravel().tolist() == output_speech[0].ravel().tolist(), "Speech generated was different", ) self.assertTrue( output_original_speech[1].ravel().tolist() == output_speech[1].ravel().tolist(), "Speech generated was different", ) def test_text_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() # to return speech input_speech["generate_speech"] = False input_text["generate_speech"] = False model = SeamlessM4Tv2Model(config=config) self.update_generation(model) model.save_pretrained(self.tmpdirname) model.to(torch_device) model.eval() output_original_text = self.factory_generation_speech_test(model, input_text) output_original_speech = self.factory_generation_speech_test(model, input_speech) # other models don't need it input_speech.pop("generate_speech") input_text.pop("generate_speech") state_dict = model.state_dict() text_model = SeamlessM4Tv2ForTextToText.from_pretrained(self.tmpdirname) self.update_generation(text_model) text_model.to(torch_device) text_model.eval() for name, tensor in text_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist()) output_text = self.factory_generation_speech_test(text_model, input_text) speech_model = SeamlessM4Tv2ForSpeechToText.from_pretrained(self.tmpdirname) for name, tensor in speech_model.state_dict().items(): right_tensor = state_dict.get(name) self.assertEqual(tensor.tolist(), right_tensor.tolist(), f"Tensor {name}") self.update_generation(speech_model) speech_model.to(torch_device) speech_model.eval() output_speech = self.factory_generation_speech_test(speech_model, input_speech) # test same text output from input text self.assertListEqual(output_original_text[0].ravel().tolist(), output_text.ravel().tolist()) # test same speech output from input text self.assertListEqual(output_original_speech[0].ravel().tolist(), output_speech.ravel().tolist()) def test_generation(self): config, input_speech, input_text = self.prepare_speech_and_text_input() input_speech["num_beams"] = 3 input_speech["do_sample"] = True input_speech["temperature"] = 0.5 input_speech["num_return_sequences"] = 3 input_text["num_beams"] = 3 input_text["do_sample"] = True input_text["temperature"] = 0.5 input_text["num_return_sequences"] = 3 for model_class in [SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2Model]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_speech) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_speech["input_features"].shape[0]) for model_class in [SeamlessM4Tv2ForTextToSpeech, SeamlessM4Tv2ForTextToText, SeamlessM4Tv2Model]: model = model_class(config=config) self.update_generation(model) model.to(torch_device) model.eval() output = model.generate(**input_text) output = output[0] if isinstance(output, tuple) else output self.assertEqual(output.shape[0], 3 * input_text["input_ids"].shape[0]) @require_torch class SeamlessM4Tv2ModelIntegrationTest(unittest.TestCase): repo_id = "facebook/seamless-m4t-v2-large" def assertListAlmostEqual(self, list1, list2, tol=1e-4): self.assertEqual(len(list1), len(list2)) for a, b in zip(list1, list2): self.assertAlmostEqual(a, b, delta=tol) @cached_property def processor(self): return SeamlessM4TProcessor.from_pretrained(self.repo_id) @cached_property def input_text(self): # corresponds to "C'est un test." with seamlessM4T_medium checkpoint input_ids = torch.tensor([[256026, 109, 247729, 171, 128, 6816, 247676, 3]]) # fmt: skip input_ids = input_ids.to(torch_device) attention_mask = torch.ones_like(input_ids).to(torch_device) inputs = { "attention_mask": attention_mask, "input_ids": input_ids, } return inputs @cached_property def input_audio(self): set_seed(0) seq_len = 20000 sampling_rate = 16000 input_features = torch.rand((2, seq_len)) return self.processor(audios=[input_features.tolist()], sampling_rate=sampling_rate, return_tensors="pt").to( torch_device ) def factory_test_task(self, class1, class2, inputs, class1_kwargs, class2_kwargs): # half-precision loading to limit GPU usage model1 = class1.from_pretrained(self.repo_id, torch_dtype=torch.float16).to(torch_device) model2 = class2.from_pretrained(self.repo_id, torch_dtype=torch.float16).to(torch_device) set_seed(0) output_1 = model1.generate(**inputs, **class1_kwargs) set_seed(0) output_2 = model2.generate(**inputs, **class2_kwargs) for key in output_1: if isinstance(output_1[key], torch.Tensor): if len(output_1[key].shape) == 0: self.assertEqual(output_1[key].item(), output_2[key].item()) else: self.assertListAlmostEqual(output_1[key].squeeze().tolist(), output_2[key].squeeze().tolist()) @slow def test_to_eng_text(self): model = SeamlessM4Tv2Model.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: eng expected_text_tokens = [3, 256022, 3080, 1, 247669, 10, 6816, 247676, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 4746,7163,8208,8208,1315,1266,4307,1119,989,9594,3007,3007,4341,5205,7631,7631,3202,4061,9092,3191,7509,1715, 5280,5280,3554,8812,8197,6366,5382,5382,7330,2758,9433,9433,6863,7510,5800,5800,5286,1948,1825,1825,3956,8724, 8724,5331,8914,9315,9315,5288,2588,8167,8787,8787,8063,6008,2621,2621,2621,5696 ] # fmt: on expected_wav_slice = [9.485097e-04, 8.320558e-04, 7.178137e-04, 9.349979e-04, 1.121628e-03, 1.091766e-03, 1.279693e-03, 1.387754e-03, 1.296396e-03, 1.143557e-03] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="eng", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual( expected_unit_tokens, (output.unit_sequences - model.config.vocoder_offset).squeeze().tolist() ) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) # assert mean and std equality self.assertListAlmostEqual( [-2.349690e-04, 9.920777e-02], [output.waveform.mean().item(), output.waveform.std().item()] ) @slow @unittest.skip(reason="Equivalence is broken since a new update") def test_to_swh_text(self): model = SeamlessM4Tv2Model.from_pretrained(self.repo_id).to(torch_device) # test text - tgt lang: swh expected_text_tokens = [3, 256084, 109, 247729, 171, 10, 6816, 247676, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 5725,7163,7472,7472,6915,3099,3099,9921,2765,6515,6515,1374,1374,1347,8252,9854,9854,5662,2420,6600,2216,4503, 7208,6107,6107,7298,9123,6472,9663,9663,6366,6366,6445,575,3575,2052,2052,5788,5800,5800,5286,5286,1825,1825,3956, 3956,8724,8724,5331,8914,8914,9315,9315,2821,8167,8167,8787,8787,8787,8700,8700,8700,2175,2175,3196,3196,2621,1725, 1725,7507,5696 ] # fmt: on expected_wav_slice = [3.124037e-04, 2.450471e-04, 2.286572e-04, 2.317214e-04, 2.732605e-04, 2.478790e-04, 2.704144e-04, 2.665847e-04, 2.828784e-04, 2.684390e-04] # fmt: skip set_seed(0) output = model.generate(**self.input_text, num_beams=1, tgt_lang="swh", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual( expected_unit_tokens, (output.unit_sequences - model.config.vocoder_offset).squeeze().tolist() ) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) # assert mean and std equality self.assertListAlmostEqual( [-2.001826e-04, 8.580012e-02], [output.waveform.mean().item(), output.waveform.std().item()] ) @slow def test_to_rus_speech(self): model = SeamlessM4Tv2Model.from_pretrained(self.repo_id).to(torch_device) # test audio - tgt lang: rus expected_text_tokens = [3, 256074, 107, 248213, 404, 247792, 247789, 3] # fmt: skip # fmt: off expected_unit_tokens = [ 8976,7163,6915,2728,2728,5198,3318,3318,3686,1049,9643,1200,2052,2052,8196,8196,7624,7624,7555,7555,7555,7555, 9717,9717,4869,8167,8167,8167,8053,972,9362,8167,297,297,297,3993,3993,3993,3993,4660,4660,4660,4660,4660,4660, 7962,7962,225,225,8737,4199 ] # fmt: on expected_wav_slice = [1.415287e-03, 1.360976e-03, 1.297727e-03, 1.305321e-03, 1.352087e-03, 1.283812e-03, 1.352623e-03, 1.387384e-03, 1.449627e-03, 1.411701e-03] # fmt: skip set_seed(0) output = model.generate(**self.input_audio, num_beams=1, tgt_lang="rus", return_intermediate_token_ids=True) self.assertListEqual(expected_text_tokens, output.sequences.squeeze().tolist()) self.assertListEqual( expected_unit_tokens, (output.unit_sequences - model.config.vocoder_offset).squeeze().tolist() ) self.assertListAlmostEqual(expected_wav_slice, output.waveform.squeeze().tolist()[50:60]) # assert mean and std equality - higher tolerance for speech self.assertListAlmostEqual( [-2.818016e-04, 7.169888e-02], [output.waveform.mean().item(), output.waveform.std().item()], tol=5e-4 ) @slow def test_text_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForTextToText, self.input_text, kwargs1, kwargs2) @slow def test_speech_to_text_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True, "generate_speech": False} kwargs2 = { "tgt_lang": "eng", "output_hidden_states": True, "return_dict_in_generate": True, "output_scores": True, } self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToText, self.input_audio, kwargs1, kwargs2) @slow def test_speech_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForSpeechToSpeech, self.input_audio, kwargs1, kwargs1) @slow def test_text_to_speech_model(self): kwargs1 = {"tgt_lang": "eng", "return_intermediate_token_ids": True} self.factory_test_task(SeamlessM4Tv2Model, SeamlessM4Tv2ForTextToSpeech, self.input_text, kwargs1, kwargs1)
transformers/tests/models/seamless_m4t_v2/test_modeling_seamless_m4t_v2.py/0
{ "file_path": "transformers/tests/models/seamless_m4t_v2/test_modeling_seamless_m4t_v2.py", "repo_id": "transformers", "token_count": 23094 }
418
# coding=utf-8 # Copyright 2021 Google T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import numpy as np import transformers from transformers import is_flax_available from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_sentencepiece, require_tokenizers, slow, ) from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" import jax import jax.numpy as jnp import optax from flax.core.frozen_dict import unfreeze from flax.training.common_utils import onehot from flax.traverse_util import flatten_dict from transformers import FLAX_MODEL_MAPPING, ByT5Tokenizer, T5Config, T5Tokenizer from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.models.t5.modeling_flax_t5 import ( FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model, shift_tokens_right, ) class FlaxT5ModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, decoder_seq_length=9, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, decoder_start_token_id=0, scope=None, decoder_layers=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length self.decoder_seq_length = decoder_seq_length # For common tests self.seq_length = self.decoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.scope = None self.decoder_layers = decoder_layers def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size) attention_mask = None decoder_attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2) config = T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, ) return ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, ) def create_and_check_model( self, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, ): model = FlaxT5Model(config=config) result = model( input_ids=input_ids, decoder_input_ids=decoder_input_ids, attention_mask=attention_mask, decoder_attention_mask=decoder_attention_mask, ) result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) decoder_output = result.last_hidden_state encoder_output = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size)) self.parent.assertEqual(decoder_output.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size)) def check_use_cache_forward_with_attn_mask( self, model_class_name, config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, ): max_decoder_length = 20 model = model_class_name(config) encoder_outputs = model.encode(input_ids) # prevent fully zero'd out attention mask decoder_attention_mask = jnp.ones_like(decoder_attention_mask) decoder_attention_mask_cache = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ], axis=-1, ) past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs) outputs_cache = model.decode( decoder_input_ids[:, :-1], encoder_outputs, decoder_attention_mask=decoder_attention_mask_cache, past_key_values=past_key_values, ) outputs_cache_next = model.decode( decoder_input_ids[:, -1:], encoder_outputs, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=decoder_attention_mask_cache, ) outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask) diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, decoder_input_ids, attention_mask, decoder_attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, } return config, inputs_dict @require_flax class FlaxT5ModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): all_model_classes = (FlaxT5Model, FlaxT5ForConditionalGeneration) if is_flax_available() else () all_generative_model_classes = (FlaxT5ForConditionalGeneration,) if is_flax_available() else () is_encoder_decoder = True def setUp(self): self.model_tester = FlaxT5ModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # check that gated gelu feed forward and different word embeddings work config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_model(config, *config_and_inputs[1:]) def test_use_cache_forward_with_attn_mask(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(model_class, *config_and_inputs) def test_encode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def encode_jitted(input_ids, attention_mask=None, **kwargs): return model.encode(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = encode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_decode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): model = model_class(config) encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"]) prepared_inputs_dict = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs): return model.decode( decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, ) with self.subTest("JIT Enabled"): jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = decode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) def test_shift_right(self): decoder_start_token_id = 0 pad_token_id = 1 labels = np.arange(2, 102).reshape(5, 20) labels[:2, 15:] = -100 decoder_input_ids = shift_tokens_right(labels, pad_token_id, decoder_start_token_id) np_decoder_input_ids = np.array(decoder_input_ids) padded_slice = np_decoder_input_ids[:2, (15 + 1) :] self.assertTrue((padded_slice == 1).all()) not_padded_slice = np_decoder_input_ids[2:, 1:] rolled_labels = np.roll(labels[2:], 1)[:, 1:] self.assertTrue((not_padded_slice == rolled_labels).all()) self.assertTrue((np_decoder_input_ids[:, 0] == 0).all()) # overwrite since special base model prefix is used def test_save_load_from_base(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = base_class(config) base_params = flatten_dict(unfreeze(model.params)) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) head_model = model_class.from_pretrained(tmpdirname) base_param_from_head = flatten_dict(unfreeze(head_model.params)) for key in base_param_from_head.keys(): max_diff = (base_params[key] - base_param_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used def test_save_load_to_base(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = model_class(config) base_params_from_head = flatten_dict(unfreeze(model.params)) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) base_model = base_class.from_pretrained(tmpdirname) base_params = flatten_dict(unfreeze(base_model.params)) for key in base_params_from_head.keys(): max_diff = (base_params[key] - base_params_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used @is_pt_flax_cross_test def test_save_load_from_base_pt(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = base_class(config) base_params = flatten_dict(unfreeze(model.params)) # convert Flax model to PyTorch model pt_model_class = getattr(transformers, base_class.__name__[4:]) # Skip the "Flax" at the beginning pt_model = pt_model_class(config).eval() pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: # save pt model pt_model.save_pretrained(tmpdirname) head_model = model_class.from_pretrained(tmpdirname, from_pt=True) base_param_from_head = flatten_dict(unfreeze(head_model.params)) for key in base_param_from_head.keys(): max_diff = (base_params[key] - base_param_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used @is_pt_flax_cross_test def test_save_load_to_base_pt(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = model_class(config) base_params_from_head = flatten_dict(unfreeze(model.params)) # convert Flax model to PyTorch model pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning pt_model = pt_model_class(config).eval() pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) base_model = base_class.from_pretrained(tmpdirname, from_pt=True) base_params = flatten_dict(unfreeze(base_model.params)) for key in base_params_from_head.keys(): max_diff = (base_params[key] - base_params_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used @is_pt_flax_cross_test def test_save_load_bf16_to_base_pt(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = model_class(config) model.params = model.to_bf16(model.params) base_params_from_head = flatten_dict(unfreeze(model.params)) # convert Flax model to PyTorch model pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning pt_model = pt_model_class(config).eval() pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) base_model = base_class.from_pretrained(tmpdirname, from_pt=True) base_params = flatten_dict(unfreeze(base_model.params)) for key in base_params_from_head.keys(): max_diff = (base_params[key] - base_params_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") class FlaxT5EncoderOnlyModelTester: def __init__( self, parent, vocab_size=99, batch_size=13, encoder_seq_length=7, # For common tests is_training=True, use_attention_mask=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, d_ff=37, relative_attention_num_buckets=8, dropout_rate=0.1, initializer_factor=0.002, eos_token_id=1, pad_token_id=0, decoder_start_token_id=0, scope=None, ): self.parent = parent self.batch_size = batch_size self.encoder_seq_length = encoder_seq_length # For common tests self.seq_length = self.encoder_seq_length self.is_training = is_training self.use_attention_mask = use_attention_mask self.use_labels = use_labels self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.d_ff = d_ff self.relative_attention_num_buckets = relative_attention_num_buckets self.dropout_rate = dropout_rate self.initializer_factor = initializer_factor self.eos_token_id = eos_token_id self.pad_token_id = pad_token_id self.decoder_start_token_id = decoder_start_token_id self.scope = None self.decoder_layers = 0 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size) attention_mask = None if self.use_attention_mask: attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2) config = T5Config( vocab_size=self.vocab_size, d_model=self.hidden_size, d_ff=self.d_ff, d_kv=self.hidden_size // self.num_attention_heads, num_layers=self.num_hidden_layers, num_decoder_layers=self.decoder_layers, num_heads=self.num_attention_heads, relative_attention_num_buckets=self.relative_attention_num_buckets, dropout_rate=self.dropout_rate, initializer_factor=self.initializer_factor, eos_token_id=self.eos_token_id, bos_token_id=self.pad_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.decoder_start_token_id, is_encoder_decoder=False, ) return ( config, input_ids, attention_mask, ) def create_and_check_model( self, config, input_ids, attention_mask, ): model = FlaxT5EncoderModel(config=config) result = model( input_ids=input_ids, attention_mask=attention_mask, ) result = model(input_ids=input_ids) encoder_output = result.last_hidden_state self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, attention_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class FlaxT5EncoderOnlyModelTest(FlaxModelTesterMixin, unittest.TestCase): all_model_classes = (FlaxT5EncoderModel,) if is_flax_available() else () is_encoder_decoder = False def setUp(self): self.model_tester = FlaxT5EncoderOnlyModelTester(self) self.config_tester = ConfigTester(self, config_class=T5Config, d_model=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_v1_1(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() # check that gated gelu feed forward and different word embeddings work config = config_and_inputs[0] config.tie_word_embeddings = False config.feed_forward_proj = "gated-gelu" self.model_tester.create_and_check_model(config, *config_and_inputs[1:]) def test_encode(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class) model = model_class(config) @jax.jit def encode_jitted(input_ids, attention_mask=None, **kwargs): return model(input_ids=input_ids, attention_mask=attention_mask) with self.subTest("JIT Enabled"): jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): outputs = encode_jitted(**prepared_inputs_dict).to_tuple() self.assertEqual(len(outputs), len(jitted_outputs)) for jitted_output, output in zip(jitted_outputs, outputs): self.assertEqual(jitted_output.shape, output.shape) # overwrite since special base model prefix is used def test_save_load_from_base(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = base_class(config) base_params = flatten_dict(unfreeze(model.params)) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) head_model = model_class.from_pretrained(tmpdirname) base_param_from_head = flatten_dict(unfreeze(head_model.params)) for key in base_param_from_head.keys(): max_diff = (base_params[key] - base_param_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used def test_save_load_to_base(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = model_class(config) base_params_from_head = flatten_dict(unfreeze(model.params)) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) base_model = base_class.from_pretrained(tmpdirname) base_params = flatten_dict(unfreeze(base_model.params)) for key in base_params_from_head.keys(): max_diff = (base_params[key] - base_params_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used @is_pt_flax_cross_test def test_save_load_from_base_pt(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = base_class(config) base_params = flatten_dict(unfreeze(model.params)) # convert Flax model to PyTorch model pt_model_class = getattr(transformers, base_class.__name__[4:]) # Skip the "Flax" at the beginning pt_model = pt_model_class(config).eval() pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: # save pt model pt_model.save_pretrained(tmpdirname) head_model = model_class.from_pretrained(tmpdirname, from_pt=True) base_param_from_head = flatten_dict(unfreeze(head_model.params)) for key in base_param_from_head.keys(): max_diff = (base_params[key] - base_param_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used @is_pt_flax_cross_test def test_save_load_to_base_pt(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = model_class(config) base_params_from_head = flatten_dict(unfreeze(model.params)) # convert Flax model to PyTorch model pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning pt_model = pt_model_class(config).eval() pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) base_model = base_class.from_pretrained(tmpdirname, from_pt=True) base_params = flatten_dict(unfreeze(base_model.params)) for key in base_params_from_head.keys(): max_diff = (base_params[key] - base_params_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") # overwrite since special base model prefix is used @is_pt_flax_cross_test def test_save_load_bf16_to_base_pt(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() base_class = FLAX_MODEL_MAPPING[config.__class__] for model_class in self.all_model_classes: if model_class == base_class: continue model = model_class(config) model.params = model.to_bf16(model.params) base_params_from_head = flatten_dict(unfreeze(model.params)) # convert Flax model to PyTorch model pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning pt_model = pt_model_class(config).eval() pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params) # check that all base model weights are loaded correctly with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(tmpdirname) base_model = base_class.from_pretrained(tmpdirname, from_pt=True) base_params = flatten_dict(unfreeze(base_model.params)) for key in base_params_from_head.keys(): max_diff = (base_params[key] - base_params_from_head[key]).sum().item() self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical") @require_sentencepiece @require_tokenizers @require_flax class FlaxT5ModelIntegrationTests(unittest.TestCase): @slow def test_small_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = FlaxT5ForConditionalGeneration.from_pretrained("t5-small") tokenizer = T5Tokenizer.from_pretrained("t5-small") input_ids = tokenizer("Hello there", return_tensors="np").input_ids labels = tokenizer("Hi I am", return_tensors="np").input_ids decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id) logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -19.0845 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_v1_1_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.7.1 >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary >>> path_to_mtf_small_t5_v1_1_checkpoint = '<fill_in>' >>> path_to_mtf_small_spm_model_path = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_t5_v1_1_checkpoint, batch_size=1, tpu=None) >>> vocab = SentencePieceVocabulary(path_to_mtf_small_spm_model_path, extra_ids=100) >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = FlaxT5ForConditionalGeneration.from_pretrained("google/t5-v1_1-small") tokenizer = T5Tokenizer.from_pretrained("google/t5-v1_1-small") input_ids = tokenizer("Hello there", return_tensors="np").input_ids labels = tokenizer("Hi I am", return_tensors="np").input_ids decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id) logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -59.0293 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_byt5_integration_test(self): """ For comparision run: >>> import t5 # pip install t5==0.9.1 >>> path_to_byt5_small_checkpoint = '<fill_in>' >>> t5_model = t5.models.MtfModel(model_dir=path_to_tf_checkpoint, batch_size=1, tpu=None) >>> vocab = t5.data.ByteVocabulary() >>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab) """ model = FlaxT5ForConditionalGeneration.from_pretrained("google/byt5-small") tokenizer = ByT5Tokenizer.from_pretrained("google/byt5-small") input_ids = tokenizer("Hello there", return_tensors="np").input_ids labels = tokenizer("Hi I am", return_tensors="np").input_ids decoder_input_ids = shift_tokens_right(labels, model.config.pad_token_id, model.config.decoder_start_token_id) logits = model(input_ids, decoder_input_ids=decoder_input_ids).logits loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])).mean() mtf_score = -(labels.shape[-1] * loss.item()) EXPECTED_SCORE = -60.7397 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4) @slow def test_small_generation(self): model = FlaxT5ForConditionalGeneration.from_pretrained("t5-small") model.config.max_length = 8 model.config.num_beams = 1 model.config.do_sample = False tokenizer = T5Tokenizer.from_pretrained("t5-small") input_ids = tokenizer("summarize: Hello there", return_tensors="np").input_ids sequences = model.generate(input_ids).sequences output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] self.assertTrue(output_str == "Hello there!") @slow def test_small_generation_bfloat16(self): model = FlaxT5ForConditionalGeneration.from_pretrained("t5-small", dtype=jnp.bfloat16) model.config.max_length = 8 model.config.num_beams = 1 model.config.do_sample = False tokenizer = T5Tokenizer.from_pretrained("t5-small") input_ids = tokenizer("summarize: Hello there", return_tensors="np").input_ids sequences = model.generate(input_ids).sequences output_str = tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] self.assertTrue(output_str == "Hello there!") @slow def test_summarization(self): model = FlaxT5ForConditionalGeneration.from_pretrained("t5-base") tok = T5Tokenizer.from_pretrained("t5-base") FRANCE_ARTICLE = ( # @noqa "Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings" " Flight 9525 insisted Wednesday that he was not aware of any video footage from on board the plane." ' Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation."' ' He added, "A person who has such a video needs to immediately give it to the investigators." Robin\'s' " comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video" " showing the harrowing final seconds from on board Germanwings Flight 9525 as it crashed into the French" " Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a" " phone at the wreckage site. The two publications described the supposed video, but did not post it on" " their websites. The publications said that they watched the video, which was found by a source close to" " the investigation. \"One can hear cries of 'My God' in several languages,\" Paris Match reported." ' "Metallic banging can also be heard more than three times, perhaps of the pilot trying to open the' " cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the" ' screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian Reichelt,' " editor-in-chief of Bild online. An official with France's accident investigation agency, the BEA, said" " the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French Gendarmerie spokesman" " in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the" ' reports were "completely wrong" and "unwarranted." Cell phones have been collected at the site, he said,' ' but that they "hadn\'t been exploited yet." Menichini said he believed the cell phones would need to be' " sent to the Criminal Research Institute in Rosny sous-Bois, near Paris, in order to be analyzed by" " specialized technicians working hand-in-hand with investigators. But none of the cell phones found so" " far have been sent to the institute, Menichini said. Asked whether staff involved in the search could" ' have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin' ' Burnett: Outfront" that he had watched the video and stood by the report, saying Bild and Paris Match' ' are "very confident" that the clip is real. He noted that investigators only revealed they\'d recovered' ' cell phones from the crash site after Bild and Paris Match published their reports. "That is something' " we did not know before. ... Overall we can say many things of the investigation weren't revealed by the" ' investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline' " Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled depression years before he took the" " controls of Germanwings Flight 9525, which he's accused of deliberately crashing last week in the" ' French Alps. Lubitz told his Lufthansa flight training school in 2009 that he had a "previous episode of' ' severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school' " discovered in an internal investigation, Lufthansa said, included medical documents he submitted in" " connection with resuming his flight training. The announcement indicates that Lufthansa, the parent" " company of Germanwings, knew of Lubitz's battle with depression, allowed him to continue training and" " ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100%" ' fit to fly, described its statement Tuesday as a "swift and seamless clarification" and said it was' " sharing the information and documents -- including training and medical records -- with public" " prosecutors. Spohr traveled to the crash site Wednesday, where recovery teams have been working for the" " past week to recover human remains and plane debris scattered across a steep mountainside. He saw the" " crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash" " site, where grieving families have left flowers at a simple stone memorial. Menichini told CNN late" " Tuesday that no visible human remains were left at the site but recovery teams would keep searching." " French President Francois Hollande, speaking Tuesday, said that it should be possible to identify all" " the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested." " In the meantime, the recovery of the victims' personal belongings will start Wednesday, Menichini said." " Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew" " on board. Check out the latest from our correspondents . The details about Lubitz's correspondence with" " the flight school during his training were among several developments as investigators continued to" " delve into what caused the crash and Lubitz's possible motive for downing the jet. A Lufthansa" " spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his" ' examinations and "held all the licenses required." Earlier, a spokesman for the prosecutor\'s office in' " Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at" " some point before his aviation career and underwent psychotherapy before he got his pilot's license." " Kumpa emphasized there's no evidence suggesting Lubitz was suicidal or acting aggressively before the" " crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to" " lose his pilot's license, a European government official briefed on the investigation told CNN on" ' Tuesday. While flying was "a big part of his life," the source said, it\'s only one theory being' " considered. Another source, a law enforcement official briefed on the investigation, also told CNN that" " authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would" " not be allowed to fly because of his medical problems. Lubitz's girlfriend told investigators he had" " seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded" " he had psychological issues, the European government official said. But no matter what details emerge" " about his previous mental health struggles, there's more to the story, said Brian Russell, a forensic" ' psychologist. "Psychology can explain why somebody would turn rage inward on themselves about the fact' " that maybe they weren't going to keep doing their job and they're upset about that and so they're" ' suicidal," he said. "But there is no mental illness that explains why somebody then feels entitled to' " also take that rage and turn it outward on 149 other people who had nothing to do with the person's" ' problems." Germanwings crash compensation: What we know . Who was the captain of Germanwings Flight' " 9525? CNN's Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura" " Smith-Spark wrote from London. CNN's Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine" " Amiel and Anna-Maja Rappard contributed to this report." ) SHORTER_ARTICLE = ( "(CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on" " Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The" " formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based." " The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its" ' jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East' ' Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the' " situation in Palestinian territories, paving the way for possible war crimes investigations against" " Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and" " the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the" " body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a" ' move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the' ' world is also a step closer to ending a long era of impunity and injustice," he said, according to an' ' ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge' " Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the" ' Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine' " acquires all the rights as well as responsibilities that come with being a State Party to the Statute." ' These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights' ' Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should' " immediately end their pressure, and countries that support universal acceptance of the court's treaty" ' should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the' " group. \"What's objectionable is the attempts to undermine international justice, not Palestine's" ' decision to join a treaty to which over 100 countries around the world are members." In January, when' " the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an" ' outrage, saying the court was overstepping its boundaries. The United States also said it "strongly"' " disagreed with the court's decision. \"As we have said repeatedly, we do not believe that Palestine is a" ' state and therefore we do not believe that it is eligible to join the ICC," the State Department said in' ' a statement. It urged the warring sides to resolve their differences through direct negotiations. "We' ' will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace,"' " it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the" ' territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the' " court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou" ' Bensouda said her office would "conduct its analysis in full independence and impartiality." The war' " between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry" " will include alleged war crimes committed since June. The International Criminal Court was set up in" " 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder" " and Faith Karimi contributed to this report." ) IRAN_ARTICLE = ( "(CNN)The United States and its negotiating partners reached a very strong framework agreement with Iran" " in Lausanne, Switzerland, on Thursday that limits Iran's nuclear program in such a way as to effectively" " block it from building a nuclear weapon. Expect pushback anyway, if the recent past is any harbinger." " Just last month, in an attempt to head off such an agreement, House Speaker John Boehner invited Israeli" " Prime Minister Benjamin Netanyahu to preemptively blast it before Congress, and 47 senators sent a" " letter to the Iranian leadership warning them away from a deal. The debate that has already begun since" " the announcement of the new framework will likely result in more heat than light. It will not be helped" " by the gathering swirl of dubious assumptions and doubtful assertions. Let us address some of these: ." " The most misleading assertion, despite universal rejection by experts, is that the negotiations'" " objective at the outset was the total elimination of any nuclear program in Iran. That is the position" " of Netanyahu and his acolytes in the U.S. Congress. But that is not and never was the objective. If it" " had been, there would have been no Iranian team at the negotiating table. Rather, the objective has" " always been to structure an agreement or series of agreements so that Iran could not covertly develop a" " nuclear arsenal before the United States and its allies could respond. The new framework has exceeded" " expectations in achieving that goal. It would reduce Iran's low-enriched uranium stockpile, cut by" " two-thirds its number of installed centrifuges and implement a rigorous inspection regime. Another" " dubious assumption of opponents is that the Iranian nuclear program is a covert weapons program. Despite" " sharp accusations by some in the United States and its allies, Iran denies having such a program, and" " U.S. intelligence contends that Iran has not yet made the decision to build a nuclear weapon. Iran's" " continued cooperation with International Atomic Energy Agency inspections is further evidence on this" " point, and we'll know even more about Iran's program in the coming months and years because of the deal." " In fact, the inspections provisions that are part of this agreement are designed to protect against any" " covert action by the Iranians. What's more, the rhetoric of some members of Congress has implied that" " the negotiations have been between only the United States and Iran (i.e., the 47 senators' letter" " warning that a deal might be killed by Congress or a future president). This of course is not the case." " The talks were between Iran and the five permanent members of the U.N. Security Council (United States," " United Kingdom, France, China and Russia) plus Germany, dubbed the P5+1. While the United States has" " played a leading role in the effort, it negotiated the terms alongside its partners. If the agreement" " reached by the P5+1 is rejected by Congress, it could result in an unraveling of the sanctions on Iran" " and threaten NATO cohesion in other areas. Another questionable assertion is that this agreement" " contains a sunset clause, after which Iran will be free to do as it pleases. Again, this is not the" " case. Some of the restrictions on Iran's nuclear activities, such as uranium enrichment, will be eased" " or eliminated over time, as long as 15 years. But most importantly, the framework agreement includes" " Iran's ratification of the Additional Protocol, which allows IAEA inspectors expanded access to nuclear" " sites both declared and nondeclared. This provision will be permanent. It does not sunset. Thus, going" " forward, if Iran decides to enrich uranium to weapons-grade levels, monitors will be able to detect such" " a move in a matter of days and alert the U.N. Security Council. Many in Congress have said that the" ' agreement should be a formal treaty requiring the Senate to "advise and consent." But the issue is not' " suited for a treaty. Treaties impose equivalent obligations on all signatories. For example, the New" " START treaty limits Russia and the United States to 1,550 deployed strategic warheads. But any agreement" " with Iran will not be so balanced. The restrictions and obligations in the final framework agreement" " will be imposed almost exclusively on Iran. The P5+1 are obligated only to ease and eventually remove" " most but not all economic sanctions, which were imposed as leverage to gain this final deal. Finally" " some insist that any agreement must address Iranian missile programs, human rights violations or support" " for Hamas or Hezbollah. As important as these issues are, and they must indeed be addressed, they are" " unrelated to the most important aim of a nuclear deal: preventing a nuclear Iran. To include them in" " the negotiations would be a poison pill. This agreement should be judged on its merits and on how it" " affects the security of our negotiating partners and allies, including Israel. Those judgments should be" " fact-based, not based on questionable assertions or dubious assumptions." ) ARTICLE_SUBWAY = ( "New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York. A" " year later, she got married again in Westchester County, but to a different man and without divorcing" " her first husband. Only 18 days after that marriage, she got hitched yet again. Then, Barrientos" ' declared "I do" five more times, sometimes only within two weeks of each other. In 2010, she married' " once more, this time in the Bronx. In an application for a marriage license, she stated it was her" ' "first and only" marriage. Barrientos, now 39, is facing two criminal counts of "offering a false' ' instrument for filing in the first degree," referring to her false statements on the 2010 marriage' " license application, according to court documents. Prosecutors said the marriages were part of an" " immigration scam. On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to" " her attorney, Christopher Wright, who declined to comment further. After leaving court, Barrientos was" " arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New" " York subway through an emergency exit, said Detective Annette Markowski, a police spokeswoman. In total," " Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002. All" " occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be" " married to four men, and at one time, she was married to eight men at once, prosecutors say. Prosecutors" " said the immigration scam involved some of her husbands, who filed for permanent residence status" " shortly after the marriages. Any divorces happened only after such filings were approved. It was" " unclear whether any of the men will be prosecuted. The case was referred to the Bronx District" " Attorney's Office by Immigration and Customs Enforcement and the Department of Homeland Security's" ' Investigation Division. Seven of the men are from so-called "red-flagged" countries, including Egypt,' " Turkey, Georgia, Pakistan and Mali. Her eighth husband, Rashid Rajput, was deported in 2006 to his" " native Pakistan after an investigation by the Joint Terrorism Task Force. If convicted, Barrientos faces" " up to four years in prison. Her next court appearance is scheduled for May 18." ) expected_summaries = [ 'prosecutor: "so far no videos were used in the crash investigation" two magazines claim to have found a' " cell phone video of the final seconds . \"one can hear cries of 'My God' in several languages,\" one" " magazine says . all 150 on board were killed in the crash .", "the formal accession was marked by a ceremony at The Hague, in the Netherlands . the ICC opened a" " preliminary examination into the situation in the occupied Palestinian territory . as members of the" " court, Palestinians may be subject to counter-charges as well .", "the u.s. and its negotiating partners reached a very strong framework agreement with Iran . aaron miller:" " the debate that has already begun since the announcement of the new framework will likely result in more" " heat than light . he says the new framework would reduce Iran's low-enriched uranium stockpile and cut" " centrifuges . miller: if it had been, there would have been no Iranian team at the table .", "prosecutors say the marriages were part of an immigration scam . if convicted, barrientos faces two" ' criminal counts of "offering a false instrument for filing in the first degree" she has been married 10' " times, with nine of her marriages occurring between 1999 and 2002 .", ] dct = tok( ["summarize: " + x for x in [FRANCE_ARTICLE, SHORTER_ARTICLE, IRAN_ARTICLE, ARTICLE_SUBWAY]], padding="max_length", truncation=True, return_tensors="np", ) self.assertEqual(512, dct["input_ids"].shape[1]) hypotheses_batch = model.generate( **dct, num_beams=4, length_penalty=2.0, max_length=142, min_length=56, do_sample=False, early_stopping=True, ).sequences decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False) self.assertListEqual( expected_summaries, decoded, )
transformers/tests/models/t5/test_modeling_flax_t5.py/0
{ "file_path": "transformers/tests/models/t5/test_modeling_flax_t5.py", "repo_id": "transformers", "token_count": 23884 }
419
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the TensorFlow ViTMAE model. """ from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel from transformers.modeling_tf_utils import keras if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class TFViTMAEModelTester: def __init__( self, parent, batch_size=13, image_size=30, patch_size=2, num_channels=3, is_training=True, use_labels=True, hidden_size=32, num_hidden_layers=2, num_attention_heads=4, intermediate_size=37, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, type_sequence_label_size=10, initializer_range=0.02, num_labels=3, mask_ratio=0.6, scope=None, ): self.parent = parent self.batch_size = batch_size self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.is_training = is_training self.use_labels = use_labels self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.type_sequence_label_size = type_sequence_label_size self.initializer_range = initializer_range self.mask_ratio = mask_ratio self.scope = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) num_patches = (image_size // patch_size) ** 2 self.seq_length = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def prepare_config_and_inputs(self): pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) labels = None if self.use_labels: labels = ids_tensor([self.batch_size], self.type_sequence_label_size) config = self.get_config() return config, pixel_values, labels def get_config(self): return ViTMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, decoder_hidden_size=self.hidden_size, decoder_num_hidden_layers=self.num_hidden_layers, decoder_num_attention_heads=self.num_attention_heads, decoder_intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=False, initializer_range=self.initializer_range, mask_ratio=self.mask_ratio, ) def create_and_check_model(self, config, pixel_values, labels): model = TFViTMAEModel(config=config) result = model(pixel_values, training=False) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_for_pretraining(self, config, pixel_values, labels): model = TFViTMAEForPreTraining(config) result = model(pixel_values, training=False) # expected sequence length = num_patches num_patches = (self.image_size // self.patch_size) ** 2 expected_num_channels = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) # test greyscale images config.num_channels = 1 model = TFViTMAEForPreTraining(config) pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) result = model(pixel_values, training=False) expected_num_channels = self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_patches, expected_num_channels)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() (config, pixel_values, labels) = config_and_inputs inputs_dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class TFViTMAEModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): """ Here we also overwrite some of the tests of test_modeling_common.py, as ViTMAE does not use input_ids, inputs_embeds, attention_mask and seq_length. """ all_model_classes = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () pipeline_model_mapping = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} test_pruning = False test_onnx = False test_resize_embeddings = False test_head_masking = False def setUp(self): self.model_tester = TFViTMAEModelTester(self) self.config_tester = ConfigTester(self, config_class=ViTMAEConfig, has_text_modality=False, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds") def test_inputs_embeds(self): pass def test_model_common_attributes(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer)) x = model.get_output_embeddings() self.assertTrue(x is None or isinstance(x, keras.layers.Layer)) def test_forward_signature(self): config, _ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: model = model_class(config) signature = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["pixel_values"] self.assertListEqual(arg_names[:1], expected_arg_names) def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_for_pretraining(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*config_and_inputs) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_keyword_and_dict_args(self): # make the mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) outputs_dict = model(inputs, noise=noise) inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) outputs_keywords = model(**inputs_keywords, noise=noise) output_dict = outputs_dict[0].numpy() output_keywords = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_numpy_arrays_inputs(self): # make the mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) def prepare_numpy_arrays(inputs_dict): inputs_np_dict = {} for k, v in inputs_dict.items(): if tf.is_tensor(v): inputs_np_dict[k] = v.numpy() else: inputs_np_dict[k] = np.array(k) return inputs_np_dict for model_class in self.all_model_classes: model = model_class(config) inputs = self._prepare_for_class(inputs_dict, model_class) inputs_np = prepare_numpy_arrays(inputs) output_for_dict_input = model(inputs_np, noise=noise) output_for_kw_input = model(**inputs_np, noise=noise) self.assert_outputs_same(output_for_dict_input, output_for_kw_input) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict): # make masks reproducible np.random.seed(2) num_patches = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) tf_noise = tf.constant(noise) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument tf_inputs_dict["noise"] = tf_noise super().check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_keras_save_load(self): # make mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() tf_main_layer_classes = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__),) for module_member_name in dir(module) if module_member_name.endswith("MainLayer") # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")] for module_member in (getattr(module, module_member_name),) if isinstance(module_member, type) and keras.layers.Layer in module_member.__bases__ and getattr(module_member, "_keras_serializable", False) } num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) noise = tf.convert_to_tensor(noise) inputs_dict.update({"noise": noise}) for main_layer_class in tf_main_layer_classes: main_layer = main_layer_class(config) symbolic_inputs = { name: keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() } model = keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) outputs = model(inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "keras_model.h5") model.save(filepath) model = keras.models.load_model(filepath, custom_objects={main_layer_class.__name__: main_layer_class}) assert isinstance(model, keras.Model) after_outputs = model(inputs_dict) self.assert_outputs_same(after_outputs, outputs) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test @slow def test_save_load(self): # make mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: model = model_class(config) model_input = self._prepare_for_class(inputs_dict, model_class) outputs = model(model_input, noise=noise) if model_class.__name__ == "TFViTMAEModel": out_2 = outputs.last_hidden_state.numpy() out_2[np.isnan(out_2)] = 0 else: out_2 = outputs.logits.numpy() out_2[np.isnan(out_2)] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname, saved_model=False) model = model_class.from_pretrained(tmpdirname) after_outputs = model(model_input, noise=noise) if model_class.__name__ == "TFViTMAEModel": out_1 = after_outputs["last_hidden_state"].numpy() out_1[np.isnan(out_1)] = 0 else: out_1 = after_outputs["logits"].numpy() out_1[np.isnan(out_1)] = 0 max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) # overwrite from common since TFViTMAEForPretraining has random masking, we need to fix the noise # to generate masks during test def test_save_load_config(self): # make mask reproducible np.random.seed(2) config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() num_patches = int((config.image_size // config.patch_size) ** 2) noise = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) for model_class in self.all_model_classes: model = model_class(config) model_inputs = self._prepare_for_class(inputs_dict, model_class) outputs = model(model_inputs, noise=noise) model_config = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(model_config) new_model = model_class.from_config(model.get_config()) # make sure it also accepts a normal config _ = model_class.from_config(model.config) _ = new_model(model_inputs) # Build model new_model.set_weights(model.get_weights()) after_outputs = new_model(model_inputs, noise=noise) self.assert_outputs_same(after_outputs, outputs) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def test_determinism(self): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""") def test_model_outputs_equivalence(self): pass @slow def test_model_from_pretrained(self): model = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224") self.assertIsNotNone(model) # We will verify our results on an image of cute cats def prepare_img(): image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_tf @require_vision class TFViTMAEModelIntegrationTest(unittest.TestCase): @cached_property def default_image_processor(self): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base") if is_vision_available() else None @slow def test_inference_for_pretraining(self): # make random mask reproducible across the PT and TF model np.random.seed(2) model = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base") image_processor = self.default_image_processor image = prepare_img() inputs = image_processor(images=image, return_tensors="tf") # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) vit_mae_config = ViTMAEConfig() num_patches = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) noise = np.random.uniform(size=(1, num_patches)) # forward pass outputs = model(**inputs, noise=noise) # verify the logits expected_shape = tf.convert_to_tensor([1, 196, 768]) self.assertEqual(outputs.logits.shape, expected_shape) expected_slice = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3], expected_slice, atol=1e-4)
transformers/tests/models/vit_mae/test_modeling_tf_vit_mae.py/0
{ "file_path": "transformers/tests/models/vit_mae/test_modeling_tf_vit_mae.py", "repo_id": "transformers", "token_count": 7979 }
420
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, Wav2Vec2Config, Wav2Vec2FeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin global_rng = random.Random() # Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list def floats_list(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng values = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class Wav2Vec2FeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, min_seq_length=400, max_seq_length=2000, feature_size=1, padding_value=0.0, sampling_rate=16000, return_attention_mask=True, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.min_seq_length = min_seq_length self.max_seq_length = max_seq_length self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) self.feature_size = feature_size self.padding_value = padding_value self.sampling_rate = sampling_rate self.return_attention_mask = return_attention_mask self.do_normalize = do_normalize def prepare_feat_extract_dict(self): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def prepare_inputs_for_common(self, equal_length=False, numpify=False): def _flatten(list_of_lists): return list(itertools.chain(*list_of_lists)) if equal_length: speech_inputs = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size speech_inputs = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: speech_inputs = [np.asarray(x) for x in speech_inputs] return speech_inputs class Wav2Vec2FeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase): feature_extraction_class = Wav2Vec2FeatureExtractor def setUp(self): self.feat_extract_tester = Wav2Vec2FeatureExtractionTester(self) def _check_zero_mean_unit_variance(self, input_vector): self.assertTrue(np.all(np.mean(input_vector, axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(input_vector, axis=0) - 1) < 1e-3)) def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs] # Test not batched input encoded_sequences_1 = feat_extract(speech_inputs[0], return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs[0], return_tensors="np").input_values self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3)) # Test batched encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) # Test 2-D numpy arrays are batched. speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)] np_speech_inputs = np.asarray(speech_inputs) encoded_sequences_1 = feat_extract(speech_inputs, return_tensors="np").input_values encoded_sequences_2 = feat_extract(np_speech_inputs, return_tensors="np").input_values for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2): self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3)) def test_zero_mean_unit_variance_normalization_np(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] paddings = ["longest", "max_length", "do_not_pad"] max_lengths = [None, 1600, None] for max_length, padding in zip(max_lengths, paddings): processed = feat_extract(speech_inputs, padding=padding, max_length=max_length, return_tensors="np") input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self.assertTrue(input_values[0][800:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[1][:1000]) self.assertTrue(input_values[0][1000:].sum() < 1e-6) self._check_zero_mean_unit_variance(input_values[2][:1200]) def test_zero_mean_unit_variance_normalization(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) lengths = range(800, 1400, 200) speech_inputs = [floats_list((1, x))[0] for x in lengths] paddings = ["longest", "max_length", "do_not_pad"] max_lengths = [None, 1600, None] for max_length, padding in zip(max_lengths, paddings): processed = feat_extract(speech_inputs, max_length=max_length, padding=padding) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800]) self._check_zero_mean_unit_variance(input_values[1][:1000]) self._check_zero_mean_unit_variance(input_values[2][:1200]) def test_zero_mean_unit_variance_normalization_trunc_np_max_length(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] processed = feat_extract( speech_inputs, truncation=True, max_length=1000, padding="max_length", return_tensors="np" ) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1]) self._check_zero_mean_unit_variance(input_values[2]) def test_zero_mean_unit_variance_normalization_trunc_np_longest(self): feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] processed = feat_extract( speech_inputs, truncation=True, max_length=1000, padding="longest", return_tensors="np" ) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000)) speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)] processed = feat_extract( speech_inputs, truncation=True, max_length=2000, padding="longest", return_tensors="np" ) input_values = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800]) self._check_zero_mean_unit_variance(input_values[1, :1000]) self._check_zero_mean_unit_variance(input_values[2]) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200)) @require_torch def test_double_precision_pad(self): import torch feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) np_speech_inputs = np.random.rand(100).astype(np.float64) py_speech_inputs = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: np_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.float32) pt_processed = feature_extractor.pad([{"input_values": inputs}], return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.float32) @slow @require_torch def test_pretrained_checkpoints_are_set_correctly(self): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: config = Wav2Vec2Config.from_pretrained(model_id) feat_extract = Wav2Vec2FeatureExtractor.from_pretrained(model_id) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask, config.feat_extract_norm == "layer")
transformers/tests/models/wav2vec2/test_feature_extraction_wav2vec2.py/0
{ "file_path": "transformers/tests/models/wav2vec2/test_feature_extraction_wav2vec2.py", "repo_id": "transformers", "token_count": 4411 }
421
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing suite for the PyTorch WavLM model. """ import math import unittest import pytest from datasets import load_dataset from transformers import WavLMConfig, is_torch_available from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ( ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor, random_attention_mask, ) from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( Wav2Vec2FeatureExtractor, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, ) class WavLMModelTester: def __init__( self, parent, batch_size=13, seq_length=1024, # speech is longer is_training=False, hidden_size=16, feat_extract_norm="group", feat_extract_dropout=0.0, feat_extract_activation="gelu", conv_dim=(32, 32, 32), conv_stride=(4, 4, 4), conv_kernel=(8, 8, 8), conv_bias=False, num_conv_pos_embeddings=16, num_conv_pos_embedding_groups=2, num_hidden_layers=2, num_attention_heads=2, hidden_dropout_prob=0.1, # this is most likely not correctly set yet intermediate_size=20, layer_norm_eps=1e-5, hidden_act="gelu", initializer_range=0.02, vocab_size=32, do_stable_layer_norm=False, tdnn_dim=(32, 32), tdnn_kernel=(3, 3), tdnn_dilation=(1, 1), xvector_output_dim=32, scope=None, ): self.parent = parent self.batch_size = batch_size self.seq_length = seq_length self.is_training = is_training self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_dropout = feat_extract_dropout self.feat_extract_activation = feat_extract_activation self.conv_dim = conv_dim self.conv_stride = conv_stride self.conv_kernel = conv_kernel self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_dropout_prob = hidden_dropout_prob self.intermediate_size = intermediate_size self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.tdnn_dim = tdnn_dim self.tdnn_kernel = tdnn_kernel self.tdnn_dilation = tdnn_dilation self.xvector_output_dim = xvector_output_dim self.scope = scope output_seq_length = self.seq_length for kernel, stride in zip(self.conv_kernel, self.conv_stride): output_seq_length = (output_seq_length - (kernel - 1)) / stride self.output_seq_length = int(math.ceil(output_seq_length)) self.encoder_seq_length = self.output_seq_length def prepare_config_and_inputs(self): input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0) attention_mask = random_attention_mask([self.batch_size, self.seq_length]) config = self.get_config() return config, input_values, attention_mask def get_config(self): return WavLMConfig( hidden_size=self.hidden_size, feat_extract_norm=self.feat_extract_norm, feat_extract_dropout=self.feat_extract_dropout, feat_extract_activation=self.feat_extract_activation, conv_dim=self.conv_dim, conv_stride=self.conv_stride, conv_kernel=self.conv_kernel, conv_bias=self.conv_bias, num_conv_pos_embeddings=self.num_conv_pos_embeddings, num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, hidden_dropout_prob=self.hidden_dropout_prob, intermediate_size=self.intermediate_size, layer_norm_eps=self.layer_norm_eps, hidden_act=self.hidden_act, initializer_range=self.initializer_range, vocab_size=self.vocab_size, tdnn_dim=self.tdnn_dim, tdnn_kernel=self.tdnn_kernel, tdnn_dilation=self.tdnn_dilation, xvector_output_dim=self.xvector_output_dim, ) def create_and_check_model(self, config, input_values, attention_mask): model = WavLMModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) ) def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = WavLMModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3)) def check_ctc_loss(self, config, input_values, *args): model = WavLMForCTC(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 model.config.ctc_loss_reduction = "sum" sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() model.config.ctc_loss_reduction = "mean" mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() self.parent.assertTrue(isinstance(sum_loss, float)) self.parent.assertTrue(isinstance(mean_loss, float)) def check_seq_classifier_loss(self, config, input_values, *args): model = WavLMForSequenceClassification(config=config) model.to(torch_device) # make sure that dropout is disabled model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0 masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item() unmasked_loss = model(input_values, labels=labels).loss.item() self.parent.assertTrue(isinstance(masked_loss, float)) self.parent.assertTrue(isinstance(unmasked_loss, float)) self.parent.assertTrue(masked_loss != unmasked_loss) def check_ctc_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = WavLMForCTC(config=config) model.to(torch_device) model.train() # freeze feature encoder model.freeze_feature_encoder() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 if max_length_labels[i] < labels.shape[-1]: # it's important that we make sure that target lengths are at least # one shorter than logit lengths to prevent -inf labels[i, max_length_labels[i] - 1 :] = -100 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_seq_classifier_training(self, config, input_values, *args): config.ctc_zero_infinity = True model = WavLMForSequenceClassification(config=config) model.to(torch_device) model.train() # freeze everything but the classification head model.freeze_base_model() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label)) # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 loss = model(input_values, labels=labels).loss self.parent.assertFalse(torch.isinf(loss).item()) loss.backward() def check_labels_out_of_vocab(self, config, input_values, *args): model = WavLMForCTC(config) model.to(torch_device) model.train() input_values = input_values[:3] input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths)) labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100) with pytest.raises(ValueError): model(input_values, labels=labels) def prepare_config_and_inputs_for_common(self): config, input_values, attention_mask = self.prepare_config_and_inputs() inputs_dict = {"input_values": input_values, "attention_mask": attention_mask} return config, inputs_dict @require_torch class WavLMModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( (WavLMForCTC, WavLMModel, WavLMForAudioFrameClassification, WavLMForSequenceClassification, WavLMForXVector) if is_torch_available() else () ) pipeline_model_mapping = ( { "audio-classification": WavLMForSequenceClassification, "automatic-speech-recognition": WavLMForCTC, "feature-extraction": WavLMModel, } if is_torch_available() else {} ) test_pruning = False test_headmasking = False def setUp(self): self.model_tester = WavLMModelTester(self) self.config_tester = ConfigTester(self, config_class=WavLMConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_ctc_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_loss(*config_and_inputs) def test_seq_classifier_loss_inference(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_loss(*config_and_inputs) def test_ctc_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_ctc_training(*config_and_inputs) def test_seq_classifier_train(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_seq_classifier_training(*config_and_inputs) def test_labels_out_of_vocab(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.check_labels_out_of_vocab(*config_and_inputs) # WavLM has no inputs_embeds def test_inputs_embeds(self): pass # `input_ids` is renamed to `input_values` def test_forward_signature(self): pass # WavLM cannot resize token embeddings # since it has no tokens embeddings def test_resize_tokens_embeddings(self): pass # WavLM has no inputs_embeds # and thus the `get_input_embeddings` fn # is not implemented def test_model_common_attributes(self): pass # WavLM uses PyTorch's multi-head-attention class # and thus can't retain gradients on attentions def test_retain_grad_hidden_states_attentions(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() config.output_hidden_states = True config.output_attentions = True # no need to test all models as different heads yield the same functionality model_class = self.all_model_classes[0] model = model_class(config) model.to(torch_device) # set layer drop to 0 model.config.layerdrop = 0.0 input_values = inputs_dict["input_values"] input_lengths = torch.tensor( [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device ) output_lengths = model._get_feat_extract_output_lengths(input_lengths) labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size) inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"]) inputs_dict["labels"] = labels outputs = model(**inputs_dict) output = outputs[0] # Encoder-/Decoder-only models hidden_states = outputs.hidden_states[0] hidden_states.retain_grad() output.flatten()[0].backward(retain_graph=True) self.assertIsNotNone(hidden_states.grad) def test_initialization(self): config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() configs_no_init = _config_zero_init(config) for model_class in self.all_model_classes: model = model_class(config=configs_no_init) for name, param in model.named_parameters(): uniform_init_parms = [ "conv.weight", "conv.parametrizations.weight", "masked_spec_embed", "codevectors", "quantizer.weight_proj.weight", "project_hid.weight", "project_hid.bias", "project_q.weight", "project_q.bias", "feature_projection.projection.weight", "feature_projection.projection.bias", "label_embeddings_concat", "rel_attn_embed", "objective.weight", ] if param.requires_grad: if any(x in name for x in uniform_init_parms): self.assertTrue( -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0, msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) else: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f"Parameter {name} of model {model_class} seems not properly initialized", ) # overwrite from test_modeling_common def _mock_init_weights(self, module): if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(3) if hasattr(module, "weight_g") and module.weight_g is not None: module.weight_g.data.fill_(3) if hasattr(module, "weight_v") and module.weight_v is not None: module.weight_v.data.fill_(3) if hasattr(module, "bias") and module.bias is not None: module.bias.data.fill_(3) if hasattr(module, "codevectors") and module.codevectors is not None: module.codevectors.data.fill_(3) if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None: module.masked_spec_embed.data.fill_(3) @unittest.skip(reason="Feed forward chunking is not implemented for WavLM") def test_feed_forward_chunking(self): pass @slow def test_model_from_pretrained(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus") self.assertIsNotNone(model) @require_torch @require_torchaudio @slow class WavLMModelIntegrationTest(unittest.TestCase): def _load_datasamples(self, num_samples): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") # automatic decoding with librispeech speech_samples = ds.sort("id").filter( lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)] )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def _load_superb(self, task, num_samples): ds = load_dataset("anton-l/superb_dummy", task, split="test") return ds[:num_samples] def test_inference_base(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus").to(torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-base-plus", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = ( model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu() ) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor( [[[0.0577, 0.1161], [0.0579, 0.1165]], [[0.0199, 0.1237], [0.0059, 0.0605]]] ) self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, atol=5e-2)) def test_inference_large(self): model = WavLMModel.from_pretrained("microsoft/wavlm-large").to(torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-large", return_attention_mask=True ) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = ( model(input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu() ) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor( [[[0.2122, 0.0500], [0.2118, 0.0563]], [[0.1353, 0.1818], [0.2453, 0.0595]]] ) self.assertTrue(torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, rtol=5e-2)) def test_inference_diarization(self): model = WavLMForAudioFrameClassification.from_pretrained("microsoft/wavlm-base-plus-sd").to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sd") input_data = self._load_superb("sd", 4) inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): outputs = model(input_values, attention_mask=attention_mask) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (outputs.logits > 0).long() # s3prl logits for the same batch expected_logits = torch.tensor( [ [[-5.9566, -8.6554], [-5.7137, -8.9386], [-5.7906, -7.0973], [-5.7829, -5.9999]], [[-5.2086, -7.7878], [-4.8890, -7.9312], [-4.2004, -3.9101], [-5.4480, -4.6932]], [[-4.6105, -6.7178], [-5.1930, -6.1635], [-2.6228, -4.1123], [-2.7646, -3.1576]], [[-4.4477, -7.9206], [-3.9339, -7.3707], [-4.9528, -4.8242], [-3.6921, -2.9687]], ], device=torch_device, ) self.assertEqual(labels[0, :, 0].sum(), 258) self.assertEqual(labels[0, :, 1].sum(), 647) self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2)) def test_inference_speaker_verification(self): model = WavLMForXVector.from_pretrained("microsoft/wavlm-base-plus-sv").to(torch_device) processor = Wav2Vec2FeatureExtractor.from_pretrained("microsoft/wavlm-base-plus-sv") input_data = self._load_superb("si", 4) inputs = processor(input_data["speech"], return_tensors="pt", padding=True) labels = torch.tensor([5, 1, 1, 3], device=torch_device).T with torch.no_grad(): input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) outputs = model(input_values, attention_mask=attention_mask, labels=labels) embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1) cosine_sim = torch.nn.CosineSimilarity(dim=-1) # id10002 vs id10002 self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).item(), 0.9787, 3) # id10006 vs id10002 self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).item(), 0.5064, 3) # id10002 vs id10004 self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).item(), 0.4780, 3) self.assertAlmostEqual(outputs.loss.item(), 18.4154, 2)
transformers/tests/models/wavlm/test_modeling_wavlm.py/0
{ "file_path": "transformers/tests/models/wavlm/test_modeling_wavlm.py", "repo_id": "transformers", "token_count": 10880 }
422
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMModel, TFXLMWithLMHeadModel, XLMConfig, ) class TFXLMModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_lengths = True self.use_token_type_ids = True self.use_labels = True self.gelu_activation = True self.sinusoidal_embeddings = False self.causal = False self.asm = False self.n_langs = 2 self.vocab_size = 99 self.n_special = 0 self.hidden_size = 32 self.num_hidden_layers = 2 self.num_attention_heads = 4 self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.summary_type = "last" self.use_proj = True self.scope = None self.bos_token_id = 0 def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = random_attention_mask([self.batch_size, self.seq_length], dtype=tf.float32) input_lengths = None if self.use_input_lengths: input_lengths = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs) sequence_labels = None token_labels = None is_impossible_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) is_impossible_labels = ids_tensor([self.batch_size], 2, dtype=tf.float32) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, bos_token_id=self.bos_token_id, ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def create_and_check_xlm_model( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMModel(config=config) inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} result = model(inputs) inputs = [input_ids, input_mask] result = model(inputs) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def create_and_check_xlm_lm_head( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMWithLMHeadModel(config) inputs = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} outputs = model(inputs) result = outputs self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_xlm_qa( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMForQuestionAnsweringSimple(config) inputs = {"input_ids": input_ids, "lengths": input_lengths} result = model(inputs) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def create_and_check_xlm_sequence_classif( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): model = TFXLMForSequenceClassification(config) inputs = {"input_ids": input_ids, "lengths": input_lengths} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def create_and_check_xlm_for_token_classification( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_labels = self.num_labels model = TFXLMForTokenClassification(config=config) inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_xlm_for_multiple_choice( self, config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ): config.num_choices = self.num_choices model = TFXLMForMultipleChoice(config=config) multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1)) multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1)) multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1)) inputs = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } result = model(inputs) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) = config_and_inputs inputs_dict = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class TFXLMModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase): all_model_classes = ( ( TFXLMModel, TFXLMWithLMHeadModel, TFXLMForSequenceClassification, TFXLMForQuestionAnsweringSimple, TFXLMForTokenClassification, TFXLMForMultipleChoice, ) if is_tf_available() else () ) all_generative_model_classes = ( (TFXLMWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable pipeline_model_mapping = ( { "feature-extraction": TFXLMModel, "fill-mask": TFXLMWithLMHeadModel, "question-answering": TFXLMForQuestionAnsweringSimple, "text-classification": TFXLMForSequenceClassification, "text-generation": TFXLMWithLMHeadModel, "token-classification": TFXLMForTokenClassification, "zero-shot": TFXLMForSequenceClassification, } if is_tf_available() else {} ) test_head_masking = False test_onnx = False # TODO: Fix the failed tests def is_pipeline_test_to_skip( self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def setUp(self): self.model_tester = TFXLMModelTester(self) self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37) def test_config(self): self.config_tester.run_common_tests() def test_xlm_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*config_and_inputs) def test_xlm_lm_head(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs) def test_xlm_qa(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*config_and_inputs) def test_xlm_sequence_classif(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = TFXLMModel.from_pretrained(model_name) self.assertIsNotNone(model) @require_tf class TFXLMModelLanguageGenerationTest(unittest.TestCase): @slow def test_lm_generate_xlm_mlm_en_2048(self): model = TFXLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048") input_ids = tf.convert_to_tensor([[14, 447]], dtype=tf.int32) # the president expected_output_ids = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference output_ids = model.generate(input_ids, do_sample=False) self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)
transformers/tests/models/xlm/test_modeling_tf_xlm.py/0
{ "file_path": "transformers/tests/models/xlm/test_modeling_tf_xlm.py", "repo_id": "transformers", "token_count": 6448 }
423
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_accelerator, require_torch_gpu, require_torch_or_tf, torch_device, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class TextGenerationPipelineTests(unittest.TestCase): model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING tf_model_mapping = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def test_small_model_pt(self): text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="pt") # Using `do_sample=False` to force deterministic output outputs = text_generator("This is a test", do_sample=False) self.assertEqual( outputs, [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], ) outputs = text_generator(["This is a test", "This is a second test"]) self.assertEqual( outputs, [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ], ) outputs = text_generator("This is a test", do_sample=True, num_return_sequences=2, return_tensors=True) self.assertEqual( outputs, [ {"generated_token_ids": ANY(list)}, {"generated_token_ids": ANY(list)}, ], ) ## -- test tokenizer_kwargs test_str = "testing tokenizer kwargs. using truncation must result in a different generation." output_str, output_str_with_truncation = ( text_generator(test_str, do_sample=False, return_full_text=False)[0]["generated_text"], text_generator( test_str, do_sample=False, return_full_text=False, truncation=True, max_length=3, )[0]["generated_text"], ) assert output_str != output_str_with_truncation # results must be different because one hd truncation # -- what is the point of this test? padding is hardcoded False in the pipeline anyway text_generator.tokenizer.pad_token_id = text_generator.model.config.eos_token_id text_generator.tokenizer.pad_token = "<pad>" outputs = text_generator( ["This is a test", "This is a second test"], do_sample=True, num_return_sequences=2, batch_size=2, return_tensors=True, ) self.assertEqual( outputs, [ [ {"generated_token_ids": ANY(list)}, {"generated_token_ids": ANY(list)}, ], [ {"generated_token_ids": ANY(list)}, {"generated_token_ids": ANY(list)}, ], ], ) @require_tf def test_small_model_tf(self): text_generator = pipeline(task="text-generation", model="sshleifer/tiny-ctrl", framework="tf") # Using `do_sample=False` to force deterministic output outputs = text_generator("This is a test", do_sample=False) self.assertEqual( outputs, [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], ) outputs = text_generator(["This is a test", "This is a second test"], do_sample=False) self.assertEqual( outputs, [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ], ) def get_test_pipeline(self, model, tokenizer, processor): text_generator = TextGenerationPipeline(model=model, tokenizer=tokenizer) return text_generator, ["This is a test", "Another test"] def test_stop_sequence_stopping_criteria(self): prompt = """Hello I believe in""" text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2") output = text_generator(prompt) self.assertEqual( output, [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}], ) output = text_generator(prompt, stop_sequence=" fe") self.assertEqual(output, [{"generated_text": "Hello I believe in fe"}]) def run_pipeline_test(self, text_generator, _): model = text_generator.model tokenizer = text_generator.tokenizer outputs = text_generator("This is a test") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) outputs = text_generator("This is a test", return_full_text=False) self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertNotIn("This is a test", outputs[0]["generated_text"]) text_generator = pipeline(task="text-generation", model=model, tokenizer=tokenizer, return_full_text=False) outputs = text_generator("This is a test") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertNotIn("This is a test", outputs[0]["generated_text"]) outputs = text_generator("This is a test", return_full_text=True) self.assertEqual(outputs, [{"generated_text": ANY(str)}]) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test")) outputs = text_generator(["This is great !", "Something else"], num_return_sequences=2, do_sample=True) self.assertEqual( outputs, [ [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], ], ) if text_generator.tokenizer.pad_token is not None: outputs = text_generator( ["This is great !", "Something else"], num_return_sequences=2, batch_size=2, do_sample=True ) self.assertEqual( outputs, [ [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], [{"generated_text": ANY(str)}, {"generated_text": ANY(str)}], ], ) with self.assertRaises(ValueError): outputs = text_generator("test", return_full_text=True, return_text=True) with self.assertRaises(ValueError): outputs = text_generator("test", return_full_text=True, return_tensors=True) with self.assertRaises(ValueError): outputs = text_generator("test", return_text=True, return_tensors=True) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): outputs = text_generator("") self.assertEqual(outputs, [{"generated_text": ANY(str)}]) else: with self.assertRaises((ValueError, AssertionError)): outputs = text_generator("") if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS = [ "RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM", "FuyuForCausalLM", ] if ( tokenizer.model_max_length < 10000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError)): text_generator("This is a test" * 500, max_new_tokens=20) outputs = text_generator("This is a test" * 500, handle_long_generation="hole", max_new_tokens=20) # Hole strategy cannot work with self.assertRaises(ValueError): text_generator( "This is a test" * 500, handle_long_generation="hole", max_new_tokens=tokenizer.model_max_length + 10, ) @require_torch @require_accelerate @require_torch_gpu def test_small_model_pt_bloom_accelerate(self): import torch # Classic `model_kwargs` pipe = pipeline( model="hf-internal-testing/tiny-random-bloom", model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloat16}, ) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16) out = pipe("This is a test") self.assertEqual( out, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.bfloat16) self.assertEqual(pipe.model.lm_head.weight.dtype, torch.bfloat16) out = pipe("This is a test") self.assertEqual( out, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto") self.assertEqual(pipe.model.lm_head.weight.dtype, torch.float32) out = pipe("This is a test") self.assertEqual( out, [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ], ) @require_torch @require_torch_accelerator def test_small_model_fp16(self): import torch pipe = pipeline( model="hf-internal-testing/tiny-random-bloom", device=torch_device, torch_dtype=torch.float16, ) pipe("This is a test") @require_torch @require_accelerate @require_torch_accelerator def test_pipeline_accelerate_top_p(self): import torch pipe = pipeline(model="hf-internal-testing/tiny-random-bloom", device_map="auto", torch_dtype=torch.float16) pipe("This is a test", do_sample=True, top_p=0.5) def test_pipeline_length_setting_warning(self): prompt = """Hello world""" text_generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-gpt2") if text_generator.model.framework == "tf": logger = logging.get_logger("transformers.generation.tf_utils") else: logger = logging.get_logger("transformers.generation.utils") logger_msg = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(logger) as cl: _ = text_generator(prompt, max_length=10, max_new_tokens=1) self.assertIn(logger_msg, cl.out) # The user only sets one -> no warning with CaptureLogger(logger) as cl: _ = text_generator(prompt, max_new_tokens=1) self.assertNotIn(logger_msg, cl.out) with CaptureLogger(logger) as cl: _ = text_generator(prompt, max_length=10) self.assertNotIn(logger_msg, cl.out)
transformers/tests/pipelines/test_pipelines_text_generation.py/0
{ "file_path": "transformers/tests/pipelines/test_pipelines_text_generation.py", "repo_id": "transformers", "token_count": 7322 }
424
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER", "False")) is not True, reason="Skipping test because should only be run when releasing minor transformers version", ) @pytest.mark.usefixtures("sm_env") @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class MultiNodeTest(unittest.TestCase): def setUp(self): if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), encoding="utf-8", check=True, ) assert hasattr(self, "env") def create_estimator(self, instance_count): job_name = f"{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}" # distributed data settings distribution = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=job_name, instance_count=instance_count, instance_type=self.instance_type, debugger_hook_config=False, hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path}, metric_definitions=self.env.metric_definitions, distribution=distribution, py_version="py36", ) def save_results_as_csv(self, job_name): TrainingJobAnalytics(job_name).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") # @parameterized.expand([(2,), (4,),]) @parameterized.expand([(2,)]) def test_script(self, instance_count): # create estimator estimator = self.create_estimator(instance_count) # run training estimator.fit() # result dataframe result_metrics_df = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis eval_accuracy = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) eval_loss = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping train_runtime = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds", 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json", "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss}, outfile)
transformers/tests/sagemaker/test_multi_node_data_parallel.py/0
{ "file_path": "transformers/tests/sagemaker/test_multi_node_data_parallel.py", "repo_id": "transformers", "token_count": 1905 }
425
# coding=utf-8 # Copyright 2019 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import inspect import json import os import random import tempfile import unittest import unittest.mock as mock from huggingface_hub import HfFolder, Repository, delete_repo, snapshot_download from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import is_tf_available, is_torch_available from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import ( # noqa: F401 TOKEN, USER, CaptureLogger, _tf_gpu_memory_limit, is_pt_tf_cross_test, is_staging_test, require_safetensors, require_tf, require_torch, slow, ) from transformers.utils import SAFE_WEIGHTS_NAME, TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging logger = logging.get_logger(__name__) if is_tf_available(): import h5py import numpy as np import tensorflow as tf from transformers import ( BertConfig, PreTrainedModel, PushToHubCallback, RagRetriever, TFBertForMaskedLM, TFBertForSequenceClassification, TFBertModel, TFPreTrainedModel, TFRagModel, ) from transformers.modeling_tf_utils import keras, tf_shard_checkpoint, unpack_inputs from transformers.tf_utils import stable_softmax tf.config.experimental.enable_tensor_float_32_execution(False) if _tf_gpu_memory_limit is not None: gpus = tf.config.list_physical_devices("GPU") for gpu in gpus: # Restrict TensorFlow to only allocate x GB of memory on the GPUs try: tf.config.set_logical_device_configuration( gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] ) logical_gpus = tf.config.list_logical_devices("GPU") print("Logical GPUs", logical_gpus) except RuntimeError as e: # Virtual devices must be set before GPUs have been initialized print(e) if is_torch_available(): from transformers import BertModel @require_tf class TFModelUtilsTest(unittest.TestCase): def test_cached_files_are_used_when_internet_is_down(self): # A mock response for an HTTP head request to emulate server down response_mock = mock.Mock() response_mock.status_code = 500 response_mock.headers = {} response_mock.raise_for_status.side_effect = HTTPError response_mock.json.return_value = {} # Download this model to make sure it's in the cache. _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request", return_value=response_mock) as mock_head: _ = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # This check we did call the fake head request mock_head.assert_called() def test_load_from_one_file(self): try: tmp_file = tempfile.mktemp() with open(tmp_file, "wb") as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", f) config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") _ = TFBertModel.from_pretrained(tmp_file, config=config) finally: os.remove(tmp_file) def test_legacy_load_from_url(self): # This test is for deprecated behavior and can be removed in v5 config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert") _ = TFBertModel.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/tf_model.h5", config=config ) # tests whether the unpack_inputs function behaves as expected def test_unpack_inputs(self): class DummyModel: def __init__(self): config_kwargs = {"output_attentions": False, "output_hidden_states": False, "return_dict": False} self.config = PretrainedConfig(**config_kwargs) self.main_input_name = "input_ids" @unpack_inputs def call( self, input_ids=None, past_key_values=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return input_ids, past_key_values, output_attentions, output_hidden_states, return_dict @unpack_inputs def foo(self, pixel_values, output_attentions=None, output_hidden_states=None, return_dict=None): return pixel_values, output_attentions, output_hidden_states, return_dict dummy_model = DummyModel() input_ids = tf.constant([0, 1, 2, 3], dtype=tf.int32) past_key_values = tf.constant([4, 5, 6, 7], dtype=tf.int32) pixel_values = tf.constant([8, 9, 10, 11], dtype=tf.int32) # test case 1: Pass inputs as keyword arguments; Booleans are inherited from the config. output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 2: Same as above, but with positional arguments. output = dummy_model.call(input_ids, past_key_values) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 3: We can also pack everything in the first input. output = dummy_model.call(input_ids={"input_ids": input_ids, "past_key_values": past_key_values}) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertFalse(output[4]) # test case 4: Explicit boolean arguments should override the config. output = dummy_model.call( input_ids=input_ids, past_key_values=past_key_values, output_attentions=False, return_dict=True ) tf.debugging.assert_equal(output[0], input_ids) tf.debugging.assert_equal(output[1], past_key_values) self.assertFalse(output[2]) self.assertFalse(output[3]) self.assertTrue(output[4]) # test case 5: Unexpected arguments should raise an exception. with self.assertRaises(ValueError): output = dummy_model.call(input_ids=input_ids, past_key_values=past_key_values, foo="bar") # test case 6: the decorator is independent from `main_input_name` -- it treats the first argument of the # decorated function as its main input. output = dummy_model.foo(pixel_values=pixel_values) tf.debugging.assert_equal(output[0], pixel_values) self.assertFalse(output[1]) self.assertFalse(output[2]) self.assertFalse(output[3]) # Tests whether the stable softmax is stable on CPU, with and without XLA def test_xla_stable_softmax(self): large_penalty = -1e9 n_tokens = 10 batch_size = 8 def masked_softmax(x, boolean_mask): numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty masked_x = x + numerical_mask return stable_softmax(masked_x) xla_masked_softmax = tf.function(masked_softmax, jit_compile=True) xla_stable_softmax = tf.function(stable_softmax, jit_compile=True) x = tf.random.normal((batch_size, n_tokens)) # Same outcome regardless of the boolean mask here masked_tokens = random.randint(0, n_tokens) boolean_mask = tf.convert_to_tensor([[1] * (n_tokens - masked_tokens) + [0] * masked_tokens], dtype=tf.int32) # We can randomly mask a random numerical input OUTSIDE XLA numerical_mask = (1.0 - tf.cast(boolean_mask, dtype=tf.float32)) * large_penalty masked_x = x + numerical_mask xla_out = xla_stable_softmax(masked_x) out = stable_softmax(masked_x) assert tf.experimental.numpy.allclose(xla_out, out) # The stable softmax has the same output as the original softmax unstable_out = tf.nn.softmax(masked_x) assert tf.experimental.numpy.allclose(unstable_out, out) # We can randomly mask a random numerical input INSIDE XLA xla_out = xla_masked_softmax(x, boolean_mask) out = masked_softmax(x, boolean_mask) assert tf.experimental.numpy.allclose(xla_out, out) def test_checkpoint_sharding_from_hub(self): model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") # the model above is the same as the model below, just a sharded version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) def test_sharded_checkpoint_with_prefix(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", load_weight_prefix="a/b") sharded_model = TFBertModel.from_pretrained("ArthurZ/tiny-random-bert-sharded", load_weight_prefix="a/b") for p1, p2 in zip(model.weights, sharded_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) self.assertTrue(p1.name.startswith("a/b/")) self.assertTrue(p2.name.startswith("a/b/")) def test_sharded_checkpoint_transfer(self): # If this doesn't throw an error then the test passes TFBertForSequenceClassification.from_pretrained("ArthurZ/tiny-random-bert-sharded") @is_pt_tf_cross_test def test_checkpoint_sharding_local_from_pt(self): with tempfile.TemporaryDirectory() as tmp_dir: _ = Repository(local_dir=tmp_dir, clone_from="hf-internal-testing/tiny-random-bert-sharded") model = TFBertModel.from_pretrained(tmp_dir, from_pt=True) # the model above is the same as the model below, just a sharded pytorch version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) @is_pt_tf_cross_test def test_checkpoint_loading_with_prefix_from_pt(self): model = TFBertModel.from_pretrained( "hf-internal-testing/tiny-random-bert", from_pt=True, load_weight_prefix="a/b" ) ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert", from_pt=True) for p1, p2 in zip(model.weights, ref_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) self.assertTrue(p1.name.startswith("a/b/")) @is_pt_tf_cross_test def test_checkpoint_sharding_hub_from_pt(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded", from_pt=True) # the model above is the same as the model below, just a sharded pytorch version. ref_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) def test_shard_checkpoint(self): # This is the model we will use, total size 340,000 bytes. model = keras.Sequential( [ keras.layers.Dense(200, use_bias=False), # size 80,000 keras.layers.Dense(200, use_bias=False), # size 160,000 keras.layers.Dense(100, use_bias=False), # size 80,000 keras.layers.Dense(50, use_bias=False), # size 20,000 ] ) inputs = tf.zeros((1, 100), dtype=tf.float32) model(inputs) weights = model.weights weights_dict = {w.name: w for w in weights} with self.subTest("No shard when max size is bigger than model size"): shards, index = tf_shard_checkpoint(weights) self.assertIsNone(index) self.assertDictEqual(shards, {TF2_WEIGHTS_NAME: weights}) with self.subTest("Test sharding, no weights bigger than max size"): shards, index = tf_shard_checkpoint(weights, max_shard_size="300kB") # Split is first two layers then last two. self.assertDictEqual( index, { "metadata": {"total_size": 340000}, "weight_map": { "dense/kernel:0": "tf_model-00001-of-00002.h5", "dense_1/kernel:0": "tf_model-00001-of-00002.h5", "dense_2/kernel:0": "tf_model-00002-of-00002.h5", "dense_3/kernel:0": "tf_model-00002-of-00002.h5", }, }, ) shard1 = [weights_dict["dense/kernel:0"], weights_dict["dense_1/kernel:0"]] shard2 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] self.assertDictEqual(shards, {"tf_model-00001-of-00002.h5": shard1, "tf_model-00002-of-00002.h5": shard2}) with self.subTest("Test sharding with weights bigger than max size"): shards, index = tf_shard_checkpoint(weights, max_shard_size="100kB") # Split is first layer, second layer then last 2. self.assertDictEqual( index, { "metadata": {"total_size": 340000}, "weight_map": { "dense/kernel:0": "tf_model-00001-of-00003.h5", "dense_1/kernel:0": "tf_model-00002-of-00003.h5", "dense_2/kernel:0": "tf_model-00003-of-00003.h5", "dense_3/kernel:0": "tf_model-00003-of-00003.h5", }, }, ) shard1 = [weights_dict["dense/kernel:0"]] shard2 = [weights_dict["dense_1/kernel:0"]] shard3 = [weights_dict["dense_2/kernel:0"], weights_dict["dense_3/kernel:0"]] self.assertDictEqual( shards, { "tf_model-00001-of-00003.h5": shard1, "tf_model-00002-of-00003.h5": shard2, "tf_model-00003-of-00003.h5": shard3, }, ) @slow def test_special_layer_name_sharding(self): retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True) model = TFRagModel.from_pretrained("facebook/rag-token-nq", retriever=retriever) with tempfile.TemporaryDirectory() as tmp_dir: for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size) ref_model = TFRagModel.from_pretrained(tmp_dir, retriever=retriever) for p1, p2 in zip(model.weights, ref_model.weights): assert np.allclose(p1.numpy(), p2.numpy()) def test_checkpoint_sharding_local(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: # We use the same folder for various sizes to make sure a new save erases the old checkpoint. for max_size in ["150kB", "150kiB", "200kB", "200kiB"]: model.save_pretrained(tmp_dir, max_shard_size=max_size) # Get each shard file and its size shard_to_size = {} for shard in os.listdir(tmp_dir): if shard.endswith(".h5"): shard_file = os.path.join(tmp_dir, shard) shard_to_size[shard_file] = os.path.getsize(shard_file) index_file = os.path.join(tmp_dir, TF2_WEIGHTS_INDEX_NAME) # Check there is an index but no regular weight file self.assertTrue(os.path.isfile(index_file)) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) # Check a file is bigger than max_size only when it has a single weight for shard_file, size in shard_to_size.items(): if max_size.endswith("kiB"): max_size_int = int(max_size[:-3]) * 2**10 else: max_size_int = int(max_size[:-2]) * 10**3 # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than # the size asked for (since we count parameters) if size >= max_size_int + 50000: with h5py.File(shard_file, "r") as state_file: self.assertEqual(len(state_file), 1) # Check the index and the shard files found match with open(index_file, "r", encoding="utf-8") as f: index = json.loads(f.read()) all_shards = set(index["weight_map"].values()) shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".h5")} self.assertSetEqual(all_shards, shards_found) # Finally, check the model can be reloaded new_model = TFBertModel.from_pretrained(tmp_dir) model.build_in_name_scope() new_model.build_in_name_scope() for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @slow def test_save_pretrained_signatures(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Short custom TF signature function. # `input_signature` is specific to BERT. @tf.function( input_signature=[ [ tf.TensorSpec([None, None], tf.int32, name="input_ids"), tf.TensorSpec([None, None], tf.int32, name="token_type_ids"), tf.TensorSpec([None, None], tf.int32, name="attention_mask"), ] ] ) def serving_fn(input): return model(input) # Using default signature (default behavior) overrides 'serving_default' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, saved_model=True, signatures=None) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("serving_default" in list(model_loaded.signatures.keys())) # Providing custom signature function with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, saved_model=True, signatures={"custom_signature": serving_fn}) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("custom_signature" in list(model_loaded.signatures.keys())) # Providing multiple custom signature function with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( tmp_dir, saved_model=True, signatures={"custom_signature_1": serving_fn, "custom_signature_2": serving_fn}, ) model_loaded = keras.models.load_model(f"{tmp_dir}/saved_model/1") self.assertTrue("custom_signature_1" in list(model_loaded.signatures.keys())) self.assertTrue("custom_signature_2" in list(model_loaded.signatures.keys())) @require_safetensors def test_safetensors_save_and_load(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) # No tf_model.h5 file, only a model.safetensors self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) self.assertFalse(os.path.isfile(os.path.join(tmp_dir, TF2_WEIGHTS_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @is_pt_tf_cross_test def test_safetensors_save_and_load_pt_to_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") pt_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert") with tempfile.TemporaryDirectory() as tmp_dir: pt_model.save_pretrained(tmp_dir, safe_serialization=True) # Check we have a model.safetensors file self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME))) new_model = TFBertModel.from_pretrained(tmp_dir) # Check models are equal for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub(self): tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert") # Can load from the TF-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors-tf") # Check models are equal for p1, p2 in zip(safetensors_model.weights, tf_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) # Can load from the PyTorch-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors") # Check models are equal for p1, p2 in zip(safetensors_model.weights, tf_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_tf_from_tf(self): model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = TFBertModel.from_pretrained(tmp_dir) for p1, p2 in zip(model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors @is_pt_tf_cross_test def test_safetensors_tf_from_torch(self): hub_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-only") model = BertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, safe_serialization=True) new_model = TFBertModel.from_pretrained(tmp_dir) for p1, p2 in zip(hub_model.weights, new_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_tf_from_sharded_h5_with_sharded_safetensors_local(self): with tempfile.TemporaryDirectory() as tmp_dir: path = snapshot_download("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded", cache_dir=tmp_dir) # This should not raise even if there are two types of sharded weights TFBertModel.from_pretrained(path) @require_safetensors def test_safetensors_tf_from_sharded_h5_with_sharded_safetensors_hub(self): # This should not raise even if there are two types of sharded weights # This should discard the safetensors weights in favor of the .h5 sharded weights TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-tf-safetensors-h5-sharded") @require_safetensors def test_safetensors_load_from_local(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-tf-only", cache_dir=tmp) tf_model = TFBertModel.from_pretrained(location) with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-tf-safetensors-only", cache_dir=tmp) safetensors_model = TFBertModel.from_pretrained(location) for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub_from_safetensors_pt(self): """ This test checks that we can load safetensors from a checkpoint that only has those on the Hub. saved in the "pt" format. """ tf_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-h5") # Can load from the PyTorch-formatted checkpoint safetensors_model = TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors") for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_local_from_safetensors_pt(self): """ This test checks that we can load safetensors from a local checkpoint that only has those saved in the "pt" format. """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-h5", cache_dir=tmp) tf_model = TFBertModel.from_pretrained(location) # Can load from the PyTorch-formatted checkpoint with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors", cache_dir=tmp) safetensors_model = TFBertModel.from_pretrained(location) for p1, p2 in zip(tf_model.weights, safetensors_model.weights): self.assertTrue(np.allclose(p1.numpy(), p2.numpy())) @require_safetensors def test_safetensors_load_from_hub_h5_before_safetensors(self): """ This test checks that we'll first download h5 weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ TFBertModel.from_pretrained("hf-internal-testing/tiny-bert-pt-safetensors-msgpack") @require_safetensors def test_safetensors_load_from_local_h5_before_safetensors(self): """ This test checks that we'll first download h5 weights before safetensors The safetensors file on that repo is a pt safetensors and therefore cannot be loaded without PyTorch """ with tempfile.TemporaryDirectory() as tmp: location = snapshot_download("hf-internal-testing/tiny-bert-pt-safetensors-msgpack", cache_dir=tmp) TFBertModel.from_pretrained(location) @require_tf @is_staging_test class TFModelPushToHubTester(unittest.TestCase): @classmethod def setUpClass(cls): cls._token = TOKEN HfFolder.save_token(TOKEN) @classmethod def tearDownClass(cls): try: delete_repo(token=cls._token, repo_id="test-model-tf") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="test-model-tf-callback") except HTTPError: pass try: delete_repo(token=cls._token, repo_id="valid_org/test-model-tf-org") except HTTPError: pass def test_push_to_hub(self): config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() logging.set_verbosity_info() logger = logging.get_logger("transformers.utils.hub") with CaptureLogger(logger) as cl: model.push_to_hub("test-model-tf", token=self._token) logging.set_verbosity_warning() # Check the model card was created and uploaded. self.assertIn("Uploading the following files to __DUMMY_TRANSFORMERS_USER__/test-model-tf", cl.out) new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf") models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) # Reset repo delete_repo(token=self._token, repo_id="test-model-tf") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, repo_id="test-model-tf", push_to_hub=True, token=self._token) new_model = TFBertModel.from_pretrained(f"{USER}/test-model-tf") models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) @is_pt_tf_cross_test def test_push_to_hub_callback(self): config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertForMaskedLM(config) model.compile() with tempfile.TemporaryDirectory() as tmp_dir: push_to_hub_callback = PushToHubCallback( output_dir=tmp_dir, hub_model_id="test-model-tf-callback", hub_token=self._token, ) model.fit(model.dummy_inputs, model.dummy_inputs, epochs=1, callbacks=[push_to_hub_callback]) new_model = TFBertForMaskedLM.from_pretrained(f"{USER}/test-model-tf-callback") models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) tf_push_to_hub_params = dict(inspect.signature(TFPreTrainedModel.push_to_hub).parameters) tf_push_to_hub_params.pop("base_model_card_args") pt_push_to_hub_params = dict(inspect.signature(PreTrainedModel.push_to_hub).parameters) pt_push_to_hub_params.pop("deprecated_kwargs") self.assertDictEaual(tf_push_to_hub_params, pt_push_to_hub_params) def test_push_to_hub_in_organization(self): config = BertConfig( vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37 ) model = TFBertModel(config) # Make sure model is properly initialized model.build_in_name_scope() model.push_to_hub("valid_org/test-model-tf-org", token=self._token) new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org") models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal) # Reset repo delete_repo(token=self._token, repo_id="valid_org/test-model-tf-org") # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir, push_to_hub=True, token=self._token, repo_id="valid_org/test-model-tf-org") new_model = TFBertModel.from_pretrained("valid_org/test-model-tf-org") models_equal = True for p1, p2 in zip(model.weights, new_model.weights): if not tf.math.reduce_all(p1 == p2): models_equal = False break self.assertTrue(models_equal)
transformers/tests/test_modeling_tf_utils.py/0
{ "file_path": "transformers/tests/test_modeling_tf_utils.py", "repo_id": "transformers", "token_count": 14964 }
426
# coding=utf-8 # Copyright 2023 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate # Fake function we will use as tool def add_two(x): return x + 2 class PythonInterpreterTester(unittest.TestCase): def test_evaluate_assign(self): code = "x = 3" state = {} result = evaluate(code, {}, state=state) assert result == 3 self.assertDictEqual(state, {"x": 3}) code = "x = y" state = {"y": 5} result = evaluate(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(state, {"x": 5, "y": 5}) def test_evaluate_call(self): code = "y = add_two(x)" state = {"x": 3} result = evaluate(code, {"add_two": add_two}, state=state) assert result == 5 self.assertDictEqual(state, {"x": 3, "y": 5}) # Won't work without the tool with CaptureStdout() as out: result = evaluate(code, {}, state=state) assert result is None assert "tried to execute add_two" in out.out def test_evaluate_constant(self): code = "x = 3" state = {} result = evaluate(code, {}, state=state) assert result == 3 self.assertDictEqual(state, {"x": 3}) def test_evaluate_dict(self): code = "test_dict = {'x': x, 'y': add_two(x)}" state = {"x": 3} result = evaluate(code, {"add_two": add_two}, state=state) self.assertDictEqual(result, {"x": 3, "y": 5}) self.assertDictEqual(state, {"x": 3, "test_dict": {"x": 3, "y": 5}}) def test_evaluate_expression(self): code = "x = 3\ny = 5" state = {} result = evaluate(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(state, {"x": 3, "y": 5}) def test_evaluate_f_string(self): code = "text = f'This is x: {x}.'" state = {"x": 3} result = evaluate(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(state, {"x": 3, "text": "This is x: 3."}) def test_evaluate_if(self): code = "if x <= 3:\n y = 2\nelse:\n y = 5" state = {"x": 3} result = evaluate(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(state, {"x": 3, "y": 2}) state = {"x": 8} result = evaluate(code, {}, state=state) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(state, {"x": 8, "y": 5}) def test_evaluate_list(self): code = "test_list = [x, add_two(x)]" state = {"x": 3} result = evaluate(code, {"add_two": add_two}, state=state) self.assertListEqual(result, [3, 5]) self.assertDictEqual(state, {"x": 3, "test_list": [3, 5]}) def test_evaluate_name(self): code = "y = x" state = {"x": 3} result = evaluate(code, {}, state=state) assert result == 3 self.assertDictEqual(state, {"x": 3, "y": 3}) def test_evaluate_subscript(self): code = "test_list = [x, add_two(x)]\ntest_list[1]" state = {"x": 3} result = evaluate(code, {"add_two": add_two}, state=state) assert result == 5 self.assertDictEqual(state, {"x": 3, "test_list": [3, 5]}) code = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" state = {"x": 3} result = evaluate(code, {"add_two": add_two}, state=state) assert result == 5 self.assertDictEqual(state, {"x": 3, "test_dict": {"x": 3, "y": 5}}) def test_evaluate_for(self): code = "x = 0\nfor i in range(3):\n x = i" state = {} result = evaluate(code, {"range": range}, state=state) assert result == 2 self.assertDictEqual(state, {"x": 2, "i": 2})
transformers/tests/tools/test_python_interpreter.py/0
{ "file_path": "transformers/tests/tools/test_python_interpreter.py", "repo_id": "transformers", "token_count": 2013 }
427
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class HfArgumentParserTest(unittest.TestCase): def test_set_level(self): logger = logging.get_logger() # the current default level is logging.WARNING level_origin = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity()) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity()) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity()) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel(), logging.get_verbosity()) # restore to the original level logging.set_verbosity(level_origin) def test_integration(self): level_origin = logging.get_verbosity() logger = logging.get_logger("transformers.models.bart.tokenization_bart") msg = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(logger) as cl: logger.warning(msg) self.assertEqual(cl.out, msg + "\n") # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(logger) as cl: logger.warning(msg) self.assertEqual(cl.out, "") # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(logger) as cl: logger.warning(msg) self.assertEqual(cl.out, msg + "\n") # restore to the original level logging.set_verbosity(level_origin) @mockenv(TRANSFORMERS_VERBOSITY="error") def test_env_override(self): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var _ = logging.get_logger("transformers.models.bart.tokenization_bart") env_level_str = os.getenv("TRANSFORMERS_VERBOSITY", None) env_level = logging.log_levels[env_level_str] current_level = logging.get_verbosity() self.assertEqual( env_level, current_level, f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}", ) # restore to the original level os.environ["TRANSFORMERS_VERBOSITY"] = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error") def test_env_invalid_override(self): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() logger = logging.logging.getLogger() with CaptureLogger(logger) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart") self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error", cl.out) # no need to restore as nothing was changed def test_advisory_warnings(self): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() logger = logging.get_logger("transformers.models.bart.tokenization_bart") msg = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1"): # nothing should be logged as env var disables this method with CaptureLogger(logger) as cl: logger.warning_advice(msg) self.assertEqual(cl.out, "") with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS=""): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(logger) as cl: logger.warning_advice(msg) self.assertEqual(cl.out, msg + "\n") def test_set_progress_bar_enabled(): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
transformers/tests/utils/test_logging.py/0
{ "file_path": "transformers/tests/utils/test_logging.py", "repo_id": "transformers", "token_count": 2007 }
428
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This script is responsible for making sure the dummies in utils/dummies_xxx.py are up to date with the main init. Why dummies? This is to make sure that a user can always import all objects from `transformers`, even if they don't have the necessary extra libs installed. Those objects will then raise helpful error message whenever the user tries to access one of their methods. Usage (from the root of the repo): Check that the dummy files are up to date (used in `make repo-consistency`): ```bash python utils/check_dummies.py ``` Update the dummy files if needed (used in `make fix-copies`): ```bash python utils/check_dummies.py --fix_and_overwrite ``` """ import argparse import os import re from typing import Dict, List, Optional # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py PATH_TO_TRANSFORMERS = "src/transformers" # Matches is_xxx_available() _re_backend = re.compile(r"is\_([a-z_]*)_available()") # Matches from xxx import bla _re_single_line_import = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") # Matches if not is_xxx_available() _re_test_backend = re.compile(r"^\s+if\s+not\s+\(?is\_[a-z_]*\_available\(\)") # Template for the dummy objects. DUMMY_CONSTANT = """ {0} = None """ DUMMY_CLASS = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ DUMMY_FUNCTION = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def find_backend(line: str) -> Optional[str]: """ Find one (or multiple) backend in a code line of the init. Args: line (`str`): A code line in an init file. Returns: Optional[`str`]: If one (or several) backend is found, returns it. In the case of multiple backends (the line contains `if is_xxx_available() and `is_yyy_available()`) returns all backends joined on `_and_` (so `xxx_and_yyy` for instance). """ if _re_test_backend.search(line) is None: return None backends = [b[0] for b in _re_backend.findall(line)] backends.sort() return "_and_".join(backends) def read_init() -> Dict[str, List[str]]: """ Read the init and extract backend-specific objects. Returns: Dict[str, List[str]]: A dictionary mapping backend name to the list of object names requiring that backend. """ with open(os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), "r", encoding="utf-8", newline="\n") as f: lines = f.readlines() # Get to the point we do the actual imports for type checking line_index = 0 while not lines[line_index].startswith("if TYPE_CHECKING"): line_index += 1 backend_specific_objects = {} # Go through the end of the file while line_index < len(lines): # If the line is an if is_backend_available, we grab all objects associated. backend = find_backend(lines[line_index]) if backend is not None: while not lines[line_index].startswith(" else:"): line_index += 1 line_index += 1 objects = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(" " * 8): line = lines[line_index] single_line_import_search = _re_single_line_import.search(line) if single_line_import_search is not None: # Single-line imports objects.extend(single_line_import_search.groups()[0].split(", ")) elif line.startswith(" " * 12): # Multiple-line imports (with 3 indent level) objects.append(line[12:-2]) line_index += 1 backend_specific_objects[backend] = objects else: line_index += 1 return backend_specific_objects def create_dummy_object(name: str, backend_name: str) -> str: """ Create the code for a dummy object. Args: name (`str`): The name of the object. backend_name (`str`): The name of the backend required for that object. Returns: `str`: The code of the dummy object. """ if name.isupper(): return DUMMY_CONSTANT.format(name) elif name.islower(): return DUMMY_FUNCTION.format(name, backend_name) else: return DUMMY_CLASS.format(name, backend_name) def create_dummy_files(backend_specific_objects: Optional[Dict[str, List[str]]] = None) -> Dict[str, str]: """ Create the content of the dummy files. Args: backend_specific_objects (`Dict[str, List[str]]`, *optional*): The mapping backend name to list of backend-specific objects. If not passed, will be obtained by calling `read_init()`. Returns: `Dict[str, str]`: A dictionary mapping backend name to code of the corresponding backend file. """ if backend_specific_objects is None: backend_specific_objects = read_init() dummy_files = {} for backend, objects in backend_specific_objects.items(): backend_name = "[" + ", ".join(f'"{b}"' for b in backend.split("_and_")) + "]" dummy_file = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(o, backend_name) for o in objects]) dummy_files[backend] = dummy_file return dummy_files def check_dummies(overwrite: bool = False): """ Check if the dummy files are up to date and maybe `overwrite` with the right content. Args: overwrite (`bool`, *optional*, default to `False`): Whether or not to overwrite the content of the dummy files. Will raise an error if they are not up to date when `overwrite=False`. """ dummy_files = create_dummy_files() # For special correspondence backend name to shortcut as used in utils/dummy_xxx_objects.py short_names = {"torch": "pt"} # Locate actual dummy modules and read their content. path = os.path.join(PATH_TO_TRANSFORMERS, "utils") dummy_file_paths = { backend: os.path.join(path, f"dummy_{short_names.get(backend, backend)}_objects.py") for backend in dummy_files.keys() } actual_dummies = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(file_path): with open(file_path, "r", encoding="utf-8", newline="\n") as f: actual_dummies[backend] = f.read() else: actual_dummies[backend] = "" # Compare actual with what they should be. for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"Updating transformers.utils.dummy_{short_names.get(backend, backend)}_objects.py as the main " "__init__ has new objects." ) with open(dummy_file_paths[backend], "w", encoding="utf-8", newline="\n") as f: f.write(dummy_files[backend]) else: raise ValueError( "The main __init__ has objects that are not present in " f"transformers.utils.dummy_{short_names.get(backend, backend)}_objects.py. Run `make fix-copies` " "to fix this." ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") args = parser.parse_args() check_dummies(args.fix_and_overwrite)
transformers/utils/check_dummies.py/0
{ "file_path": "transformers/utils/check_dummies.py", "repo_id": "transformers", "token_count": 3337 }
429
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def get_daily_ci_runs(token, num_runs=7): """Get the workflow runs of the scheduled (daily) CI. This only selects the runs triggered by the `schedule` event on the `main` branch. """ headers = None if token is not None: headers = {"Accept": "application/vnd.github+json", "Authorization": f"Bearer {token}"} # The id of a workflow (not of a workflow run) workflow_id = "636036" url = f"https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}" result = requests.get(url, headers=headers).json() return result["workflow_runs"] def get_last_daily_ci_runs(token): """Get the last completed workflow run id of the scheduled (daily) CI.""" workflow_runs = get_daily_ci_runs(token) workflow_run_id = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": workflow_run_id = workflow_run["id"] break return workflow_run_id def get_last_daily_ci_artifacts(artifact_names, output_dir, token): """Get the artifacts of last completed workflow run id of the scheduled (daily) CI.""" workflow_run_id = get_last_daily_ci_runs(token) if workflow_run_id is not None: artifacts_links = get_artifacts_links(worflow_run_id=workflow_run_id, token=token) for artifact_name in artifact_names: if artifact_name in artifacts_links: artifact_url = artifacts_links[artifact_name] download_artifact( artifact_name=artifact_name, artifact_url=artifact_url, output_dir=output_dir, token=token ) def get_last_daily_ci_reports(artifact_names, output_dir, token): """Get the artifacts' content of the last completed workflow run id of the scheduled (daily) CI.""" get_last_daily_ci_artifacts(artifact_names, output_dir, token) results = {} for artifact_name in artifact_names: artifact_zip_path = os.path.join(output_dir, f"{artifact_name}.zip") if os.path.isfile(artifact_zip_path): results[artifact_name] = {} with zipfile.ZipFile(artifact_zip_path) as z: for filename in z.namelist(): if not os.path.isdir(filename): # read the file with z.open(filename) as f: results[artifact_name][filename] = f.read().decode("UTF-8") return results
transformers/utils/get_previous_daily_ci.py/0
{ "file_path": "transformers/utils/get_previous_daily_ci.py", "repo_id": "transformers", "token_count": 1109 }
430
import numpy as np from transformers import Pipeline def softmax(outputs): maxes = np.max(outputs, axis=-1, keepdims=True) shifted_exp = np.exp(outputs - maxes) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) class PairClassificationPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "second_text" in kwargs: preprocess_kwargs["second_text"] = kwargs["second_text"] return preprocess_kwargs, {}, {} def preprocess(self, text, second_text=None): return self.tokenizer(text, text_pair=second_text, return_tensors=self.framework) def _forward(self, model_inputs): return self.model(**model_inputs) def postprocess(self, model_outputs): logits = model_outputs.logits[0].numpy() probabilities = softmax(logits) best_class = np.argmax(probabilities) label = self.model.config.id2label[best_class] score = probabilities[best_class].item() logits = logits.tolist() return {"label": label, "score": score, "logits": logits}
transformers/utils/test_module/custom_pipeline.py/0
{ "file_path": "transformers/utils/test_module/custom_pipeline.py", "repo_id": "transformers", "token_count": 453 }
431
.PHONY: test precommit benchmark_core benchmark_aux common_tests slow_tests test_examples tests_gpu check_dirs := examples tests trl ACCELERATE_CONFIG_PATH = `pwd`/examples/accelerate_configs COMMAND_FILES_PATH = `pwd`/commands test: python -m pytest -n auto --dist=loadfile -s -v ./tests/ precommit: pre-commit run --all-files benchmark_core: bash ./benchmark/benchmark_core.sh benchmark_aux: bash ./benchmark/benchmark_aux.sh tests_gpu: python -m pytest tests/test_* $(if $(IS_GITHUB_CI),--report-log "common_tests.log",) slow_tests: python -m pytest tests/slow/test_* $(if $(IS_GITHUB_CI),--report-log "slow_tests.log",) test_examples: touch temp_results_sft_tests.txt for file in $(ACCELERATE_CONFIG_PATH)/*.yaml; do \ TRL_ACCELERATE_CONFIG=$${file} bash $(COMMAND_FILES_PATH)/run_sft.sh; \ echo $$?','$${file} >> temp_results_sft_tests.txt; \ done touch temp_results_dpo_tests.txt for file in $(ACCELERATE_CONFIG_PATH)/*.yaml; do \ TRL_ACCELERATE_CONFIG=$${file} bash $(COMMAND_FILES_PATH)/run_dpo.sh; \ echo $$?','$${file} >> temp_results_dpo_tests.txt; \ done
trl/Makefile/0
{ "file_path": "trl/Makefile", "repo_id": "trl", "token_count": 452 }
432
# Examples of using peft with trl to finetune 8-bit models with Low Rank Adaption (LoRA) The notebooks and scripts in this examples show how to use Low Rank Adaptation (LoRA) to fine-tune models in a memory efficient manner. Most of PEFT methods supported in peft library but note that some PEFT methods such as Prompt tuning are not supported. For more information on LoRA, see the [original paper](https://arxiv.org/abs/2106.09685). Here's an overview of the `peft`-enabled notebooks and scripts in the [trl repository](https://github.com/huggingface/trl/tree/main/examples): | File | Task | Description | Colab link | |---|---| --- | | [`stack_llama/rl_training.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py) | RLHF | Distributed fine-tuning of the 7b parameter LLaMA models with a learned reward model and `peft`. | | | [`stack_llama/reward_modeling.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/reward_modeling.py) | Reward Modeling | Distributed training of the 7b parameter LLaMA reward model with `peft`. | | | [`stack_llama/supervised_finetuning.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/supervised_finetuning.py) | SFT | Distributed instruction/supervised fine-tuning of the 7b parameter LLaMA model with `peft`. | | ## Installation Note: peft is in active development, so we install directly from their Github page. Peft also relies on the latest version of transformers. ```bash pip install trl[peft] pip install bitsandbytes loralib pip install git+https://github.com/huggingface/transformers.git@main #optional: wandb pip install wandb ``` Note: if you don't want to log with `wandb` remove `log_with="wandb"` in the scripts/notebooks. You can also replace it with your favourite experiment tracker that's [supported by `accelerate`](https://huggingface.co/docs/accelerate/usage_guides/tracking). ## How to use it? Simply declare a `PeftConfig` object in your script and pass it through `.from_pretrained` to load the TRL+PEFT model. ```python from peft import LoraConfig from trl import AutoModelForCausalLMWithValueHead model_id = "edbeeching/gpt-neo-125M-imdb" lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = AutoModelForCausalLMWithValueHead.from_pretrained( model_id, peft_config=lora_config, ) ``` And if you want to load your model in 8bit precision: ```python pretrained_model = AutoModelForCausalLMWithValueHead.from_pretrained( config.model_name, load_in_8bit=True, peft_config=lora_config, ) ``` ... or in 4bit precision: ```python pretrained_model = AutoModelForCausalLMWithValueHead.from_pretrained( config.model_name, peft_config=lora_config, load_in_4bit=True, ) ``` ## Launch scripts The `trl` library is powered by `accelerate`. As such it is best to configure and launch trainings with the following commands: ```bash accelerate config # will prompt you to define the training configuration accelerate launch examples/scripts/ppo.py --use_peft # launch`es training ``` ## Using `trl` + `peft` and Data Parallelism You can scale up to as many GPUs as you want, as long as you are able to fit the training process in a single device. The only tweak you need to apply is to load the model as follows: ```python from peft import LoraConfig ... lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) pretrained_model = AutoModelForCausalLMWithValueHead.from_pretrained( config.model_name, peft_config=lora_config, ) ``` And if you want to load your model in 8bit precision: ```python pretrained_model = AutoModelForCausalLMWithValueHead.from_pretrained( config.model_name, peft_config=lora_config, load_in_8bit=True, ) ``` ... or in 4bit precision: ```python pretrained_model = AutoModelForCausalLMWithValueHead.from_pretrained( config.model_name, peft_config=lora_config, load_in_4bit=True, ) ``` Finally, make sure that the rewards are computed on correct device as well, for that you can use `ppo_trainer.model.current_device`. ## Naive pipeline parallelism (NPP) for large models (>60B models) The `trl` library also supports naive pipeline parallelism (NPP) for large models (>60B models). This is a simple way to parallelize the model across multiple GPUs. This paradigm, termed as "Naive Pipeline Parallelism" (NPP) is a simple way to parallelize the model across multiple GPUs. We load the model and the adapters across multiple GPUs and the activations and gradients will be naively communicated across the GPUs. This supports `int8` models as well as other `dtype` models. <div style="text-align: center"> <img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-npp.png"> </div> ### How to use NPP? Simply load your model with a custom `device_map` argument on the `from_pretrained` to split your model across multiple devices. Check out this [nice tutorial](https://github.com/huggingface/blog/blob/main/accelerate-large-models.md) on how to properly create a `device_map` for your model. Also make sure to have the `lm_head` module on the first GPU device as it may throw an error if it is not on the first device. As this time of writing, you need to install the `main` branch of `accelerate`: `pip install git+https://github.com/huggingface/accelerate.git@main` and `peft`: `pip install git+https://github.com/huggingface/peft.git@main`. ### Launch scripts Although `trl` library is powered by `accelerate`, you should run your training script in a single process. Note that we do not support Data Parallelism together with NPP yet. ```bash python PATH_TO_SCRIPT ``` ## Fine-tuning Llama-2 model You can easily fine-tune Llama2 model using `SFTTrainer` and the official script! For example to fine-tune llama2-7b on the Guanaco dataset, run (tested on a single NVIDIA T4-16GB): ```bash python examples/scripts/sft.py --output_dir sft_openassistant-guanaco --model_name meta-llama/Llama-2-7b-hf --dataset_name timdettmers/openassistant-guanaco --load_in_4bit --use_peft --per_device_train_batch_size 4 --gradient_accumulation_steps 2 ```
trl/docs/source/lora_tuning_peft.mdx/0
{ "file_path": "trl/docs/source/lora_tuning_peft.mdx", "repo_id": "trl", "token_count": 2080 }
433
compute_environment: LOCAL_MACHINE debug: false distributed_type: MULTI_GPU downcast_bf16: 'no' gpu_ids: all machine_rank: 0 main_training_function: main mixed_precision: 'bf16' num_machines: 1 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false
trl/examples/accelerate_configs/multi_gpu.yaml/0
{ "file_path": "trl/examples/accelerate_configs/multi_gpu.yaml", "repo_id": "trl", "token_count": 130 }
434
# Fine-Tune Llama2-7b on SE paired dataset import os from dataclasses import dataclass, field from typing import Optional import torch from accelerate import Accelerator from datasets import load_dataset from peft import AutoPeftModelForCausalLM, LoraConfig from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser, TrainingArguments from trl import SFTTrainer from trl.import_utils import is_npu_available, is_xpu_available from trl.trainer import ConstantLengthDataset @dataclass class ScriptArguments: model_name: Optional[str] = field(default="meta-llama/Llama-2-7b-hf", metadata={"help": "the model name"}) dataset_name: Optional[str] = field(default="lvwerra/stack-exchange-paired", metadata={"help": "the dataset name"}) subset: Optional[str] = field(default="data/finetune", metadata={"help": "the subset to use"}) split: Optional[str] = field(default="train", metadata={"help": "the split to use"}) size_valid_set: Optional[int] = field(default=4000, metadata={"help": "the size of the validation set"}) streaming: Optional[bool] = field(default=True, metadata={"help": "whether to stream the dataset"}) shuffle_buffer: Optional[int] = field(default=5000, metadata={"help": "the shuffle buffer size"}) seq_length: Optional[int] = field(default=1024, metadata={"help": "the sequence length"}) num_workers: Optional[int] = field(default=4, metadata={"help": "the number of workers"}) packing: Optional[bool] = field(default=True, metadata={"help": "whether to use packing for SFTTrainer"}) # LoraConfig lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"}) lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"}) lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"}) parser = HfArgumentParser((ScriptArguments, TrainingArguments)) script_args, training_args = parser.parse_args_into_dataclasses() peft_config = LoraConfig( r=script_args.lora_r, lora_alpha=script_args.lora_alpha, lora_dropout=script_args.lora_dropout, target_modules=["q_proj", "v_proj"], bias="none", task_type="CAUSAL_LM", ) if training_args.group_by_length and script_args.packing: raise ValueError("Cannot use both packing and group by length") # `gradient_checkpointing` was True by default until `1f3314`, but it's actually not used. # `gradient_checkpointing=True` will cause `Variable._execution_engine.run_backward`. if training_args.gradient_checkpointing: raise ValueError("gradient_checkpointing not supported") def chars_token_ratio(dataset, tokenizer, nb_examples=400): """ Estimate the average number of characters per token in the dataset. """ total_characters, total_tokens = 0, 0 for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples): text = prepare_sample_text(example) total_characters += len(text) if tokenizer.is_fast: total_tokens += len(tokenizer(text).tokens()) else: total_tokens += len(tokenizer.tokenize(text)) return total_characters / total_tokens def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}" ) def prepare_sample_text(example): """Prepare the text from a sample of the dataset.""" text = f"Question: {example['question']}\n\nAnswer: {example['response_j']}" return text def create_datasets(tokenizer, args): dataset = load_dataset( args.dataset_name, data_dir=args.subset, split=args.split, use_auth_token=True, num_proc=args.num_workers if not args.streaming else None, streaming=args.streaming, ) if args.streaming: print("Loading the dataset in streaming mode") valid_data = dataset.take(args.size_valid_set) train_data = dataset.skip(args.size_valid_set) train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=None) else: dataset = dataset.train_test_split(test_size=0.005, seed=None) train_data = dataset["train"] valid_data = dataset["test"] print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}") chars_per_token = chars_token_ratio(train_data, tokenizer) print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}") train_dataset = ConstantLengthDataset( tokenizer, train_data, formatting_func=prepare_sample_text, infinite=True, seq_length=args.seq_length, chars_per_token=chars_per_token, ) valid_dataset = ConstantLengthDataset( tokenizer, valid_data, formatting_func=prepare_sample_text, infinite=False, seq_length=args.seq_length, chars_per_token=chars_per_token, ) return train_dataset, valid_dataset bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) base_model = AutoModelForCausalLM.from_pretrained( script_args.model_name, quantization_config=bnb_config, device_map={"": Accelerator().local_process_index}, trust_remote_code=True, use_auth_token=True, ) base_model.config.use_cache = False tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training train_dataset, eval_dataset = create_datasets(tokenizer, script_args) trainer = SFTTrainer( model=base_model, train_dataset=train_dataset, eval_dataset=eval_dataset, peft_config=peft_config, packing=script_args.packing, max_seq_length=None, tokenizer=tokenizer, args=training_args, ) trainer.train() trainer.save_model(training_args.output_dir) output_dir = os.path.join(training_args.output_dir, "final_checkpoint") trainer.model.save_pretrained(output_dir) # Free memory for merging weights del base_model if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map="auto", torch_dtype=torch.bfloat16) model = model.merge_and_unload() output_merged_dir = os.path.join(training_args.output_dir, "final_merged_checkpoint") model.save_pretrained(output_merged_dir, safe_serialization=True)
trl/examples/research_projects/stack_llama_2/scripts/sft_llama2.py/0
{ "file_path": "trl/examples/research_projects/stack_llama_2/scripts/sft_llama2.py", "repo_id": "trl", "token_count": 2634 }
435
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os from datetime import date from pathlib import Path from tabulate import tabulate MAX_LEN_MESSAGE = 2900 # slack endpoint has a limit of 3001 characters parser = argparse.ArgumentParser() parser.add_argument("--slack_channel_name", default="trl-push-ci") def main(slack_channel_name=None): failed = [] passed = [] group_info = [] total_num_failed = 0 empty_file = False or len(list(Path().glob("*.log"))) == 0 total_empty_files = [] for log in Path().glob("*.log"): section_num_failed = 0 i = 0 with open(log, "r") as f: for line in f: line = json.loads(line) i += 1 if line.get("nodeid", "") != "": test = line["nodeid"] if line.get("duration", None) is not None: duration = f'{line["duration"]:.4f}' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 else: passed.append([test, duration, log.name.split("_")[0]]) empty_file = i == 0 group_info.append([str(log), section_num_failed, failed]) total_empty_files.append(empty_file) os.remove(log) failed = [] no_error_payload = { "type": "section", "text": { "type": "plain_text", "text": "🌞 There were no failures!" if not any(total_empty_files) else "Something went wrong there is at least one empty file - please check GH action results.", "emoji": True, }, } message = "" payload = [ { "type": "header", "text": { "type": "plain_text", "text": "🤗 Results of the {} TRL tests.".format(os.environ.get("TEST_TYPE", "")), }, }, ] if total_num_failed > 0: for i, (name, num_failed, failed_tests) in enumerate(group_info): if num_failed > 0: if num_failed == 1: message += f"*{name}: {num_failed} failed test*\n" else: message += f"*{name}: {num_failed} failed tests*\n" failed_table = [] for test in failed_tests: failed_report = test[0].split("::") # Truncate the last string as some test names might be long failed_report[-1] = failed_report[-1][:30] + ".." failed_table.append(failed_report) failed_table = tabulate( failed_table, headers=["Test Location", "Test Case", "Test Name"], showindex="always", tablefmt="grid", maxcolwidths=[12, 12, 12], ) message += "\n```\n" + failed_table + "\n```" if total_empty_files[i]: message += f"\n*{name}: Warning! Empty file - please check the GitHub action job *\n" print(f"### {message}") else: payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient if len(message) > MAX_LEN_MESSAGE: message = f"There are {total_num_failed} failed tests in total ! Cannot display the entire summary - please check the action results directly" if len(message) != 0: md_report = { "type": "section", "text": {"type": "mrkdwn", "text": message}, } payload.append(md_report) action_button = { "type": "section", "text": {"type": "mrkdwn", "text": "*For more details:*"}, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"https://github.com/huggingface/trl/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) date_report = { "type": "context", "elements": [ { "type": "plain_text", "text": f"On Push main {os.environ.get('TEST_TYPE')} test results for {date.today()}", }, ], } payload.append(date_report) print(payload) client = WebClient(token=os.environ.get("SLACK_API_TOKEN")) client.chat_postMessage(channel=f"#{slack_channel_name}", text=message, blocks=payload) if __name__ == "__main__": args = parser.parse_args() main(args.slack_channel_name)
trl/scripts/log_reports.py/0
{ "file_path": "trl/scripts/log_reports.py", "repo_id": "trl", "token_count": 2730 }
436
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest.mock import patch import torch from transformers import AutoTokenizer from trl import AutoModelForCausalLMWithValueHead, TextEnvironment, TextHistory class DummyTool: def __call__(self, text): return text def dummy_generate(histories): for i in range(len(histories)): histories[i].append_segment("<request><DummyTool>test<call>", torch.tensor([1, 2, 3]), system=False) return histories class TextHistoryTest(unittest.TestCase): def test_text_history_init(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) assert history.text == text assert torch.equal(history.tokens, tokens) assert torch.equal(history.token_masks, torch.zeros_like(tokens)) history = TextHistory(text, tokens, system=False) assert torch.equal(history.token_masks, torch.ones_like(tokens)) def test_text_history_append_segment(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False) assert history.text == (text + "General Kenobi!") assert torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6])) assert torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1])) history.append_segment("You are a bold one!", torch.tensor([7, 8, 9])) assert history.text == ((text + "General Kenobi!") + "You are a bold one!") assert torch.equal(history.tokens, torch.tensor([1, 2, 3, 4, 5, 6, 7, 8, 9])) assert torch.equal(history.token_masks, torch.tensor([0, 0, 0, 1, 1, 1, 0, 0, 0])) def test_text_history_complete(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.complete() assert history.completed assert not history.truncated history.complete(truncated=True) assert history.completed assert history.truncated def test_text_history_last_segment(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.append_segment("General Kenobi!", torch.tensor([4, 5, 6])) history.append_segment("You are a bold one!", torch.tensor([7, 8, 9])) assert history.last_text_segment == "You are a bold one!" def test_text_history_split_query_response(self): text = "Hello there!" tokens = torch.tensor([1, 2, 3]) history = TextHistory(text, tokens) history.append_segment("General Kenobi!", torch.tensor([4, 5, 6]), system=False) history.append_segment("You are a bold one!", torch.tensor([7, 8, 9]), system=True) query, response, mask = history.split_query_response_tokens() assert torch.equal(query, torch.tensor([1, 2, 3])) assert torch.equal(response, torch.tensor([4, 5, 6, 7, 8, 9])) assert torch.equal(mask, torch.tensor([1, 1, 1, 0, 0, 0])) class TextEnvironmentTester(unittest.TestCase): @classmethod def setUpClass(cls): # model_id cls.model_id = "trl-internal-testing/dummy-GPT2-correct-vocab" # get models and tokenizer cls.gpt2_model = AutoModelForCausalLMWithValueHead.from_pretrained(cls.model_id) cls.gpt2_tokenizer = AutoTokenizer.from_pretrained(cls.model_id) cls.gpt2_tokenizer.pad_token = cls.gpt2_tokenizer.eos_token def test_text_environment_setup(self): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools=[DummyTool()], reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", ) assert env.prompt == "I am a prompt!\n" assert list(env.tools.keys()) == ["DummyTool"] assert isinstance(env.tools["DummyTool"], DummyTool) assert env.reward_fn("Hello there!") == 1 def test_text_environment_generate(self): generation_kwargs = {"do_sample": False, "max_new_tokens": 4, "pad_token_id": self.gpt2_tokenizer.eos_token_id} env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools=[DummyTool()], reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", generation_kwargs=generation_kwargs, ) input_texts = ["this is a test", "this is another, longer test"] model_inputs = [self.gpt2_tokenizer(txt, return_tensors="pt").input_ids.squeeze() for txt in input_texts] generations_batched = env._generate_batched(model_inputs, batch_size=2) generations_batched = self.gpt2_tokenizer.batch_decode(generations_batched) generations_single = [env._generate_batched([inputs], batch_size=1)[0] for inputs in model_inputs] generations_single = self.gpt2_tokenizer.batch_decode(generations_single) assert generations_single == generations_batched def test_text_environment_tool_call_parsing(self): string_valid = "Something something <request><Tool1>Hello there!<call>" string_invalid_request = "Something something <Tool1>Hello there!<call>" string_invalid_call = "Something something <request><Tool1>Hello there!" string_invalid_tool = "Something something <request>|Tool2|Hello there!<call>" string_invalid_random = "<>abcdefghijklm<>nopqrstuvwxyz<>" env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools=[DummyTool()], reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", ) tool, response = env.parse_tool_call(string_valid) assert tool == "Tool1" assert response == "Hello there!" tool, response = env.parse_tool_call(string_invalid_request) assert tool is None assert response is None tool, response = env.parse_tool_call(string_invalid_call) assert tool is None assert response is None tool, response = env.parse_tool_call(string_invalid_tool) assert tool is None assert response is None tool, response = env.parse_tool_call(string_invalid_random) assert tool is None assert response is None def test_text_environment_tool_truncation(self): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"dummy": lambda x: "a" * 1000}, reward_fn=lambda x: torch.tensor(1), prompt="I am a prompt!\n", ) env.max_tool_response = 100 history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) assert (len(history.last_text_segment) - len(env.response_token)) == 100 env.max_tool_response = 500 history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) assert (len(history.last_text_segment) - len(env.response_token)) == 500 env.max_tool_response = 1001 history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) assert (len(history.last_text_segment) - len(env.response_token)) == 1000 env.max_tool_response = 2000 history = env.step(TextHistory("<request><dummy>Hello there!<call>", torch.tensor([1, 2, 3]))) assert (len(history.last_text_segment) - len(env.response_token)) == 1000 @patch.object(TextEnvironment, "generate", side_effect=dummy_generate) def test_text_environment_max_calls(self, mock_generate): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"DummyTool": DummyTool()}, reward_fn=lambda x: [torch.tensor(1) for _ in x], prompt="I am a prompt!\n", ) env.max_turns = 1 _, _, _, _, histories = env.run(["test"]) assert histories[0].text == ( ("I am a prompt!\n" + "test") + (1 * "<request><DummyTool>test<call>test<response>") ) env.max_turns = 2 _, _, _, _, histories = env.run(["test"]) assert histories[0].text == ( ("I am a prompt!\n" + "test") + (2 * "<request><DummyTool>test<call>test<response>") ) env.max_turns = 4 _, _, _, _, histories = env.run(["test"]) assert histories[0].text == ( ("I am a prompt!\n" + "test") + (4 * "<request><DummyTool>test<call>test<response>") ) def test_text_environment_compute_rewards(self): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"DummyTool": DummyTool()}, reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)], prompt="I am a prompt!\n", ) histories = [TextHistory("<request><DummyTool>test<call>", torch.tensor([1, 2, 3])) for _ in range(8)] histories = env.compute_reward(histories) for i in range(8): assert histories[i].reward == i @patch.object(TextEnvironment, "generate", side_effect=dummy_generate) def test_text_environment_run(self, mock_generate): env = TextEnvironment( self.gpt2_model, self.gpt2_tokenizer, tools={"DummyTool": DummyTool()}, reward_fn=lambda x: [torch.tensor(i) for i, _ in enumerate(x)], prompt="I am a prompt!\n", max_turns=2, ) task_1 = "Hello there!" task_2 = "Hello there! General Kenobi!" query, response, response_mask, reward, histories = env.run([task_1, task_2]) assert len(query[0]) == 9 assert len(query[1]) == 12 assert len(response[0]) == 14 assert len(response[1]) == 14 assert response_mask[0].sum() == (2 * 3) # mocked generate always adds 3 toknes assert response_mask[1].sum() == (2 * 3) # mocked generate always adds 3 toknes assert reward[0] == 0 assert reward[1] == 1 assert histories[0].text == ( ("I am a prompt!\n" + "Hello there!") + (2 * "<request><DummyTool>test<call>test<response>") ) assert histories[1].text == ( ("I am a prompt!\n" + "Hello there! General Kenobi!") + (2 * "<request><DummyTool>test<call>test<response>") )
trl/tests/test_environments.py/0
{ "file_path": "trl/tests/test_environments.py", "repo_id": "trl", "token_count": 4813 }
437
import logging from typing import Callable, Literal, Optional, Union from datasets import Dataset, Value from transformers import AutoTokenizer from ..trainer.utils import ConstantLengthDataset FORMAT_MAPPING = { "chatml": [{"content": Value(dtype="string", id=None), "role": Value(dtype="string", id=None)}], "instruction": {"completion": Value(dtype="string", id=None), "prompt": Value(dtype="string", id=None)}, } def conversations_formatting_function(tokenizer: AutoTokenizer, messages_field: Literal["messages", "conversations"]): r""" return a callable function that takes in a "messages" dataset and returns a formatted dataset, based on the tokenizer apply chat template to the dataset """ def format_dataset(examples): if isinstance(examples[messages_field][0], list): output_texts = [] for i in range(len(examples[messages_field])): output_texts.append(tokenizer.apply_chat_template(examples[messages_field][i], tokenize=False)) return output_texts else: return tokenizer.apply_chat_template(examples[messages_field], tokenize=False) return format_dataset def instructions_formatting_function(tokenizer: AutoTokenizer): r""" return a callable function that takes in an "instructions" dataset and returns a formatted dataset, based on the tokenizer apply chat template to the dataset """ def format_dataset(examples): if isinstance(examples["prompt"], list): output_texts = [] for i in range(len(examples["prompt"])): converted_sample = [ {"role": "user", "content": examples["prompt"][i]}, {"role": "assistant", "content": examples["completion"][i]}, ] output_texts.append(tokenizer.apply_chat_template(converted_sample, tokenize=False)) return output_texts else: converted_sample = [ {"role": "user", "content": examples["prompt"]}, {"role": "assistant", "content": examples["completion"]}, ] return tokenizer.apply_chat_template(converted_sample, tokenize=False) return format_dataset def get_formatting_func_from_dataset( dataset: Union[Dataset, ConstantLengthDataset], tokenizer: AutoTokenizer ) -> Optional[Callable]: r""" Finds the correct formatting function based on the dataset structure. Currently supported datasets are: - `ChatML` with [{"role": str, "content": str}] - `instruction` with [{"prompt": str, "completion": str}] Args: dataset (Dataset): User dataset tokenizer (AutoTokenizer): Tokenizer used for formatting Returns: Callable: Formatting function if the dataset format is supported else None """ if isinstance(dataset, Dataset): if "messages" in dataset.features: if dataset.features["messages"] == FORMAT_MAPPING["chatml"]: logging.info("Formatting dataset with chatml format") return conversations_formatting_function(tokenizer, "messages") if "conversations" in dataset.features: if dataset.features["conversations"] == FORMAT_MAPPING["chatml"]: logging.info("Formatting dataset with chatml format") return conversations_formatting_function(tokenizer, "conversations") elif dataset.features == FORMAT_MAPPING["instruction"]: logging.info("Formatting dataset with instruction format") return instructions_formatting_function(tokenizer) return None
trl/trl/extras/dataset_formatting.py/0
{ "file_path": "trl/trl/extras/dataset_formatting.py", "repo_id": "trl", "token_count": 1400 }
438
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Optional from transformers import TrainingArguments @dataclass class RewardConfig(TrainingArguments): """ RewardConfig collects all training arguments related to the [`RewardTrainer`] class. Using [`HfArgumentParser`] we can turn this class into [argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the command line. Parameters: max_length (`int`, *optional*, defaults to `None`): The maximum length of the sequences in the batch. This argument is required if you want to use the default data collator. gradient_checkpointing (`bool`, *optional*, defaults to `True`): If True, use gradient checkpointing to save memory at the expense of slower backward pass. """ max_length: Optional[int] = None """The maximum length of the sequences in the batch. This argument is required if you want to use the default data collator."""
trl/trl/trainer/reward_config.py/0
{ "file_path": "trl/trl/trainer/reward_config.py", "repo_id": "trl", "token_count": 461 }
439
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <p align="center"> <br> <img src="https://raw.githubusercontent.com/huggingface/accelerate/main/docs/source/imgs/accelerate_logo.png" width="400"/> <br> <p> <p align="center"> <!-- Uncomment when CircleCI is set up <a href="https://circleci.com/gh/huggingface/accelerate"> <img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"> </a> --> <a href="https://github.com/huggingface/accelerate/blob/main/LICENSE"> <img alt="License" src="https://img.shields.io/github/license/huggingface/accelerate.svg?color=blue"> </a> <a href="https://huggingface.co/docs/accelerate/index.html"> <img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/accelerate/index.html.svg?down_color=red&down_message=offline&up_message=online"> </a> <a href="https://github.com/huggingface/accelerate/releases"> <img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/accelerate.svg"> </a> <a href="https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md"> <img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"> </a> </p> <h3 align="center"> <p>Run your *raw* PyTorch training script on any kind of device </h3> <h3 align="center"> <a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/accelerate/main/docs/source/imgs/course_banner.png"></a> </h3> ## Easy to integrate 🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16. 🤗 Accelerate abstracts exactly and only the boilerplate code related to multi-GPUs/TPU/fp16 and leaves the rest of your code unchanged. Here is an example: ```diff import torch import torch.nn.functional as F from datasets import load_dataset + from accelerate import Accelerator + accelerator = Accelerator() - device = 'cpu' + device = accelerator.device model = torch.nn.Transformer().to(device) optimizer = torch.optim.Adam(model.parameters()) dataset = load_dataset('my_dataset') data = torch.utils.data.DataLoader(dataset, shuffle=True) + model, optimizer, data = accelerator.prepare(model, optimizer, data) model.train() for epoch in range(10): for source, targets in data: source = source.to(device) targets = targets.to(device) optimizer.zero_grad() output = model(source) loss = F.cross_entropy(output, targets) - loss.backward() + accelerator.backward(loss) optimizer.step() ``` As you can see in this example, by adding 5-lines to any standard PyTorch training script you can now run on any kind of single or distributed node setting (single CPU, single GPU, multi-GPUs and TPUs) as well as with or without mixed precision (fp8, fp16, bf16). In particular, the same code can then be run without modification on your local machine for debugging or your training environment. 🤗 Accelerate even handles the device placement for you (which requires a few more changes to your code, but is safer in general), so you can even simplify your training loop further: ```diff import torch import torch.nn.functional as F from datasets import load_dataset + from accelerate import Accelerator - device = 'cpu' + accelerator = Accelerator() - model = torch.nn.Transformer().to(device) + model = torch.nn.Transformer() optimizer = torch.optim.Adam(model.parameters()) dataset = load_dataset('my_dataset') data = torch.utils.data.DataLoader(dataset, shuffle=True) + model, optimizer, data = accelerator.prepare(model, optimizer, data) model.train() for epoch in range(10): for source, targets in data: - source = source.to(device) - targets = targets.to(device) optimizer.zero_grad() output = model(source) loss = F.cross_entropy(output, targets) - loss.backward() + accelerator.backward(loss) optimizer.step() ``` Want to learn more? Check out the [documentation](https://huggingface.co/docs/accelerate) or have a look at our [examples](https://github.com/huggingface/accelerate/tree/main/examples). ## Launching script 🤗 Accelerate also provides an optional CLI tool that allows you to quickly configure and test your training environment before launching the scripts. No need to remember how to use `torch.distributed.run` or to write a specific launcher for TPU training! On your machine(s) just run: ```bash accelerate config ``` and answer the questions asked. This will generate a config file that will be used automatically to properly set the default options when doing ```bash accelerate launch my_script.py --args_to_my_script ``` For instance, here is how you would run the GLUE example on the MRPC task (from the root of the repo): ```bash accelerate launch examples/nlp_example.py ``` This CLI tool is **optional**, and you can still use `python my_script.py` or `python -m torchrun my_script.py` at your convenience. You can also directly pass in the arguments you would to `torchrun` as arguments to `accelerate launch` if you wish to not run` accelerate config`. For example, here is how to launch on two GPUs: ```bash accelerate launch --multi_gpu --num_processes 2 examples/nlp_example.py ``` To learn more, check the CLI documentation available [here](https://huggingface.co/docs/accelerate/package_reference/cli). ## Launching multi-CPU run using MPI 🤗 Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on [this page](https://www.open-mpi.org/faq/?category=building#easy-build). You can use Intel MPI or MVAPICH as well. Once you have MPI setup on your cluster, just run: ```bash mpirun -np 2 python examples/nlp_example.py ``` ## Launching training using DeepSpeed 🤗 Accelerate supports training on single/multiple GPUs using DeepSpeed. To use it, you don't need to change anything in your training code; you can set everything using just `accelerate config`. However, if you desire to tweak your DeepSpeed related args from your Python script, we provide you the `DeepSpeedPlugin`. ```python from accelerate import Accelerator, DeepSpeedPlugin # deepspeed needs to know your gradient accumulation steps beforehand, so don't forget to pass it # Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=2) accelerator = Accelerator(mixed_precision='fp16', deepspeed_plugin=deepspeed_plugin) # How to save your 🤗 Transformer? accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(save_dir, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model)) ``` Note: DeepSpeed support is experimental for now. In case you get into some problem, please open an issue. ## Launching your training from a notebook 🤗 Accelerate also provides a `notebook_launcher` function you can use in a notebook to launch a distributed training. This is especially useful for Colab or Kaggle notebooks with a TPU backend. Just define your training loop in a `training_function` then in your last cell, add: ```python from accelerate import notebook_launcher notebook_launcher(training_function) ``` An example can be found in [this notebook](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb) ## Why should I use 🤗 Accelerate? You should use 🤗 Accelerate when you want to easily run your training scripts in a distributed environment without having to renounce full control over your training loop. This is not a high-level framework above PyTorch, just a thin wrapper so you don't have to learn a new library. In fact, the whole API of 🤗 Accelerate is in one class, the `Accelerator` object. ## Why shouldn't I use 🤗 Accelerate? You shouldn't use 🤗 Accelerate if you don't want to write a training loop yourself. There are plenty of high-level libraries above PyTorch that will offer you that, 🤗 Accelerate is not one of them. ## Frameworks using 🤗 Accelerate If you like the simplicity of 🤗 Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of 🤗 Accelerate are listed below: * [Amphion](https://github.com/open-mmlab/Amphion) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development. * [Animus](https://github.com/Scitator/animus) is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within [IExperiment](https://github.com/Scitator/animus/blob/main/animus/core.py#L76). * [Catalyst](https://github.com/catalyst-team/catalyst#getting-started) is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a [Runner](https://catalyst-team.github.io/catalyst/api/core.html#runner) to connect all parts of the experiment: hardware backend, data transformations, model training, and inference logic. * [fastai](https://github.com/fastai/fastai#installing) is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a [Learner](https://docs.fast.ai/learner.html#Learner) to handle the training, fine-tuning, and inference of deep learning algorithms. * [Finetuner](https://github.com/jina-ai/finetuner) is a service that enables models to create higher-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses. * [InvokeAI](https://github.com/invoke-ai/InvokeAI) is a creative engine for Stable Diffusion models, offering industry-leading WebUI, terminal usage support, and serves as the foundation for many commercial products. * [Kornia](https://kornia.readthedocs.io/en/latest/get-started/introduction.html) is a differentiable library that allows classical computer vision to be integrated into deep learning models. Kornia provides a [Trainer](https://kornia.readthedocs.io/en/latest/x.html#kornia.x.Trainer) with the specific purpose to train and fine-tune the supported deep learning algorithms within the library. * [Open Assistant](https://projects.laion.ai/Open-Assistant/) is a chat-based assistant that understands tasks, can interact with their party systems, and retrieve information dynamically to do so. * [pytorch-accelerated](https://github.com/Chris-hughes10/pytorch-accelerated) is a lightweight training library, with a streamlined feature set centered around a general-purpose [Trainer](https://pytorch-accelerated.readthedocs.io/en/latest/trainer.html), that places a huge emphasis on simplicity and transparency; enabling users to understand exactly what is going on under the hood, but without having to write and maintain the boilerplate themselves! * [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) is an open-source browser-based easy-to-use interface based on the Gradio library for Stable Diffusion. * [torchkeras](https://github.com/lyhue1991/torchkeras) is a simple tool for training pytorch model just in a keras style, a dynamic and beautiful plot is provided in notebook to monitor your loss or metric. * [transformers](https://github.com/huggingface/transformers) as a tool for helping train state-of-the-art machine learning models in PyTorch, Tensorflow, and JAX. (Accelerate is the backend for the PyTorch side). ## Installation This repository is tested on Python 3.8+ and PyTorch 1.10.0+ You should install 🤗 Accelerate in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). First, create a virtual environment with the version of Python you're going to use and activate it. Then, you will need to install PyTorch: refer to the [official installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform. Then 🤗 Accelerate can be installed using pip as follows: ```bash pip install accelerate ``` ## Supported integrations - CPU only - multi-CPU on one node (machine) - multi-CPU on several nodes (machines) - single GPU - multi-GPU on one node (machine) - multi-GPU on several nodes (machines) - TPU - FP16/BFloat16 mixed precision - FP8 mixed precision with [Transformer Engine](https://github.com/NVIDIA/TransformerEngine) - DeepSpeed support (Experimental) - PyTorch Fully Sharded Data Parallel (FSDP) support (Experimental) - Megatron-LM support (Experimental) ## Citing 🤗 Accelerate If you use 🤗 Accelerate in your publication, please cite it by using the following BibTeX entry. ```bibtex @Misc{accelerate, title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.}, author = {Sylvain Gugger and Lysandre Debut and Thomas Wolf and Philipp Schmid and Zachary Mueller and Sourab Mangrulkar and Marc Sun and Benjamin Bossan}, howpublished = {\url{https://github.com/huggingface/accelerate}}, year = {2022} } ```
accelerate/README.md/0
{ "file_path": "accelerate/README.md", "repo_id": "accelerate", "token_count": 4397 }
0
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Deferring Executions When you run your usual script, instructions are executed in order. Using 🤗 Accelerate to deploy your script on several GPUs at the same time introduces a complication: while each process executes all instructions in order, some may be faster than others. You might need to wait for all processes to have reached a certain point before executing a given instruction. For instance, you shouldn't save a model before being sure every process is done with training, and you wouldn't want to continue training before all the model weights have been loaded in. To do this, just write the following line in your code: ``` accelerator.wait_for_everyone() ``` This instruction will block all the processes that arrive first until all the other processes have reached that point (if you run your script on just one GPU or CPU, this won't do anything). A few example cases of when to use this utility are listed below: <Tip> Some of these are utilized with the [`~Accelerator.main_process_first`] context manager, which utilizes [`~Accelerator.wait_for_everyone`] to run a particular set of code on the main process beforehand before triggering and launching the other processes </Tip> ## Downloading a Dataset When downloading a dataset, you should download it first on the main process and then load the cached dataset afterward <Tip> `load_dataset` will perform a lock under the hood to stop multiple downloads from happening at once, but if you are downloading something not using this library you should use this method. </Tip> ```python with accelerator.main_process_first(): datasets = load_dataset("glue", "mrpc") ``` Under the hood this is the same as calling: ```python # First do something on the main process if accelerator.is_main_process: datasets = load_dataset("glue", "mrpc") else: accelerator.wait_for_everyone() # And then send it to the rest of them if not accelerator.is_main_process: datasets = load_dataset("glue", "mrpc") else: accelerator.wait_for_everyone() ``` ## Saving the `state_dict` When saving the `state_dict` of the model, since you would normally save one file on just the main process you should specify that: ```python if accelerator.is_main_process: model = accelerator.unwrap_model(model) torch.save(model.state_dict(), "weights.pth") ``` ## Loading in the `state_dict` When loading in the `state_dict` to a model, optimizer, or scheduler, you should wait for all workers to have the weights loaded in before moving on to training ```python with accelerator.main_process_first(): state = torch.load("weights.pth") model.load_state_dict(state) ``` ## Applying a multi-worker CPU operation Applying a `map()` operation on multiple workers, such as tokenizing should be done on the main process first, and then propagated to each one. ```python datasets = load_dataset("glue", "mrpc") with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) ``` ## Applying checks such as Early Stopping To have a check that works with a flag set by a particular process, the `set_trigger` and `check_trigger` API should be used. Useful examples for doing so can include situations such as using early stopping and monitoring the loss (as each loss slightly differs on each process). Call [`Accelerator.set_trigger`] when your condition has been met, and [`Accelerator.check_trigger`] when checking if that condition has been met in any process: ```python for (x,y) in data_loader: logits = model(x) loss = loss_func(logits, y) # Assume `should_do_early_stopping` is a custom defined function that returns a conditional if should_do_early_stopping(loss): accelerator.set_trigger() # Later in the training script when we need to check for the breakpoint if accelerator.check_trigger(): break ```
accelerate/docs/source/concept_guides/deferring_execution.md/0
{ "file_path": "accelerate/docs/source/concept_guides/deferring_execution.md", "repo_id": "accelerate", "token_count": 1350 }
1
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Low Precision Training Methods 🤗 Accelerate provides integrations to train on lower precision methods using specified supported hardware through the `TransformersEngine` and `MS-AMP` packages. This documentation will help guide you through what hardware is supported, how to configure your [`Accelerator`] to leverage the low precision methods, and what you can expect when training. ## What training on FP8 means To explore more of the nitty-gritty in training in FP8 with PyTorch and 🤗 Accelerate, check out the [concept_guide](../concept_guides/low_precision_training.md) on why this can be difficult. But essentially rather than training in BF16, some (or all) aspects of training a model can be performed using 8 bits instead of 16. The challenge is doing so without degrading final performance. This is only enabled on specific NVIDIA hardware, namely: * Anything after the 3000 series consumer graphics cards (such as the 4090) * Hopper-based GPU architectures (such as the `H100` and `H200`) What this will result in is some gain in the memory used (as we've cut the needed memory in half for some parts of training) and an increase in throughput *should* be seen as well for larger models that can replace certain layers with FP8-enabled ones. ## Configuring the Accelerator Currently two different backends for FP8 are supported (`TransformersEngine` and `MS-AMP`), each with different capabilities and configurations. To use either, the same core API is used. Just pass `mixed_precision="fp8"` to either the [`Accelerator`], during `accelerate config` when prompted about mixed precision, or as part of your `config.yaml` file in the `mixed_precision` key: ```{python} from accelerate import Accelerator accelerator = Accelerator(mixed_precision="fp8") ``` By default, if `MS-AMP` is available in your environment, 🤗 Accelerate will automatically utilize it as a backend. To specify it yourself (and customize other parts of the FP8 mixed precision setup), you can utilize the [`utils.FP8RecipeKwargs`]: ```{python} from accelerate import Accelerator from accelerate.utils import FP8RecipeKwargs kwargs = [FP8RecipeKwargs(backend="msamp")] # Or to specify the backend as `TransformersEngine` even if MS-AMP is installed # kwargs = [FP8RecipeKwargs(backend="te")] accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs) ``` ## Configuring MS-AMP Of the two, `MS-AMP` is traditionally the easier one to configure as there is only a single argument: the optimization level. Currently two levels of optimization are supported in the 🤗 Accelerate integration, `"O1"` and `"O2"` (using the letter 'o', not zero). * `"O1"` will cast the weight gradients and `all_reduce` communications to happen in 8-bit, while the rest are done in 16 bit. This reduces the general GPU memory usage and speeds up communication bandwidths. * `"O2"` will also cast first-order optimizer states into 8 bit, while the second order states are in FP16. (Currently just the `Adam` optimizer is supported). This tries it's best to minimize final accuracy degradation and will save the highest potential memory. To specify an optimization level, pass it to the `FP8KwargsHandler` by setting the `optimization_level` argument: ```{python} from accelerate import Accelerator from accelerate.utils import FP8RecipeKwargs kwargs = [FP8RecipeKwargs(backend="msamp", optimization_level="O2")] accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs) ``` ## Configuring TransformersEngine TransformersEngine has much more available for customizing how and what FP8 calculations are performed. A full list of supported arguments and what they mean are available in [NVIDIA's documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html), however they are restated as part of [`FP8KwargsHandler`]'s docstring for your convience. 🤗 Accelerate tries to set sensible defaults, but exploring and tweaking the various parameters yourself can lead to better performance potentially. To use it, specify `backend="te"` and modify any of the arguments you want as part of your kwarg handler: ```{python} from accelerate import Accelerator from accelerate.utils import FP8RecipeKwargs kwargs = [FP8RecipeKwargs(backend="te", ...)] accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs) ``` ## Futher Reading To learn more about training in FP8 please check out the following resources: * [Our concept guide](../concept_guides/low_precision_training.md) detailing into more about both TransformersEngine and MS-AMP * [The `transformers-engine` documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html) * [The `MS-AMP` documentation](https://azure.github.io/MS-AMP/docs/)
accelerate/docs/source/usage_guides/low_precision_training.md/0
{ "file_path": "accelerate/docs/source/usage_guides/low_precision_training.md", "repo_id": "accelerate", "token_count": 1465 }
2
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def get_dataloaders(accelerator: Accelerator, batch_size: int = 16): """ Creates a set of `DataLoader`s for the `glue` dataset, using "bert-base-cased" as the tokenizer. Args: accelerator (`Accelerator`): An `Accelerator` object batch_size (`int`, *optional*): The batch size for the train and validation DataLoaders. """ tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders get_dataloaders = mocked_dataloaders # noqa: F811 def training_function(config, args): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": config["num_epochs"] = 2 # New Code # gradient_accumulation_steps = int(args.gradient_accumulation_steps) # Initialize accelerator accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) metric = evaluate.load("glue", "mrpc") set_seed(seed) train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # Now we train the model for epoch in range(num_epochs): model.train() for step, batch in enumerate(train_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(model): output = model(**batch) loss = output.loss accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) # New Code # parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="The number of minibatches to be ran before gradients are accumulated.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()
accelerate/examples/by_feature/gradient_accumulation.py/0
{ "file_path": "accelerate/examples/by_feature/gradient_accumulation.py", "repo_id": "accelerate", "token_count": 3359 }
3
#!/usr/bin/env python # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.estimate import estimate_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def main(): parser = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False) subparsers = parser.add_subparsers(help="accelerate command helpers") # Register commands get_config_parser(subparsers=subparsers) estimate_command_parser(subparsers=subparsers) env_command_parser(subparsers=subparsers) launch_command_parser(subparsers=subparsers) tpu_command_parser(subparsers=subparsers) test_command_parser(subparsers=subparsers) # Let's go args = parser.parse_args() if not hasattr(args, "func"): parser.print_help() exit(1) # Run args.func(args) if __name__ == "__main__": main()
accelerate/src/accelerate/commands/accelerate_cli.py/0
{ "file_path": "accelerate/src/accelerate/commands/accelerate_cli.py", "repo_id": "accelerate", "token_count": 551 }
4
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities relating to parsing raw characters from the keyboard, based on https://github.com/bchao1/bullet """ import os import string import sys ARROW_KEY_FLAG = 1 << 8 KEYMAP = { "tab": ord("\t"), "newline": ord("\r"), "esc": 27, "up": 65 + ARROW_KEY_FLAG, "down": 66 + ARROW_KEY_FLAG, "right": 67 + ARROW_KEY_FLAG, "left": 68 + ARROW_KEY_FLAG, "mod_int": 91, "undefined": sys.maxsize, "interrupt": 3, "insert": 50, "delete": 51, "pg_up": 53, "pg_down": 54, } KEYMAP["arrow_begin"] = KEYMAP["up"] KEYMAP["arrow_end"] = KEYMAP["left"] if sys.platform == "win32": WIN_CH_BUFFER = [] WIN_KEYMAP = { b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG, b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG, b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG, b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG, b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG, } for i in range(10): KEYMAP[str(i)] = ord(str(i)) def get_raw_chars(): "Gets raw characters from inputs" if os.name == "nt": import msvcrt encoding = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(WIN_CH_BUFFER) == 0: # Read the keystroke ch = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): ch2 = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: chx = chr(WIN_KEYMAP[ch2]) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"])) WIN_CH_BUFFER.append(chx) if ord(chx) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126)) ch = chr(KEYMAP["esc"]) except KeyError: ch = ch2[1] else: ch = ch.decode(encoding) else: ch = WIN_CH_BUFFER.pop(0) elif os.name == "posix": import termios import tty fd = sys.stdin.fileno() old_settings = termios.tcgetattr(fd) try: tty.setraw(fd) ch = sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) return ch def get_character(): "Gets a character from the keyboard and returns the key code" char = get_raw_chars() if ord(char) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(char) == KEYMAP["esc"]: combo = get_raw_chars() if ord(combo) == KEYMAP["mod_int"]: key = get_raw_chars() if ord(key) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(key) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(key) + ARROW_KEY_FLAG) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
accelerate/src/accelerate/commands/menu/keymap.py/0
{ "file_path": "accelerate/src/accelerate/commands/menu/keymap.py", "repo_id": "accelerate", "token_count": 2054 }
5
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import operator as op SCALER_NAME = "scaler.pt" MODEL_NAME = "pytorch_model" SAFE_MODEL_NAME = "model" RNG_STATE_NAME = "random_states" OPTIMIZER_NAME = "optimizer" SCHEDULER_NAME = "scheduler" SAMPLER_NAME = "sampler" WEIGHTS_NAME = f"{MODEL_NAME}.bin" WEIGHTS_INDEX_NAME = f"{WEIGHTS_NAME}.index.json" SAFE_WEIGHTS_NAME = f"{SAFE_MODEL_NAME}.safetensors" SAFE_WEIGHTS_INDEX_NAME = f"{SAFE_WEIGHTS_NAME}.index.json" SAGEMAKER_PYTORCH_VERSION = "1.10.2" SAGEMAKER_PYTHON_VERSION = "py38" SAGEMAKER_TRANSFORMERS_VERSION = "4.17.0" SAGEMAKER_PARALLEL_EC2_INSTANCES = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] FSDP_SHARDING_STRATEGY = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] FSDP_AUTO_WRAP_POLICY = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] FSDP_BACKWARD_PREFETCH = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] FSDP_STATE_DICT_TYPE = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] FSDP_PYTORCH_VERSION = "2.1.0" FSDP_MODEL_NAME = "pytorch_model_fsdp" DEEPSPEED_MULTINODE_LAUNCHERS = ["pdsh", "standard", "openmpi", "mvapich", "mpich"] TORCH_DYNAMO_MODES = ["default", "reduce-overhead", "max-autotune"] STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 TORCH_LAUNCH_PARAMS = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] CUDA_DISTRIBUTED_TYPES = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] TORCH_DISTRIBUTED_OPERATION_TYPES = CUDA_DISTRIBUTED_TYPES + ["MULTI_NPU", "MULTI_XPU", "MULTI_CPU"]
accelerate/src/accelerate/utils/constants.py/0
{ "file_path": "accelerate/src/accelerate/utils/constants.py", "repo_id": "accelerate", "token_count": 1118 }
6
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def tqdm(main_process_only: bool = True, *args, **kwargs): """ Wrapper around `tqdm.tqdm` that optionally displays only on the main process. Args: main_process_only (`bool`, *optional*): Whether to display the progress bar only on the main process """ if not is_tqdm_available(): raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.") disable = False if main_process_only: disable = PartialState().local_process_index != 0 return _tqdm(*args, **kwargs, disable=disable)
accelerate/src/accelerate/utils/tqdm.py/0
{ "file_path": "accelerate/src/accelerate/utils/tqdm.py", "repo_id": "accelerate", "token_count": 433 }
7
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class RandomIterableDataset(IterableDataset): # For testing, an iterable dataset of random length def __init__(self, p_stop=0.01, max_length=1000): self.p_stop = p_stop self.max_length = max_length def __iter__(self): count = 0 stop = False while not stop and count < self.max_length: yield count count += 1 stop = random.random() < self.p_stop class DataLoaderTester(unittest.TestCase): def check_batch_sampler_shards(self, batch_sampler, expected, split_batches=False, even_batches=True): batch_sampler_shards = [ BatchSamplerShard(batch_sampler, 2, i, split_batches=split_batches, even_batches=even_batches) for i in range(2) ] batch_sampler_lists = [list(batch_sampler_shard) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(shard) for shard in batch_sampler_shards], [len(e) for e in expected]) self.assertListEqual(batch_sampler_lists, expected) def test_batch_sampler_shards_with_no_splits(self): # Check the shards when the dataset is a round multiple of total batch size. batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is a round multiple of batch size but not total batch size. batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=False) expected = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(batch_sampler, expected) batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected) def test_batch_sampler_shards_with_splits(self): # Check the shards when the dataset is a round multiple of batch size. batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) # Check the shards when the dataset is not a round multiple of batch size. batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) # Check the shards when the dataset is not a round multiple of batch size or num_processes. batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=False) expected = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True) def test_batch_sampler_shards_with_no_splits_no_even(self): # Check the shards when the dataset is a round multiple of total batch size. batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(24), batch_size=3, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is a round multiple of batch size but not total batch size. batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(21), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(22), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=False) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(20), batch_size=3, drop_last=True) expected = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=False) expected = [[[0, 1]], []] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) batch_sampler = BatchSampler(range(2), batch_size=3, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected, even_batches=False) def test_batch_sampler_shards_with_splits_no_even(self): # Check the shards when the dataset is a round multiple of batch size. batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(24), batch_size=4, drop_last=True) # Expected shouldn't change self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size. batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(22), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) # Check the shards when the dataset is not a round multiple of batch size or num_processes. batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=False) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(21), batch_size=4, drop_last=True) expected = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) # Check the shards when the dataset is very small. batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=False) expected = [[[0, 1]], []] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) batch_sampler = BatchSampler(range(2), batch_size=4, drop_last=True) expected = [[], []] self.check_batch_sampler_shards(batch_sampler, expected, split_batches=True, even_batches=False) def test_batch_sampler_with_varying_batch_size(self): batch_sampler = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] batch_sampler_shards = [BatchSamplerShard(batch_sampler, 2, i, even_batches=False) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]), 3) self.assertEqual(len(batch_sampler_shards[1]), 2) self.assertListEqual(list(batch_sampler_shards[0]), [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]), [[3, 4], [9, 10, 11]]) def check_iterable_dataset_shards( self, dataset, seed, batch_size, drop_last=False, num_processes=2, split_batches=False ): random.seed(seed) reference = list(dataset) iterable_dataset_shards = [ IterableDatasetShard( dataset, batch_size=batch_size, drop_last=drop_last, num_processes=num_processes, process_index=i, split_batches=split_batches, ) for i in range(num_processes) ] iterable_dataset_lists = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(seed) iterable_dataset_lists.append(list(iterable_dataset_shard)) shard_batch_size = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size first_list = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(l), len(first_list)) self.assertTrue(len(l) % shard_batch_size == 0) observed = [] for idx in range(0, len(first_list), shard_batch_size): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(reference) < len(observed): reference += reference self.assertListEqual(observed, reference[: len(observed)]) def test_iterable_dataset_shard(self): seed = 42 dataset = RandomIterableDataset() self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=True) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=True) # Edge case with a very small dataset dataset = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=False) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=False, split_batches=True) self.check_iterable_dataset_shards(dataset, seed, batch_size=4, drop_last=True, split_batches=True) def test_skip_batch_sampler(self): batch_sampler = BatchSampler(range(16), batch_size=4, drop_last=False) new_batch_sampler = SkipBatchSampler(batch_sampler, 2) self.assertListEqual(list(new_batch_sampler), [[8, 9, 10, 11], [12, 13, 14, 15]]) def test_skip_data_loader(self): dataloader = SkipDataLoader(list(range(16)), batch_size=4, skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def test_skip_first_batches(self): dataloader = DataLoader(list(range(16)), batch_size=4) new_dataloader = skip_first_batches(dataloader, num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader], [[8, 9, 10, 11], [12, 13, 14, 15]]) def test_end_of_dataloader(self): dataloader = DataLoaderShard(list(range(16)), batch_size=4) for idx, _ in enumerate(dataloader): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(dataloader): self.assertEqual(dataloader.end_of_dataloader, idx == 3) def test_end_of_dataloader_dispatcher(self): Accelerator() dataloader = DataLoaderDispatcher(range(16), batch_size=4) for idx, _ in enumerate(dataloader): self.assertEqual(dataloader.end_of_dataloader, idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(dataloader): self.assertEqual(dataloader.end_of_dataloader, idx == 3)
accelerate/tests/test_data_loader.py/0
{ "file_path": "accelerate/tests/test_data_loader.py", "repo_id": "accelerate", "token_count": 8568 }
8
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from functools import partial import torch from accelerate import Accelerator, debug_launcher from accelerate.state import AcceleratorState, GradientState from accelerate.test_utils import require_cpu, require_huggingface_suite from accelerate.utils import GradientAccumulationPlugin def one_cycle_test(num_processes=2, step_scheduler_with_optimizer=True, split_batches=False): accelerator = Accelerator(step_scheduler_with_optimizer=step_scheduler_with_optimizer, split_batches=split_batches) model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=1.0) scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=0.01, steps_per_epoch=2, epochs=1) model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) # Optimizer has stepped scheduler.step() if step_scheduler_with_optimizer or (num_processes == 1): assert ( scheduler.scheduler.last_epoch == num_processes ), f"Last Epoch ({scheduler.scheduler.last_epoch}) != Num Processes ({num_processes})" else: assert ( scheduler.scheduler.last_epoch != num_processes ), f"Last Epoch ({scheduler.scheduler.last_epoch}) == Num Processes ({num_processes})" def lambda_test(num_processes=2, step_scheduler_with_optimizer=True, split_batches=False): accelerator = Accelerator(step_scheduler_with_optimizer=step_scheduler_with_optimizer, split_batches=split_batches) model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=1.0) scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda n: 1 - n / 10) model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) # Optimizer has stepped optimizer._is_overflow = False scheduler.step() expected_lr = 1 - (num_processes if (step_scheduler_with_optimizer and not split_batches) else 1) / 10 assert ( scheduler.get_last_lr()[0] == expected_lr ), f"Wrong lr found at first step, expected {expected_lr}, got {scheduler.get_last_lr()[0]}" # Optimizer has not stepped optimizer._is_overflow = True scheduler.step() if not step_scheduler_with_optimizer: expected_lr = 1 - 2 / 10 assert ( scheduler.get_last_lr()[0] == expected_lr ), f"Wrong lr found at second step, expected {expected_lr}, got {scheduler.get_last_lr()[0]}" def accumulation_test(num_processes: int = 2): """ With this test, an observed batch size of 64 should result in neglible differences in the scheduler after going through the correct number of steps. Uses single, two, and four steps to test. """ from transformers import get_linear_schedule_with_warmup steps = [1, 2, 4] for num_steps in steps: plugin = GradientAccumulationPlugin(num_steps=num_steps, adjust_scheduler=num_steps > 1) accelerator = Accelerator(gradient_accumulation_plugin=plugin) model = torch.nn.Linear(2, 4) optimizer = torch.optim.AdamW(model.parameters(), lr=10.0) scheduler = get_linear_schedule_with_warmup(optimizer=optimizer, num_warmup_steps=0, num_training_steps=20) model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler) for i in range(10 * num_steps): with accelerator.accumulate(model): optimizer.step() scheduler.step() if i == (10 * num_steps - 2): assert ( scheduler.get_last_lr()[0] != 0 ), f"Wrong lr found at second-to-last step, expected non-zero, got {scheduler.get_last_lr()[0]}. num_steps: {num_steps}" assert ( scheduler.get_last_lr()[0] == 0 ), f"Wrong lr found at last step, expected 0, got {scheduler.get_last_lr()[0]}" GradientState._reset_state() @require_cpu class SchedulerTester(unittest.TestCase): def test_lambda_scheduler_steps_with_optimizer_single_process(self): debug_launcher(partial(lambda_test, num_processes=1), num_processes=1) debug_launcher(partial(lambda_test, num_processes=1, split_batches=True), num_processes=1) def test_one_cycle_scheduler_steps_with_optimizer_single_process(self): debug_launcher(partial(one_cycle_test, num_processes=1), num_processes=1) debug_launcher(partial(one_cycle_test, num_processes=1, split_batches=True), num_processes=1) def test_lambda_scheduler_not_step_with_optimizer_single_process(self): debug_launcher(partial(lambda_test, num_processes=1, step_scheduler_with_optimizer=False), num_processes=1) def test_one_cycle_scheduler_not_step_with_optimizer_single_process(self): debug_launcher(partial(one_cycle_test, num_processes=1, step_scheduler_with_optimizer=False), num_processes=1) def test_lambda_scheduler_steps_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(lambda_test) debug_launcher(partial(lambda_test, num_processes=1, split_batches=True), num_processes=1) def test_one_cycle_scheduler_steps_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(one_cycle_test) debug_launcher(partial(one_cycle_test, num_processes=1, split_batches=True), num_processes=1) def test_lambda_scheduler_not_step_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(partial(lambda_test, step_scheduler_with_optimizer=False)) def test_one_cycle_scheduler_not_step_with_optimizer_multiprocess(self): AcceleratorState._reset_state(True) debug_launcher(partial(one_cycle_test, step_scheduler_with_optimizer=False)) @require_huggingface_suite def test_accumulation(self): AcceleratorState._reset_state(True) debug_launcher(partial(accumulation_test, num_processes=1)) debug_launcher(accumulation_test)
accelerate/tests/test_scheduler.py/0
{ "file_path": "accelerate/tests/test_scheduler.py", "repo_id": "accelerate", "token_count": 2538 }
9
# Model arguments model_name_or_path: alignment-handbook/mistral-7b-sft-constitutional-ai torch_dtype: null # Data training arguments # For definitions, see: src/h4/training/config.py dataset_mixer: HuggingFaceH4/ultrafeedback_binarized: 1.0 HuggingFaceH4/cai-conversation-harmless: 1.0 dataset_splits: - train_prefs - test_prefs preprocessing_num_workers: 12 # DPOTrainer arguments bf16: true beta: 0.1 do_eval: true do_train: true evaluation_strategy: steps eval_steps: 1000 gradient_accumulation_steps: 1 gradient_checkpointing: true hub_model_id: mistral-7b-dpo-constitutional-ai learning_rate: 5.0e-7 log_level: info logging_steps: 10 lr_scheduler_type: linear max_length: 1024 max_prompt_length: 512 num_train_epochs: 3 optim: rmsprop output_dir: data/mistral-7b-dpo-constitutional-ai per_device_train_batch_size: 2 per_device_eval_batch_size: 8 push_to_hub: true save_strategy: "steps" save_steps: 100 save_total_limit: 1 seed: 42 warmup_ratio: 0.1
alignment-handbook/recipes/constitutional-ai/dpo/config_anthropic.yaml/0
{ "file_path": "alignment-handbook/recipes/constitutional-ai/dpo/config_anthropic.yaml", "repo_id": "alignment-handbook", "token_count": 373 }
10
[isort] default_section = FIRSTPARTY ensure_newline_before_comments = True force_grid_wrap = 0 include_trailing_comma = True known_first_party = alignment known_third_party = transformers datasets fugashi git h5py matplotlib nltk numpy packaging pandas psutil pytest rouge_score sacrebleu seqeval sklearn streamlit torch tqdm line_length = 119 lines_after_imports = 2 multi_line_output = 3 use_parentheses = True [flake8] ignore = E203, E501, E741, W503, W605 max-line-length = 119 per-file-ignores = # imported but unused __init__.py: F401 [tool:pytest] doctest_optionflags=NUMBER NORMALIZE_WHITESPACE ELLIPSIS
alignment-handbook/setup.cfg/0
{ "file_path": "alignment-handbook/setup.cfg", "repo_id": "alignment-handbook", "token_count": 297 }
11
repos: - repo: https://github.com/Narsil/pre-commit-rust rev: 2eed6366172ef2a5186e8785ec0e67243d7d73d0 hooks: - id: fmt name: "Rust (fmt)" - id: clippy name: "Rust (clippy)" args: [ "--tests", "--examples", "--", "-Dwarnings", ]
candle/.pre-commit-config.yaml/0
{ "file_path": "candle/.pre-commit-config.yaml", "repo_id": "candle", "token_count": 210 }
12
# Creating a REST api webserver
candle/candle-book/src/apps/rest.md/0
{ "file_path": "candle/candle-book/src/apps/rest.md", "repo_id": "candle", "token_count": 8 }
13
//! #A simplified example in Rust of training a neural network and then using it based on the Candle Framework by Hugging Face. //! Author: Evgeny Igumnov 2023 [email protected] //! This program implements a neural network to predict the winner of the second round of elections based on the results of the first round. //! //! ##Basic moments: //! //! A multilayer perceptron with two hidden layers is used. The first hidden layer has 4 neurons, the second has 2 neurons. //! The input is a vector of 2 numbers - the percentage of votes for the first and second candidates in the first stage. //! The output is the number 0 or 1, where 1 means that the first candidate will win in the second stage, 0 means that he will lose. //! For training, samples with real data on the results of the first and second stages of different elections are used. //! The model is trained by backpropagation using gradient descent and the cross-entropy loss function. //! Model parameters (weights of neurons) are initialized randomly, then optimized during training. //! After training, the model is tested on a deferred sample to evaluate the accuracy. //! If the accuracy on the test set is below 100%, the model is considered underfit and the learning process is repeated. //! Thus, this neural network learns to find hidden relationships between the results of the first and second rounds of voting in order to make predictions for new data. #[rustfmt::skip] mod tests { use candle::{DType, Result, Tensor, D, Device}; use candle_nn::{loss, ops, Linear, Module, VarBuilder, VarMap, Optimizer}; // ANCHOR: book_training_simplified1 const VOTE_DIM: usize = 2; const RESULTS: usize = 1; const EPOCHS: usize = 10; const LAYER1_OUT_SIZE: usize = 4; const LAYER2_OUT_SIZE: usize = 2; const LEARNING_RATE: f64 = 0.05; #[derive(Clone)] pub struct Dataset { pub train_votes: Tensor, pub train_results: Tensor, pub test_votes: Tensor, pub test_results: Tensor, } struct MultiLevelPerceptron { ln1: Linear, ln2: Linear, ln3: Linear, } impl MultiLevelPerceptron { fn new(vs: VarBuilder) -> Result<Self> { let ln1 = candle_nn::linear(VOTE_DIM, LAYER1_OUT_SIZE, vs.pp("ln1"))?; let ln2 = candle_nn::linear(LAYER1_OUT_SIZE, LAYER2_OUT_SIZE, vs.pp("ln2"))?; let ln3 = candle_nn::linear(LAYER2_OUT_SIZE, RESULTS + 1, vs.pp("ln3"))?; Ok(Self { ln1, ln2, ln3 }) } fn forward(&self, xs: &Tensor) -> Result<Tensor> { let xs = self.ln1.forward(xs)?; let xs = xs.relu()?; let xs = self.ln2.forward(&xs)?; let xs = xs.relu()?; self.ln3.forward(&xs) } } // ANCHOR_END: book_training_simplified1 // ANCHOR: book_training_simplified3 #[tokio::test] async fn simplified() -> anyhow::Result<()> { let dev = Device::cuda_if_available(0)?; let train_votes_vec: Vec<u32> = vec![ 15, 10, 10, 15, 5, 12, 30, 20, 16, 12, 13, 25, 6, 14, 31, 21, ]; let train_votes_tensor = Tensor::from_vec(train_votes_vec.clone(), (train_votes_vec.len() / VOTE_DIM, VOTE_DIM), &dev)?.to_dtype(DType::F32)?; let train_results_vec: Vec<u32> = vec![ 1, 0, 0, 1, 1, 0, 0, 1, ]; let train_results_tensor = Tensor::from_vec(train_results_vec, train_votes_vec.len() / VOTE_DIM, &dev)?; let test_votes_vec: Vec<u32> = vec![ 13, 9, 8, 14, 3, 10, ]; let test_votes_tensor = Tensor::from_vec(test_votes_vec.clone(), (test_votes_vec.len() / VOTE_DIM, VOTE_DIM), &dev)?.to_dtype(DType::F32)?; let test_results_vec: Vec<u32> = vec![ 1, 0, 0, ]; let test_results_tensor = Tensor::from_vec(test_results_vec.clone(), test_results_vec.len(), &dev)?; let m = Dataset { train_votes: train_votes_tensor, train_results: train_results_tensor, test_votes: test_votes_tensor, test_results: test_results_tensor, }; let trained_model: MultiLevelPerceptron; loop { println!("Trying to train neural network."); match train(m.clone(), &dev) { Ok(model) => { trained_model = model; break; }, Err(e) => { println!("Error: {}", e); continue; } } } let real_world_votes: Vec<u32> = vec![ 13, 22, ]; let tensor_test_votes = Tensor::from_vec(real_world_votes.clone(), (1, VOTE_DIM), &dev)?.to_dtype(DType::F32)?; let final_result = trained_model.forward(&tensor_test_votes)?; let result = final_result .argmax(D::Minus1)? .to_dtype(DType::F32)? .get(0).map(|x| x.to_scalar::<f32>())??; println!("real_life_votes: {:?}", real_world_votes); println!("neural_network_prediction_result: {:?}", result); Ok(()) } // ANCHOR_END: book_training_simplified3 // ANCHOR: book_training_simplified2 fn train(m: Dataset, dev: &Device) -> anyhow::Result<MultiLevelPerceptron> { let train_results = m.train_results.to_device(dev)?; let train_votes = m.train_votes.to_device(dev)?; let varmap = VarMap::new(); let vs = VarBuilder::from_varmap(&varmap, DType::F32, dev); let model = MultiLevelPerceptron::new(vs.clone())?; let mut sgd = candle_nn::SGD::new(varmap.all_vars(), LEARNING_RATE)?; let test_votes = m.test_votes.to_device(dev)?; let test_results = m.test_results.to_device(dev)?; let mut final_accuracy: f32 = 0.0; for epoch in 1..EPOCHS + 1 { let logits = model.forward(&train_votes)?; let log_sm = ops::log_softmax(&logits, D::Minus1)?; let loss = loss::nll(&log_sm, &train_results)?; sgd.backward_step(&loss)?; let test_logits = model.forward(&test_votes)?; let sum_ok = test_logits .argmax(D::Minus1)? .eq(&test_results)? .to_dtype(DType::F32)? .sum_all()? .to_scalar::<f32>()?; let test_accuracy = sum_ok / test_results.dims1()? as f32; final_accuracy = 100. * test_accuracy; println!("Epoch: {epoch:3} Train loss: {:8.5} Test accuracy: {:5.2}%", loss.to_scalar::<f32>()?, final_accuracy ); if final_accuracy == 100.0 { break; } } if final_accuracy < 100.0 { Err(anyhow::Error::msg("The model is not trained well enough.")) } else { Ok(model) } } // ANCHOR_END: book_training_simplified2 }
candle/candle-book/src/simplified.rs/0
{ "file_path": "candle/candle-book/src/simplified.rs", "repo_id": "candle", "token_count": 2903 }
14
#[cfg(feature = "accelerate")] extern crate accelerate_src; #[cfg(feature = "mkl")] extern crate intel_mkl_src; use anyhow::Result; use candle_core::{Device, Tensor}; fn main() -> Result<()> { let device = Device::new_cuda(0)?; let in_t = Tensor::rand(-1f32, 1f32, (1, 3, 12, 7), &device)?; let k_t = Tensor::rand(-1f32, 1f32, (6, 3, 1, 1), &device)?; let out_t = in_t.conv2d(&k_t, 0, 1, 1, 1)?; println!("{out_t}"); let in_t = in_t.to_device(&Device::Cpu)?; let k_t = k_t.to_device(&Device::Cpu)?; let out_t2 = in_t.conv2d(&k_t, 0, 1, 1, 1)?; let diff = (out_t.to_device(&Device::Cpu)? - out_t2)? .sqr()? .sum_all()?; println!("{diff}"); let t = Tensor::randn(0f32, 1f32, (2, 4, 96, 96), &device)?; let w = Tensor::randn(0f32, 1f32, (320, 4, 3, 3), &device)?; let res = t.conv2d(&w, 1, 1, 1, 1)?; println!("{res:?}"); Ok(()) }
candle/candle-core/examples/cuda_basics.rs/0
{ "file_path": "candle/candle-core/examples/cuda_basics.rs", "repo_id": "candle", "token_count": 463 }
15
use crate::WithDType; use cudarc; use cudarc::cudnn::safe::{Conv2dForward, Cudnn}; use cudarc::driver::{CudaSlice, CudaView, DeviceRepr, ValidAsZeroBits}; use std::cell::RefCell; use std::collections::HashMap; use std::sync::Arc; // The cudnn handles are stored per thread here rather than on the CudaDevice as they are neither // send nor sync. thread_local! { static CUDNN: RefCell<HashMap<crate::cuda_backend::DeviceId, Arc<Cudnn>>> = HashMap::new().into(); } impl From<cudarc::cudnn::CudnnError> for crate::Error { fn from(err: cudarc::cudnn::CudnnError) -> Self { crate::Error::wrap(err) } } impl From<cudarc::driver::DriverError> for crate::Error { fn from(err: cudarc::driver::DriverError) -> Self { crate::Error::wrap(err) } } pub(crate) fn launch_conv2d< T: DeviceRepr + WithDType + ValidAsZeroBits + cudarc::cudnn::CudnnDataType, >( src: &CudaView<T>, src_l: &crate::Layout, filter: &CudaView<T>, dst: &mut CudaSlice<T>, params: &crate::conv::ParamsConv2D, dev: &crate::cuda_backend::CudaDevice, ) -> crate::Result<()> { use crate::conv::CudnnFwdAlgo as CandleAlgo; use cudarc::cudnn::sys::cudnnConvolutionFwdAlgo_t as A; let device_id = dev.id(); let cudnn = CUDNN.with(|cudnn| { if let Some(cudnn) = cudnn.borrow().get(&device_id) { return Ok(cudnn.clone()); } let c = Cudnn::new(dev.cuda_device()); if let Ok(c) = &c { cudnn.borrow_mut().insert(device_id, c.clone()); } c })?; let conv = cudnn.create_conv2d::<T>( /* pad */ [params.padding as i32, params.padding as i32], /* stride */ [params.stride as i32, params.stride as i32], /* dilation */ [params.dilation as i32, params.dilation as i32], cudarc::cudnn::sys::cudnnConvolutionMode_t::CUDNN_CROSS_CORRELATION, )?; let x_shape = [ params.b_size as i32, params.c_in as i32, params.i_h as i32, params.i_w as i32, ]; // Note that `src` already starts at the proper offset. let x = if src_l.is_contiguous() { cudnn.create_4d_tensor( cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW, x_shape, )? } else { let s = src_l.stride(); cudnn.create_4d_tensor_ex( x_shape, [s[0] as i32, s[1] as i32, s[2] as i32, s[3] as i32], )? }; let w = cudnn.create_4d_filter( cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW, [ params.c_out as i32, params.c_in as i32, params.k_h as i32, params.k_w as i32, ], )?; let (w_out, h_out) = (params.out_w() as i32, params.out_h() as i32); let y = cudnn.create_4d_tensor( cudarc::cudnn::sys::cudnnTensorFormat_t::CUDNN_TENSOR_NCHW, [params.b_size as i32, params.c_out as i32, h_out, w_out], )?; let conv2d = Conv2dForward { conv: &conv, x: &x, w: &w, y: &y, }; let alg = match params.cudnn_fwd_algo { None => conv2d.pick_algorithm()?, Some(CandleAlgo::ImplicitGemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM, Some(CandleAlgo::ImplicitPrecompGemm) => { A::CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM } Some(CandleAlgo::Gemm) => A::CUDNN_CONVOLUTION_FWD_ALGO_GEMM, Some(CandleAlgo::Direct) => A::CUDNN_CONVOLUTION_FWD_ALGO_DIRECT, Some(CandleAlgo::Fft) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT, Some(CandleAlgo::FftTiling) => A::CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING, Some(CandleAlgo::Winograd) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD, Some(CandleAlgo::WinogradNonFused) => A::CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED, Some(CandleAlgo::Count) => A::CUDNN_CONVOLUTION_FWD_ALGO_COUNT, }; let workspace_size = conv2d.get_workspace_size(alg)?; let mut workspace = dev.cuda_device().alloc_zeros::<u8>(workspace_size)?; unsafe { conv2d.launch::<CudaSlice<u8>, _, _, _>( alg, Some(&mut workspace), (T::one(), T::zero()), src, filter, dst, )?; } Ok(()) }
candle/candle-core/src/cudnn.rs/0
{ "file_path": "candle/candle-core/src/cudnn.rs", "repo_id": "candle", "token_count": 2214 }
16
//! Support for the GGML file format. #[cfg(feature = "metal")] use super::metal::load_quantized_metal; use super::{k_quants, GgmlDType, QStorage}; use crate::{Device, Result}; use byteorder::{LittleEndian, ReadBytesExt}; use std::collections::HashMap; // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.h#L37 #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum Magic { Ggjt, Ggla, Ggmf, Ggml, Ggsn, } impl TryFrom<u32> for Magic { type Error = crate::Error; fn try_from(value: u32) -> Result<Self> { let magic = match value { 0x67676a74 => Self::Ggjt, 0x67676c61 => Self::Ggla, 0x67676d66 => Self::Ggmf, 0x67676d6c => Self::Ggml, 0x6767736e => Self::Ggsn, _ => crate::bail!("unknown magic {value:08x}"), }; Ok(magic) } } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum VersionedMagic { GgmlUnversioned, GgmfV1, GgjtV1, GgjtV2, GgjtV3, } impl VersionedMagic { fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> { let magic = reader.read_u32::<LittleEndian>()?; let magic = Magic::try_from(magic)?; if magic == Magic::Ggml { return Ok(Self::GgmlUnversioned); } let version = reader.read_u32::<LittleEndian>()?; let versioned_magic = match (magic, version) { (Magic::Ggmf, 1) => Self::GgmfV1, (Magic::Ggjt, 1) => Self::GgjtV1, (Magic::Ggjt, 2) => Self::GgjtV2, (Magic::Ggjt, 3) => Self::GgjtV3, _ => crate::bail!("ggml: unsupported magic/version {magic:?}/{version}"), }; Ok(versioned_magic) } fn align32(&self) -> bool { match self { Self::GgmlUnversioned | Self::GgmfV1 => false, Self::GgjtV1 | Self::GgjtV2 | Self::GgjtV3 => true, } } } #[derive(Debug, Clone, PartialEq, Eq)] pub struct HParams { pub n_vocab: u32, pub n_embd: u32, pub n_mult: u32, pub n_head: u32, pub n_layer: u32, pub n_rot: u32, pub ftype: u32, } impl HParams { fn read<R: std::io::Read>(reader: &mut R) -> Result<Self> { let n_vocab = reader.read_u32::<LittleEndian>()?; let n_embd = reader.read_u32::<LittleEndian>()?; let n_mult = reader.read_u32::<LittleEndian>()?; let n_head = reader.read_u32::<LittleEndian>()?; let n_layer = reader.read_u32::<LittleEndian>()?; let n_rot = reader.read_u32::<LittleEndian>()?; let ftype = reader.read_u32::<LittleEndian>()?; Ok(Self { n_vocab, n_embd, n_mult, n_head, n_layer, n_rot, ftype, }) } } #[derive(Debug, Clone, PartialEq)] pub struct Vocab { pub token_score_pairs: Vec<(Vec<u8>, f32)>, } impl Vocab { fn read<R: std::io::Read>(reader: &mut R, n_vocab: usize) -> Result<Self> { // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L556 let mut token_score_pairs = Vec::with_capacity(n_vocab); for _index in 0..n_vocab { let len = reader.read_u32::<LittleEndian>()? as usize; let mut word = vec![0u8; len]; reader.read_exact(&mut word)?; let score = reader.read_f32::<LittleEndian>()?; token_score_pairs.push((word, score)) } Ok(Self { token_score_pairs }) } } fn from_raw_data<T: super::GgmlType + Send + Sync + 'static>( raw_data: &[u8], size_in_bytes: usize, dims: Vec<usize>, device: &Device, ) -> Result<super::QTensor> { let raw_data_ptr = raw_data.as_ptr(); let n_blocks = size_in_bytes / std::mem::size_of::<T>(); let data = unsafe { std::slice::from_raw_parts(raw_data_ptr as *const T, n_blocks) }; let data: QStorage = match device { Device::Cpu => QStorage::Cpu(Box::new(data.to_vec())), #[cfg(feature = "metal")] Device::Metal(metal) => load_quantized_metal(metal, data)?, #[cfg(not(feature = "metal"))] Device::Metal(_metal) => { crate::bail!("Metal backend requires `metal` feature") } device => unimplemented!("Implement quantized tensor for device {device:?}"), }; super::QTensor::new(data, dims) } /// Creates a [Tensor] from a raw GGML tensor. pub fn qtensor_from_ggml( ggml_dtype: GgmlDType, raw_data: &[u8], dims: Vec<usize>, device: &Device, ) -> Result<super::QTensor> { let tensor_elems = dims.iter().product::<usize>(); let block_size = ggml_dtype.block_size(); if tensor_elems % block_size != 0 { crate::bail!( "the number of elements {tensor_elems} is not divisible by the block size {block_size}" ) } let size_in_bytes = tensor_elems / block_size * ggml_dtype.type_size(); match ggml_dtype { GgmlDType::F32 => from_raw_data::<f32>(raw_data, size_in_bytes, dims, device), GgmlDType::F16 => from_raw_data::<half::f16>(raw_data, size_in_bytes, dims, device), GgmlDType::Q4_0 => { from_raw_data::<k_quants::BlockQ4_0>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q4_1 => { from_raw_data::<k_quants::BlockQ4_1>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q5_0 => { from_raw_data::<k_quants::BlockQ5_0>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q5_1 => { from_raw_data::<k_quants::BlockQ5_1>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q8_0 => { from_raw_data::<k_quants::BlockQ8_0>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q2K => { from_raw_data::<k_quants::BlockQ2K>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q3K => { from_raw_data::<k_quants::BlockQ3K>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q4K => { from_raw_data::<k_quants::BlockQ4K>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q5K => { from_raw_data::<k_quants::BlockQ5K>(raw_data, size_in_bytes, dims, device) } GgmlDType::Q6K => { from_raw_data::<k_quants::BlockQ6K>(raw_data, size_in_bytes, dims, device) } _ => crate::bail!("quantized type {ggml_dtype:?} is not supported yet"), } } fn read_one_tensor<R: std::io::Seek + std::io::Read>( reader: &mut R, magic: VersionedMagic, device: &Device, ) -> Result<(String, super::QTensor)> { let n_dims = reader.read_u32::<LittleEndian>()?; let name_len = reader.read_u32::<LittleEndian>()?; let ggml_dtype = reader.read_u32::<LittleEndian>()?; let ggml_dtype = GgmlDType::from_u32(ggml_dtype)?; let mut dims = vec![0u32; n_dims as usize]; reader.read_u32_into::<LittleEndian>(&mut dims)?; // The dimensions are stored in reverse order, see for example: // https://github.com/ggerganov/llama.cpp/blob/b5ffb2849d23afe73647f68eec7b68187af09be6/convert.py#L969 dims.reverse(); let mut name = vec![0u8; name_len as usize]; reader.read_exact(&mut name)?; let name = String::from_utf8_lossy(&name).into_owned(); if magic.align32() { let pos = reader.stream_position()?; reader.seek(std::io::SeekFrom::Current(((32 - pos % 32) % 32) as i64))?; } let dims = dims.iter().map(|&u| u as usize).collect::<Vec<_>>(); let tensor_elems = dims.iter().product::<usize>(); let size_in_bytes = tensor_elems * ggml_dtype.type_size() / ggml_dtype.block_size(); // TODO: Mmap version to avoid copying the data around? let mut raw_data = vec![0u8; size_in_bytes]; reader.read_exact(&mut raw_data)?; match qtensor_from_ggml(ggml_dtype, &raw_data, dims, device) { Ok(tensor) => Ok((name, tensor)), Err(e) => crate::bail!("Error creating tensor {name}: {e}"), } } pub struct Content { pub magic: VersionedMagic, pub hparams: HParams, pub vocab: Vocab, pub tensors: HashMap<String, super::QTensor>, } impl Content { pub fn read<R: std::io::Seek + std::io::Read>( reader: &mut R, device: &Device, ) -> Result<Content> { // https://github.com/ggerganov/llama.cpp/blob/468ea24fb4633a0d681f7ac84089566c1c6190cb/llama.cpp#L505 let last_position = reader.seek(std::io::SeekFrom::End(0))?; reader.seek(std::io::SeekFrom::Start(0))?; let magic = VersionedMagic::read(reader)?; let hparams = HParams::read(reader)?; let vocab = Vocab::read(reader, hparams.n_vocab as usize)?; let mut tensors = HashMap::new(); while reader.stream_position()? != last_position { let (name, tensor) = read_one_tensor(reader, magic, device)?; tensors.insert(name, tensor); } Ok(Self { magic, hparams, vocab, tensors, }) } pub fn remove(&mut self, name: &str) -> Result<super::QTensor> { match self.tensors.remove(name) { None => crate::bail!("cannot find tensor with name '{name}'"), Some(tensor) => Ok(tensor), } } }
candle/candle-core/src/quantized/ggml_file.rs/0
{ "file_path": "candle/candle-core/src/quantized/ggml_file.rs", "repo_id": "candle", "token_count": 4655 }
17
// Variables are wrappers around tensors that can be modified, they are typically used for holding // weights and being modified by gradient descent. // We do not expose a public way to create variables as this would break the invariant that the // tensor within a variable is actually with `is_variable` set to `true`. use crate::{DType, Device, Error, Result, Shape, Tensor}; /// A variable is a wrapper around a tensor, however variables can have their content modified /// whereas tensors are immutable. #[derive(Clone, Debug)] pub struct Var(Tensor); impl std::fmt::Display for Var { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { std::fmt::Display::fmt(&self.0, f) } } impl std::ops::Deref for Var { type Target = Tensor; fn deref(&self) -> &Self::Target { self.0.as_ref() } } impl Var { pub fn zeros<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { let inner = Tensor::zeros_impl(shape, dtype, device, true)?; Ok(Self(inner)) } pub fn ones<S: Into<Shape>>(shape: S, dtype: DType, device: &Device) -> Result<Self> { let inner = Tensor::ones_impl(shape, dtype, device, true)?; Ok(Self(inner)) } pub fn from_tensor(t: &Tensor) -> Result<Self> { let inner = t.make_var()?; Ok(Self(inner)) } pub fn rand_f64<S: Into<Shape>>( lo: f64, up: f64, s: S, dtype: DType, device: &Device, ) -> Result<Self> { let inner = Tensor::rand_f64_impl(lo, up, s, dtype, device, true)?; Ok(Self(inner)) } pub fn randn_f64<S: Into<Shape>>( mean: f64, std: f64, s: S, dtype: DType, device: &Device, ) -> Result<Self> { let inner = Tensor::randn_f64_impl(mean, std, s, dtype, device, true)?; Ok(Self(inner)) } pub fn rand<S: Into<Shape>, T: crate::FloatDType>( lo: T, up: T, s: S, device: &Device, ) -> Result<Self> { let inner = Tensor::rand_impl(lo, up, s, device, true)?; Ok(Self(inner)) } pub fn randn<S: Into<Shape>, T: crate::FloatDType>( mean: T, std: T, s: S, device: &Device, ) -> Result<Self> { let inner = Tensor::randn_impl(mean, std, s, device, true)?; Ok(Self(inner)) } /// Creates a new tensor on the specified device using the content and shape of the input. /// This is similar to `new` but the resulting tensor is a variable. pub fn new<A: crate::device::NdArray>(array: A, device: &Device) -> Result<Self> { let shape = array.shape()?; let inner = Tensor::new_impl(array, shape, device, true)?; Ok(Self(inner)) } pub fn from_vec<S: Into<Shape>, D: crate::WithDType>( data: Vec<D>, shape: S, device: &Device, ) -> Result<Self> { let inner = Tensor::from_vec_impl(data, shape, device, true)?; Ok(Self(inner)) } pub fn from_slice<S: Into<Shape>, D: crate::WithDType>( array: &[D], shape: S, device: &Device, ) -> Result<Self> { let inner = Tensor::new_impl(array, shape.into(), device, true)?; Ok(Self(inner)) } pub fn as_tensor(&self) -> &Tensor { &self.0 } /// Consumes this `Var` and return the underlying tensor. pub fn into_inner(self) -> Tensor { self.0 } /// Sets the content of the inner tensor, this does not require a mutable reference as inner /// mutability is used. pub fn set(&self, src: &Tensor) -> Result<()> { if self.same_storage(src) { let msg = "cannot set a variable to a tensor that is derived from its value"; Err(Error::CannotSetVar { msg }.bt())? } let (mut dst, layout) = self.storage_mut_and_layout(); if !layout.is_contiguous() { let msg = "cannot set a non-contiguous variable"; Err(Error::CannotSetVar { msg }.bt())? } let (src, src_l) = src.storage_and_layout(); if layout.shape() != src_l.shape() { Err(Error::ShapeMismatchBinaryOp { lhs: layout.shape().clone(), rhs: src_l.shape().clone(), op: "set", } .bt())? } src.copy_strided_src(&mut dst, layout.start_offset(), src_l)?; Ok(()) } }
candle/candle-core/src/variable.rs/0
{ "file_path": "candle/candle-core/src/variable.rs", "repo_id": "candle", "token_count": 2017 }
18
use candle::{Result, Tensor}; pub struct Batcher<I> { inner: I, batch_size: usize, return_last_incomplete_batch: bool, } impl<I> Batcher<I> { fn new(inner: I) -> Self { Self { inner, batch_size: 16, return_last_incomplete_batch: false, } } pub fn batch_size(mut self, batch_size: usize) -> Self { self.batch_size = batch_size; self } pub fn return_last_incomplete_batch(mut self, r: bool) -> Self { self.return_last_incomplete_batch = r; self } } pub struct Iter1<I: Iterator<Item = Tensor>> { inner: I, } pub struct Iter2<I: Iterator<Item = (Tensor, Tensor)>> { inner: I, } impl<I: Iterator<Item = Tensor>> Batcher<Iter1<I>> { pub fn new1(inner: I) -> Self { Self::new(Iter1 { inner }) } } impl<I: Iterator<Item = (Tensor, Tensor)>> Batcher<Iter2<I>> { pub fn new2(inner: I) -> Self { Self::new(Iter2 { inner }) } } pub struct IterResult1<I: Iterator<Item = Result<Tensor>>> { inner: I, } pub struct IterResult2<I: Iterator<Item = Result<(Tensor, Tensor)>>> { inner: I, } impl<I: Iterator<Item = Result<Tensor>>> Batcher<IterResult1<I>> { pub fn new_r1(inner: I) -> Self { Self::new(IterResult1 { inner }) } } impl<I: Iterator<Item = Result<(Tensor, Tensor)>>> Batcher<IterResult2<I>> { pub fn new_r2(inner: I) -> Self { Self::new(IterResult2 { inner }) } } impl<I: Iterator<Item = Tensor>> Iterator for Batcher<Iter1<I>> { type Item = Result<Tensor>; fn next(&mut self) -> Option<Self::Item> { let mut items = Vec::with_capacity(self.batch_size); for _i in 0..self.batch_size { // We have two levels of inner here so that we can have two implementations of the // Iterator trait that are different for Iter1 and Iter2. If rust gets better // specialization at some point we can get rid of this. match self.inner.inner.next() { Some(item) => items.push(item), None => { if self.return_last_incomplete_batch { break; } return None; } } } Some(Tensor::stack(&items, 0)) } } impl<I: Iterator<Item = (Tensor, Tensor)>> Iterator for Batcher<Iter2<I>> { type Item = Result<(Tensor, Tensor)>; fn next(&mut self) -> Option<Self::Item> { let mut xs = Vec::with_capacity(self.batch_size); let mut ys = Vec::with_capacity(self.batch_size); for _i in 0..self.batch_size { match self.inner.inner.next() { Some((x, y)) => { xs.push(x); ys.push(y) } None => { if self.return_last_incomplete_batch { break; } return None; } } } let xs = Tensor::stack(&xs, 0); let ys = Tensor::stack(&ys, 0); Some(xs.and_then(|xs| ys.map(|ys| (xs, ys)))) } } impl<I: Iterator<Item = Result<Tensor>>> Iterator for Batcher<IterResult1<I>> { type Item = Result<Tensor>; fn next(&mut self) -> Option<Self::Item> { let mut items = Vec::with_capacity(self.batch_size); for _i in 0..self.batch_size { // We have two levels of inner here so that we can have two implementations of the // Iterator trait that are different for Iter1 and Iter2. If rust gets better // specialization at some point we can get rid of this. match self.inner.inner.next() { Some(item) => items.push(item), None => { if self.return_last_incomplete_batch { break; } return None; } } } let items = items.into_iter().collect::<Result<Vec<Tensor>>>(); Some(items.and_then(|items| Tensor::stack(&items, 0))) } } impl<I: Iterator<Item = Result<(Tensor, Tensor)>>> Iterator for Batcher<IterResult2<I>> { type Item = Result<(Tensor, Tensor)>; fn next(&mut self) -> Option<Self::Item> { let mut xs = Vec::with_capacity(self.batch_size); let mut ys = Vec::with_capacity(self.batch_size); let mut errs = vec![]; for _i in 0..self.batch_size { match self.inner.inner.next() { Some(Ok((x, y))) => { xs.push(x); ys.push(y) } Some(Err(err)) => errs.push(err), None => { if self.return_last_incomplete_batch { break; } return None; } } } if !errs.is_empty() { return Some(Err(errs.swap_remove(0))); } let xs = Tensor::stack(&xs, 0); let ys = Tensor::stack(&ys, 0); Some(xs.and_then(|xs| ys.map(|ys| (xs, ys)))) } }
candle/candle-datasets/src/batcher.rs/0
{ "file_path": "candle/candle-datasets/src/batcher.rs", "repo_id": "candle", "token_count": 2660 }
19
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::Error as E; use clap::Parser; use candle::{DType, Device, Result, Tensor}; use candle_examples::token_output_stream::TokenOutputStream; use candle_nn::VarBuilder; use candle_transformers::models::blip; use candle_transformers::models::quantized_blip; use tokenizers::Tokenizer; enum Model { M(blip::BlipForConditionalGeneration), Q(quantized_blip::BlipForConditionalGeneration), } impl Model { fn text_decoder_forward(&mut self, xs: &Tensor, img_xs: &Tensor) -> Result<Tensor> { match self { Self::M(m) => m.text_decoder().forward(xs, img_xs), Self::Q(m) => m.text_decoder().forward(xs, img_xs), } } } // TODO: Maybe add support for the conditional prompt. #[derive(Parser)] struct Args { #[arg(long)] model: Option<String>, #[arg(long)] tokenizer: Option<String>, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Use the quantized version of the model. #[arg(long)] quantized: bool, } const SEP_TOKEN_ID: u32 = 102; /// Loads an image from disk using the image crate, this returns a tensor with shape /// (3, 384, 384). OpenAI normalization is applied. pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> { let img = image::io::Reader::open(p)? .decode() .map_err(candle::Error::wrap)? .resize_to_fill(384, 384, image::imageops::FilterType::Triangle); let img = img.to_rgb8(); let data = img.into_raw(); let data = Tensor::from_vec(data, (384, 384, 3), &Device::Cpu)?.permute((2, 0, 1))?; let mean = Tensor::new(&[0.48145466f32, 0.4578275, 0.40821073], &Device::Cpu)?.reshape((3, 1, 1))?; let std = Tensor::new(&[0.26862954f32, 0.261_302_6, 0.275_777_1], &Device::Cpu)? .reshape((3, 1, 1))?; (data.to_dtype(candle::DType::F32)? / 255.)? .broadcast_sub(&mean)? .broadcast_div(&std) } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let model_file = match args.model { None => { let api = hf_hub::api::sync::Api::new()?; if args.quantized { let api = api.model("lmz/candle-blip".to_string()); api.get("blip-image-captioning-large-q4k.gguf")? } else { let api = api.repo(hf_hub::Repo::with_revision( "Salesforce/blip-image-captioning-large".to_string(), hf_hub::RepoType::Model, "refs/pr/18".to_string(), )); api.get("model.safetensors")? } } Some(model) => model.into(), }; let tokenizer = match args.tokenizer { None => { let api = hf_hub::api::sync::Api::new()?; let api = api.model("Salesforce/blip-image-captioning-large".to_string()); api.get("tokenizer.json")? } Some(file) => file.into(), }; let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?; let mut tokenizer = TokenOutputStream::new(tokenizer); let mut logits_processor = candle_transformers::generation::LogitsProcessor::new(1337, None, None); let config = blip::Config::image_captioning_large(); let device = candle_examples::device(args.cpu)?; let (image_embeds, device, mut model) = if args.quantized { let device = Device::Cpu; let image = load_image(args.image)?.to_device(&device)?; println!("loaded image {image:?}"); let vb = quantized_blip::VarBuilder::from_gguf(model_file, &device)?; let model = quantized_blip::BlipForConditionalGeneration::new(&config, vb)?; let image_embeds = image.unsqueeze(0)?.apply(model.vision_model())?; (image_embeds, device, Model::Q(model)) } else { let image = load_image(args.image)?.to_device(&device)?; println!("loaded image {image:?}"); let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let model = blip::BlipForConditionalGeneration::new(&config, vb)?; let image_embeds = image.unsqueeze(0)?.apply(model.vision_model())?; (image_embeds, device, Model::M(model)) }; let mut token_ids = vec![30522u32]; for index in 0..1000 { let context_size = if index > 0 { 1 } else { token_ids.len() }; let start_pos = token_ids.len().saturating_sub(context_size); let input_ids = Tensor::new(&token_ids[start_pos..], &device)?.unsqueeze(0)?; let logits = model.text_decoder_forward(&input_ids, &image_embeds)?; let logits = logits.squeeze(0)?; let logits = logits.get(logits.dim(0)? - 1)?; let token = logits_processor.sample(&logits)?; if token == SEP_TOKEN_ID { break; } token_ids.push(token); if let Some(t) = tokenizer.next_token(token)? { use std::io::Write; print!("{t}"); std::io::stdout().flush()?; } } if let Some(rest) = tokenizer.decode_rest().map_err(E::msg)? { print!("{rest}"); } println!(); Ok(()) }
candle/candle-examples/examples/blip/main.rs/0
{ "file_path": "candle/candle-examples/examples/blip/main.rs", "repo_id": "candle", "token_count": 2437 }
20
// https://github.com/karpathy/llama2.c #[cfg(feature = "accelerate")] extern crate accelerate_src; #[cfg(feature = "mkl")] extern crate intel_mkl_src; use candle_transformers::models::llama2_c as model; use candle_transformers::models::llama2_c_weights as weights; use candle_transformers::models::quantized_llama2_c as qmodel; mod training; use clap::{Parser, Subcommand}; use anyhow::{Error as E, Result}; use byteorder::{LittleEndian, ReadBytesExt}; use candle::{IndexOp, Tensor}; use candle_transformers::generation::LogitsProcessor; use std::io::Write; use tokenizers::Tokenizer; use model::{Config, Llama}; use qmodel::QLlama; use weights::TransformerWeights; #[derive(Parser, Debug, Clone)] struct InferenceCmd { /// The temperature used to generate samples. #[arg(long)] temperature: Option<f64>, /// Nucleus sampling probability cutoff. #[arg(long)] top_p: Option<f64>, #[arg(long, default_value = "")] prompt: String, /// Config file in binary or safetensors format. #[arg(long)] config: Option<String>, #[arg(long, default_value = "karpathy/tinyllamas")] model_id: String, /// The model to be used when getting it from the hub. Possible /// values are 'stories15M.bin', 'stories42M.bin', see more at: /// https://huggingface.co/karpathy/tinyllamas/tree/main #[arg(long, default_value = "stories15M.bin")] which_model: String, } #[derive(Parser, Debug, Clone)] struct EvaluationCmd { /// A directory with the pre-tokenized dataset in the format generated by the tinystories.py /// script from llama2.c https://github.com/karpathy/llama2.c #[arg(long)] pretokenized_dir: Option<String>, #[arg(long, default_value_t = 32)] batch_size: usize, /// Config file in binary format. #[arg(long)] config: Option<String>, #[arg(long, default_value = "karpathy/tinyllamas")] model_id: String, /// The model to be used when getting it from the hub. Possible /// values are 'stories15M.bin', 'stories42M.bin', see more at: /// https://huggingface.co/karpathy/tinyllamas/tree/main #[arg(long, default_value = "stories15M.bin")] which_model: String, } #[derive(Parser, Debug, Clone)] pub struct TrainingCmd { /// A directory with the pre-tokenized dataset in the format generated by the tinystories.py /// script from llama2.c https://github.com/karpathy/llama2.c #[arg(long)] pretokenized_dir: String, #[arg(long, default_value_t = 32)] batch_size: usize, #[arg(long, default_value_t = 0.001)] learning_rate: f64, } #[derive(Subcommand, Debug, Clone)] enum Task { Inference(InferenceCmd), Eval(EvaluationCmd), Train(TrainingCmd), } #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] pub struct Args { /// The task to be performed, inference, training or evaluation. #[command(subcommand)] task: Option<Task>, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Tokenizer config file. #[arg(long)] tokenizer: Option<String>, /// Penalty to be applied for repeating tokens, 1. means no penalty. #[arg(long, default_value_t = 1.1)] repeat_penalty: f32, /// The context size to consider for the repeat penalty. #[arg(long, default_value_t = 64)] repeat_last_n: usize, } impl Args { fn tokenizer(&self) -> Result<Tokenizer> { let tokenizer_path = match &self.tokenizer { Some(config) => std::path::PathBuf::from(config), None => { let api = hf_hub::api::sync::Api::new()?; let api = api.model("hf-internal-testing/llama-tokenizer".to_string()); api.get("tokenizer.json")? } }; Tokenizer::from_file(tokenizer_path).map_err(E::msg) } } fn main() -> anyhow::Result<()> { let args = Args::parse(); match &args.task { None => { let cmd = InferenceCmd { temperature: None, top_p: None, prompt: "".to_string(), config: None, model_id: "karpathy/tinyllamas".to_string(), which_model: "stories15M.bin".to_string(), }; run_inference(&cmd, &args)? } Some(Task::Inference(cmd)) => run_inference(cmd, &args)?, Some(Task::Eval(cmd)) => run_eval(cmd, &args)?, Some(Task::Train(cmd)) => training::run(cmd, &args)?, } Ok(()) } enum Model { Llama(Llama), QLlama(QLlama), } impl Model { fn forward(&self, xs: &Tensor, pos: usize) -> anyhow::Result<Tensor> { match self { Self::Llama(l) => Ok(l.forward(xs, pos)?), Self::QLlama(l) => Ok(l.forward(xs, pos)?), } } } fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> { use std::io::BufRead; let config_path = match &args.config { Some(config) => std::path::PathBuf::from(config), None => { let api = hf_hub::api::sync::Api::new()?; println!("loading the model weights from {}", args.model_id); let api = api.model(args.model_id.clone()); api.get(&args.which_model)? } }; let tokenizer = common_args.tokenizer()?; let device = candle_examples::device(common_args.cpu)?; let mut file = std::fs::File::open(config_path)?; let config = Config::from_reader(&mut file)?; let weights = TransformerWeights::from_reader(&mut file, &config, &device)?; let vb = weights.var_builder(&config, &device)?; let cache = model::Cache::new(false, &config, vb.pp("rot"))?; let model = Llama::load(vb, &cache, config)?; let tokens = match &args.pretokenized_dir { None => { let api = hf_hub::api::sync::Api::new()?; let model_id = "roneneldan/TinyStories"; // TODO: Make this configurable. println!("loading the evaluation dataset from {}", model_id); let api = api.dataset(model_id.to_string()); let dataset_path = api.get("TinyStories-valid.txt")?; let file = std::fs::File::open(dataset_path)?; let file = std::io::BufReader::new(file); let mut tokens = vec![]; for line in file.lines() { let line = line?.replace("<|endoftext|>", "<s>"); let line = tokenizer.encode(line, false).map_err(E::msg)?; tokens.push(line.get_ids().to_vec()) } tokens.concat() } Some(pretokenized_dir) => { // Use shard 0 for the test split, similar to llama2.c // https://github.com/karpathy/llama2.c/blob/ce05cc28cf1e3560b873bb21837638a434520a67/tinystories.py#L121 let path = std::path::PathBuf::from(pretokenized_dir).join("data00.bin"); let bytes = std::fs::read(path)?; // Tokens are encoded as u16. let mut tokens = vec![0u16; bytes.len() / 2]; std::io::Cursor::new(bytes).read_u16_into::<LittleEndian>(&mut tokens)?; tokens.into_iter().map(|u| u as u32).collect::<Vec<u32>>() } }; println!("dataset loaded and encoded: {} tokens", tokens.len()); let seq_len = model.config.seq_len; let iter = (0..tokens.len()).step_by(seq_len).flat_map(|start_idx| { if start_idx + seq_len + 1 > tokens.len() { None } else { let tokens = &tokens[start_idx..start_idx + seq_len + 1]; let inputs = Tensor::new(&tokens[..seq_len], &device); let targets = Tensor::new(&tokens[1..], &device); Some(inputs.and_then(|inputs| targets.map(|targets| (inputs, targets)))) } }); let batch_iter = candle_datasets::Batcher::new_r2(iter).batch_size(args.batch_size); for inp_tgt in batch_iter { let (inp, tgt) = inp_tgt?; let logits = model.forward(&inp, 0)?; let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?; println!("{}", loss.to_vec0::<f32>()?); } Ok(()) } fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> { let config_path = match &args.config { Some(config) => std::path::PathBuf::from(config), None => { let api = hf_hub::api::sync::Api::new()?; println!("loading the model weights from {}", args.model_id); let api = api.model(args.model_id.clone()); api.get(&args.which_model)? } }; let tokenizer = common_args.tokenizer()?; let device = candle_examples::device(common_args.cpu)?; let is_gguf = config_path.extension().map_or(false, |v| v == "gguf"); let is_safetensors = config_path .extension() .map_or(false, |v| v == "safetensors"); let (model, config) = if is_gguf { let vb = qmodel::VarBuilder::from_gguf(config_path, &device)?; let (_vocab_size, dim) = vb .get_no_shape("model.embed_tokens.weight")? .shape() .dims2()?; let config = match dim { 64 => Config::tiny_260k(), 288 => Config::tiny_15m(), 512 => Config::tiny_42m(), 768 => Config::tiny_110m(), _ => anyhow::bail!("no config for dim {dim}"), }; let freq_cis_real = vb .get( (config.seq_len, config.head_size() / 2), "rot.freq_cis_real", )? .dequantize(&device)?; let freq_cis_imag = vb .get( (config.seq_len, config.head_size() / 2), "rot.freq_cis_imag", )? .dequantize(&device)?; let fake_vb = candle_nn::VarBuilder::from_tensors( [ ("freq_cis_real".to_string(), freq_cis_real), ("freq_cis_imag".to_string(), freq_cis_imag), ] .into_iter() .collect(), candle::DType::F32, &device, ); let cache = model::Cache::new(true, &config, fake_vb)?; let model = Model::QLlama(QLlama::load(vb, &cache, config.clone())?); (model, config) } else if is_safetensors { let config = Config::tiny_15m(); let tensors = candle::safetensors::load(config_path, &device)?; let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device); let cache = model::Cache::new(true, &config, vb.pp("rot"))?; let model = Model::Llama(Llama::load(vb, &cache, config.clone())?); (model, config) } else { let mut file = std::fs::File::open(config_path)?; let config = Config::from_reader(&mut file)?; println!("{config:?}"); let weights = TransformerWeights::from_reader(&mut file, &config, &device)?; let vb = weights.var_builder(&config, &device)?; let cache = model::Cache::new(true, &config, vb.pp("rot"))?; let model = Model::Llama(Llama::load(vb, &cache, config.clone())?); (model, config) }; println!("starting the inference loop"); let mut logits_processor = LogitsProcessor::new(299792458, args.temperature, args.top_p); let mut index_pos = 0; print!("{}", args.prompt); let mut tokens = tokenizer .encode(args.prompt.clone(), true) .map_err(E::msg)? .get_ids() .to_vec(); let start_gen = std::time::Instant::now(); for index in 0.. { if tokens.len() >= config.seq_len { break; } let context_size = if index > 0 { 1 } else { tokens.len() }; let ctxt = &tokens[tokens.len().saturating_sub(context_size)..]; let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?; let logits = model.forward(&input, index_pos)?; let logits = logits.i((0, logits.dim(1)? - 1))?; let logits = if common_args.repeat_penalty == 1. || tokens.is_empty() { logits } else { let start_at = tokens.len().saturating_sub(common_args.repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, common_args.repeat_penalty, &tokens[start_at..], )? }; index_pos += ctxt.len(); let next_token = logits_processor.sample(&logits)?; tokens.push(next_token); // Extracting the last token as a string is complicated, here we just apply some simple // heuristics as it seems to work well enough for this example. See the following for more // details: // https://github.com/huggingface/tokenizers/issues/1141#issuecomment-1562644141 if let Some(text) = tokenizer.id_to_token(next_token) { let text = text.replace('▁', " ").replace("<0x0A>", "\n"); print!("{text}"); std::io::stdout().flush()?; } } let dt = start_gen.elapsed(); println!( "\n{} tokens generated ({:.2} token/s)\n", tokens.len(), tokens.len() as f64 / dt.as_secs_f64(), ); Ok(()) }
candle/candle-examples/examples/llama2-c/main.rs/0
{ "file_path": "candle/candle-examples/examples/llama2-c/main.rs", "repo_id": "candle", "token_count": 6050 }
21
#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::{Parser, ValueEnum}; use candle::{DType, IndexOp, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::mobileone; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { S0, S1, S2, S3, S4, } impl Which { fn model_filename(&self) -> String { let name = match self { Self::S0 => "s0", Self::S1 => "s1", Self::S2 => "s2", Self::S3 => "s3", Self::S4 => "s4", }; format!("timm/mobileone_{}.apple_in1k", name) } fn config(&self) -> mobileone::Config { match self { Self::S0 => mobileone::Config::s0(), Self::S1 => mobileone::Config::s1(), Self::S2 => mobileone::Config::s2(), Self::S3 => mobileone::Config::s3(), Self::S4 => mobileone::Config::s4(), } } } #[derive(Parser)] struct Args { #[arg(long)] model: Option<String>, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, #[arg(value_enum, long, default_value_t=Which::S0)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::imagenet::load_image224(args.image)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let model_name = args.which.model_filename(); let api = hf_hub::api::sync::Api::new()?; let api = api.model(model_name); api.get("model.safetensors")? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let model = mobileone::mobileone(&args.which.config(), 1000, vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::<f32>()?; let mut prs = prs.iter().enumerate().collect::<Vec<_>>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }
candle/candle-examples/examples/mobileone/main.rs/0
{ "file_path": "candle/candle-examples/examples/mobileone/main.rs", "repo_id": "candle", "token_count": 1206 }
22
import gymnasium as gym import numpy as np from collections import deque from PIL import Image from multiprocessing import Process, Pipe # atari_wrappers.py class NoopResetEnv(gym.Wrapper): def __init__(self, env, noop_max=30): """Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def reset(self): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset() if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.integers(1, self.noop_max + 1) #pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(0) if done: obs = self.env.reset() return obs class FireResetEnv(gym.Wrapper): def __init__(self, env): """Take action on reset for environments that are fixed until firing.""" gym.Wrapper.__init__(self, env) assert env.unwrapped.get_action_meanings()[1] == 'FIRE' assert len(env.unwrapped.get_action_meanings()) >= 3 def reset(self): self.env.reset() obs, _, done, _ = self.env.step(1) if done: self.env.reset() obs, _, done, _ = self.env.step(2) if done: self.env.reset() return obs class ImageSaver(gym.Wrapper): def __init__(self, env, img_path, rank): gym.Wrapper.__init__(self, env) self._cnt = 0 self._img_path = img_path self._rank = rank def step(self, action): step_result = self.env.step(action) obs, _, _, _ = step_result img = Image.fromarray(obs, 'RGB') img.save('%s/out%d-%05d.png' % (self._img_path, self._rank, self._cnt)) self._cnt += 1 return step_result class EpisodicLifeEnv(gym.Wrapper): def __init__(self, env): """Make end-of-life == end-of-episode, but only reset on true game over. Done by DeepMind for the DQN and co. since it helps value estimation. """ gym.Wrapper.__init__(self, env) self.lives = 0 self.was_real_done = True def step(self, action): obs, reward, done, info = self.env.step(action) self.was_real_done = done # check current lives, make loss of life terminal, # then update lives to handle bonus lives lives = self.env.unwrapped.ale.lives() if lives < self.lives and lives > 0: # for Qbert sometimes we stay in lives == 0 condition for a few frames # so its important to keep lives > 0, so that we only reset once # the environment advertises done. done = True self.lives = lives return obs, reward, done, info def reset(self): """Reset only when lives are exhausted. This way all states are still reachable even though lives are episodic, and the learner need not know about any of this behind-the-scenes. """ if self.was_real_done: obs = self.env.reset() else: # no-op step to advance from terminal/lost life state obs, _, _, _ = self.env.step(0) self.lives = self.env.unwrapped.ale.lives() return obs class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env, skip=4): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = deque(maxlen=2) self._skip = skip def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for _ in range(self._skip): obs, reward, done, info = self.env.step(action) self._obs_buffer.append(obs) total_reward += reward if done: break max_frame = np.max(np.stack(self._obs_buffer), axis=0) return max_frame, total_reward, done, info def reset(self): """Clear past frame buffer and init. to first obs. from inner env.""" self._obs_buffer.clear() obs = self.env.reset() self._obs_buffer.append(obs) return obs class ClipRewardEnv(gym.RewardWrapper): def reward(self, reward): """Bin reward to {+1, 0, -1} by its sign.""" return np.sign(reward) class WarpFrame(gym.ObservationWrapper): def __init__(self, env): """Warp frames to 84x84 as done in the Nature paper and later work.""" gym.ObservationWrapper.__init__(self, env) self.res = 84 self.observation_space = gym.spaces.Box(low=0, high=255, shape=(self.res, self.res, 1), dtype='uint8') def observation(self, obs): frame = np.dot(obs.astype('float32'), np.array([0.299, 0.587, 0.114], 'float32')) frame = np.array(Image.fromarray(frame).resize((self.res, self.res), resample=Image.BILINEAR), dtype=np.uint8) return frame.reshape((self.res, self.res, 1)) class FrameStack(gym.Wrapper): def __init__(self, env, k): """Buffer observations and stack across channels (last axis).""" gym.Wrapper.__init__(self, env) self.k = k self.frames = deque([], maxlen=k) shp = env.observation_space.shape assert shp[2] == 1 # can only stack 1-channel frames self.observation_space = gym.spaces.Box(low=0, high=255, shape=(shp[0], shp[1], k), dtype='uint8') def reset(self): """Clear buffer and re-fill by duplicating the first observation.""" ob = self.env.reset() for _ in range(self.k): self.frames.append(ob) return self.observation() def step(self, action): ob, reward, done, info = self.env.step(action) self.frames.append(ob) return self.observation(), reward, done, info def observation(self): assert len(self.frames) == self.k return np.concatenate(self.frames, axis=2) def wrap_deepmind(env, episode_life=True, clip_rewards=True): """Configure environment for DeepMind-style Atari. Note: this does not include frame stacking!""" assert 'NoFrameskip' in env.spec.id # required for DeepMind-style skip if episode_life: env = EpisodicLifeEnv(env) env = NoopResetEnv(env, noop_max=30) env = MaxAndSkipEnv(env, skip=4) if 'FIRE' in env.unwrapped.get_action_meanings(): env = FireResetEnv(env) env = WarpFrame(env) if clip_rewards: env = ClipRewardEnv(env) return env # envs.py def make_env(env_id, img_dir, seed, rank): def _thunk(): env = gym.make(env_id) env.reset(seed=(seed + rank)) if img_dir is not None: env = ImageSaver(env, img_dir, rank) env = wrap_deepmind(env) env = WrapPyTorch(env) return env return _thunk class WrapPyTorch(gym.ObservationWrapper): def __init__(self, env=None): super(WrapPyTorch, self).__init__(env) self.observation_space = gym.spaces.Box(0.0, 1.0, [1, 84, 84], dtype='float32') def observation(self, observation): return observation.transpose(2, 0, 1) # vecenv.py class VecEnv(object): """ Vectorized environment base class """ def step(self, vac): """ Apply sequence of actions to sequence of environments actions -> (observations, rewards, news) where 'news' is a boolean vector indicating whether each element is new. """ raise NotImplementedError def reset(self): """ Reset all environments """ raise NotImplementedError def close(self): pass # subproc_vec_env.py def worker(remote, env_fn_wrapper): env = env_fn_wrapper.x() while True: cmd, data = remote.recv() if cmd == 'step': ob, reward, done, info = env.step(data) if done: ob = env.reset() remote.send((ob, reward, done, info)) elif cmd == 'reset': ob = env.reset() remote.send(ob) elif cmd == 'close': remote.close() break elif cmd == 'get_spaces': remote.send((env.action_space, env.observation_space)) else: raise NotImplementedError class CloudpickleWrapper(object): """ Uses cloudpickle to serialize contents (otherwise multiprocessing tries to use pickle) """ def __init__(self, x): self.x = x def __getstate__(self): import cloudpickle return cloudpickle.dumps(self.x) def __setstate__(self, ob): import pickle self.x = pickle.loads(ob) class SubprocVecEnv(VecEnv): def __init__(self, env_fns): """ envs: list of gym environments to run in subprocesses """ nenvs = len(env_fns) self.remotes, self.work_remotes = zip(*[Pipe() for _ in range(nenvs)]) self.ps = [Process(target=worker, args=(work_remote, CloudpickleWrapper(env_fn))) for (work_remote, env_fn) in zip(self.work_remotes, env_fns)] for p in self.ps: p.start() self.remotes[0].send(('get_spaces', None)) self.action_space, self.observation_space = self.remotes[0].recv() def step(self, actions): for remote, action in zip(self.remotes, actions): remote.send(('step', action)) results = [remote.recv() for remote in self.remotes] obs, rews, dones, infos = zip(*results) return np.stack(obs), np.stack(rews), np.stack(dones), infos def reset(self): for remote in self.remotes: remote.send(('reset', None)) return np.stack([remote.recv() for remote in self.remotes]) def close(self): for remote in self.remotes: remote.send(('close', None)) for p in self.ps: p.join() @property def num_envs(self): return len(self.remotes) # Create the environment. def make(env_name, img_dir, num_processes): envs = SubprocVecEnv([ make_env(env_name, img_dir, 1337, i) for i in range(num_processes) ]) return envs
candle/candle-examples/examples/reinforcement-learning/atari_wrappers.py/0
{ "file_path": "candle/candle-examples/examples/reinforcement-learning/atari_wrappers.py", "repo_id": "candle", "token_count": 4740 }
23
#include "flash_fwd_launch_template.h" void run_mha_fwd(Flash_fwd_params &params, cudaStream_t stream, bool force_split_kernel=false) { FP16_SWITCH(!params.is_bf16, [&] { FWD_HEADDIM_SWITCH(params.d, [&] { // if (params.num_splits <= 1 && !force_split_kernel) { // If we don't set it num_splits == 0 run_mha_fwd_<elem_type, kHeadDim>(params, stream); // } else { // run_mha_fwd_splitkv_dispatch<elem_type, kHeadDim>(params, stream); // } }); }); } extern "C" void run_mha( void *q_ptr, void *k_ptr, void *v_ptr, void *o_ptr, void *softmax_lse_ptr, void *alibi_slopes_ptr, int32_t *cu_seqlens_q_ptr, int32_t *cu_seqlens_k_ptr, uint32_t q_batch_stride, uint32_t k_batch_stride, uint32_t v_batch_stride, uint32_t o_batch_stride, uint32_t alibi_slopes_batch_stride, uint32_t q_row_stride, uint32_t k_row_stride, uint32_t v_row_stride, uint32_t o_row_stride, uint32_t q_head_stride, uint32_t k_head_stride, uint32_t v_head_stride, uint32_t o_head_stride, uint32_t b, uint32_t h, uint32_t h_k, uint32_t d, uint32_t d_rounded, float softmax_scale, uint32_t seqlen_q, uint32_t seqlen_k, uint32_t seqlen_q_rounded, uint32_t seqlen_k_rounded, int is_bf16, int is_causal, int window_size_left, int window_size_right ) { Flash_fwd_params params; // Reset the parameters memset(&params, 0, sizeof(params)); // Set the pointers and strides. params.q_ptr = q_ptr; params.k_ptr = k_ptr; params.v_ptr = v_ptr; params.o_ptr = o_ptr; params.softmax_lse_ptr = softmax_lse_ptr; params.alibi_slopes_ptr = alibi_slopes_ptr; // All stride are in elements, not bytes. params.q_batch_stride = q_batch_stride; params.k_batch_stride = k_batch_stride; params.v_batch_stride = v_batch_stride; params.o_batch_stride = o_batch_stride; params.alibi_slopes_batch_stride = alibi_slopes_batch_stride; params.q_row_stride = q_row_stride; params.k_row_stride = k_row_stride; params.v_row_stride = v_row_stride; params.o_row_stride = o_row_stride; params.q_head_stride = q_head_stride; params.k_head_stride = k_head_stride; params.v_head_stride = v_head_stride; params.o_head_stride = o_head_stride; // Set the dimensions. params.b = b; params.h = h; params.h_k = h_k; params.h_h_k_ratio = h / h_k; params.seqlen_q = seqlen_q; params.seqlen_k = seqlen_k; params.seqlen_q_rounded = seqlen_q_rounded; params.seqlen_k_rounded = seqlen_k_rounded; params.d = d; params.d_rounded = d_rounded; // Set the different scale values. params.scale_softmax = softmax_scale; params.scale_softmax_log2 = softmax_scale * M_LOG2E; params.p_dropout = 1.; // probability to keep params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0)); params.rp_dropout = 1.f / params.p_dropout; params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax; params.is_bf16 = is_bf16; params.cu_seqlens_q = cu_seqlens_q_ptr; params.cu_seqlens_k = cu_seqlens_k_ptr; params.p_ptr = nullptr; // used for `return_softmax`. params.seqused_k = nullptr; params.is_causal = is_causal; params.window_size_left = window_size_left; params.window_size_right = window_size_right; params.is_seqlens_k_cumulative = true; params.num_splits = 1; cudaStream_t stream = 0; // Use the default stream. run_mha_fwd(params, stream); }
candle/candle-flash-attn/kernels/flash_api.cu/0
{ "file_path": "candle/candle-flash-attn/kernels/flash_api.cu", "repo_id": "candle", "token_count": 1722 }
24
#include "binary_op_macros.cuh" #include<stdint.h> #if __CUDA_ARCH__ >= 800 BINARY_OP(__nv_bfloat16, badd_bf16, x + y) BINARY_OP(__nv_bfloat16, bdiv_bf16, x / y) BINARY_OP(__nv_bfloat16, bmul_bf16, x * y) BINARY_OP(__nv_bfloat16, bsub_bf16, x - y) BINARY_OP(__nv_bfloat16, bmaximum_bf16, maxg(x, y)) BINARY_OP(__nv_bfloat16, bminimum_bf16, ming(x, y)) BINARY_OP_OUT(__nv_bfloat16, uint8_t, eq_bf16, x == y) BINARY_OP_OUT(__nv_bfloat16, uint8_t, ne_bf16, x != y) BINARY_OP_OUT(__nv_bfloat16, uint8_t, lt_bf16, x < y) BINARY_OP_OUT(__nv_bfloat16, uint8_t, le_bf16, x <= y) BINARY_OP_OUT(__nv_bfloat16, uint8_t, gt_bf16, x > y) BINARY_OP_OUT(__nv_bfloat16, uint8_t, ge_bf16, x >= y) #endif #if __CUDA_ARCH__ >= 530 BINARY_OP(__half, badd_f16, x + y) BINARY_OP(__half, bdiv_f16, x / y) BINARY_OP(__half, bmul_f16, x * y) BINARY_OP(__half, bsub_f16, x - y) BINARY_OP(__half, bmaximum_f16, maxg(x, y)) BINARY_OP(__half, bminimum_f16, ming(x, y)) BINARY_OP_OUT(__half, uint8_t, eq_f16, x == y) BINARY_OP_OUT(__half, uint8_t, ne_f16, x != y) BINARY_OP_OUT(__half, uint8_t, lt_f16, x < y) BINARY_OP_OUT(__half, uint8_t, le_f16, x <= y) BINARY_OP_OUT(__half, uint8_t, gt_f16, x > y) BINARY_OP_OUT(__half, uint8_t, ge_f16, x >= y) #endif BINARY_OP(float, badd_f32, x + y) BINARY_OP(double, badd_f64, x + y); BINARY_OP(uint8_t, badd_u8, x + y); BINARY_OP(uint32_t, badd_u32, x + y); BINARY_OP(int64_t, badd_i64, x + y); BINARY_OP(float, bdiv_f32, x / y) BINARY_OP(double, bdiv_f64, x / y); BINARY_OP(uint8_t, bdiv_u8, x / y); BINARY_OP(uint32_t, bdiv_u32, x / y); BINARY_OP(int64_t, bdiv_i64, x / y); BINARY_OP(float, bmul_f32, x * y) BINARY_OP(double, bmul_f64, x * y); BINARY_OP(uint8_t, bmul_u8, x * y); BINARY_OP(uint32_t, bmul_u32, x * y); BINARY_OP(int64_t, bmul_i64, x * y); BINARY_OP(float, bsub_f32, x - y) BINARY_OP(double, bsub_f64, x - y); BINARY_OP(uint8_t, bsub_u8, x - y); BINARY_OP(uint32_t, bsub_u32, x - y); BINARY_OP(int64_t, bsub_i64, x - y); BINARY_OP(float, bminimum_f32, ming(x, y)); BINARY_OP(double, bminimum_f64, ming(x, y)); BINARY_OP(uint8_t, bminimum_u8, ming(x, y)); BINARY_OP(uint32_t, bminimum_u32, ming(x, y)); BINARY_OP(int64_t, bminimum_i64, ming(x, y)); BINARY_OP(float, bmaximum_f32, maxg(x, y)); BINARY_OP(double, bmaximum_f64, maxg(x, y)); BINARY_OP(uint8_t, bmaximum_u8, maxg(x, y)); BINARY_OP(uint32_t, bmaximum_u32, maxg(x, y)); BINARY_OP(int64_t, bmaximum_i64, maxg(x, y)); BINARY_OP_OUT(float, uint8_t, eq_f32, x == y) BINARY_OP_OUT(double, uint8_t, eq_f64, x == y) BINARY_OP_OUT(uint8_t, uint8_t, eq_u8, x == y) BINARY_OP_OUT(uint32_t, uint8_t, eq_u32, x == y) BINARY_OP_OUT(int64_t, uint8_t, eq_i64, x == y) BINARY_OP_OUT(float, uint8_t, ne_f32, x != y) BINARY_OP_OUT(double, uint8_t, ne_f64, x != y) BINARY_OP_OUT(uint8_t, uint8_t, ne_u8, x != y) BINARY_OP_OUT(uint32_t, uint8_t, ne_u32, x != y) BINARY_OP_OUT(int64_t, uint8_t, ne_i64, x != y) BINARY_OP_OUT(float, uint8_t, lt_f32, x < y) BINARY_OP_OUT(double, uint8_t, lt_f64, x < y) BINARY_OP_OUT(uint8_t, uint8_t, lt_u8, x < y) BINARY_OP_OUT(uint32_t, uint8_t, lt_u32, x < y) BINARY_OP_OUT(int64_t, uint8_t, lt_i64, x < y) BINARY_OP_OUT(float, uint8_t, le_f32, x <= y) BINARY_OP_OUT(double, uint8_t, le_f64, x <= y) BINARY_OP_OUT(uint8_t, uint8_t, le_u8, x <= y) BINARY_OP_OUT(uint32_t, uint8_t, le_u32, x <= y) BINARY_OP_OUT(int64_t, uint8_t, le_i64, x <= y) BINARY_OP_OUT(float, uint8_t, gt_f32, x > y) BINARY_OP_OUT(double, uint8_t, gt_f64, x > y) BINARY_OP_OUT(uint8_t, uint8_t, gt_u8, x > y) BINARY_OP_OUT(uint32_t, uint8_t, gt_u32, x > y) BINARY_OP_OUT(int64_t, uint8_t, gt_i64, x > y) BINARY_OP_OUT(float, uint8_t, ge_f32, x >= y) BINARY_OP_OUT(double, uint8_t, ge_f64, x >= y) BINARY_OP_OUT(uint8_t, uint8_t, ge_u8, x >= y) BINARY_OP_OUT(uint32_t, uint8_t, ge_u32, x >= y) BINARY_OP_OUT(int64_t, uint8_t, ge_i64, x >= y)
candle/candle-kernels/src/binary.cu/0
{ "file_path": "candle/candle-kernels/src/binary.cu", "repo_id": "candle", "token_count": 2144 }
25
#include <metal_stdlib> METAL_FUNC uint get_strided_index( uint idx, constant size_t &num_dims, constant size_t *dims, constant size_t *strides ) { uint strided_i = 0; for (uint d = 0; d < num_dims; d++) { uint dim_idx = num_dims - 1 - d; strided_i += (idx % dims[dim_idx]) * strides[dim_idx]; idx /= dims[dim_idx]; } return strided_i; } using namespace metal; #define CAST(FN_NAME, FN_NAME_STRIDED, LEFT_TYPENAME, RIGHT_TYPENAME) \ kernel void FN_NAME( \ constant size_t &dim, \ device const LEFT_TYPENAME *input, \ device RIGHT_TYPENAME *output, \ uint tid [[ thread_position_in_grid ]] \ ) { \ if (tid >= dim) { \ return; \ } \ output[tid] = static_cast<RIGHT_TYPENAME>(input[tid]); \ } \ kernel void FN_NAME_STRIDED( \ constant size_t &dim, \ constant size_t &num_dims, \ constant size_t *dims, \ constant size_t *strides, \ device const LEFT_TYPENAME *input, \ device RIGHT_TYPENAME *output, \ uint tid [[ thread_position_in_grid ]] \ ) { \ if (tid >= dim) { \ return; \ } \ output[tid] = static_cast<RIGHT_TYPENAME>(input[get_strided_index(tid, num_dims, dims, strides)]); \ } \ #define CAST_THROUGH(FN_NAME, FN_NAME_STRIDED, LEFT_TYPENAME, RIGHT_TYPENAME, IR_TYPENAME) \ kernel void FN_NAME( \ constant size_t &dim, \ device const LEFT_TYPENAME *input, \ device RIGHT_TYPENAME *output, \ uint tid [[ thread_position_in_grid ]] \ ) { \ if (tid >= dim) { \ return; \ } \ output[tid] = static_cast<RIGHT_TYPENAME>(static_cast<IR_TYPENAME>(input[tid])); \ } \ kernel void FN_NAME_STRIDED( \ constant size_t &dim, \ constant size_t &num_dims, \ constant size_t *dims, \ constant size_t *strides, \ device const LEFT_TYPENAME *input, \ device RIGHT_TYPENAME *output, \ uint tid [[ thread_position_in_grid ]] \ ) { \ if (tid >= dim) { \ return; \ } \ output[tid] = static_cast<RIGHT_TYPENAME>(static_cast<IR_TYPENAME>(input[get_strided_index(tid, num_dims, dims, strides)])); \ } \ CAST(cast_u32_f32, cast_u32_f32_strided, uint32_t, float) CAST(cast_u32_u8, cast_u32_u8_strided, uint32_t, uint8_t) CAST(cast_u8_u32, cast_u8_u32_strided, uint8_t, uint32_t) CAST(cast_u8_f32, cast_u8_f32_strided, uint8_t, float) CAST(cast_f16_f32, cast_f16_f32_strided, half, float) CAST(cast_f32_f16, cast_f32_f16_strided, float, half) #if __METAL_VERSION__ >= 220 CAST(cast_u8_i64, cast_u8_i64_strided, uint8_t, int64_t) CAST(cast_u32_i64, cast_u32_i64_strided, uint32_t, int64_t) CAST(cast_i64_f32, cast_i64_f32_strided, int64_t, float) #endif #if defined(__HAVE_BFLOAT__) CAST(cast_bf16_u32, cast_bf16_u32_strided, bfloat, uint32_t) CAST(cast_bf16_f32, cast_bf16_f32_strided, bfloat, float) CAST(cast_u8_bf16, cast_u8_bf16_strided, uint8_t, bfloat) CAST(cast_u32_bf16, cast_u32_bf16_strided, uint32_t, bfloat) CAST(cast_f32_bf16, cast_f32_bf16_strided, float, bfloat) CAST_THROUGH(cast_bf16_u8, cast_bf16_u8_strided, bfloat, uint8_t, float) CAST_THROUGH(cast_bf16_f16, cast_bf16_f16_strided, bfloat, half, float) CAST_THROUGH(cast_f16_bf16, cast_f16_bf16_strided, half, bfloat, float) #endif
candle/candle-metal-kernels/src/cast.metal/0
{ "file_path": "candle/candle-metal-kernels/src/cast.metal", "repo_id": "candle", "token_count": 1523 }
26
# candle-nn
candle/candle-nn/README.md/0
{ "file_path": "candle/candle-nn/README.md", "repo_id": "candle", "token_count": 5 }
27
//! Various optimization algorithms. use candle::{Result, Tensor, Var}; /// The interface optimizers should implement. pub trait Optimizer: Sized { type Config: Sized; fn new(vars: Vec<Var>, config: Self::Config) -> Result<Self>; fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()>; fn learning_rate(&self) -> f64; fn set_learning_rate(&mut self, lr: f64); fn empty(config: Self::Config) -> Result<Self> { Self::new(vec![], config) } fn backward_step(&mut self, loss: &Tensor) -> Result<()> { let grads = loss.backward()?; self.step(&grads) } fn from_slice(vars: &[&Var], config: Self::Config) -> Result<Self> { let vars: Vec<_> = vars.iter().map(|&v| v.clone()).collect(); Self::new(vars, config) } } /// Optimizer for Stochastic Gradient Descent. /// /// Contrary to the PyTorch implementation of SGD, this version does not support momentum. #[derive(Debug)] pub struct SGD { vars: Vec<Var>, learning_rate: f64, } impl Optimizer for SGD { type Config = f64; fn new(vars: Vec<Var>, learning_rate: f64) -> Result<Self> { let vars = vars .into_iter() .filter(|var| var.dtype().is_float()) .collect(); Ok(Self { vars, learning_rate, }) } fn learning_rate(&self) -> f64 { self.learning_rate } fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()> { for var in self.vars.iter() { if let Some(grad) = grads.get(var) { var.set(&var.sub(&(grad * self.learning_rate)?)?)?; } } Ok(()) } fn set_learning_rate(&mut self, lr: f64) { self.learning_rate = lr } } impl SGD { pub fn into_inner(self) -> Vec<Var> { self.vars } pub fn push(&mut self, var: &Var) { self.vars.push(var.clone()) } } #[derive(Clone, Debug)] pub struct ParamsAdamW { pub lr: f64, pub beta1: f64, pub beta2: f64, pub eps: f64, pub weight_decay: f64, } impl Default for ParamsAdamW { fn default() -> Self { Self { lr: 0.001, beta1: 0.9, beta2: 0.999, eps: 1e-8, weight_decay: 0.01, } } } #[derive(Debug)] struct VarAdamW { var: Var, first_moment: Var, second_moment: Var, } #[derive(Debug)] pub struct AdamW { vars: Vec<VarAdamW>, step_t: usize, params: ParamsAdamW, } impl Optimizer for AdamW { type Config = ParamsAdamW; fn new(vars: Vec<Var>, params: ParamsAdamW) -> Result<Self> { let vars = vars .into_iter() .filter(|var| var.dtype().is_float()) .map(|var| { let dtype = var.dtype(); let shape = var.shape(); let device = var.device(); let first_moment = Var::zeros(shape, dtype, device)?; let second_moment = Var::zeros(shape, dtype, device)?; Ok(VarAdamW { var, first_moment, second_moment, }) }) .collect::<Result<Vec<_>>>()?; Ok(Self { vars, params, step_t: 0, }) } fn learning_rate(&self) -> f64 { self.params.lr } fn set_learning_rate(&mut self, lr: f64) { self.params.lr = lr } fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()> { self.step_t += 1; let lr = self.params.lr; let lambda = self.params.weight_decay; let lr_lambda = lr * lambda; let beta1 = self.params.beta1; let beta2 = self.params.beta2; let scale_m = 1f64 / (1f64 - beta1.powi(self.step_t as i32)); let scale_v = 1f64 / (1f64 - beta2.powi(self.step_t as i32)); for var in self.vars.iter() { let theta = &var.var; let m = &var.first_moment; let v = &var.second_moment; if let Some(g) = grads.get(theta) { // This involves locking 3 RWLocks per params, if the parameters are large this // should not be an issue but this may be problematic with models with lots of // small parameters. let next_m = ((m.as_tensor() * beta1)? + (g * (1.0 - beta1))?)?; let next_v = ((v.as_tensor() * beta2)? + (g.sqr()? * (1.0 - beta2))?)?; let m_hat = (&next_m * scale_m)?; let v_hat = (&next_v * scale_v)?; let next_theta = (theta.as_tensor() * (1f64 - lr_lambda))?; let adjusted_grad = (m_hat / (v_hat.sqrt()? + self.params.eps)?)?; let next_theta = (next_theta - (adjusted_grad * lr)?)?; m.set(&next_m)?; v.set(&next_v)?; theta.set(&next_theta)?; } } Ok(()) } } impl AdamW { pub fn new_lr(vars: Vec<Var>, learning_rate: f64) -> Result<Self> { let params = ParamsAdamW { lr: learning_rate, ..ParamsAdamW::default() }; Self::new(vars, params) } pub fn params(&self) -> &ParamsAdamW { &self.params } pub fn set_params(&mut self, params: ParamsAdamW) { self.params = params; } }
candle/candle-nn/src/optim.rs/0
{ "file_path": "candle/candle-nn/src/optim.rs", "repo_id": "candle", "token_count": 2798 }
28
use crate::onnx; use crate::onnx::attribute_proto::AttributeType; use crate::onnx::tensor_proto::DataType; use candle::{bail, DType, Device, Result, Tensor}; use std::collections::HashMap; pub type Value = Tensor; pub fn dtype(dt: DataType) -> Option<DType> { match dt { DataType::Uint8 => Some(DType::U8), DataType::Uint32 => Some(DType::U32), DataType::Int64 => Some(DType::I64), DataType::Float16 => Some(DType::F16), DataType::Float => Some(DType::F32), DataType::Double => Some(DType::F64), _ => None, } } trait Attr { const TYPE: AttributeType; fn get(attr: &onnx::AttributeProto) -> Result<&Self>; } impl Attr for i64 { const TYPE: AttributeType = AttributeType::Int; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { Ok(&attr.i) } } impl Attr for f32 { const TYPE: AttributeType = AttributeType::Float; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { Ok(&attr.f) } } impl Attr for [i64] { const TYPE: AttributeType = AttributeType::Ints; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { Ok(attr.ints.as_slice()) } } impl Attr for str { const TYPE: AttributeType = AttributeType::String; fn get(attr: &onnx::AttributeProto) -> Result<&Self> { std::str::from_utf8(&attr.s).map_err(candle::Error::wrap) } } fn get_attr_<'a>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a onnx::AttributeProto> { match node.attribute.iter().find(|attr| attr.name == name) { None => { bail!( "cannot find the '{name}' attribute in '{}' for {}", node.op_type, node.name ) } Some(dt) => Ok(dt), } } fn get_attr<'a, T: Attr + ?Sized>(node: &'a onnx::NodeProto, name: &str) -> Result<&'a T> { let attr = get_attr_(node, name)?; if attr.r#type() != T::TYPE { bail!( "unsupported type {:?} for '{name}' attribute in '{}' for {}", attr.r#type, node.op_type, node.name ) } T::get(attr) } fn get_attr_opt<'a, T: Attr + ?Sized>( node: &'a onnx::NodeProto, name: &str, ) -> Result<Option<&'a T>> { match node.attribute.iter().find(|attr| attr.name == name) { None => Ok(None), Some(attr) => { if attr.r#type() != T::TYPE { bail!( "unsupported type {:?} for '{name}' attribute in '{}' for {}", attr.r#type, node.op_type, node.name ) } let val = T::get(attr)?; Ok(Some(val)) } } } pub fn get_tensor(t: &onnx::TensorProto, name: &str) -> Result<Tensor> { let dims: Vec<usize> = t.dims.iter().map(|&x| x as usize).collect(); match DataType::try_from(t.data_type) { Ok(DataType::Int32) => { if t.int32_data.is_empty() { let len = t.raw_data.len() / 4; let data: &[i32] = unsafe { std::slice::from_raw_parts(t.raw_data.as_ptr() as *const i32, len) }; let data = data.iter().map(|v| *v as i64).collect::<Vec<_>>(); Tensor::from_vec(data, len, &Device::Cpu) } else { let data = t.int32_data.iter().map(|v| *v as i64).collect::<Vec<_>>(); Tensor::from_vec(data, t.int32_data.len(), &Device::Cpu) } } Ok(dt) => match dtype(dt) { Some(dt) => { if dt == DType::F32 && !t.float_data.is_empty() { Tensor::from_slice(&t.float_data, dims.as_slice(), &Device::Cpu) } else if dt == DType::F64 && !t.double_data.is_empty() { Tensor::from_slice(&t.double_data, dims.as_slice(), &Device::Cpu) } else if dt == DType::I64 && !t.int64_data.is_empty() { Tensor::from_slice(&t.int64_data, dims.as_slice(), &Device::Cpu) } else { Tensor::from_raw_buffer( t.raw_data.as_slice(), dt, dims.as_slice(), &Device::Cpu, ) } } None => { bail!("unsupported 'value' data-type {dt:?} for {name}") } }, Err(_) => { bail!("unsupported 'value' data-type {} for {name}", t.data_type,) } } } // This function provides a direct evaluation of the proto. // Longer-term, we should first convert the proto to an intermediate representation of the compute // graph so as to make multiple evaluations more efficient. // An example upside of this would be to remove intermediary values when they are not needed // anymore. pub fn simple_eval( model: &onnx::ModelProto, inputs: HashMap<String, Value>, ) -> Result<HashMap<String, Value>> { let graph = match &model.graph { None => bail!("no graph defined in proto"), Some(graph) => graph, }; let mut values = inputs; for t in graph.initializer.iter() { let tensor = get_tensor(t, t.name.as_str())?; values.insert(t.name.to_string(), tensor); } for input in graph.input.iter() { let input_type = match &input.r#type { Some(input_type) => input_type, None => continue, }; let input_type = match &input_type.value { Some(input_type) => input_type, None => continue, }; let tensor_type = match input_type { onnx::type_proto::Value::TensorType(tt) => tt, _ => continue, }; let tensor = match values.get(&input.name) { None => bail!("missing input {}", input.name), Some(tensor) => tensor, }; let dt = match DataType::try_from(tensor_type.elem_type) { Ok(dt) => match dtype(dt) { Some(dt) => dt, None => { bail!("unsupported 'value' data-type {dt:?} for {}", input.name) } }, type_ => bail!("unsupported input type {type_:?}"), }; match &tensor_type.shape { None => continue, Some(shape) => { if shape.dim.len() != tensor.rank() { bail!( "unexpected rank for {}, got {:?}, expected {:?}", input.name, shape.dim, tensor.shape() ) } for (idx, (d, &dim)) in shape.dim.iter().zip(tensor.dims().iter()).enumerate() { match &d.value { Some(onnx::tensor_shape_proto::dimension::Value::DimValue(v)) => { if *v as usize != dim { bail!( "unexpected dim {idx} for {}, got {:?}, expected {:?}", input.name, shape.dim, tensor.shape() ) } } // We do not check equality constraints for the DimParam dimensions for now. Some(onnx::tensor_shape_proto::dimension::Value::DimParam(_)) | None => (), } } } }; if dt != tensor.dtype() { bail!( "unexpected dtype for {}, got {:?}, expected {dt:?}", input.name, tensor.dtype() ) } } // The nodes are topologically sorted so we can just process them in order. for node in graph.node.iter() { let get = |input_name: &str| match values.get(input_name) { Some(value) => Ok(value), None => bail!("cannot find {input_name} for op {}", node.name), }; // TODO: Validate node.input for each operator. match node.op_type.as_str() { "Add" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_add(input1)?; values.insert(node.output[0].clone(), output); } "Sub" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_sub(input1)?; values.insert(node.output[0].clone(), output); } "Mul" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_mul(input1)?; values.insert(node.output[0].clone(), output); } "Div" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_div(input1)?; values.insert(node.output[0].clone(), output); } "Pow" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_pow(input1)?; values.insert(node.output[0].clone(), output); } "Equal" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_eq(input1)?; values.insert(node.output[0].clone(), output); } "Not" => { let xs = get(&node.input[0])?; let xs = xs.eq(&xs.zeros_like()?)?; values.insert(node.output[0].clone(), xs); } "MatMul" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?; let output = input0.broadcast_matmul(input1)?; values.insert(node.output[0].clone(), output); } "Reshape" => { let input0 = get(&node.input[0])?; let input1 = get(&node.input[1])?.to_vec1::<i64>()?; // TODO: Check that there is at most a single -1 or 0, handle other neg values. let mut other_than_minus1 = 1usize; for &v in input1.iter() { if v != -1 && v != 0 { other_than_minus1 *= v as usize } } let input1 = input1 .iter() .enumerate() .map(|(idx, &v)| match v { -1 => Ok(input0.elem_count() / other_than_minus1), 0 => input0.dim(idx), _ => Ok(v as usize), }) .collect::<Result<Vec<usize>>>()?; let output = input0.reshape(input1)?; values.insert(node.output[0].clone(), output); } "LogSoftmax" => { let input = get(&node.input[0])?; let output = match get_attr_opt::<i64>(node, "axis")? { None => candle_nn::ops::softmax_last_dim(input)?, Some(&axis) => { let axis = input.normalize_axis(axis)?; candle_nn::ops::log_softmax(input, axis)? } }; values.insert(node.output[0].clone(), output); } "Softmax" => { let input = get(&node.input[0])?; let output = match get_attr_opt::<i64>(node, "axis")? { None => candle_nn::ops::softmax_last_dim(input)?, Some(&axis) => { let axis = input.normalize_axis(axis)?; candle_nn::ops::softmax(input, axis)? } }; values.insert(node.output[0].clone(), output); } "Transpose" => { let input = get(&node.input[0])?; let output = match get_attr_opt::<[i64]>(node, "perm")? { None => input.t()?, Some(perm) => { let perm = perm.iter().map(|&v| v as usize).collect::<Vec<_>>(); input.permute(perm)? } }; values.insert(node.output[0].clone(), output); } "Dropout" => { let input = get(&node.input[0])?; // Do not apply dropout at the moment, consider that we're only doing inference. values.insert(node.output[0].clone(), input.clone()); } "MaxPool" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#MaxPool let dilations = get_attr_opt::<[i64]>(node, "dilations")?; let kernel_shape = get_attr::<[i64]>(node, "kernel_shape")?; let pads = get_attr_opt::<[i64]>(node, "pads")?; let strides = get_attr_opt::<[i64]>(node, "strides")?; let auto_pad = get_attr_opt::<str>(node, "auto_pad")?; match auto_pad { None | Some("NOTSET") => (), Some(s) => bail!("unsupported auto_pad {s}"), }; if let Some(d) = dilations { if d.iter().any(|&v| v != 1) { bail!("MaxPool with dilation != 1, {dilations:?}") } } if let Some(d) = pads { if d.iter().any(|&v| v != 0) { bail!("MaxPool with pads != 0, {pads:?}") } } let xs = get(&node.input[0])?; let (k1, k2) = match kernel_shape { [k1, k2] => (*k1 as usize, *k2 as usize), _ => bail!("only 2d MaxPool is supported, kernel shape {kernel_shape:?}"), }; let ys = match strides { None => xs.max_pool2d((k1, k2))?, Some([s1, s2]) => { xs.max_pool2d_with_stride((k1, k2), (*s1 as usize, *s2 as usize))? } Some(strides) => bail!("only 2d MaxPool is supported, strides {strides:?}"), }; values.insert(node.output[0].clone(), ys); } "AveragePool" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#AveragePool let dilations = get_attr_opt::<[i64]>(node, "dilations")?; let kernel_shape = get_attr::<[i64]>(node, "kernel_shape")?; let pads = get_attr_opt::<[i64]>(node, "pads")?; let strides = get_attr_opt::<[i64]>(node, "strides")?; let auto_pad = get_attr_opt::<str>(node, "auto_pad")?; match auto_pad { None | Some("NOTSET") => (), Some(s) => bail!("unsupported auto_pad {s}"), }; if let Some(d) = dilations { if d.iter().any(|&v| v != 1) { bail!("AvgPool with dilation != 1, {dilations:?}") } } if let Some(d) = pads { if d.iter().any(|&v| v != 0) { bail!("AvgPool with pads != 0, {pads:?}") } } let xs = get(&node.input[0])?; let (k1, k2) = match kernel_shape { [k1, k2] => (*k1 as usize, *k2 as usize), _ => bail!("only 2d AvgPool is supported, kernel shape {kernel_shape:?}"), }; let ys = match strides { None => xs.avg_pool2d((k1, k2))?, Some([s1, s2]) => { xs.avg_pool2d_with_stride((k1, k2), (*s1 as usize, *s2 as usize))? } Some(strides) => bail!("only 2d AvgPool is supported, strides {strides:?}"), }; values.insert(node.output[0].clone(), ys); } "BatchNormalization" => { let training_mode = get_attr_opt::<i64>(node, "training_mode")?; if training_mode.copied().unwrap_or(0) != 0 { bail!("training mode is not supported for BatchNorm") } let eps = get_attr_opt::<f32>(node, "epsilon")? .copied() .unwrap_or(1e-5); let xs = get(&node.input[0])?; let weight = get(&node.input[1])?; let bias = get(&node.input[2])?; let running_mean = get(&node.input[3])?; let running_var = get(&node.input[4])?; let target_shape: Vec<usize> = xs .dims() .iter() .enumerate() .map(|(idx, v)| if idx == 1 { *v } else { 1 }) .collect(); let target_shape = target_shape.as_slice(); let xs = xs .broadcast_sub(&running_mean.reshape(target_shape)?)? .broadcast_div(&(running_var.reshape(target_shape)? + eps as f64)?.sqrt()?)?; let weight = weight.reshape(target_shape)?; let bias = bias.reshape(target_shape)?; let xs = xs.broadcast_mul(&weight)?.broadcast_add(&bias)?; values.insert(node.output[0].clone(), xs); } "Squeeze" => { let xs = get(&node.input[0])?; let mut axes = if node.input.len() <= 1 { // contract all the dimensions with size 1 except the batch dim. xs.dims() .iter() .enumerate() .flat_map(|(idx, &s)| if s == 1 && idx > 0 { Some(idx) } else { None }) .collect() } else { get(&node.input[1])? .to_vec1::<i64>()? .iter() .map(|&i| xs.normalize_axis(i)) .collect::<Result<Vec<_>>>()? }; axes.sort(); let mut xs = xs.clone(); for &axis in axes.iter().rev() { xs = xs.squeeze(axis)? } values.insert(node.output[0].clone(), xs); } "ConstantOfShape" => { let dims = get(&node.input[0])?; let shape = dims .to_vec1::<i64>()? .into_iter() .map(|v| v as usize) .collect::<Vec<_>>(); let xs = Tensor::zeros(shape, DType::F32, dims.device())?; values.insert(node.output[0].clone(), xs); } "Unsqueeze" => { let xs = get(&node.input[0])?; let axes = match get_attr_opt::<[i64]>(node, "axes")? { Some(axis) => axis.to_vec(), None => get(&node.input[1])?.to_vec1::<i64>()?, }; let mut axes = axes .iter() .map(|&i| { if i == xs.rank() as i64 { Ok(xs.rank()) } else { xs.normalize_axis(i) } }) .collect::<Result<Vec<_>>>()?; axes.sort(); let mut xs = xs.clone(); for &axis in axes.iter().rev() { xs = xs.unsqueeze(axis)? } values.insert(node.output[0].clone(), xs); } "Clip" => { let xs = get(&node.input[0])?; let xs = if node.input.len() >= 2 { let mins = get(&node.input[1])?; xs.broadcast_maximum(mins)? } else { xs.clone() }; let xs = if node.input.len() >= 3 { let maxs = get(&node.input[2])?; xs.broadcast_minimum(maxs)? } else { xs.clone() }; values.insert(node.output[0].clone(), xs); } "Gather" => { let xs = get(&node.input[0])?; let indices = get(&node.input[1])?; let axis = get_attr_opt::<i64>(node, "axis")?.copied().unwrap_or(0); let axis = xs.normalize_axis(axis)?; // TODO: Provide an op to handle the ONNX generalized gather op ideally in a // differentiable way. let xs = if indices.rank() == 0 { let index = indices.to_vec0::<i64>()? as usize; xs.narrow(axis, index, 1)?.squeeze(axis)? } else { todo!("implement gather for {xs:?} {indices:?} axis {axis}") }; values.insert(node.output[0].clone(), xs); } "Shape" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Shape let xs = get(&node.input[0])?; let start = get_attr_opt::<i64>(node, "start")?.copied().unwrap_or(0); let end = get_attr_opt::<i64>(node, "end")?.copied().unwrap_or(-1); let start = xs.normalize_axis(start)?; let end = xs.normalize_axis(end)?; let mut dims = vec![]; for idx in start..=end { dims.push(xs.dim(idx)? as i64) } let dims = Tensor::from_vec(dims, xs.rank(), xs.device())?; values.insert(node.output[0].clone(), dims); } "Conv" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Conv let dilations = get_attr_opt::<[i64]>(node, "dilations")?; let groups = get_attr_opt::<i64>(node, "group")?.copied().unwrap_or(1); let _kernel_shape = get_attr_opt::<[i64]>(node, "kernel_shape")?; let pads = get_attr_opt::<[i64]>(node, "pads")?; let strides = get_attr_opt::<[i64]>(node, "strides")?; let auto_pad = get_attr_opt::<str>(node, "auto_pad")?; match auto_pad { None | Some("NOTSET") => (), Some(s) => bail!("unsupported auto_pad {s}"), }; let xs = get(&node.input[0])?; let ws = get(&node.input[1])?; let ys = match ws.rank() { 3 => { let (pads, xs) = match pads { None => (0, xs.clone()), Some([p]) => (*p as usize, xs.clone()), Some([p1, p2]) => { if p1 != p2 { (0usize, xs.pad_with_zeros(2, *p1 as usize, *p2 as usize)?) } else { (*p1 as usize, xs.clone()) } } Some(pads) => { bail!("more pads than expected in conv1d {pads:?} {}", node.name) } }; let strides = match strides { None => 1, Some([p]) => *p as usize, Some(s) => { bail!("more strides than expected in conv1d {s:?} {}", node.name) } }; let dilations = match dilations { None => 1, Some([p]) => *p as usize, Some(s) => { bail!("more dilations than expected in conv1d {s:?} {}", node.name) } }; xs.conv1d(ws, pads, strides, dilations, groups as usize)? } 4 => { let (pads, xs) = match pads { None => (0, xs.clone()), Some([p]) => (*p as usize, xs.clone()), Some(&[p1, p2, p3, p4]) => { let p1 = p1 as usize; let p2 = p2 as usize; let p3 = p3 as usize; let p4 = p4 as usize; if p1 != p2 || p1 != p3 || p1 != p4 { (0, xs.pad_with_zeros(2, p1, p3)?.pad_with_zeros(3, p2, p4)?) } else { (p1, xs.clone()) } } Some(pads) => { bail!("more pads than expected in conv2d {pads:?} {}", node.name) } }; let strides = match strides { None => 1, Some([p]) => *p as usize, Some([p1, p2]) => { if p1 != p2 { bail!( "strides have to be the same on both axis {pads:?} {}", node.name ) } *p1 as usize } Some(s) => { bail!("more strides than expected in conv2d {s:?} {}", node.name) } }; let dilations = match dilations { None => 1, Some([p]) => *p as usize, Some([p1, p2]) => { if p1 != p2 { bail!( "dilations have to be the same on both axis {pads:?} {}", node.name ) } *p1 as usize } Some(s) => { bail!("more dilations than expected in conv2d {s:?} {}", node.name) } }; xs.conv2d(ws, pads, strides, dilations, groups as usize)? } rank => bail!( "unsupported rank for weight matrix {rank} in conv {}", node.name ), }; let ys = if node.input.len() > 2 { let bs = get(&node.input[2])?; let mut bs_shape = vec![1; ys.rank()]; bs_shape[1] = bs.elem_count(); ys.broadcast_add(&bs.reshape(bs_shape)?)? } else { ys }; values.insert(node.output[0].clone(), ys); } "Concat" => { // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Concat let inputs = node .input .iter() .map(|n| Ok(get(n.as_str())?.clone())) .collect::<Result<Vec<Value>>>()?; let axis: i64 = *get_attr(node, "axis")?; if inputs.is_empty() { bail!("empty concat") }; let axis = inputs[0].normalize_axis(axis)?; let output = Tensor::cat(&inputs, axis)?; values.insert(node.output[0].clone(), output); } "Abs" => { let input = get(&node.input[0])?; let output = input.abs()?; values.insert(node.output[0].clone(), output); } "Cos" => { let input = get(&node.input[0])?; let output = input.cos()?; values.insert(node.output[0].clone(), output); } "Sin" => { let input = get(&node.input[0])?; let output = input.sin()?; values.insert(node.output[0].clone(), output); } "Neg" => { let input = get(&node.input[0])?; let output = input.neg()?; values.insert(node.output[0].clone(), output); } "Erf" => { let input = get(&node.input[0])?; let output = input.erf()?; values.insert(node.output[0].clone(), output); } "Tanh" => { let input = get(&node.input[0])?; let output = input.tanh()?; values.insert(node.output[0].clone(), output); } "Sigmoid" => { let input = get(&node.input[0])?; let output = candle_nn::ops::sigmoid(input)?; values.insert(node.output[0].clone(), output); } "Gelu" => { let input = get(&node.input[0])?; let output = input.gelu_erf()?; values.insert(node.output[0].clone(), output); } "Relu" => { let input = get(&node.input[0])?; let output = input.relu()?; values.insert(node.output[0].clone(), output); } // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Constant "Constant" => { let value = match node.attribute.iter().find(|attr| attr.name == "value") { None => { // TODO: support sparse_value etc. bail!("cannot find 'value' attr in 'Constant' for {}", node.name) } Some(value) => value, }; let output = match value.r#type() { AttributeType::Tensor => { let t = value.t.as_ref().unwrap(); get_tensor(t, &node.name)? } rtype => bail!("unsupported 'value' type {rtype:?} for {}", node.name), }; values.insert(node.output[0].clone(), output); } // https://github.com/onnx/onnx/blob/main/docs/Operators.md#Cast "Cast" => { let input = get(&node.input[0])?; let dt: i64 = *get_attr(node, "to")?; let dtype = match DataType::try_from(dt as i32) { Ok(DataType::Int32) => DType::I64, Ok(dt) => match dtype(dt) { Some(dt) => dt, None => { bail!("unsupported 'to' value {dt:?} for cast {}", node.name) } }, Err(_) => { bail!("unsupported 'to' value {dt:?} for cast {}", node.name) } }; let output = input.to_dtype(dtype)?; values.insert(node.output[0].clone(), output); } // https://github.com/onnx/onnx/blob/main/docs/Operators.md#CumSum "CumSum" => { let exclusive = get_attr_opt::<i64>(node, "exclusive")? .copied() .unwrap_or(0); let reverse = get_attr_opt::<i64>(node, "reverse")?.copied().unwrap_or(0); if exclusive != 0 { bail!("only exclusive == 0 is supported in CumSum") } if reverse != 0 { bail!("only reverse == 0 is supported in CumSum") } let input = get(&node.input[0])?; let axis = get(&node.input[1])? .to_dtype(DType::U32)? .to_vec0::<u32>()?; let output = input.cumsum(axis as usize)?; values.insert(node.output[0].clone(), output); } op_type => bail!("unsupported op_type {op_type} for op {node:?}"), } } graph .output .iter() .map(|output| match values.remove(&output.name) { None => bail!("cannot find output {}", output.name), Some(value) => Ok((output.name.clone(), value)), }) .collect() }
candle/candle-onnx/src/eval.rs/0
{ "file_path": "candle/candle-onnx/src/eval.rs", "repo_id": "candle", "token_count": 20458 }
29
import candle from typing import Dict, Tuple, Any from candle import Tensor, QTensor, utils, nn from candle.nn import Module, ModuleList def masked_fill(on_false: Tensor, mask: Tensor, on_true: Tensor): shape = mask.shape on_true = candle.tensor(on_true).broadcast_as(shape) return mask.where_cond(on_true, on_false) def precompute_freqs_cis(hparams: Dict[str, Any], freq_base: float, max_seq_len: int): head_dim = hparams["n_embd"] // hparams["n_head"] theta = [1.0 / freq_base ** (i / head_dim) for i in range(0, head_dim, 2)] theta = candle.tensor(theta) idx_theta = [float(i) for i in range(max_seq_len)] idx_theta = candle.tensor(idx_theta).reshape((max_seq_len, 1)) m = idx_theta.matmul(theta.unsqueeze(0)) return (m.cos(), m.sin()) class RmsNorm(Module): def __init__(self, qtensor: QTensor): super().__init__() self.weight = qtensor.dequantize() def forward(self, x: Tensor) -> Tensor: b_size, seq_len, hidden_size = x.shape norm_x = x.sqr().sum_keepdim(2) / hidden_size x_normed = x.broadcast_div((norm_x + 1e-5).sqrt()) return x_normed.broadcast_mul(self.weight) class QuantizedLayer(Module): def __init__( self, layer_idx: int, hparams: Dict[str, Any], all_tensors: Dict[str, QTensor], cos_sin: Tuple[Tensor, Tensor], ): super().__init__() p = f"layers.{layer_idx}" self.attention_wq = all_tensors[f"{p}.attention.wq.weight"] self.attention_wk = all_tensors[f"{p}.attention.wk.weight"] self.attention_wv = all_tensors[f"{p}.attention.wv.weight"] self.attention_wo = all_tensors[f"{p}.attention.wo.weight"] self.ffw1 = all_tensors[f"{p}.feed_forward.w1.weight"] self.ffw2 = all_tensors[f"{p}.feed_forward.w2.weight"] self.ffw3 = all_tensors[f"{p}.feed_forward.w3.weight"] self.attn_norm = RmsNorm(all_tensors[f"{p}.attention_norm.weight"]) self.ffn_norm = RmsNorm(all_tensors[f"{p}.ffn_norm.weight"]) self.n_head = hparams["n_head"] self.n_kv_head = self.n_head self.head_dim = hparams["n_embd"] // self.n_head self.kv_cache = None self.cos = cos_sin[0] self.sin = cos_sin[1] self._non_persistent_buffers_set.add("cos") self._non_persistent_buffers_set.add("sin") def forward(self, x: Tensor, mask: Tensor, index_pos: int) -> Tensor: residual = x x = self.attn_norm(x) attn = self.forward_attn(x, mask, index_pos) x = attn + residual residual = x x = self.ffn_norm(x) w1 = self.ffw1.matmul_t(x) w3 = self.ffw3.matmul_t(x) mlp = self.ffw2.matmul_t(nn.silu(w1) * w3) return mlp + residual def forward_attn(self, x: Tensor, mask: Tensor, index_pos: int): b_size, seq_len, n_embd = x.shape q = self.attention_wq.matmul_t(x) k = self.attention_wk.matmul_t(x) v = self.attention_wv.matmul_t(x) q = q.reshape((b_size, seq_len, self.n_head, self.head_dim)).transpose(1, 2) k = k.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2) v = v.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2) q = self.apply_rotary_emb(q, index_pos) k = self.apply_rotary_emb(k, index_pos) if self.kv_cache is not None and index_pos > 0: prev_k, prev_v = self.kv_cache k = candle.cat([prev_k, k], 2).contiguous() v = candle.cat([prev_v, v], 2).contiguous() self.kv_cache = (k, v) # TODO: maybe repeat k/v here if we start supporting MQA. att = q.matmul(k.t()) / self.head_dim**0.5 mask = mask.broadcast_as(att.shape) att = masked_fill(att, mask, float("-inf")) att = nn.softmax(att, -1) y = att.matmul(v.contiguous()) y = y.transpose(1, 2).reshape((b_size, seq_len, n_embd)) return self.attention_wo.matmul_t(y) def apply_rotary_emb(self, x: Tensor, index_pos: int): b_size, n_head, seq_len, n_embd = x.shape cos = self.cos.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1)) sin = self.sin.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1)) x = x.reshape((b_size, n_head, seq_len, n_embd // 2, 2)) x0 = x.narrow(-1, 0, 1) x1 = x.narrow(-1, 1, 1) y0 = x0.broadcast_mul(cos) - x1.broadcast_mul(sin) y1 = x0.broadcast_mul(sin) + x1.broadcast_mul(cos) rope = candle.cat([y0, y1], -1) return rope.flatten_from(-2) class QuantizedLlama(Module): def __init__(self, hparams: Dict[str, Any], all_tensors: Dict[str, QTensor]): super().__init__() self.tok_embeddings = all_tensors["tok_embeddings.weight"].dequantize() self.norm = RmsNorm(all_tensors["norm.weight"]) self.output = all_tensors["output.weight"] self.layers = ModuleList() rope_freq = hparams.get("rope_freq", 10000.0) cos_sin = precompute_freqs_cis(hparams, rope_freq, hparams["context_length"]) for layer_idx in range(hparams["n_layer"]): layer = QuantizedLayer(layer_idx, hparams, all_tensors, cos_sin) self.layers.append(layer) def forward(self, token: Tensor, index_pos: int) -> Tensor: b_size, seq_len = token.shape vocab_size, hidden_size = self.tok_embeddings.shape token = token.reshape((b_size * seq_len,)) x = self.tok_embeddings.index_select(token, 0) x = x.reshape((b_size, seq_len, hidden_size)) mask = [int(j > i) for j in range(seq_len) for i in range(seq_len)] mask = candle.tensor(mask).reshape((seq_len, seq_len)) for layer in self.layers: x = layer(x, mask, index_pos) x = self.norm(x) x = x.narrow(1, -1, 1).squeeze(1) x = self.output.matmul_t(x) return x
candle/candle-pyo3/py_src/candle/models/llama.py/0
{ "file_path": "candle/candle-pyo3/py_src/candle/models/llama.py", "repo_id": "candle", "token_count": 2981 }
30